Science.gov

Sample records for activity-a cellular response

  1. PLAGL2 translocation and SP-C promoter activity-A cellular response of lung cells to hypoxia

    SciTech Connect

    Guo, Yuhong; Yang, Meng-Chun; Weissler, Jonathan C.; Yang, Yih-Sheng . E-mail: Yih-Sheng.Yang@UTSouthwestern.edu

    2007-08-31

    Cobalt is a transition metal which can substitute for iron in the oxygen-sensitive protein and mimic hypoxia. Cobalt was known to be associated with the development of lung disease. In this study, when lung cells were exposed to hypoxia-induced by CoCl{sub 2} at a sub-lethal concentration (100 {mu}M), their thyroid transcription factor-1 (TTF-1) expression was greatly reduced. Under this condition, SP-B promoter activity was down-regulated, but SP-C promoter remained active. Therefore, we hypothesized that other factor(s) besides TTF-1 might contribute to the modulation of SP-C promoter in hypoxic lung cells. Pleomorphic adenoma gene like-2 (PLAGL2), a previously identified TTF-1-independent activator of the SP-C promoter, was not down-regulated, nor increased, within those cells. Its cellular location was redistributed from the cytoplasm to the nucleus. Chromatin immunoprecipitation (ChIP) and quantitative RT-PCR analyses demonstrated that nuclear PLAGL2 occupied and transactivated the endogenous SP-C promoter in lung cells. Thereby, through relocating and accumulating of PLAGL2 inside the nucleus, PLAGL2 interacted with its target genes for various cellular functions. These results further suggest that PLAGL2 is an oxidative stress responding regulator in lung cells.

  2. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  3. Cellular immune response experiment MA-031

    NASA Technical Reports Server (NTRS)

    Criswell, B. S.

    1976-01-01

    Significant changes in phytohemagglutinin (PHA) lymphocytic responsiveness occurred in the cellular immune response of three astronauts during the 9 day flight of the Apollo Soyuz Test Project. Parameters studied were white blood cell concentrations, lymphocyte numbers, B- and T-lymphocyte distributions in peripheral blood, and lymphocyte responsiveness to PHA, pokeweed mitogen, Concanavalin A, and influenza virus antigen.

  4. Cellular responses to environmental DNA damage

    SciTech Connect

    Not Available

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  5. Characterizing heterogeneous cellular responses to perturbations.

    PubMed

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-01

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  6. Viral and Cellular Genomes Activate Distinct DNA Damage Responses

    PubMed Central

    Shah, Govind A.; O’Shea, Clodagh C.

    2015-01-01

    Summary In response to cellular genome breaks, MRE11/RAD50/NBS1 (MRN) activates a global ATM DNA damage response (DDR) that prevents cellular replication. Here we show that MRN-ATM also has critical functions in defending the cell against DNA viruses. We reveal temporally distinct responses to adenovirus genomes: a critical MRN-ATM DDR that must be inactivated by E1B-55K/E4-ORF3 viral oncoproteins and a global MRN independent ATM DDR to viral nuclear domains that does not impact viral replication. We show that MRN binds to adenovirus genomes and activates a localized ATM response that specifically prevents viral DNA replication. In contrast to chromosomal breaks, ATM activation is not amplified by H2AX across megabases of chromatin to induce global signaling and replicative arrest. Thus, γH2AX foci discriminate ‘self’ and ‘non-self’ genomes and determine if a localized anti-viral or global ATM response is appropriate. This provides an elegant mechanism to neutralize viral genomes without jeopardizing cellular viability. PMID:26317467

  7. Dynamics of active cellular response under stress

    NASA Astrophysics Data System (ADS)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  8. Cellular immune response in intraventricular experimental neurocysticercosis.

    PubMed

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile. PMID:26626017

  9. Cellular immune response in intraventricular experimental neurocysticercosis.

    PubMed

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile.

  10. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    EPA Science Inventory

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  11. Dynamic Simulation of 1D Cellular Automata in the Active aTAM

    PubMed Central

    Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke

    2016-01-01

    The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location.

  12. Early cellular signaling responses to axonal injury

    PubMed Central

    Lukas, Thomas J; Wang, Ai Ling; Yuan, Ming; Neufeld, Arthur H

    2009-01-01

    Background We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs). The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury. Results We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3) and apoptosis (Bax). Conclusion We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration. PMID:19284657

  13. Endothelial Cellular Responses to Biodegradable Metal Zinc

    PubMed Central

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-01-01

    Biodegradable zinc (Zn) metals, a new generation of biomaterials, have attracted much attention due to their excellent biodegradability, bioabsorbability, and adaptability to tissue regeneration. Compared with magnesium (Mg) and iron (Fe), Zn exhibits better corrosion and mechanical behaviors in orthopedic and stent applications. After implantation, Zn containing material will slowly degrade, and Zn ions (Zn2+) will be released to the surrounding tissue. For stent applications, the local Zn2+concentration near endothelial tissue/cells could be high. However, it is unclear how endothelia will respond to such high concentrations of Zn2+, which is pivotal to vascular remodeling and regeneration. Here, we evaluated the short-term cellular behaviors of primary human coronary artery endothelial cells (HCECs) exposed to a concentration gradient (0−140 μM) of extracellular Zn2+. Zn2+ had an interesting biphasic effect on cell viability, proliferation, spreading, and migration. Generally, low concentrations of Zn2+ promoted viability, proliferation, adhesion, and migration, while high concentrations of Zn2+ had opposite effects. For gene expression profiles, the most affected functional genes were related to cell adhesion, cell injury, cell growth, angiogenesis, inflammation, vessel tone, and coagulation. These results provide helpful information and guidance for Zn-based alloy design as well as the controlled release of Zn2+in stent and other related medical applications. PMID:27689136

  14. Endothelial Cellular Responses to Biodegradable Metal Zinc

    PubMed Central

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-01-01

    Biodegradable zinc (Zn) metals, a new generation of biomaterials, have attracted much attention due to their excellent biodegradability, bioabsorbability, and adaptability to tissue regeneration. Compared with magnesium (Mg) and iron (Fe), Zn exhibits better corrosion and mechanical behaviors in orthopedic and stent applications. After implantation, Zn containing material will slowly degrade, and Zn ions (Zn2+) will be released to the surrounding tissue. For stent applications, the local Zn2+concentration near endothelial tissue/cells could be high. However, it is unclear how endothelia will respond to such high concentrations of Zn2+, which is pivotal to vascular remodeling and regeneration. Here, we evaluated the short-term cellular behaviors of primary human coronary artery endothelial cells (HCECs) exposed to a concentration gradient (0−140 μM) of extracellular Zn2+. Zn2+ had an interesting biphasic effect on cell viability, proliferation, spreading, and migration. Generally, low concentrations of Zn2+ promoted viability, proliferation, adhesion, and migration, while high concentrations of Zn2+ had opposite effects. For gene expression profiles, the most affected functional genes were related to cell adhesion, cell injury, cell growth, angiogenesis, inflammation, vessel tone, and coagulation. These results provide helpful information and guidance for Zn-based alloy design as well as the controlled release of Zn2+in stent and other related medical applications.

  15. Stiffening response of a cellular tensegrity model.

    PubMed

    Wendling, S; Oddou, C; Isabey, D

    1999-02-01

    Living cells exhibit, as most biological tissues, a stiffening (strain-hardening) response which reflects the nonlinearity of the stress-strain relationship. Tensegrity structures have been proposed as a comprehensive model of such a cell's mechanical response. Based on a theoretical model of a 30-element tensegrity structure, we propose a quantitative analysis of its nonlinear mechanical behavior under static conditions and large deformations. This study provides theoretical foundation to the passage from large-scale tensegrity models to microscale living cells, as well as the comparison between results obtained in biological specimens of different sizes. We found two non-dimensional parameters (L*-normalized element length and T*-normalized elastic tension) which govern the mechanical response of the structure for three types of loading tested (extension, compression and shear). The linear strain-hardening is uniquely observed for extension but differed for the two other types of loading tested. The stiffening response of the theoretical model was compared and discussed with the living cells stiffening response observed by different methods (shear flow experiments, micromanipulation and magnetocytometry). PMID:10049624

  16. Parameter-less approaches for interpreting dynamic cellular response

    PubMed Central

    2014-01-01

    Cellular response such as cell signaling is an integral part of information processing in biology. Upon receptor stimulation, numerous intracellular molecules are invoked to trigger the transcription of genes for specific biological purposes, such as growth, differentiation, apoptosis or immune response. How complex are such specialized and sophisticated machinery? Computational modeling is an important tool for investigating dynamic cellular behaviors. Here, I focus on certain types of key signaling pathways that can be interpreted well using simple physical rules based on Boolean logic and linear superposition of response terms. From the examples shown, it is conceivable that for small-scale network modeling, reaction topology, rather than parameter values, is crucial for understanding population-wide cellular behaviors. For large-scale response, non-parametric statistical approaches have proven valuable for revealing emergent properties. PMID:25183996

  17. Modeling In Vitro Cellular Responses to Silver Nanoparticles

    PubMed Central

    Mukherjee, Dwaipayan; Royce, Steven G.; Sarkar, Srijata; Thorley, Andrew; Schwander, Stephan; Ryan, Mary P.; Porter, Alexandra E.; Chung, Kian Fan; Tetley, Teresa D.; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-01-01

    Engineered nanoparticles (NPs) have been widely demonstrated to induce toxic effects to various cell types. In vitro cell exposure systems have high potential for reliable, high throughput screening of nanoparticle toxicity, allowing focusing on particular pathways while excluding unwanted effects due to other cells or tissue dosimetry. The work presented here involves a detailed biologically based computational model of cellular interactions with NPs; it utilizes measurements performed in human cell culture systems in vitro, to develop a mechanistic mathematical model that can support analysis and prediction of in vivo effects of NPs. The model considers basic cellular mechanisms including proliferation, apoptosis, and production of cytokines in response to NPs. This new model is implemented for macrophages and parameterized using in vitro measurements of changes in cellular viability and mRNA levels of cytokines: TNF, IL-1b, IL-6, IL-8, and IL-10. The model includes in vitro cellular dosimetry due to nanoparticle transport and transformation. Furthermore, the model developed here optimizes the essential cellular parameters based on in vitro measurements, and provides a “stepping stone” for the development of more advanced in vivo models that will incorporate additional cellular and NP interactions. PMID:25541583

  18. Ultrafast Dynamic Piezoresistive Response of Graphene-Based Cellular Elastomers.

    PubMed

    Qiu, Ling; Bulut Coskun, M; Tang, Yue; Liu, Jefferson Z; Alan, Tuncay; Ding, Jie; Truong, Van-Tan; Li, Dan

    2016-01-01

    Ultralight graphene-based cellular elastomers are found to exhibit nearly frequency-independent piezoresistive behaviors. Surpassing the mechanoreceptors in the human skin, these graphene elastomers can provide an instantaneous and high-fidelity electrical response to dynamic pressures ranging from quasi-static up to 2000 Hz, and are capable of detecting ultralow pressures as small as 0.082 Pa.

  19. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    EPA Science Inventory

    With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate t...

  20. Neuroendocrine system response modulates oxidative cellular damage in burn patients.

    PubMed

    Xie, Xiao-Qi; Shinozawa, Yotaro; Sasaki, Junichi; Takuma, Kiyotsugu; Akaishi, Satoshi; Yamanouchi, Satoshi; Endo, Tomoyuki; Nomura, Ryosuke; Kobayashi, Michio; Kudo, Daisuke; Hojo, Nobuko

    2007-02-01

    Oxygen-derived free radicals play important roles in pathophysiological processes in critically ill patients, but the data characterizing relationships between radicals and neuroendocrine system response are sparse. To search the cue to reduce the oxidative cellular damage from the point of view of neuroendocrine system response, we studied the indicators of neuroendocrine and inflammatory responses excreted in urine in 14 burn patients (42.3 +/- 31.4 years old, and 32.3 +/- 27.6% burn of total body surface area [%TBSA]) during the first seven days post burn. The daily mean amounts of urinary excretion of 8-hydroxy-2'-deoxy-guanosine (8-OHdG), a marker of oxidative cellular damage, were above the upper limit of the standard value during the studied period. The total amount of urinary excretion of 8-OHdG in the first day post burn correlated with burn severity indices: %TBSA (r = 0.63, p = 0.021) and burn index (r = 0.70, p = 0.008). The daily urinary excretion of 8-OHdG correlated with the daily urinary excretion of norepinephrine and nitrite plus nitrate (NOx) during the studied period except day 2 post burn, and correlated with the daily urinary excretion of 17-hydroxycorticosteriod (17-OHCS) in days 2, 3, and 7 post burn. These data suggest that oxidative cellular damage correlates with burn severity and neuroendocrine system response modulates inflammation and oxidative cellular damage. Modulation of neuroendocrine system response and inflammation in the treatment in the early phase of burn may be useful to reduce the oxidative cellular damage and to prevent multiple organ failures in patients with extensive burn.

  1. Does reduced gravity alter cellular response to ionizing radiation?

    PubMed

    Manti, Lorenzo

    2006-05-01

    This review addresses the purported interplay between actual or simulated weightlessness and cellular response to ionizing radiation. Although weightlessness is known to alter several cellular functions and to affect signaling pathways implicated in cell proliferation, differentiation and death, its influence on cellular radiosensitivity has so far proven elusive. Renewed controversy as to whether reduced gravity enhances long-term radiation risk is fueled by recently published data that claim either overall enhancement of genomic damage or no increase of radiation-induced clastogenicity by modeled microgravity in irradiated human cells. In elucidating this crucial aspect of space radiation protection, ground-based experiments, such as those based on rotating-wall bioreactors, will increasingly be used and represent a more reproducible alternative to in-flight experiments. These low-shear vessels also make three-dimensional cellular co-cultures possible and thus allow to study the gravisensitivity of radioresponse in a context that better mimics cell-to-cell communication and hence in vivo cellular behavior.

  2. Dynamical theory of active cellular response to external stress

    NASA Astrophysics Data System (ADS)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  3. Asplatin enhances drug efficacy by altering the cellular response.

    PubMed

    Cheng, Qinqin; Shi, Hongdong; Wang, Hongxia; Wang, Jun; Liu, Yangzhong

    2016-07-13

    Aspirin, a widely used anti-inflammatory drug, has been shown to be effective for the prevention and remission of cancers (Science, 2012, 337(21) 1471-1473). Asplatin, a Pt(iv) prodrug of cisplatin with the ligation of aspirin (c,c,t-[PtCl2(NH3)2(OH)(aspirin)]), demonstrates significantly higher cytotoxicity than cisplatin towards tumor cells and almost fully overcomes the drug resistance of cisplatin resistant cells. In this work, we have studied the molecular mechanism of asplatin by investigating the cellular response to this compound in order to understand the prominent inhibitory effect on the proliferation of cancer cells. The apoptosis analyses and the related gene expression measurements show that aspirin released from asplatin significantly modulates the cellular response to the platinum agent. Asplatin promotes the apoptosis via the BCL-2 associated mitochondrial pathway. The down-regulation of BCL-2 along with the up-regulation of BAX and BAK enhances the mitochondrial outer membrane permeability, resulting in the cytochrome c release from mitochondria into the cytosol. This event promotes the apoptosis by activation of caspase processing. Consequently, the ligation of aspirin significantly enhances the drug efficacy of the platinum complex in the low micromolar range. The alteration of the cellular response is probably responsible for the circumvention of the cisplatin resistance by asplatin. These results provide an insight into the mechanism of asplatin and provide information for designing new classic platinum drugs. PMID:27125788

  4. Dynamical theory of active cellular response to external stress.

    PubMed

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  5. SWI/SNF regulates the cellular response to hypoxia.

    PubMed

    Kenneth, Niall S; Mudie, Sharon; van Uden, Patrick; Rocha, Sonia

    2009-02-13

    Hypoxia induces a variety of cellular responses such as cell cycle arrest, apoptosis, and autophagy. Most of these responses are mediated by the hypoxia-inducible factor-1alpha. To induce target genes, hypoxia-inducible factor-1alpha requires a chromatin environment conducive to allow binding to specific sequences. Here, we have studied the role of the chromatin-remodeling complex SWI/SNF in the cellular response to hypoxia. We find that SWI/SNF is required for several of the cellular responses induced by hypoxia. Surprisingly, hypoxia-inducible factor-1alpha is a direct target of the SWI/SNF chromatin-remodeling complex. SWI/SNF components are found associated with the hypoxia-inducible factor-1alpha promoter and modulation of SWI/SNF levels results in pronounced changes in hypoxia-inducible factor-1alpha expression and its ability to transactivate target genes. Furthermore, impairment of SWI/SNF function renders cells resistant to hypoxia-induced cell cycle arrest. These results reveal a previously uncharacterized dependence of hypoxia signaling on the SWI/SNF complex and demonstrate a new level of control over the hypoxia-inducible factor-1alpha system.

  6. Pairwise agonist scanning predicts cellular signaling responses to combinatorial stimuli.

    PubMed

    Chatterjee, Manash S; Purvis, Jeremy E; Brass, Lawrence F; Diamond, Scott L

    2010-07-01

    Prediction of cellular response to multiple stimuli is central to evaluating patient-specific clinical status and to basic understanding of cell biology. Cross-talk between signaling pathways cannot be predicted by studying them in isolation and the combinatorial complexity of multiple agonists acting together prohibits an exhaustive exploration of the complete experimental space. Here we describe pairwise agonist scanning (PAS), a strategy that trains a neural network model based on measurements of cellular responses to individual and all pairwise combinations of input signals. We apply PAS to predict calcium signaling responses of human platelets in EDTA-treated plasma to six different agonists (ADP, convulxin, U46619, SFLLRN, AYPGKF and PGE(2)) at three concentrations (0.1, 1 and 10 x EC(50)). The model predicted responses to sequentially added agonists, to ternary combinations of agonists and to 45 different combinations of four to six agonists (R = 0.88). Furthermore, we use PAS to distinguish between the phenotypic responses of platelets from ten donors. Training neural networks with pairs of stimuli across the dose-response regime represents an efficient approach for predicting complex signal integration in a patient-specific disease milieu. PMID:20562863

  7. Cytomegalovirus: pathophysiological mechanisms of the cytomegalovirus-induced cellular responses

    SciTech Connect

    Nokta, M.A.

    1986-01-01

    Cytomegalovirus (CMV) infection of fibroblasts of human origin is associated with a cascade of morphologic cellular responses which in other systems have been associated with regulation of intracellular free (IF) (Ca/sup + +/). In the present study, the relationship of specific ion fluxes (Ca/sup + +/, Na/sup +/) to the development of cytomegalovirus (CMV)-induced morphologic cellular responses was investigated. An influx of Ca/sup + +/ was observed by the first hour after CMV infection (PI), and total calcium sequestered by infected cells was enhanced by 5 hr Pl. A gradual rise in intracellular free (IF) (Ca/sup + +/) was observed that continued through 48 hour postinfection (hr Pl). The IF (Ca/sup + +/) response to CMV infection was shown to be multiplicity dependent, require viable virus, and occur under conditions consistent with the expression of immediate early CMV genes. Development and progression of cytomegaly was found to be independent of CMV DNA synthesis and appeared to be dependent on the IF (Ca/sup + +/) response. Ca/sup + +/ influx blockers (e.g. verapamil) and cyclic nucleotide modulators (e.g. papaverine) inhibited both Ca/sup + +/ responses and cytomegaly. Quabain-sensitive /sup 86/Rb uptake and sequestering of Ca/sup + +/ increased in parallel with development of cytomegaly. There may be a relationship between Ca/sup + +/ influx, IF (Ca/sup + +/), activation of the Na/sup +//H/sup +/ exchanger, induction of Na/sup +/, Cl/sup -/, HCO/sub 3/ cotransport, Na/sup +/ entry, Na/sup +//K/sup +/ ATPase activity and development of CMV-induced morphologic cellular responses including cytomegaly.

  8. Pilocarpine modulates the cellular electrical properties of mammalian hearts by activating a cardiac M3 receptor and a K+ current

    PubMed Central

    Wang, Huizhen; Shi, Hong; Lu, Yanjie; Yang, Baofeng; Wang, Zhiguo

    1999-01-01

    Pilocarpine, a muscarinic acetylcholine receptor (mAChR) agonist, is widely used for treatment of xerostomia and glaucoma. It can also cause many other cellular responses by activating different subtypes of mAChRs in different tissues. However, the potential role of pilocarpine in modulating cardiac function remained unstudied.We found that pilocarpine produced concentration-dependent (0.1–10 μM) decrease in sinus rhythm and action potential duration, and hyperpolarization of membrane potential in guinea-pig hearts. The effects were nearly completely reversed by 1 μM atropine or 2 nM 4DAMP methiodide (an M3-selective antagonist).Patch-clamp recordings in dispersed myocytes from guinea-pig and canine atria revealed that pilocarpine induces a novel K+ current with delayed rectifying properties. The current was suppressed by low concentrations of M3-selective antagonists 4DAMP methiodide (2–10 nM), 4DAMP mustard (4–20 nM, an ackylating agent) and p-F-HHSiD (20–200 nM). Antagonists towards other subtypes (M1, M2 or M4) all failed to alter the current.The affinity of pilocarpine (KD) at mAChRs derived from displacement binding of [3H]-NMS in the homogenates from dog atria was 2.2 μM (65% of the total binding) and that of 4DAMP methiodide was 2.8 nM (70% of total binding), consistent with the concentration of pilocarpine needed for the current induction and for the modulation of the cardiac electrical activity and the concentration of 4DAMP to block pilocarpine effects.Our data indicate, for the first time, that pilocarpine modulates the cellular electrical properties of the hearts, likely by activating a K+ current mediated by M3 receptors. PMID:10372814

  9. HSV-I and the cellular DNA damage response

    PubMed Central

    Smith, Samantha; Weller, Sandra K

    2015-01-01

    Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al. that DNA-dependent protein kinase catalytic subunit levels were depleted in an ICP0-dependent manner during Herpes simplex virus 1 infection. Since then, there have been numerous reports describing the interactions between HSV infection and cellular DDR pathways. Due to space limitations, this review will focus predominantly on the most recent observations regarding how HSV navigates a potentially hostile environment to replicate its genome. PMID:26213561

  10. Antioxidant responses and cellular adjustments to oxidative stress

    PubMed Central

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-01-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. PMID:26233704

  11. Cellular stress response pathways and ageing: intricate molecular relationships

    PubMed Central

    Kourtis, Nikos; Tavernarakis, Nektarios

    2011-01-01

    Ageing is driven by the inexorable and stochastic accumulation of damage in biomolecules vital for proper cellular function. Although this process is fundamentally haphazard and uncontrollable, senescent decline and ageing is broadly influenced by genetic and extrinsic factors. Numerous gene mutations and treatments have been shown to extend the lifespan of diverse organisms ranging from the unicellular Saccharomyces cerevisiae to primates. It is becoming increasingly apparent that most such interventions ultimately interface with cellular stress response mechanisms, suggesting that longevity is intimately related to the ability of the organism to effectively cope with both intrinsic and extrinsic stress. Here, we survey the molecular mechanisms that link ageing to main stress response pathways, and mediate age-related changes in the effectiveness of the response to stress. We also discuss how each pathway contributes to modulate the ageing process. A better understanding of the dynamics and reciprocal interplay between stress responses and ageing is critical for the development of novel therapeutic strategies that exploit endogenous stress combat pathways against age-associated pathologies. PMID:21587205

  12. Intraspleen DNA inoculation elicits protective cellular immune responses.

    PubMed

    Cano, A; Fragoso, G; Gevorkian, G; Terrazas, L I; Petrossian, P; Govezensky, T; Sciutto, E; Manoutcharian, K

    2001-04-01

    DNA immunization or inoculation is a recent vaccination method that induces both humoral and cellular immune responses in a range of hosts. Independent of the route or site of vaccination, the transfer of antigen-presenting cells (APC) or antigens into lymphoid organs is necessary. The aim of this investigation was to test whether intraspleen (i.s.) DNA inoculation is capable of inducing a protective immune response. We immunized mice by a single i.s. injection of a DNA construct expressing the immunoglobulin (Ig) heavy-chain variable domain (VH) in which the complementarity-determining regions (CDR) had been replaced by a Taenia crassiceps T-cell epitope. In these mice, immune responses and protective effects elicited by the vaccine were measured. We have shown here for the first time that i.s. DNA inoculation can induce protective cellular immune responses and activate CD8(+) T cells. Also, Ig V(H) appeared to be the minimal delivery unit of "antigenized" Ig capable of inducing T-cell activation in a lymphoid organ. The strategy of introducing T-cell epitopes into the molecular context of the V(H) domain in combination with i.s. DNA immunization could have important implications and applications for human immunotherapy.

  13. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.

    PubMed

    Soliman, D E; Farid, H A; Hammad, R E; Gad, A M; Bartholomay, L C

    2016-03-01

    Mosquitoes transmit a variety of pathogens that have devastating consequences for global public and veterinary health. Despite their capacity to serve as vectors, these insects have a robust capacity to respond to invading organisms with strong cellular and humoral immune responses. In Egypt, Aedes caspius (Pallas, 1771) has been suspected to act as a bridge vector of Rift Valley Fever virus between animals and humans. Microscopic analysis of Ae. caspius hemolymph revealed the presence of phagocytic cells called granulocytes. We further evaluated cellular immune responses produced by Ae. caspius as a result of exposure to a Gram-negative, and Gram-positive bacterium, and to latex beads. After challenge, a rapid and strong phagocytic response against either a natural or synthetic invader was evident. Hemocyte integrity in bacteria-inoculated mosquitoes was not morphologically affected. The number of circulating granulocytes decreased with age, reducing the overall phagocytic capacity of mosquitoes over time. The magnitude and speed of the phagocytic response suggested that granulocytes act as an important force in the battle against foreign invaders, as has been characterized in other important mosquito vector species.

  14. Dietary sodium intake, airway responsiveness, and cellular sodium transport.

    PubMed

    Tribe, R M; Barton, J R; Poston, L; Burney, P G

    1994-06-01

    Both epidemiologic and experimental evidence suggest that a high dietary sodium intake may increase airway responsiveness, but no adequate explanation exists of how changes in sodium intake might lead to increased responsiveness. This investigation was carried out to study dietary sodium intake and airway response to methacholine in relation to cellular sodium transport in 52 young men. Airway response to methacholine was associated with urinary sodium excretion when subjects were on normal sodium intake. Airway responsiveness in patients with mild asthma correlated with the furosemide-insensitive influx of sodium into peripheral leukocytes stimulated by autologous serum, but there was no relation between this influx and 24-h urinary sodium excretion. In a separate investigation, serum from subjects with increased airway responsiveness caused an increase in the sodium influx and sodium content of leukocytes from nonatopic subjects. The magnitude of the furosemide-insensitive, serum stimulated influx was related to the degree of airway responsiveness of the serum donor, as was the increase in intracellular sodium content. Neither was related to the 24-h urinary sodium excretion of the donor. Patients with airway hyperresponsiveness have an increased sodium influx into cells stimulated by a serum-borne factor. This is independent of the effect of added dietary sodium on airway responsiveness.

  15. Cellular Stress Responses: Cell Survival and Cell Death

    PubMed Central

    Fulda, Simone; Gorman, Adrienne M.; Hori, Osamu; Samali, Afshin

    2010-01-01

    Cells can respond to stress in various ways ranging from the activation of survival pathways to the initiation of cell death that eventually eliminates damaged cells. Whether cells mount a protective or destructive stress response depends to a large extent on the nature and duration of the stress as well as the cell type. Also, there is often the interplay between these responses that ultimately determines the fate of the stressed cell. The mechanism by which a cell dies (i.e., apoptosis, necrosis, pyroptosis, or autophagic cell death) depends on various exogenous factors as well as the cell's ability to handle the stress to which it is exposed. The implications of cellular stress responses to human physiology and diseases are manifold and will be discussed in this review in the context of some major world health issues such as diabetes, Parkinson's disease, myocardial infarction, and cancer. PMID:20182529

  16. Paracrine communication maximizes cellular response fidelity in wound signaling

    PubMed Central

    Handly, L Naomi; Pilko, Anna; Wollman, Roy

    2015-01-01

    Population averaging due to paracrine communication can arbitrarily reduce cellular response variability. Yet, variability is ubiquitously observed, suggesting limits to paracrine averaging. It remains unclear whether and how biological systems may be affected by such limits of paracrine signaling. To address this question, we quantify the signal and noise of Ca2+ and ERK spatial gradients in response to an in vitro wound within a novel microfluidics-based device. We find that while paracrine communication reduces gradient noise, it also reduces the gradient magnitude. Accordingly we predict the existence of a maximum gradient signal to noise ratio. Direct in vitro measurement of paracrine communication verifies these predictions and reveals that cells utilize optimal levels of paracrine signaling to maximize the accuracy of gradient-based positional information. Our results demonstrate the limits of population averaging and show the inherent tradeoff in utilizing paracrine communication to regulate cellular response fidelity. DOI: http://dx.doi.org/10.7554/eLife.09652.001 PMID:26448485

  17. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    PubMed Central

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  18. CECILIA, a versatile research tool for cellular responses to gravity.

    PubMed

    Braucker, Richard; Machemer, Hans

    2002-01-01

    We describe a centrifuge designed and constructed according to current demands for a versatile instrument in cellular gravitational research, in particular protists (ciliates, flagellates). The instrument (called CECILIA, centrifuge for ciliates) is suited for videomonitoring, videorecording, and quantitative evaluation of data from large numbers of swimming cells in a ground-based laboratory or in a drop tower/drop shaft under microgravity conditions. The horizontal rotating platform holds up to six 8mm-camcorders and six chambers holding the experimental cells. Under hypergravity conditions (up to 15 g) chambers can be rotated about 2 axes to adjust the swimming space at right angles or parallel to the resulting gravity vector. Evaluations of cellular responses to central acceleration-- in the presence of gravitational 1 g--are used for extrapolation of cellular behaviour under hypogravity conditions. CECILIA is operated and monitored by computer using a custom-made software. Times and slopes of rising and decreasing acceleration, values and and quality of steady acceleration are supervised online. CECILIA can serve as an on-ground research instrument for precursor investigations of the behaviour of ciliates and flagellates under microgravity conditions such as long-term experiments in the International Space Station.

  19. Cellular Bases of Light-regulated Gravity Responses

    NASA Technical Reports Server (NTRS)

    Roux, Stanley J.

    2003-01-01

    This report summarizes the most significant research accomplished in our NAG2-1347 project on the cellular bases of light-regulated gravity responses, It elaborates mainly on our discovery of the role of calcium currents in gravity-directed polar development in single germinating spore cells of the fern Ceratopteris, our development of RNA silencing as a viable method of suppressing the expression of specific genes in Ceratopteris, and on the structure, expression and distribution of members of the annexin family in flowering plants, especially Arabidopsis.

  20. Hemodynamic and cellular response feedback in calcific aortic valve disease.

    PubMed

    Gould, Sarah T; Srigunapalan, Suthan; Simmons, Craig A; Anseth, Kristi S

    2013-07-01

    This review highlights aspects of calcific aortic valve disease that encompass the entire range of aortic valve disease progression from initial cellular changes to aortic valve sclerosis and stenosis, which can be initiated by changes in blood flow (hemodynamics) and pressure across the aortic valve. Appropriate hemodynamics is important for normal valve function and maintenance, but pathological blood velocities and pressure can have profound consequences at the macroscopic to microscopic scales. At the macroscopic scale, hemodynamic forces impart shear stresses on the surface of the valve leaflets and cause deformation of the leaflet tissue. As discussed in this review, these macroscale forces are transduced to the microscale, where they influence the functions of the valvular endothelial cells that line the leaflet surface and the valvular interstitial cells that populate the valve extracellular matrix. For example, pathological changes in blood flow-induced shear stress can cause dysfunction, impairing their homeostatic functions, and pathological stretching of valve tissue caused by elevated transvalvular pressure can activate valvular interstitial cells and latent paracrine signaling cytokines (eg, transforming growth factor-β1) to promote maladaptive tissue remodeling. Collectively, these coordinated and complex interactions adversely impact bulk valve tissue properties, feeding back to further deteriorate valve function and propagate valve cell pathological responses. Here, we review the role of hemodynamic forces in calcific aortic valve disease initiation and progression, with focus on cellular responses and how they feed back to exacerbate aortic valve dysfunction.

  1. Engineering cellular response using nanopatterned bulk metallic glass.

    PubMed

    Padmanabhan, Jagannath; Kinser, Emily R; Stalter, Mark A; Duncan-Lewis, Christopher; Balestrini, Jenna L; Sawyer, Andrew J; Schroers, Jan; Kyriakides, Themis R

    2014-05-27

    Nanopatterning of biomaterials is rapidly emerging as a tool to engineer cell function. Bulk metallic glasses (BMGs), a class of biocompatible materials, are uniquely suited to study nanopattern-cell interactions as they allow for versatile fabrication of nanopatterns through thermoplastic forming. Work presented here employs nanopatterned BMG substrates to explore detection of nanopattern feature sizes by various cell types, including cells that are associated with foreign body response, pathology, and tissue repair. Fibroblasts decreased in cell area as the nanopattern feature size increased, and fibroblasts could detect nanopatterns as small as 55 nm in size. Macrophages failed to detect nanopatterns of 150 nm or smaller in size, but responded to a feature size of 200 nm, resulting in larger and more elongated cell morphology. Endothelial cells responded to nanopatterns of 100 nm or larger in size by a significant decrease in cell size and elongation. On the basis of these observations, nondimensional analysis was employed to correlate cellular morphology and substrate nanotopography. Analysis of the molecular pathways that induce cytoskeletal remodeling, in conjunction with quantifying cell traction forces with nanoscale precision using a unique FIB-SEM technique, enabled the characterization of underlying biomechanical cues. Nanopatterns altered serum protein adsorption and effective substrate stiffness, leading to changes in focal adhesion density and compromised activation of Rho-A GTPase in fibroblasts. As a consequence, cells displayed restricted cell spreading and decreased collagen production. These observations suggest that topography on the nanoscale can be designed to engineer cellular responses to biomaterials.

  2. Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass

    PubMed Central

    2015-01-01

    Nanopatterning of biomaterials is rapidly emerging as a tool to engineer cell function. Bulk metallic glasses (BMGs), a class of biocompatible materials, are uniquely suited to study nanopattern–cell interactions as they allow for versatile fabrication of nanopatterns through thermoplastic forming. Work presented here employs nanopatterned BMG substrates to explore detection of nanopattern feature sizes by various cell types, including cells that are associated with foreign body response, pathology, and tissue repair. Fibroblasts decreased in cell area as the nanopattern feature size increased, and fibroblasts could detect nanopatterns as small as 55 nm in size. Macrophages failed to detect nanopatterns of 150 nm or smaller in size, but responded to a feature size of 200 nm, resulting in larger and more elongated cell morphology. Endothelial cells responded to nanopatterns of 100 nm or larger in size by a significant decrease in cell size and elongation. On the basis of these observations, nondimensional analysis was employed to correlate cellular morphology and substrate nanotopography. Analysis of the molecular pathways that induce cytoskeletal remodeling, in conjunction with quantifying cell traction forces with nanoscale precision using a unique FIB-SEM technique, enabled the characterization of underlying biomechanical cues. Nanopatterns altered serum protein adsorption and effective substrate stiffness, leading to changes in focal adhesion density and compromised activation of Rho-A GTPase in fibroblasts. As a consequence, cells displayed restricted cell spreading and decreased collagen production. These observations suggest that topography on the nanoscale can be designed to engineer cellular responses to biomaterials. PMID:24724817

  3. Stability and cellular responses to fluorapatite-collagen composites.

    PubMed

    Yoon, Byung-Ho; Kim, Hae-Won; Lee, Su-Hee; Bae, Chang-Jun; Koh, Young-Hag; Kong, Young-Min; Kim, Hyoun-Ee

    2005-06-01

    Fluorapatite (FA)-collagen composites were synthesized via a biomimetic coprecipitation method in order to improve the structural stability and cellular responses. Different amounts of ammonium fluoride (NH4F), acting as a fluorine source for FA, were added to the precipitation of the composites. The precipitated composites were freeze-dried and isostatically pressed in a dense body. The added fluorine was incorporated nearly fully into the apatite structure (fluoridation), and a near stoichiometric FA-collagen composite was obtained with complete fluoridation. The freeze-dried composites had a typical biomimetic network, consisting of collagen fibers and precipitates of nano-sized apatite crystals. The human osteoblast-like cells on the FA-collagen composites exhibited significantly higher proliferation and differentiation (according to alkaline phosphatase activity) than those on the hydroxyapatite-collagen composite. These enhanced osteoblastic cell responses were attributed to the fluorine release and the reduced dissolution rate.

  4. The endoplasmic reticulum: structure, function and response to cellular signaling.

    PubMed

    Schwarz, Dianne S; Blower, Michael D

    2016-01-01

    The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute to the overall architecture and dynamics of the ER have been identified, but many questions remain as to how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain, and how coordinated responses add to the layers of regulation in this dynamic organelle. PMID:26433683

  5. Cellular properties and chemosensory responses of the human carotid body

    PubMed Central

    Ortega-Sáenz, Patricia; Pardal, Ricardo; Levitsky, Konstantin; Villadiego, Javier; Muñoz-Manchado, Ana Belén; Durán, Rocío; Bonilla-Henao, Victoria; Arias-Mayenco, Ignacio; Sobrino, Verónica; Ordóñez, Antonio; Oliver, María; Toledo-Aral, Juan José; López-Barneo, José

    2013-01-01

    The carotid body (CB) is the major peripheral arterial chemoreceptor in mammals that mediates the acute hyperventilatory response to hypoxia. The CB grows in response to sustained hypoxia and also participates in acclimatisation to chronic hypoxaemia. Knowledge of CB physiology at the cellular level has increased considerably in recent times thanks to studies performed on lower mammals, and rodents in particular. However, the functional characteristics of human CB cells remain practically unknown. Herein, we use tissue slices or enzymatically dispersed cells to determine the characteristics of human CB cells. The adult human CB parenchyma contains clusters of chemosensitive glomus (type I) and sustentacular (type II) cells as well as nestin-positive progenitor cells. This organ also expresses high levels of the dopaminotrophic glial cell line-derived neurotrophic factor (GDNF). We found that GDNF production and the number of progenitor and glomus cells were preserved in the CBs of human subjects of advanced age. Moreover, glomus cells exhibited voltage-dependent Na+, Ca2+ and K+ currents that were qualitatively similar to those reported in lower mammals. These cells responded to hypoxia with an external Ca2+-dependent increase of cytosolic Ca2+ and quantal catecholamine secretion, as reported for other mammalian species. Interestingly, human glomus cells are also responsive to hypoglycaemia and together these two stimuli can potentiate each other's effects. The chemosensory responses of glomus cells are also preserved at an advanced age. These new data on the cellular and molecular physiology of the CB pave the way for future pathophysiological studies involving this organ in humans. PMID:24167224

  6. Modulation of cellular responses on engineered polyurethane implants.

    PubMed

    Khandwekar, Anand; Rho, Cho K

    2012-09-01

    An in vivo rat cage implant system was used to study the effect of polyurethane surface chemistries on protein adsorption, macrophage adhesion, foreign-body giant cell formation (FBGCs), cellular apoptosis, and cytokine response. Polyurethanes with zwitterionic, anionic, and cationic chemistries were developed. The changes in the surface topography of the materials were determined using atomic force microscopy and the wettability by dynamic contact angle measurements. The in vitro protein adsorption studies revealed higher protein adsorption on cationic surfaces when compared with the base, while adsorption was significantly reduced on zwitterionic (**p < 0.01) and anionic (*p < 0.05) polyurethanes. Analysis of the exudates surrounding the materials revealed no differences between surfaces in the types or levels of cells present. Conversely, the proportion of adherent cells undergoing apoptosis, as determined by annexin V-FITC staining, increased significantly on anionic followed by zwitterionic surfaces (60 + 5.0 and 38 + 3.7%) when compared with the base. Additionally, zwitterionic and anionic substrates provided decreased rates of macrophage adhesion and fusion into FBGCs, whereas cationic surfaces promoted macrophage adhesion and FBGC formation. Visualization of the F-actin cytoskeleton by Alexa Fluor 488 phalloidin showed a significant delay in the cytoskeletal fusion response on zwitterionic and the anionic surfaces. The real-time polymerase chain reaction (PCR) analysis of proinflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-10) and pro-wound healing cytokines (IL-4 and TGF-β) revealed differential cytokine responses. Cationic substrates that triggered stimulation of TNF-α and IL-4 were associated with more spread cells and higher FBGCs, whereas zwitterionic and anionic substrates that suppressed these cytokines levels were associated with less spread cells and few FBGCs. These studies have revealed that zwitterionic and anionic

  7. The Cellular Bases of Antibody Responses during Dengue Virus Infection

    PubMed Central

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618

  8. The Cellular Bases of Antibody Responses during Dengue Virus Infection.

    PubMed

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618

  9. The Cellular Bases of Antibody Responses during Dengue Virus Infection.

    PubMed

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated.

  10. Investigation of cellular responses upon interaction with silver nanoparticles

    PubMed Central

    Subbiah, Ramesh; Jeon, Seong Beom; Park, Kwideok; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    In order for nanoparticles (NPs) to be applied in the biomedical field, a thorough investigation of their interactions with biological systems is required. Although this is a growing area of research, there is a paucity of comprehensive data in cell-based studies. To address this, we analyzed the physicomechanical responses of human alveolar epithelial cells (A549), mouse fibroblasts (NIH3T3), and human bone marrow stromal cells (HS-5), following their interaction with silver nanoparticles (AgNPs). When compared with kanamycin, AgNPs exhibited moderate antibacterial activity. Cell viability ranged from ≤80% at a high AgNPs dose (40 µg/mL) to >95% at a low dose (10 µg/mL). We also used atomic force microscopy-coupled force spectroscopy to evaluate the biophysical and biomechanical properties of cells. This revealed that AgNPs treatment increased the surface roughness (P<0.001) and stiffness (P<0.001) of cells. Certain cellular changes are likely due to interaction of the AgNPs with the cell surface. The degree to which cellular morphology was altered directly proportional to the level of AgNP-induced cytotoxicity. Together, these data suggest that atomic force microscopy can be used as a potential tool to develop a biomechanics-based biomarker for the evaluation of NP-dependent cytotoxicity and cytopathology. PMID:26346562

  11. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    PubMed

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response.

  12. Investigation of cellular responses upon interaction with silver nanoparticles.

    PubMed

    Subbiah, Ramesh; Jeon, Seong Beom; Park, Kwideok; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    In order for nanoparticles (NPs) to be applied in the biomedical field, a thorough investigation of their interactions with biological systems is required. Although this is a growing area of research, there is a paucity of comprehensive data in cell-based studies. To address this, we analyzed the physicomechanical responses of human alveolar epithelial cells (A549), mouse fibroblasts (NIH3T3), and human bone marrow stromal cells (HS-5), following their interaction with silver nanoparticles (AgNPs). When compared with kanamycin, AgNPs exhibited moderate antibacterial activity. Cell viability ranged from ≤ 80% at a high AgNPs dose (40 µg/mL) to >95% at a low dose (10 µg/mL). We also used atomic force microscopy-coupled force spectroscopy to evaluate the biophysical and biomechanical properties of cells. This revealed that AgNPs treatment increased the surface roughness (P<0.001) and stiffness (P<0.001) of cells. Certain cellular changes are likely due to interaction of the AgNPs with the cell surface. The degree to which cellular morphology was altered directly proportional to the level of AgNP-induced cytotoxicity. Together, these data suggest that atomic force microscopy can be used as a potential tool to develop a biomechanics-based biomarker for the evaluation of NP-dependent cytotoxicity and cytopathology. PMID:26346562

  13. Cellular response of titanium and its alloys as implants.

    PubMed

    Bhola, Rahul; Bhola, Shaily M; Mishra, Brajendra; Ayers, Reed; Olson, David L; Ohno, Timothy

    2011-08-01

    The cellular response of osteocytes to commercially pure titanium (α) and its alloys (α + β and β) has been tested in a culture media, and the results have been supplemented by analyses from various techniques such as inductively coupled plasma atomic emission spectroscopic (ICP-AES) analysis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), metallography, and electrochemical measurements. These results have been correlated with respect to the presence of various alloying elements in these alloys to qualify them for human application. The newer β alloys have been examined for their potential use as implants. These results serve as a preliminary baseline to characterize the best alloy system for a comprehensive long-term investigation.

  14. Uniaxial and buckling mechanical response of auxetic cellular tubes

    NASA Astrophysics Data System (ADS)

    Karnessis, Nicholas; Burriesci, Gaetano

    2013-08-01

    Auxetic cellular tubes are emerging as potential candidates for a number of critical devices requiring high resistance to kinking, such as angioplasty stents or annuloplasty rings. This work investigates the collapse under pure bending of auxetic tubes based on inverted hexagonal honeycombs, with the aim to identify design strategies suitable for improving their kinking response. First, the mechanical properties of the structure are determined under small deformation by means of analytical approaches, and used to verify the validity of numerical models. These are then used to simulate the tube collapse under pure bending, and identify the influence of the geometric parameters defining the structure on the phenomenon. The study indicates that the adoption of auxetic tubular structures can contribute to improving considerably the resistance to kinking, suggesting the parameters to be controlled in the design of critical applications.

  15. Cellular Response to Linear and Branched Poly(acrylic acid).

    PubMed

    Whitty, Elizabeth G; Maniego, Alison R; Bentwitch, Sharon A; Guillaneuf, Yohann; Jones, Mark R; Gaborieau, Marianne; Castignolles, Patrice

    2015-12-01

    Poly(acrylic acid-co-sodium acrylate) (PNaA) is a pH-responsive polymer with potential in anticancer drug delivery. The cytotoxicity and intracellular effects of 3-arm star, hyperbranched and linear PNaA were investigated with L1210 progenitor leukemia cells and L6 myoblast cells. Free solution capillary electrophoresis demonstrated interactions of PNaA with serum proteins. In a 72 h MTT assay most PNaAs exhibited a IC50 between 7 and 14 mmol L(-1), showing that precipitation may be a sufficient purification for PNaA dilute solutions. Dialyzed 3-arm star and hyperbranched PNaA caused an increase in L6 cell viability, challenging the suitability of MTT as cytotoxicity assay for PNaA. Fluorescent confocal microscopy revealed merging of cellular lipids after exposure to PNaA, likely caused by serum starvation.

  16. Cellular response to titanium discs coated with polyelectrolyte multilayer films

    NASA Astrophysics Data System (ADS)

    Zhan, Jing; Luo, Qiao-jie; Huang, Ying; Li, Xiao-dong

    2014-09-01

    The purpose of this study was to investigate the effects of polyelectrolyte multilayer (PEM) coatings on the biological behavior of titanium (Ti) substrates. Collagen type Ι/hyaluronic acid (Col/HA) and chitosan/hyaluronic acid (Chi/HA) multilayer PEM coatings were introduced onto Ti substrates using layer-by-layer assembly. Contact angle instruments and quartz crystal microbalance were used for film characterization. The results obtained showed that both Col/HA and Chi/HA surfaces had high hydrophilicity and promoted cell adhesion in MC3T3-E1 pre-osteoblast and human gingival fibroblast cells. In addition, the synthesis of function-related proteins and gene expression levels in both MC3T3-E1 and fibroblast cells was higher for the Col/HA coating compared with the Chi/HA coating, indicating better cellular response to the Col/HA coating.

  17. Deciphering cellular states of innate tumor drug responses

    PubMed Central

    Graudens, Esther; Boulanger, Virginie; Mollard, Cindy; Mariage-Samson, Régine; Barlet, Xavier; Grémy, Guilaine; Couillault, Christine; Lajémi, Malika; Piatier-Tonneau, Dominique; Zaborski, Patrick; Eveno, Eric; Auffray, Charles; Imbeaud, Sandrine

    2006-01-01

    Background The molecular mechanisms underlying innate tumor drug resistance, a major obstacle to successful cancer therapy, remain poorly understood. In colorectal cancer (CRC), molecular studies have focused on drug-selected tumor cell lines or individual candidate genes using samples derived from patients already treated with drugs, so that very little data are available prior to drug treatment. Results Transcriptional profiles of clinical samples collected from CRC patients prior to their exposure to a combined chemotherapy of folinic acid, 5-fluorouracil and irinotecan were established using microarrays. Vigilant experimental design, power simulations and robust statistics were used to restrain the rates of false negative and false positive hybridizations, allowing successful discrimination between drug resistance and sensitivity states with restricted sampling. A list of 679 genes was established that intrinsically differentiates, for the first time prior to drug exposure, subsequently diagnosed chemo-sensitive and resistant patients. Independent biological validation performed through quantitative PCR confirmed the expression pattern on two additional patients. Careful annotation of interconnected functional networks provided a unique representation of the cellular states underlying drug responses. Conclusion Molecular interaction networks are described that provide a solid foundation on which to anchor working hypotheses about mechanisms underlying in vivo innate tumor drug responses. These broad-spectrum cellular signatures represent a starting point from which by-pass chemotherapy schemes, targeting simultaneously several of the molecular mechanisms involved, may be developed for critical therapeutic intervention in CRC patients. The demonstrated power of this research strategy makes it generally applicable to other physiological and pathological situations. PMID:16542501

  18. Dynamic involvement of ATG5 in cellular stress responses

    PubMed Central

    Lin, H H; Lin, S-M; Chung, Y; Vonderfecht, S; Camden, J M; Flodby, P; Borok, Z; Limesand, K H; Mizushima, N; Ann, D K

    2014-01-01

    Autophagy maintains cell and tissue homeostasis through catabolic degradation. To better delineate the in vivo function for autophagy in adaptive responses to tissue injury, we examined the impact of compromised autophagy in mouse submandibular glands (SMGs) subjected to main excretory duct ligation. Blocking outflow from exocrine glands causes glandular atrophy by increased ductal pressure. Atg5f/−;Aqp5-Cre mice with salivary acinar-specific knockout (KO) of autophagy essential gene Atg5 were generated. While duct ligation induced autophagy and the expression of inflammatory mediators, SMGs in Atg5f/−;Aqp5-Cre mice, before ligation, already expressed higher levels of proinflammatory cytokine and Cdkn1a/p21 messages. Extended ligation period resulted in the caspase-3 activation and acinar cell death, which was delayed by Atg5 knockout. Moreover, expression of a set of senescence-associated secretory phenotype (SASP) factors was elevated in the post-ligated glands. Dysregulation of cell-cycle inhibitor CDKN1A/p21 and activation of senescence-associated β-galactosidase were detected in the stressed SMG duct cells. These senescence markers peaked at day 3 after ligation and partially resolved by day 7 in post-ligated SMGs of wild-type (WT) mice, but not in KO mice. The role of autophagy-related 5 (ATG5)-dependent autophagy in regulating the tempo, duration and magnitude of cellular stress responses in vivo was corroborated by in vitro studies using MEFs lacking ATG5 or autophagy-related 7 (ATG7) and autophagy inhibitors. Collectively, our results highlight the role of ATG5 in the dynamic regulation of ligation-induced cellular senescence and apoptosis, and suggest the involvement of autophagy resolution in salivary repair. PMID:25341032

  19. Mechanism of cellular response to nanoscale aggregates of small molecules

    NASA Astrophysics Data System (ADS)

    Kuang, Yi

    This dissertation research focused on the illustration of the molecular mechanism of cellular response to nanoscale aggregates formed by small molecules. There are five chapters in this dissertation. Chapter 1 summarizes the current research on the evaluation of cell response (i.e., biocompatibility/cytotoxicity) to small molecular hydrogelators. Chapter 2 describes an interesting phenomenon that supramolecular hydrogelators consisting of N-terminated dipeptides, which exhibit selective inhibitory effects against cancer cells. This study calls for the development of a new approach for identification of protein targets of the hydrogelators. Chapter 3 describes the evaluation of interactions between cytosol proteins of a mammalian cell line and morphologically different nanoscale molecular aggregates formed by small peptidic molecules. Chapter 4 describes the research on the mechanism of a type of molecular aggregates, which cluster short microtubules to prevent the growth of microtubule. This unprecedented mechanism of "self-assembly to interfere with self-organization " contributes to inhibiting growth of cancer cells in several mammalian cell based assays and a xenograft tumor mice model. At the end, Chapter 5 reports a novel supramolecular hydrogelator, which consists of fluorene and the pentapeptide epitope (TIGYG) of potassium ion (K+) channels, to self-assemble in water to form the tunable, hierarchical nanostructures dictated by the concentration of K+. In conclusion, this dissertation research demonstrates a new approach for investigating cellular target and molecular mechanism of self-assembled aggregates formed by small peptide derivatives based hydrogelators, which will make contribution to the development of supramolecular hydrogelators as biomaterials. Moreover, the differential cytotoxicity of molecular aggregates illustrated in this research promises a new direction for developing anti-cancer drug based on interactions between molecular aggregates and

  20. MOF maintains transcriptional programs regulating cellular stress response.

    PubMed

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-05-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537

  1. MOF maintains transcriptional programs regulating cellular stress response

    PubMed Central

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-01-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537

  2. Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast

    PubMed Central

    Pérez-Torrado, Roberto

    2016-01-01

    Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although, many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two S. cerevisiae strains, CECT10094, and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico) respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR) and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus, our data suggest that there

  3. Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast.

    PubMed

    Navarro-Tapia, Elisabet; Nana, Rebeca K; Querol, Amparo; Pérez-Torrado, Roberto

    2016-01-01

    Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although, many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two S. cerevisiae strains, CECT10094, and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico) respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR) and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus, our data suggest that there

  4. Cellular Mechanisms of Gravitropic Response in Higher Plants

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Smolikova, Galina; Pozhvanov, Gregory; Suslov, Dmitry

    The evolutionary success of land plants in adaptation to the vectorial environmental factors was based mainly on the development of polarity systems. In result, normal plant ontogenesis is based on the positional information. Polarity is a tool by which the developing plant organs and tissues are mapped and the specific three-dimensional structure of the organism is created. It is due to their polar organization plants are able to orient themselves relative to the gravity vector and different vectorial cues, and to respond adequately to various stimuli. Gravitation is one of the most important polarized environmental factor that guides the development of plant organisms in space. Every plant can "estimate" its position relative to the gravity vector and correct it, if necessary, by means of polarized growth. The direction and the magnitude of gravitational stimulus are constant during the whole plant ontogenesis. The key plant response to the action of gravity is gravitropism, i.e. the directed growth of organs with respect to the gravity vector. This response is a very convenient model to study the mechanisms of plant orientation in space. The present report is focused on the main cellular mechanisms responsible for graviropic bending in higher plants. These mechanisms and structures include electric polarization of plant cells, Ca ({2+) }gradients, cytoskeleton, G-proteins, phosphoinositides and the machinery responsible for asymmetric auxin distribution. Those mechanisms tightly interact demonstrating some hierarchy and multiple feedbacks. The Ca (2+) gradients provide the primary physiological basis of polarity in plant cells. Calcium ions influence on the bioelectric potentials, the organization of actin cytoskeleton, the activity of Ca (2+) -binding proteins and Ca (2+) -dependent protein kinases. Protein kinases modulate transcription factors activity thereby regulating the gene expression and switching the developmental programs. Actin cytoskeleton affects

  5. Transcription Factors in the Cellular Response to Charged Particle Exposure

    PubMed Central

    Hellweg, Christine E.; Spitta, Luis F.; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90–300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  6. Transcription Factors in the Cellular Response to Charged Particle Exposure.

    PubMed

    Hellweg, Christine E; Spitta, Luis F; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  7. Semantic annotation of biological concepts interplaying microbial cellular responses

    PubMed Central

    2011-01-01

    Background Automated extraction systems have become a time saving necessity in Systems Biology. Considerable human effort is needed to model, analyse and simulate biological networks. Thus, one of the challenges posed to Biomedical Text Mining tools is that of learning to recognise a wide variety of biological concepts with different functional roles to assist in these processes. Results Here, we present a novel corpus concerning the integrated cellular responses to nutrient starvation in the model-organism Escherichia coli. Our corpus is a unique resource in that it annotates biomedical concepts that play a functional role in expression, regulation and metabolism. Namely, it includes annotations for genetic information carriers (genes and DNA, RNA molecules), proteins (transcription factors, enzymes and transporters), small metabolites, physiological states and laboratory techniques. The corpus consists of 130 full-text papers with a total of 59043 annotations for 3649 different biomedical concepts; the two dominant classes are genes (highest number of unique concepts) and compounds (most frequently annotated concepts), whereas other important cellular concepts such as proteins account for no more than 10% of the annotated concepts. Conclusions To the best of our knowledge, a corpus that details such a wide range of biological concepts has never been presented to the text mining community. The inter-annotator agreement statistics provide evidence of the importance of a consolidated background when dealing with such complex descriptions, the ambiguities naturally arising from the terminology and their impact for modelling purposes. Availability is granted for the full-text corpora of 130 freely accessible documents, the annotation scheme and the annotation guidelines. Also, we include a corpus of 340 abstracts. PMID:22122862

  8. Pairing of heterochromatin in response to cellular stress

    SciTech Connect

    Abdel-Halim, H.I.; Mullenders, L.H.F. . E-mail: L.Mullenders@lumc.nl; Boei, J.J.W.A.

    2006-07-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair.

  9. Cellular Response of Campylobacter jejuni to Trisodium Phosphate

    PubMed Central

    Riedel, Charlotte Tandrup; Cohn, Marianne Thorup; Stabler, Richard A.; Wren, Brendan

    2012-01-01

    The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal concentrations of TSP. Preexposure of C. jejuni to TSP resulted in a significant increase in heat sensitivity, suggesting that a combined heat and TSP treatment may increase reduction of C. jejuni. A microarray analysis identified a limited number of genes that were differently expressed after sublethal TSP exposure; however, the response was mainly associated with ion transport processes. C. jejuni NCTC11168 nhaA1 (Cj1655c) and nhaA2 (Cj1654c), which encode orthologues to the Escherichia coli NhaA cation/proton antiporter, were able to partially restore TSP, alkaline, and sodium resistance phenotypes to an E. coli cation/proton antiporter mutant. In addition, inhibition of resistance-nodulation-cell division (RND) multidrug efflux pumps by the inhibitor PaβN (Phe-Arg β-naphthylamide dihydrochloride) decreased tolerance to sublethal TSP. Therefore, we propose that NhaA1/NhaA2 cation/proton antiporters and RND multidrug efflux pumps function in tolerance to sublethal TSP exposure in C. jejuni. PMID:22194296

  10. A Computational Model of Cellular Response to Modulated Radiation Fields

    SciTech Connect

    McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  11. New insights into the cellular response to radiation using microbeams

    NASA Astrophysics Data System (ADS)

    Folkard, Melvyn; Prise, Kevin; Schettino, Giuseppe; Shao, Chunlin; Gilchrist, Stuart; Vojnovic, Boris

    2005-04-01

    Micro-irradiation techniques continue to be highly relevant to a number of radiobiological studies, due to their ability to deliver precise doses of radiation to selected individual cells (or sub-cellular targets) in vitro. The Gray cancer institute (GCI) ion microbeam uses a 1 μm diameter bore glass capillary to vertically collimate protons, or helium ions accelerated by a 4 MV Van de Graaff. Using 3He2+ ions, 99% of cells are targeted with an accuracy of ±2 μm, and with a particle counting accuracy >99%. Using automated cell finding and irradiation procedures, up to 10,000 cells per hour can be individually irradiated. Microbeams are now being used to study a number of novel 'non-targeted' responses that do not follow the standard radiation model based on direct DNA damage and are now known to occur when living cells and tissues are irradiated. One such response is the so-called 'bystander effect' where unirradiated cells are damaged through signalling pathways initiated by a nearby irradiated cell. This effect predominates at low doses and profoundly challenges our understanding of environmental radiation risk. Furthermore, we now have evidence that simple molecules (such as nitric oxide) are involved in the signalling process, such that it may be possible to chemically influence the bystander response. If so, then this could eventually lead to improvements in the treatment of cancer by radiotherapy. Other studies have shown that the bystander effect is induced with equal effectiveness if either the nucleus or the cytoplasm of a cell is targeted.

  12. Global cellular response to chemotherapy-induced apoptosis

    PubMed Central

    Wiita, Arun P; Ziv, Etay; Wiita, Paul J; Urisman, Anatoly; Julien, Olivier; Burlingame, Alma L; Weissman, Jonathan S; Wells, James A

    2013-01-01

    How cancer cells globally struggle with a chemotherapeutic insult before succumbing to apoptosis is largely unknown. Here we use an integrated systems-level examination of transcription, translation, and proteolysis to understand these events central to cancer treatment. As a model we study myeloma cells exposed to the proteasome inhibitor bortezomib, a first-line therapy. Despite robust transcriptional changes, unbiased quantitative proteomics detects production of only a few critical anti-apoptotic proteins against a background of general translation inhibition. Simultaneous ribosome profiling further reveals potential translational regulation of stress response genes. Once the apoptotic machinery is engaged, degradation by caspases is largely independent of upstream bortezomib effects. Moreover, previously uncharacterized non-caspase proteolytic events also participate in cellular deconstruction. Our systems-level data also support co-targeting the anti-apoptotic regulator HSF1 to promote cell death by bortezomib. This integrated approach offers unique, in-depth insight into apoptotic dynamics that may prove important to preclinical evaluation of any anti-cancer compound. DOI: http://dx.doi.org/10.7554/eLife.01236.001 PMID:24171104

  13. Linear and nonlinear piezoelectric response of charged cellular polypropylene

    NASA Astrophysics Data System (ADS)

    Kressmann, Reiner

    2001-10-01

    Piezoelectricity in a charged cellular polypropylene, called EMFi, is investigated with respect to nonlinearities to explain the strong differences in longitudinal piezoelectric constants published in the literature and ranging from 90 to 250 pC/N. The inverse constant was measured interferometrically to be 90 pm/V. Quasistatic and dynamic measurements with small loads yielded the same value for the direct constant. The direct constant was also investigated with respect to large-signal behavior becoming noticeable at static and dynamic loads higher than 10 kPa. Both the quasistatic and the dynamic constant increase up to 130 pC/N at such loads. Furthermore, an additional resonance appears under strong loading in the range of about 10 Hz shifting down with increasing load. In addition, the piezoelectric constant increases also with increasing dynamic load under constant static load. The nonlinearity also results in the generation of harmonics. Finally, boundary effects can be detected if just a small area of the sample is loaded. This effect appearing mainly at frequencies below 20 Hz is attributed to airflow between the air bubbles. A load-dependent Young's modulus, mainly responsible for the nonlinear behavior, is calculated from the experiments. It diminishes from 2 to 1.5 MPa at a load of 60 kPa.

  14. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  15. Responses of plant seedlings to hypergravity: cellular and molecular aspects

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.

    Hypergravity produced by centrifugation has been used to analyze the responses of plant seedlings to gravity stimulus. Elongation growth of stem organs is suppressed by hypergravity, which can be recognized as a way for plants to resist gravitational force. The mechanisms inducing growth suppression under hypergravity conditions were analyzed at cellular and molecular levels. When growth was suppressed by hypergravity, a decrease in the cell wall extensibility was brought about in various plants. Hypergravity also induced a cell wall thickening and an increase in the molecular mass of the certain hemicellulosic polysaccharides. Both a decrease in the activities hydrolyzing such polysaccharides and an increase in the apoplast pH were involved in such changes in the cell wall constituents. Thus, the cell wall metabolism is greatly modified under hypergravity conditions, which causes a decrease in the cell wall extensibility, thereby inhibiting elongation growth in stem organs. On the other hand, to identify genes involved in hypergravity-induced growth suppression, changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by differential display method. Sixty-two genes were expressed differentially: expression levels of 39 genes increased, whereas those of 23 genes decreased under hypergravity conditions. The expression of these genes was further analyzed using RT-PCR. One of genes upregulated by hypergravity encoded hydroxymethylglutaryl-CoA reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of hormones such as gibberellic acid and abscisic acid. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR activity, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of CCR1 and

  16. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  17. Marine molluscs in environmental monitoring. I. Cellular and molecular responses

    NASA Astrophysics Data System (ADS)

    Bresler, Vladimir; Abelson, Avigdor; Fishelson, Lev; Feldstein, Tamar; Rosenfeld, Michael; Mokady, Ofer

    2003-10-01

    The study reported here is part of an ongoing effort to establish sensitive and reliable biomonitoring markers for probing the coastal marine environment. Here, we report comparative measurements of a range of histological, cellular and sub-cellular parameters in molluscs sampled in polluted and reference sites along the Mediterranean coast of Israel and in the northern tip of the Gulf of Aqaba, Red Sea. Available species enabled an examination of conditions in two environmental 'compartments': benthic (Donax trunculus) and intertidal (Brachidontes pharaonis, Patella caerulea) in the Mediterranean; pelagic (Pteria aegyptia) and intertidal (Cellana rota) in the Red Sea. The methodology used provides rapid results by combining specialized fluorescent probes and contact microscopy, by which all parameters are measured in unprocessed animal tissue. The research focused on three interconnected levels. First, antixenobiotic defence mechanisms aimed at keeping hazardous agents outside the cell. Paracellular permeability was 70-100% higher in polluted sites, and membrane pumps (MXRtr and SATOA) activity was up to 65% higher in polluted compared to reference sites. Second, intracellular defence mechanisms that act to minimize potential damage by agents having penetrated the first line of defence. Metallothionein expression and EROD activity were 160-520% higher in polluted sites, and lysosomal functional activity (as measured by neutral red accumulation) was 25-50% lower. Third, damage caused by agents not sufficiently eliminated by the above mechanisms (e.g. single-stranded DNA breaks, chromosome damage and other pathological alterations). At this level, the most striking differences were observed in the rate of micronuclei formation and DNA breaks (up to 150% and 400% higher in polluted sites, respectively). The different mollusc species used feature very similar trends between polluted and reference sites in all measured parameters. Concentrating on relatively basic

  18. Activation of cellular immune response in acute pancreatitis.

    PubMed Central

    Mora, A; Pérez-Mateo, M; Viedma, J A; Carballo, F; Sánchez-Payá, J; Liras, G

    1997-01-01

    BACKGROUND: Inflammatory mediators have recently been implicated as potential markers of severity in acute pancreatitis. AIMS: To determine the value of neopterin and polymorphonuclear (PMN) elastase as markers of activation of cellular immunity and as early predictors of disease severity. PATIENTS: Fifty two non-consecutive patients classified according to their clinical outcome into mild (n = 26) and severe pancreatitis (n = 26). METHODS: Neopterin in serum and the PMN elastase/A1PI complex in plasma were measured during the first three days of hospital stay. RESULTS: Within three days after the onset of acute pancreatitis, PMN elastase was significantly higher in the severe pancreatitis group. Patients with severe disease also showed significantly higher values of neopterin on days 1 and 2 but not on day 3 compared with patients with mild disease. There was a significant correlation between PMN elastase and neopterin values on days 1 and 2. PMN elastase on day 1 predicted disease severity with a sensitivity of 76.7% and a specificity of 91.6%. Neopterin did not surpass PMN elastase in the probability of predicting disease severity. CONCLUSIONS: These data show that activation of cellular immunity is implicated in the pathogenesis of acute pancreatitis and may be a main contributory factor to disease severity. Neopterin was not superior to PMN elastase in the prediction of severity. PMID:9245935

  19. The Inhibitor of Apoptosis (IAPs) in Adaptive Response to Cellular Stress.

    PubMed

    Marivin, Arthur; Berthelet, Jean; Plenchette, Stéphanie; Dubrez, Laurence

    2012-10-10

    Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various "guardian molecules." These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages. The Inhibitor of Apoptosis (IAPs) proteins display both anti-apoptotic and pro-survival properties and their expression can be induced by a variety of cellular stress such as hypoxia, endoplasmic reticular stress and DNA damage. Thus, IAPs can confer tolerance to cellular stress. This review presents the anti-apoptotic and survival functions of IAPs and their role in the adaptive response to cellular stress. The involvement of IAPs in human physiology and diseases in connection with a breakdown of cellular homeostasis will be discussed.

  20. The Inhibitor of Apoptosis (IAPs) in Adaptive Response to Cellular Stress

    PubMed Central

    Marivin, Arthur; Berthelet, Jean; Plenchette, Stéphanie; Dubrez, Laurence

    2012-01-01

    Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various “guardian molecules.” These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages. The Inhibitor of Apoptosis (IAPs) proteins display both anti-apoptotic and pro-survival properties and their expression can be induced by a variety of cellular stress such as hypoxia, endoplasmic reticular stress and DNA damage. Thus, IAPs can confer tolerance to cellular stress. This review presents the anti-apoptotic and survival functions of IAPs and their role in the adaptive response to cellular stress. The involvement of IAPs in human physiology and diseases in connection with a breakdown of cellular homeostasis will be discussed. PMID:24710527

  1. Cellular redox regulation, signaling, and stress response in plants.

    PubMed

    Shigeoka, Shigeru; Maruta, Takanori

    2014-01-01

    Cellular and organellar redox states, which are characterized by the balance between oxidant and antioxidant pool sizes, play signaling roles in the regulation of gene expression and protein function in a wide variety of plant physiological processes including stress acclimation. Reactive oxygen species (ROS) and ascorbic acid (AsA) are the most abundant oxidants and antioxidants, respectively, in plant cells; therefore, the metabolism of these redox compounds must be strictly and spatiotemporally controlled. In this review, we provided an overview of our previous studies as well as recent advances in (1) the molecular mechanisms and regulation of AsA biosynthesis, (2) the molecular and genetic properties of ascorbate peroxidases, and (3) stress acclimation via ROS-derived oxidative/redox signaling pathways, and discussed future perspectives in this field.

  2. Response of MICROTOX organisms to leachates of autoclaved cellular concrete

    SciTech Connect

    Latona, M.C.; Neufeld, R.D.; Hu, W.; Kelly, C.; Vallejo, L.E.

    1997-08-01

    The MICROTOX bioassay, a toxicity test involving bioluminescent microorganisms, was conducted on aqueous leachates derived from a construction material made using coal fly ash as the key siliceous ingredient. The material is known as autoclaved cellular concrete (ACC). The test indicated an absence of toxic effects attributable to soluble species, which included the priority heavy metals in the filtered leachates. Toxic or inhibitive effects on the test bacteria were observed for the toxicity characteristic leaching procedure (TCLP) leachates, but this was probably due to acetic acid in the extractant rather than the solubilized metals. The ASTM (distilled-deionized water extractant) and simulated acid rain leachates, by comparison, produced a repeatable stimulative effect. Stimulation observed in the form of enhanced light output may be a manifestation of hormesis, a phenomenon reportedly caused by exposure to extremely low concentrations (part-per-billion range) of otherwise toxic agents such as heavy metals.

  3. Development of second generation peptides modulating cellular adiponectin receptor responses

    PubMed Central

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim D.; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John D.; Surmacz, Eva; Lovas, Sandor

    2014-01-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM—low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10–1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions. PMID:25368867

  4. Development of second generation peptides modulating cellular adiponectin receptor responses

    NASA Astrophysics Data System (ADS)

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John; Surmacz, Eva; Lovas, Sandor

    2014-10-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.

  5. Scolopendin 2 leads to cellular stress response in Candida albicans.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Dong Gun

    2016-07-01

    Centipedes, a kind of arthropod, have been reported to produce antimicrobial peptides as part of an innate immune response. Scolopendin 2 (AGLQFPVGRIGRLLRK) is a novel antimicrobial peptide derived from the body of the centipede Scolopendra subspinipes mutilans by using RNA sequencing. To investigate the intracellular responses induced by scolopendin 2, reactive oxygen species (ROS) and glutathione accumulation and lipid peroxidation were monitored over sublethal and lethal doses. Intracellular ROS and antioxidant molecule levels were elevated and lipids were peroxidized at sublethal concentrations. Moreover, the Ca(2+) released from the endoplasmic reticulum accumulated in the cytosol and mitochondria. These stress responses were considered to be associated with yeast apoptosis. Candida albicans cells exposed to scolopendin 2 were identified using diagnostic markers of apoptotic response. Various responses such as phosphatidylserine externalization, chromatin condensation, and nuclear fragmentation were exhibited. Scolopendin 2 disrupted the mitochondrial membrane potential and activated metacaspase, which was mediated by cytochrome c release. In conclusion, treatment of C. albicans with scolopendin 2 induced the apoptotic response at sublethal doses, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The cationic antimicrobial peptide scolopendin 2 from the centipede is a potential antifungal peptide, triggering the apoptotic response. PMID:27207682

  6. Induction of the cellular stress response in Chironomus (Diptera)

    SciTech Connect

    Pardalis, G.; Hudson, L.A.; Ciborowski, J.J.H.; Day, K.E.; Robinson, R.D.; Solomon, K.R.

    1995-12-31

    The accumulation of stress or heat shock proteins is involved in the protection and defense of a cell from environmentally induced damage. Under stressful conditions, cytoplasmic stress protein 70 migrates to the nucleus where it assists in the restoration of the nucleolar function. The authors have demonstrated a dose-response relationship between incidence of decreased nucleolar size in chironomid salivary glands and degree of sediment contamination. Reduced nucleolar size is indicative of reduced nucleolar function. The relationship between nucleolus size and stress protein accumulation is being explored. They are conducting experiments on chironomids to characterize the response elicited by heat shock and PAH exposure in the laboratory to determine if the simultaneous action of more than one stressor can significantly alter the stress response. Simultaneous studies are being conducted to validate these biomarkers in mesocosm caging experiments. Aspects of the response will be useful as biomarkers of general stress.

  7. Cellular responses to egg-oil (charismon©).

    PubMed

    Bereiter-Hahn, Jürgen; Bernd, August; Beschmann, Heike; Eberle, Irina; Kippenberger, Stefan; Rossberg, Maila; Strecker, Valentina; Zöller, Nadja

    2014-01-01

    Egg-oil (Charismon©) is known for its beneficial action in wound healing and other skin irritancies and its antibacterial activity. The physiological basis for these actions has been investigated using cells in culture: HaCaT-cells (immortalized human keratinocytes), human endothelial cells in culture (HUVEC), peripheral blood mononuclear lymphocytes (PBML) and a full thickness human skin model (FTSM). Emphasis was on the influence of egg-oil on cell migration and IL-8 production in HaCaT cells, respiration, mitochondrial membrane potential, reactive oxygen (ROS) production and proliferation in HUVEC and HaCaT cells, cytokine and interleukin production in PBML and UV-light induced damage of FTSM. IL-8 production by HaCaT cells is stimulated by egg-oil whilst in phythemagglutin in-activated PBMLs production of the interleukins IL-2, IL-6, IL-10 and IFN-γ and TFN-α is reduced. ROS-production after H(2)O(2) stimulation first is enhanced but later on reduced. Respiration becomes activated due to partial uncoupling of the mitochondrial respiratory chain and proliferation of HaCaT and HUVEC is reduced. Recovery of human epidermis cells in FTSM after UV-irradiation is strongly supported by egg-oil. These results support the view that egg-oil acts through reduction of inflammatory processes and ROS production. Both these processes are equally important in cellular aging as in healing of chronic wounds.

  8. Cellular responses to egg-oil (charismon©).

    PubMed

    Bereiter-Hahn, Jürgen; Bernd, August; Beschmann, Heike; Eberle, Irina; Kippenberger, Stefan; Rossberg, Maila; Strecker, Valentina; Zöller, Nadja

    2014-01-01

    Egg-oil (Charismon©) is known for its beneficial action in wound healing and other skin irritancies and its antibacterial activity. The physiological basis for these actions has been investigated using cells in culture: HaCaT-cells (immortalized human keratinocytes), human endothelial cells in culture (HUVEC), peripheral blood mononuclear lymphocytes (PBML) and a full thickness human skin model (FTSM). Emphasis was on the influence of egg-oil on cell migration and IL-8 production in HaCaT cells, respiration, mitochondrial membrane potential, reactive oxygen (ROS) production and proliferation in HUVEC and HaCaT cells, cytokine and interleukin production in PBML and UV-light induced damage of FTSM. IL-8 production by HaCaT cells is stimulated by egg-oil whilst in phythemagglutin in-activated PBMLs production of the interleukins IL-2, IL-6, IL-10 and IFN-γ and TFN-α is reduced. ROS-production after H(2)O(2) stimulation first is enhanced but later on reduced. Respiration becomes activated due to partial uncoupling of the mitochondrial respiratory chain and proliferation of HaCaT and HUVEC is reduced. Recovery of human epidermis cells in FTSM after UV-irradiation is strongly supported by egg-oil. These results support the view that egg-oil acts through reduction of inflammatory processes and ROS production. Both these processes are equally important in cellular aging as in healing of chronic wounds. PMID:25257149

  9. Cellular Responses and Tissue Depots for Nanoformulated Antiretroviral Therapy

    PubMed Central

    Martinez-Skinner, Andrea L.; Araínga, Mariluz A.; Puligujja, Pavan; Palandri, Diana L.; Baldridge, Hannah M.; Edagwa, Benson J.; McMillan, JoEllyn M.; Mosley, R. Lee; Gendelman, Howard E.

    2015-01-01

    Long-acting nanoformulated antiretroviral therapy (nanoART) induces a range of innate immune migratory, phagocytic and secretory cell functions that perpetuate drug depots. While recycling endosomes serve as the macrophage subcellular depots, little is known of the dynamics of nanoART-cell interactions. To this end, we assessed temporal leukocyte responses, drug uptake and distribution following both intraperitoneal and intramuscular injection of nanoformulated atazanavir (nanoATV). Local inflammatory responses heralded drug distribution to peritoneal cell populations, regional lymph nodes, spleen and liver. This proceeded for three days in male Balb/c mice. NanoATV-induced changes in myeloid populations were assessed by fluorescence-activated cell sorting (FACS) with CD45, CD3, CD11b, F4/80, and GR-1 antibodies. The localization of nanoATV within leukocyte cell subsets was determined by confocal microscopy. Combined FACS and ultra-performance liquid chromatography tandem mass-spectrometry assays determined nanoATV carriages by cell-based vehicles. A robust granulocyte, but not peritoneal macrophage nanoATV response paralleled zymosan A treatment. ATV levels were highest at sites of injection in peritoneal or muscle macrophages, dependent on the injection site. The spleen and liver served as nanoATV tissue depots while drug levels in lymph nodes were higher than those recorded in plasma. Dual polymer and cell labeling demonstrated a nearly exclusive drug reservoir in macrophages within the liver and spleen. Overall, nanoART induces innate immune responses coincident with rapid tissue macrophage distribution. Taken together, these works provide avenues for therapeutic development designed towards chemical eradication of human immunodeficiency viral infection. PMID:26716700

  10. Cellular responses to endogenous electrochemical gradients in morphological development

    NASA Technical Reports Server (NTRS)

    Desrosiers, M. F.

    1996-01-01

    Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: (1) intercellular organization and development through their effects on the membrane potential, (2) direct effects such as electrophoresis of membrane components, and (3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: (1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, (2) the ionic conductance changes within seconds showing altered transport between the tissues, and (3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature.

  11. Cellular responses to endogenous electrochemical gradients in morphological development.

    PubMed

    Desrosiers, M F

    1996-01-01

    Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: 1) intercellular organization and development through their effects on the membrane potential, 2) direct effects such as electrophoresis of membrane components, and 3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: 1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, 2) the ionic conductance changes within seconds showing altered transport between the tissues, and 3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature. PMID:11538627

  12. Cellular responses to endogenous electrochemical gradients in morphological development

    NASA Astrophysics Data System (ADS)

    Desrosiers, M. F.

    Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: 1) intercellular organization and development through their effects on the membrane potential, 2) direct effects such as electrophoresis of membrane components, and 3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: 1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, 2) the ionic conductance changes within seconds showing altered transport between the tissues, and 3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature.

  13. Delineating unique cellular responses to PDT (Invited paper)

    NASA Astrophysics Data System (ADS)

    Kessel, David

    2005-04-01

    Photodamage to mitochondria, endoplasmic reticulum (ER) or lysosomes can lead to activation of the apoptotic program, as can exposure of cells to the non-peptidic Bcl-2/Bcl-xL antagonist HA14-1. Many signaling pathways are evoked by photodynamic therapy (PDT), presumably from oxidative stress effects. To discover which of the latter effects might be unique to PDT, we compared some photodynamic effects with HA14-1 treatment, using murine leukemia L1210 cells in culture. Two photosensitizers were employed: the porphycene CPO and the chlorin NPe6. The former targets the endoplasmic reticulum (ER) and causes Bcl-2 photodamage, while NPe6 targets lysosomes, resulting in protease-induced cleavage and activation of Bid to form the pro-apoptotic product t-Bid. PDT at either target will lead to loss of the mitochondrial membrane potential ΔΨm, translocation of cytochrome c to the cytosol and an apoptotic response. Photodynamic effects of CPO or NPe6 led to activation of several 'stress proteins' and intracellular oxidation of the probe dihydrodichlorofluorescein (H2DCF). All of these effects were mimicked by HA14-1, indicating that these early responses to PDT result from initiation of apoptosis, however achieved. After CPO-catalyzed PDT or HA14-1 treatment, we observed a prompt release of Ca2+ into the cytosol, but this was insufficient to significantly alter mitochondrial calcium levels. The apoptotic response to HA14-1 or Bcl-2 photodamage was markedly promoted by the protein kinase C (PKC) inhibitor staurosporin (STS). These effects were not observed after photodamage catalyzed by NPe6, indicating that calcium release and PKC interactions are associated with loss of Bcl-2 function, but not Bid activation.

  14. Cellular specificity of the gravitropic motor response in roots.

    PubMed

    Evans, M L; Ishikawa, H

    1997-09-01

    A number of features of the gravitropic response of roots are not readily accounted for by the classical Cholodny-Went theory. These include the observations that (i) in the later stages of the response the growth gradient is reversed with no evident reversal of the auxin gradient; (ii) a major component of the acceleration of growth along the upper side occurs in the distal elongation zone (DEZ), a group of cells located between the meristem and the main elongation, not within the central elongation zone; and (iii) the initiation of differential growth in the DEZ appears to be independent of the establishment of auxin asymmetry. Alternative candidates for mediation of differential growth in the DEZ include calcium ions and protons. Gravi-induced curvature is accompanied by polar movement of calcium toward the lower side of the maize root tip and the DEZ is shown to be particularly sensitive to growth inhibition by calcium. Also, gravistimulation of maize roots causes enhanced acid efflux from the upper side of the DEZ. Evidence for gravi-induced modification of ion movements in the root tip includes changes in intracellular potentials and current flow. It is clear that there is more than one motor region in the root with regard to gravitropic responses and there is evidence that the DEZ itself consists of more than one class of responding cells. In order to gain a more complete understanding of the mechanism of gravitropic curvature, the physiological properties of the sub-zones of the root apex need to be thoroughly characterized with regard to their sensitivity to hormones, calcium, acid pH and electrical perturbations. PMID:11540319

  15. Cellular specificity of the gravitropic motor response in roots

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Ishikawa, H.

    1997-01-01

    A number of features of the gravitropic response of roots are not readily accounted for by the classical Cholodny-Went theory. These include the observations that (i) in the later stages of the response the growth gradient is reversed with no evident reversal of the auxin gradient; (ii) a major component of the acceleration of growth along the upper side occurs in the distal elongation zone (DEZ), a group of cells located between the meristem and the main elongation, not within the central elongation zone; and (iii) the initiation of differential growth in the DEZ appears to be independent of the establishment of auxin asymmetry. Alternative candidates for mediation of differential growth in the DEZ include calcium ions and protons. Gravi-induced curvature is accompanied by polar movement of calcium toward the lower side of the maize root tip and the DEZ is shown to be particularly sensitive to growth inhibition by calcium. Also, gravistimulation of maize roots causes enhanced acid efflux from the upper side of the DEZ. Evidence for gravi-induced modification of ion movements in the root tip includes changes in intracellular potentials and current flow. It is clear that there is more than one motor region in the root with regard to gravitropic responses and there is evidence that the DEZ itself consists of more than one class of responding cells. In order to gain a more complete understanding of the mechanism of gravitropic curvature, the physiological properties of the sub-zones of the root apex need to be thoroughly characterized with regard to their sensitivity to hormones, calcium, acid pH and electrical perturbations.

  16. Educating for Political Activity: A Younger Generational Response

    ERIC Educational Resources Information Center

    Mac an Ghaill, Mairtin

    2010-01-01

    This paper is a response to Professor Chitty's "Educational Review" Guest Lecture article, "Educating for political activity". I address the three sections of his paper: a global and national-based politics of war, corporate manipulation and parliamentary scandals. This provides a basis to draw upon empirical material from a recent critical…

  17. Ultrasonic bioreactor as a platform for studying cellular response.

    PubMed

    Subramanian, Anuradha; Turner, Joseph A; Budhiraja, Gaurav; Guha Thakurta, Sanjukta; Whitney, Nicholas P; Nudurupati, Sai Siddhartha

    2013-03-01

    The need for tissue-engineered constructs as replacement tissue continues to grow as the average age of the world's population increases. However, additional research is required before the efficient production of laboratory-created tissue can be realized. The multitude of parameters that affect cell growth and proliferation is particularly daunting considering that optimized conditions are likely to change as a function of growth. Thus, a generalized research platform is needed in order for quantitative studies to be conducted. In this article, an ultrasonic bioreactor is described for use in studying the response of cells to ultrasonic stimulation. The work is focused on chondrocytes with a long-term view of generating tissue-engineered articular cartilage. Aspects of ultrasound (US) that would negatively affect cells, including temperature and cavitation, are shown to be insignificant for the US protocols used and which cover a wide range of frequencies and pressure amplitudes. The bioreactor is shown to have a positive influence on several factors, including cell proliferation, viability, and gene expression of select chondrocytic markers. Most importantly, we show that a total of 138 unique proteins are differentially expressed on exposure to ultrasonic stimulation, using mass-spectroscopy coupled proteomic analyses. We anticipate that this work will serve as the basis for additional research which will elucidate many of the mechanisms associated with cell response to ultrasonic stimulation. PMID:22873765

  18. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases.

    PubMed

    Yue, Li; Yao, Hongwei

    2016-08-01

    Mitochondria are dynamic organelles, which couple the various cellular processes that regulate metabolism, cell proliferation and survival. Environmental stress can cause mitochondrial dysfunction and dynamic changes including reduced mitochondrial biogenesis, oxidative phosphorylation and ATP production, as well as mitophagy impairment, which leads to increased ROS, inflammatory responses and cellular senescence. Oxidative stress, inflammation and cellular senescence all have important roles in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and bronchopulmonary dysplasia. In this review, we discuss the current state on how mitochondrial dysfunction affects inflammatory responses and cellular senescence, the mechanisms of mitochondrial dysfunction underlying the pathogenesis of chronic lung diseases and the potential of mitochondrial transfer and replacement as treatments for these diseases. PMID:27189175

  19. The cellular response to curvature-induced stress

    NASA Astrophysics Data System (ADS)

    Biton, Y. Y.; Safran, S. A.

    2009-12-01

    We present a theoretical model to explain recent observations of the orientational response of cells to unidirectional curvature. Experiments show that some cell types when plated on a rigid cylindrical surface tend to reorient their shape and stress fibers along the axis of the cylinder, while others align their stress fibers perpendicular to that axis. Our model focuses on the competition of the shear stress—that results from cell adhesion and active contractility—and the anisotropic bending stiffness of the stress fibers. We predict the cell orientation angle that results from the balance of these two forces in a mechanical equilibrium. The conditions under which the different experimental observations can be obtained are discussed in terms of the theory.

  20. Utilizing Fibronectin Integrin-Binding Specificity to Control Cellular Responses

    PubMed Central

    Bachman, Haylee; Nicosia, John; Dysart, Marilyn; Barker, Thomas H.

    2015-01-01

    Significance: Cells communicate with the extracellular matrix (ECM) protein fibronectin (Fn) through integrin receptors on the cell surface. Controlling integrin–Fn interactions offers a promising approach to directing cell behavior, such as adhesion, migration, and differentiation, as well as coordinated tissue behaviors such as morphogenesis and wound healing. Recent Advances: Several different groups have developed recombinant fragments of Fn that can control epithelial to mesenchymal transition, sequester growth factors, and promote bone and wound healing. It is thought that these physiological responses are, in part, due to specific integrin engagement. Furthermore, it has been postulated that the integrin-binding domain of Fn is a mechanically sensitive switch that drives binding of one integrin heterodimer over another. Critical Issues: Although computational simulations have predicted the mechano-switch hypothesis and recent evidence supports the existence of varying strain states of Fn in vivo, experimental evidence of the Fn integrin switch is still lacking. Future Directions: Evidence of the integrin mechano-switch will enable the development of new Fn-based peptides in tissue engineering and wound healing, as well as deepen our understanding of ECM pathologies, such as fibrosis. PMID:26244106

  1. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    PubMed Central

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2013-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors like dehydration and ultraviolet radiation. The ability to act as an ‘aldehyde scavenger’ during lipid peroxidation is another ostensibly universal ALDH function found across species. Up-regulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation) and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that significantly contributes to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, underscoring the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  2. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  3. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes.

  4. Cellular responses to ionizing and ultraviolet radiation in ataxia telangiectasia

    SciTech Connect

    Loberg, L.I.; McGrath, S.J.; Dixon, K.

    1995-11-01

    Ataxia telangiectasia (AT) is a genetic disease characterized by a wide variety of symptoms including a marked increase of cancer incidence and hypersensitivity to ionizing radiation (IR). Hypersensitivity is expressed as decreased cell survival, increased induction of chromosomal damage, radioresistant DNA synthesis and absence of G1 arrest following exposure of cells to IR. The defect in AT may lie in the regulation of DNA replication and control of the cell cycle. Fluorescence-activated cell sorting (FACS) analysis confirms the alterations of cell cycle control in AT cells following exposure to 1Gy ionizing radiation. Replication activity in the in vitro system parallels in vivo DNA synthesis in that: (a) extracts from normal cells exposed to 1Gy IR show a dramatic decrease in replication activity, and (b) extracts from AT cells exposed 1Gy IR do not show such a decrease in replication activity. The inability of AT cells to inhibit DNA replication following exposure to IR is a response which is seen after exposure to other types of DNA damaging agents. AT and normal cells were treated with 254nm UV radiation. Following exposure to 10J UV radiation, normal cells show dramatic DNA replication arrest while AT cells do not demonstrate DNA replication arrest. It appears that failure to halt DNA synthesis is a global feature of AT cells exposed to radiation. Phosphorylation changes of the essential replication protein, single strand binding protein (hSSB), have been investigated after both UV and ionizing radiation exposure. Previous work in the lab has shown, via immunoblotting techniques, that hSSB is hyperphosphorylated in HeLa cells following exposure to 10J UV radiation. In AT cells, hyperphosphorylation of hSSB also occurs following 10J UV radiation, but not 1Gy Ir. Further research is being conducted to examine the apparent uncoupling of DNA synthesis control and hyperphosphorylation of hSSB in UV-exposed AT cells.

  5. microRNA Expression and Biogenesis in Cellular Response to Ionizing Radiation

    PubMed Central

    Mao, Aihong; Liu, Yang; Di, Cuixia; Sun, Chao

    2014-01-01

    Increasing evidence demonstrates that the expression levels of microRNAs (miRNAs) significantly change upon ionizing radiation (IR) and play a critical role in cellular response to IR. Although several radiation responsive miRNAs and their targets have been identified, little is known about how miRNAs expression and biogenesis is regulated by IR-caused DNA damage response (DDR). Hence, in this review, we summarize miRNA expression and biogenesis in cellular response to IR and mainly elucidate the regulatory mechanisms of miRNA expression and biogenesis from different aspects including ataxia-telangiectasia mutated (ATM) kinase, p53/p63/p73 family and other potential factors. Furthermore, we focus on ΔNp73, which might be a potential regulator of miRNA expression and biogenesis in cellular response to IR. miRNAs could effectively activate the IR-induced DDR and modulate the radiation response and cellular radiosensitivity, which have an important potential clinical application. Therefore, thoroughly understanding the regulatory mechanisms of miRNAs expression and biogenesis in radiation response will provide new insights for clinical cancer radiotherapy. PMID:24905898

  6. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  7. Imaging the cellular response to transient shear stress using time-resolved digital holography

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Antkowiak, Maciej; Gunn-Moore, Frank; Dholakia, Kishan

    2014-02-01

    Shear stress has been recognized as one of the biophysical methods by which to permeabilize plasma membranes of cells. In particular, high pressure transient hydrodynamic flows created by laser-induced cavitation have been shown to lead to the uptake of fluorophores and plasmid DNA. While the mechanism and dynamics of cavitation have been extensively studied using a variety of time-resolved imaging techniques, the cellular response to the cavitation bubble and cavitation induced transient hydrodynamic flows has never been shown in detail. We use time-resolved quantitative phase microscopy to study cellular response to laser-induced cavitation bubbles. Laser-induced breakdown of an optically trapped polystyrene nanoparticle (500nm in diameter) irradiated with a single nanosecond laser pulse at 532nm creates transient shear stress to surrounding cells without causing cell lysis. A bi-directional transient displacement of cytoplasm is observed during expansion and collapse of the cavitation bubble. In some cases, cell deformation is only observable at the microsecond time scale without any permanent change in cell shape or optical thickness. On a time scale of seconds, the cellular response to shear stress and cytoplasm deformation typically leads to retraction of the cellular edge most exposed to the flow, rounding of the cell body and, in some cases, loss of cellular dry mass. These results give a new insight into the cellular response to laser-induced shear stress and related plasma membrane permeabilization. This study also demonstrates that laser-induced breakdown of an optically trapped nanoparticle offers localized cavitation (70 μm in diameter), which interacts with a single cell.

  8. Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells.

    PubMed

    Park, Eun-Jung; Lee, Ah Young; Chang, Seung-Hee; Yu, Kyeong-Nam; Kim, Jae-Ho; Cho, Myung-Haing

    2014-01-01

    Abnormal accumulation of fatty acids triggers the harmful cellular response called lipotoxicity. In this study, we investigated the cellular response following accumulation of oleic acid (OA), a monounsaturated fatty acid, in human Chang liver cells. OA droplets were distributed freely in the cytoplasm and/or degraded within lysosomes. OA exposure increased ATP production and concomitantly dilated mitochondria. At 24h after OA exposure, cell viability decreased slightly and was coupled with a reduction in mitochondrial Ca(2+) concentration, the alteration in cell viability was also associated with the generation of reactive oxygen species and changes in the cell cycle. Moreover, OA treatment increased the expression of autophagy- and apoptotic cell death-related proteins in a dose-dependent manner. Furthermore, we investigated the role of p53, a tumor suppressor protein, in the cellular response elicited by OA accumulation. OA-induced changes in cell viability and ATP production were rescued to control levels when cells were pretreated with pifithrin-alpha (PTA), a p53 inhibitor. By contrast, the expressions of LC3-II and perilipin, proteins required for lipophagy, were down-regulated by PTA pretreatment. Taken together, our results suggest that p53 plays a key role in the cellular response elicited by OA accumulation in Chang liver cells.

  9. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine were evaluated and compared. Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each. Pigs were va...

  10. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: To evaluate and compare humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine. Methods: Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each....

  11. Growth Hormone Effects in Immune Stress: AKT/eNOS Signaling Module in the Cellular Response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activation of the constitutive endothelial nitric-oxide synthase (eNOS) and expression of inducible NOS (iNOS) with subsequent nitric oxide production are among the early cellular responses that follow in a systemic exposure of animals to lipopolysaccharide (LPS). Growth hormone (GH) has been sh...

  12. Heat shock cognate 71 (HSC71) regulates cellular antiviral response by impairing formation of VISA aggregates.

    PubMed

    Liu, Zhigang; Wu, Shu-Wen; Lei, Cao-Qi; Zhou, Qian; Li, Shu; Shu, Hong-Bing; Wang, Yan-Yi

    2013-05-01

    In response to viral infection, RIG-I-like RNA helicases detect viral RNA and signal through the mitochondrial adapter protein VISA. VISA activation leads to rapid activation of transcription factors IRF3 and NF-κB, which collaborate to induce transcription of type I interferon (IFN) genes and cellular antiviral response. It has been demonstrated that VISA is activated by forming prion-like aggregates. However, how this process is regulated remains unknown. Here we show that overexpression of HSC71 resulted in potent inhibition of virus-triggered transcription of IFNB1 gene and cellular antiviral response. Consistently, knockdown of HSC71 had opposite effects. HSC71 interacted with VISA, and negatively regulated virus-triggered VISA aggregation. These findings suggest that HSC71 functions as a check against VISA-mediated antiviral response.

  13. Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity.

    PubMed

    Yeger-Lotem, Esti; Riva, Laura; Su, Linhui Julie; Gitler, Aaron D; Cashikar, Anil G; King, Oliver D; Auluck, Pavan K; Geddie, Melissa L; Valastyan, Julie S; Karger, David R; Lindquist, Susan; Fraenkel, Ernest

    2009-03-01

    Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens. By comparing the results of these two assays across various stimuli, we found that genetic screens tend to identify response regulators, whereas mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We used this approach to reveal cellular pathways responding to the toxicity of alpha-synuclein, a protein implicated in several neurodegenerative disorders including Parkinson's disease. For this we screened an established yeast model to identify genes that when overexpressed alter alpha-synuclein toxicity. Bridging these data and data from mRNA profiling provided functional explanations for many of these genes and identified previously unknown relations between alpha-synuclein toxicity and basic cellular pathways. PMID:19234470

  14. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  15. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis.

    PubMed

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J Pablo; Lopez, Bernard S

    2016-07-11

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [(3)H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [(3)H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses.

  16. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis

    PubMed Central

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J. Pablo; Lopez, Bernard S.

    2016-01-01

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [3H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [3H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses. PMID:27406380

  17. Global Functional Analyses of Cellular Responses to Pore-Forming Toxins

    PubMed Central

    Kao, Cheng-Yuan; Wachi, Shinichiro; Kloft, Nicole; Husmann, Matthias; Karabrahimi, Valbona; Schwartz, Jean-Louis; Bellier, Audrey; Ha, Christine; Sagong, Youn; Fan, Hui; Ghosh, Partho; Hsieh, Mindy; Hsu, Chih-Shen; Chen, Li; Aroian, Raffi V.

    2011-01-01

    Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs. PMID:21408619

  18. HIV-1 sub-type C chimaeric VLPs boost cellular immune responses in mice

    PubMed Central

    2010-01-01

    Several approaches have been explored to eradicate HIV; however, a multigene vaccine appears to be the best option, given their proven potential to elicit broad, effective responses in animal models. The Pr55Gag protein is an excellent vaccine candidate in its own right, given that it can assemble into large, enveloped, virus-like particles (VLPs) which are highly immunogenic, and can moreover be used as a scaffold for the presentation of other large non-structural HIV antigens. In this study, we evaluated the potential of two novel chimaeric HIV-1 Pr55Gag-based VLP constructs - C-terminal fusions with reverse transcriptase and a Tat::Nef fusion protein, designated GagRT and GagTN respectively - to enhance a cellular response in mice when used as boost components in two types of heterologous prime-boost vaccine strategies. A vaccine regimen consisting of a DNA prime and chimaeric HIV-1 VLP boosts in mice induced strong, broad cellular immune responses at an optimum dose of 100 ng VLPs. The enhanced cellular responses induced by the DNA prime-VLP boost were two- to three-fold greater than two DNA vaccinations. Moreover, a mixture of GagRT and GagTN VLPs also boosted antigen-specific CD8+ and CD4+ T-cell responses, while VLP vaccinations only induced predominantly robust Gag CD4+ T-cell responses. The results demonstrate the promising potential of these chimaeric VLPs as vaccine candidates against HIV-1. PMID:21087527

  19. Impaired endoplasmic reticulum stress response in bipolar disorder: cellular evidence of illness progression.

    PubMed

    Pfaffenseller, Bianca; Wollenhaupt-Aguiar, Bianca; Fries, Gabriel Rodrigo; Colpo, Gabriela Delevati; Burque, Renan Kubiachi; Bristot, Giovana; Ferrari, Pâmela; Ceresér, Keila Maria Mendes; Rosa, Adriane Ribeiro; Klamt, Fábio; Kapczinski, Flávio

    2014-09-01

    Bipolar disorder (BD) is a severe chronic psychiatric disorder that has been associated with cellular dysfunctions related to mitochondria, neurotrophin levels, and oxidative stress. Evidence has shown that endoplasmic reticulum (ER) stress may be a common pathway of the cellular changes described in BD. In the present study we assessed unfolded protein response (UPR) and the effects of this cellular process on lymphocytes from patients with BD. We also evaluated whether the stage of chronicity of BD was associated with changes in UPR parameters. Cultured lymphocytes from 30 patients with BD and 32 age- and sex-matched controls were treated with tunicamycin, an ER stressor, for 12 or 24 h to measure levels of UPR-related proteins (GRP78, eIF2α-P, and CHOP) using flow cytometry, and for 48 h to analyse ER stress-induced cell death. In healthy controls but not in patients we found an increase in levels of GRP78, eIF2α-P, and CHOP after ER stress induction. In addition, tunicamycin-induced cell death was significantly higher in patients compared to controls. More importantly, early-stage patients did not differ from controls while the late-stage patients showed an impaired ER stress response. Thus, dysfunction in ER-related stress response may be associated with decreased cellular resilience in BD and illness progression.

  20. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation

    PubMed Central

    Muralidharan, Sujatha; Mandrekar, Pranoti

    2013-01-01

    Extensive research in the past decade has identified innate immune recognition receptors and intracellular signaling pathways that culminate in inflammatory responses. Besides its role in cytoprotection, the importance of cell stress in inflammation and host defense against pathogens is emerging. Recent studies have shown that proteins in cellular stress responses, including the heat shock response, ER stress response, and DNA damage response, interact with and regulate signaling intermediates involved in the activation of innate and adaptive immune responses. The effect of such regulation by cell stress proteins may dictate the inflammatory profile of the immune response during infection and disease. In this review, we describe the regulation of innate immune cell activation by cell stress pathways, present detailed descriptions of the types of stress response proteins and their crosstalk with immune signaling intermediates that are essential in host defense, and illustrate the relevance of these interactions in diseases characteristic of aberrant immune responses, such as chronic inflammatory diseases, autoimmune disorders, and cancer. Understanding the crosstalk between cellular stress proteins and immune signaling may have translational implications for designing more effective regimens to treat immune disorders. PMID:23990626

  1. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    PubMed Central

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives

  2. Intraspecific Variation in Cellular and Biochemical Heat Response Strategies of Mediterranean Xeropicta derbentina [Pulmonata, Hygromiidae

    PubMed Central

    Troschinski, Sandra; Di Lellis, Maddalena A.; Sereda, Sergej; Hauffe, Torsten; Wilke, Thomas; Triebskorn, Rita; Köhler, Heinz-R.

    2014-01-01

    Dry and hot environments challenge the survival of terrestrial snails. To minimize overheating and desiccation, physiological and biochemical adaptations are of high importance for these animals. In the present study, seven populations of the Mediterranean land snail species Xeropicta derbentina were sampled from their natural habitat in order to investigate the intraspecific variation of cellular and biochemical mechanisms, which are assigned to contribute to heat resistance. Furthermore, we tested whether genetic parameters are correlated with these physiological heat stress response patterns. Specimens of each population were individually exposed to elevated temperatures (25 to 52°C) for 8 h in the laboratory. After exposure, the health condition of the snails' hepatopancreas was examined by means of qualitative description and semi-quantitative assessment of histopathological effects. In addition, the heat-shock protein 70 level (Hsp70) was determined. Generally, calcium cells of the hepatopancreas were more heat resistant than digestive cells - this phenomenon was associated with elevated Hsp70 levels at 40°C.We observed considerable variation in the snails' heat response strategy: Individuals from three populations invested much energy in producing a highly elevated Hsp70 level, whereas three other populations invested energy in moderate stress protein levels - both strategies were in association with cellular functionality. Furthermore, one population kept cellular condition stable despite a low Hsp70 level until 40°C exposure, whereas prominent cellular reactions were observed above this thermal limit. Genetic diversity (mitochondrial cytochrome c oxidase subunit I gene) within populations was low. Nevertheless, when using genetic indices as explanatory variables in a multivariate regression tree (MRT) analysis, population structure explained mean differences in cellular and biochemical heat stress responses, especially in the group exposed to 40°C. Our

  3. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model.

    PubMed

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives

  4. Cellular immune responses in multiple sclerosis patients treated with interferon-beta

    PubMed Central

    Bustamante, M. F.; Rio, J.; Castro, Z.; Sánchez, A.; Montalban, X.; Comabella, M.

    2013-01-01

    Summary We investigated cellular immune responses at baseline in peripheral blood mononuclear cells (PBMC) of patients with multiple sclerosis (MS) treated with interferon (IFN)-β and classified into responders and non-responders according to clinical response criteria. Levels for IFN-γ, interleukin (IL)-17A, IL-17F, IL-10 and IL-4 were determined in activated PBMC of 10 responders, 10 non-responders and 10 healthy controls by cytometric bead arrays. Cytokine levels in cell culture supernatants were similar between responders and non-responders, and comparable to those obtained in healthy controls. These findings do not support differential cellular immune responses in PBMC at baseline between IFN-β responders and non-responders. PMID:23379429

  5. The immune cellular response tested by lymphocyte transformation in the streptococcal infections.

    PubMed

    Mihalcu, F; Stefănescu, ? M; Teodorescu, ? M

    1975-01-01

    Thirty-five children between 6 and 17 years treated in the clinic for scarlet fever, rheumatic fever and other non-streptococcal infections as controls, were tested by lymphocyte transformation to four streptococcal antigens. In all cases of scarlet fever and especially of rheumatic fever the lymphocytes were better stimulated by streptococcal products than in the control group. The SO and the MAP fraction showed a good stimulating activity. The response in the rheumatic fever patients was not influenced by the steroid treatment, nor by the stage of the illness. A parallelism with high humoral and cellular responses to SO at the beginning of the acute rheumatic fever was observed, followed by a dissociation of both responses during the evolution with the maintenance of the cellular one and the decrease of the ASO titre.

  6. The raspberry Gene Is Involved in the Regulation of the Cellular Immune Response in Drosophila melanogaster

    PubMed Central

    Kari, Beáta; Csordás, Gábor; Honti, Viktor; Cinege, Gyöngyi; Williams, Michael J.; Andó, István; Kurucz, Éva

    2016-01-01

    Drosophila is an extremely useful model organism for understanding how innate immune mechanisms defend against microbes and parasitoids. Large foreign objects trigger a potent cellular immune response in Drosophila larva. In the case of endoparasitoid wasp eggs, this response includes hemocyte proliferation, lamellocyte differentiation and eventual encapsulation of the egg. The encapsulation reaction involves the attachment and spreading of hemocytes around the egg, which requires cytoskeletal rearrangements, changes in adhesion properties and cell shape, as well as melanization of the capsule. Guanine nucleotide metabolism has an essential role in the regulation of pathways necessary for this encapsulation response. Here, we show that the Drosophila inosine 5'-monophosphate dehydrogenase (IMPDH), encoded by raspberry (ras), is centrally important for a proper cellular immune response against eggs from the parasitoid wasp Leptopilina boulardi. Notably, hemocyte attachment to the egg and subsequent melanization of the capsule are deficient in hypomorphic ras mutant larvae, which results in a compromised cellular immune response and increased survival of the parasitoid. PMID:26942456

  7. The raspberry Gene Is Involved in the Regulation of the Cellular Immune Response in Drosophila melanogaster.

    PubMed

    Kari, Beáta; Csordás, Gábor; Honti, Viktor; Cinege, Gyöngyi; Williams, Michael J; Andó, István; Kurucz, Éva

    2016-01-01

    Drosophila is an extremely useful model organism for understanding how innate immune mechanisms defend against microbes and parasitoids. Large foreign objects trigger a potent cellular immune response in Drosophila larva. In the case of endoparasitoid wasp eggs, this response includes hemocyte proliferation, lamellocyte differentiation and eventual encapsulation of the egg. The encapsulation reaction involves the attachment and spreading of hemocytes around the egg, which requires cytoskeletal rearrangements, changes in adhesion properties and cell shape, as well as melanization of the capsule. Guanine nucleotide metabolism has an essential role in the regulation of pathways necessary for this encapsulation response. Here, we show that the Drosophila inosine 5'-monophosphate dehydrogenase (IMPDH), encoded by raspberry (ras), is centrally important for a proper cellular immune response against eggs from the parasitoid wasp Leptopilina boulardi. Notably, hemocyte attachment to the egg and subsequent melanization of the capsule are deficient in hypomorphic ras mutant larvae, which results in a compromised cellular immune response and increased survival of the parasitoid. PMID:26942456

  8. Function of Membrane Rafts in Viral Lifecycles and Host Cellular Response

    PubMed Central

    Takahashi, Tadanobu; Suzuki, Takashi

    2011-01-01

    Membrane rafts are small (10–200 nm) sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process) and the late stage (assembly, budding, and release processes of virus particles). In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction. PMID:22191032

  9. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  10. A signature microRNA expression profile for the cellular response to thermal stress

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Roth, Caleb C.; Ketchum, Norma; Ibey, Bennett L.; Waterworth, Angela; Suarez, Maria; Roach, William P.

    2009-02-01

    Recently, an extensive layer of intra-cellular signals was discovered that was previously undetected by genetic radar. It is now known that this layer consists primarily of a class of short noncoding RNA species that are referred to as microRNAs (miRNAs). MiRNAs regulate protein synthesis at the post-transcriptional level, and studies have shown that they are involved in many fundamental cellular processes. In this study, we hypothesized that miRNAs may be involved in cellular stress response mechanisms, and that cells exposed to thermal stress may exhibit a signature miRNA expression profile indicative of their functional involvement in such mechanisms. To test our hypothesis, human dermal fibroblasts were exposed to an established hyperthermic protocol, and the ensuing miRNA expression levels were evaluated 4 hr post-exposure using microRNA microarray gene chips. The microarray data shows that 123 miRNAs were differentially expressed in cells exposed to thermal stress. We collectively refer to these miRNAs as thermalregulated microRNAs (TRMs). Since miRNA research is in its infancy, it is interesting to note that only 27 of the 123 TRMs are currently annotated in the Sanger miRNA registry. Prior to publication, we plan to submit the remaining novel 96 miRNA gene sequences for proper naming. Computational and thermodynamic modeling algorithms were employed to identify putative mRNA targets for the TRMs, and these studies predict that TRMs regulate the mRNA expression of various proteins that are involved in the cellular stress response. Future empirical studies will be conducted to validate these theoretical predictions, and to further examine the specific role that TRMs play in the cellular stress response.

  11. Development of a micro cell compression stimulator for evaluating real-time cellular responses

    NASA Astrophysics Data System (ADS)

    Nakashima, Y.; Yang, Y.; Minami, K.

    2012-05-01

    This paper presents a micro cell compression stimulator for evaluating real-time cellular responses to compression stimuli. The device was produced by a micro three-dimensional structure fabrication process using multiple exposures to the photoresist. The device consists of a pressure inlet port, cell inlet ports, a gasket, microchannels, cell culture chambers, and a diaphragm on the culture chamber for applying compressive pressure to cells. Compression stimuli applied to the cells can be controlled by regulating the expansion of the diaphragm via a pressure control. The device permits the observation of cellular responses to compressive pressure in real time because it is made of transparent materials and stimulates the cells without deforming the cell culture surface, when observed by optical microscopy. We demonstrated the validity of the fabrication process, evaluated the performance of the fabricated device, and compared the experimental results with the FEM structural analysis results. We found through operational testing that the diaphragm was deformed quickly by applying negative/positive pressure and that the diaphragm displacement became larger with increasing applied pressure. These results indicate that this device can be used to control the intensity and the cell stimulus profile by regulating the applied pressure. In all cases, the cellular deformation during compression stimulus was successfully observed in real time using an optical microscope. The device is expected to facilitate the control of stem cell differentiation and the clarification of cellular mechanoreceptor mechanisms and signal transduction pathways.

  12. Association rule mining of cellular responses induced by metal and metal oxide nanoparticles.

    PubMed

    Liu, Rong; France, Bryan; George, Saji; Rallo, Robert; Zhang, Haiyuan; Xia, Tian; Nel, Andre E; Bradley, Kenneth; Cohen, Yoram

    2014-03-01

    Relationships among fourteen different biological responses (including ten signaling pathway activities and four cytotoxicity effects) of murine macrophage (RAW264.7) and bronchial epithelial (BEAS-2B) cells exposed to six metal and metal oxide nanoparticles (NPs) were analyzed using both statistical and data mining approaches. Both the pathway activities and cytotoxicity effects were assessed using high-throughput screening (HTS) over an exposure period of up to 24 h and concentration range of 0.39-200 mg L(-1). HTS data were processed by outlier removal, normalization, and hit-identification (for significantly regulated cellular responses) to arrive at reliable multiparametric bioactivity profiles for the NPs. Association rule mining was then applied to the bioactivity profiles followed by a pruning process to remove redundant rules. The non-redundant association rules indicated that "significant regulation" of one or more cellular responses implies regulation of other (associated) cellular response types. Pairwise correlation analysis (via Pearson's χ(2) test) and self-organizing map clustering of the different cellular response types indicated consistency with the identified non-redundant association rules. Furthermore, in order to explore the potential use of association rules as a tool for data-driven hypothesis generation, specific pathway activity experiments were carried out for ZnO NPs. The experimental results confirmed the association rule identified for the p53 pathway and mitochondrial superoxide levels (via MitoSox reagent) and further revealed that blocking of the transcriptional activity of p53 lowered the MitoSox signal. The present approach of using association rule mining for data-driven hypothesis generation has important implications for streamlining multi-parameter HTS assays, improving the understanding of NP toxicity mechanisms, and selection of endpoints for the development of nanomaterial structure-activity relationships.

  13. Mass spectrometry-based quantification of the cellular response to methyl methanesulfonate treatment in human cells.

    PubMed

    Aslanian, Aaron; Yates, John R; Hunter, Tony

    2014-03-01

    Faithful transmission of genetic material is essential for cell viability and organism health. The occurrence of DNA damage, due to either spontaneous events or environmental agents, threatens the integrity of the genome. The consequences of these insults, if allowed to perpetuate and accumulate over time, are mutations that can lead to the development of diseases such as cancer. Alkylation is a relevant DNA lesion produced endogenously as well as by exogenous agents including certain chemotherapeutics. We sought to better understand the cellular response to this form of DNA damage using mass spectrometry-based proteomics. For this purpose, we performed sub-cellular fractionation to monitor the effect of methyl methanesulfonate (MMS) treatment on protein localization to chromatin. The levels of over 500 proteins were increased in the chromatin-enriched nuclear lysate including histone chaperones. Levels of ubiquitin and subunits of the proteasome were also increased within this fraction, suggesting that ubiquitin-mediated degradation by the proteasome has an important role in the chromatin response to MMS treatment. Finally, the levels of some proteins were decreased within the chromatin-enriched lysate including components of the nuclear pore complex. Our spatial proteomics data demonstrate that many proteins that influence chromatin organization are regulated in response to MMS treatment, presumably to open the DNA to allow access by other DNA damage response proteins. To gain further insight into the cellular response to MMS-induced DNA damage, we also performed phosphorylation enrichment on total cell lysates to identify proteins regulated via post-translational modification. Phosphoproteomic analysis demonstrated that many nuclear phosphorylation events were decreased in response to MMS treatment. This reflected changes in protein kinase and/or phosphatase activity in response to DNA damage rather than changes in total protein abundance. Using these two mass

  14. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology

    PubMed Central

    Cervantes-Ortiz, Sandra L.; Zamorano Cuervo, Natalia; Grandvaux, Nathalie

    2016-01-01

    Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis. PMID:27187445

  15. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology.

    PubMed

    Cervantes-Ortiz, Sandra L; Zamorano Cuervo, Natalia; Grandvaux, Nathalie

    2016-01-01

    Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis. PMID:27187445

  16. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection.

    PubMed

    Yang, Hairu; Kronhamn, Jesper; Ekström, Jens-Ola; Korkut, Gül Gizem; Hultmark, Dan

    2015-12-01

    The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.

  17. Properties and fibroblast cellular response of soft and hard thermoplastic polyurethane electrospun nanofibrous scaffolds.

    PubMed

    Mi, Hao-Yang; Jing, Xin; Salick, Max R; Cordie, Travis M; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-07-01

    Soft and hard thermoplastic polyurethane (TPU) and their blends were electrospun to fabricate nanofibrous scaffolds with various properties in order to investigate the substrate property effects on cellular response. The scaffolds were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, water contact angle tests, and protein absorption tests. It was found that the hard segment content in the scaffold increased with the hard TPU ratio, which resulted in improved hydrophobicity and decreased over all protein absorption. 3T3 fibroblasts were cultured on those scaffolds to investigate the cellular response. On soft TPU scaffolds, the cells formed were round in shape and aggregated into clusters. However, on hard TPU scaffolds, the cells exhibited a spindle shape and spread out on the scaffolds, indicating preferred cell-substrate interaction. The cell viability and proliferation of cells on hard scaffolds were higher than on soft scaffolds and on 50% hard/50% soft scaffolds.

  18. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  19. Properties and fibroblast cellular response of soft and hard thermoplastic polyurethane electrospun nanofibrous scaffolds.

    PubMed

    Mi, Hao-Yang; Jing, Xin; Salick, Max R; Cordie, Travis M; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-07-01

    Soft and hard thermoplastic polyurethane (TPU) and their blends were electrospun to fabricate nanofibrous scaffolds with various properties in order to investigate the substrate property effects on cellular response. The scaffolds were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, water contact angle tests, and protein absorption tests. It was found that the hard segment content in the scaffold increased with the hard TPU ratio, which resulted in improved hydrophobicity and decreased over all protein absorption. 3T3 fibroblasts were cultured on those scaffolds to investigate the cellular response. On soft TPU scaffolds, the cells formed were round in shape and aggregated into clusters. However, on hard TPU scaffolds, the cells exhibited a spindle shape and spread out on the scaffolds, indicating preferred cell-substrate interaction. The cell viability and proliferation of cells on hard scaffolds were higher than on soft scaffolds and on 50% hard/50% soft scaffolds. PMID:25176285

  20. Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures

    PubMed Central

    Lee, Anna Y.; St.Onge, Robert P.; Proctor, Michael J.; Wallace, Iain M.; Nile, Aaron H.; Spagnuolo, Paul A.; Jitkova, Yulia; Gronda, Marcela; Wu, Yan; Kim, Moshe K.; Cheung-Ong, Kahlin; Torres, Nikko P.; Spear, Eric D.; Han, Mitchell K. L.; Schlecht, Ulrich; Suresh, Sundari; Duby, Geoffrey; Heisler, Lawrence E.; Surendra, Anuradha; Fung, Eula; Urbanus, Malene L.; Gebbia, Marinella; Lissina, Elena; Miranda, Molly; Chiang, Jennifer H.; Aparicio, Ana Maria; Zeghouf, Mahel; Davis, Ronald W.; Cherfils, Jacqueline; Boutry, Marc; Kaiser, Chris A.; Cummins, Carolyn L.; Trimble, William S.; Brown, Grant W.; Schimmer, Aaron D.; Bankaitis, Vytas A.; Nislow, Corey; Bader, Gary D.; Giaever, Guri

    2014-01-01

    Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes. PMID:24723613

  1. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases

    PubMed Central

    Hoon, Jing Ling; Tan, Mei Hua; Koh, Cheng-Gee

    2016-01-01

    The Rho GTPases regulate many cellular signaling cascades that modulate cell motility, migration, morphology and cell division. A large body of work has now delineated the biochemical cues and pathways, which stimulate the GTPases and their downstream effectors. However, cells also respond exquisitely to biophysical and mechanical cues such as stiffness and topography of the extracellular matrix that profoundly influence cell migration, proliferation and differentiation. As these cellular responses are mediated by the actin cytoskeleton, an involvement of Rho GTPases in the transduction of such cues is not unexpected. In this review, we discuss an emerging role of Rho GTPase proteins in the regulation of the responses elicited by biophysical and mechanical stimuli. PMID:27058559

  2. Cytokine, Antibody and Proliferative Cellular Responses Elicited by Taenia solium Calreticulin upon Experimental Infection in Hamsters

    PubMed Central

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis. PMID:25811778

  3. Cytokine, antibody and proliferative cellular responses elicited by Taenia solium calreticulin upon experimental infection in hamsters.

    PubMed

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis.

  4. Cellular responses to Rhipicephalus microplus infestations in pre-sensitised cattle with differing phenotypes of infestation.

    PubMed

    Marufu, Munyaradzi C; Dzama, Kennedy; Chimonyo, Michael

    2014-02-01

    The blue tick, Rhipicephalus microplus, threatens cattle production in most tropical and subtropical areas of the world. Delayed skin hypersensitivity reactions are thought to cause Nguni cattle to be more resistant to R. microplus than Bonsmara cattle yet the cellular mechanisms responsible for these differences have not been classified. Tick counts and inflammatory cell infiltrates in skin biopsies from feeding sites of adult R. microplus ticks were determined in 9-month-old Nguni and Bonsmara heifers to determine the cellular mechanisms responsible for tick immunity. Nguni heifers (1.7 ± 0.03) had lower (P < 0.05) tick counts than the Bonsmaras (2.0 ± 0.03). Parasitized sites in Nguni heifers had higher counts of basophils, mast and mononuclear cells than those in the Bonsmara heifers. Conversely, parasitized sites in Nguni heifers had lower neutrophil and eosinophil counts than those in the Bonsmara heifers. Tick count was negatively correlated with basophil and mast cell counts and positively correlated with eosinophil counts in both breeds. In the Bonsmara breed, tick count was positively correlated with mononuclear cell counts. Cellular responses to adult R. microplus infestations were different and correlated with differences in tick resistance in Nguni and Bonsmara cattle breeds. It is essential to further characterise the molecular composition of the inflammatory infiltrate elicited by adult R. microplus infestation to fully comprehend immunity to ticks in cattle. PMID:24057115

  5. The paradox of histone deacetylase inhibitor-mediated modulation of cellular responses to radiation.

    PubMed

    Karagiannis, Tom C; El-Osta, Assam

    2006-02-01

    Given the widespread use of radiotherapy in cancer, there has been a longstanding interest in the development of chemical compounds that can modify cellular responses to ionizing radiation. Additionally, recent terrorism threats suggesting attacks with 'dirty bombs' containing combinations of radioactive isotopes with conventional explosives, has increased the interest in compounds that can protect from radiation injury. Histone deacetylase inhibitors represent a new class of compounds that can modulate the effects of radiation. Research with histone deacetylase inhibitors has largely focussed on the consequences of their ability to alter gene transcription via histone acetylation and on their properties as anti-cancer agents. They have been shown to cause cell cycle and growth arrest, differentiation and in certain cases apoptosis in cell cultures and in vivo. In addition to their intrinsic anti-cancer properties, numerous studies have demonstrated that histone deacetylase inhibitors can modulate cellular responses to other toxicity-inducing modalities including ionizing radiation. The consensus is that histone deacetylase inhibitors markedly enhance the sensitivity of cells to radiation by altering numerous molecular pathways. Intriguingly, a report has also shown that histone deacetylase inhibitors can reduce radiation induced acute and late skin damage using a well-established animal model of cutaneous radiation syndrome. Hence, there is an emerging interest in potential use of histone deacetylase inhibitors as radiation sensitizers or protectors. This review focuses on the different mechanisms by which histone deacetylase inhibitors modify cellular responses to ionizing radiation. PMID:16418577

  6. In vivo and in vitro cellular response to PEG-based hydrogels for wound repair

    NASA Astrophysics Data System (ADS)

    Waldeck, Heather

    Biomaterials are continuously being explored as a means to support, improve, or influence wound healing processes. Understanding the determining factors controlling the host response to biomaterials is crucial in developing strategies to employ materials for biomedical uses. In order to evaluate the host response to poly(ethylene glycol) (PEG)-based hydrogels, both in vivo and in vitro studies were performed to determine its efficacy as a dermal wound treatment and to investigate the mechanisms controlling cell-material interaction, respectively. The results of an in vivo study using a full thickness wound in a rat model demonstrated that both soluble and immobilized bioactive factors could be incorporated into a PEG-based semi-interpenetrating network (sIPN) to enhance the rate and the quality of dermal wound healing. To gain a better understanding of the results observed in vivo, in vitro studies were then conducted to examine the dynamics and mechanisms of the cell-material interaction. Degradation of the sIPN was explored as an influential factor in both mediating cellular response and controlling solute transport from the material. As degradation through gelatin dissolution could be influenced by simple alterations to the material formulation, these results provide facile guidelines to control the delivery of high molecular weight compounds. Further investigation of the cellular response to PEG-based biomaterials focused on key factors influencing cell-material interaction. Specifically, the role of the beta1 integrin subunit and several serum proteins (TGF-aalpha, IL-1beta and PDGF-BB) in mediating cellular response was explored. As cell-material interactions are based on commonly occurring interfaces between cells and molecules of the native extracellular environment, these studies provided insight into the mechanisms controlling the observed cellular response. Finally, the inflammatory response of primary monocytes to biomaterials was examined. Monocytes

  7. Humoral and cellular immune responses by normal individuals to hepatitis B surface antigen vaccination.

    PubMed Central

    Filion, L G; Saginur, R; Szczerbak, N

    1988-01-01

    The kinetics of the cellular and humoral responses of 30 recipients of hepatitis B vaccine were studied. All individuals exerted an HBsAg blastogenic response sometime throughout the study period but the maximum response was detected on day 28 and 56. The removal of CD8+ cells enhanced significantly the HBsAg response at the times tested, whereas treatment with anti-CD4, anti-CD8, C' and anti-CD4+ C' had no effect. Vaccination also led to the depression of phytohaemagglutinin (PHA) blastogenic response. This response was maximally suppressed 4 to 8 days after immunization at least for the primary and secondary responses and 28 days after the third dose of vaccine. The humoral response to HBsAg was detected only after the second dose of vaccine was given. The results suggest that a CD8+ cell controls the magnitude and intensity of the HBsAg blastogenic response, which may help to explain why several investigators had not been able to detect this response in hyperimmunized individuals. Primary immunization with HBsAg does lead to an expansion of B memory since a secondary response anti-HBsAg was observed. PMID:2968200

  8. Role for zinc in a cellular response mediated by protein kinase C in human B lymphocytes

    SciTech Connect

    Forbes, I.J.; Zalewski, P.D.; Giannakis, C. )

    1991-07-01

    Recent studies have suggested a role for Zn{sup 2+}, distinct from that of CA{sup 2+}, in the subcellular distribution and activation of protein kinase C (PKC). Here the author show that Zn{sup 2+} is required for a cellular response mediated by PKC, the rapid loss of expression of a human B cell receptor MER, detected by resetting with mouse erythrocytes. Zn{sup 2+}, in the presence of the Zn{sup 2+} ionophore pyrithione, caused rapid inhibition of MER rosetting at concentrations which induce the translocation and activation of PKC. This required cellular uptake of Zn{sup 2+} and was blocked by 1,10-phenanthroline and TPEN which chelate Zn{sup 2+} but not Ca{sup 2+}. Gold, a metal with similar properties, also induced translocation of PKC and inhibition of MER. Phenanthroline and TPEN also blocked the inhibition of MER induced by the PKC activators phorbol ester and sodium fluoride, suggesting that endogenous cellular Zn{sup 2+} is required. They propose that some cellular actions of PKC require a Zn{sup 2+}-dependent event and that these may be a target for gold during chrysotherapy in rheumatoid arthritis.

  9. Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders

    PubMed Central

    Cornelius, Carolin; Dinkova-Kostova, Albena T.; Calabrese, Edward J.; Mattson, Mark P.

    2010-01-01

    Abstract Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose–response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling. Antioxid. Redox Signal. 13, 1763–1811. PMID:20446769

  10. Strain-Dependent Cellular Immune Responses in Cattle following Escherichia coli O157:H7 Colonization

    PubMed Central

    Corbishley, Alexander; Ahmad, Nur Indah; Hughes, Kirsty; Hutchings, Michael R.; McAteer, Sean P.; Connelley, Timothy K.; Brown, Helen; Gally, David L.

    2014-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic diarrhea and potentially fatal renal failure in humans. Ruminants are considered to be the primary reservoir for human infection. Vaccines that reduce shedding in cattle are only partially protective, and their underlying protective mechanisms are unknown. Studies investigating the response of cattle to colonization generally focus on humoral immunity, leaving the role of cellular immunity unclear. To inform future vaccine development, we studied the cellular immune responses of cattle during EHEC O157:H7 colonization. Calves were challenged either with a phage type 21/28 (PT21/28) strain possessing the Shiga toxin 2a (Stx2a) and Stx2c genes or with a PT32 strain possessing the Stx2c gene only. T-helper cell-associated transcripts at the terminal rectum were analyzed by reverse transcription-quantitative PCR (RT-qPCR). Induction of gamma interferon (IFN-γ) and T-bet was observed with peak expression of both genes at 7 days in PT32-challenged calves, while upregulation was delayed, peaking at 21 days, in PT21/28-challenged calves. Cells isolated from gastrointestinal lymph nodes demonstrated antigen-specific proliferation and IFN-γ release in response to type III secreted proteins (T3SPs); however, responsiveness was suppressed in cells isolated from PT32-challenged calves. Lymph node cells showed increased expression of the proliferation marker Ki67 in CD4+ T cells from PT21/28-challenged calves, NK cells from PT32-challenged calves, and CD8+ and γδ T cells from both PT21/28- and PT32-challenged calves following ex vivo restimulation with T3SPs. This study demonstrates that cattle mount cellular immune responses during colonization with EHEC O157:H7, the temporality of which is strain dependent, with further evidence of strain-specific immunomodulation. PMID:25267838

  11. [Regulatory role of mechanical stress response in cellular function: development of new drugs and tissue engineering].

    PubMed

    Momose, Kazutaka; Matsuda, Takehisa; Oike, Masahiro; Obara, Kazuo; Laher, Ismail; Sugiura, Seiryo; Ohata, Hisayuki; Nakayama, Koichi

    2003-02-01

    The investigation of mechanotransduction in the cardiovascular system is essentially important for elucidating the cellular and molecular mechanisms involved in not only the maintenance of hemodynamic homeostasis but also etiology of cardiovascular diseases including arteriosclerosis. The present review summarizes the latest research performed by six academic groups, and presented at the 75th Annual Meeting of the Japanese Pharmacological Society. Technology of cellular biomechanics is also required for research and clinical application of a vascular hybrid tissue responding to pulsatile stress. 1) Vascular tissue engineering: Design of pulsatile stress-responsive scaffold and in vivo vascular wall reconstruction (T. Matsuda); 2) Cellular mechanisms of mechanosensitive calcium transients in vascular endothelium (M. Oike et al.); 3) Cross-talk of stimulation with fluid flow and lysophosphatidic acid in vascular endothelial cells (K. Momose et al.); 4) Mechanotransduction of vascular smooth muscles: Rate-dependent stretch-induced protein phosphorylations and contractile activation (K. Obara et al.); 5) Lipid mediators in vascular myogenic tone (I. Laher et al.); and 6) Caldiomyocyte regulates its mechanical output in response to mechanical load (S. Sugiura et al.).

  12. A review on hemeoxygenase-2: focus on cellular protection and oxygen response.

    PubMed

    Muñoz-Sánchez, Jorge; Chánez-Cárdenas, María Elena

    2014-01-01

    Hemeoxygenase (HO) system is responsible for cellular heme degradation to biliverdin, iron, and carbon monoxide. Two isoforms have been reported to date. Homologous HO-1 and HO-2 are microsomal proteins with more than 45% residue identity, share a similar fold and catalyze the same reaction. However, important differences between isoforms also exist. HO-1 isoform has been extensively studied mainly by its ability to respond to cellular stresses such as hemin, nitric oxide donors, oxidative damage, hypoxia, hyperthermia, and heavy metals, between others. On the contrary, due to its apparently constitutive nature, HO-2 has been less studied. Nevertheless, its abundance in tissues such as testis, endothelial cells, and particularly in brain, has pointed the relevance of HO-2 function. HO-2 presents particular characteristics that made it a unique protein in the HO system. Since attractive results on HO-2 have been arisen in later years, we focused this review in the second isoform. We summarize information on gene description, protein structure, and catalytic activity of HO-2 and particular facts such as its cellular impact and activity regulation. Finally, we call attention on the role of HO-2 in oxygen sensing, discussing proposed hypothesis on heme binding motifs and redox/thiol switches that participate in oxygen sensing as well as evidences of HO-2 response to hypoxia. PMID:25136403

  13. TWO INNEXINS OF Spodoptera litura INFLUENCES HEMICHANNEL AND GAP JUNCTION FUNCTIONS IN CELLULAR IMMUNE RESPONSES.

    PubMed

    Pang, Zunyu; Li, Ming; Yu, Dongshuai; Yan, Zhang; Liu, Xinyi; Ji, Xinglai; Yang, Yang; Hu, Jiansheng; Luo, Kaijun

    2015-09-01

    Insect cellular immune responses include encapsulation, nodule formation, and phagocytosis. Hemichannels and gap junctions are involved in these cellular actions. Innexins (Inxs: analogous to the vertebrate connexins) form hemichannels and gap junctions, but the molecular mechanisms underlying their biology is still unclear. In this article, we reported a steady-state level of Inxs (SpliInxs) in hemocytes of Spodoptera litura, which formed nonfunctional hemichannels on the cell surface to maintain normal metabolism. We also reported that two innnexins (SpliInx2 and SpliInx3) were expressed significantly higher in hemocytes compared to other tissues, suggesting that they play important roles in hemocytes. Amino acid analysis found that two cysteine residues in two extracellular loops provided the capability for SpliInx2 and SpliInx3 hemichannels to dock into gap junctions. Western blotting demonstrated that both extracellular and intracellular loops of SpliInx3 and the extracellular loops of SpliInx2 might undergo posttranslational modification during the formation of a steady-state hemichannel. During hemichannel formation, SpliInx2 presented as one isoform, while SpliInx3 presented as three isoforms. These results provide fundamental knowledge for further study of how steady-state levels of SpliInxs are dynamically adjusted to perform cellular immune responses under immune challenge. PMID:25939810

  14. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  15. Peroxisomes are platforms for cytomegalovirus’ evasion from the cellular immune response

    PubMed Central

    Magalhães, Ana Cristina; Ferreira, Ana Rita; Gomes, Sílvia; Vieira, Marta; Gouveia, Ana; Valença, Isabel; Islinger, Markus; Nascimento, Rute; Schrader, Michael; Kagan, Jonathan C.; Ribeiro, Daniela

    2016-01-01

    The human cytomegalovirus developed distinct evasion mechanisms from the cellular antiviral response involving vMIA, a virally-encoded protein that is not only able to prevent cellular apoptosis but also to inhibit signalling downstream from mitochondrial MAVS. vMIA has been shown to localize at mitochondria and to trigger their fragmentation, a phenomenon proven to be essential for the signalling inhibition. Here, we demonstrate that vMIA is also localized at peroxisomes, induces their fragmentation and inhibits the peroxisomal-dependent antiviral signalling pathway. Importantly, we demonstrate that peroxisomal fragmentation is not essential for vMIA to specifically inhibit signalling downstream the peroxisomal MAVS. We also show that vMIA interacts with the cytoplasmic chaperone Pex19, suggesting that the virus has developed a strategy to highjack the peroxisomal membrane proteins’ transport machinery. Furthermore, we show that vMIA is able to specifically interact with the peroxisomal MAVS. Our results demonstrate that peroxisomes constitute a platform for evasion of the cellular antiviral response and that the human cytomegalovirus has developed a mechanism by which it is able to specifically evade the peroxisomal MAVS-dependent antiviral signalling. PMID:27181750

  16. Characterization of the cellular response triggered by gold nanoparticle-mediated laser manipulation

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Keil, Sebastian; Sender, Sina; Hammer, Susanne C.; Antonopoulos, Georgios C.; Schomaker, Markus; Ripken, Tammo; Escobar, Hugo Murua; Meyer, Heiko; Heinemann, Dag

    2015-11-01

    Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle-mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle-mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle-mediated laser manipulation.

  17. Piezoelectric two-layer stacks of cellular polypropylene ferroelectrets: transducer response at audio and ultrasound frequencies.

    PubMed

    Wegener, Michael; Bergweiler, Steffen; Wirges, Werner; Pucher, Andreas; Tuncer, Enis; Gerhard-Multhaupt, Reimund

    2005-09-01

    Piezoelectric cellular polypropylene films, so-called ferroelectrets, are assembled in a stack with two active transducer layers. The stack is characterized with respect to its linear and quadratic response in a frequency range from 1 kHz to 80 kHz. A relatively smooth frequency response in the sound-pressure level is found for the individual layers as well as for both layers driven in phase. The piezoelectric response of the two-layer stack is twice the response of an individual layer over a rather broad frequency range. Furthermore, the influence of the preparation conditions on the resonance frequency and the effect of the quadratic distortion on the radiated sound are investigated both for the individual transducer films in the stack and for the stack system as a whole. PMID:16285459

  18. Modulation of cellular immune responses in mice with disseminated histoplasmosis by recombinant interleukin-2.

    PubMed Central

    Deepe, G S; Taylor, C L; Harris, J E; Bullock, W E

    1986-01-01

    Depression of the cellular immune responses in mice with disseminated histoplasmosis is associated with deficient production of interleukin-2 (IL-2) by splenocytes. Therefore, we examined whether a highly purified preparation of IL-2, recombinant human IL-2 (rIL-2), could modify the cellular immune responses in infected mice and whether this lymphokine could alter the severity of histoplasmosis in animals. Exogenous rIL-2, at concentrations of up to 1,000 U/ml, failed to augment the proliferative responses to concanavalin A by unfractionated splenocytes or splenic T cells from mice infected for 1 week. In addition, rIL-2 did not modulate the plaque-forming cell response to sheep erythrocytes by splenocytes from these same mice. However, at week 3, rIL-2 in concentrations ranging from 10 to 1,000 U/ml considerably augmented the proliferative response to concanavalin A and plaque-forming cell response to sheep erythrocytes by splenocytes from infected mice. Kinetics studies demonstrated that rIL-2 exerted maximal immunoregulatory activity when added on day 0 or 1 to cultures of splenocytes. In vivo administration of rIL-2, 200 to 20,000 U/day, for 10 days to normal and 3-week-infected mice did not alter the proliferative activity of splenocytes to concanavalin A; 200,000 U of rIL-2 per day actually depressed the proliferative responses of splenocytes from normal and infected mice. In vivo, rIL-2 did not modify delayed-type hypersensitivity responses to sheep erythrocytes or to histoplasmin by normal and infected mice. Moreover, treatment with rIL-2 in vivo did not reduce the number of Histoplasma CFU in spleens of mice. Thus, despite the immunoenhancing effect of rIL-2 in vitro, this lymphokine failed to exert similar effects in vivo. PMID:3487507

  19. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    NASA Astrophysics Data System (ADS)

    Karamooz Ravari, M. R.; Nasr Esfahani, S.; Taheri Andani, M.; Kadkhodaei, M.; Ghaei, A.; Karaca, H.; Elahinia, M.

    2016-02-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress-strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure.

  20. Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis

    PubMed Central

    Welsh, Michael D; Cunningham, Rodat T; Corbett, David M; Girvin, R Martyn; McNair, James; Skuce, Robin A; Bryson, David G; Pollock, John M

    2005-01-01

    Studies of tuberculosis have suggested a shift in dominance from a T helper type 1 (Th1) towards a Th2 immune response that is associated with suppressed cell-mediated immune (CMI) responses and increased humoral responses as the disease progresses. In this study a natural host disease model was used to investigate the balance of the evolving immune response towards Mycobacterium bovis infection in cattle with respect to pathogenesis. Cytokine analysis of CD4 T-cell clones derived from M. bovis-infected animals gave some indication that there was a possible relationship between enhanced pathogenesis and an increased ratio of Th0 [interleukin-4-positive/interferon-γ-positive (IL-4+/IFN-γ+)] clones to Th1 (IFN-γ+) clones. All animals developed strong antimycobacterial CMI responses, but depressed cellular responses were evident as the disease progressed, with the IFN-γ test failing to give consistently positive results in the latter stages. Furthermore, a stronger Th0 immune bias, depressed in vitro CMI responses, elevated levels of IL-10 expression and enhanced humoral responses were also associated with increased pathology. In minimal disease, however, a strong Th1 immune bias was maintained and an anti-M. bovis humoral response failed to develop. It was also seen that the level of the anti-M. bovis immunoglobulin G1 (IgG1) isotype antibody responses correlated with the pathology scores, whereas CMI responses did not have as strong a relationship with the development of pathology. Therefore, the development and maintenance of a Th1 IFN-γ response is associated with a greater control of M. bovis infection. Animals progressing from a Th1-biased to a Th0-biased immune response developed more extensive pathology and performed less well in CMI-based diagnostic tests but developed strong IgG1 humoral responses. PMID:15606800

  1. The transition between immune and disease states in a cellular automaton model of clonal immune response

    NASA Astrophysics Data System (ADS)

    Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-02-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infections virus and killer T cells (cellular response). The model represents molecules and cells with bitstrings. The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connected to spatial extension is lost, as is the oscillating feature. Thus the mean field approximation introduced with coupled maps destroys oscillations.

  2. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases.

    PubMed

    Cuenca, Nicolás; Fernández-Sánchez, Laura; Campello, Laura; Maneu, Victoria; De la Villa, Pedro; Lax, Pedro; Pinilla, Isabel

    2014-11-01

    Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.

  3. Polyglutamine protein aggregation and toxicity are linked to the cellular stress response.

    PubMed

    Cowan, K J; Diamond, M I; Welch, W J

    2003-06-15

    Chronic exposure of cells to expanded polyglutamine proteins results in eventual cell demise. We constructed mouse cell lines expressing either the full-length androgen receptor (AR), or truncated forms of AR containing 25 or 65 glutamines to study the cellular consequences of chronic low-level exposure to these proteins. Expression of the polyglutamine-expanded truncated AR protein, but not the full-length expanded protein, resulted in the formation of cytoplasmic and nuclear aggregates and eventual cell death. Nuclear aggregates preferentially stained positive for heat shock protein (hsp)72, a sensitive indicator of a cellular stress response. Biochemical studies revealed that the presence of nuclear aggregates correlated with activation of the c-jun NH2-terminal kinase (JNK). Different metabolic insults, including heat shock treatment, and exposure to sodium arsenite or menadione, proved more toxic to those cells expressing the polyglutamine-expanded truncated protein than to cells expressing the non-expanded form. Cells containing cytoplasmic polyglutamine-protein aggregates exhibited a delayed expression of hsp72 after heat shock. Once expressed, hsp72 failed to localize normally and instead was sequestered within the protein aggregates. This was accompanied by an inability of the aggregate-containing cells to cease their stress response as evidenced by the continued presence of activated JNK. Finally, activation of the cellular stress response increased the overall extent of polyglutamine protein aggregation, especially within the nucleus. Inclusion of a JNK inhibitor reduced this stress-dependent increase in nuclear aggregates. Abnormal stress responses may contribute to enhanced cell vulnerability in cells expressing polyglutamine-expanded proteins and may increase the propensity of such cells to form cytoplasmic and nuclear inclusions. PMID:12783846

  4. The p53 Codon 72 Polymorphism Modifies the Cellular Response to Inflammatory Challenge in the Liver.

    PubMed

    Leu, Julia I-Ju; Murphy, Maureen E; George, Donna L

    2013-01-01

    The p53 protein is a critical stress-response mediator and signal coordinator in cellular metabolism and environmental exposure to deleterious agents. In human populations, the p53 gene contains a common single nucleotide polymorphism (SNP) affecting codon 72 that determines whether a proline (P72) or an arginine (R72) is present at this amino acid position of the polypeptide. Previous studies carried out using human populations, mouse models, and cell culture analyses have provided evidence that this amino acid difference can alter p53 functional activities, and potentially also can affect clinical presentation of disease. The clinical presentation associated with many forms of liver disease is variable, but few of the responsible underlying genetic factors or molecular pathways have been identified. The aim of the present study was to investigate whether the p53 codon 72 polymorphism influences the cellular response to hepatic stresses. A humanized p53 knock-in (Hupki) mouse model was used to address this issue. Mice expressing either the P72 or R72 normal variation of p53 were given an acute-, intermittent- or a chronic challenge, associated with exposure to lipopolysaccharide, D-galactosamine, or a high-fat diet. The results reveal that the livers of the P72 and R72 mice exhibit notable differences in inflammatory and apoptotic response to these distinct forms of stress. Interestingly the influence of this polymorphism on the response to stress is context dependent, with P72 showing increased response to liver toxins (lipopolysaccharide and D-galactosamine), but R72 showing increased response to metabolic stress (high fat diet). When taken together, these data point to the p53 codon 72 polymorphism as an important molecular mediator of events contributing to hepatic inflammation and metabolic homeostasis.

  5. An HIV-1 Mini Vaccine Induced Long-lived Cellular and Humoral Immune Responses

    PubMed Central

    Mahdavi, Mehdi; Ebtekar, Massoumeh; Hassan, Zuhair Mohammad; Faezi, Sobhan; Khorram Khorshid, Hamidreza; Taghizadeh, Morteza; Azadmanesh, Keyhan

    2015-01-01

    Memory formation is the most important aspect of a vaccine which can guarantee long-lasting immunity and protection. The main aim of the present study was to evaluate the memory immune responses after immunization with a mini vaccine. Mice were immunized with human immunodeficiency virus-1 P24-Nef fusion peptide and then cellular and humoral immune responses were evaluated. In order to determine long-lived memory, immune responses were monitored for 20 weeks after final immunization. The results showed that the candidate vaccine induced proliferation and cytotoxic T lymphocyte responses and shifted cytokine patterns to T helper-1 profile. Evaluation of humoral immune responses also showed an increase in total peptide specific-IgG titer and a shift to IgG2a humoral response. Monitoring of immune responses at weeks 4, 12 and 20 after last immunization showed that immunologic parameters have been sustained for 20 weeks. Our findings support the notion that long-lived memory responses were achieved using a mini vaccine immunization. PMID:27014646

  6. Molecular editing of cellular responses by the high-affinity receptor for IgE.

    PubMed

    Suzuki, Ryo; Leach, Sarah; Liu, Wenhua; Ralston, Evelyn; Scheffel, Jörg; Zhang, Weiguo; Lowell, Clifford A; Rivera, Juan

    2014-02-28

    Cellular responses elicited by cell surface receptors differ according to stimulus strength. We investigated how the high-affinity receptor for immunoglobulin E (IgE) modulates the response of mast cells to a high- or low-affinity stimulus. Both high- and low-affinity stimuli elicited similar receptor phosphorylation; however, differences were observed in receptor cluster size, mobility, distribution, and the cells' effector responses. Low-affinity stimulation increased receptor association with the Src family kinase Fgr and shifted signals from the adapter LAT1 to the related adapter LAT2. LAT1-dependent calcium signals required for mast cell degranulation were dampened, but the role of LAT2 in chemokine production was enhanced, altering immune cell recruitment at the site of inflammation. These findings uncover how receptor discrimination of stimulus strength can be interpreted as distinct in vivo outcomes.

  7. Cellular responses and cytokine profiles in Ascaris lumbricoides and Trichuris trichiura infected patients.

    PubMed

    Geiger, Stefan M; Massara, Cristiano L; Bethony, Jeffrey; Soboslay, Peter T; Carvalho, Omar S; Corrêa-Oliveira, Rodrigo

    2002-01-01

    The impact of intestinal helminth infection, i.e. Ascaris lumbricoides and Trichuris trichiura, on cellular responsiveness and cytokine production was investigated in young adults. Ascaris-specific cellular responsiveness was higher in parasite-free endemic controls than in patients infected with T. trichiura, or A. lumbricoides, or patients co-infected with both parasites. Also, mitogen-induced tumour necrosis factor (TNF)-alpha, interleukin (IL)-12 and interferon (IFN)-gamma secretion by peripheral blood mononuclear cells (PBMC) was higher in negative endemic controls than in infected individuals. Ascaris antigen-specific production of TNF-alpha, IL-12 and IFN-gamma was low in singly Ascaris as well as in co-infected patients, whereas secretion of IL-10 and IL-13 was elevated and similarly high in all patient groups. The detection of Trichuris-specific and Ascaris-specific IgG4 revealed significantly higher serum antibody levels in Trichuris or Ascaris patients when compared to endemic controls (P < 0.05), whereas parasite-specific IgE antibody levels were similarly high in infected individuals and in endemic controls. In summary, chronically infected Ascaris and Trichuris patients with a high parasite load presented reduced cellular reactivity and lower type 1 TNF-alpha, IFN-gamma and IL-12 responses when compared with endemic controls, whereas type 2 IL-10 and IL-13 productions were similar in all groups from the endemic area. The former may support parasite persistence, whereas substantial type 2 cytokine release may promote protective immunity, suggesting an adaptation of the host to control the parasite burden while minimizing immune-mediated host self-damage.

  8. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  9. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, affects on the cellular response to DNA damage induced by exposures to radiation or other toxic chemicals will have an impact on the radiation risks for the astronauts, as well as on the mutation rate in microorganisms, is still an open question. Although the possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on the cellular response to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induces DNA damages including the double strand breaks (DSB) similar to the ionizing radiation. Damage in the DNA was measured by the phosphorylation of a histone protein H2AX (-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in the DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ti-67 signals. Our results suggested that the difference in -H2AX between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect the response of the DNA damage response genes to bleomycin treatment.

  10. Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials.

    PubMed

    Autefage, Hélène; Gentleman, Eileen; Littmann, Elena; Hedegaard, Martin A B; Von Erlach, Thomas; O'Donnell, Matthew; Burden, Frank R; Winkler, David A; Stevens, Molly M

    2015-04-01

    Despite the increasing sophistication of biomaterials design and functional characterization studies, little is known regarding cells' global response to biomaterials. Here, we combined nontargeted holistic biological and physical science techniques to evaluate how simple strontium ion incorporation within the well-described biomaterial 45S5 bioactive glass (BG) influences the global response of human mesenchymal stem cells. Our objective analyses of whole gene-expression profiles, confirmed by standard molecular biology techniques, revealed that strontium-substituted BG up-regulated the isoprenoid pathway, suggesting an influence on both sterol metabolite synthesis and protein prenylation processes. This up-regulation was accompanied by increases in cellular and membrane cholesterol and lipid raft contents as determined by Raman spectroscopy mapping and total internal reflection fluorescence microscopy analyses and by an increase in cellular content of phosphorylated myosin II light chain. Our unexpected findings of this strong metabolic pathway regulation as a response to biomaterial composition highlight the benefits of discovery-driven nonreductionist approaches to gain a deeper understanding of global cell-material interactions and suggest alternative research routes for evaluating biomaterials to improve their design.

  11. SIRT1 associates with eIF2-alpha and regulates the cellular stress response

    PubMed Central

    Ghosh, Hiyaa Singhee; Reizis, Boris; Robbins, Paul D.

    2011-01-01

    SIRT1 is a NAD+ dependent protein deacetylase known to increase longevity in model organisms. SIRT1 regulates cellular response to oxidative and/or genotoxic stress by regulating proteins such as p53 and FOXO. The eukaryotic initiation factor-2, eIF2, plays a critical role in the integrated stress response pathway. Under cellular stress, phosphorylation of the alpha subunit of eIF2 is essential for immediate shut-off of translation and activation of stress response genes. Here we demonstrate that SIRT1 interacts with eIF2α. Loss of SIRT1 results in increased phosphorylation of eIF2α. However, the downstream stress induced signaling pathway is compromised in SIRT1-deficient cells, indicated by delayed expression of the downstream target genes CHOP and GADD34 and a slower post-stress translation recovery. Finally, SIRT1 co-immunoprecipitates with mediators of eIF2α dephosphorylation, GADD34 and CreP, suggesting a role for SIRT1 in the negative feedback regulation of eIF2α phosphorylation. PMID:22355666

  12. Optimization by Response Surface Methodology of Confluent and Aligned Cellular Monolayers for Nerve Guidance.

    PubMed

    Kofron, Celinda M; Hoffman-Kim, Diane

    2009-12-01

    Anisotropic tissue structures provide guidance for navigating neurons in vitro and in vivo. Here we optimized the generation of comparable anisotropic monolayers of astrocytes, endothelial cells, and Schwann cells as a first step toward determining which properties of anisotropic cells are sufficient for nerve guidance. The statistical experimental design method Design of Experiments and the experimental analysis method Response Surface Methodology were applied to improve efficiency and utility. Factors investigated included dimensions of microcontact printed protein patterns, cell density, and culture duration. Protein patterning spacing had the strongest influence. When cells initially aligned at borders and proliferated to fill in spaces, space between stripes was most effective when it was comparable to cell size. Maximizing the area of adhesive molecule coverage was also important for confluence of these types of cells. When cells adhered and aligned over the width of a stripe and broadened to fill spaces, space width about half the cell width was most effective. These findings suggest that if the mechanism of alignment, alignment at borders or over the width of the stripe, is predetermined and the cell size determined, the optimal size of the micropatterning for aligned monolayers of other cell types can be predicted. This study also demonstrates the effective use of DOE and RSM to probe cellular responses to various and multiple factors toward determination of optimal conditions for a desired cellular response.

  13. Differential Roles of ASK1 and TAK1 in Helicobacter pylori-Induced Cellular Responses

    PubMed Central

    Hayakawa, Yoku; Kinoshita, Hiroto; Sakitani, Kosuke; Nakagawa, Hayato; Nakata, Wachiko; Takahashi, Ryota; Sakamoto, Kei; Maeda, Shin; Koike, Kazuhiko

    2013-01-01

    The mitogen-activated protein kinase (MAPK) signaling pathway regulates various cellular functions, including those induced by Helicobacter pylori. TAK1 is an upstream MAPK kinase kinase (MAP3K) required for H. pylori-induced MAPK and NF-κB activation, but it remains unclear whether other MAP3Ks are involved in H. pylori-induced cellular responses. In this study, we focused on the MAP3K ASK1, which plays a critical role in gastric tumorigenesis. In gastric epithelial cells, H. pylori activates ASK1 in a reactive oxygen species (ROS)- and cag pathogenicity island-dependent manner, and ASK1 regulates sustained JNK activation and apoptosis induced by H. pylori. In contrast, TAK1 regulates H. pylori-mediated early JNK activation and cytokine production. We also found reciprocal regulation between ASK1 and TAK1 in H. pylori-related responses, whereby inhibition of TAK1 or downstream p38 MAPK activates ASK1 through ROS production, and ASK1 suppresses TAK1 and downstream NF-κB activation. We identified ROS/ASK1/JNK as a new signaling pathway induced by H. pylori, which regulates apoptotic cell death. The balance of ASK1-induced apoptosis and TAK1-induced antiapoptotic or inflammatory responses may determine the fate of epithelial cells infected with H. pylori and thus be involved in the pathogenesis of gastritis and gastric cancer. PMID:24082073

  14. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors

    PubMed Central

    Vilgelm, Anna E.; Washington, Mary K.; Wei, Jinxiong; Chen, Heidi; Prassolov, Vladimir S.; Zaika, Alexander I.

    2010-01-01

    p53, p63 and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation and other critical cellular processes. Here we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family, rather than p53 alone. PMID:20197393

  15. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors.

    PubMed

    Vilgelm, Anna E; Washington, Mary K; Wei, Jinxiong; Chen, Heidi; Prassolov, Vladimir S; Zaika, Alexander I

    2010-03-01

    p53, p63, and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation, and other critical cellular processes. Here, we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family rather than p53 alone.

  16. An Arabidopsis WDR protein coordinates cellular networks involved in light, stress response and hormone signals.

    PubMed

    Chuang, Huey-Wen; Feng, Ji-Huan; Feng, Yung-Lin; Wei, Miam-Ju

    2015-12-01

    The WD-40 repeat (WDR) protein acts as a scaffold for protein interactions in various cellular events. An Arabidopsis WDR protein exhibited sequence similarity with human WDR26, a scaffolding protein implicated in H2O2-induced cell death in neural cells. The AtWDR26 transcript was induced by auxin, abscisic acid (ABA), ethylene (ET), osmostic stress and salinity. The expression of AtWDR26 was regulated by light, and seed germination of the AtWDR26 overexpression (OE) and seedling growth of the T-DNA knock-out (KO) exhibited altered sensitivity to light. Root growth of the OE seedlings increased tolerance to ZnSO4 and NaCl stresses and were hypersensitive to inhibition of osmotic stress. Seedlings of OE and KO altered sensitivities to multiple hormones. Transcriptome analysis of the transgenic plants overexpressing AtWDR26 showed that genes involved in the chloroplast-related metabolism constituted the largest group of the up-regulated genes. AtWDR26 overexpression up-regulated a large number of genes related to defense cellular events including biotic and abiotic stress response. Furthermore, several members of genes functioning in the regulation of Zn homeostasis, and hormone synthesis and perception of auxin and JA were strongly up-regulated in the transgenic plants. Our data provide physiological and transcriptional evidence for AtWDR26 role in hormone, light and abiotic stress cellular events.

  17. Use of 51Cr-labeled mononuclear cells for measuring the cellular immune response in mouse lungs

    SciTech Connect

    Zarkower, A.; Scheuchenzuber, W.J.; Ferguson, F.G.

    1981-02-01

    Spleen cells labeled with 51Cr were used in sensitized syngeneic mice to measure the degree of mononuclear cell infiltration into antigen-challenged tissues. With this method, increased cellular infiltration was found after footpad challenge of mice sensitized with sheep erythrocyte, Escherichia coli, and BCG antigens. Cellular response also was determined by using this technique in the lungs of mice sensitized with sheep erythrocytes and BCG. This procedure offers the opportunity to measure cellular infiltration, whether due to cellular or humoral influences, in tissues not easily accessible to conventional immunological manipulation.

  18. Use of /sup 51/Cr-labeled mononuclear cells for measuring the cellular immune response in mouse lungs

    SciTech Connect

    Zarkower, A.; Scheuchenzuber, W.J.; Ferguson, F.G.

    1981-02-01

    Spleen cells labeled with /sup 51/Cr were used in sensitized syngeneic mice to measure the degree of mononuclear cell infiltration into antigen-challenged tissues. With this method, increased cellular infiltration was found after footpad challenge of mice sensitized with sheep erythrocyte, Escherichia coli, and BCG antigens. Cellular response also was determined by using this technique in the lungs of mice sensitized with sheep erythrocytes and BCG. This procedure offers the opportunity to measure cellular infiltration, whether due to cellular or humoral influences, in tissues not easily accessible to conventional immunological manipulation.

  19. Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3' end processing of cellular pre-mRNAS.

    PubMed

    Noah, Diana L; Twu, Karen Y; Krug, Robert M

    2003-03-15

    The influenza A virus NS1 protein (NS1A protein) binds and inhibits the function of the 30-kDa subunit of CPSF, a cellular factor that is required for the 3'-end processing of cellular pre-mRNAs. Here we generate a recombinant influenza A/Udorn/72 virus that encodes an NS1A protein containing a mutated binding site for the 30-kDa subunit of CPSF. This mutant virus is substantially attenuated, indicating that this binding site in the NS1A protein is required for efficient virus replication. Using this mutant virus, we show that NS1A binding to CPSF mediates the viral posttranscriptional countermeasure against the initial cellular antiviral response--the interferon-alpha/beta (IFN-alpha/beta)-independent activation of the transcription of cellular antiviral genes, which requires the interferon regulatory factor-3 (IRF-3) transcription factor that is activated by virus infection. Whereas the posttranscriptional processing of these cellular antiviral pre-mRNAs is inhibited in cells infected by wild-type influenza A virus, functional antiviral mRNAs are produced in cells infected by the mutant virus. These results establish that the binding of 30-kDa CPSF to the NS1A protein is largely responsible for the posttranscriptional inhibition of the processing of these cellular antiviral pre-mRNAs. Mutation of this binding site in the NS1A protein also affects a second cellular antiviral response: in cells infected by the mutant virus, IFN-beta mRNA is produced earlier and in larger amounts.

  20. Cellular response in the dermis of common wombats (Vombatus ursinus) infected with Sarcoptes scabiei var. wombati.

    PubMed

    Skerratt, Lee F

    2003-01-01

    The cellular response in the dermis of common wombats (Vombatus ursinus) with sarcoptic mange exhibited some typical aspects of an immune response to Sarcoptes scabiei. There was an induction phase for wombats experimentally infected with S. scabiei represented by absence of a dermal inflammatory infiltrate for at least 12 days after infection. T lymphocytes, plasma cells, mast cells, and neutrophils then entered the dermis, consistent with a type IV (delayed) hypersensitivity response. In free-living wombats with severe parakeratotic sarcoptic mange eosinophils were also present in the dermis suggesting that a type I (immediate) hypersensitivity response may develop after a type IV hypersensitivity response. Absence of plasma cells and B lymphocytes in free-living wombats with severe parakeratotic sarcoptic mange compared with their presence in wombats experimentally infected with S. scabiei suggested that some immune tolerance may develop with severe infections. A large proportion of cells in the dermal response were not identified but were possibly cells of connective tissue. The thickness of the epidermis increased within 4 days in response to S. scabiei infection. Some antibodies raised against human leucocyte antigens CD3, CD5, HLA-DP, DQ, DR, and CD79b cross-reacted with leucocyte antigens of common wombats and were used to identify cell types in inflammatory infiltrates using immunohistochemistry. PMID:12685083

  1. Progression of Cellular Adaptations in Medial Prefrontal and Orbitofrontal Cortex in Response to Repeated Amphetamine

    PubMed Central

    Homayoun, Houman; Moghaddam, Bita

    2010-01-01

    Recent theories on addiction implicate adaptive changes in prefrontal cortex (PFC) neurons in reinforcing and psychotomimetic properties of psychostimulants, yet little is known about how neuronal responses to these drugs change over time. Here we describe electrophysiological evidence for a progressive and sustained change in the response of PFC neurons to amphetamine during repeated exposure. In spontaneously behaving rats and in rats engaged in an instrumental responding task, we followed the activity of medial PFC (mPFC) and orbitofrontal cortex (OFC) neurons during daily exposure to amphetamine and after a post-withdrawal challenge. Repeated amphetamine increased the number of responsive neurons and the magnitude of responses and modified spontaneous burst patterns. These changes were apparent after a few exposures to amphetamine, were amplified after withdrawal, and were region specific in that repeated amphetamine increasingly produced inhibitory responses in mPFC and excitatory responses in OFC. In behaviorally engaged animals, the gradual enhancement in mPFC inhibition and OFC overactivation correlated with a progressive impairment of instrumental responding. Furthermore, these changes were evident predominately in neurons that displayed phasic responses during task-related events. These rapid-onset and sustained cellular adaptations suggest that even limited exposure to psychostimulants may reduce the influence of mPFC neurons on behavior while at the same time exaggerating information encoded by OFC neurons. PMID:16885216

  2. Cellular response in the dermis of common wombats (Vombatus ursinus) infected with Sarcoptes scabiei var. wombati.

    PubMed

    Skerratt, Lee F

    2003-01-01

    The cellular response in the dermis of common wombats (Vombatus ursinus) with sarcoptic mange exhibited some typical aspects of an immune response to Sarcoptes scabiei. There was an induction phase for wombats experimentally infected with S. scabiei represented by absence of a dermal inflammatory infiltrate for at least 12 days after infection. T lymphocytes, plasma cells, mast cells, and neutrophils then entered the dermis, consistent with a type IV (delayed) hypersensitivity response. In free-living wombats with severe parakeratotic sarcoptic mange eosinophils were also present in the dermis suggesting that a type I (immediate) hypersensitivity response may develop after a type IV hypersensitivity response. Absence of plasma cells and B lymphocytes in free-living wombats with severe parakeratotic sarcoptic mange compared with their presence in wombats experimentally infected with S. scabiei suggested that some immune tolerance may develop with severe infections. A large proportion of cells in the dermal response were not identified but were possibly cells of connective tissue. The thickness of the epidermis increased within 4 days in response to S. scabiei infection. Some antibodies raised against human leucocyte antigens CD3, CD5, HLA-DP, DQ, DR, and CD79b cross-reacted with leucocyte antigens of common wombats and were used to identify cell types in inflammatory infiltrates using immunohistochemistry.

  3. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response.

    PubMed

    Nikiforov, M P; Reukov, V V; Thompson, G L; Vertegel, A A; Guo, S; Kalinin, S V; Jesse, S

    2009-10-01

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  4. Cellular and molecular responses of Neurospora crassa to non-thermal plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Park, Gyungsoon; Ryu, Young H.; Hong, Young J.; Choi, Eun H.; Uhm, Han S.

    2012-02-01

    Filamentous fungi have been rarely explored in terms of plasma treatments. This letter presents the cellular and molecular responses of the filamentous fungus Neurospora crassa to an argon plasma jet at atmospheric pressure. The viability and cell morphology of N. crassa spores exposed to plasma were both significantly reduced depending on the exposure time when treated in water. The intracellular genomic DNA content was dramatically reduced in fungal tissues after a plasma treatment and the transcription factor tah-3 was found to be required for fungal tolerance to a harsh plasma environment.

  5. Functional Recognition Imaging Using Artificial Neural Networks: Applications to Rapid Cellular Identification by Broadband Electromechanical Response

    PubMed Central

    Nikiforov, M.P.; Reukov, V.V.; Thompson, G.L.; Vertegel, A.A.; Guo, S.; Jesse, S.; Kalinin, S.V.

    2010-01-01

    Functional recognition imaging in Scanning Probe Microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses to identify the target behavior, reminiscent of associative thinking in the human brain and obviating the need for analytical models. As an example of recognition imaging, we demonstrate rapid identification of cellular organisms using difference in electromechanical activity in a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method. PMID:19752493

  6. Cellular and humoral immune responses to Borrelia burgdorferi antigens in patients with culture-positive early Lyme disease.

    PubMed

    Vaz, A; Glickstein, L; Field, J A; McHugh, G; Sikand, V K; Damle, N; Steere, A C

    2001-12-01

    We determined cellular and humoral immune responses to Borrelia burgdorferi lysate and to recombinant flagellin (FlaB), OspC, and OspA in acute- and convalescent-phase samples from 39 culture-positive patients with erythema migrans and in 20 healthy control subjects. During the acute illness, a median of 4 days after the onset of erythema migrans, 51% of the patients had proliferative cellular responses and 72% had antibody responses to at least one of the borrelial antigens tested. During convalescence, at the conclusion of antibiotic therapy, 64% of the patients had proliferative cellular reactivity and 95% had antibody reactivity with at least one of the spirochetal antigens tested. In both acute- and convalescent-phase samples, cellular immune responses were found as frequently to OspA as to OspC and FlaB. Although antibody responses were also frequently seen to OspC and FlaB, only a few patients had marginal antibody reactivity with OspA. The percentage of patients with proliferative responses was similar in those with clinical evidence of localized or disseminated infection, whereas humoral reactivity was found more often in those with disseminated disease. We conclude that cellular and humoral responses to B. burgdorferi antigens are often found among patients with early Lyme disease. In contrast with the other antigens tested, cellular but not humoral reactivity was often found with OspA.

  7. Cellular and Humoral Immune Responses to Borrelia burgdorferi Antigens in Patients with Culture-Positive Early Lyme Disease

    PubMed Central

    Vaz, Austin; Glickstein, Lisa; Field, Jodie A.; McHugh, Gail; Sikand, Vijay K.; Damle, Nitin; Steere, Allen C.

    2001-01-01

    We determined cellular and humoral immune responses to Borrelia burgdorferi lysate and to recombinant flagellin (FlaB), OspC, and OspA in acute- and convalescent-phase samples from 39 culture-positive patients with erythema migrans and in 20 healthy control subjects. During the acute illness, a median of 4 days after the onset of erythema migrans, 51% of the patients had proliferative cellular responses and 72% had antibody responses to at least one of the borrelial antigens tested. During convalescence, at the conclusion of antibiotic therapy, 64% of the patients had proliferative cellular reactivity and 95% had antibody reactivity with at least one of the spirochetal antigens tested. In both acute- and convalescent-phase samples, cellular immune responses were found as frequently to OspA as to OspC and FlaB. Although antibody responses were also frequently seen to OspC and FlaB, only a few patients had marginal antibody reactivity with OspA. The percentage of patients with proliferative responses was similar in those with clinical evidence of localized or disseminated infection, whereas humoral reactivity was found more often in those with disseminated disease. We conclude that cellular and humoral responses to B. burgdorferi antigens are often found among patients with early Lyme disease. In contrast with the other antigens tested, cellular but not humoral reactivity was often found with OspA. PMID:11705918

  8. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes.

    PubMed

    Hooper, Philip L; Balogh, Gabor; Rivas, Eric; Kavanagh, Kylie; Vigh, Laszlo

    2014-07-01

    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease.

  9. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity.

    PubMed

    Calabrese, Vittorio; Cornelius, Carolin; Cuzzocrea, Salvatore; Iavicoli, Ivo; Rizzarelli, Enrico; Calabrese, Edward J

    2011-08-01

    Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by co-ordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as carnosine, carnitines or polyphenols, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. In this review we discuss the most current and up to date

  10. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes.

    PubMed

    Hooper, Philip L; Balogh, Gabor; Rivas, Eric; Kavanagh, Kylie; Vigh, Laszlo

    2014-07-01

    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease. PMID:24523032

  11. α5-Integrin-mediated cellular signaling contributes to the myogenic response of cerebral resistance arteries.

    PubMed

    Colinas, Olaia; Moreno-Domínguez, Alejandro; Zhu, Hai-Lei; Walsh, Emma J; Pérez-García, M Teresa; Walsh, Michael P; Cole, William C

    2015-10-01

    The myogenic response of resistance arterioles and small arteries involving constriction in response to intraluminal pressure elevation and dilation on pressure reduction is fundamental to local blood flow regulation in the microcirculation. Integrins have garnered considerable attention in the context of initiating the myogenic response, but evidence indicative of mechanotransduction by integrin adhesions, for example established changes in tyrosine phosphorylation of key adhesion proteins, has not been obtained to substantiate this interpretation. Here, we evaluated the role of integrin adhesions and associated cellular signaling in the rat cerebral arterial myogenic response using function-blocking antibodies against α5β1-integrins, pharmacological inhibitors of focal adhesion kinase (FAK) and Src family kinase (SFK), an ultra-high-sensitivity western blotting technique, site-specific phosphoprotein antibodies to quantify adhesion and contractile filament protein phosphorylation, and differential centrifugation to determine G-actin levels in rat cerebral arteries at varied intraluminal pressures. Pressure-dependent increases in the levels of phosphorylation of FAK (FAK-Y397, Y576/Y577), SFK (SFK-Y416; Y527 phosphorylation was reduced), vinculin-Y1065, paxillin-Y118 and phosphoinositide-specific phospholipase C-γ1 (PLCγ1)-Y783 were detected. Treatment with α5-integrin function-blocking antibodies, FAK inhibitor FI-14 or SFK inhibitor SU6656 suppressed the changes in adhesion protein phosphorylation, and prevented pressure-dependent phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) at T855 and 20kDa myosin regulatory light chains (LC20) at S19, as well as actin polymerization that are necessary for myogenic constriction. We conclude that mechanotransduction by integrin adhesions and subsequent cellular signaling play a fundamental role in the cerebral arterial myogenic response.

  12. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    PubMed Central

    Bhakta, Gajadhar; Nurcombe, Victor; Maitra, Amarnath; Shrivastava, Anju

    2014-01-01

    The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein)-encapsulated PEGylated (meaning polyethylene glycol coated) magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles) for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-? and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP). Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi) nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation. PMID:24936399

  13. A role for nematocytes in the cellular immune response of the Drosophilid Zaprionus indianus

    PubMed Central

    Kacsoh, Balint Z.; Bozler, Julianna; Schlenke, Todd A.

    2015-01-01

    SUMMARY The melanotic encapsulation response mounted by Drosophila melanogaster against macroparasites, which is based on haemocyte binding to foreign objects, is poorly characterized relative to its humoral immune response against microbes, and appears to be variable across insect lineages. The genus Zaprionus is a diverse clade of flies embedded within the genus Drosophila. Here we characterize the immune response of Zaprionus indianus against endoparasitoid wasp eggs, which elicit the melanotic encapsulation response in D. melanogaster. We find that Z. indianus is highly resistant to diverse wasp species. Although Z. indianus mounts the canonical melanotic encapsulation response against some wasps, it can also potentially fight off wasp infection using two other mechanisms: encapsulation without melanization and a non-cellular form of wasp killing. Zaprionus indianus produces a large number of haemocytes including nematocytes, which are large fusiform haemocytes absent in D. melanogaster, but which we found in several other species in the subgenus Drosophila. Several lines of evidence suggest these nematocytes are involved in anti-wasp immunity in Z. indianus and in particular in the encapsulation of wasp eggs. Altogether, our data show that the canonical anti-wasp immune response and haemocyte make-up of the model organism D. melanogaster vary across the genus Drosophila. PMID:24476764

  14. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses

    PubMed Central

    Barth, Kenneth; Genco, Caroline Attardo

    2016-01-01

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses. PMID:27698456

  15. Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin.

    PubMed

    Sangokoya, Carolyn; Doss, Jennifer F; Chi, Jen-Tsan

    2013-04-01

    Ferroportin (FPN) is the only known cellular iron exporter in mammalian cells and plays a critical role in the maintenance of both cellular and systemic iron balance. During iron deprivation, the translation of FPN is repressed by iron regulatory proteins (IRPs), which bind to the 5' untranslated region (UTR), to reduce iron export and preserve cellular iron. Here, we report a novel iron-responsive mechanism for the post-transcriptional regulation of FPN, mediated by miR-485-3p, which is induced during iron deficiency and represses FPN expression by directly targeting the FPN 3'UTR. The overexpression of miR-485-3p represses FPN expression and leads to increased cellular ferritin levels, consistent with increased cellular iron. Conversely, both inhibition of miR-485-3p activity and mutation of the miR-485-3p target sites on the FPN 3'UTR are able to relieve FPN repression and lead to decreased cellular iron levels. Together, these findings support a model that includes both IRPs and microRNAs as iron-responsive post-transcriptional regulators of FPN. The involvement of microRNA in the iron-responsive regulation of FPN offers additional stability and fine-tuning of iron homeostasis within different cellular contexts. MiR-485-3p-mediated repression of FPN may also offer a novel potential therapeutic mechanism for circumventing hepcidin-resistant mechanisms responsible for some iron overload diseases.

  16. Experimental pulmonary paracoccidioidomycosis in mice: morphology and correlation of lesions with humoral and cellular immune response.

    PubMed

    Defaveri, J; Rezkallah-Iwasso, M T; de Franco, M F

    1982-01-15

    The present paper describes a murine model for pulmonary paracoccidioidomycosis injecting 6 X 10(5) yeast forms of Paracoccidioides brasiliensis (Pb) by the direct intratracheal route. The sequential histopathology of lung and dissemination lesions together with humoral (immunodiffusion test) and cellular immune response (footpad test and macrophage inhibition factor assay - MIF assay) were investigated since the 1st to the 360th day after infection. All infected animal showed pulmonary Pbmycosis up to Day 30; onwards the lesions subsided being found only in one mouse at Day 360. Dissemination lesions were observed in paratracheal and cervical lymph nodes in 9 out of 68 infected animals. Histologically early lesions were rich in polymorphonuclear cells and evolved to a macrophage desquamative pneumonitis at Day 15 and to typical epithelioid granulomata from Day 30 up to Day 360. Specific precipitating antibodies were first detected 15 days after infection, peaked from Day 30 to 60 and were not observed at Day 360. Significant cell-mediated immunity to Pb was noted at Day 15 with the peak reaction at Day 60 and 90. The intratracheal route represents a highly effective way of infecting mouse with Pb. This experimental pulmonary Pbmycosis is a granulomatous inflammation which courses with specific humoral and cellular immune response. It may be a good tool for further investigation in the pathogenesis and natural history of the disease.

  17. Nanoporous polyelectrolyte vaccine microcarriers. A formulation platform for enhancing humoral and cellular immune responses.

    PubMed

    De Koker, Stefaan; Fierens, Kaat; Dierendonck, Marijke; De Rycke, Riet; Lambrecht, Bart N; Grooten, Johan; Remon, Jean Paul; De Geest, Bruno G

    2014-12-10

    In this paper we report on the design, characterization and immuno-biological evaluation of nanoporous polyelectrolyte microparticles as vaccine carrier. Relative to soluble antigen, formulation of antigen as a sub-10 μm particle can strongly enhance antigen-specific cellular immune responses. The latter is crucial to confer protective immunity against intracellular pathogens and for anti-cancer vaccines. However, a major bottleneck in microparticulate vaccine formulation is the development of generic strategies that afford antigen encapsulation under benign and scalable conditions. Our strategy is based on spray drying of a dilute aqueous solution of antigen, oppositely charged polyelectrolytes and mannitol as a pore-forming component. The obtained solid microparticles can be redispersed in aqueous medium, leading to leaching out of the mannitol, thereby creating a highly porous internal structure. This porous structure enhances enzymatic processing of encapsulated proteins. After optimizing the conditions to process these microparticles we demonstrate that they strongly enhance cross-presentation in vitro by dendritic cells to CD8 T cells. In vivo experiments in mice confirm that this vaccine formulation technology is capable of enhancing cellular immune responses.

  18. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection.

    PubMed

    Belli, Mauro; Sapora, Orazio; Tabocchini, Maria Antonella

    2002-12-01

    DNA repair systems and cell cycle checkpoints closely co-operate in the attempt of maintaining the genomic integrity of cells damaged by ionizing radiation. DNA double-strand breaks (DSB) are considered as the most biologically important radiation-induced damage. Their spatial distribution and association with other types of damage depend on radiation quality. It is believed these features affect damage reparability, thus explaining the higher efficiency for cellular effects of densely ionizing radiation with respect to gamma-rays. DSB repair systems identified in mammalian cells are homologous recombination (HR), single-strand annealing (SSA) and non-homologous end-joining (NHEJ). Some enzymes may participate in more than one of these repair systems. DNA damage also triggers biochemical signals activating checkpoints responsible for delay in cell cycle progression that allows more time for repair. Those at G1/S and S phases prevent replication of damaged DNA and those at G2/M phase prevent segregation of changed chromosomes. Individuals with lack or alterations of genes involved in DNA DSB repair and cell cycle checkpoints exhibit syndromes characterized by genome instability and predisposition to cancer. Information reviewed in this paper on the basic mechanisms of cellular response to ionizing radiation indicates their importance for a number of issues relevant to protection of astronauts from space radiation. PMID:12793724

  19. Molecular Mechanism for Cellular Response to β-Escin and Its Therapeutic Implications

    PubMed Central

    Perzanowska, Anna; Dutkiewicz, Malgorzata; Kowalewska, Magdalena; Grabowska, Iwona; Maciejko, Dorota; Fogtman, Anna; Dadlez, Michal; Koziak, Katarzyna

    2016-01-01

    β-escin is a mixture of triterpene saponins isolated from the horse chestnut seeds (Aesculus hippocastanum L.). The anti-edematous, anti-inflammatory and venotonic properties of β-escin have been the most extensively clinically investigated effects of this plant-based drug and randomized controlled trials have proved the efficacy of β-escin for the treatment of chronic venous insufficiency. However, despite the clinical recognition of the drug its pharmacological mechanism of action still remains largely elusive. To determine the cellular and molecular basis for the therapeutic effectiveness of β-escin we performed discovery and targeted proteomic analyses and in vitro evaluation of cellular and molecular responses in human endothelial cells under inflammatory conditions. Our results demonstrate that in endothelial cells β-escin potently induces cholesterol synthesis which is rapidly followed with marked fall in actin cytoskeleton integrity. The concomitant changes in cell functioning result in a significantly diminished responses to TNF-α stimulation. These include reduced migration, alleviated endothelial monolayer permeability, and inhibition of NFκB signal transduction leading to down-expression of TNF-α—induced effector proteins. Moreover, the study provides evidence for novel therapeutic potential of β-escin beyond the current vascular indications. PMID:27727329

  20. Biosorption and biodegradation of pyrene by Brevibacillus brevis and cellular responses to pyrene treatment.

    PubMed

    Liao, Liping; Chen, Shuona; Peng, Hui; Yin, Hua; Ye, Jinshao; Liu, Zehua; Dang, Zhi; Liu, Zhichen

    2015-05-01

    Biodegradation has been proposed as an effective approach to remove pyrene, however, the information regarding cellular responses to pyrene treatment is limited thus far. In this study, the biodegradation and biosorption of pyrene by Brevibacillus brevis, along with cellular responses caused by pollutant were investigated by means of flow cytometry assay and scanning electron microscopy. The experimental results showed that pyrene was initially adsorbed by B. brevis and subsequently transported and intracellularly degraded. During this process, pyrene removal was primarily dependent on biodegradation. Cell invagination and cell surface corrugation occurred due to pyrene exposure. Nevertheless, cell regrowth after 96h treatment was observed, and the proportion of necrotic cell was only 2.8% after pyrene exposure for 120h, confirming that B. brevis could utilize pyrene as a sole carbon source for growth. The removal and biodegradation amount of pyrene (1mg/L) at 168h were 0.75 and 0.69mg/L, respectively, and the biosorption amount by inactivated cells was 0.41mg/L at this time.

  1. Cellular responses of the tiger shrimp Penaeus monodon haemocytes after lipopolysaccharide injection.

    PubMed

    Xian, Jian-An; Zhang, Xiu-Xia; Guo, Hui; Wang, Dong-Mei; Wang, An-Li

    2016-07-01

    This study was aimed at investigating the in vivo effects of lipopolysaccharide (LPS) injection on Penaeus monodon haemocytes at a cellular level. Cellular responses of LPS-injected shrimp were analysed using flow cytometry. Results showed that LPS injection caused total haemocyte count (THC) and count of large cells (semigranular and granular cells) decline. In LPS-injected shrimp, percentage of large cells decreased at the initial stage, and returned to the original level later. After LPS infection, non-specific esterase activity, reactive oxygen species (ROS) production and nitric oxide (NO) production in haemocytes were significantly induced, while apoptotic cell ratio of haemocytes increased. PO activity in plasma increased in shrimp received LPS at 2 μg g(-1) after 3-12 h and at 8 μg g(-1) after 3-6 h, and then returned to the initial levels. These results demonstrated that LPS induced immune responses on haemocytes, including production of ROS and NO, and release of esterase and PO. On the other hand, THC reduction might be due to the ROS/NO-induced apoptosis. Haemocyte apoptosis which would eliminate damaged or weak cells and contribute to haemocyte renewal, may be a defending strategie against pathogens.

  2. Dynamic deformation and fragmentation response of maraging steel linear cellular alloy

    NASA Astrophysics Data System (ADS)

    Jakus, Adam E.; Fredenberg, David A.; McCoy, Tammy; Thadhani, Naresh; Cochran, Joe K.

    2012-03-01

    The dynamic deformation and fragmentation response of 25% dense 9-cell linear cellular alloy (LCA) made of unaged 250 maraging steel, fabricated using a direct reduction and extrusion technique, is investigated. Explicit finite element simulations were implemented using AUTODYN finite element code. The maraging steel properties were defined using a Johnson-Cook strength model with previously validated parameters. Rod-on-anvil impact tests were performed using the 7.6mm helium gas gun and the transient deformation and fragmentation response was recorded with highspeed imaging. Analysis of observed deformation states of specimens and finite element simulations reveal that in the case of the 9-cell LCA, dissipation of stress and strain occurs along the interior cell wells resulting in significant and ubiquitous buckling prior to confined fragmentation.

  3. Investigating Cellular Responses During Photohydrogen Production by the Marine Microalga Tetraselmis subcordiformis by Quantitative Proteome Analysis.

    PubMed

    Ji, Chaofan; Cao, Xupeng; Liu, Hongwei; Qu, Junge; Yao, Changhong; Zou, Hanfa; Xue, Song

    2015-10-01

    The marine microalga Tetraselmis subcordiformis could photoproduce hydrogen under the regulation of carbonyl cyanide m-chlorophenylhydrazone (CCCP), and a hydrogen production process kinetic analysis was characterized by two peaks, suggesting that two distinct mechanisms might exist in this alga. Therefore, 2D nanoliquid chromatography-tandem mass spectrometry (LC-MS/MS) was introduced to analyze the proteome of samples from different time points. A total of 912 proteins were identified, providing a global view of the cellular responses at the proteomic level. These proteins can be divided into multiple functional groups including stress responses, energy metabolism and redox homeostasis. The quantitative proteomic data provided more details on the electron donors for hydrogen production. During the first stage, photosystem II produced electrons for hydrogen production; during the second stage, metabolites were the major electron donors via nonphotochemical plastoquinone reduction by NADH dehydrogenase. PMID:26234437

  4. Early detection of disease program: Evaluation of the cellular immune response

    NASA Technical Reports Server (NTRS)

    Criswell, B. S.; Knight, V.; Martin, R. R.; Kasel, J. A.

    1974-01-01

    The early cellular responses of specific components of the leukocyte and epithelial cell populations to foreign challenges of both an infectious and noninfectious character were evaluated. Procedures for screening potential flight crews were developed, documented, and tested on a control population. Methods for preparing suitable populations of lymphocytes, polymorphonuclear leukocytes, macrophages, and epithelial cells were first established and evaluated. Epithelial cells from viral infected individuals were screened with a number of anti-viral antisera. This procedure showed the earliest indication of disease as well as providing a specific diagnosis to the physicians. Both macrophages and polymorphonuclear leukocytes were studied from normal individuals, smokers, and patients with viral infections. Newer techniques enabling better definition of lymphocyte subpopulations were then developed, namely the E and EAC rosette procedures for recognition of T (thymus-derived) and B (bone-marrow-derived) lymphocyte subpopulations. Lymphocyte and lymphocyte subpopulation response to multiple mitogens have been evaluated.

  5. Krüppel-like factor 4 negatively regulates cellular antiviral immune response

    PubMed Central

    Luo, Wei-Wei; Lian, Huan; Zhong, Bo; Shu, Hong-Bing; Li, Shu

    2016-01-01

    Viral infection triggers activation of the transcription factors NF-κB and IRF3, which collaborate to induce the expression of type I interferons (IFNs) and elicit innate antiviral response. In this report, we identified Krüppel-like factor 4 (KLF4) as a negative regulator of virus-triggered signaling. Overexpression of KLF4 inhibited virus-induced activation of ISRE and IFN-β promoter in various types of cells, while knockdown of KLF4 potentiated viral infection-triggered induction of IFNB1 and downstream genes and attenuated viral replication. In addition, KLF4 was found to be localized in the cytosol and nucleus, and viral infection promoted the translocation of KLF4 from cytosol to nucleus. Upon virus infection, KLF4 was bound to the promoter of IFNB gene and inhibited the recruitment of IRF3 to the IFNB promoter. Our study thus suggests that KLF4 negatively regulates cellular antiviral response. PMID:25531393

  6. Cellular Response of Sinorhizobium sp. Strain A2 during Arsenite Oxidation

    PubMed Central

    Fukushima, Koh; Huang, He; Hamamura, Natsuko

    2015-01-01

    Arsenic (As) is a widely distributed toxic element in the environment and microorganisms have developed resistance mechanisms in order to tolerate it. The cellular response of the chemoorganotrophic arsenite (As[III])-oxidizing α-Proteobacteria, Sinorhizobium sp. strain A2, to arsenic was examined in the present study. Several proteins associated with arsenite oxidase and As resistance were shown to be accumulated in the presence of As(III). A shift in central carbon metabolism from the tricarboxylic acid pathway to glyoxylate pathway was also observed in response to oxidative stress. Our results revealed the strategy of the As(III)-oxidizing Sinorhizobium strain to mitigate arsenic toxicity and oxidative damage by multiple metabolic adaptations. PMID:26477790

  7. Impaired cellular immune response to tetanus toxoid but not to cytomegalovirus in effectively HAART-treated HIV-infected children.

    PubMed

    Alsina, Laia; Noguera-Julian, Antoni; Fortuny, Clàudia

    2013-05-01

    Despite of highly active antiretroviral therapy, the response to vaccines in HIV-infected children is poor and short-lived, probably due to a defect in cellular immune responses. We compared the cellular immune response (assessed in terms of IFN-γ production) to tetanus toxoid and to cytomegalovirus in a series of 13 HIV-perinatally-infected children and adolescents with optimal immunovirological response to first line antiretroviral therapy, implemented during chronic infection. A stronger cellular response to cytomegalovirus (11 out of 13 patients) was observed, as compared to tetanus toxoid (1 out of 13; p=0.003). These results suggest that the repeated exposition to CMV, as opposed to the past exposition to TT, is able to maintain an effective antigen-specific immune response in stable HIV-infected pediatric patients and strengthen current recommendations on immunization practices in these children.

  8. Humoral and cellular immune responses to matrix protein of measles virus in subacute sclerosing panencephalitis.

    PubMed Central

    Dhib-Jalbut, S; McFarland, H F; Mingioli, E S; Sever, J L; McFarlin, D E

    1988-01-01

    The immune response to matrix (M) protein of measles virus was examined in patients with subacute sclerosing panencephalitis (SSPE) and controls. Antibodies specific for M and nucleocapsid (NC) proteins in 11 serum and 8 cerebrospinal fluid (CSF) samples from patients with SSPE were quantitated by enzyme-linked immunosorbent assay by using affinity-purified measles virus proteins. Geometric mean anti-NC antibody titers were higher in the serum (6.58 +/- 0.98 [mean +/- standard deviation]) and CSF (4.38 +/- 0.74) of SSPE patients compared with controls. Anti-M antibodies were present in the serum and CSF of all SSPE samples tested but in titers lower than those of anti-NC antibodies. Geometric mean anti-M antibody titer was 3.35 +/- 0.53 in sera from patients with SSPE compared with 3.05 +/- 0.66 in sera from patients with other neurological diseases and 3.12 +/- 0.74 in sera from healthy individuals. Geometric mean anti-M antibody titer was 2.59 +/- 0.86 in the CSF of eight patients with SSPE compared with a mean less than 1.00 for patients with other neurological disease (controls). Intrathecal synthesis of anti-M or anti-NC antibodies was established in four patients with SSPE. The cellular immune responses to M, F, HA, and NC proteins were examined in four of the patients with SSPE by lymphoproliferation and were not significantly different from those in five healthy controls. The results demonstrate humoral and cellular immune responses to M protein in patients with SSPE and indicate that it is unlikely that a defect in the immune response to this virus component accounts for the disease process in the patients studied. Images PMID:3373575

  9. Staphylococcus aureus avirulent mutant vaccine induces humoral and cellular immune responses on pregnant heifers.

    PubMed

    Pellegrino, M; Rodriguez, N; Vivas, A; Giraudo, J; Bogni, C

    2016-06-17

    Bovine mastitis produces economic losses, attributable to the decrease in milk production, reduced milk quality, costs of treatment and replacement of animals. A successful prophylactic vaccine against Staphylococcus aureus should elicit both humoral and cellular immune responses. In a previous report we evaluated the effectiveness of a live vaccine to protect heifers against challenge with a virulent strain. In the present study the immunological response of heifers after combined immunization schedule was investigated. In a first experimental trial, heifers were vaccinated with 3 subcutaneous doses of avirulent mutant S. aureus RC122 before calving and one intramammary dose (IMD) after calving. Antibodies concentration in blood, bactericidal effect of serum from vaccinated animals and lymphocyte proliferation was determined. The levels of total IgG, IgG1 and IgG2 in colostrum and the lymphocyte proliferation index were significantly higher in vaccinated respect to non-vaccinated group throughout the experiment. The second trial, where animals were inoculated with different vaccination schedules, was carried out to determine the effect of the IMD on the level of antibodies in blood and milk, cytokines (IL-13 and IFN-γ) concentration and milk's SCC and bacteriology. The bacterial growth of the S. aureus strains was totally inhibited at 1-3×10(6) and 1-3×10(3)cfu/ml, when the strains were mixed with pooled serum diluted 1/40. The results shown that IMD has not a significant effect on the features determinate. In conclusion, a vaccination schedule involving three SC doses before calving would be enough to stimulate antibodies production in milk without an IMD. Furthermore, the results showed a bactericidal effect of serum from vaccinated animals and this provides further evidence about serum functionality. Immune responses, humoral (antigen-specific antibodies and Th2 type cytokines) and cellular (T-lymphocyte proliferation responses and Th1 type cytokines), were

  10. Genetic control of estrogen-regulated transcriptional and cellular responses in mouse uterus

    PubMed Central

    Wall, Emma H.; Hewitt, Sylvia C.; Liu, Liwen; del Rio, Roxana; Case, Laure K.; Lin, Chin-Yo; Korach, Kenneth S.; Teuscher, Cory

    2013-01-01

    The uterotropic response of the uterus to 17β-estradiol (E2) is genetically controlled, with marked variation observed depending on the mouse strain studied. Previous genetic studies from our laboratory using inbred mice that are high [C57BL/6J (B6)] or low [C3H/HeJ (C3H)] responders to E2 led to the identification of quantitative trait (QT) loci associated with phenotypic variation in uterine growth and leukocyte infiltration. The mechanisms underlying differential responsiveness to E2, and the genes involved, are unknown. Therefore, we used a microarray approach to show association of distinct E2-regulated transcriptional signatures with genetically controlled high and low responses to E2 and their segregation in (C57BL/6J×C3H/HeJ) F1 hybrids. Among the 6664 E2-regulated transcripts, analysis of cellular functions of those that were strain specific indicated C3H-selective enrichment of apoptosis, consistent with a 7-fold increase in the apoptosis indicator CASP3, and a 2.4-fold decrease in the apoptosis inhibitor Naip1 (Birc1a) in C3H vs. B6 following treatment with E2. In addition, several differentially expressed transcripts reside within our previously identified QT loci, including the ERα-tethering factor Runx1, demonstrated to enhance E2-mediated transcript regulation. The level of RUNX1 in uterine epithelial cells was shown to be 3.5-fold greater in B6 compared to C3H. Our novel insights into the mechanisms underlying the genetic control of tissue sensitivity to estrogen have great potential to advance understanding of individualized effects in physiological and disease states.—Wall, E. H., Hewitt, S. C., Liu, L., del Rio, R., Case, L. K., Lin, C.-Y., Korach, K. S., Teuscher, C. Genetic control of estrogen-regulated transcriptional and cellular responses in mouse uterus. PMID:23371066

  11. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders.

    PubMed

    Mancuso, Cesare; Scapagini, Giovanni; Currò, Diego; Giuffrida Stella, Anna Maria; De Marco, Carlo; Butterfield, D Allan; Calabrese, Vittorio

    2007-01-01

    Protein conformational diseases, such as Alzheimer's, Parkinson's and Huntington's, affect a large portion of aging population. The pathogenic dysfunctional aggregation of proteins in non-native conformations is associated with metabolic derangements and excessive production of reactive oxygen species. Reduction of cellular expression and activity of antioxidant proteins result in increased oxidative stress. Free-radicals derived from mitochondrial dysfunction and from the cyclooxygenase enzyme activity play a role in oxidative damage of brain. Cyclooxygenase also mediates in neuro-inflammation by the production of pro-inflammatory prostaglandins which contribute to brain injury. The pathogenic role of cyclooxygenase has been demonstrated in Alzheimer and Parkinson diseases. The brain responses to detect and control diverse forms of stress are accomplished by a complex network of "longevity assurance processes" integrated to the expression of genes termed vitagenes. Heat shock proteins are a highly conserved system responsible for the preservation and repair of correct protein conformation. Heme oxygenase-1, a inducible and redox-regulated enzyme, is currently considered as having an important role in cellular antioxidant defense. A neuroprotective effect, due to its heme degrading activity, and tissue-specific pro-oxidant effects, due to its products CO and free iron, are under debate. There is a current interest in dietary compounds that can inhibit, retard or reverse the multi-stage pathophysiology of Alzheimer disease, with a chronic inflammatory response, brain injury and beta-amyloid associated pathology. Curcumin and ferulic acid, two powerful antioxidants, the first from the curry spice turmeric and the second a major constituent of fruit and vegetables, have emerged as strong inducers of the heat shock response. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reduce oxidative damage and amyloid pathology in

  12. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    SciTech Connect

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  13. Hepatitis C virus-specific cellular immune responses in individuals with no evidence of infection

    PubMed Central

    2012-01-01

    The detection of hepatitis C virus (HCV)-specific T cell responses in HCV-uninfected, presumably unexposed, subjects could be due to an underestimation of the frequency of spontaneously resolving infections, as most acute HCV infections are clinically silent. To address this hypothesis, HCV-specific cellular immune responses were characterized, in individuals negative for an HCV PCR assay and humoral response, with (n = 32) or without (n = 33) risk of exposure to HCV. Uninfected volunteers (n = 20) with a chronically HCV-infected partner were included as positive controls for potential exposure to HCV and HCV infection, respectively. HCV-specific T cell responses in freshly isolated peripheral blood mononuclear cells were studied ex vivo by ELISPOT and CFSE-based proliferation assays using panels of HCV Core and NS3-derived peptides. A pool of unrelated peptides was used as a negative control, and a peptide mix of human cytomegalovirus, Epstein-Bar virus and Influenza virus as a positive control. Overall, 20% of presumably HCV-uninfected subject tested had detectable T-cell responses to the virus, a rate much higher than previous estimates of HCV prevalence in developed countries. This result would be consistent with unapparent primary HCV infections that either cleared spontaneously or remained undetected by conventional serological assays. PMID:22455516

  14. Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients.

    PubMed

    Ortiz-Sánchez, Juan P; Cabrera-Chávez, Francisco; de la Barca, Ana M Calderón

    2013-10-21

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet.

  15. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    PubMed Central

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  16. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome

    PubMed Central

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W.; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  17. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome.

    PubMed

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  18. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes.

    PubMed

    Calabrese, Vittorio; Boyd-Kimball, Debra; Scapagnini, Giovanni; Butterfield, D Allan

    2004-01-01

    Nitric oxide and other reactive nitrogen species appear to play crucial roles in the brain such as neuromodulation, neurotransmission and synaptic plasticity, but are also involved in pathological processes such as neurodegeneration and neuroinflammation. Acute and chronic inflammation result in increased nitrogen monoxide formation and nitrosative stress. It is now well documented that NO and its toxic metabolite, peroxynitrite, can inhibit components of the mitochondrial respiratory chain leading to cellular energy deficiency and, eventually, to cell death. Within the brain, the susceptibility of different brain cell types to NO and peroxynitrite exposure may be dependent on factors such as the intracellular reduced glutathione and cellular stress resistance signal pathways. Thus neurons, in contrast to astrocytes, appear particularly vulnerable to the effect of nitrosative stress. Evidence is now available to support this scenario for neurological disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis and Huntington's disease, but also in the brain damage following ischemia and reperfusion, Down's syndrome and mitochondrial encephalopathies. To survive different types of injuries, brain cells have evolved integrated responses, the so-called longevity assurance processes, composed of several genes termed vitagenes and including, among others, members of the HSP system, such as HSP70 and HSP32, to detect and control diverse forms of stress. In particular, HSP32, also known as heme oxygenase-1 (HO-1), has received considerable attention, as it has been recently demonstrated that HO-1 induction, by generating the vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, could represent a protective system potentially active against brain oxidative injury. Increasing evidence suggests that the HO-1 gene is redox-regulated and its expression appears closely related to conditions of oxidative and

  19. Proteomic analysis of cellular protein expression profiles in response to grass carp reovirus infection.

    PubMed

    Xu, Dan; Song, Lang; Wang, Hao; Xu, Xiaoyan; Wang, Tu; Lu, Liqun

    2015-06-01

    Grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is emerging as a serious problem in grass carp aquaculture. To better understand the molecular responses to GCRV infection, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem mass spectroscopy were performed to investigate altered proteins in C. idella kidney (CIK) cells. Differentially expressed proteins in mock infected CIK cells and GCRV-infected CIK cells were compared. Twenty-three differentially expressed spots were identified (22 upregulated spots and 1 downregulated spot), which included cytoskeleton proteins, macromolecular biosynthesis-associated proteins, stress response proteins, signal transduction proteins, energy metabolism-associated proteins and ubiquitin proteasome pathway-associated proteins. Moreover, 10 of the corresponding genes of the differentially expressed proteins were quantified by real-time reverse transcription polymerase chain reaction to examine their transcriptional profiles. The T cell internal antigen 1 (TIA1) and Ras-GTPase-activating SH3-domain-binding protein1 (G3BP1) of the cellular stress granule pathway from grass carp C. idella (designated as CiTIA1 and CiG3BP1) were upregulated and downregulated during GCRV infection, respectively. The full-length cDNA of CiTIA1 was 2753 bp, with an open reading frame (ORF) of 1155bp, which encodes a putative 385-amino acid protein. The 2271 bp full-length cDNA of CiG3BP1 comprised an ORF of 1455 bp that encodes a putative 485-amino acid protein. Phylogenetic analysis revealed that the complete ORFs of CiTIA1 and CiG3BP1 were very similar to zebrafish and well-characterized mammalian homologs. The expressions of the cellular proteins CiTIA1 and CiG3BP1 in response to GCRV were validated by western blotting, which indicated that the GCRV should unlink TIA1 aggregation and stress granule formation. This study provides useful information on the proteomic

  20. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes.

    PubMed

    Calabrese, Vittorio; Guagliano, Eleonora; Sapienza, Maria; Panebianco, Mariangela; Calafato, Stella; Puleo, Edoardo; Pennisi, Giovanni; Mancuso, Cesare; Butterfield, D Allan; Stella, Annamaria Giuffrida

    2007-01-01

    Reduced expression and/or activity of antioxidant proteins lead to oxidative stress, accelerated aging and neurodegeneration. However, while excess reactive oxygen species (ROS) are toxic, regulated ROS play an important role in cell signaling. Perturbation of redox status, mutations favoring protein misfolding, altered glyc(osyl)ation, overloading of the product of polyunsaturated fatty acid peroxidation (hydroxynonenals, HNE) or cholesterol oxidation, can disrupt redox homeostasis. Collectively or individually these effects may impose stress and lead to accumulation of unfolded or misfolded proteins in brain cells. Alzheimer's (AD), Parkinson's and Huntington's disease, amyotrophic lateral sclerosis and Friedreich's ataxia are major neurological disorders associated with production of abnormally aggregated proteins and, as such, belong to the so-called "protein conformational diseases". The pathogenic aggregation of proteins in non-native conformation is generally associated with metabolic derangements and excessive production of ROS. The "unfolded protein response" has evolved to prevent accumulation of unfolded or misfolded proteins. Recent discoveries of the mechanisms of cellular stress signaling have led to new insights into the diverse processes that are regulated by cellular stress responses. The brain detects and overcomes oxidative stress by a complex network of "longevity assurance processes" integrated to the expression of genes termed vitagenes. Heat-shock proteins are highly conserved and facilitate correct protein folding. Heme oxygenase-1, an inducible and redox-regulated enzyme, has having an important role in cellular antioxidant defense. An emerging concept is neuroprotection afforded by heme oxygenase by its heme degrading activity and tissue-specific antioxidant effects, due to its products carbon monoxide and biliverdin, which is then reduced by biliverdin reductase in bilirubin. There is increasing interest in dietary compounds that can

  1. Logic-Based and Cellular Pharmacodynamic Modeling of Bortezomib Responses in U266 Human Myeloma Cells

    PubMed Central

    Chudasama, Vaishali L.; Ovacik, Meric A.; Abernethy, Darrell R.

    2015-01-01

    Systems models of biological networks show promise for informing drug target selection/qualification, identifying lead compounds and factors regulating disease progression, rationalizing combinatorial regimens, and explaining sources of intersubject variability and adverse drug reactions. However, most models of biological systems are qualitative and are not easily coupled with dynamical models of drug exposure-response relationships. In this proof-of-concept study, logic-based modeling of signal transduction pathways in U266 multiple myeloma (MM) cells is used to guide the development of a simple dynamical model linking bortezomib exposure to cellular outcomes. Bortezomib is a commonly used first-line agent in MM treatment; however, knowledge of the signal transduction pathways regulating bortezomib-mediated cell cytotoxicity is incomplete. A Boolean network model of 66 nodes was constructed that includes major survival and apoptotic pathways and was updated using responses to several chemical probes. Simulated responses to bortezomib were in good agreement with experimental data, and a reduction algorithm was used to identify key signaling proteins. Bortezomib-mediated apoptosis was not associated with suppression of nuclear factor κB (NFκB) protein inhibition in this cell line, which contradicts a major hypothesis of bortezomib pharmacodynamics. A pharmacodynamic model was developed that included three critical proteins (phospho-NFκB, BclxL, and cleaved poly (ADP ribose) polymerase). Model-fitted protein dynamics and cell proliferation profiles agreed with experimental data, and the model-predicted IC50 (3.5 nM) is comparable to the experimental value (1.5 nM). The cell-based pharmacodynamic model successfully links bortezomib exposure to MM cellular proliferation via protein dynamics, and this model may show utility in exploring bortezomib-based combination regimens. PMID:26163548

  2. Logic-Based and Cellular Pharmacodynamic Modeling of Bortezomib Responses in U266 Human Myeloma Cells.

    PubMed

    Chudasama, Vaishali L; Ovacik, Meric A; Abernethy, Darrell R; Mager, Donald E

    2015-09-01

    Systems models of biological networks show promise for informing drug target selection/qualification, identifying lead compounds and factors regulating disease progression, rationalizing combinatorial regimens, and explaining sources of intersubject variability and adverse drug reactions. However, most models of biological systems are qualitative and are not easily coupled with dynamical models of drug exposure-response relationships. In this proof-of-concept study, logic-based modeling of signal transduction pathways in U266 multiple myeloma (MM) cells is used to guide the development of a simple dynamical model linking bortezomib exposure to cellular outcomes. Bortezomib is a commonly used first-line agent in MM treatment; however, knowledge of the signal transduction pathways regulating bortezomib-mediated cell cytotoxicity is incomplete. A Boolean network model of 66 nodes was constructed that includes major survival and apoptotic pathways and was updated using responses to several chemical probes. Simulated responses to bortezomib were in good agreement with experimental data, and a reduction algorithm was used to identify key signaling proteins. Bortezomib-mediated apoptosis was not associated with suppression of nuclear factor κB (NFκB) protein inhibition in this cell line, which contradicts a major hypothesis of bortezomib pharmacodynamics. A pharmacodynamic model was developed that included three critical proteins (phospho-NFκB, BclxL, and cleaved poly (ADP ribose) polymerase). Model-fitted protein dynamics and cell proliferation profiles agreed with experimental data, and the model-predicted IC50 (3.5 nM) is comparable to the experimental value (1.5 nM). The cell-based pharmacodynamic model successfully links bortezomib exposure to MM cellular proliferation via protein dynamics, and this model may show utility in exploring bortezomib-based combination regimens.

  3. Repeatedly administered antidepressant drugs modulate humoral and cellular immune response in mice through action on macrophages.

    PubMed

    Nazimek, Katarzyna; Kozlowski, Michael; Bryniarski, Pawel; Strobel, Spencer; Bryk, Agata; Myszka, Michal; Tyszka, Anna; Kuszmiersz, Piotr; Nowakowski, Jaroslaw; Filipczak-Bryniarska, Iwona

    2016-08-01

    Depression is associated with an altered immune response, which could be normalized by antidepressant drugs. However, little is known about the influence of antidepressants on the peripheral immune response and function of macrophages in individuals not suffering from depression. Our studies were aimed at determining the influence of antidepressant drugs on the humoral and cellular immune response in mice. Mice were treated intraperitoneally with imipramine, fluoxetine, venlafaxine, or moclobemide and contact immunized with trinitrophenyl hapten followed by elicitation and measurement of contact sensitivity by ear swelling response. Peritoneal macrophages from drug-treated mice were either pulsed with sheep erythrocytes or conjugated with trinitrophenyl and transferred into naive recipients to induce humoral or contact sensitivity response, respectively. Secretion of reactive oxygen intermediates, nitric oxide, and cytokines by macrophages from drug-treated mice was assessed, respectively, in chemiluminometry, Griess-based colorimetry and enzyme-linked immunosorbent assay, and the expression of macrophage surface markers was analyzed cytometrically. Treatment of mice with fluoxetine, venlafaxine, and moclobemide results in suppression of humoral and cell-mediated immunity with a reduction of the release of macrophage proinflammatory mediators and the expression of antigen-presentation markers. In contrast, treatment with imipramine enhanced the humoral immune response and macrophage secretory activity but slightly suppressed active contact sensitivity. Our studies demonstrated that systemically delivered antidepressant drugs modulate the peripheral humoral and cell-mediated immune responses, mostly through their action on macrophages. Imipramine was rather proinflammatory, whereas other tested drugs expressed immunosuppressive potential. Current observations may be applied to new therapeutic strategies dedicated to various disorders associated with excessive

  4. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals

    PubMed Central

    Mckenzie, Grahame; Ward, George; Stallwood, Yvette; Briend, Emmanuel; Papadia, Sofia; Lennard, Andrew; Turner, Martin; Champion, Brian; Hardingham, Giles E

    2006-01-01

    Background Notch plays a wide-ranging role in controlling cell fate, differentiation and development. The PI3K-Akt pathway is a similarly conserved signalling pathway which regulates processes such as differentiation, proliferation and survival. Mice with disrupted Notch and PI3K signalling show phenotypic similarities during haematopoietic cell development, suggesting functional interaction between these pathways. Results We show that cellular responsiveness to Notch signals depends on the activity of the PI3K-Akt pathway in cells as diverse as CHO cells, primary T-cells and hippocampal neurons. Induction of the endogenous PI3K-Akt pathway in CHO cells (by the insulin pathway), in T-cells (via TCR activation) or in neurons (via TrKB activation) potentiates Notch-dependent responses. We propose that the PI3K-Akt pathway exerts its influence on Notch primarily via inhibition of GSK3-beta, a kinase known to phosphorylate and regulate Notch signals. Conclusion The PI3K-Akt pathway acts as a "gain control" for Notch signal responses. Since physiological levels of intracellular Notch are often low, coincidence with PI3K-activation may be crucial for induction of Notch-dependent responses. PMID:16507111

  5. The composition of EphB2 clusters determines the strength in the cellular repulsion response

    PubMed Central

    Schaupp, Andreas; Sabet, Ola; Dudanova, Irina; Ponserre, Marion; Bastiaens, Philippe

    2014-01-01

    Trans interactions of erythropoietin-producing human hepatocellular (Eph) receptors with their membrane-bound ephrin ligands generate higher-order clusters that can form extended signaling arrays. The functional relevance of the cluster size for repulsive signaling is not understood. We used chemical dimerizers and fluorescence anisotropy to generate and visualize specific EphB2 cluster species in living cells. We find that cell collapse responses are induced by small-sized EphB2 clusters, suggesting that extended EphB2 arrays are dispensable and that EphB2 activation follows an ON–OFF switch with EphB2 dimers being inactive and trimers and tetramers being fully functional. Moreover, the strength of the collapse response is determined by the abundance of multimers over dimers within a cluster population: the more dimers are present, the weaker the response. Finally, we show that the C-terminal modules of EphB2 have negative regulatory effects on ephrin-induced clustering. These results shed new light on the mechanism and regulation of EphB2 activation and provide a model on how Eph signaling translates into graded cellular responses. PMID:24469634

  6. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  7. Successful Interference with Cellular Immune Responses to Immunogenic Proteins Encoded by Recombinant Viral Vectors

    PubMed Central

    Sarukhan, Adelaida; Camugli, Sabine; Gjata, Bernard; von Boehmer, Harald; Danos, Olivier; Jooss, Karin

    2001-01-01

    Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-term expression of therapeutic genes in animal models and patients. One of the major advantages of these vectors is the absence of deleterious immune responses following gene transfer. However, AAV vectors, when used in vaccination studies, can result in efficient humoral and cellular responses against the transgene product. It is therefore important to understand the factors which influence the establishment of these immune responses in order to design safe and efficient procedures for AAV-based gene therapies. We have compared T-cell activation against a strongly immunogenic protein, the influenza virus hemagglutinin (HA), which is synthesized in skeletal muscle following gene transfer with an adenovirus (Ad) or an AAV vector. In both cases, cellular immune responses resulted in the elimination of transduced muscle fibers within 4 weeks. However, the kinetics of CD4+ T-cell activation were markedly delayed when AAV vectors were used. Upon recombinant Ad (rAd) gene transfer, T cells were activated both by direct transduction of dendritic cells and by cross-presentation of the transgene product, while upon rAAV gene transfer T cells were only activated by the latter mechanism. These results suggested that activation of the immune system by the transgene product following rAAV-mediated gene transfer might be easier to control than that following rAd-mediated gene transfer. Therefore, we tested protocols aimed at interfering with either antigen presentation by blocking the CD40/CD40L pathway or with the T-cell response by inducing transgene-specific tolerance. Long-term expression of the AAV-HA was achieved in both cases, whereas immune responses against Ad-HA could not be prevented. These data clearly underline the importance of understanding the mechanisms by which vector-encoded proteins are recognized by the immune system in order to specifically interfere with them and

  8. Inactivated Probiotic Bacteria Stimulate Cellular Immune Responses of Catla, Catla catla (Hamilton) In Vitro.

    PubMed

    Kamilya, Dibyendu; Baruah, Arunjyoti; Sangma, Timothy; Chowdhury, Supratim; Pal, Prasenjit

    2015-06-01

    In the present study, we investigated the in vitro immunostimulatory effects of inactivated form of two potential probiotics, Bacillus amyloliquefaciens FPTB16 and B. subtilis FPTB13 in catla (Catla catla). Catla head kidney leukocytes (HK) were incubated with the bacteria alive or inactivated with heat shock (2 h at 60 °C), UV light (for 2.5 h) and formalin (1.0%, v/v) treatment (for 24 h at 4 °C) at different concentrations (10(7), 10(8) and 10(9) cells ml(-1)). After incubation, different cellular immune parameters such as respiratory burst activity, nitric oxide production, leukocyte peroxidase content and proliferative response were analyzed. The inactivated probiotic preparations stimulated all the cellular immune parameters of catla HK leukocytes in vitro. Among the different inactivated preparations, heat-treated form exhibited the best result. The lowest dose (10(7) cells ml(-1)) of both the strains showed the maximum stimulation. The results collectively suggest the efficacy of inactivated preparations to be used as immunostimulant in aquaculture. PMID:25736432

  9. Identification of microRNAs associated with hyperthermia-induced cellular stress response.

    PubMed

    Wilmink, Gerald J; Roth, Caleb L; Ibey, Bennett L; Ketchum, Norma; Bernhard, Joshua; Cerna, Cesario Z; Roach, William P

    2010-11-01

    MicroRNAs (miRNAs) are a class of small RNAs that play a critical role in the coordination of fundamental cellular processes. Recent studies suggest that miRNAs participate in the cellular stress response (CSR), but their specific involvement remains unclear. In this study, we identify a group of thermally regulated miRNAs (TRMs) that are associated with the CSR. Using miRNA microarrays, we show that dermal fibroblasts differentially express 123 miRNAs when exposed to hyperthermia. Interestingly, only 27 of these miRNAs are annotated in the current Sanger registry. We validated the expression of the annotated miRNAs using qPCR techniques, and we found that the qPCR and microarray data was in well agreement. Computational target-prediction studies revealed that putative targets for the TRMs are heat shock proteins and Argonaute-2-the core functional unit of RNA silencing. These results indicate that cells express a specific group of miRNAs when exposed to hyperthermia, and these miRNAs may function in the regulation of the CSR. Future studies will be conducted to determine if other cells lines differentially express these miRNAs when exposed to hyperthermia.

  10. Cellular response to empty and palladium-conjugated amino-polystyrene nanospheres uptake: a proteomic study.

    PubMed

    Pietrovito, Laura; Cano-Cortés, Victoria; Gamberi, Tania; Magherini, Francesca; Bianchi, Laura; Bini, Luca; Sánchez-Martín, Rosario M; Fasano, Mauro; Modesti, Alessandra

    2015-01-01

    Amino polystyrene nanospheres are shown to be efficient and controllable delivery devices, capable of transporting several bioactive cargoes. Recently, the design of a new device for prodrug activation, using these nanospheres with palladium encapsulated onto them, has been developed successfully. To study the influence of the cellular uptake of these nanodevices, we investigated the cellular response of human embryonic kidney cells (HEK-293T) and murine fibroblasts (L929) treated with empty or palladium-conjugated amino polystyrene nanospheres. To identify differentially expressed proteins, we performed an exhaustive proteomic analysis. In accordance with genomic data previously obtained, the uptake of the empty nanospheres did not induce significant variation in protein expression levels. Following the treatment with palladium-conjugated nanospheres, some changes in protein profiles in both cell lines were observed; these alterations affect proteins involved in cell metabolism and intracellular transport. No key regulator of the cell cycle result was differentially expressed after the treatment, confirming that these innovative drug delivery systems are harmless and well tolerated by the cells.

  11. Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells

    PubMed Central

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-01-01

    Bioabsorbable metal zinc (Zn) is a promising new generation of implantable scaffold for cardiovascular and orthopedic applications. In cardiovascular stent applications, zinc ion (Zn2+) will be gradually released into the surrounding vascular tissues from such Zn-containing scaffolds after implantation. However, the interactions between vascular cells and Zn2+ are still largely unknown. We explored the short-term effects of extracellular Zn2+ on human smooth muscle cells (SMCs) up to 24 h, and an interesting biphasic effect of Zn2+ was observed. Lower concentrations (<80 μM) of Zn2+ had no adverse effects on cell viability but promoted cell adhesion, cell spreading, cell proliferation, cell migration, and enhanced the expression of F-actin and vinculin. Cells treated with such lower concentrations of Zn2+ displayed an elongated shape compared to controls without any treatment. In contrast, cells treated with higher Zn2+ concentrations (80–120 μM) had opposite cellular responses and behaviors. Gene expression profiles revealed that the most affected functional genes were related to angiogenesis, inflammation, cell adhesion, vessel tone, and platelet aggregation. Results indicated that Zn has interesting concentration-dependent biphasic effects on SMCs with low concentrations being beneficial to cellular functions. PMID:27248371

  12. Comparison of cellular responses induced by low level light in different cell types

    NASA Astrophysics Data System (ADS)

    Huang, Ying-Ying; Chen, Aaron C.-H.; Sharma, Sulbha K.; Wu, Qiuhe; Hamblin, Michael R.

    2010-02-01

    Discoveries are rapidly being made in multiple laboratories that shed "light" on the fundamental molecular and cellular mechanisms underlying the use of low level light therapy (LLLT) in vitro, in animal models and in clinical practice. Increases in cellular levels of respiration, in cytochrome c oxidase activity, in ATP levels and in cyclic AMP have been found. Increased expression of reactive oxygen species and release of nitric oxide have also been shown. In order for these molecular changes to have a major effect on cell behavior, it is likely that various transcription factors will be activated, possibly via different signal transduction pathways. In this report we compare and contrast the effects of LLLT in vitro on murine embryonic fibroblasts, primary cortical neurons, cardiomyocytes and bone-marrow derived dendritic cells. We also examined two human cell lines, HeLa cancer cells and HaCaT keratinocytes. The effects of 810-nm near-infra-red light delivered at low and high fluences were addressed. Reactive oxygen species generation, transcription factor activation and ATP increases are reported. The data has led to the hypothesis that cells with a high level of mitochondrial activity (mitochondrial membrane potential) have a higher response to light than cells with low mitochondrial activity.

  13. Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids.

    PubMed Central

    Keller, R; Fischer, W; Keist, R; Bassetti, S

    1992-01-01

    Lipoteichoic acids (LTAs) from various bacterial species, including Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, and Listeria monocytogenes, were examined for the ability to induce secretory and cellular responses in a pure population of bone marrow-derived mononuclear phagocytes. Some of the highly purified LTAs, in particular LTAs from Bacillus subtilis, S. pyogenes, E. faecalis, and Enterococcus hirae, were able to affect each of the macrophage parameters measured, i.e., reductive capacity, secretion of tumor necrosis factor and nitrite, and tumoricidal activity. As after stimulation with whole organisms or other bacterial products, secretion of tumor necrosis factor induced by these LTAs reached its maximum within the first few hours of the interaction, while secretion of nitrite and tumoricidal activity required 24 to 36 h for full expression. Other purified LTAs, i.e., LTAs from Streptococcus sanguis, S. pneumoniae, and L. monocytogenes, as well as lipomannan from Micrococcus luteus affected only some of these parameters, while native LTA from S. aureus was inactive. There was no obvious correlation between biological activity and chain length, kind of glycosyl substituents, glycolipid structures, or fatty acid composition of LTAs. Deacylation of LTAs resulted in a complete loss of activity, and deacylated LTAs did not impair the activity of their acylated counterparts, suggesting that acyl chains may be essential for binding of LTA to the cell surface. The results demonstrate that some LTA species are potent inducers of macrophage secretory and cellular activities. PMID:1500175

  14. Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants

    PubMed Central

    Feller, Liviu; Jadwat, Yusuf; Khammissa, Razia A. G.; Meyerov, Robin; Lemmer, Johan

    2015-01-01

    The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration. PMID:25767803

  15. Cellular and molecular mechanisms for the bone response to mechanical loading

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.

    2001-01-01

    To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.

  16. Cellular Responses of Resistant and Susceptible Soybean Genotypes Infected with Meloidogyne arenaria Races 1 and 2.

    PubMed

    Pedrosa, E M; Hussey, R S; Boerma, H R

    1996-06-01

    The cellular responses induced by Meloidogyne arenaria races 1 and 2 in three soybean genotypes, susceptible CNS, resistant Jackson, and resistant PI 200538, were examined by light microscopy 20 days after inoculation. Differences in giant-cell development were greater between races than among the soybean genotypes. M. arenaria race 1 stimulated small, poorly formed giant-cells in contrast with M. arenaria race 2, which induced well-developed, thick-walled, multinucleate giant-cells. The number of nuclei per giant-celt was variable, but fewer nuclei were usually present in giant-cells induced by race 1 (mean 16 nuclei) than in giant-cells induced by race 2 (mean 41 nuclei). Differences observed in giant-cell development were related to differences in growth and maturation of M. arenaria races 1 and 2 and host suitability of the soybean genotypes.

  17. Thioredoxin-dependent Redox Regulation of Cellular Signaling and Stress Response through Reversible Oxidation of Methionines

    SciTech Connect

    Bigelow, Diana J.; Squier, Thomas C.

    2011-06-01

    Generation of reactive oxygen species (ROS) is a common feature of many forms of stress to which plants are exposed. Successful adaptation to changing environmental conditions requires sensitive sensors of ROS such as protein-bound methionines that are converted to their corresponding methionine sulfoxides, which in turn can influence cellular signaling pathways. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress response in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the sensitivity of individual methionines within plant and animal calmodulin to ROS, the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes.

  18. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization.

    PubMed

    Maier, Patrick; Hartmann, Linda; Wenz, Frederik; Herskind, Carsten

    2016-01-14

    During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization.

  19. Scrub typhus vaccine candidate Kp r56 induces humoral and cellular immune responses in cynomolgus monkeys.

    PubMed

    Chattopadhyay, Suchismita; Jiang, Ju; Chan, Teik-Chye; Manetz, T Scott; Chao, Chien-Chung; Ching, Wei-Mei; Richards, Allen L

    2005-08-01

    A truncated recombinant 56-kDa outer membrane protein of the Karp strain of Orientia tsutsugamushi (Kp r56) was evaluated in cynomolgus monkeys (Macaca fascicularis) for immunogenicity and safety as a vaccine candidate for the prevention of scrub typhus. This recombinant antigen induced strong humoral and cellular immune responses in two monkeys and was found to be well tolerated. Antigen-specific immunoglobulin M (IgM) and IgG were produced to almost maximal levels within 1 week of a single immunization. Peripheral blood mononuclear cells from vaccinated animals showed an induction of antigen-specific proliferation and gamma interferon production. The Kp r56 was not as efficient as infection with live organisms in preventing reinfection but was able to reduce the inflammation produced at the site of challenge. This report describes the results of the first systematic study of the immunogenicity of a recombinant scrub typhus vaccine candidate in a nonhuman primate model.

  20. Glutathione determination by the Tietze enzymatic recycling assay and its relationship to cellular radiation response.

    PubMed Central

    Eady, J. J.; Orta, T.; Dennis, M. F.; Stratford, M. R.; Peacock, J. H.

    1995-01-01

    Large fluctuations in glutathione content were observed on a daily basis using the Tietze enzyme recycling assay in a panel of six human cell lines of varying radiosensitivity. Glutathione content tended to increase to a maximum during exponential cell proliferation, and then decreased at different rates as the cells approached plateau phase. By reference to high-performance liquid chromatography and flow cytometry of the fluorescent bimane derivative we were able to verify that these changes were real. However, the Tietze assay was occasionally unable to detect glutathione in two of our cell lines (MGH-U1 and AT5BIVA), although the other methods indicated its presence. The existence of an inhibitory activity responsible for these anomalies was confirmed through spiking our samples with known amounts of glutathione. We were unable to detect a direct relationship between cellular glutathione concentration and aerobic radiosensitivity in our panel of cell lines. PMID:7577452

  1. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization

    PubMed Central

    Maier, Patrick; Hartmann, Linda; Wenz, Frederik; Herskind, Carsten

    2016-01-01

    During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization. PMID:26784176

  2. In situ CUTANEOUS CELLULAR IMMUNE RESPONSE IN DOGS NATURALLY AFFECTED BY VISCERAL LEISHMANIASIS.

    PubMed

    Rossi, Claudio Nazaretian; Tomokane, Thaise Yumie; Batista, Luis Fábio da Silva; Marcondes, Mary; Larsson, Carlos Eduardo; Laurenti, Márcia Dalastra

    2016-07-11

    Thirty-eight dogs naturally affected by visceral leishmaniasis were recruited in Araçatuba, São Paulo State, Brazil - an endemic area for visceral leishmaniasis. The animals were distributed into one of two groups, according to their clinical and laboratory features, as either symptomatic or asymptomatic dogs. Correlations between clinical features and inflammatory patterns, cellular immune responses, and parasitism in the macroscopically uninjured skin of the ear were investigated. Histological skin patterns were similar in both groups, and were generally characterized by a mild to intense inflammatory infiltrate in the dermis, mainly consisting of mononuclear cells. There was no difference in the number of parasites in the skin (amastigotes/mm²) between the two groups. Concerning the characterization of the cellular immune response, the number of positive inducible nitric oxide synthase (iNOS+) cells was higher in the dermis of symptomatic than in asymptomatic dogs (p = 0.0368). A positive correlation between parasite density and macrophages density (p = 0.031), CD4+ T-cells (p = 0.015), and CD8+ T-cells (p = 0.023) was observed. Furthermore, a positive correlation between density of iNOS+ cells and CD3+ T-cells (p = 0.005), CD4+ T-cells (p = 0.001), and CD8+ T-cells (p = 0.0001) was also found. The results showed the existence of a non-specific chronic inflammatory infiltrate in the dermis of dogs affected by visceral leishmaniasis, characterized by the presence of activated macrophages and T-lymphocytes, associated to cutaneous parasitism, independent of clinical status. PMID:27410908

  3. In situ CUTANEOUS CELLULAR IMMUNE RESPONSE IN DOGS NATURALLY AFFECTED BY VISCERAL LEISHMANIASIS

    PubMed Central

    ROSSI, Claudio Nazaretian; TOMOKANE, Thaise Yumie; BATISTA, Luis Fábio da Silva; MARCONDES, Mary; LARSSON, Carlos Eduardo; LAURENTI, Márcia Dalastra

    2016-01-01

    SUMMARY Thirty-eight dogs naturally affected by visceral leishmaniasis were recruited in Araçatuba, São Paulo State, Brazil - an endemic area for visceral leishmaniasis. The animals were distributed into one of two groups, according to their clinical and laboratory features, as either symptomatic or asymptomatic dogs. Correlations between clinical features and inflammatory patterns, cellular immune responses, and parasitism in the macroscopically uninjured skin of the ear were investigated. Histological skin patterns were similar in both groups, and were generally characterized by a mild to intense inflammatory infiltrate in the dermis, mainly consisting of mononuclear cells. There was no difference in the number of parasites in the skin (amastigotes/mm²) between the two groups. Concerning the characterization of the cellular immune response, the number of positive inducible nitric oxide synthase (iNOS+) cells was higher in the dermis of symptomatic than in asymptomatic dogs (p = 0.0368). A positive correlation between parasite density and macrophages density (p = 0.031), CD4+ T-cells (p = 0.015), and CD8+ T-cells (p = 0.023) was observed. Furthermore, a positive correlation between density of iNOS+ cells and CD3+ T-cells (p = 0.005), CD4+ T-cells (p = 0.001), and CD8+ T-cells (p = 0.0001) was also found. The results showed the existence of a non-specific chronic inflammatory infiltrate in the dermis of dogs affected by visceral leishmaniasis, characterized by the presence of activated macrophages and T-lymphocytes, associated to cutaneous parasitism, independent of clinical status. PMID:27410908

  4. Morphometric Analysis for High-Throughput Assay of Cellular Response at the Biomaterial Interface

    NASA Astrophysics Data System (ADS)

    Sehgal, Amit; Washburn, Newell R.; Kennedy, Scott; Karim, Alamgir; Amis, Eric J.

    2003-03-01

    Growth and expression of anchorage dependent mammalian cells is mediated by cell shape. Quantitative description of cell shape may therefore be potentially applicable as an important metric of cellular "health" on biomaterials. We have developed high-throughput test methods that correlate a systematic variation of surface properties of biomaterials to cell response. Test substrates ranging from gradients in crystallinity of polycaprolactone, to microtemplated MIMICS were used provide a range of biochemical, topographical and mechanosensory cues for guidance of cell growth and function. Cytomorphological response to this array of test stimuli was investigated by techniques ranging from rapid automated optical and fluorescence microscopy, to programmable atomic force microscopy. Rigorous moments analysis procedures were developed to generate areal distributional metrics from optical images, and cytoplasmic mass distributional metrics from the 3D AFM data. These analyses led to the discovery that the radius of gyration (Rg) of cells, was sharply defined for entire cell populations, and changed sensitively with the topography and the chemistry of the biomaterial. The analyses as applied to an ensemble of cells, provide quantitative statistical distributions of shape functionals as descriptors of cell response to libraries of substrate material properties. This would allow for development of tissue specific empirical models from in-vitro high-throughput "test-chips", a crucial design input for biomaterials in tissue-engineered implants and biomedical devices.

  5. Dynamic Deformation and Fragmentation Response of Maraging Steel Linear Cellular Alloy

    NASA Astrophysics Data System (ADS)

    Jakus, Adam; Fredenburg, D. A.; McCoy, T.; Thadhani, N. N.; Cochran, J.

    2011-06-01

    The dynamic deformation and fragmentation response of 25% dense 9-cell linear cellular alloy (LCA) made of unaged 250 maraging steel, fabricated using a direct reduction and extrusion technique, is investigated. Explicit finite element simulations were implemented using AUTODYN. The maraging steel properties were defined using a Johnson-Cook strength model with previously validated parameters. Rod-on-anvil impact tests were performed using the 7.6 mm helium gas gun and the transient deformation and fragmentation response was recorded with high-speed imaging. For purpose of comparison, the response of 25% dense hollow cylinders of same density as the 9-cell LCA was also studied. Analysis of observed states of specimens and finite element simulations reveal that in the case of the 9-cell LCA, dissipation of stress and strain occurs along the interior cell wells resulting in significant and ubiquitous buckling prior to confined fragmentation. In comparison, the simple hollow cylinder undergoes significant radial lipping, eventually producing larger sized, external fragments. DTRA Grant No. HDTRA1-07-1-0018 and NDSEG Fellowship Program.

  6. Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress

    PubMed Central

    Pellegrino, Stefania; Altmeyer, Matthias

    2016-01-01

    Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress. PMID:27148359

  7. Development of Cross-Protective Influenza A Vaccines Based on Cellular Responses

    PubMed Central

    Soema, Peter Christiaan; van Riet, Elly; Kersten, Gideon; Amorij, Jean-Pierre

    2015-01-01

    Seasonal influenza vaccines provide protection against matching influenza A virus (IAV) strains mainly through the induction of neutralizing serum IgG antibodies. However, these antibodies fail to confer a protective effect against mismatched IAV. This lack of efficacy against heterologous influenza strains has spurred the vaccine development community to look for other influenza vaccine concepts, which have the ability to elicit cross-protective immune responses. One of the concepts that is currently been worked on is that of influenza vaccines inducing influenza-specific T cell responses. T cells are able to lyse infected host cells, thereby clearing the virus. More interestingly, these T cells can recognize highly conserved epitopes of internal influenza proteins, making cellular responses less vulnerable to antigenic variability. T cells are therefore cross-reactive against many influenza strains, and thus are a promising concept for future influenza vaccines. Despite their potential, there are currently no T cell-based IAV vaccines on the market. Selection of the proper antigen, appropriate vaccine formulation and evaluation of the efficacy of T cell vaccines remains challenging, both in preclinical and clinical settings. In this review, we will discuss the current developments in influenza T cell vaccines, focusing on existing protein-based and novel peptide-based vaccine formulations. Furthermore, we will discuss the feasibility of influenza T cell vaccines and their possible use in the future. PMID:26029218

  8. Histopathology and cellular response in Enteromyxum leei (Myxozoa) infections of Diplodus puntazzo (Teleostei).

    PubMed

    Alvarez-Pellitero, Pilar; Palenzuela, Oswaldo; Sitjá-Bobadilla, Ariadna

    2008-06-01

    Enteromyxum leei is an intestinal parasite responsible for serious outbreaks in Mediterranean sharpsnout sea bream Diplodus puntazzo. E. leei infection was experimentally transmitted to healthy D. puntazzo (R) by cohabitation with infected donor fish. Haematological changes and histopathological damage were evaluated in relation to the course of infection. The prevalence of infection in R fish was 100% from day 10 post-exposure (p.e.) onwards, and the infection intensity and histopathological damage increased progressively. Different developmental stages were found in the infected intestines, including proliferative (stages 1-3) and sporogonic (stages 4 and 5) stages. Intestinal damage consisted of vacuolation, necrosis, detachment and sloughing of epithelium, and was correlated with the progression of the infection and with the development of the parasite. Sporogonic stages appeared from day 20 p.e. onwards. Initially, D. puntazzo seems to counteract the infection through the increase in leucocyte numbers, respiratory burst activity, haematopoietic activity and MMC. Two types of eosinophilic granular cells (EGC1 and EGC2) were detected in the intestinal epithelium and lamina propria. EGC1 numbers decreased with the progression of infection, whereas an increase in EGC2 occurred, mainly in the lamina propria. The involvement of the cellular immunity in the response of D. puntazzo to E. leei was demonstrated. The depletion of this response at a certain point of the infection could contribute to the high virulence of this myxozoan in this fish species. PMID:18373973

  9. c-Abl modulates AICD dependent cellular responses: transcriptional induction and apoptosis.

    PubMed

    Vázquez, Mary C; Vargas, Lina M; Inestrosa, Nibaldo C; Alvarez, Alejandra R

    2009-07-01

    APP intracellular domain (AICD) has been proposed as a transcriptional inductor that moves to the nucleus with the adaptor protein Fe65 and regulates transcription. The two proteins, APP and Fe65, can be phosphorylated by c-Abl kinase. Neprilysin has been proposed as a target gene for AICD. We found that AICD expression is decreased by treatment with STI-571, a c-Abl inhibitor, suggesting a modulation of AICD transcription by c-Abl kinase. We observed interaction between c-Abl kinase, the AICD fragment and the Fe65 adaptor protein. In addition, STI-571 reduces apoptosis in APPSw, and the apoptotic response induced by Fe65 over-expression was inhibited by with the expression of a kinase dead (KD) c-Abl and enhanced by over-expression of WT-c-Abl. However, in the APPSw cells, the ability of the KD-c-Abl to protect against Fe65 was reduced. Finally, in APPSw clone, we detected higher trans-activation of the pro-apoptotic p73 isoform, TAp73 promoter. Our results show that c-Abl modulates AICD dependent cellular responses, transcriptional induction as well as the apoptotic response, which could participate in the onset and progression of the neurodegenerative pathology, observed in Alzheimer's disease (AD).

  10. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    PubMed

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen.

  11. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva

    PubMed Central

    CH Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-01-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates. PMID:27192936

  12. Impact of Malaria Preexposure on Antiparasite Cellular and Humoral Immune Responses after Controlled Human Malaria Infection

    PubMed Central

    Obiero, Joshua M.; Shekalaghe, Seif; Hermsen, Cornelus C.; Mpina, Maxmillian; Bijker, Else M.; Roestenberg, Meta; Teelen, Karina; Billingsley, Peter F.; Sim, B. Kim Lee; James, Eric R.; Daubenberger, Claudia A.; Hoffman, Stephen L.; Abdulla, Salim

    2015-01-01

    To understand the effect of previous malaria exposure on antiparasite immune responses is important for developing successful immunization strategies. Controlled human malaria infections (CHMIs) using cryopreserved Plasmodium falciparum sporozoites provide a unique opportunity to study differences in acquisition or recall of antimalaria immune responses in individuals from different transmission settings and genetic backgrounds. In this study, we compared antiparasite humoral and cellular immune responses in two cohorts of malaria-naive Dutch volunteers and Tanzanians from an area of low malarial endemicity, who were subjected to the identical CHMI protocol by intradermal injection of P. falciparum sporozoites. Samples from both trials were analyzed in parallel in a single center to ensure direct comparability of immunological outcomes. Within the Tanzanian cohort, we distinguished one group with moderate levels of preexisting antibodies to asexual P. falciparum lysate and another that, based on P. falciparum serology, resembled the malaria-naive Dutch cohort. Positive P. falciparum serology at baseline was associated with a lower parasite density at first detection by quantitative PCR (qPCR) after CHMI than that for Tanzanian volunteers with negative serology. Post-CHMI, both Tanzanian groups showed a stronger increase in anti-P. falciparum antibody titers than Dutch volunteers, indicating similar levels of B-cell memory independent of serology. In contrast to the Dutch, Tanzanians failed to increase P. falciparum-specific in vitro recall gamma interferon (IFN-γ) production after CHMI, and innate IFN-γ responses were lower in P. falciparum lysate-seropositive individuals than in seronegative individuals. In conclusion, positive P. falciparum lysate serology can be used to identify individuals with better parasite control but weaker IFN-γ responses in circulating lymphocytes, which may help to stratify volunteers in future CHMI trials in areas where malaria is

  13. Tumor Antigen–Targeted, Monoclonal Antibody–Based Immunotherapy: Clinical Response, Cellular Immunity, and Immunoescape

    PubMed Central

    Ferris, Robert L.; Jaffee, Elizabeth M.; Ferrone, Soldano

    2010-01-01

    Purpose Tumor antigen (TA) –targeted monoclonal antibodies (mAb), rituximab, trastuzumab, and cetuximab, are clinically effective for some advanced malignancies, especially in conjunction with chemotherapy and/or radiotherapy. However, these results are only seen in a subset (20% to 30%) of patients. We discuss the immunologic mechanism(s) underlying these clinical findings and their potential role in the variability in patients' clinical response. Methods We reviewed the evidence indicating that the effects of TA-targeted mAb-based immunotherapy are mediated not only by inhibition of signaling pathways, but also by cell-mediated cytotoxicity triggered by the infused TA-targeted mAb. We analyzed the immunologic variables that can influence the outcome of antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro and in animal model systems. We also analyzed the correlation reported between these variables and the clinical response to mAb-based immunotherapy. Results Of the variables that influence ADCC mediated by TA-targeted mAb, only polymorphisms of Fcγ receptors (FcγR) expressed by patients' lymphocytes were correlated with clinical efficacy. However, this correlation is not absolute and is not observed in all malignancies. Thus other variables may be responsible for the antitumor effects seen in mAb-treated patients. We discuss the evidence that triggering of TA-specific cellular immunity by TA-targeted mAb, in conjunction with immune escape mechanisms used by tumor cells, may contribute to the differential clinical responses to mAb-based immunotherapy. Conclusion Identification of the mechanism(s) underlying the clinical response of patients with cancer treated with TA-targeted mAb is crucial to optimizing their application in the clinic and to selecting the patients most likely to benefit from their use. PMID:20697078

  14. Protein coronas on gold nanorods passivated with amphiphilic ligands affect cytotoxicity and cellular response to penicillin/streptomycin.

    PubMed

    Kah, James Chen Yong; Grabinski, Christin; Untener, Emily; Garrett, Carol; Chen, John; Zhu, David; Hussain, Saber M; Hamad-Schifferli, Kimberly

    2014-05-27

    We probe how amphiphilic ligands (ALs) of four different types affect the formation of protein coronas on gold nanorods (NRs) and their impact on cellular response. NRs coated with cetyltrimethylammonium bromide were ligand exchanged with polyoxyethylene[10]cetyl ether, oligofectamine, and phosphatidylserine (PS). Protein coronas from equine serum (ES) were formed on these NR-ALs, and their colloidal stability, as well as cell uptake, proliferation, oxidative stress, and gene expression, were examined. We find that the protein corona that forms and its colloidal stability are affected by AL type and that the cellular response to these NR-AL-coronas (NR-AL-ES) is both ligand and corona dependent. We also find that the presence of common cell culture supplement penicillin/streptomycin can impact the colloidal stability and cellular response of NR-AL and NR-AL-ES, showing that the cell response is not necessarily inert to pen/strep when in the presence of nanoparticles. Although the protein corona is what the cells see, the underlying surface ligands evidently play an important role in shaping and defining the physical characteristics of the corona, which ultimately impacts the cellular response. Further, the results of this study suggest that the cellular behavior toward NR-AL is mediated by not only the type of AL and the protein corona it forms but also its resulting colloidal stability and interaction with cell culture supplements.

  15. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Kanehira, Koki; Taniguchi, Akiyoshi

    2013-02-01

    Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs) are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs) and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP) agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  16. Staphylococcus aureus avirulent mutant vaccine induces humoral and cellular immune responses on pregnant heifers.

    PubMed

    Pellegrino, M; Rodriguez, N; Vivas, A; Giraudo, J; Bogni, C

    2016-06-17

    Bovine mastitis produces economic losses, attributable to the decrease in milk production, reduced milk quality, costs of treatment and replacement of animals. A successful prophylactic vaccine against Staphylococcus aureus should elicit both humoral and cellular immune responses. In a previous report we evaluated the effectiveness of a live vaccine to protect heifers against challenge with a virulent strain. In the present study the immunological response of heifers after combined immunization schedule was investigated. In a first experimental trial, heifers were vaccinated with 3 subcutaneous doses of avirulent mutant S. aureus RC122 before calving and one intramammary dose (IMD) after calving. Antibodies concentration in blood, bactericidal effect of serum from vaccinated animals and lymphocyte proliferation was determined. The levels of total IgG, IgG1 and IgG2 in colostrum and the lymphocyte proliferation index were significantly higher in vaccinated respect to non-vaccinated group throughout the experiment. The second trial, where animals were inoculated with different vaccination schedules, was carried out to determine the effect of the IMD on the level of antibodies in blood and milk, cytokines (IL-13 and IFN-γ) concentration and milk's SCC and bacteriology. The bacterial growth of the S. aureus strains was totally inhibited at 1-3×10(6) and 1-3×10(3)cfu/ml, when the strains were mixed with pooled serum diluted 1/40. The results shown that IMD has not a significant effect on the features determinate. In conclusion, a vaccination schedule involving three SC doses before calving would be enough to stimulate antibodies production in milk without an IMD. Furthermore, the results showed a bactericidal effect of serum from vaccinated animals and this provides further evidence about serum functionality. Immune responses, humoral (antigen-specific antibodies and Th2 type cytokines) and cellular (T-lymphocyte proliferation responses and Th1 type cytokines), were

  17. Predicting in vivo cardiovascular properties of β-blockers from cellular assays: a quantitative comparison of cellular and cardiovascular pharmacological responses

    PubMed Central

    Baker, Jillian G.; Kemp, Philip; March, Julie; Fretwell, Laurice; Hill, Stephen J.; Gardiner, Sheila M.

    2011-01-01

    β-Adrenoceptor antagonists differ in their degree of partial agonism. In vitro assays have provided information on ligand affinity, selectivity, and intrinsic efficacy. However, the extent to which these properties are manifest in vivo is less clear. Conscious freely moving rats, instrumented for measurement of heart rate (β1; HR) and hindquarters vascular conductance (β2; HVC) were used to measure receptor selectivity and ligand efficacy in vivo. CGP 20712A caused a dose-dependent decrease in basal HR (P<0.05, ANOVA) at 5 doses between 6.7 and 670 μg/kg (i.v.) and shifted the dose-response curve for isoprenaline to higher agonist concentrations without altering HVC responses. In contrast, at doses of 67 μg/kg (i.v.) and above, ICI 118551 substantially reduced the HVC response to isoprenaline without affecting HR responses. ZD 7114, xamoterol, and bucindolol significantly increased basal HR (ΔHR: +122±12, +129±11, and +59±11 beats/min, respectively; n=6), whereas other β-blockers caused significant reductions (all at 2 mg/kg i.v.). The agonist effects of xamoterol and ZD 7114 were equivalent to that of the highest dose of isoprenaline. Bucindolol, however, significantly antagonized the response to the highest doses isoprenaline. An excellent correlation was obtained between in vivo and in vitro measures of β1-adrenoceptor efficacy (R2=0.93; P<0.0001).—Baker, J. G., Kemp, P., March, J., Fretwell, L., Hill, S. J., Gardiner, S. M. Predicting in vivo cardiovascular properties of β-blockers from cellular assays: a quantitative comparison of cellular and cardiovascular pharmacological responses. PMID:21865315

  18. Positron emission tomography in the quantification of cellular and biochemical responses to intrapulmonary particulates

    SciTech Connect

    Jones, Hazel A. . E-mail: hazel.jones@imperial.ac.uk; Hamacher, Kurt; Clark, John C.; Schofield, John B.; Krausz, Thomas; Haslett, Christopher; Boobis, Alan R.

    2005-09-01

    Inhaled mineral dusts and fibres can cause chronic pulmonary inflammation, often leading to permanent scarring with loss of function, but the mechanisms involved remain obscure. There are currently no good methods for monitoring inflammatory processes in situ. Positron emission tomography (PET) of suitable intravenously injected radiolabelled markers provides non-invasive and repeatable methods of quantifying biochemical and cellular responses. We have developed animal models of fibrotic and non-fibrotic pulmonary response to particulate instillation and characterised these by histology. Different components of the inflammatory response have been investigated by PET: (1) [{sup 18}F]-labelled fluoro-deoxyglucose, a positron emitting glucose analogue, accumulates in cells in proportion to their glucose uptake; ex vivo microautoradiography indicates that neutrophils are the cells responsible for an increased signal during pulmonary inflammation; a persistently high uptake is associated with lung scarring. (2) The radioligand [{sup 11}C]-R-PK11195 binds to benzodiazepine-like receptors abundant in macrophages; following particulate instillation, the [{sup 11}C]-R-PK11195 PET signal tracks with lung macrophage accumulation and also localises to regions consistent with macrophage clearance; poor macrophage clearance is associated with fibrosis. (3) [{sup 18}F]-fluoroproline is likely a substrate for extracellular matrix production, especially proline-rich collagen; during active scarring, the rate of lung uptake of fluoroproline is elevated. Localisation of radioactivity in the lung has been validated ex vivo by microautoradiography of tritium analogues of each of the positron emitting tracers. The use of PET to monitor different inflammatory processes by repeated scanning of the same animal or individual is helping to identify key events in the fibrotic process.

  19. Placental Cellular Immune Response in Women Infected with Human Parvovirus B19 during Pregnancy

    PubMed Central

    Jordan, Jeanne A.; Huff, Dale; DeLoia, Julie A.

    2001-01-01

    Human parvovirus B19 can cause congenital infection with variable morbidity and mortality in the fetus and neonate. Although much information exists on the B19-specific antibody response in pregnant women, little information is available describing the cell-mediated immune (CMI) response at the maternal-fetal interface. The focus of this study was to characterize the CMI response within placentas from women who seroconverted to B19 during their pregnancies and compare it to controls. Immunohistochemical techniques were used to identify the various immune cells and the inflammatory cytokine present within placental tissue sections. Group 1 consisted of placentas from 25 women whose pregnancies were complicated by B19 infection; 6 women with good outcome (near-term or term delivery), and 19 with poor outcome (spontaneous abortion, nonimmune hydrops fetalis, or fetal death). Group 2 consisted of placentas from 20 women whose pregnancies were complicated with nonimmune hydrops fetalis of known, noninfectious etiology. Group 3 consisted of placentas from eight women whose pregnancies ended in either term delivery or elective abortion. The results of the study revealed a statistically significant increase in the number of CD3-positive T cells present within placentas from group 1 compared to group 2 or 3 (13.3 versus 2 and 1, respectively) (P < 0.001). In addition, the inflammatory cytokine interleukin 2 was detected in every placenta within group 1 but was absent from all placentas evaluated from groups 2 and 3. Together, these findings demonstrate evidence for an inflammation-mediated cellular immune response within placentas from women whose pregnancies are complicated with B19 infection. PMID:11238210

  20. Regional Differences in the Cellular Immune Response to Experimental Cutaneous or Visceral Infection with Leishmania donovani

    PubMed Central

    Melby, Peter C.; Yang, Yan-Zhu; Cheng, Jun; Zhao, Weiguo

    1998-01-01

    Infection with the protozoan Leishmania donovani can cause serious visceral disease or subclinical infection in humans. To better understand the pathogenesis of this dichotomy, we have investigated the host cellular immune response to cutaneous or visceral infection in a murine model. Mice infected in the skin developed no detectable visceral parasitism, whereas intravenous inoculation resulted in hepatosplenomegaly and an increasing visceral parasite burden. Spleen cells from mice with locally controlled cutaneous infection showed strong parasite-specific proliferative and gamma interferon (IFN-γ) responses, but spleen cells from systemically infected mice were unresponsive to parasite antigens. The in situ expression of IFN-γ, interleukin-4 (IL-4), IL-10, IL-12, and inducible nitric oxide synthase (iNOS) mRNAs was determined in the spleen, draining lymph node (LN), and cutaneous site of inoculation. There was considerably greater expression of IFN-γ and IL-12 p40 mRNAs in the LN draining a locally controlled cutaneous infection than in the spleen following systemic infection. Similarly, there was a high level of IFN-γ production by LN cells following subcutaneous infection but no IFN-γ production by spleen cells following systemic infection. Splenic IL-4 expression was transiently increased early after systemic infection, but splenic IL-10 transcripts increased throughout the course of visceral infection. IL-4 and IL-10 mRNAs were also increased in the LN following cutaneous infection. iNOS mRNA was detected earlier in the LN draining a cutaneous site of infection compared to the spleen following systemic challenge. Thus, locally controlled cutaneous infection was associated with antigen-specific spleen cell responsiveness and markedly increased levels of IFN-γ, IL-12, and iNOS mRNA in the draining LN. Progressive splenic parasitism was associated with an early IL-4 response, markedly increased IL-10 but minimal IL-12 expression, and delayed expression of i

  1. Identification of feedback loops embedded in cellular circuits by investigating non-causal impulse response components.

    PubMed

    Dong, Chao-Yi; Yoon, Tae-Woong; Bates, Declan G; Cho, Kwang-Hyun

    2010-02-01

    Feedback circuits are crucial dynamic motifs which occur in many biomolecular regulatory networks. They play a pivotal role in the regulation and control of many important cellular processes such as gene transcription, signal transduction, and metabolism. In this study, we develop a novel computationally efficient method to identify feedback loops embedded in intracellular networks, which uses only time-series experimental data and requires no knowledge of the network structure. In the proposed approach, a non-parametric system identification technique, as well as a spectral factor analysis, is applied to derive a graphical criterion based on non-causal components of the system's impulse response. The appearance of non-causal components in the impulse response sequences arising from stochastic output perturbations is shown to imply the presence of underlying feedback connections within a linear network. In order to extend the approach to nonlinear networks, we linearize the intracellular networks about an equilibrium point, and then choose the magnitude of the output perturbations sufficiently small so that the resulting time-series responses remain close to the chosen equilibrium point. In this way, the impulse response sequences of the linearized system can be used to determine the presence or absence of feedback loops in the corresponding nonlinear network. The proposed method utilizes the time profile data from intracellular perturbation experiments and only requires the perturbability of output nodes. Most importantly, the method does not require any a priori knowledge of the system structure. For these reasons, the proposed approach is very well suited to identifying feedback loops in large-scale biomolecular networks. The effectiveness of the proposed method is illustrated via two examples: a synthetic network model with a negative feedback loop and a nonlinear caspase function model of apoptosis with a positive feedback loop. PMID:19333603

  2. Cellular Interactions and Immune Response of Spherical Nucleic Acid (SNA) Nanoconjugates

    NASA Astrophysics Data System (ADS)

    Massich, Matthew David

    Spherical nucleic acid (SNA) nanoconjugates consist of a densely packed monolayer shell of highly-oriented oligonucleotides covalently bound to a gold nanoparticle core. The nanoconjugates exhibit several important qualities, which make them useful for various biological applications, such as antisense gene regulation strategies and the intracellular detection of biomolecules. The focus of this thesis was to characterize the nanoconjugates interaction with cultured cells and specifically the immune response to their intracellular presence. The immune response of macrophage cells to internalized nanoconjugates was studied, and due to the dense functionalization of oligonucleotides on the surface of the nanoparticle and the resulting high localized salt concentration the innate immune response to the nanoconjugates is ˜25-fold less when compared to a lipoplex carrying the same sequence. Additionally, genome-wide expression profiling was used to study the biological response of cultured cells to the nanoconjugates. The biological response of HeLa cells to gold nanoparticles stabilized by weakly bound ligands was significant, yet when these same nanoparticles were stably functionalized with covalently attached oligonucleotides the cells showed no measurable response. In human keratinocytes, the oligonucleotide sequences caused 427 genes to be differentially expressed when complexed with Dharmafect, but when the oligonucleotides were conjugated to nanoparticles only 7 genes were differentially expressed. Beyond characterizing the cellular interactions and immune response of the nanoconjugates, the optimal length of siRNA (from 19--34 base pairs) that induces the most gene knockdown while maintaining limited immune activation was determined to be 24 base pairs. Further, the SNAs were shown to be useful as a potential antiviral gene therapy by demonstrating approximately 50% knockdown of the Ebola VP35 gene. Lastly, a scanning probe-enabled method was used to rapidly

  3. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration.

    PubMed

    Reale, Marcella; Kamal, Mohammad A; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-), which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  4. Peptides mimicking GD2 ganglioside elicit cellular, humoral and tumor-protective immune responses in mice

    PubMed Central

    Wondimu, Assefa; Zhang, Tianqian; Kieber-Emmons, Thomas; Gimotty, Phyllis; Sproesser, Katrin; Somasundaram, Rajasekharan; Ferrone, Soldano; Tsao, Chun-Yen

    2012-01-01

    Introduction Because of its restricted distribution in normal tissues and its high expression on tumors of neuroectodermal origin, GD2 ganglioside is an excellent target for active specific immunotherapy. However, GD2 usually elicits low-titered IgM and no IgG or cellular immune responses, limiting its usefulness as a vaccine for cancer patients. We have previously shown that anti-idiotypic monoclonal antibody mimics of GD2 can induce antigen-specific humoral and cellular immunity in mice, but inhibition of tumor growth by the mimics could not be detected. Methods and results Here, we isolated two peptides from phage display peptide libraries by panning with GD2-specific mAb ME361. The peptides inhibited binding of the mAb to GD2. When coupled to keyhole limpet hemocyanin (KLH) or presented as multiantigenic peptides in QS21 adjuvant, the peptides induced in mice antibodies binding specifically to GD2 and delayed-type hypersensitive lymphocytes reactive specifically with GD2-positive D142.34 mouse melanoma cells. Induction of delayed-type hypersensitivity (DTH) reaction was dependent on CD4-positive lymphocytes. The immunity elicited by the peptides significantly inhibited growth of GD2-positive melanoma cells in mice. Conclusion Our study suggests that immunization with peptides mimicking GD2 ganglioside inhibits tumor growth through antibody and/or CD4-positive T cell-mediated mechanisms. Cytolytic T lymphocytes most likely do not play a role. Our results provide the basis for structural analysis of carbohydrate mimicry by peptides. PMID:18157673

  5. Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON)

    SciTech Connect

    Pietsch, Constanze; Bucheli, Thomas D.; Wettstein, Felix E.; Burkhardt-Holm, Patricia

    2011-10-01

    Contamination of animal feed with mycotoxins is a major problem for fish feed mainly due to usage of contaminated ingredients for production and inappropriate storage of feed. The use of cereals for fish food production further increases the risk of a potential contamination. Potential contaminants include the mycotoxin deoxynivalenol (DON) which is synthesized by globally distributed fungi of the genus Fusarium. The toxicity of DON is well recognized in mammals. In this study, we confirm cytotoxic effects of DON in established permanent fish cell lines. We demonstrate that DON is capable of influencing the metabolic activity and cell viability in fish cells as determined by different assays to indicate possible cellular targets of this toxin. Evaluation of cell viability by measurement of membrane integrity, mitochondrial activity and lysosomal function after 24 h of exposure of fish cell lines to DON at a concentration range of 0-3000 ng ml{sup -1} shows a biphasic effect on cells although differences in sensitivity occur. The cell lines derived from rainbow trout are particularly sensitive to DON. The focus of this study lies, furthermore, on the effects of DON at different concentrations on production of reactive oxygen species (ROS) in the different fish cell lines. The results show that DON mainly reduces ROS production in all cell lines that were used. Thus, our comparative investigations reveal that the fish cell lines show distinct species-related endpoint sensitivities that also depend on the type of tissue from which the cells were derived and the severity of exposure. - Highlights: > DON uptake by cells is not extensive. > All fish cell lines are sensitive to DON. > DON is most cytotoxic to rainbow trout cells. > Biphasic cellular responses were frequently observed. > Our results are similar to studies on mammalian cell lines.

  6. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket

    PubMed Central

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  7. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket.

    PubMed

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  8. Expression of Cellular Components in Granulomatous Inflammatory Response in Piaractus mesopotamicus Model

    PubMed Central

    Manrique, Wilson Gómez; da Silva Claudiano, Gustavo; de Castro, Marcello Pardi; Petrillo, Thalita Regina; Figueiredo, Mayra Araguaia Pereira; de Andrade Belo, Marco Antonio; Berdeal, María Isabel Quiroga; de Moraes, Julieta Engracia Rodini; de Moraes, Flávio Ruas

    2015-01-01

    The present study aimed to describe and characterize the cellular components during the evolution of chronic granulomatous inflammation in the teleost fish pacus (P. mesopotamicus) induced by Bacillus Calmette-Guerin (BCG), using S-100, iNOS and cytokeratin antibodies. 50 fish (120±5.0 g) were anesthetized and 45 inoculated with 20 μL (40 mg/mL) (2.0 x 106 CFU/mg) and five inoculated with saline (0,65%) into muscle tissue in the laterodorsal region. To evaluate the inflammatory process, nine fish inoculated with BCG and one control were sampled in five periods: 3rd, 7th, 14th, 21st and 33rd days post-inoculation (DPI). Immunohistochemical examination showed that the marking with anti-S-100 protein and anti-iNOS antibodies was weak, with a diffuse pattern, between the third and seventh DPI. From the 14th to the 33rd day, the marking became stronger and marked the cytoplasm of the macrophages. Positivity for cytokeratin was initially observed in the 14th DPI, and the stronger immunostaining in the 33rd day, period in which the epithelioid cells were more evident and the granuloma was fully formed. Also after the 14th day, a certain degree of cellular organization was observed, due to the arrangement of the macrophages around the inoculated material, with little evidence of edema. The arrangement of the macrophages around the inoculum, the fibroblasts, the lymphocytes and, in most cases, the presence of melanomacrophages formed the granuloma and kept the inoculum isolated in the 33rd DPI. The present study suggested that the granulomatous experimental model using teleost fish P. mesopotamicus presented a similar response to those observed in mammals, confirming its importance for studies of chronic inflammatory reaction. PMID:25811875

  9. Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens.

    PubMed

    Yang, Long; Qin, Li; Liu, Guosheng; Peremyslov, Valera V; Dolja, Valerian V; Wei, Yangdou

    2014-09-23

    The rapid reorganization and polarization of actin filaments (AFs) toward the pathogen penetration site is one of the earliest cellular responses, yet the regulatory mechanism of AF dynamics is poorly understood. Using live-cell imaging in Arabidopsis, we show that polarization coupled with AF bundling involves precise spatiotemporal control at the site of attempted penetration by the nonadapted barley powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We further show that the Bgh-triggered AF mobility and organelle aggregation are predominately driven by the myosin motor proteins. Inactivation of myosins by pharmacological inhibitors prevents bulk aggregation of organelles and blocks recruitment of lignin-like compounds to the penetration site and deposition of callose and defensive protein, PENETRATION 1 (PEN1) into the apoplastic papillae, resulting in attenuation of penetration resistance. Using gene knockout analysis, we demonstrate that highly expressed myosins XI, especially myosin XI-K, are the primary contributors to cell wall-mediated penetration resistance. Moreover, the quadruple myosin knockout mutant xi-1 xi-2 xi-i xi-k displays impaired trafficking pathway responsible for the accumulation of PEN1 at the cell periphery. Strikingly, this mutant shows not only increased penetration rate but also enhanced overall disease susceptibility to both adapted and nonadapted fungal pathogens. Our findings establish myosins XI as key regulators of plant antifungal immunity. PMID:25201952

  10. Role of Reactive Oxygen Intermediates in Cellular Responses to Dietary Cancer Chemopreventive Agents

    PubMed Central

    Antosiewicz, Jedrzej; Ziolkowski, Wieslaw; Kar, Siddhartha; Powolny, Anna A.; Singh, Shivendra V.

    2008-01-01

    Epidemiological studies continue to support the premise that diets rich in fruits and vegetables may offer protection against cancer of various anatomical sites. This correlation is quite persuasive for some vegetables including Allium (e.g., garlic) and cruciferous (e.g., broccoli and watercress) vegetables. The bioactive food components responsible for cancer chemopreventive effects of various edible plants have been identified. For instance, anticancer effects of Allium and cruciferous vegetables are attributed to organosulfur compounds (e.g., diallyl trisulfide) and isothiocyanates (e.g., sulforaphane and phenethyl isothiocyanate), respectively. Bioactive food components with anticancer activity are generally considered antioxidants due to their ability to modulate expression/activity of anti-oxidative and phase 2 drug metabolizing enzymes and scavenging free radicals. At the same time, more recent studies have provided convincing evidence to indicate that certain dietary cancer chemopreventive agents cause generation of reactive oxygen species to trigger signal transduction culminating in cell cycle arrest and/or programmed cell death (apoptosis). Interestingly, the ROS generation by some dietary anticancer agents is tumor cell specific and does not occur in normal cells. This review summarizes experimental evidence supporting involvement of ROS in cellular responses to cancer chemopreventive agents derived from common edible plants. PMID:18671201

  11. Cellular Response to Substrate Rigidity Is Governed by Either Stress or Strain

    PubMed Central

    Yip, Ai Kia; Iwasaki, Katsuhiko; Ursekar, Chaitanya; Machiyama, Hiroaki; Saxena, Mayur; Chen, Huiling; Harada, Ichiro; Chiam, Keng-Hwee; Sawada, Yasuhiro

    2013-01-01

    Cells sense the rigidity of their substrate; however, little is known about the physical variables that determine their response to this rigidity. Here, we report traction stress measurements carried out using fibroblasts on polyacrylamide gels with Young’s moduli ranging from 6 to 110 kPa. We prepared the substrates by employing a modified method that involves N-acryloyl-6-aminocaproic acid (ACA). ACA allows for covalent binding between proteins and elastomers and thus introduces a more stable immobilization of collagen onto the substrate when compared to the conventional method of using sulfo-succinimidyl-6-(4-azido-2-nitrophenyl-amino) hexanoate (sulfo-SANPAH). Cells remove extracellular matrix proteins off the surface of gels coated using sulfo-SANPAH, which corresponds to lower values of traction stress and substrate deformation compared to gels coated using ACA. On soft ACA gels (Young’s modulus <20 kPa), cell-exerted substrate deformation remains constant, independent of the substrate Young’s modulus. In contrast, on stiff substrates (Young’s modulus >20 kPa), traction stress plateaus at a limiting value and the substrate deformation decreases with increasing substrate rigidity. Sustained substrate strain on soft substrates and sustained traction stress on stiff substrates suggest these may be factors governing cellular responses to substrate rigidity. PMID:23332055

  12. Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure.

    PubMed

    Steiner, Sandro; Mueller, Loretta; Popovicheva, Olga B; Raemy, David O; Czerwinski, Jan; Comte, Pierre; Mayer, Andreas; Gehr, Peter; Rothen-Rutishauser, Barbara; Clift, Martin J D

    2012-10-17

    The aim of this study was to compare the biological response of a sophisticated in vitro 3D co-culture model of the epithelial airway barrier to a co-exposure of CeO(2) NPs and diesel exhaust using a realistic air-liquid exposure system. Independent of the individual effects of either diesel exhaust or CeO(2) NPs investigation observed that a combined exposure of CeO(2) NPs and diesel exhaust did not cause a significant cytotoxic effect or alter cellular morphology after exposure to diesel exhaust for 2h at 20μg/ml (low dose) or for 6h at 60μg/ml (high dose), and a subsequent 6h exposure to an aerosolized solution of CeO(2) NPs at the same doses. A significant loss in the reduced intracellular glutathione level was recorded, although a significant increase in the oxidative marker HMOX-1 was found after exposure to a low and high dose respectively. Both the gene expression and protein release of tumour necrosis factor-α were significantly elevated after a high dose exposure only. In conclusion, CeO(2) NPs, in combination with diesel exhaust, can significantly interfere with the cell machinery, indicating a specific, potentially adverse role of CeO(2) NPs in regards to the biological response of diesel exhaust exposure.

  13. Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress

    PubMed Central

    Tijchon, Esther; van Ingen Schenau, Dorette; van Emst, Liesbeth; Levers, Marloes; Palit, Sander A.L.; Rodenbach, Caroline; Poelmans, Geert; Hoogerbrugge, Peter M.; Shan, Jixiu; Kilberg, Michael S.; Scheijen, Blanca; van Leeuwen, Frank N.

    2016-01-01

    Cancer cells are frequently exposed to physiological stress conditions such as hypoxia and nutrient limitation. Escape from stress-induced apoptosis is one of the mechanisms used by malignant cells to survive unfavorable conditions. B-cell Translocation Gene 1 (BTG1) is a tumor suppressor that is frequently deleted in acute lymphoblastic leukemia and recurrently mutated in diffuse large B cell lymphoma. Moreover, low BTG1 expression levels have been linked to poor outcome in several solid tumors. How loss of BTG1 function contributes to tumor progression is not well understood. Here, using Btg1 knockout mice, we demonstrate that loss of Btg1 provides a survival advantage to primary mouse embryonic fibroblasts (MEFs) under stress conditions. This pro-survival effect involves regulation of Activating Transcription Factor 4 (ATF4), a key mediator of cellular stress responses. We show that BTG1 interacts with ATF4 and positively modulates its activity by recruiting the protein arginine methyl transferase PRMT1 to methylate ATF4 on arginine residue 239. We further extend these findings to B-cell progenitors, by showing that loss of Btg1 expression enhances stress adaptation of mouse bone marrow-derived B cell progenitors. In conclusion, we have identified the BTG1/PRMT1 complex as a new modifier of ATF4 mediated stress responses. PMID:26657730

  14. Cellular and humoral antibody responses of normal pastel and sapphire mink to goat erythrocytes.

    PubMed

    Lodmell, D L; Bergman, R K; Hadlow, W J; Munoz, J J

    1971-02-01

    This study was undertaken to determine whether normal sapphire and royal pastel mink differ immunologically at the cellular and humoral levels. Two days after primary intraperitoneal (ip) inoculation of goat erythrocytes (GE), essentially no 19 or 7S plaque-forming cells (PFC) per 10(6) cells were detected in spleen or in abdominal and peripheral lymph nodes of either color phase. On the 4th day, more 19S PFC were detected in pastel than in sapphire tissues; pastel tissues also contained 7S PFC, whereas essentially none was present in sapphires until the 6th day. After an ip booster inoculation, the number of PFC was markedly different between the two color phases. These differences were most apparent in spleen and peripheral lymph nodes. In parallel with differences observed in PFC responses between the color phases, total hemolysin and 2-mercaptoethanol-resistant hemolysin titers of pastels exceeded those of sapphires in all but one interval after the primary, and at every interval after the booster, inoculation. These data indicate that sapphire mink are not immunological cripples, nor are they immunologically hyperactive, but that differences do exist between sapphire and royal pastel mink, especially in the response to booster injections of GE. PMID:16557957

  15. Cellular Responses during Morphological Transformation in Azospirillum brasilense and Its flcA Knockout Mutant

    PubMed Central

    Coumans, Joëlle V. F.; Poljak, Anne; Raftery, Mark J.; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA− strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome. PMID:25502569

  16. Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses.

    PubMed

    Lei, Xiaobo; Xiao, Xia; Xue, Qinghua; Jin, Qi; He, Bin; Wang, Jianwei

    2013-02-01

    Enterovirus 71 (EV71) is a positive-stranded RNA virus which is capable of inhibiting innate immunity. Among virus-encoded proteins, the 3C protein compromises the type I interferon (IFN-I) response mediated by retinoid acid-inducible gene-I (RIG-I) or Toll-like receptor 3 that activates interferon regulatory 3 (IRF3) and IRF7. In the present study, we report that enterovirus 71 downregulates IRF7 through the 3C protein, which inhibits the function of IRF7. When expressed in mammalian cells, the 3C protein mediates cleavage of IRF7 rather than that of IRF3. This process is insensitive to inhibitors of caspase, proteasome, lysosome, and autophagy. H40D substitution in the 3C active site abolishes its activity, whereas R84Q or V154S substitution in the RNA binding motif has no effect. Furthermore, 3C-mediated cleavage occurs at the Q189-S190 junction within the constitutive activation domain of IRF7, resulting in two cleaved IRF7 fragments that are incapable of activating IFN expression. Ectopic expression of wild-type IRF7 limits EV71 replication. On the other hand, expression of the amino-terminal domain of IRF7 enhances EV71 infection, which correlates with its ability to interact with and inhibit IRF3. These results suggest that control of IRF7 by the 3C protein may represent a viral mechanism to escape cellular responses. PMID:23175366

  17. Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens

    PubMed Central

    Yang, Long; Qin, Li; Liu, Guosheng; Peremyslov, Valera V.; Dolja, Valerian V.; Wei, Yangdou

    2014-01-01

    The rapid reorganization and polarization of actin filaments (AFs) toward the pathogen penetration site is one of the earliest cellular responses, yet the regulatory mechanism of AF dynamics is poorly understood. Using live-cell imaging in Arabidopsis, we show that polarization coupled with AF bundling involves precise spatiotemporal control at the site of attempted penetration by the nonadapted barley powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We further show that the Bgh-triggered AF mobility and organelle aggregation are predominately driven by the myosin motor proteins. Inactivation of myosins by pharmacological inhibitors prevents bulk aggregation of organelles and blocks recruitment of lignin-like compounds to the penetration site and deposition of callose and defensive protein, PENETRATION 1 (PEN1) into the apoplastic papillae, resulting in attenuation of penetration resistance. Using gene knockout analysis, we demonstrate that highly expressed myosins XI, especially myosin XI-K, are the primary contributors to cell wall-mediated penetration resistance. Moreover, the quadruple myosin knockout mutant xi-1 xi-2 xi-i xi-k displays impaired trafficking pathway responsible for the accumulation of PEN1 at the cell periphery. Strikingly, this mutant shows not only increased penetration rate but also enhanced overall disease susceptibility to both adapted and nonadapted fungal pathogens. Our findings establish myosins XI as key regulators of plant antifungal immunity. PMID:25201952

  18. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    PubMed Central

    Simón-Vázquez, Rosana; Lozano-Fernández, Tamara; Dávila-Grana, Angela; González-Fernández, Africa

    2016-01-01

    Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps) was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO) to study the three most relevant mitogen-activated protein kinase subfamilies and the nuclear factor kappa-light-chain-enhancer of the activated B-cell inhibitor, IκBα, as well as the expression of several genes by immune cells incubated with these Nps. The moNps activated different signaling pathways and altered the gene expression in human lymphocyte cells. The ZnO Nps were the most active and the release of Zn2+ ions was the main mechanism of toxicity. CeO2 Nps induced the smallest changes in gene expression and in the IκBα protein. The effects of the particles were strongly dependent on the type and concentration of the Nps and on the cell activation status prior to Np exposure. PMID:27695324

  19. Molecular deconstruction, detection, and computational prediction of microenvironment-modulated cellular responses to cancer therapeutics

    PubMed Central

    LaBarge, Mark A; Parvin, Bahram; Lorens, James B

    2014-01-01

    The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments has revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes, and in a number of cases has revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. PMID:24582543

  20. Cellular and humoral antibody responses of normal pastel and sapphire mink to goat erythrocytes.

    PubMed

    Lodmell, D L; Bergman, R K; Hadlow, W J; Munoz, J J

    1971-02-01

    This study was undertaken to determine whether normal sapphire and royal pastel mink differ immunologically at the cellular and humoral levels. Two days after primary intraperitoneal (ip) inoculation of goat erythrocytes (GE), essentially no 19 or 7S plaque-forming cells (PFC) per 10(6) cells were detected in spleen or in abdominal and peripheral lymph nodes of either color phase. On the 4th day, more 19S PFC were detected in pastel than in sapphire tissues; pastel tissues also contained 7S PFC, whereas essentially none was present in sapphires until the 6th day. After an ip booster inoculation, the number of PFC was markedly different between the two color phases. These differences were most apparent in spleen and peripheral lymph nodes. In parallel with differences observed in PFC responses between the color phases, total hemolysin and 2-mercaptoethanol-resistant hemolysin titers of pastels exceeded those of sapphires in all but one interval after the primary, and at every interval after the booster, inoculation. These data indicate that sapphire mink are not immunological cripples, nor are they immunologically hyperactive, but that differences do exist between sapphire and royal pastel mink, especially in the response to booster injections of GE.

  1. Rab3 is involved in cellular immune responses of the cotton bollworm, Helicoverpa armigera.

    PubMed

    Li, Jie; Song, Cai-Xia; Li, Yu-Ping; Li, Li; Wei, Xiu-Hong; Wang, Jia-Lin; Liu, Xu-Sheng

    2015-06-01

    Rab3, a member of the Rab GTPase family, has been found to be involved in innate immunity. However, the precise function of this GTPase in innate immunity remains unknown. In this study, we identified a Rab3 gene (Ha-Rab3) from the cotton bollworm, Helicoverpa armigera and studied its roles in innate immune responses. Expression of Ha-Rab3 was upregulated in the hemocytes of H. armigera larvae after the injection of Escherichia coli or chromatography beads. The dsRNA-mediated knockdown of Ha-Rab3 gene in H. armigera larval hemocytes led to significant reduction in the phagocytosis and nodulation activities of hemocytes against E. coli, significant increase in the bacterial load in larval hemolymph, and significant reduction in the encapsulation activities of hemocytes toward invading chromatography beads. Furthermore, Ha-Rab3 knockdown significantly suppressed spreading of plasmatocytes. These results suggest that Ha-Rab3 plays important roles in H. armigera cellular immune responses, possibly by mediating spreading of hemocytes.

  2. Protein arginylation regulates cellular stress response by stabilizing HSP70 and HSP40 transcripts

    PubMed Central

    Deka, Kamalakshi; Singh, Archana; Chakraborty, Surajit; Mukhopadhyay, Rupak; Saha, Sougata

    2016-01-01

    ATE1-mediated post-translational addition of arginine to a protein has been shown to regulate activity, interaction, and stability of the protein substrates. Arginylation has been linked to many different stress conditions, namely ER stress, cytosolic misfolded protein stress, and nitrosative stress. However, clear understanding about the effect of arginylation in cellular stress responses is yet to emerge. In this study, we investigated the role of arginylation in heat-stress response. Our findings suggest that Ate1 knock out (KO) cells are more susceptible to heat stress compared with its wild-type counterparts due to the induction of apoptosis in KO cells. Gene expression analysis of inducible heat-shock proteins (HSP70.1, HSP70.3, and HSP40) showed induction of these genes in KO cells early in the heat shock, but were drastically diminished at the later period of heat shock. Further analysis revealed that loss of ATE1 drastically reduced the stability of all three HSP mRNAs. These phenotypes were greatly restored by overexpression of Ate1 in KO cells. Our findings show that arginylation plays a protective role during heat stress by regulating HSP gene expression and mRNA stability. PMID:27752365

  3. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    PubMed Central

    Simón-Vázquez, Rosana; Lozano-Fernández, Tamara; Dávila-Grana, Angela; González-Fernández, Africa

    2016-01-01

    Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps) was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO) to study the three most relevant mitogen-activated protein kinase subfamilies and the nuclear factor kappa-light-chain-enhancer of the activated B-cell inhibitor, IκBα, as well as the expression of several genes by immune cells incubated with these Nps. The moNps activated different signaling pathways and altered the gene expression in human lymphocyte cells. The ZnO Nps were the most active and the release of Zn2+ ions was the main mechanism of toxicity. CeO2 Nps induced the smallest changes in gene expression and in the IκBα protein. The effects of the particles were strongly dependent on the type and concentration of the Nps and on the cell activation status prior to Np exposure.

  4. Rab3 is involved in cellular immune responses of the cotton bollworm, Helicoverpa armigera.

    PubMed

    Li, Jie; Song, Cai-Xia; Li, Yu-Ping; Li, Li; Wei, Xiu-Hong; Wang, Jia-Lin; Liu, Xu-Sheng

    2015-06-01

    Rab3, a member of the Rab GTPase family, has been found to be involved in innate immunity. However, the precise function of this GTPase in innate immunity remains unknown. In this study, we identified a Rab3 gene (Ha-Rab3) from the cotton bollworm, Helicoverpa armigera and studied its roles in innate immune responses. Expression of Ha-Rab3 was upregulated in the hemocytes of H. armigera larvae after the injection of Escherichia coli or chromatography beads. The dsRNA-mediated knockdown of Ha-Rab3 gene in H. armigera larval hemocytes led to significant reduction in the phagocytosis and nodulation activities of hemocytes against E. coli, significant increase in the bacterial load in larval hemolymph, and significant reduction in the encapsulation activities of hemocytes toward invading chromatography beads. Furthermore, Ha-Rab3 knockdown significantly suppressed spreading of plasmatocytes. These results suggest that Ha-Rab3 plays important roles in H. armigera cellular immune responses, possibly by mediating spreading of hemocytes. PMID:25662061

  5. Cellular and Humoral Antibody Responses of Normal Pastel and Sapphire Mink to Goat Erythrocytes

    PubMed Central

    Lodmell, D. L.; Bergman, R. K.; Hadlow, W. J.; Munoz, J. J.

    1971-01-01

    This study was undertaken to determine whether normal sapphire and royal pastel mink differ immunologically at the cellular and humoral levels. Two days after primary intraperitoneal (ip) inoculation of goat erythrocytes (GE), essentially no 19 or 7S plaque-forming cells (PFC) per 106 cells were detected in spleen or in abdominal and peripheral lymph nodes of either color phase. On the 4th day, more 19S PFC were detected in pastel than in sapphire tissues; pastel tissues also contained 7S PFC, whereas essentially none was present in sapphires until the 6th day. After an ip booster inoculation, the number of PFC was markedly different between the two color phases. These differences were most apparent in spleen and peripheral lymph nodes. In parallel with differences observed in PFC responses between the color phases, total hemolysin and 2-mercaptoethanol-resistant hemolysin titers of pastels exceeded those of sapphires in all but one interval after the primary, and at every interval after the booster, inoculation. These data indicate that sapphire mink are not immunological cripples, nor are they immunologically hyperactive, but that differences do exist between sapphire and royal pastel mink, especially in the response to booster injections of GE. PMID:16557957

  6. Cellular responses to disruption of the permeability barrier in a three-dimensional organotypic epidermal model

    SciTech Connect

    Ajani, Gati; Sato, Nobuyuki; Mack, Judith A.; Maytin, Edward V. . E-mail: maytine@ccf.org

    2007-08-15

    Repeated injury to the stratum corneum of mammalian skin (caused by friction, soaps, or organic solvents) elicits hyperkeratosis and epidermal thickening. Functionally, these changes serve to restore the cutaneous barrier and protect the organism. To better understand the molecular and cellular basis of this response, we have engineered an in vitro model of acetone-induced injury using organotypic epidermal cultures. Rat epidermal keratinocytes (REKs), grown on a collagen raft in the absence of any feeder fibroblasts, developed all the hallmarks of a true epidermis including a well-formed cornified layer. To induce barrier injury, REK cultures were treated with intermittent 30-s exposures to acetone then were fixed and paraffin-sectioned. After two exposures, increased proliferation (Ki67 and BrdU staining) was observed in basal and suprabasal layers. After three exposures, proliferation became confined to localized buds in the basal layer and increased terminal differentiation was observed (compact hyperkeratosis of the stratum corneum, elevated levels of K10 and filaggrin, and heightened transglutaminase activity). Thus, barrier disruption causes epidermal hyperplasia and/or enhances differentiation, depending upon the extent and duration of injury. Given that no fibroblasts are present in the model, the ability to mount a hyperplastic response to barrier injury is an inherent property of keratinocytes.

  7. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    PubMed

    Hou, Xingsheng; McMillan, Mary; Coumans, Joëlle V F; Poljak, Anne; Raftery, Mark J; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  8. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds.

    PubMed

    Fazli, Mustafa; Bjarnsholt, Thomas; Kirketerp-Møller, Klaus; Jørgensen, Anne; Andersen, Claus Bøgelund; Givskov, Michael; Tolker-Nielsen, Tim

    2011-01-01

    Chronic wounds are an important problem worldwide. These wounds are characterized by a persistent inflammatory stage associated with excessive accumulation and elevated cell activity of neutrophils, suggesting that there must be a persistent stimulus that attracts and recruits neutrophils to the wound. One such stimulus might be the presence of bacterial biofilms in chronic wounds. In the present study, biopsy specimens from chronic venous leg ulcers were investigated for the detection of bacteria using peptide nucleic acid-based fluorescence in situ hybridization (PNA-FISH) and confocal laser scanning microscopy. The bacteria in the wounds were often situated in large aggregates. To obtain a measure of the cellular inflammatory response against the bacteria in the chronic wounds, the amount of neutrophils accumulated at the site of infection was evaluated through differential neutrophil counting on the tissue sections from wounds containing either Pseudomonas aeruginosa or Staphylococcus aureus. The P. aeruginosa-containing wounds had significantly higher numbers of neutrophils accumulated compared with the S. aureus-containing wounds. These results are discussed in relation to the hypothesis that the presence of P. aeruginosa biofilms in chronic wounds may be one of the main factors leading to a persistent inflammatory response and impaired wound healing.

  9. Interaction of heavy ions with nuclear chromatin: Spatiotemporal investigations of biological responses in a cellular environment

    NASA Astrophysics Data System (ADS)

    Jakob, B.; Taucher-Scholz, G.

    2006-04-01

    Ion beams offer the possibility to generate strictly localized DNA lesions within subregions of a cell nucleus. The distribution of the ion-induced damage can be indirectly visualized by immunocytochemical detection of repair-related proteins as radiation-induced foci. The proteins analyzed here were the double-strand break marker γ-H2AX, the excision repair and replication protein PCNA and the cell cycle regulator CDKN1A. A newly developed adjustable sample holder is now used to apply an irradiation geometry characterized by a small angle between the plane of the cellular monolayer and the incoming ion beam. This allows the spatial analysis of protein accumulations along ion trajectories, revealing an unexpected clustering after irradiation with low-energy zinc ions. The patterns of protein aggregation observed show considerable intrinsic variability, but similar patterns of protein clustering were obtained for functionally different proteins irrespective of the type of ion beam applied, confirming previous observations for lower and higher LET beams. Foci sizes within ion tracks were found to be larger for γ-H2AX foci in comparison to CDKN1A foci, in agreement with the known histone H2AX phosphorylation response. The results suggest that not the pattern of dose deposition but the underlying chromatin structure determines the distribution of protein clusters along tracks. Therefore, the requirement of time-lapse studies using live cells is emphasized for future studies on chromatin movement as a potential component of the DNA damage response.

  10. Molecular deconstruction, detection, and computational prediction of microenvironment-modulated cellular responses to cancer therapeutics.

    PubMed

    Labarge, Mark A; Parvin, Bahram; Lorens, James B

    2014-04-01

    The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments have revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes and in a number of cases have revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus, introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery.

  11. Effect of fibronectin adsorption on osteoblastic cellular responses to hydroxyapatite and alumina.

    PubMed

    Kawashita, Masakazu; Hasegawa, Maki; Kudo, Tada-Aki; Kanetaka, Hiroyasu; Miyazaki, Toshiki; Hashimoto, Masami

    2016-12-01

    Initial cellular responses following implantation are important for inducing osteoconduction. We investigated cell adhesion, spreading, proliferation and differentiation of mouse MC3T3-E1 osteoblastic cells on untreated or fibronectin (Fn)-coated discs of hydroxyapatite (HAp) or alpha-type alumina (α-Al2O3). Fn coating significantly enhanced adhesion and spreading of MC3T3-E1 cells on HAp, but did not affect MC3T3-E1 cell proliferation and differentiation on HAp or α-Al2O3. Fn-coated HAp likely does not stimulate pre-osteoblast cells to initiate the process of osteoconduction; however, Fn adsorption might affect the response of inflammatory cells to the implanted material or, in conjunction with other serum proteins, stimulate pre-osteoblast cell proliferation and differentiation. Further studies on the effect of serum proteins in cell culture and the efficacy of Fn-coated HAp and α-Al2O3in vivo are warranted.

  12. Effect of fibronectin adsorption on osteoblastic cellular responses to hydroxyapatite and alumina.

    PubMed

    Kawashita, Masakazu; Hasegawa, Maki; Kudo, Tada-Aki; Kanetaka, Hiroyasu; Miyazaki, Toshiki; Hashimoto, Masami

    2016-12-01

    Initial cellular responses following implantation are important for inducing osteoconduction. We investigated cell adhesion, spreading, proliferation and differentiation of mouse MC3T3-E1 osteoblastic cells on untreated or fibronectin (Fn)-coated discs of hydroxyapatite (HAp) or alpha-type alumina (α-Al2O3). Fn coating significantly enhanced adhesion and spreading of MC3T3-E1 cells on HAp, but did not affect MC3T3-E1 cell proliferation and differentiation on HAp or α-Al2O3. Fn-coated HAp likely does not stimulate pre-osteoblast cells to initiate the process of osteoconduction; however, Fn adsorption might affect the response of inflammatory cells to the implanted material or, in conjunction with other serum proteins, stimulate pre-osteoblast cell proliferation and differentiation. Further studies on the effect of serum proteins in cell culture and the efficacy of Fn-coated HAp and α-Al2O3in vivo are warranted. PMID:27612826

  13. Epitope specificity of human immunodeficiency virus-1 antibody dependent cellular cytotoxicity [ADCC] responses.

    PubMed

    Pollara, Justin; Bonsignori, Mattia; Moody, M Anthony; Pazgier, Marzena; Haynes, Barton F; Ferrari, Guido

    2013-07-01

    Antibody dependent cellular cytotoxicity [ADCC] has been suggested to play an important role in control of Human Immunodeficiency Virus-1 [HIV-1] viral load and protection from infection. ADCC antibody responses have been mapped to multiple linear and conformational epitopes within the HIV-1 envelope glycoproteins gp120 and gp41. Many epitopes targeted by antibodies that mediate ADCC overlap with those recognized by antibodies capable of virus neutralization. In addition, recent studies conducted with human monoclonal antibodies derived from HIV-1 infected individuals and HIV-1 vaccine-candidate vaccinees have identified a number of antibodies that lack the ability to capture primary HIV-1 isolates or mediate neutralizing activity, but are able to bind to the surface of infected CD4+ T cells and mediate ADCC. Of note, the conformational changes in the gp120 that may not exclusively relate to binding of the CD4 molecule are important in exposing epitopes recognized by ADCC responses. Here we discuss the HIV-1 envelope epitopes targeted by ADCC antibodies in the context of the potential protective capacities of ADCC. PMID:24191939

  14. Studies on the cellular bystander response after exposure to high LET irradiation

    NASA Astrophysics Data System (ADS)

    Fournier, C.; Becker, D.; Heiss, M.; Barberet, P.; Topsch, J.; Winter, M.; Ritter, S.; Taucher-Scholz, G.

    In this study various cellular responses of non-targeted cells following heavy ion exposure of human fibroblasts were investigated Heavy ions are an excellent tool to elucidate the impact of ionisation density on the occurrence of bystander effects An improved understanding of bystander responses is important with respect to risk estimation for accidental or therapeutical radiation exposure Human fibroblasts were exposed to low fluences of heavy ions C Ar and U with LETs in the range of 170 to 15000 keV 956 m traversing only a few cells by a particle For selected endpoints targeted irradiation of single cells was performed using a heavy ion microbeam A medium transfer technique was applied to study the transmission of signals limited to soluble factors At several time intervals after exposure the cell cycle progression FACS the expression of CDKN1A and other cycle regulators Western blot immuno-fluorescence and the amount of intracellular reactive oxygen species ROS DCF fluorescence were assessed In addition the frequencies of sister chromatid exchanges SCE and the number of cells containing micronuclei MN were determined 3 days after exposure as indicators for changes or damage on chromosomal level in bystander cells An overall induction of CDKN1A but no distinct clusters of cells bearing an elevated expression level in the direct neighbourhood of the hit cells were observed several hours after exposure This effect was accompanied by a transient delay in the initial G1 phase after exposure The question was addressed whether the cell

  15. Generally detected genes in comparative transcriptomics in bivalves: toward the identification of molecular markers of cellular stress response.

    PubMed

    Miao, Jingjing; Chi, Luping; Pan, Luqing; Song, Ying

    2015-01-01

    The specificity and representativeness of protein-coding genes identified by transcriptomics as biomarkers for environmental toxicological stress is crucial. We extracted the differential gene expression profile data from 49 published comparative transcriptomic studies of bivalves from January 2004 till November 2014 performed in 15 different bivalve species. Among the studies, 77 protein-coding genes were frequently detected when we use threefold of the average detection frequency as cut-off. Cellular organization and communication, protein and energy metabolism, stress response are the main functional classes of these proteins. We consider if these protein-coding genes represent common cellular stress responses of bivalves.

  16. The reconstitution of the thymus in immunosuppressed individuals restores CD4-specific cellular and humoral immune responses

    PubMed Central

    Plana, Montserrat; Garcia, Felipe; Darwich, Laila; Romeu, Joan; López, Anna; Cabrera, Cecilia; Massanella, Marta; Canto, Esther; Ruiz-Hernandez, Raul; Blanco, Julià; Sánchez, Marcelo; Gatell, Josep M; Clotet, Bonaventura; Ruiz, Lidia; Bofill, Margarita

    2011-01-01

    Infection with HIV-1 frequently results in the loss of specific cellular immune responses and an associated lack of antibodies. Recombinant growth hormone (rGH) administration reconstitutes thymic tissue and boosts the levels of peripheral T cells, so rGH therapy may be an effective adjuvant through promoting the recovery of lost cellular and T-cell-dependent humoral immune responses in immunosuppressed individuals. To test this concept, we administered rGH to a clinically defined group of HIV-1-infected subjects with defective cellular and serological immune responses to at least one of three commonly employed vaccines (hepatitis A, hepatitis B or tetanus toxoid). Of the original 278 HIV-1-infected patients entering the trial, only 20 conformed to these immunological criteria and were randomized into three groups: Group A (n = 8) receiving rGH and challenged with the same vaccine to which they were unresponsive and Groups B (n = 5) and C (n = 7) who received either rGH or vaccination alone, respectively. Of the eight subjects in Group A, five recovered CD4 cellular responses to vaccine antigen and four of these produced the corresponding antibodies. In the controls, three of the five in group B recovered cellular responses with two producing antibodies, whereas three of the seven in Group C recovered CD4 responses, with only two producing antibodies. Significantly, whereas seven of ten patients receiving rGH treatment in Group A (six patients) and B (one patient) recovered T-cell responses to HIVp24, only two of six in Group C responded similarly. In conclusion, reconstitution of the thymus in immunosuppressed adults through rGH hormone treatment restored both specific antibody and CD4 T-cell responses. PMID:21501161

  17. HIV-1 Transgenic Rats Display Alterations in Immunophenotype and Cellular Responses Associated with Aging

    PubMed Central

    Abbondanzo, Susan J.; Chang, Sulie L.

    2014-01-01

    Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg) rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS) to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients. PMID:25127062

  18. Intraventricular and interventricular cellular heterogeneity of inotropic responses to α(1)-adrenergic stimulation.

    PubMed

    Chu, Charles; Thai, Kevin; Park, Ki Wan; Wang, Paul; Makwana, Om; Lovett, David H; Simpson, Paul C; Baker, Anthony J

    2013-04-01

    α1-Adrenergic receptors (α1-ARs) elicit a negative inotropic effect (NIE) in the mouse right ventricular (RV) myocardium but a positive inotropic effect (PIE) in the left ventricular (LV) myocardium. Effects on myofilament Ca(2+) sensitivity play a role, but effects on Ca(2+) handling could also contribute. We monitored the effects of α1-AR stimulation on contraction and Ca(2+) transients using single myocytes isolated from the RV or LV. Interestingly, for both the RV and LV, we found heterogeneous myocyte inotropic responses. α1-ARs mediated either a PIE or NIE, although RV myocytes had a greater proportion of cells manifesting a NIE (68%) compared with LV myocytes (36%). Stimulation of a single α1-AR subtype (α1A-ARs) with a subtype-selective agonist also elicited heterogeneous inotropic responses, suggesting that the heterogeneity arose from events downstream of the α1A-AR subtype. For RV and LV myocytes, an α1-AR-mediated PIE was associated with an increased Ca(2+) transient and a NIE was associated with a decreased Ca(2+) transient, suggesting a key role for Ca(2+) handling. For RV and LV myocytes, α1-AR-mediated decreases in the Ca(2+) transient were associated with increased Ca(2+) export from the cell and decreased Ca(2+) content of the sarcoplasmic reticulum. In contrast, for myocytes with α1-AR-induced increased Ca(2+) transients, sarcoplasmic reticulum Ca(2+) content was not increased, suggesting that other mechanisms contributed to the increased Ca(2+) transients. This study demonstrates the marked heterogeneity of LV and RV cellular inotropic responses to stimulation of α1-ARs and reveals a new aspect of biological heterogeneity among myocytes in the regulation of contraction.

  19. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests.

    PubMed

    Hellweg, Christine E; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CellRad, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CellRad in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  20. Space experiment "Cellular Responses to Radiation in Space (CELLRAD)": Hardware and biological system tests

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine E.; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F.; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CELLRAD, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CELLRAD in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  1. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests.

    PubMed

    Hellweg, Christine E; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CellRad, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CellRad in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  2. Assessment of the cellular and electrophysiological response of cardiomyocytes to radiation

    NASA Astrophysics Data System (ADS)

    Helm, Alexander; Ritter, Sylvia; Durante, Marco; Friess, Johannes; Thielemann, Christiane; Mr; Frank, Simon

    Cardiac disease is considered as a late effect resulting from an exposure during long-term space missions. Yet, the underlying mechanisms and the impact of radiation quality and dose are not well understood. To address this topic, we used cardiomyocytes derived from mouse embryonic stem cells (mESC) as a model system. This model has already been successfully used for cardiotoxicity screening of new drugs. Both, the cellular and electrophysiological response to X-ray irradiation were examined. Cellular endpoints such as the induction of micronuclei, apoptosis, number of binucleated cells and expression of connexin43 (Cx 43) were analyzed by standard techniques. For electrophysiological studies a microelectrode array (MEA) was used allowing non-invasive recordings of electrical signals such as signal amplitude and shape, beat rate and conduction velocity. Data analysis was performed using the MATLAB based software DrCell. As a first approach, cardiomyocytes were generated by differentiation of mESC via the formation of embryoid bodies. However, the system proved to be unsuitable due to large intra- and inter-sample variations. In consecutive experiments we used commercially available Cor.At cells, i.e. a pure culture of mESC derived cardiomyocytes. For the analysis of cellular and electrophysiological endpoints Cor.At cells were seeded onto chamber slides or MEA chips, respectively. Irradiation with 0.5 and 2 Gy X-rays (250 kV, 16 mA) was performed two days after seeding. At that time cardiomyocytes are electrically coupled through gap junctions and form a spontaneously beating network. Samples were examined up to four days after exposure. Analysis of the electrophysiological data revealed only minor differences between controls and X-irradiated samples indicating the functionality of cardiomyocytes is not within the dose range examined. Currently, further experiments are performed to statistically verify this finding. Additionally, the expression of Cx 43, a major

  3. The molecular and cellular response of normal and progressed human bronchial epithelial cells to HZE particles

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Larsen, Jill

    We have used a model of non-oncogenically immortalized normal human bronchial epithelial cells to determine the response of such cells to particles found outside the protection of the earth’s electromagnetic field. We have identified an enhanced frequency of cellular transformation, as measured by growth in soft agar, for both 56Fe and 28Si (1 GeV/n) that is maximal (4-6 fold) at 0.25 Gy and 0.40 Gy, respectively. At 4 months post-irradiation 38 individual soft agar clones were isolated. These clones were characterized extensively for cellular and molecular changes. Gene expression analysis suggested that these clones had down-regulated several genes associated with anti-oxidant pathways including GLS2, GPX1 and 4, SOD2, PIG3, and NQO1 amongst others. As a result, many of these transformed clones were exposed to high levels of intracellular radical oxygen species (ROS), although there appeared not to be any enhanced mitochondrial ROS. DNA repair pathways associated with ATM/ATR signaling were also upregulated. However, these transformants do not develop into tumors when injected into immune-compromised mice, suggesting that they have not progressed sufficiently to become oncogenic. Therefore we chose 6 soft agar clones for continuous culture for an additional 14 months. Amongst the 6 clones, only one clone showed any significant change in phenotype. Clone 3kt-ff.2a, propagated for 18 months, were 2-fold more radioresistant, had a shortened doubling time and the background rate of transformation more than doubled. Furthermore, the morphology of transformed clones changed. Clones from this culture are being compared to the original clone as well as the parental HBEC3KT and will be injected into immune-compromised mice for oncogenic potential. Oncogenically progressed HBECs, HBEC3KT cells that overexpress a mutant RAS gene and where p53 has been knocked down, designated HBEC3KTR53, responded quite differently to HZE particle exposure. First, these cells are more

  4. Signaling pathways involved in PDGF-evoked cellular responses in human RPE cells

    SciTech Connect

    Hollborn, Margrit . E-mail: hollbm@medizin.uni-leipzig.de; Bringmann, Andreas; Faude, Frank; Wiedemann, Peter; Kohen, Leon

    2006-06-09

    We examined whether PDGF may directly stimulate the expression of VEGF by retinal pigment epithelial (RPE) cells in vitro, and the involvement of three signal transduction pathways in the regulation of PDGF-evoked cell proliferation, migration, and production of VEGF-A was investigated. PDGF stimulated the gene and protein expression of VEGF-A by RPE cells, and increased cell proliferation and chemotaxis. PDGF activated all signaling pathways investigated, as determined by increased phosphorylation levels of ERK1/2, p38, and Akt proteins. The three signaling pathways were involved in the mediation of PDGF-evoked cell proliferation, while p38 and PI3K mediated cell migration, and PI3K mediated secretion of VEGF-A. In addition to VEGF-A, the cells expressed mRNAs for various members of the VEGF family and for their receptors, including VEGF-B, -C, -D, flt-1, and KDR. The data indicate that PDGF selectively stimulates the expression of VEGF-A in RPE cells. PDGF evokes at least three signal transduction pathways which are differentially involved in various cellular responses.

  5. C-type lectin from red swamp crayfish Procambarus clarkii participates in cellular immune response.

    PubMed

    Zhang, Xiao-Wen; Wang, Xian-Wei; Sun, Chen; Zhao, Xiao-Fan; Wang, Jin-Xing

    2011-03-01

    Lectins are potential immune recognition proteins. In this study, a novel C-type lectin (Pc-Lec1) is reported in freshwater crayfish Procambarus clarkii. Pc-Lec1 encodes a protein of 163 amino acids with a putative signal peptide and a single carbohydrate recognition domain. It was constitutively expressed in various tissues of a normal crayfish, especially in the hepatopancreas and gills. Expressions of Pc-Lec1 were up-regulated in the hepatopancreas and gills of crayfish challenged with Vibrio anguillarum, Staphylococcus aureus, or the white spot syndrome virus. Recombinant mature Pc-Lec1 bound bacteria and polysaccharides (peptidoglycan, lipoteichoic acid, and lipopolysaccharide) but did not agglutinate bacteria. Pc-Lec1 enhanced hemocyte encapsulation of the sepharose beads in vitro, and the blocking of beads by a polyclonal antibody inhibited encapsulation. Pc-Lec1 promoted clearance of V. anguillarum in vivo. These results suggest that Pc-Lec1 is a pattern recognition receptor and participates in cellular immune response. Pc-Lec1 performs its function as an opsonin by enhancing the encapsulation or clearance of pathogenic bacteria.

  6. Temporal regulation of cerebellar EGL migration through a switch in cellular responsiveness to the meninges.

    PubMed

    Zhu, Yan; Yu, Tao; Rao, Yi

    2004-03-01

    We have studied the temporal and spatial control of cell migration from the external germinal layer (EGL) in the mammalian cerebellum as a model for cortical migration. Our results have demonstrated that embryonic EGL cells do not migrate into internal layers because they respond to a diffusible attractant in the meninges, the nonneural tissues covering the nervous system, and to a repellent in the neuroepithelium. Two developmental changes are important for postnatal EGL migration: the disappearance of the repellent in the inner layers and a switch in cellular responsiveness of EGL cells so that the postnatal EGL cells respond to the repellent, but not the attractant in the meninges. Besides revealing the signaling role of meninges in cortical development, our study suggests that an active mechanism is required to prevent cell migration, and that mechanisms of cell migration should be studied even in the absence of apparent changes in cell positions. We propose a model for the developmental control of neuronal migration in the cerebellar cortex.

  7. Kinin Peptides Enhance Inflammatory and Oxidative Responses Promoting Apoptosis in a Parkinson's Disease Cellular Model

    PubMed Central

    Kozik, Andrzej

    2016-01-01

    Kinin peptides ubiquitously occur in nervous tissue and participate in inflammatory processes associated with distinct neurological disorders. These substances have also been demonstrated to promote the oxidative stress. On the other hand, the importance of oxidative stress and inflammation has been emphasized in disorders that involve the neurodegenerative processes such as Parkinson's disease (PD). A growing number of reports have demonstrated the increased expression of kinin receptors in neurodegenerative diseases. In this study, the effect of bradykinin and des-Arg10-kallidin, two representative kinin peptides, was analyzed with respect to inflammatory response and induction of oxidative stress in a PD cellular model, obtained after stimulation of differentiated SK-N-SH cells with a neurotoxin, 1-methyl-4-phenylpyridinium. Kinin peptides caused an increased cytokine release and enhanced production of reactive oxygen species and NO by cells. These changes were accompanied by a loss of cell viability and a greater activation of caspases involved in apoptosis progression. Moreover, the neurotoxin and kinin peptides altered the dopamine receptor 2 expression. Kinin receptor expression was also changed by the neurotoxin. These results suggest a mediatory role of kinin peptides in the development of neurodegeneration and may offer new possibilities for its regulation by using specific antagonists of kinin receptors. PMID:27721576

  8. Bacterial formyl peptides affect the innate cellular antimicrobial responses of larval Galleria mellonella (Insecta: Lepidoptera).

    PubMed

    Alavo, Thiery B C; Dunphy, Gary B

    2004-04-01

    The non-self cellular (hemocytic) responses of Galleria mellonella larvae, including the attachment to slides and the removal of the bacteria Xenorhabdus nematophila and Bacillus subtilis from the hemolymph, were affected by N-formyl peptides. Both N-formyl methionyl-leucyl-phenylalanine (fMLF) and the ester derivative decreased hemocyte adhesion in vitro, and both elevated hemocyte counts and suppressed the removal of both X. nematophila and B. subtilis from the hemolymph in vivo. The amide derivative and the antagonist tertiary-butoxy-carbonyl-methionyl-leucyl-phenylalanine (tBOC) increased hemocyte attachment to glass. The fMLF suppressed protein discharge from monolayers of granular cells with and without bacterial stimulation, while tBOC stimulated protein discharge. The peptide tBOC offset the effects of fMLF in vitro and in vivo. This is the first report implying the existence of formyl peptide receptors on insect hemocytes in which the compounds fMLF and tBOC inhibited and activated hemocyte activity, respectively.

  9. Cellular response to high pulse repetition rate nanosecond pulses varies with fluorescent marker identity.

    PubMed

    Steelman, Zachary A; Tolstykh, Gleb P; Beier, Hope T; Ibey, Bennett L

    2016-09-23

    Nanosecond electric pulses (nsEP's) are a well-studied phenomena in biophysics that cause substantial alterations to cellular membrane dynamics, internal biochemistry, and cytoskeletal structure, and induce apoptotic and necrotic cell death. While several studies have attempted to measure the effects of multiple nanosecond pulses, the effect of pulse repetition rate (PRR) has received little attention, especially at frequencies greater than 100 Hz. In this study, uptake of Propidium Iodide, FM 1-43, and YO-PRO-1 fluorescent dyes in CHO-K1 cells was monitored across a wide range of PRRs (5 Hz-500 KHz) using a laser-scanning confocal microscope in order to better understand how high frequency repetition rates impact induced biophysical changes. We show that frequency trends depend on the identity of the dye under study, which could implicate transmembrane protein channels in the uptake response due to their chemical selectivity. Finally, YO-PRO-1 fluorescence was monitored in the presence of Gadolinium (Gd(3+)), Ruthenium Red, and in calcium-free solution to elucidate a mechanism for its unique frequency trend. PMID:27553279

  10. An atomic force microscope operating at hypergravity for in situ measurement of cellular mechano-response.

    PubMed

    van Loon, J J W A; van Laar, M C; Korterik, J P; Segerink, F B; Wubbels, R J; de Jong, H A A; van Hulst, N F

    2009-02-01

    We present a novel atomic force microscope (AFM) system, operational in liquid at variable gravity, dedicated to image cell shape changes of cells in vitro under hypergravity conditions. The hypergravity AFM is realized by mounting a stand-alone AFM into a large-diameter centrifuge. The balance between mechanical forces, both intra- and extracellular, determines both cell shape and integrity. Gravity seems to be an insignificant force at the level of a single cell, in contrast to the effect of gravity on a complete (multicellular) organism, where for instance bones and muscles are highly unloaded under near weightless (microgravity) conditions. However, past space flights and ground based cell biological studies, under both hypogravity and hypergravity conditions have shown changes in cell behaviour (signal transduction), cell architecture (cytoskeleton) and proliferation. Thus the role of direct or indirect gravity effects at the level of cells has remained unclear. Here we aim to address the role of gravity on cell shape. We concentrate on the validation of the novel AFM for use under hypergravity conditions. We find indications that a single cell exposed to 2 to 3 x g reduces some 30-50% in average height, as monitored with AFM. Indeed, in situ measurements of the effects of changing gravitational load on cell shape are well feasible by means of AFM in liquid. The combination provides a promising technique to measure, online, the temporal characteristics of the cellular mechano-response during exposure to inertial forces. PMID:19220689

  11. Endoplasmic reticulum stress as a novel cellular response to di (2-ethylhexyl) phthalate exposure.

    PubMed

    Peropadre, Ana; Fernández Freire, Paloma; Pérez Martín, José Manuel; Herrero, Óscar; Hazen, María José

    2015-12-25

    Di (2-ethylhexyl) phthalate is a high-production chemical widely used as a plasticizer for polyvinyl chloride products. Due to its ubiquitous presence in environmental compartments and the constant exposure of the general population through ingestion, inhalation, and dermal absorption, this compound has been subjected to extensive in vivo and in vitro toxicological studies. Despite the available information, research on the cytotoxicity of di (2-ethylhexyl) phthalate in mammalian cells is relatively limited.In this paper, an in vitro multi-parametric approach was used to provide further mechanistic data on the toxic activity of this chemical in Vero and HaCaT cells. Our results reveal that a 24 h exposure to di (2-ethylhexyl) phthalate causes, in both cell lines, an inhibition of cell proliferation that was linked to cell cycle delay at the G1 phase. Concomitantly, the tested compound induces mild endoplasmic reticulum stress which leads to an adaptive rather than a pro-apoptotic response in mammalian cells. These findings demonstrate that there are multiple potential cellular targets of di (2-ethylhexyl) phthalate-induced toxicity and the need to develop further experimental studies for the risk assessment of this ubiquitous plasticizer.

  12. Effects of parasitism on cellular immune response in sheep experimentally infected with Haemonchus contortus.

    PubMed

    Ortolani, Enrico Lippi; Leal, Marta Lizandra do Rêgo; Minervino, Antonio Humberto Hamad; Aires, Adelina R; Coop, Robert L; Jackson, Frank; Suttle, Neville F

    2013-09-01

    This work aimed to study the possible relationships among the magnitude of abomasal worm burden and the proliferation of globular leucocytes and mucosal mast cells in the abomasal mucosa, and the white blood cell count. Eighteen Suffolk × Greyface lambs were infected with Haemonchus contortus, and 12 were kept free of nematodes. Blood samples were collected on days 0, 30, and 57 post-infection (p.i.) for leucogram determination. At day 62, all animals were euthanized to count the total number of nematodes recovered in the abomasum and to count the number of mucosal mast cells and globular leucocytes. On day 57, higher levels of parasitism corresponded to lower leucocyte counts. The infected groups had lower lymphocyte counts throughout the experimental period. Animals with higher numbers of parasites had lower neutrophil and eosinophil counts on day 57. The lower the worm burden, the greater the number of mucosal mast cells (r=-0.85; p<0.01) and globular leucocytes (r=-0.87, p<0.01) observed. The sheep most resistant to haemochosis had greater peripheral and tissue cellular immune responses. PMID:23522899

  13. Substrate recognition and function of the R2TP complex in response to cellular stress

    PubMed Central

    von Morgen, Patrick; Hořejší, Zuzana; Macurek, Libor

    2015-01-01

    The R2TP complex is a HSP90 co-chaperone, which consists of four subunits: PIH1D1, RPAP3, RUVBL1, and RUVBL2. It is involved in the assembly of large protein or protein–RNA complexes such as RNA polymerase, small nucleolar ribonucleoproteins (snoRNPs), phosphatidylinositol 3 kinase-related kinases (PIKKs), and their complexes. While RPAP3 has a HSP90 binding domain and the RUVBLs comprise ATPase activities important for R2TP functions, PIH1D1 contains a PIH-N domain that specifically recognizes phosphorylated substrates of the R2TP complex. In this review we provide an overview of the current knowledge of the R2TP complex with the focus on the recently identified structural and mechanistic features of the R2TP complex functions. We also discuss the way R2TP regulates cellular response to stress caused by low levels of nutrients or by DNA damage and its possible exploitation as a target for anti-cancer therapy. PMID:25767478

  14. Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses.

    PubMed

    Yao, Ruijuan; He, Jing; Meng, Guolong; Jiang, Bo; Wu, Fang

    2016-06-01

    Electrospinning of hybrid polymer has gained widespread interest by taking advantages of the biological property of the natural polymer and the mechanical property of the synthetic polymer. However, the effect of the blend ratio on the above two properties has been less reported despite the importance to balance these two properties in various tissue engineering applications. To this aim, we investigated the electrospun PCL/Gelatin composite fibrous scaffolds with different blend ratios of 4:1, 2:1, 1:1, 1:2, 1:4, respectively. The morphology of the electrospun samples was observed by SEM and the result showed that the fiber diameter distribution became more uniform with the increase of the gelatin content. The mechanical testing results indicated that the 2:1 PCL/Gelatin sample had both the highest tensile strength of 3.7 MPa and the highest elongation rate of about 90%. Surprisingly, the 2:1 PCL/Gelatin sample also showed the best mesenchymal stem cell responses in terms of attachment, spreading, and cytoskeleton organization. Such correlation might be partly due to the fact that the enhanced mechanical property, an integral part of the physical microenvironment, likely played an important role in regulating the cellular functions. Overall, our results indicated that the PCL/Gelatin sample with the blend ratio of 2:1 was a superior candidate for scaffolds for tissue engineering applications. PMID:27044505

  15. Endoplasmic reticulum stress as a novel cellular response to di (2-ethylhexyl) phthalate exposure.

    PubMed

    Peropadre, Ana; Fernández Freire, Paloma; Pérez Martín, José Manuel; Herrero, Óscar; Hazen, María José

    2015-12-25

    Di (2-ethylhexyl) phthalate is a high-production chemical widely used as a plasticizer for polyvinyl chloride products. Due to its ubiquitous presence in environmental compartments and the constant exposure of the general population through ingestion, inhalation, and dermal absorption, this compound has been subjected to extensive in vivo and in vitro toxicological studies. Despite the available information, research on the cytotoxicity of di (2-ethylhexyl) phthalate in mammalian cells is relatively limited.In this paper, an in vitro multi-parametric approach was used to provide further mechanistic data on the toxic activity of this chemical in Vero and HaCaT cells. Our results reveal that a 24 h exposure to di (2-ethylhexyl) phthalate causes, in both cell lines, an inhibition of cell proliferation that was linked to cell cycle delay at the G1 phase. Concomitantly, the tested compound induces mild endoplasmic reticulum stress which leads to an adaptive rather than a pro-apoptotic response in mammalian cells. These findings demonstrate that there are multiple potential cellular targets of di (2-ethylhexyl) phthalate-induced toxicity and the need to develop further experimental studies for the risk assessment of this ubiquitous plasticizer. PMID:26514933

  16. Shape Effect of Glyco-Nanoparticles on Macrophage Cellular Uptake and Immune Response

    PubMed Central

    2016-01-01

    The shells of various poly(dl-lactide)-b-poly(acrylic acid) (PDLLA-b-PAA) spherical micelles and poly(l-lactide)-b-poly(acrylic acid) (PLLA-b-PAA) cylindrical micelles were functionalized with mannose to yield glyco-nanoparticles (GNPs) with different shapes and dimensions. All of these GNPs were shown to have good biocompatibility (up to 1 mg/mL). Cellular uptake experiments using RAW 264.7 have shown that the spherical GNPs were internalized to a much greater extent than the cylindrical GNPs and such a phenomenon was attributed to their different endocytosis pathways. It was demonstrated that spherical GNPs were internalized based on clathrin- and caveolin-mediated endocytosis while cylindrical GNPs mainly depended on clathrin-mediated endocytosis. We also found that longer cylindrical GNPs (Ln × Wn = 215 × 47 nm) can induce an inflammatory response (specifically interleukin 6) more efficiently than shorter cylindrical GNPs (Ln × Wn = 99 × 50 nm) and spherical GNPs (Dn = 46 nm). PMID:27695648

  17. Cellular and molecular responses to increased skeletal muscle loading after irradiation

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Caiozzo, Vincent J.; Haddad, Fadia; Baldwin, Kenneth M.

    2002-01-01

    Irradiation of rat skeletal muscles before increased loading has been shown to prevent compensatory hypertrophy for periods of up to 4 wk, possibly by preventing satellite cells from proliferating and providing new myonuclei. Recent work suggested that stem cell populations exist that might allow irradiated muscles to eventually hypertrophy over time. We report that irradiation essentially prevented hypertrophy in rat muscles subjected to 3 mo of functional overload (OL-Ir). The time course and magnitude of changes in cellular and molecular markers of anabolic and myogenic responses were similar in the OL-Ir and the contralateral nonirradiated, overloaded (OL) muscles for the first 3-7 days. These markers then returned to control levels in OL-Ir muscles while remaining elevated in OL muscles. The number of myonuclei and amount of DNA were increased markedly in OL but not OL-Ir muscles. Thus it appears that stem cells were not added to the irradiated muscles in this time period. These data are consistent with the theory that the addition of new myonuclei may be required for compensatory hypertrophy in the rat.

  18. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

    SciTech Connect

    Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S; Neve, Richard M; Das, Debopriya; Gray, Joe W; Groves, Jay T

    2009-09-09

    Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitative analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.

  19. Protein ADP-ribosylation and the cellular response to DNA strand breaks.

    PubMed

    Caldecott, K W

    2014-07-01

    DNA strand breaks arise continuously in cells and can lead to chromosome rearrangements and genome instability or cell death. The commonest DNA breaks are DNA single-strand breaks, which arise at a frequency of tens-of-thousands per cell each day and which can block the progression of RNA/DNA polymerases and disrupt gene transcription and genome duplication. If not rapidly repaired, SSBs can be converted into DNA double-strand breaks (DSBs) during genome duplication, eliciting a complex series of DNA damage responses that attempt to protect cells from irreversible replication fork collapse. DSBs are the most cytotoxic and clastogenic type of DNA breaks, and can also arise independently of DNA replication, albeit at a frequency several orders of magnitude lower than SSBs. Here, I discuss the evidence that DNA single- and double -strand break repair pathways, and cellular tolerance mechanisms for protecting replication forks during genome duplication, utilize signalling by protein ADP-ribosyltransferases to protect cells from the harmful impact of DNA strand breakage.

  20. Beneficial effects of low dose radiation in response to the oncogenic KRAS induced cellular transformation.

    PubMed

    Kim, Rae-Kwon; Kim, Min-Jung; Seong, Ki Moon; Kaushik, Neha; Suh, Yongjoon; Yoo, Ki-Chun; Cui, Yan-Hong; Jin, Young Woo; Nam, Seon Young; Lee, Su-Jae

    2015-01-01

    Recently low dose irradiation has gained attention in the field of radiotherapy. For lack of understanding of the molecular consequences of low dose irradiation, there is much doubt concerning its risks on human beings. In this article, we report that low dose irradiation is capable of blocking the oncogenic KRAS-induced malignant transformation. To address this hypothesis, we showed that low dose irradiation, at doses of 0.1 Gray (Gy); predominantly provide defensive response against oncogenic KRAS -induced malignant transformation in human cells through the induction of antioxidants without causing cell death and acts as a critical regulator for the attenuation of reactive oxygen species (ROS). Importantly, we elucidated that knockdown of antioxidants significantly enhanced ROS generation, invasive and migratory properties and abnormal acini formation in KRAS transformed normal as well as cancer cells. Taken together, this study demonstrates that low dose irradiation reduces the KRAS induced malignant cellular transformation through diminution of ROS. This interesting phenomenon illuminates the beneficial effects of low dose irradiation, suggesting one of contributory mechanisms for reducing the oncogene induced carcinogenesis that intensify the potential use of low dose irradiation as a standard regimen. PMID:26515758

  1. Shape Effect of Glyco-Nanoparticles on Macrophage Cellular Uptake and Immune Response

    PubMed Central

    2016-01-01

    The shells of various poly(dl-lactide)-b-poly(acrylic acid) (PDLLA-b-PAA) spherical micelles and poly(l-lactide)-b-poly(acrylic acid) (PLLA-b-PAA) cylindrical micelles were functionalized with mannose to yield glyco-nanoparticles (GNPs) with different shapes and dimensions. All of these GNPs were shown to have good biocompatibility (up to 1 mg/mL). Cellular uptake experiments using RAW 264.7 have shown that the spherical GNPs were internalized to a much greater extent than the cylindrical GNPs and such a phenomenon was attributed to their different endocytosis pathways. It was demonstrated that spherical GNPs were internalized based on clathrin- and caveolin-mediated endocytosis while cylindrical GNPs mainly depended on clathrin-mediated endocytosis. We also found that longer cylindrical GNPs (Ln × Wn = 215 × 47 nm) can induce an inflammatory response (specifically interleukin 6) more efficiently than shorter cylindrical GNPs (Ln × Wn = 99 × 50 nm) and spherical GNPs (Dn = 46 nm).

  2. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses.

    PubMed

    Shrestha, Roshan P; Hildebrand, Mark

    2015-01-01

    The utilization of silicon by diatoms has both global and small-scale implications, from oceanic primary productivity to nanotechnological applications of their silica cell walls. The sensing and transport of silicic acid are key aspects of understanding diatom silicon utilization. At low silicic acid concentrations (<30 μM), transport mainly occurs through silicic acid transport proteins (SITs), and at higher concentrations it occurs through diffusion. Previous analyses of the SITs were done either in heterologous systems or without a distinction between individual SITs. In the present study, we examined individual SITs in Thalassiosira pseudonana in terms of transcript and protein abundance in response to different silicic acid regimes and examined knockdown lines to evaluate the role of the SITs in transport, silica incorporation, and lipid accumulation resulting from silicon starvation. SIT1 and SIT2 were localized in the plasma membrane, and protein levels were generally inversely correlated with cellular silicon needs, with a distinct response being found when the two SITs were compared. We developed highly effective approaches for RNA interference and antisense knockdowns, the first such approaches developed for a centric diatom. SIT knockdown differentially affected the uptake of silicon and the incorporation of silicic acid and resulted in the induction of lipid accumulation under silicon starvation conditions far earlier than in the wild-type cells, suggesting that the cells were artificially sensing silicon limitation. The data suggest that the transport role of the SITs is relatively minor under conditions with sufficient silicic acid. Their primary role is to sense silicic acid levels to evaluate whether the cell can proceed with its cell wall formation and division processes.

  3. Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA)-power plant studies: assessment of cellular responses

    PubMed Central

    Godleski, John J.; Diaz, Edgar A.; Lemos, Miriam; Long, Mark; Ruiz, Pablo; Gupta, Tarun; Kang, Choong-Min; Coull, Brent

    2013-01-01

    The Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA) project assessed primary and secondary particulate by simulating the chemical reactions that a plume from a source might undergo during atmospheric transport and added other atmospheric constituents that might interact with it. Three coal-fired power plants with different coal and different emission controls were used. Male Sprague-Dawley rats were exposed for 6 h to either filtered air or aged aerosol from the power plant. Four exposure scenarios were studied: primary particles (P); primary + secondary (oxidized) particles (PO); primary + secondary (oxidized) particles + SOA (POS); and primary + secondary (oxidized) particles neutralized + SOA (PONS). Exposure concentrations varied by scenario to a maximum concentration of 257.1 ± 10.0 µg/m3. Twenty-four hours after exposure, pulmonary cellular responses were assessed by bronchoalveolar lavage (BAL), complete blood count (CBC), and histopathology. Exposure to the PONS and POS scenarios produced significant increases in BAL total cells and macrophage numbers at two plants. The PONS and P scenarios were associated with significant increases in BAL neutrophils and the presence of occasional neutrophils and increased macrophages in the airways and alveoli of exposed animals. Univariate analyses and random forest analyses showed that increases in total cell count and macrophage cell count were significantly associated with neutralized sulfate and several correlated measurements. Increases in neutrophils in BAL were associated with zinc. There were no significant differences in CBC parameters or blood vessel wall thickness by histopathology. The association between neutrophils increases and zinc raises the possibility that metals play a role in this response. PMID:21466245

  4. Single-cell bioelectrical impedance platform for monitoring cellular response to drug treatment.

    PubMed

    Asphahani, Fareid; Wang, Kui; Thein, Myo; Veiseh, Omid; Yung, Sandy; Xu, Jian; Zhang, Miqin

    2011-02-01

    The response of cells to a chemical or biological agent in terms of their impedance changes in real-time is a useful mechanism that can be utilized for a wide variety of biomedical and environmental applications. The use of a single-cell-based analytical platform could be an effective approach to acquiring more sensitive cell impedance measurements, particularly in applications where only diminutive changes in impedance are expected. Here, we report the development of an on-chip cell impedance biosensor with two types of electrodes that host individual cells and cell populations, respectively, to study its efficacy in detecting cellular response. Human glioblastoma (U87MG) cells were patterned on single- and multi-cell electrodes through ligand-mediated natural cell adhesion. We comparatively investigated how these cancer cells on both types of electrodes respond to an ion channel inhibitor, chlorotoxin (CTX), in terms of their shape alternations and impedance changes to exploit the fine detectability of the single-cell-based system. The detecting electrodes hosting single cells exhibited a significant reduction in the real impedance signal, while electrodes hosting confluent monolayer of cells showed little to no impedance change. When single-cell electrodes were treated with CTX of different doses, a dose-dependent impedance change was observed. This enables us to identify the effective dose needed for this particular treatment. Our study demonstrated that this single-cell impedance system may potentially serve as a useful analytical tool for biomedical applications such as environmental toxin detection and drug evaluation.

  5. Single-cell bioelectrical impedance platform for monitoring cellular response to drug treatment

    NASA Astrophysics Data System (ADS)

    Asphahani, Fareid; Wang, Kui; Thein, Myo; Veiseh, Omid; Yung, Sandy; Xu, Jian; Zhang, Miqin

    2011-02-01

    The response of cells to a chemical or biological agent in terms of their impedance changes in real-time is a useful mechanism that can be utilized for a wide variety of biomedical and environmental applications. The use of a single-cell-based analytical platform could be an effective approach to acquiring more sensitive cell impedance measurements, particularly in applications where only diminutive changes in impedance are expected. Here, we report the development of an on-chip cell impedance biosensor with two types of electrodes that host individual cells and cell populations, respectively, to study its efficacy in detecting cellular response. Human glioblastoma (U87MG) cells were patterned on single- and multi-cell electrodes through ligand-mediated natural cell adhesion. We comparatively investigated how these cancer cells on both types of electrodes respond to an ion channel inhibitor, chlorotoxin (CTX), in terms of their shape alternations and impedance changes to exploit the fine detectability of the single-cell-based system. The detecting electrodes hosting single cells exhibited a significant reduction in the real impedance signal, while electrodes hosting confluent monolayer of cells showed little to no impedance change. When single-cell electrodes were treated with CTX of different doses, a dose-dependent impedance change was observed. This enables us to identify the effective dose needed for this particular treatment. Our study demonstrated that this single-cell impedance system may potentially serve as a useful analytical tool for biomedical applications such as environmental toxin detection and drug evaluation.

  6. A New In Vitro Model to Study Cellular Responses after Thermomechanical Damage in Monolayer Cultures

    PubMed Central

    Hettler, Alice; Werner, Simon; Eick, Stefan; Laufer, Stefan; Weise, Frank

    2013-01-01

    Although electrosurgical instruments are widely used in surgery to cut tissue layers or to achieve hemostasis by coagulation (electrocautery), only little information is available concerning the inflammatory or immune response towards the debris generated. Given the elevated local temperatures required for successful electrocautery, the remaining debris is likely to contain a plethora of compounds entirely novel to the intracorporal setting. A very common in vitro method to study cell migration after mechanical damage is the scratch assay, however, there is no established model for thermomechanical damage to characterise cellular reactions. In this study, we established a new in vitro model to investigate exposure to high temperature in a carefully controlled cell culture system. Heatable thermostat-controlled aluminium stamps were developed to induce local damage in primary human umbilical vein endothelial cells (HUVEC). The thermomechanical damage invoked is reproducibly locally confined, therefore allowing studies, under the same experimental conditions, of cells affected to various degrees as well as of unaffected cells. We show that the unaffected cells surrounding the thermomechanical damage zone are able to migrate into the damaged area, resulting in a complete closure of the ‘wound’ within 48 h. Initial studies have shown that there are significant morphological and biological differences in endothelial cells after thermomechanical damage compared to the mechanical damage inflicted by using the unheated stamp as a control. Accordingly, after thermomechanical damage, cell death as well as cell protection programs were activated. Mononuclear cells adhered in the area adjacent to thermomechanical damage, but not to the zone of mechanical damage. Therefore, our model can help to understand the differences in wound healing during the early phase of regeneration after thermomechanical vs. mechanical damage. Furthermore, this model lends itself to study the

  7. Cellular responses to low-gravity: Pilot studies on suborbital rockets and orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1993-01-01

    The allocated funding supported, in part, experiments conducted on two Consort sounding rockets and five Shuttle flights. The primary parameters investigated were signal transduction in response to various mediators, cellular differentiation and metabolism in microgravity, and effect of microgravity on cytoskeletal morphology. Achievements include: demonstration of effect of spaceflight on the actin cytoskeleton in mouse osteoblasts and frog cells; confirmation that the T cell receptor-mediated signal transduction pathway in T lymphocytes is not affected by low-gravity compared to non-TCR-mediated stimulation (Con-A) which classically does not promote proliferative response; indication that microgravity may allow separation of proliferative signaling and secretory function in lymphocytes; demonstration that T lymphocytes and bone cells utilized less glucose indicating a shift in metabolism and confirming Spacelab results with WI-38 cells which used significantly less glucose, during spaceflight; confirmation that activation of human splenic B cells with a number of different mediators is not affected during spaceflight; demonstration of increased prostaglandin synthesis during reduced bone cell growth suggesting an effect of microgravity on prostaglandin-induced mitogenesis. The funding contributed significantly to the database described above and resulted in submission of six collaborative abstracts in 1993 (five to the ASGSB Annual Meeting and one to the ASCB Annual Meeting). Two abstracts were presented at the 1992 ASGSB Annual Meeting in Tucson. In addition, several peer reviewed papers are being generated and data will be included as background in preparation of future proposals, which hopefully will allow us to continue this type of extremely productive collaborative research.

  8. Proteomic-based mechanistic investigation of low-dose radiation-induced cellular responses/effects

    SciTech Connect

    Chen, Xian

    2013-10-23

    The goal of our project is to apply our unique systems investigation strategy to reveal the molecular mechanisms underlying the radiation induction and transmission of oxidative damage, adaptive response, and bystander effect at low-doses. Beginning with simple in vitro systems such as fibroblast or epithelial pure culture, our amino acid-coded mass tagging (AACT) comparative proteomic platform will be used to measure quantitatively proteomic changes at high- or low-dose level with respect to their endogenous damage levels respectively, in which a broad range of unique regulated proteins sensitive to low-dose IR will be distinguished. To zoom in how these regulated proteins interact with other in the form of networks in induction/transmission pathways, these regulated proteins will be selected as baits for making a series of fibroblast cell lines that stably express each of them. Using our newly developed method of ?dual-tagging? quantitative proteomics that integrate the capabilities of natural complex expression/formation, simple epitope affinity isolation (not through tandem affinity purification or TAP), and ?in-spectra? AACT quantitative measurements using mass spectrometry (MS), we will be able to distinguish systematically interacting proteins with each bait in real time. Further, in addition to both proteome-wide (global differentially expressed proteins) and pathway-scale (bait-specific) profiling information, we will perform a computational network analysis to elucidate a global pathway/mechanisms underlying cellular responses to real-time low-dose IR. Similarly, we will extend our scheme to investigate systematically those induction/transmission pathways occurring in a fibroblast-epithelial interacting model in which the bystander cell (fibroblast) monitor the IR damage to the target cell (epithelial cell). The results will provide the proteome base (molecular mechanisms/pathways for signaling) for the low dose radiation-induced essential tissue

  9. Evolution of a Cellular Immune Response in Drosophila: A Phenotypic and Genomic Comparative Analysis

    PubMed Central

    Salazar-Jaramillo, Laura; Paspati, Angeliki; van de Zande, Louis; Vermeulen, Cornelis Joseph; Schwander, Tanja; Wertheim, Bregje

    2014-01-01

    Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila. PMID:24443439

  10. Tuberculosis in HIV-positive patients: cellular response and immune activation in the lung.

    PubMed

    Law, K F; Jagirdar, J; Weiden, M D; Bodkin, M; Rom, W N

    1996-04-01

    The host response to Mycobacterium tuberculosis is dependent on the accumulation and activation of cytotoxic and memory CD4+ T cells, resulting in granuloma formation and delayed type hypersensitivity. We characterized the cellular response of radiographically involved lung segments from 17 HIV-positive and 11 HIV-negative patients with acute tuberculosis (TB) using bronchoalveolar lavage (BAL) and compared the response to uninvolved segments, normal control subjects and peripheral blood. In both HIV-positive and HIV-negative patients, radiographically involved segments had significantly increased numbers of total cells per milliliter, percent of neutrophils recovered, and percent of lymphocytes recovered compared with uninvolved segments or normal control subjects, but HIV-positive patients had a lower proportion of lymphocytes in the involved segments than HIV-negative patients with tuberculosis (19 +/- 5% versus 33 +/- 5%; p < 0.05). Lymphocyte subset analysis demonstrated that HIV-positive patients had markedly reduced percentages of CD4+ lymphocytes (CD4+ lymphocytes in HIV-positive TB involved site 25 +/- 6%; HIV-negative TB involved site 73 +/- 2%; p < 0.01) and an increase in the percentage of CD8+ lymphocytes (HIV positive involved site 61 +/- 6% versus HIV negative involved site 19 +/- 3%; p < 0.01). Immunohistochemistry of lung biopsy tissue in five HIV-negative patients showed similar lymphocyte subset profiles as BAL, indicating that BAL reflects cell populations in tissue granulomas. BAL lymphocytes from four HIV-positive and four HIV-negative tuberculosis patients demonstrated immune activation by staining with a murine antibody to TIA-1, a cytoplasmic protein associated with cytotoxicity and apoptosis (HIV positive 48 +/- 6%, HIV negative 31 +/- 7%, normals 11 +/- 5%). Steady state mRNA for gamma-interferon was decreased in four HIV-positive patients when compared with four HIV-negative patients. IL-8 production was comparable in HIV-negative and

  11. Toxicity of cadmium in Japanese quail: Evaluation of body weight, hepatic and renal function, and cellular immune response

    SciTech Connect

    Sant'Ana, M.G.; Moraes, R.; Bernardi, M.M. . E-mail: bernarde@usp.com

    2005-10-01

    Cadmium (Cd) is an environmental pollutant that is able to alter the immune function. Previous studies have shown that, in mammals, chronic exposure to Cd decreases the release of macrophagic cytokines such as IL1 and TN{alpha} and decreases phagocytosis activity. On the other hand contradictory results showed an increase in the humoral response. The cellular response could be decreased by exposure to Cd. These alterations were observed in mammals. The present study aimed to investigate some of the toxic effects of Cd exposure in birds. In particular, the main objective of this work was to elucidate the effects of exposure to this pollutant on the cellular immune function of the Japanese quail as a model for the study of toxicity in animals exposed in nature. The animals were exposed to the metal (100 ppm, per os) during development, i.e., from 1 to 28 days old. Body weight, biochemical parameters, and cellular immune response were measured during and at the end of treatment. The results showed that the exposure to Cd for 28 days significantly reduced the body weight and induced hepatic toxicity. The kidney function and cellular immune response were not affected by the Cd exposure.

  12. Genetically defined race, but not sex, is associated with higher humoral and cellular immune responses to measles vaccination.

    PubMed

    Voigt, Emily A; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Larrabee, Beth R; Schaid, Daniel J; Poland, Gregory A

    2016-09-22

    In addition to host genetic and environmental factors, variations in immune responses to vaccination are influenced by demographic variables, such as race and sex. The influence of genetic race and sex on measles vaccine responses is not well understood, yet important for the development of much-needed improved measles vaccines with lower failure rates. We assessed associations between genetically defined race and sex with measles humoral and cellular immunity after measles vaccination in three independent and geographically distinct cohorts totaling 2872 healthy racially diverse children, older adolescents, and young adults. We found no associations between biological sex and either humoral or cellular immunity to measles vaccine, and no correlation between humoral and cellular immunity in these study subjects. Genetically defined race was, however, significantly associated with both measles vaccine-induced humoral and cellular immune responses, with subjects genetically classified as having African-American ancestry demonstrating significantly higher antibody and cell-mediated immune responses relative to subjects of Caucasian ancestry. This information may be useful in designing novel measles vaccines that are optimally effective across human genetic backgrounds. PMID:27591105

  13. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration.

    PubMed

    Reale, Marcella; Kamal, Mohammad A; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-), which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  14. Neuronal Cellular Responses to Extremely Low Frequency Electromagnetic Field Exposure: Implications Regarding Oxidative Stress and Neurodegeneration

    PubMed Central

    Reale, Marcella; Kamal, Mohammad A.; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H.

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2−, which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  15. The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver.

    PubMed

    Chorley, Brian; Ward, William; Simmons, Steven O; Vallanat, Beena; Veronesi, Bellina

    2014-12-01

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5 ppm) to a set of nanoAg of different sizes (10nm, 75 nm) and coatings (PVP, citrate) and their physicochemical, cellular and genomic response measured. Both coatings retained their manufactured sizes in culture media, however, the zeta potentials of both sizes of PVP-coated nanoAg were significantly less electronegative than those of their citrate-coated counterparts. Markers of oxidative stress, measured at 0.5-5 ppm exposure concentrations, indicated that caspase 3/7 activity and glutathione levels were significantly increased by both sizes of PVP-coated nanoAg and by the 75 nm citrate-coated nanoAg. Both sizes of PVP-coated nanoAg also increased intra-neuronal nitrite levels and activated ARE/NRF2, a reporter gene for the oxidative stress-protection pathway. Global gene expression on N27 neurons, exposed to 0.5 ppm for 8h, indicated a dominant effect by PVP-coated nanoAg over citrate. The 75 nm PVP-coated material altered 196 genes that were loosely associated with mitochondrial dysfunction. In contrast, the 10nm PVP-coated nanoAg altered 82 genes that were strongly associated with NRF2 oxidative stress pathways. Less that 20% of the affected genes were shared by both sizes of PVP-coated nanoAg. These cellular and genomic findings suggest that PVP-coated nanoAg is more bioactive than citrate-coated nanoAg. Although both sizes of PVP-coated nanoAg altered the genomic expression of N27 neurons along oxidative stress pathways, exposure to the 75 nm nanoAg favored pathways associated with mitochondrial dysfunction, whereas the 10nm PVP-coated nanoAg affected NRF2 neuronal protective pathways.

  16. Transcriptome and Proteome Dynamics of the Cellular Response of Shewanella oneidensis to Chromium Stress

    SciTech Connect

    Thompson, D.K.

    2005-04-18

    The overall goal of this DOE NABIR project is to characterize the molecular basis and regulation of hexavalent chromium [Cr(VI)] stress response and reduction by Shewanella oneidensis strain MR-1. Temporal genomic profiling and mass spectrometry-based proteomic analysis were employed to characterize the dynamic molecular response of S. oneidensis MR-1 to both acute and chronic Cr(VI) exposure. The acute stress response of aerobic, mid-exponential phase cells shocked to a final concentration of 1 mM potassium chromate (K2CrO4) was examined at post-exposure time intervals of 5, 30, 60, and 90 min relative to untreated cells. The transcriptome of mid-exponential cultures was also analyzed 30 min after shock doses of 0.3, 0.5, or 1 mM K{sub 2}CrO{sub 4}. The tonB1-exbB1-exbD1 genes comprising the TonB1 iron transport system were some of the most highly induced coding sequences (CDSs) after 90 min (up to {approx}240 fold), followed by other genes involved in heme transport, sulfate transport, and sulfur assimilation pathways. In addition, transcript levels for CDSs with annotated functions in DNA repair (dinP, recX, recA, recN) and detoxification processes (so3585, so3586) were substantially increased in Cr(VI)-exposed cells compared to untreated cells. By contrast, genes predicted to encode hydrogenases (HydA, HydB), oxidoreductases (SO0902-03-04, SO1911), iron-sulfur cluster binding proteins (SO4404), decaheme cytochrome c proteins (MtrA, OmcA, OmcB), and a number of LysR or TetR family transcriptional regulators were some of the most highly repressed CDSs following the 90-min shock period. Transcriptome profiles generated from MR-1 cells adapted to 0.3 mM Cr(VI) differed significantly from those characterizing cells exposed to acute Cr(VI) stress without adaptation. Parallel proteomic characterization of soluble protein and membrane protein fractions extracted from Cr(VI)-shocked and Cr(VI)-adapted MR-1 cells was performed using multidimensional HPLC-ESI-MS/MS (both

  17. SILICOMB PEEK Kirigami cellular structures: mechanical response and energy dissipation through zero and negative stiffness

    NASA Astrophysics Data System (ADS)

    Virk, K.; Monti, A.; Trehard, T.; Marsh, M.; Hazra, K.; Boba, K.; Remillat, C. D. L.; Scarpa, F.; Farrow, I. R.

    2013-08-01

    The work describes the manufacturing, testing and parametric analysis of cellular structures exhibiting zero Poisson’s ratio-type behaviour, together with zero and negative stiffness effects. The cellular structures are produced in flat panels and curved configurations, using a combination of rapid prototyping techniques and Kirigami (Origami and cutting) procedures for PEEK (Polyether Ether Ketone) thermoplastic composites. The curved cellular configurations show remarkable large deformation behaviours, with zero and negative stiffness regimes depending also on the strain rate applied. These unusual stiffness characteristics lead to a large increase of energy absorption during cyclic tests.

  18. Pattern recognition and cellular immune responses to novel Mycobacterium tuberculosis-antigens in individuals from Belarus

    PubMed Central

    2012-01-01

    Background Tuberculosis (TB) is an enduring health problem worldwide and the emerging threat of multidrug resistant (MDR) TB and extensively drug resistant (XDR) TB is of particular concern. A better understanding of biomarkers associated with TB will aid to guide the development of better targets for TB diagnosis and for the development of improved TB vaccines. Methods Recombinant proteins (n = 7) and peptide pools (n = 14) from M. tuberculosis (M.tb) antigens associated with M.tb pathogenicity, modification of cell lipids or cellular metabolism, were used to compare T cell immune responses defined by IFN-γ production using a whole blood assay (WBA) from i) patients with TB, ii) individuals recovered from TB and iii) individuals exposed to TB without evidence of clinical TB infection from Minsk, Belarus. Results We identified differences in M.tb target peptide recognition between the test groups, i.e. a frequent recognition of antigens associated with lipid metabolism, e.g. cyclopropane fatty acyl phospholipid synthase. The pattern of peptide recognition was broader in blood from healthy individuals and those recovered from TB as compared to individuals suffering from pulmonary TB. Detection of biologically relevant M.tb targets was confirmed by staining for intracellular cytokines (IL-2, TNF-α and IFN-γ) in T cells from non-human primates (NHPs) after BCG vaccination. Conclusions PBMCs from healthy individuals and those recovered from TB recognized a broader spectrum of M.tb antigens as compared to patients with TB. The nature of the pattern recognition of a broad panel of M.tb antigens will devise better strategies to identify improved diagnostics gauging previous exposure to M.tb; it may also guide the development of improved TB-vaccines. PMID:22336002

  19. The nucleotidohydrolases DCTPP1 and dUTPase are involved in the cellular response to decitabine.

    PubMed

    Requena, Cristina E; Pérez-Moreno, Guiomar; Horváth, András; Vértessy, Beáta G; Ruiz-Pérez, Luis M; González-Pacanowska, Dolores; Vidal, Antonio E

    2016-09-01

    Decitabine (5-aza-2'-deoxycytidine, aza-dCyd) is an anti-cancer drug used clinically for the treatment of myelodysplastic syndromes and acute myeloid leukaemia that can act as a DNA-demethylating or genotoxic agent in a dose-dependent manner. On the other hand, DCTPP1 (dCTP pyrophosphatase 1) and dUTPase are two 'house-cleaning' nucleotidohydrolases involved in the elimination of non-canonical nucleotides. In the present study, we show that exposure of HeLa cells to decitabine up-regulates the expression of several pyrimidine metabolic enzymes including DCTPP1, dUTPase, dCMP deaminase and thymidylate synthase, thus suggesting their contribution to the cellular response to this anti-cancer nucleoside. We present several lines of evidence supporting that, in addition to the formation of aza-dCTP (5-aza-2'-deoxycytidine-5'-triphosphate), an alternative cytotoxic mechanism for decitabine may involve the formation of aza-dUMP, a potential thymidylate synthase inhibitor. Indeed, dUTPase or DCTPP1 down-regulation enhanced the cytotoxic effect of decitabine producing an accumulation of nucleoside triphosphates containing uracil as well as uracil misincorporation and double-strand breaks in genomic DNA. Moreover, DCTPP1 hydrolyses the triphosphate form of decitabine with similar kinetic efficiency to its natural substrate dCTP and prevents decitabine-induced global DNA demethylation. The data suggest that the nucleotidohydrolases DCTPP1 and dUTPase are factors involved in the mode of action of decitabine with potential value as enzymatic targets to improve decitabine-based chemotherapy.

  20. Respiratory symptoms, lung function, and nasal cellularity in Indonesian wood workers: a dose-response analysis

    PubMed Central

    Borm, P; Jetten, M; Hidayat, S; van de Burgh, N; Leunissen, P; Kant, I; Houba, R; Soeprapto, H

    2002-01-01

    Objectives: It was hypothesised that inflammation plays a dominant part in the respiratory effects of exposure to wood dust. The purpose of this study was to relate the nasal inflammatory responses of workers exposed to meranti wood dust to (a) levels of exposure, (b) respiratory symptoms and (c) respiratory function. Methods: A cross sectional study was carried out in 1997 in a woodworking plant that used mainly meranti, among 982 workers exposed to different concentrations of wood dust. Personal sampling (n=243) of inhalable dust measurements indicated mean exposure in specific jobs, and enabled classification of 930 workers in three exposure classes (<2, 2–5, and >5 mg/m3) based on job title. Questionnaires were used to screen respiratory symptoms in the entire population. Lung function was measured with two different techniques, conventional flow-volume curves and the forced oscillation technique. Nasal lavage was done to assess inflammation in the upper respiratory tract. Results: A negative trend between years of employment and most flow-volume variables was found in men, but not in women workers. Current exposure, however, was not related to spirometric outcomes, respiratory symptoms, or nasal cellularity. Some impedance variables were related to current exposure but also with better function at higher exposure. Conclusions: Exposure to meranti wood dust did not cause an inflammation in the upper respiratory tract nor an increase of respiratory symptoms or decrease of lung function. These data do not corroborate the hypothesis that inflammation plays a part in airway obstruction induced by wood dust. PMID:11983850

  1. Cellular and transcriptional responses in Microcystis aeruginosa exposed to two antibiotic contaminants.

    PubMed

    Liu, Ying; Zhang, Jian; Gao, Baoyu

    2015-04-01

    The responses of Microcystis aeruginosa under exposure to spiramycin and amoxicillin were investigated on both cellular and genetic levels through a 7-day exposure test. Algal growth was inhibited by spiramycin while promoted by amoxicillin at test concentrations of 0.6-1.8 μg L(-1), indicating a higher toxicity of spiramycin than amoxicillin. During the whole exposure period, the chlorophyll a content and expression levels of psbA, psaB, and rbcL were significantly inhibited by spiramycin at test concentrations of 1.2 and 1.8 μg L(-1) (p < 0.05) and stimulated by 0.6-1.8 μg L(-1) of amoxicillin (p < 0.05), with respective decreases of up to 26, 75, 72, and 82% compared to the control and respective increases of 20, 70, 135, and 55%. During the 4 to 7 days of exposure, the microcystin-LR content and expression levels of mcyB and grpE were reduced by up to 66, 47, and 72% in spiramycin-treated algal cells, respectively, and stimulated by up to 1.3-, 1.4-, and 1.5-folds in amoxicillin-treated algal cells, respectively. Elevated recA expression was only observed in 1.2 and 1.8 μg L(-1) of spiramycin-treated algal cells, indicating severe DNA damage due to the high toxicity. Target antibiotics were suspected to regulate the growth and microcystin-production in M. aeruginosa via the photosynthesis system.

  2. Activation of WIP1 Phosphatase by HTLV-1 Tax Mitigates the Cellular Response to DNA Damage

    PubMed Central

    Dayaram, Tajhal; Lemoine, Francene J.; Donehower, Lawrence A.; Marriott, Susan J.

    2013-01-01

    Genomic instability stemming from dysregulation of cell cycle checkpoints and DNA damage response (DDR) is a common feature of many cancers. The cancer adult T cell leukemia (ATL) can occur in individuals infected with human T cell leukemia virus type 1 (HTLV-1), and ATL cells contain extensive chromosomal abnormalities, suggesting that they have defects in the recognition or repair of DNA damage. Since Tax is the transforming protein encoded by HTLV-1, we asked whether Tax can affect cell cycle checkpoints and the DDR. Using a combination of flow cytometry and DNA repair assays we showed that Tax-expressing cells exit G1 phase and initiate DNA replication prematurely following damage. Reduced phosphorylation of H2AX (γH2AX) and RPA2, phosphoproteins that are essential to properly initiate the DDR, was also observed in Tax-expressing cells. To determine the cause of decreased DDR protein phosphorylation in Tax-expressing cells, we examined the cellular phosphatase, WIP1, which is known to dephosphorylate γH2AX. We found that Tax can interact with Wip1 in vivo and in vitro, and that Tax-expressing cells display elevated levels of Wip1 mRNA. In vitro phosphatase assays showed that Tax can enhance Wip1 activity on a γH2AX peptide target by 2-fold. Thus, loss of γH2AX in vivo could be due, in part, to increased expression and activity of WIP1 in the presence of Tax. siRNA knockdown of WIP1 in Tax-expressing cells rescued γH2AX in response to damage, confirming the role of WIP1 in the DDR. These studies demonstrate that Tax can disengage the G1/S checkpoint by enhancing WIP1 activity, resulting in reduced DDR. Premature G1 exit of Tax-expressing cells in the presence of DNA lesions creates an environment that tolerates incorporation of random mutations into the host genome. PMID:23405243

  3. Cellular immune response of patients with neurocysticercosis (inflammatory and non-inflammatory phases).

    PubMed

    Bueno, Ednéia Casagranda; dos Ramos Machado, Luís; Livramento, José Antônio; Vaz, Adelaide José

    2004-07-01

    The cellular immune response in neurocysticercosis (NC) was studied in 22 patients, 11 (50%) of them in the inflammatory phase of the disease, by means of immunophenotyping of cells in cerebrospinal fluid (CSF) and peripheral blood (PB), lymphoproliferation assay with Taenia solium total saline extract (Tso) and Taenia crassiceps vesicular fluid (Tcra) as stimuli, and by determining the cytokine production profile in the cell culture supernatant. A higher mean percentage of CD19+ and CD56+ cells was observed in the CSF samples from inflammatory (16.8 and 11.3%) and non-inflammatory NC-patients (14.1 and 8.4%) when compared with the control group (CG, 7.6 and 5.4%). The CSF samples from inflammatory NC-patients also showed a higher percentage of HCAM (19.1%) and ICAM (44.9%) adhesion molecules when compared to CG (3.1 and 4.8%). The inflammatory phase showed predominance of CD8+ cells (CSF 26.6% and PB 36.2%) when compared with non-inflammatory phase (CSF 21.5% and PB 29.0%). All cell populations identified in the CSF from NC-patients showed cell activation (CD69+). The cell populations identified in PB showed higher expression of CD69 during the inflammatory phase, while only CD4+ cells presented no cell activation during the non-inflammatory phase. The antigen-specific lymphoproliferation assay showed mean positive results (stimulation index, SI > or = 2.5) only for cells from inflammatory NC-patients (Tcra 3.2 and Tso 5.4), but less intense than the CG (Tcra 5.7 and Tso 8.9). The cytokine production profile when using Tso antigen as stimuli showed differences between NC-patients with inflammatory (production of IL-4/IL-12/TNF-alpha/ICAM/VCAM) and non-inflammatory phase (production of IL-6/IL-10/IL-12/TNF-alpha/ICAM/VCAM). A prevalence of Th2 profile was observed in nine (69%) of the 13 (62% of total) NC-patients presenting positive SI. Cells from inflammatory NC-patients showed a predominance of a Th1 response upon in vitro stimulation, while those from non

  4. Adaptive Posttranslational Control in Cellular Stress Response Pathways and Its Relationship to Toxicity Testing and Safety Assessment.

    PubMed

    Zhang, Qiang; Bhattacharya, Sudin; Pi, Jingbo; Clewell, Rebecca A; Carmichael, Paul L; Andersen, Melvin E

    2015-10-01

    Although transcriptional induction of stress genes constitutes a major cellular defense program against a variety of stressors, posttranslational control directly regulating the activities of preexisting stress proteins provides a faster-acting alternative response. We propose that posttranslational control is a general adaptive mechanism operating in many stress pathways. Here with the aid of computational models, we first show that posttranslational control fulfills two roles: (1) handling small, transient stresses quickly and (2) stabilizing the negative feedback transcriptional network. We then review the posttranslational control pathways for major stress responses-oxidative stress, metal stress, hyperosmotic stress, DNA damage, heat shock, and hypoxia. Posttranslational regulation of stress protein activities occurs by reversible covalent modifications, allosteric or non-allosteric enzymatic regulations, and physically induced protein structural changes. Acting in feedback or feedforward networks, posttranslational control may establish a threshold level of cellular stress. Sub-threshold stresses are handled adequately by posttranslational control without invoking gene transcription. With supra-threshold stress levels, cellular homeostasis cannot be maintained and transcriptional induction of stress genes and other gene programs, eg, those regulating cell metabolism, proliferation, and apoptosis, takes place. The loss of homeostasis with consequent changes in cellular function may lead to adverse cellular outcomes. Overall, posttranslational and transcriptional control pathways constitute a stratified cellular defense system, handling stresses coherently across time and intensity. As cell-based assays become a focus for chemical testing anchored on toxicity pathways, examination of proteomic and metabolomic changes as a result of posttranslational control occurring in the absence of transcriptomic alterations deserves more attention.

  5. Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans

    PubMed Central

    Abegglen, Lisa M.; Caulin, Aleah F.; Chan, Ashley; Lee, Kristy; Robinson, Rosann; Campbell, Michael S.; Kiso, Wendy K.; Schmitt, Dennis L.; Waddell, Peter J; Bhaskara, Srividya; Jensen, Shane T.; Maley, Carlo C.; Schiffman, Joshua D.

    2016-01-01

    IMPORTANCE Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. OBJECTIVE To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). DESIGN, SETTING, AND PARTICIPANTS A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n = 644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n = 8), patients with LFS (n = 10), and age-matched human controls (n = 11). Human samples were collected at the University of Utah between June 2014 and July 2015. EXPOSURES Ionizing radiation and doxorubicin. MAIN OUTCOMES AND MEASURES Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. RESULTS Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95%CI, 0%–5%]; African wild dog, 8%[95%CI, 0%–16%]; lion, 2%[95%CI, 0% –7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95%CI, 3.14%–6.49%), compared with humans, who have 11% to 25%cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain

  6. Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice.

    PubMed

    Cibulski, Samuel Paulo; Silveira, Fernando; Mourglia-Ettlin, Gustavo; Teixeira, Thais Fumaco; dos Santos, Helton Fernandes; Yendo, Anna Carolina; de Costa, Fernanda; Fett-Neto, Arthur Germano; Gosmann, Grace; Roehe, Paulo Michel

    2016-04-01

    A saponin fraction extracted from Quillaja brasiliensis leaves (QB-90) and a semi-purified aqueous extract (AE) were evaluated as adjuvants in a bovine viral diarrhea virus (BVDV) vaccine in mice. Animals were immunized on days 0 and 14 with antigen plus either QB-90 or AE or an oil-adjuvanted vaccine. Two-weeks after boosting, antibodies were measured by ELISA; cellular immunity was evaluated by DTH, lymphoproliferation, cytokine release and single cell IFN-γ production. Serum anti-BVDV IgG, IgG1 and IgG2b were significantly increased in QB-90- and AE-adjuvanted vaccines. A robust DTH response, increased splenocyte proliferation, Th1-type cytokines and enhanced production of IFN-γ by CD4(+) and CD8(+) T lymphocytes were detected in mice that received QB-90-adjuvanted vaccine. The AE-adjuvanted preparation stimulated humoral responses but not cellular immune responses. These findings reveal that QB-90 is capable of stimulating both cellular and humoral immune responses when used as adjuvant.

  7. Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice.

    PubMed

    Cibulski, Samuel Paulo; Silveira, Fernando; Mourglia-Ettlin, Gustavo; Teixeira, Thais Fumaco; dos Santos, Helton Fernandes; Yendo, Anna Carolina; de Costa, Fernanda; Fett-Neto, Arthur Germano; Gosmann, Grace; Roehe, Paulo Michel

    2016-04-01

    A saponin fraction extracted from Quillaja brasiliensis leaves (QB-90) and a semi-purified aqueous extract (AE) were evaluated as adjuvants in a bovine viral diarrhea virus (BVDV) vaccine in mice. Animals were immunized on days 0 and 14 with antigen plus either QB-90 or AE or an oil-adjuvanted vaccine. Two-weeks after boosting, antibodies were measured by ELISA; cellular immunity was evaluated by DTH, lymphoproliferation, cytokine release and single cell IFN-γ production. Serum anti-BVDV IgG, IgG1 and IgG2b were significantly increased in QB-90- and AE-adjuvanted vaccines. A robust DTH response, increased splenocyte proliferation, Th1-type cytokines and enhanced production of IFN-γ by CD4(+) and CD8(+) T lymphocytes were detected in mice that received QB-90-adjuvanted vaccine. The AE-adjuvanted preparation stimulated humoral responses but not cellular immune responses. These findings reveal that QB-90 is capable of stimulating both cellular and humoral immune responses when used as adjuvant. PMID:27012913

  8. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities

    SciTech Connect

    Lim, Seong-Rin; Schoenung, Julie M.

    2010-08-15

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.

  9. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities.

    PubMed

    Lim, Seong-Rin; Schoenung, Julie M

    2010-01-01

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.

  10. Role of a small G protein Ras in cellular immune response of the beet armyworm, Spodoptera exigua.

    PubMed

    Lee, Seeon; Shrestha, Sony; Prasad, Surakasi Venkata; Kim, Yonggyun

    2011-03-01

    Insect cellular immune responses accompany cytoskeletal rearrangement of hemocytes to exhibit filopodial and pseudopodial extension of their cytoplasm. Small G proteins are postulated to be implicated in the hemocyte cellular processes to perform phagocytosis, nodulation, and encapsulation behaviors. A small G protein ras gene (Se-Ras) was cloned from cDNAs prepared from hemocytes of the beet armyworm, Spodoptera exigua. The open reading frame of Se-Ras encoded 179 amino acids with a predicted molecular weight of 20.0kDa, in which 114 residues at amino terminus were predicted to be a GTP binding domain. It showed high sequence similarities (86.1-92.8%) with known ras genes in other insects. Se-Ras was constitutively expressed in all developmental stages from egg to adult without any significant change in expression levels in response to bacterial challenge. A specific double strand RNA (dsRNA) could knockdown its expression in the hemocytes after 48h post-injection. While the RNA interference (RNAi) did not show any change in total or differential hemocyte counts, it impaired hemocyte behaviors. The RNAi of Se-Ras significantly suppressed hemocyte spreading, cytoskeleton extension, and nodulation behaviors in response to bacterial challenge. Release of prophenoloxidase from oenocytoids was significantly inhibited by the RNAi, which resulted in significant suppression in PO activation in response to an inducer, PGE(2). These results suggest that Se-Ras is implicated in mediating cellular processes of S. exigua hemocytes. This is the first report of Ras role in insect cellular immune response.

  11. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    SciTech Connect

    Roper, Katherine; Coverley, Dawn

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  12. Regulation of Cellular Response Pattern to Phosphorus Ion is a New Target for the Design of Tissue-Engineered Blood Vessel.

    PubMed

    Chen, Wen; Wang, Fangjuan; Zeng, Wen; Sun, Jun; Li, Li; Yang, Mingcan; Sun, Jiansen; Wu, Yangxiao; Zhao, Xiaohui; Zhu, Chuhong

    2015-05-01

    Regulation of cellular response pattern to phosphorus ion (PI) is a new target for the design of tissue-engineered materials. Changing cellular response pattern to high PI can maintain monocyte/macrophage survival in TEBV and the signal of increasing PI can be converted by klotho to the adenosine signals through the regulation of energy metabolism in monocytes/macrophages. PMID:25694105

  13. SINGLE-CELL LEVEL INVESTIGATION OF CYTOSKELETAL/CELLULAR RESPONSE TO EXTERNAL STIMULI

    SciTech Connect

    Hiddessen, A L

    2007-02-26

    A detailed understanding of the molecular mechanisms by which chemical signals control cell behavior is needed if the complex biological processes of embryogenesis, development, health and disease are to be completely understood. Yet, if we are to fully understand the molecular mechanisms controlling cell behavior, measurements at the single cell level are needed to supplement information gained from population level studies. One of the major challenges to accomplishing studies at the single cell level has been a lack of physical tools to complement the powerful molecular biological assays which have provided much of what we currently know about cell behavior. The goal of this exploratory project is the development of an experimental platform that facilitates integrated observation, tracking and analysis of the responses of many individual cells to controlled environmental factors (e.g. extracellular signals). Toward this goal, we developed chemically-patterned microarrays of both adherent and suspension mammalian cell types. A novel chemical patterning methodology, based on photocatalytic lithography, was developed to construct biomolecule and cell arrays that facilitate analysis of biological function. Our patterning techniques rely on inexpensive stamp materials and visible light, and do not necessitate mass transport or specified substrates. Patterned silicon and glass substrates are modified such that there is a non-biofouling polymer matrix surrounding the adhesive regions that target biomolecules and cells. Fluorescence and reflectance microscopy reveal successful patterning of proteins and single to small clusters of mammalian cells. In vitro assays conducted upon cells on the patterned arrays demonstrate the viability of cells interfacing with this synthetic system. Hence, we have successfully established a versatile cell measurement platform which can be used to characterize the molecular regulators of cellular behavior in a variety of important

  14. Driving mechanisms of passive and active transport across cellular membranes as the mechanisms of cell metabolism and development as well as the mechanisms of cellular distance reactions on hormonal expression and the immune response.

    PubMed

    Ponisovskiy, M R

    2011-01-01

    The article presents mechanisms of cell metabolism, cell development, cell activity, and maintenance of cellular stability. The literature is reviewed from the point of view of these concepts. The balance between anabolic and catabolic processes induces chemical potentials in the extracellular and intracellular media. The chemical potentials of these media are defined as the driving forces of both passive and active transport of substances across cellular membranes. The driving forces of substance transport across cellular membranes as in cellular metabolism and in immune responses and hormonal expressions are considered in the biochemical and biophysical models, reflecting the mechanisms for maintenance of stability of the internal medium and internal energy of an organism. The interactions of passive transport and active transport of substances across cellular walls promote cell proliferation, as well as the mechanism of cellular capacitors, promoting remote reactions across distance for hormonal expression and immune responses. The offered concept of cellular capacitors has given the possibility to explain the mechanism of remote responses of cells to new situations, resulting in the appearance of additional agents. The biophysical model develops an explanation of some cellular functions: cellular membrane action have been identified with capacitor action, based on the similarity of the structures and as well as on similarity of biophysical properties of electric data that confirm the action of the compound-specific interactions of cells within an organism, promoting hormonal expressions and immune responses to stabilize the thermodynamic system of an organism. Comparison of a cellular membrane action to a capacitor has given the possibility for the explanations of exocytosis and endocytosis mechanisms, internalization of the receptor-ligand complex, selection as a receptor reaction to a ligand by immune responses or hormonal effects, reflecting cellular

  15. Cellular fibronectin response to supervised moderate aerobic training in patients with type 2 diabetes

    PubMed Central

    Alghadir, Ahmad H.; Gabr, Sami A.; Al-Eisa, Einas

    2016-01-01

    [Purpose] Physical activity is one of the most pivotal targets for the prevention and management of vascular complications, especially endothelial dysfunctions. Cellular fibronectin is an endothelium-derived protein involved in subendothelial matrix assembly. Its plasma levels reflect matrix alterations and vessel wall destruction in patients with type II diabetes. This study investigated the influence of 12 weeks of supervised aerobic training on cellular fibronectin and its relationship with insulin resistance and body weight in type II diabetic subjects. [Subjects and Methods] This study included 50 men with type II diabetes who had a mean age of 48.8 ± 14.6 years and were randomly divided into two groups: an aerobic exercise group (12 weeks, three 50 minutes sessions per week) and control group. To examine changes in cellular fibronectin, glycosylated hemoglobin, insulin resistance, fasting insulin, fasting blood sugar, and lipid profile, 5 ml of blood was taken from the brachial vein of patients before and 48 hours after completion of the exercise period and after 12 hours of fasting at rest. Data analysis was performed using the SPSS-16 software with the independent and paired t-tests. [Results] A significant decrease was observed in body mass index and body fat percentage in the experimental group. Compared with the control group, the aerobic exercise group showed a significant decrease in cellular fibronectin, glycosylated hemoglobin, insulin resistance, fasting insulin, fasting blood sugar, and lipid profile after 12 weeks of aerobic exercise. The change in cellular fibronectin showed positive significant correlation with body mass index, diabetic biomarkers, and physical activity level. [Conclusion] The results showed that supervised aerobic exercise as a stimulus can change the levels of cellular fibronectin as matrix metalloproteinase protein a long with improvement of insulin sensitivity and glycosylated hemoglobin in order to prevent

  16. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response.

    PubMed

    Oguro, Ami; Koyama, Chika; Xu, Jing; Imaoka, Susumu

    2014-02-28

    NADPH-P450 reductase (NPR) was previously found to contribute to the hypoxic response of cells, but the mechanism was not clarified. In this study, we identified a cellular stress response (CSR) as a new factor interacting with NPR by a yeast two-hybrid system. Overexpression of CSR enhanced the induction of erythropoietin and hypoxia response element (HRE) activity under hypoxia in human hepatocarcinoma cell lines (Hep3B), while knockdown of CSR suppressed them. This new finding regarding the interaction of NPR with CSR provides insight into the function of NPR in hypoxic response.

  17. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells.

    PubMed

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko

    2015-12-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR.

  18. Adaptive Posttranslational Control in Cellular Stress Response Pathways and Its Relationship to Toxicity Testing and Safety Assessment

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Pi, Jingbo; Clewell, Rebecca A.; Carmichael, Paul L.; Andersen, Melvin E.

    2015-01-01

    Although transcriptional induction of stress genes constitutes a major cellular defense program against a variety of stressors, posttranslational control directly regulating the activities of preexisting stress proteins provides a faster-acting alternative response. We propose that posttranslational control is a general adaptive mechanism operating in many stress pathways. Here with the aid of computational models, we first show that posttranslational control fulfills two roles: (1) handling small, transient stresses quickly and (2) stabilizing the negative feedback transcriptional network. We then review the posttranslational control pathways for major stress responses—oxidative stress, metal stress, hyperosmotic stress, DNA damage, heat shock, and hypoxia. Posttranslational regulation of stress protein activities occurs by reversible covalent modifications, allosteric or non-allosteric enzymatic regulations, and physically induced protein structural changes. Acting in feedback or feedforward networks, posttranslational control may establish a threshold level of cellular stress. Sub-threshold stresses are handled adequately by posttranslational control without invoking gene transcription. With supra-threshold stress levels, cellular homeostasis cannot be maintained and transcriptional induction of stress genes and other gene programs, eg, those regulating cell metabolism, proliferation, and apoptosis, takes place. The loss of homeostasis with consequent changes in cellular function may lead to adverse cellular outcomes. Overall, posttranslational and transcriptional control pathways constitute a stratified cellular defense system, handling stresses coherently across time and intensity. As cell-based assays become a focus for chemical testing anchored on toxicity pathways, examination of proteomic and metabolomic changes as a result of posttranslational control occurring in the absence of transcriptomic alterations deserves more attention. PMID:26408567

  19. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    PubMed Central

    Landeras-Bueno, Sara; Fernández, Yolanda; Falcón, Ana; Oliveros, Juan Carlos

    2016-01-01

    ABSTRACT Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK) as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection. PMID:27094326

  20. Highlighting a need to distinguish cell cycle signatures from cellular responses to chemotherapeutics in SR-FTIR spectroscopy.

    PubMed

    Hughes, C; Brown, M D; Ball, F J; Monjardez, G; Clarke, N W; Flower, K R; Gardner, P

    2012-12-21

    Previous research has seen difficulties in establishing clear discrimination by principal component analysis (PCA) between drug-treated cells analysed by single point SR-FTIR spectroscopy, relative to multisampling cell monolayers by conventional FTIR. It is suggested that the issue arises due to signal mixing between cellular-response signatures and cell cycle phase contributions in individual cells. Consequently, chemometric distinction of cell spectra treated with multiple drugs is difficult even with supervised methods. In an effort to separate cell cycle chemistry from cellular response chemistry in the spectra, renal carcinoma cells were stained with propidium iodide and fluorescent-activated cell sorted (FACS) after exposure to a number of chemotherapeutic compounds; 5-fluorouracil (5FU) and a set of novel gold-based experimental compounds. The cell spectra were analysed separately by PCA in G(1), S or G(2)/M phase. The mode of action of established drug 5FU, known to disrupt S phase, was confirmed by FACS analysis. The chemical signature of 5FU-treated cells discriminated against both the control and gold-compound (KF0101)-treated cell spectra, suggesting a different mode of action due to a difference in cellular response. PMID:23095763

  1. Modulation of cellular immune response against hepatitis C virus nonstructural protein 3 by cationic liposome encapsulated DNA immunization.

    PubMed

    Jiao, Xuanmao; Wang, Richard Y-H; Feng, Zhiming; Alter, Harvey J; Shih, James Wai-Kuo

    2003-02-01

    A vaccine strategy directed to increase Th1 cellular immune responses, particularly to hepatitis C virus (HCV) nonstructural protein 3 (NS3), has considerable potential to overcome the infection with HCV. DNA vaccination can induce both humoral and cellular immune responses, but it became apparent that the cellular uptake of naked DNA injected into muscle was not very efficient, as much of the DNA is degraded by interstitial nucleases before it reaches the nucleus for transcription. In this paper, cationic liposomes composed of different cationic lipids, such as dimethyl-dioctadecylammonium bromide (DDAB), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), or 1,2-dioleoyl-sn-glycerol-3-ethylphosphocholine (DOEPC), were used to improve DNA immunization in mice, and their efficiencies were compared. It was found that cationic liposome-mediated DNA immunization induced stronger HCV NS3-specific immune responses than immunization with naked DNA alone. Cationic liposomes composed of DDAB and equimolar of a neutral lipid, egg yolk phosphatidylcholine (EPC), induced the strongest antigen-specific Th1 type immune responses among the cationic liposome investigated, whereas the liposomes composed of 2 cationic lipids, DDAB and DOEPC, induced an antigen-specific Th2 type immune response. All cationic liposomes used in this study triggered high-level, nonspecific IL-12 production in mice, a feature important for the development of maximum Th1 immune responses. In conclusion, the cationic liposome-mediated gene delivery is a viable HCV vaccine strategy that should be further tested in the chimpanzee model. PMID:12540796

  2. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in A549 cells.

    PubMed

    Ju, Li; Zhang, Guanglin; Zhang, Xing; Jia, Zhenyu; Gao, Xiangjing; Jiang, Ying; Yan, Chunlan; Duerksen-Hughes, Penelope J; Chen, Fanqing Frank; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2014-01-01

    The wide application of multi-walled carbon nanotubes (MWCNT) has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS) of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml) and short time period (24 h), MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS).

  3. Analysis of the cellular stress response in MCF10A cells exposed to combined radio frequency radiation.

    PubMed

    Kim, Han-Na; Han, Na-Kyung; Hong, Mi-Na; Chi, Sung-Gil; Lee, Yun-Sil; Kim, Taehong; Pack, Jeong-Ki; Choi, Hyung-Do; Kim, Nam; Lee, Jae-Seon

    2012-01-01

    Exposure to environmental stressors can be measured by monitoring the cellular stress response in target cells. Here, we used the cellular stress response to investigate whether single or combined radio frequency (RF) radiation could induce stress response in human cells. Cellular stress responses in MCF10A human breast epithelial cells were characterized after exposure to 4 h of RF radiation [code division multiple access (CDMA) or CDMA plus wideband CDMA (WCDMA)] or 2 h RF radiation on 3 consecutive days. Specific absorption rate (SAR) was 4.0 W/kg for CDMA signal alone exposure and 2.0 W/kg each, 4.0 W/kg in total for combined CDMA plus WCDMA signals. Expression levels and phosphorylation states of specific heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs) were analyzed by Western blot. It was found that HSP27 and ERK1/2 phosphorylations are the most sensitive markers of the stress response in MCF10A cells exposed to heat shock or ionizing radiation. Using these markers, we demonstrated that neither one-time nor repeated single (CDMA alone) or combined (CDMA plus WCDMA) RF radiation exposure significantly altered HSP27 and ERK1/2 phosphorylations in MCF10A cells (p > 0.05). The lack of a statistically significant alteration in HSP27 and ERK1/2 phosphorylations suggests that single or combined RF radiation exposure did not elicit activation of HSP27 and ERK1/2 in MCF10A cells.

  4. Potent SIV-specific Cellular Immune Responses in the Breast Milk of SIV-infected, Lactating Rhesus Monkeys1

    PubMed Central

    Permar, Sallie R.; Kang, Helen H.; Carville, Angela; Mansfield, Keith G.; Gelman, Rebecca S.; Rao, Srinivas S.; Whitney, James B.; Letvin, Norman L.

    2008-01-01

    Breast milk transmission of HIV is a leading cause of infant HIV/AIDS in the developing world. Remarkably, only a small minority of breastfeeding infants born to HIV-infected mothers contract HIV via breast milk exposure, raising the possibility that immune factors in the breast milk confer protection to the infants who remain uninfected. To model HIV-specific immunity in breast milk, lactation was pharmacologically induced in Mamu-A*01+ female rhesus monkeys. The composition of lymphocyte subsets in hormone-induced lactation (HIL) breast milk was found to be similar to that in natural lactation (NL) breast milk. Hormone-induced lactating monkeys were inoculated intravenously with SIVmac251 and CD8+ T lymphocytes specific for two immunodominant SIV epitopes, Gag p11C and Tat TL8, and SIV viral load were monitored in peripheral blood and breast milk during acute infection. The breast milk viral load was one to two logs lower than plasma viral load through peak and set-point of viremia. Surprisingly, while the kinetics of the SIV-specific cellular immunity in breast milk mirrored that of the blood, the peak magnitude of the SIV-specific CD8+ T lymphocyte response in breast milk was more than twice as high as the cellular immune response in the blood. Furthermore, the appearance of the SIV-specific CD8+ T lymphocyte response in breast milk was associated with a reduction in breast milk viral load, and this response remained higher than that in the blood after viral set point. This robust viral-specific cellular immune response in breast milk may contribute to control of breast milk virus replication. PMID:18714039

  5. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants.

    PubMed

    Huang, Shaobai; Van Aken, Olivier; Schwarzländer, Markus; Belt, Katharina; Millar, A Harvey

    2016-07-01

    Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, programmed cell death, and defense against pathogens have been attributed to ROS generated in plant mitochondria (mtROS). The shortcomings of the black box-idea of mtROS are discussed in the context of mechanistic considerations and the measurement of mtROS The overall aim of this update is to better define our current understanding of mtROS and appraise their potential influence on cellular function in plants. Furthermore, directions for future research are provided, along with suggestions to increase reliability of mtROS measurements.

  6. Comparison of cellular responses of mesenchymal stem cells derived from bone marrow and synovium on combined silk scaffolds.

    PubMed

    Liu, Haifeng; Wei, Xing; Ding, Xili; Li, Xiaoming; Zhou, Gang; Li, Ping; Fan, Yubo

    2015-01-01

    As a brand new member in mesenchymal stem cells (MSCs) families, synovium-derived mesenchymal stem cells (SMSCs) have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration. However, there are few reports mentioning ligamentogenesis of SMSCs and especially null for their engineering use towards ligament regeneration. The aim of this study was to investigate and compare the cellular responses of MSCs derived from bone marrow and synovium on combined silk scaffolds that can be used to determine the cell source most appropriate for tissue-engineered ligament. Rabbit SMSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro for two weeks after seeding on the combined silk scaffolds. Samples were studied and compared for their cellular morphology, proliferation, collagen production, gene, and protein expression of ligament-related extracellular matrix (ECM) markers. In addition, the two cell types were transfected with green fluorescent protein to evaluate their fate after implantation in an intraarticular environment of the knee joint. After 14 days of culturing, SMSCs showed a significant increase in proliferation as compared with BMSCs. The transcript and protein expression levels of ligament-related ECM markers in SMSCs were significantly higher than those in BMSCs. Moreover, 6 weeks postoperatively, more viable cells were presented in SMSC-loaded constructs than in BMSC-loaded constructs. Therefore, based on the cellular response in vitro and in vivo, SMSCs may represent a more suitable cell source than BMSCs for further study and development of tissue-engineered ligament.

  7. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses.

    PubMed

    Adimora, Nnenna J; Jones, Dean P; Kemp, Melissa L

    2010-09-15

    Hydrogen peroxide is appreciated as a cellular signaling molecule with second-messenger properties, yet the mechanisms by which the cell protects against intracellular H(2)O(2) accumulation are not fully understood. We introduce a network model of H(2)O(2) clearance that includes the pseudo-enzymatic oxidative turnover of protein thiols, the enzymatic actions of catalase, glutathione peroxidase, peroxiredoxin, and glutaredoxin, and the redox reactions of thioredoxin and glutathione. Simulations reproduced experimental observations of the rapid and transient oxidation of glutathione and the rapid, sustained oxidation of thioredoxin on exposure to extracellular H(2)O(2). The model correctly predicted early oxidation profiles for the glutathione and thioredoxin redox couples across a range of initial extracellular [H(2)O(2)] and highlights the importance of cytoplasmic membrane permeability to the cellular defense against exogenous sources of H(2)O(2). The protein oxidation profile predicted by the model suggests that approximately 10% of intracellular protein thiols react with hydrogen peroxide at substantial rates, with a majority of these proteins forming protein disulfides as opposed to protein S-glutathionylated adducts. A steady-state flux analysis predicted an unequal distribution of the intracellular anti-oxidative burden between thioredoxin-dependent and glutathione-dependent antioxidant pathways, with the former contributing the majority of the cellular antioxidant defense due to peroxiredoxins and protein disulfides.

  8. Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale.

    SciTech Connect

    Brinker, C. Jeffrey; Dunphy, Darren Robert; Ashley, Carlee E.; Fan, Hongyou; Lopez, DeAnna (University of New Mexico, Albuquerque, NM); Simpson, Regina Lynn; Tallant, David Robert; Burckel, David Bruce; Baca, Helen Kennicott; Carnes, Eric C.; Singh, Seema

    2006-01-01

    Our discovery that the introduction of living cells (Saccharomyces cerevisiae) alters dramatically the evaporation driven self-assembly of lipid-silica nanostructures suggested the formation of novel bio/nano interfaces useful for cellular interrogation at the nanoscale. This one year ''out of the box'' LDRD focused on the localization of metallic and semi-conducting nanocrystals at the fluid, lipid-rich interface between S. cerevisiae and the surrounding phospholipid-templated silica nanostructure with the primary goal of creating Surface Enhanced Raman Spectroscopy (SERS)-active nanostructures and platforms for cellular integration into electrode arrays. Such structures are of interest for probing cellular responses to the onset of disease, understanding of cell-cell communication, and the development of cell-based bio-sensors. As SERS is known to be sensitive to the size and shape of metallic (principally gold and silver) nanocrystals, various sizes and shapes of nanocrystals were synthesized, functionalized and localized at the cellular surface by our ''cell-directed assembly'' approach. Laser scanning confocal microscopy, SEM, and in situ grazing incidence small angle x-ray scattering (GISAXS) experiments were performed to study metallic nanocrystal localization. Preliminary Raman spectroscopy studies were conducted to test for SERS activity. Interferometric lithography was used to construct high aspect ratio cylindrical holes on patterned gold substrates and electro-deposition experiments were performed in a preliminary attempt to create electrode arrays. A new printing procedure was also developed for cellular integration into nanostructured platforms that avoids solvent exposure and may mitigate osmotic stress. Using a different approach, substrates comprised of self-assembled nanoparticles in a phospholipid templated silica film were also developed. When printed on top of these substrates, the cells integrate themselves into the mesoporous silica film and

  9. The Bioavailability of Soluble Cigarette Smoke Extract Is Reduced through Interactions with Cells and Affects the Cellular Response to CSE Exposure

    PubMed Central

    Bourgeois, Jeffrey S.; Jacob, Jeeva; Garewal, Aram; Ndahayo, Renata; Paxson, Julia

    2016-01-01

    Cellular exposure to cigarette smoke leads to an array of complex responses including apoptosis, cellular senescence, telomere dysfunction, cellular aging, and neoplastic transformation. To study the cellular response to cigarette smoke, a common in vitro model exposes cultured cells to a nominal concentration (i.e. initial concentration) of soluble cigarette smoke extract (CSE). However, we report that use of the nominal concentration of CSE as the only measure of cellular exposure is inadequate. Instead, we demonstrate that cellular response to CSE exposure is dependent not only on the nominal concentration of CSE, but also on specific experimental variables, including the total cell number, and the volume of CSE solution used. As found in other similar xenobiotic assays, our work suggests that the effective dose of CSE is more accurately related to the amount of bioavailable chemicals per cell. In particular, interactions of CSE components both with cells and other physical factors limit CSE bioavailability, as demonstrated by a quantifiably reduced cellular response to CSE that is first modified by such interactions. This has broad implications for the nature of cellular response to CSE exposure, and for the design of in vitro assays using CSE. PMID:27649082

  10. The Bioavailability of Soluble Cigarette Smoke Extract Is Reduced through Interactions with Cells and Affects the Cellular Response to CSE Exposure.

    PubMed

    Bourgeois, Jeffrey S; Jacob, Jeeva; Garewal, Aram; Ndahayo, Renata; Paxson, Julia

    2016-01-01

    Cellular exposure to cigarette smoke leads to an array of complex responses including apoptosis, cellular senescence, telomere dysfunction, cellular aging, and neoplastic transformation. To study the cellular response to cigarette smoke, a common in vitro model exposes cultured cells to a nominal concentration (i.e. initial concentration) of soluble cigarette smoke extract (CSE). However, we report that use of the nominal concentration of CSE as the only measure of cellular exposure is inadequate. Instead, we demonstrate that cellular response to CSE exposure is dependent not only on the nominal concentration of CSE, but also on specific experimental variables, including the total cell number, and the volume of CSE solution used. As found in other similar xenobiotic assays, our work suggests that the effective dose of CSE is more accurately related to the amount of bioavailable chemicals per cell. In particular, interactions of CSE components both with cells and other physical factors limit CSE bioavailability, as demonstrated by a quantifiably reduced cellular response to CSE that is first modified by such interactions. This has broad implications for the nature of cellular response to CSE exposure, and for the design of in vitro assays using CSE. PMID:27649082

  11. Ebi, a Drosophila homologue of TBL1, regulates the balance between cellular defense responses and neuronal survival

    PubMed Central

    Lim, Young-Mi; Tsuda, Leo

    2016-01-01

    Transducin β-like 1 (TBL1), a transcriptional co-repressor complex, is a causative factor for late-onset hearing impairments. Transcriptional co-repressor complexes play pivotal roles in gene expression by making a complex with divergent transcription factors. However, it remained to be clarified how co-repressor complex regulates cellular survival. We herein demonstrated that ebi, a Drosophila homologue of TBL1, suppressed photoreceptor cell degeneration in the presence of excessive innate immune signaling. We also showed that the balance between NF-κB and AP-1 is a key component of cellular survival under stress conditions. Given that Ebi plays an important role in innate immune responses by regulating NF-κB activity and inhibition of apoptosis induced by associating with AP-1, it may be involved in the regulation of photoreceptor cell survival by modulating cross-talk between NF-κB and AP-1. PMID:27073743

  12. A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal.

    PubMed

    Axenov-Gribanov, Denis V; Bedulina, Daria S; Shatilina, Zhanna M; Lubyaga, Yulia A; Vereshchagina, Kseniya P; Timofeyev, Maxim A

    2014-01-01

    Our objective was to determine if the Lake Baikal endemic gastropod Benedictia limnaeoides ongurensis, which inhabits in stable cold waters expresses a thermal stress response. We hypothesized that the evolution of this species in the stable cold waters of Lake Baikal resulted in a reduction of its thermal stress-response mechanisms at the biochemical and cellular levels. Contrary to our hypothesis, our results show that exposure to a thermal challenge activates the cellular and biochemical mechanisms of thermal resistance, such as heat shock proteins and antioxidative enzymes, and alters energetic metabolism in B. limnaeoides ongurensis. Thermal stress caused the elevation of heat shock protein 70 and the products of anaerobic glycolysis together with the depletion of glucose and phosphagens in the studied species. Thus, a temperature increase activates the complex biochemical system of stress response and alters the energetic metabolism in this endemic Baikal gastropod. It is concluded that the deepwater Lake Baikal endemic gastropod B. limnaeoides ongurensis retains the ability to activate well-developed biochemical stress-response mechanisms when exposed to a thermal challenge. PMID:24076104

  13. Enhanced cellular responses and distinct gene profiles in human fetoplacental artery endothelial cells under chronic low oxygen.

    PubMed

    Jiang, Yi-Zhou; Wang, Kai; Li, Yan; Dai, Cai-Feng; Wang, Ping; Kendziorski, Christina; Chen, Dong-Bao; Zheng, Jing

    2013-12-01

    Fetoplacental endothelial cells are exposed to oxygen levels ranging from 2% to 8% in vivo. However, little is known regarding endothelial function within this range of oxygen because most laboratories use ambient air (21% O2) as a standard culture condition (SCN). We asked whether human umbilical artery endothelial cells (HUAECs) that were steadily exposed to the physiological chronic normoxia (PCN, 3% O2) for ∼20-25 days differed in their proliferative and migratory responses to FGF2 and VEGFA as well as in their global gene expression compared with those in the SCN. We observed that PCN enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. In oxygen reversal experiments (i.e., when PCN cells were exposed to SCN for 24 h and vice versa), we found that preexposure to 21% O2 decreased the migratory ability, but not the proliferative ability, of the PCN-HUAECs in response to FGF2 and VEGFA. These PCN-enhanced cellular responses were associated with increased protein levels of HIF1A and NOS3, but not FGFR1, VEGFR1, and VEGFR2. Microarray analysis demonstrated that PCN up-regulated 74 genes and down-regulated 86, 14 of which were directly regulated by hypoxia-inducible factors as evaluated using in silico analysis. Gene function analysis further indicated that the PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from our functional assays. Given that PCN significantly alters cellular responses to FGF2 and VEGFA as well as transcription in HUAECs, it is likely that we may need to reexamine the current cellular and molecular mechanisms controlling fetoplacental endothelial functions, which were largely derived from endothelial models established under ambient O2.

  14. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.

    PubMed

    Bilyk, Kevin T; Cheng, C-H Christina

    2014-12-01

    Through evolution in the isolated, freezing (-1.9°C) Southern Ocean, Antarctic notothenioid fish have become cold-adapted as well as cold-specialized. Notothenioid cold specialization is most evident in their limited tolerance to heat challenge, and an apparent loss of the near universal inducible heat shock (HSP70) response. Beyond these it remains unclear how broadly cold specialization pervades the underlying tissue-wide cellular responses. We report the first analysis of massively parallel RNA sequencing (RNA-seq) to identify gene expression changes in the liver in response to elevated body temperature of a high-latitude Antarctic nototheniid, the highly cold-adapted and cold-specialized cryopelagic bald notothen, Pagothenia borchgrevinki. From a large (14,873) mapped set of qualified, annotated liver transcripts, we identified hundreds of significantly differentially expressed genes following two and four days of 4°C exposure, suggesting substantial transcriptional reorganization in the liver when body temperature was raised 5°C above native water temperature. Most notably, and in sharp contrast to heat stressed non-polar fish species, was a widespread down-regulation of nearly all classes of molecular chaperones including HSP70, as well as polyubiquitins that are associated with proteosomal degradation of damaged proteins. In parallel, genes involved in the cell cycle were down-regulated by day two of 4°C exposure, signifying slowing cellular proliferation; by day four, genes associated with transcriptional and translational machineries were down-regulated, signifying general slowing of protein biosynthesis. The log2 fold differential transcriptional changes are generally of small magnitudes but significant, and in total portray a broad down turn of cellular activities in response to four days of elevated body temperature in the cold-specialized bald notothen. PMID:24999838

  15. Humoral and cellular immune responses in adult geese induced by an inactivated vaccine against new type gosling viral enteritis virus.

    PubMed

    Chen, S; Cheng, A C; Wang, M S; Zhu, D K; Jia, R Y; Luo, Q H; Liu, F; Chen, X Y; Yang, J L

    2010-11-01

    To assess the immunogenicity of an inactivated new type gosling viral enteritis virus (NGVEV) vaccine, we investigated 3 different doses of the inactivated vaccine and the inactivated vaccine in conjunction with 3 different doses of recombinant goose interleukin-2 (rGoIL-2) adjuvant. A virus concentration of 10(5) 50% embryo infective dose/mL was subcutaneously inoculated into adult geese divided into 6 groups. The dynamic changes of the humoral and cellular immunity responses elicited by the vaccines in the adult geese postvaccination (PV) were investigated using ELISA, virus neutralization test, and lymphocyte proliferation assay. The clearance of virus from the intestines of geese (175 d PV) was studied by histopathological examination and indirect immunofluorescence assay after virulent NGVEV challenge. This study showed that the inactivated NGVEV vaccine elicits strong humoral and cellular responses in the vaccinated adult geese. The absorbance values of specific anti-NGVEV antibodies, the neutralization antibody titer, and the lymphocyte proliferation index rapidly increased, peaked at about 28 d PV, progressed to the plateau stage, and then decreased slightly. The rGoIL-2 adjuvant enhanced the immune response, and this adjuvant in conjunction with the inactivated NGVEV vaccine induces a significantly higher specific anti-NGVEV antibody absorbance value, neutralization antibody titer, and lymphocyte proliferation index than the non-adjuvant-inactivated NGVEV vaccine (P < 0.05). The inactivated NGVEV vaccine conferred adequate efficient ability to clear NGVEV in vaccinated geese even in the last phase of the vaccination period (175 d PV). The inactivated NGVEV vaccine (0.5 mL/goose) with 1,000 units of rGoIL-2 adjuvant/goose is the most effective dose, thereby eliciting the strongest humoral and cellular immunity responses and providing the most efficacious clearance of NGVEV in vivo.

  16. Peptide-MHC Cellular Microarray with Innovative Data Analysis System for Simultaneously Detecting Multiple CD4 T-Cell Responses

    PubMed Central

    Ge, Xinhui; Gebe, John A.; Bollyky, Paul L.; James, Eddie A.; Yang, Junbao; Stern, Lawrence J.; Kwok, William W.

    2010-01-01

    Background Peptide:MHC cellular microarrays have been proposed to simultaneously characterize multiple Ag-specific populations of T cells. The practice of studying immune responses to complicated pathogens with this tool demands extensive knowledge of T cell epitopes and the availability of peptide:MHC complexes for array fabrication as well as a specialized data analysis approach for result interpretation. Methodology/Principal Findings We co-immobilized peptide:DR0401 complexes, anti-CD28, anti-CD11a and cytokine capture antibodies on the surface of chamber slides to generate a functional array that was able to detect rare Ag-specific T cell populations from previously primed in vitro T cell cultures. A novel statistical methodology was also developed to facilitate batch processing of raw array-like data into standardized endpoint scores, which linearly correlated with total Ag-specific T cell inputs. Applying these methods to analyze Influenza A viral antigen-specific T cell responses, we not only revealed the most prominent viral epitopes, but also demonstrated the heterogeneity of anti-viral cellular responses in healthy individuals. Applying these methods to examine the insulin producing beta-cell autoantigen specific T cell responses, we observed little difference between autoimmune diabetic patients and healthy individuals, suggesting a more subtle association between diabetes status and peripheral autoreactive T cells. Conclusions/Significance The data analysis system is reliable for T cell specificity and functional testing. Peptide:MHC cellular microarrays can be used to obtain multi-parametric results using limited blood samples in a variety of translational settings. PMID:20634998

  17. Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy.

    PubMed

    Chabot, Vincent; Miron, Yannick; Charette, Paul G; Grandbois, Michel

    2013-12-15

    Surface plasmon resonance (SPR) has developed into a powerful approach for label-free monitoring of cellular behavior. Most cellular responses, however, involve a complex cascade of molecular events which makes identifying the specific components of cellular behavior dynamics contributing to the aggregate SPR signal problematic. Recently, a number of groups have used surface plasmon-enhanced fluorescence (SPEF) microscopy on living cells. In this work, we show that SPEF microscopy can be used to identify the molecular mechanisms responsible for SPR detection of cellular processes. By specifically labeling the actin cytoskeleton in human epithelial kidney cells (HEK 293) and rat vascular smooth muscle cells (A7r5), we correlate cell reorganization observed in SPEF with SPR signal variations reflecting aggregate cellular changes. HEK 293 cells stimulated with angiotensin-II exhibited transient contraction, appearing as an SPR signal decrease with a subsequent increase above the initial baseline. SPEF micrographs showed a decrease in cellular area followed by actin densification and cell spreading. A7r5 stimulated with Latrunculin A showed actin cytoskeleton depolymerization, generating a steady SPR signal decrease, with SPEF micrographs showing extensive collapse of cell actin structures. We observed that SPR monitoring of cellular response is strongly dependent on minute variations in cellular footprint on the substrate as well as changes in the molecular density in the basal portions of the cells. Therefore, combining SPR with imaging of selective fluorescent markers by SPEF allows a more comprehensive deconvolution of the cellular signal in relation to molecular events within the cells.

  18. Comparative analysis of cellular immune responses and cytokine levels in sheep experimentally infected with bluetongue virus serotype 1 and 8.

    PubMed

    Sánchez-Cordón, P J; Pérez de Diego, A C; Gómez-Villamandos, J C; Sánchez-Vizcaíno, J M; Pleguezuelos, F J; Garfia, B; del Carmen, P; Pedrera, M

    2015-05-15

    Protective immunity in sheep with bluetongue virus (BTV) infection as well as the role of BTV-induced cytokines during immune response remains unclear. Understanding the basis immunological mechanisms in sheep experimentally infected with serotypes 1 and 8 (BTV-1 and -8) was the aim of this study. A time-course study was carried out in order to evaluate cell-mediated immune response and serum concentrations of cytokines (IL-1β, TNFα, IL-12, IFNγ, IL-4 and IL-10) with inflammatory and immunological functions. Depletion of T cell subsets (mainly CD4(+), γδ and CD25(+)) together with the absence of cytokines (IFNγ and IL-12) involved in the regulation of cell-mediated antiviral immunity at the first stage of the disease suggested that both BTV-1 and BTV-8 might impair host's capability against primary infections which would favor viral replication and spreading. However, cellular immune response and cytokines elicited an immune response in sheep that efficiently reduced viremia in the final stage of the experiment. Recovery of T cell subsets (CD4(+) and CD25(+)) together with a significant increase of CD8(+) T lymphocytes in both infected groups were observed in parallel with the decrease of viremia. Additionally, the recovery of CD4(+) T lymphocytes together with the significant increase of IL-4 serum levels at the final stage of the experiment might contribute to humoral immune response activation and neutralizing antibodies production against BTV previously described in the course of this experiment. These results suggested that both cellular and humoral immune response may contribute to protective immunity against BTV-1 and BTV-8 in sheep. The possible role played by IL-10 and CD25(+) cells in controlling inflammatory and immune response in the final stage of the experiment has also been suggested.

  19. Gene Expression Profile Changes and Cellular Responses to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Rohde, Larry; Wu, Honglu

    2016-01-01

    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. In addition, DNA in space can be damaged by toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage affects the accuracy of the radiation risk assessment for astronauts and the mutation rate in microorganisms. Although possible synergistic effects of space radiation and microgravity have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on cellular responses to DNA damage, confluent human fibroblast cells (AG1522) flown on the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB). Damages in the DNA were quantified by immunofluorescence staining for ?-H2AX, which showed similar percentages of different types of stained cells between flight and ground. However, there was a slight shift in the distribution of the ?-H2AX foci number in the flown cells with countable foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. A microarray analysis of gene expressions in response to bleomycin treatment was also performed. Comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. Similar responses at the RNA level between different gravity conditions were also observed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly

  20. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes.

    PubMed

    Calabrese, Vittorio; Cornelius, Carolin; Stella, Anna Maria Giuffrida; Calabrese, Edward J

    2010-12-01

    The widely accepted oxidative stress theory of aging postulates that aging results from accumulation of oxidative damage. A prediction of this theory is that, among species, differential rates of aging may be apparent on the basis of intrinsic differences in oxidative damage accrual. Although widely accepted, there is a growing number of exceptions to this theory, most contingently related to genetic model organism investigations. Proteins are one of the prime targets for oxidative damage and cysteine residues are particularly sensitive to reversible and irreversible oxidation. The adaptation and survival of cells and organisms requires the ability to sense proteotoxic insults and to coordinate protective cellular stress response pathways and chaperone networks related to protein quality control and stability. The toxic effects that stem from the misassembly or aggregation of proteins or peptides, in any cell type, are collectively termed proteotoxicity. Despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress which increases in cancer, metabolic and neurodegenerative diseases. Pharmacological modulation of cellular stress response pathways has emerging implications for the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. A critical key to successful medical intervention is getting the dose right. Achieving this goal can be extremely challenging due to human inter-individual variation as affected by age, gender, diet, exercise, genetic factors and health status. The nature of the dose response in and adjacent to the therapeutic zones, over the past decade has received considerable advances. The hormetic dose-response, challenging long-standing beliefs about the nature of the dose-response in a lowdose zone, has the potential to affect significantly the design of pre

  1. Preexisting Antibody-Dependent Cellular Cytotoxicity-Activating Antibody Responses Are Stable Longitudinally and Cross-reactive Responses Are Not Boosted by Recent Influenza Exposure.

    PubMed

    Valkenburg, Sophie A; Zhang, Yanyu; Chan, Ka Y; Leung, Kathy; Wu, Joseph T; Poon, Leo L M

    2016-10-15

    Cross-reactive influenza virus-specific antibody-dependent cellular cytotoxicity (ADCC)-activating antibodies are readily detected in healthy adults. However, little is known about the kinetics of these ADCC responses. We used retrospective serial blood samples from healthy donors to investigate this topic. All donors had ADCC responses against 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) and avian influenza A(H7N9) virus hemagglutinins (HAs) despite being seronegative for these viruses in standard hemagglutination inhibition and microneutralization serological assays. A(H1N1)pdm09 exposure did not boost ADCC responses specific for H7 HA antigens. H7 HA ADCC responses were variable longitudinally within donors, suggesting that these cross-reactive antibodies are unstable. We found no correlation between ADCC responses to the H7 HA and either influenza virus-specific immunoglobulin G1 concentration or age. PMID:27493238

  2. Inhibiting the NF-kappaB pathway to assess its function in the cellular response to space radiation

    NASA Astrophysics Data System (ADS)

    Koch, Kristina; Baumstark-Khan, Christa; Hellweg, Christine; Testard, Isabelle; Reitz, Guenther

    2012-07-01

    Radiation is regarded as one of the limiting factors for space missions. Therefore the cellular radiation response needs to be studied in order to estimate risks and to develop appropriate countermeasures. Exposure of human cells to ionizing radiation can provoke cell cycle arrest, leading to cellular senescence or premature differentiation, and different types of cell death. Previous heavy ion experiments have shown that the Nuclear Factor κB (NF-κB) pathway is activated by fluences that can be reached during long-term missions and thereby NF-κB was identified as an important modulating factor in the cellular radiation response. It could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts. The classical and the genotoxic stress induced NF-κB pathway result in nuclear translocation of the p65/p50 dimer. Both pathways might contribute to the cellular radiation response. Chemical inhibitors were tested to suppress the NF-κB pathway in recombinant HEK-pNF-κB-d2EGFP/Neo cells. The efficacy and cytotoxicity of the inhibitors targeting different elements of the NF-κB pathway were analyzed and found mostly inappropriate as inhibitors were partly cytotoxic or unspecific. Alternatively a functional knock-out of RelA (p65) was used to identify the contribution of the NF-κB pathway to different cellular outcomes. Small hairpin RNA constructs (shRNA) were transfected into the HEK-pNF-κB-d2EGFP/Neo cell line. Their functionality was assessed by quantitative Reverse Transcriptase real-time PCR (qRT-PCR) to verify that the RelA mRNA amount was reduced by more than 80% in the knock-down cells The original cell line had been stably transfected with a reporter system to monitor NF-κB activation by measuring destabilized Enhanced Green Fluorescent Protein (d2EGFP)-expression. It was shown that after 18 hours d2EGFP reaches its highest expression level after activation of NF-κB and can be measured by FACS analysis

  3. Breadth of cellular and humoral immune responses elicited in rhesus monkeys by multi-valent mosaic and consensus immunogens

    PubMed Central

    Santra, Sampa; Muldoon, Mark; Watson, Sydeaka; Buzby, Adam; Balachandran, Harikrishnan; Carlson, Kevin R.; Mach, Linh; Kong, Wing-Pui; McKee, Krisha; Yang, Zhi-Yong; Rao, Srinivas S.; Mascola, John R.; Nabel, Gary J.; Korber, Bette T.; Letvin, Norman L.

    2013-01-01

    To create an HIV-1 vaccine that generates sufficient breadth of immune recognition to protect against the genetically diverse forms of the circulating virus, we have been exploring vaccines based on consensus and mosaic protein designs. Increasing the valency of a mosaic immunogen cocktail increases epitope coverage but with diminishing returns, as increasingly rare epitopes are incorporated into the mosaic proteins. In this study we compared the immunogenicity of 2-valent and 3-valent HIV-1 envelope mosaic immunogens in rhesus monkeys. Immunizations with the 3-valent mosaic immunogens resulted in a modest increase in the breadth of vaccine-elicited T lymphocyte responses compared to the 2-valent mosaic immunogens. However, the 3-valent mosaic immunogens elicited significantly higher neutralizing responses to Tier 1 viruses than the 2-valent mosaic immunogens. These findings underscore the potential utility of polyvalent mosaic immunogens for eliciting both cellular and humoral immune responses to HIV-1. PMID:22521913

  4. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms.

    PubMed

    Ellison, Georgina M; Waring, Cheryl D; Vicinanza, Carla; Torella, Daniele

    2012-01-01

    Exercise training fosters the health and performance of the cardiovascular system, and represents nowadays a powerful tool for cardiovascular therapy. Exercise exerts its beneficial effects through reducing cardiovascular risk factors, and directly affecting the cellular and molecular remodelling of the heart. Traditionally, moderate endurance exercise training has been viewed to determine a balanced and revertible physiological growth, through cardiomyocyte hypertrophy accompanied by appropriate neoangiogenesis (the Athlete's Heart). These cellular adaptations are due to the activation of signalling pathways and in particular, the IGF-1/IGF-1R/Akt axis appears to have a major role. Recently, it has been shown that physical exercise determines cardiac growth also through new cardiomyocyte formation. Accordingly, burgeoning evidence indicates that exercise training activates circulating, as well as resident tissue-specific cardiac, stem/progenitor cells. Dissecting the mechanisms for stem/progenitor cell activation with exercise will be instrumental to devise new effective therapies, encompassing myocardial regeneration for a large spectrum of cardiovascular diseases. PMID:21880653

  5. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications.

  6. High content analysis at single cell level identifies different cellular responses dependent on nanomaterial concentrations

    NASA Astrophysics Data System (ADS)

    Manshian, Bella B.; Munck, Sebastian; Agostinis, Patrizia; Himmelreich, Uwe; Soenen, Stefaan J.

    2015-09-01

    A mechanistic understanding of nanomaterial (NM) interaction with biological environments is pivotal for the safe transition from basic science to applied nanomedicine. NM exposure results in varying levels of internalized NM in different neighboring cells, due to variances in cell size, cell cycle phase and NM agglomeration. Using high-content analysis, we investigated the cytotoxic effects of fluorescent quantum dots on cultured cells, where all effects were correlated with the concentration of NMs at the single cell level. Upon binning the single cell data into different categories related to NM concentration, this study demonstrates, for the first time, that quantum dots activate both cytoprotective and cytotoxic mechanisms, resulting in a zero net result on the overall cell population, yet with significant effects in cells with higher cellular NM levels. Our results suggest that future NM cytotoxicity studies should correlate NM toxicity with cellular NM numbers on the single cell level, as conflicting mechanisms in particular cell subpopulations are commonly overlooked using classical toxicological methods.

  7. Adsorption of glycosaminoglycans to the cell surface is responsible for cellular donnan effects.

    PubMed

    Hagenfeld, Daniel; Kathagen, Nadine; Prehm, Peter

    2014-07-01

    In previous publications, we showed that extracellular glycosaminoglycans reduced the membrane potential, caused cell blebbing and swelling and decreased the intracellular pH independently of cell surface receptors. These phenomena were explained by Donnan effects. The effects were so large that they could not be attributed to glycosaminoglycans in solution. Therefore, we tested the hypothesis that glycosaminoglycans were concentrated on the cell membrane and analysed the mechanism of adsorption by fluorescent hyaluronan, chondroitin sulphate and heparin. The influence of the CD44 receptor was evaluated by comparing CD44 expressing human fibroblasts with CD44 deficient HEK cells. Higher amounts of glycosaminoglycans adsorbed to fibroblasts than to HEK cells. When the membrane potential was annihilated by substituting NaCl by KCl in the medium, adsorption was reduced and intracellular pH decrease was abolished. To eliminate other cellular interfering factors, potential-dependent adsorption was demonstrated for hyaluronan which adsorbed to inert gold foils in physiological salt concentrations at pH 7.2 and surface potentials up to 120 mV. From these results, we conclude that large cellular Donnan effects of glycosaminoglycans results from receptor mediated, hydrophobic and ionic adsorption to cell surfaces.

  8. Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses – A First-In-Man Trial

    PubMed Central

    Boehm, Michael; Herzog, Rebecca; Gruber, Katharina; Lichtenauer, Anton Michael; Kuster, Lilian; Csaicsich, Dagmar; Gleiss, Andreas; Alper, Seth L.; Aufricht, Christoph; Vychytil, Andreas

    2016-01-01

    Background Peritonitis and ultrafiltration failure remain serious complications of chronic peritoneal dialysis (PD). Dysfunctional cellular stress responses aggravate peritoneal injury associated with PD fluid exposure, potentially due to peritoneal glutamine depletion. In this randomized cross-over phase I/II trial we investigated cytoprotective effects of alanyl-glutamine (AlaGln) addition to glucose-based PDF. Methods In a prospective randomized cross-over design, 20 stable PD outpatients underwent paired peritoneal equilibration tests 4 weeks apart, using conventional acidic, single chamber 3.86% glucose PD fluid, with and without 8 mM supplemental AlaGln. Heat-shock protein 72 expression was assessed in peritoneal effluent cells as surrogate parameter of cellular stress responses, complemented by metabolomics and functional immunocompetence assays. Results AlaGln restored peritoneal glutamine levels and increased the primary outcome heat-shock protein expression (effect 1.51-fold, CI 1.07–2.14; p = 0.022), without changes in peritoneal ultrafiltration, small solute transport, or biomarkers reflecting cell mass and inflammation. Further effects were glutamine-like metabolomic changes and increased ex-vivo LPS-stimulated cytokine release from healthy donor peripheral blood monocytes. In patients with a history of peritonitis (5 of 20), AlaGln supplementation decreased dialysate interleukin-8 levels. Supplemented PD fluid also attenuated inflammation and enhanced stimulated cytokine release in a mouse model of PD-associated peritonitis. Conclusion We conclude that AlaGln-supplemented, glucose-based PD fluid can restore peritoneal cellular stress responses with attenuation of sterile inflammation, and may improve peritoneal host-defense in the setting of PD. PMID:27768727

  9. HANGING ON FOR THE RIDE: ADHESION TO THE EXTRACELLULAR MATRIX MEDIATES CELLULAR RESPONSES IN SKELETAL MUSCLE MORPHOGENESIS AND DISEASE

    PubMed Central

    Goody, Michelle F.; Sher, Roger B.; Henry, Clarissa A.

    2015-01-01

    Skeletal muscle specification and morphogenesis during early development are critical for normal physiology. In addition to mediating locomotion, skeletal muscle is a secretory organ that contributes to metabolic homeostasis. Muscle is a highly adaptable tissue, as evidenced by the ability to increase muscle cell size and/or number in response to weight bearing exercise. Conversely, muscle wasting can occur during aging (sarcopenia), cancer (cancer cachexia), extended hospital stays (disuse atrophy), and in many genetic diseases collectively known as the muscular dystrophies and myopathies. It is therefore of great interest to understand the cellular and molecular mechanisms that mediate skeletal muscle development and adaptation. Muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction. This process requires carefully orchestrated interactions between cells and their extracellular matrix microenvironment. These interactions are dynamic, allowing muscle cells to sense biophysical, structural, organizational, and/or signaling changes within their microenvironment and respond appropriately. In many musculoskeletal diseases, these cell adhesion interactions are disrupted to such a degree that normal cellular adaptive responses are not sufficient to compensate for accumulating damage. Thus, one major focus of current research is to identify the cell adhesion mechanisms that drive muscle morphogenesis, with the hope that understanding how muscle cell adhesion promotes the intrinsic adaptability of muscle tissue during development may provide insight into potential therapeutic approaches for muscle diseases. Our objectives in this review are to highlight recent studies suggesting conserved roles for cell-extracellular matrix adhesion in vertebrate muscle morphogenesis and cellular adaptive responses in animal models of muscle diseases. PMID:25592225

  10. Cellular and stress protein responses to the UV filter 3-benzylidene camphor in the amphipod crustacean Gammarus fossarum (Koch 1835).

    PubMed

    Scheil, Volker; Triebskorn, Rita; Köhler, Heinz-R

    2008-05-01

    Chemical ultraviolet (UV) filters are used in various products and could be released into the environment, for example, via sunscreens used at swimming lakes. UV filters have been found in surface waters in the past but only a few investigations have concentrated on the effects of these substances in the environment. This study investigates the effects of a UV filter in the amphipod Gammarus fossarum at the cellular and molecular level. Stress protein (Hsp70) responses and reactions of hepatopancreatic cells and cells of gut appendices were investigated in the freshwater amphipod Gammarus fossarum after short-term exposure (4 days) to five different concentrations of the UV filter 3-benzylidene camphor (3-BC; 33 ng/L, 330 ng/L, 3.3 microg/L, 33 microg/L, 330 microg/L) and two control conditions (water and solvent ethanol). Male as well as female gammarids showed increased Hsp70 levels after exposure to low concentrations of 3-BC, with a maximum response at 3.3 microg/L, while the higher concentrations resulted in lower Hsp70 levels. This effect was most likely due to a cessation of Hsp70 synthesis following pathological impact as indicated by strong cellular responses and cellular damage obtained in epithelia of the hepatopancreas and the gut appendices after treatment with 330 microg/L 3-BC. Although environmentally relevant concentrations of 3-BC did not seem to have an adverse effect in this short-term study, higher concentrations of 3-BC are surely detrimental. It is known that chronic exposure generally requires much lower concentrations to cause harm than acute exposure. Additionally, juvenile stages may be even more sensitive than the adults tested. Therefore, on the basis of this study, 3-BC-effects in the field cannot be excluded and should be regarded possible.

  11. Expression and Cellular Distribution of Ubiquitin in Response to Injury in the Developing Spinal Cord of Monodelphis domestica

    PubMed Central

    Noor, Natassya M.; Møllgård, Kjeld; Wheaton, Benjamin J.; Steer, David L.; Truettner, Jessie S.; Dziegielewska, Katarzyna M.; Dietrich, W. Dalton; Smith, A. Ian; Saunders, Norman R.

    2013-01-01

    Ubiquitin, an 8.5 kDa protein associated with the proteasome degradation pathway has been recently identified as differentially expressed in segment of cord caudal to site of injury in developing spinal cord. Here we describe ubiquitin expression and cellular distribution in spinal cord up to postnatal day P35 in control opossums (Monodelphis domestica) and in response to complete spinal transection (T10) at P7, when axonal growth through site of injury occurs, and P28 when this is no longer possible. Cords were collected 1 or 7 days after injury, with age-matched controls and segments rostral to lesion were studied. Following spinal injury ubiquitin levels (western blotting) appeared reduced compared to controls especially one day after injury at P28. In contrast, after injury mRNA expression (qRT-PCR) was slightly increased at P7 but decreased at P28. Changes in isoelectric point of separated ubiquitin indicated possible post-translational modifications. Cellular distribution demonstrated a developmental shift between earliest (P8) and latest (P35) ages examined, from a predominantly cytoplasmic immunoreactivity to a nuclear expression; staining level and shift to nuclear staining was more pronounced following injury, except 7 days after transection at P28. After injury at P7 immunostaining increased in neurons and additionally in oligodendrocytes at P28. Mass spectrometry showed two ubiquitin bands; the heavier was identified as a fusion product, likely to be an ubiquitin precursor. Apparent changes in ubiquitin expression and cellular distribution in development and response to spinal injury suggest an intricate regulatory system that modulates these responses which, when better understood, may lead to potential therapeutic targets. PMID:23626776

  12. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-Induced DNA Damages in Confluent Human Fibroblasts

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2016-01-01

    Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 µg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by foci and pattern counting of phosphorylated histone protein H2AX (?-H2AX). The cells on the ISS showed modestly increased average foci counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profile of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in ?-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not significantly affect

  13. Mapping Variation in Cellular and Transcriptional Response to 1,25-Dihydroxyvitamin D3 in Peripheral Blood Mononuclear Cells

    PubMed Central

    Kariuki, Silvia N.; Maranville, Joseph C.; Baxter, Shaneen S.; Jeong, Choongwon; Nakagome, Shigeki; Hrusch, Cara L.; Witonsky, David B.; Sperling, Anne I.; Di Rienzo, Anna

    2016-01-01

    The active hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is an important modulator of the immune system, inhibiting cellular proliferation and regulating transcription of immune response genes. In order to characterize the genetic basis of variation in the immunomodulatory effects of 1,25D, we mapped quantitative traits of 1,25D response at both the cellular and the transcriptional level. We carried out a genome-wide association scan of percent inhibition of cell proliferation (Imax) induced by 1,25D treatment of peripheral blood mononuclear cells from 88 healthy African-American individuals. Two genome-wide significant variants were identified: rs1893662 in a gene desert on chromosome 18 (p = 2.32 x 10−8) and rs6451692 on chromosome 5 (p = 2.55 x 10−8), which may influence the anti-proliferative activity of 1,25D by regulating the expression of nearby genes such as the chemokine gene, CCL28, and the translation initiation gene, PAIP1. We also identified 8 expression quantitative trait loci at a FDR<0.10 for transcriptional response to 1,25D treatment, which include the transcriptional regulator ets variant 3-like (ETV3L) and EH-domain containing 4 (EHD4). In addition, we identified response eQTLs in vitamin D receptor binding sites near genes differentially expressed in response to 1,25D, such as FERM Domain Containing 6 (FRMD6), which plays a critical role in regulating both cell proliferation and apoptosis. Combining information from the GWAS of Imax and the response eQTL mapping enabled identification of putative Imax-associated candidate genes such as PAIP1 and the transcriptional repressor gene ZNF649. Overall, the variants identified in this study are strong candidates for immune traits and diseases linked to vitamin D, such as multiple sclerosis. PMID:27454520

  14. NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer

    PubMed Central

    Özeş, Ali R.; Miller, David F.; Özeş, Osman N.; Fang, Fang; Liu, Yunlong; Matei, Daniela; Huang, Tim; Nephew, Kenneth P.

    2016-01-01

    The transcription factor nuclear factor kappa B (NF-κB) and the long non-coding RNA (lncRNA) HOTAIR (HOX transcript antisense RNA) play diverse functional roles in cancer. In this study, we show that upregulation of HOTAIR induced platinum resistance in ovarian cancer, and increased HOTAIR levels were observed in recurrent platinum-resistant ovarian tumors vs. primary ovarian tumors. To investigate the role of HOTAIR during DNA damage induced by platinum, we monitored double-strand breaks and show that HOTAIR expression results in sustained activation of DNA damage response after platinum treatment. We demonstrate that ectopic expression of HOTAIR induces NF-κB activation during DNA damage response and MMP-9 and IL-6 expression, both key NF-κB target genes. We show that HOTAIR regulates activation of NF-κB by decreasing Iκ-Bα (NF-κB inhibitor) and establish that by inducing prolonged NF-κB activation and expression of NF-κB target genes during DNA damage, HOTAIR plays a critical role in cellular senescence and platinum sensitivity. Our findings suggest that a NF-κB-HOTAIR axis drives a positive-feedback loop cascade during DNA damage response and contributes to cellular senescence and chemotherapy resistance in ovarian and other cancers. PMID:27041570

  15. Influence of the TP53 codon 72 polymorphism on the cellular responses to X-irradiation in fibroblasts from nonagenarians.

    PubMed

    den Reijer, P Martijn; Maier, Andrea B; Westendorp, Rudi G J; van Heemst, Diana

    2008-04-01

    In mice, genetic modification of the gene encoding p53 affects both cancer incidence and longevity. In humans, we recently found that a TP53 codon 72 Arginine (Arg) to Proline (Pro) polymorphism affected both cancer incidence and longevity as well. The TP53 codon 72 polymorphism has previously been shown to influence the apoptotic potential of human cells in response to oxidative stress. Here, we studied the influence of this polymorphism on the cellular responses to X-irradiation of fibroblasts obtained from nonagenarians. We found that the average clonogenic survival after X-irradiation was similar for the three TP53 codon 72 genotype groups. As described before, X-irradiation did not induce an appreciable degree of apoptosis in human fibroblasts. However, percentages of senescence-associated (SA)-beta-galactosidase positive cells (p < 0.001), micronucleated cells (p < 0.001) and cells displaying abnormal nuclear morphologies (p < 0.001) significantly increased with the radiation dose. Compared to Arg/Arg fibroblasts, Pro/Pro fibroblasts exhibited higher irradiation dose-dependent increases in SA-beta-galactosidase positive cells (p(interaction) = 0.018), micronucleated cells (p(interaction) = 0.005) and cells displaying abnormal nuclear morphologies (p(interaction) = 0.029) at 3 days after irradiation. Possibly, these differences in cellular responses to stress between the TP53 codon 72 genotypes contribute to the differences in cancer incidence and longevity observed earlier for these genotypes. PMID:18272203

  16. Systematic investigation of cellular response and pleiotropic effects in atorvastatin-treated liver cells by MS-based proteomics.

    PubMed

    Xiao, Haopeng; Chen, Weixuan; Tang, George X; Smeekens, Johanna M; Wu, Ronghu

    2015-03-01

    For decades, statins have been widely used to lower cholesterol levels by inhibiting the enzyme HMG Co-A reductase (HMGCR). It is well-known that statins have pleiotropic effects including improving endothelial function and inhibiting vascular inflammation and oxidation. However, the cellular responses to statins and corresponding pleiotropic effects are largely unknown at the proteome level. Emerging mass spectrometry-based proteomics provides a unique opportunity to systemically investigate protein and phosphoprotein abundance changes as a result of statin treatment. Many lipid-related protein abundances were increased in HepG2 cells treated by atorvastatin, including HMGCR, FDFT, SQLE, and LDLR, while the abundances of proteins involved in cellular response to stress and apoptosis were decreased. Comprehensive analysis of protein phosphorylation demonstrated that several basic motifs were enriched among down-regulated phosphorylation sites, which indicates that kinases with preference for these motifs, such as protein kinase A and protein kinase C, have attenuated activities. Phosphopeptides on a group of G-protein modulators were up-regulated, which strongly suggests that cell signal rewiring was a result of the effect of protein lipidation by the statin. This work provides a global view of liver cell responses to atorvastatin at the proteome and phosphoproteome levels, which provides insight into the pleiotropic effects of statins.

  17. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    PubMed

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens. PMID:27056086

  18. Separating Fluid Shear Stress from Acceleration during Vibrations in Vitro: Identification of Mechanical Signals Modulating the Cellular Response

    PubMed Central

    Uzer, Gunes; Manske, Sarah L; Chan, M Ete; Chiang, Fu-Pen; Rubin, Clinton T; Frame, Mary D; Judex, Stefan

    2012-01-01

    The identification of the physical mechanism(s) by which cells can sense vibrations requires the determination of the cellular mechanical environment. Here, we quantified vibration-induced fluid shear stresses in vitro and tested whether this system allows for the separation of two mechanical parameters previously proposed to drive the cellular response to vibration – fluid shear and peak accelerations. When peak accelerations of the oscillatory horizontal motions were set at 1g and 60Hz, peak fluid shear stresses acting on the cell layer reached 0.5Pa. A 3.5-fold increase in fluid viscosity increased peak fluid shear stresses 2.6-fold while doubling fluid volume in the well caused a 2-fold decrease in fluid shear. Fluid shear was positively related to peak acceleration magnitude and inversely related to vibration frequency. These data demonstrated that peak shear stress can be effectively separated from peak acceleration by controlling specific levels of vibration frequency, acceleration, and/or fluid viscosity. As an example for exploiting these relations, we tested the relevance of shear stress in promoting COX-2 expression in osteoblast like cells. Across different vibration frequencies and fluid viscosities, neither the level of generated fluid shear nor the frequency of the signal were able to consistently account for differences in the relative increase in COX-2 expression between groups, emphasizing that the eventual identification of the physical mechanism(s) requires a detailed quantification of the cellular mechanical environment. PMID:23074384

  19. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    PubMed

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens.

  20. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    SciTech Connect

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  1. Cellular immune responses to amoebic liver abcess in the guinea-pig.

    PubMed Central

    Bray, R S; Harris, W G

    1977-01-01

    Guinea-pigs infected in the liver with the Biswas strain of Entamoeba histolytica showed no dermal hypersensitivity but showed positive lymphocyte transformation and macrophage-migration inhibition. The time sequence showed an activated response at 4 days after infection, a full response at 8 days when the liver abscesses were resolving and a waning response at 12 days when the abscesses had healed. PMID:891028

  2. Protozoa as model systems for the study of cellular responses to altered gravity conditions.

    PubMed

    Hemmersbach-Krause, R; Briegleb, W; Häder D-P; Vogel, K; Klein, S; Mulisch, M

    1994-01-01

    The orientation behavior of Paramecium changed in a similar way after transition to conditions of free-fall in a sounding rocket and after transition to conditions of simulated weightlessness on a fast rotating clinostat. After a period of residual orientation, Paramecium cells distributed themselves randomly 80 s (120 s) after onset of free-fall (simulated weightlessness). Swimming velocity increased significantly; however, the increase was transient and subsided after 3 min in the rocket experiments, while the velocity remained enhanced even during 2 h of rotation on a fast clinostat. Trichocysts were present and without morphological changes in Paramecium cells which had been exposed to a rocket flight, as well as to fast or slow rotation on a clinostat. Regeneration of the oral apparatus of Stentor and morphogenesis of Eufolliculina proceeded normally on the clinostat. The results demonstrate that the clinostat is a useful tool to simulate the conditions of weightlessness on earth and to detect gravisensitive cellular functions. PMID:11537958

  3. Protozoa as model systems for the study of cellular responses to altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Hemmersbach-Krause, R.; Briegleb, W.; Häder, D.-P.; Vogel, K.; Klein, S.; Mulisch, M.

    1994-08-01

    The orientation behavior of Paramecium changed in a similar way after transition to conditions of free-fall in a sounding rocket and after transition to conditions of simulated weightlessness on a fast rotating clinostat. After a period of residual orientation, Paramecium cells distributed themselves randomly 80 s (120 s) after onset of free-fall (simulated weightlessness). Swimming velocity increased significantly; however, the increase was transient and subsided after 3 min in the rocket experiments, while the velocity remained enhanced even during 2 h of rotation on a fast clinostat. Trichocysts were present and without morphological changes in Paramecium cells which had been exposed to a rocket flight, as well as to fast or slow rotation on a clinostat. Regeneration of the oral apparatus of Stentor and morphogenesis of Eufolliculina proceeded normally on the clinostat. The results demonstrate that the clinostat is a useful tool to stimulate the conditions of weightlessness on earth and to detect gravisensitive cellular functions.

  4. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds.

    PubMed

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-10-21

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation. PMID:25037888

  5. Polyacrylamide scaffolds for studying cellular response to substrate stiffness in three dimensions

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Hui

    2013-03-01

    Recent developments in two-dimensional (2D) culture substrates with tunable stiffness and patterned adhesion ligands have demonstrated that biochemical and mechanical cues regulate the biological functions of living cells. We have extended these cell culture platforms into three dimensions (3D), as in complex biological systems, by producing highly ordered scaffolds of polyacrylamide coated with extracellular matrix proteins. We characterized parameters for the scaffold fabrication. We then grew individual fibroblasts in the identical pores of our scaffolds, examing cellular morphological, cytoskeletal, and adhesion properties. We have observed rich variety of morphologies and anchoring strategies assumed by cells growing on our tunable 3D polyacrylamide scaffolds to demonstrate the richness of cell-mciroenvironment interactions when cell adhesions are not confined to 2D surfaces.

  6. Changes in cellular fructose-2,6-bisphosphate concentrations in response to ozone

    SciTech Connect

    Nishio, J.N.; Guzy, M.R.; Miller, R.T.; Frederick, P.; Heath, R.L.

    1987-04-01

    Fructose-2,6-bisphosphate (F-2,6-P/sub 2/), cytosolic metabolite, plays a critical role in regulating plant carbon metabolism. Elevated concentrations of F-2,6-P/sub 2/ enhance glycolytic activity and inhibit sucrose synthesis. In addition elevated F-2,6-P/sub 2/ concentrations are associated with stresses that increase respiration or decrease photosynthesis, for example, limiting light or carbon dioxide, wounding, and fungal infection. Since O/sub 3/ stress can decrease photosynthesis and alter translocation and respiration they are conducting experiments to determine the effect of O/sub 3/ on cellular F-2,6-P/sub 2/ levels in hydroponically grown spinach. Preliminary results, however, suggest the possibility that ozone activates some phosphatase, because F-2,6-P/sub 2/, added as an internal standard to leaf extracts from ozone treated leaves, was decreased.

  7. Protozoa as model systems for the study of cellular responses to altered gravity conditions.

    PubMed

    Hemmersbach-Krause, R; Briegleb, W; Häder D-P; Vogel, K; Klein, S; Mulisch, M

    1994-01-01

    The orientation behavior of Paramecium changed in a similar way after transition to conditions of free-fall in a sounding rocket and after transition to conditions of simulated weightlessness on a fast rotating clinostat. After a period of residual orientation, Paramecium cells distributed themselves randomly 80 s (120 s) after onset of free-fall (simulated weightlessness). Swimming velocity increased significantly; however, the increase was transient and subsided after 3 min in the rocket experiments, while the velocity remained enhanced even during 2 h of rotation on a fast clinostat. Trichocysts were present and without morphological changes in Paramecium cells which had been exposed to a rocket flight, as well as to fast or slow rotation on a clinostat. Regeneration of the oral apparatus of Stentor and morphogenesis of Eufolliculina proceeded normally on the clinostat. The results demonstrate that the clinostat is a useful tool to simulate the conditions of weightlessness on earth and to detect gravisensitive cellular functions.

  8. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds

    NASA Astrophysics Data System (ADS)

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-09-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  9. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    PubMed Central

    2012-01-01

    Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints) mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK) cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU), methylmetanosulfonate (MMS), phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt2 function is important

  10. Cellular Mechanisms Underlying Bone-Forming Cell Proliferative Response to Hypergravity

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Parra, M.; DaCosta, M.; Wing, A.; Roden, C.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2004-01-01

    Life on Earth has evolved under the continuous influence of gravity (1-g). As humans explore and develop space, however, we must learn to adapt to an environment with little or no gravity. Studies indicate that lack of weightbearing for vertebrates occurring with immobilization, paralysis, or in a microgravity environment may cause muscle and bone atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) (consisting of molecules such as collagen, fibronectin, and laminin) in mechanosensitive tissues. We test for the presence of gravity-sensitive pathways in bone-forming cells (osteoblasts) using hypergravity applied by a cell culture centrifuge. Stimulation of 50 times gravity (50-g) increased proliferation in primary rat osteoblasts for cells grown on collagen Type I and fibronectin, but not on laminin or uncoated surfaces. Survival was also enhanced during hypergravity stimulation by the presence of ECM. Bromodeoxyuridine incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. Reverse transcription-polymerase chain reaction was used to test for all possible integrins. Our combined results indicate that beta1 and/or beta3 integrin subunits may be involved. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signalling pathways which are sensitive to g-level. Further research to define the mechanisms involved will provide direction so that we may better adapt and counteract bone atrophy caused by the lack of weightbearing.

  11. Investigation of Cellular and Molecular Responses to Pulsed Focused Ultrasound in a Mouse Model

    PubMed Central

    Burks, Scott R.; Ziadloo, Ali; Hancock, Hilary A.; Chaudhry, Aneeka; Dean, Dana D.; Lewis, Bobbi K.; Frenkel, Victor; Frank, Joseph A.

    2011-01-01

    Continuous focused ultrasound (cFUS) has been widely used for thermal ablation of tissues, relying on continuous exposures to generate temperatures necessary to induce coagulative necrosis. Pulsed FUS (pFUS) employs non-continuous exposures that lower the rate of energy deposition and allow cooling to occur between pulses, thereby minimizing thermal effects and emphasizing effects created by non-thermal mechanisms of FUS (i.e., acoustic radiation forces and acoustic cavitation). pFUS has shown promise for a variety of applications including drug and nanoparticle delivery; however, little is understood about the effects these exposures have on tissue, especially with regard to cellular pro-homing factors (growth factors, cytokines, and cell adhesion molecules). We examined changes in murine hamstring muscle following pFUS or cFUS and demonstrate that pFUS, unlike cFUS, has little effect on the histological integrity of muscle and does not induce cell death. Infiltration of macrophages was observed 3 and 8 days following pFUS or cFUS exposures. pFUS increased expression of several cytokines (e.g., IL-1α, IL-1β, TNFα, INFγ, MIP-1α, MCP-1, and GMCSF) creating a local cytokine gradient on days 0 and 1 post-pFUS that returns to baseline levels by day 3 post-pFUS. pFUS exposures induced upregulation of other signaling molecules (e.g., VEGF, FGF, PlGF, HGF, and SDF-1α) and cell adhesion molecules (e.g., ICAM-1 and VCAM-1) on muscle vasculature. The observed molecular changes in muscle following pFUS may be utilized to target cellular therapies by increasing homing to areas of pathology. PMID:21931834

  12. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    PubMed Central

    Ott, Lee W.; Resing, Katheryn A.; Sizemore, Alecia W.; Heyen, Joshua W.; Cocklin, Ross R.; Pedrick, Nathan M.; Woods, H. Cary; Chen, Jake Y.; Goebl, Mark G.; Witzmann, Frank A.; Harrington, Maureen A.

    2010-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFα and IL-1 regulate different processes. A large-scale proteomic analysis of TNFα- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFα and IL-1. When combined with genomic studies, our results indicate that TNFα, but not IL-1, mediates cell cycle arrest. PMID:17503796

  13. Modulation of cellular stress response via the erythropoietin/CD131 heteroreceptor complex in mouse mesenchymal-derived cells.

    PubMed

    Bohr, Stefan; Patel, Suraj J; Vasko, Radovan; Shen, Keyue; Iracheta-Vellve, Arvin; Lee, Jungwoo; Bale, Shyam Sundhar; Chakraborty, Nilay; Brines, Michael; Cerami, Anthony; Berthiaume, Francois; Yarmush, Martin L

    2015-02-01

    Tissue-protective properties of erythropoietin (EPO) have let to the discovery of an alternative EPO signaling via an EPO-R/CD131 receptor complex which can now be specifically targeted through pharmaceutically designed short sequence peptides such as ARA290. However, little is still known about specific functions of alternative EPO signaling in defined cell populations. In this study, we investigated effects of signaling through EPO-R/CD131 complex on cellular stress responses and pro-inflammatory activation in different mesenchymal-derived phenotypes. We show that anti-apoptotic, anti-inflammatory effects of ARA290 and EPO coincide with the externalization of CD131 receptor component as an immediate response to cellular stress. In addition, alternative EPO signaling strongly modulated transcriptional, translational, or metabolic responses after stressor removal. Specifically, we saw that ARA290 was able to overcome a TNFα-mediated inhibition of transcription factor activation related to cell stress responses, most notably of serum response factor (SRF), heat shock transcription factor protein 1 (HSF1), and activator protein 1 (AP1). We conclude that alternative EPO signaling acts as a modulator of pro-inflammatory signaling pathways and likely plays a role in restoring tissue homeostasis. Key message: Erythropoietin (EPO) triggers an alternative pathway via heteroreceptor EPO/CD131. ARA290 peptide specifically binds EPO/CD131 but not the canonical EPO/EPO receptor. Oxidative stress and inflammation promote cell surface expression of CD131. ARA290 prevents tumor necrosis factor-mediated inhibition of stress-related genes. Alternative EPO signaling modulates inflammation and promotes tissue homeostasis.

  14. Controlled Measurement and Comparative Analysis of Cellular Components in E. coli Reveals Broad Regulatory Changes in Response to Glucose Starvation

    PubMed Central

    Houser, John R.; Barnhart, Craig; Boutz, Daniel R.; Carroll, Sean M.; Dasgupta, Aurko; Michener, Joshua K.; Needham, Brittany D.; Papoulas, Ophelia; Sridhara, Viswanadham; Sydykova, Dariya K.; Marx, Christopher J.; Trent, M. Stephen; Barrick, Jeffrey E.; Marcotte, Edward M.; Wilke, Claus O.

    2015-01-01

    How do bacteria regulate their cellular physiology in response to starvation? Here, we present a detailed characterization of Escherichia coli growth and starvation over a time-course lasting two weeks. We have measured multiple cellular components, including RNA and proteins at deep genomic coverage, as well as lipid modifications and flux through central metabolism. Our study focuses on the physiological response of E. coli in stationary phase as a result of being starved for glucose, not on the genetic adaptation of E. coli to utilize alternative nutrients. In our analysis, we have taken advantage of the temporal correlations within and among RNA and protein abundances to identify systematic trends in gene regulation. Specifically, we have developed a general computational strategy for classifying expression-profile time courses into distinct categories in an unbiased manner. We have also developed, from dynamic models of gene expression, a framework to characterize protein degradation patterns based on the observed temporal relationships between mRNA and protein abundances. By comparing and contrasting our transcriptomic and proteomic data, we have identified several broad physiological trends in the E. coli starvation response. Strikingly, mRNAs are widely down-regulated in response to glucose starvation, presumably as a strategy for reducing new protein synthesis. By contrast, protein abundances display more varied responses. The abundances of many proteins involved in energy-intensive processes mirror the corresponding mRNA profiles while proteins involved in nutrient metabolism remain abundant even though their corresponding mRNAs are down-regulated. PMID:26275208

  15. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans.

    PubMed

    Gullón, Sonia; Marín, Silvia; Mellado, Rafael P

    2015-01-01

    Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase) and a Tat-dependent model protein (agarase) in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients' depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host.

  16. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.

    PubMed

    Chou, Tzu-Yuan; Sun, Yung-Shin; Hou, Hsien-San; Wu, Shang-Ying; Zhu, Yun; Cheng, Ji-Yen; Lo, Kai-Yin

    2016-08-13

    Microfluidic devices are capable of creating a precise and controllable cellular micro-environment of pH, temperature, salt concentration, and other physical or chemical stimuli. They have been commonly used for in vitro cell studies by providing in vivo like surroundings. Especially, how cells response to chemical gradients, electrical fields, and shear stresses has drawn many interests since these phenomena are important in understanding cellular properties and functions. These microfluidic chips can be made of glass substrates, silicon wafers, polydimethylsiloxane (PDMS) polymers, polymethylmethacrylate (PMMA) substrates, or polyethyleneterephthalate (PET) substrates. Out of these materials, PMMA substrates are cheap and can be easily processed using laser ablation and writing. Although a few microfluidic devices have been designed and fabricated for generating multiple, coexisting chemical and electrical stimuli, none of them was considered efficient enough in reducing experimental repeats, particular for screening purposes. In this report, we describe our design and fabrication of two PMMA-based microfluidic chips for investigating cellular responses, in the production of reactive oxygen species and the migration, under single or coexisting chemical/electrical/shear stress stimuli. The first chip generates five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 in the culture regions, together with a shear stress gradient produced inside each of these areas. The second chip generates the same relative concentrations, but with five different electric field strengths created within each culture area. These devices not only provide cells with a precise, controllable micro-environment but also greatly increase the experimental throughput.

  17. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.

    PubMed

    Chou, Tzu-Yuan; Sun, Yung-Shin; Hou, Hsien-San; Wu, Shang-Ying; Zhu, Yun; Cheng, Ji-Yen; Lo, Kai-Yin

    2016-01-01

    Microfluidic devices are capable of creating a precise and controllable cellular micro-environment of pH, temperature, salt concentration, and other physical or chemical stimuli. They have been commonly used for in vitro cell studies by providing in vivo like surroundings. Especially, how cells response to chemical gradients, electrical fields, and shear stresses has drawn many interests since these phenomena are important in understanding cellular properties and functions. These microfluidic chips can be made of glass substrates, silicon wafers, polydimethylsiloxane (PDMS) polymers, polymethylmethacrylate (PMMA) substrates, or polyethyleneterephthalate (PET) substrates. Out of these materials, PMMA substrates are cheap and can be easily processed using laser ablation and writing. Although a few microfluidic devices have been designed and fabricated for generating multiple, coexisting chemical and electrical stimuli, none of them was considered efficient enough in reducing experimental repeats, particular for screening purposes. In this report, we describe our design and fabrication of two PMMA-based microfluidic chips for investigating cellular responses, in the production of reactive oxygen species and the migration, under single or coexisting chemical/electrical/shear stress stimuli. The first chip generates five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 in the culture regions, together with a shear stress gradient produced inside each of these areas. The second chip generates the same relative concentrations, but with five different electric field strengths created within each culture area. These devices not only provide cells with a precise, controllable micro-environment but also greatly increase the experimental throughput. PMID:27584698

  18. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    SciTech Connect

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  19. Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways.

    PubMed

    Spiering, Barry A; Kraemer, William J; Anderson, Jeffrey M; Armstrong, Lawrence E; Nindl, Bradley C; Volek, Jeff S; Maresh, Carl M

    2008-01-01

    Recent advances in molecular biology have elucidated some of the mechanisms that regulate skeletal muscle growth. Logically, muscle physiologists have applied these innovations to the study of resistance exercise (RE), as RE represents the most potent natural stimulus for growth in adult skeletal muscle. However, as this molecular-based line of research progresses to investigations in humans, scientists must appreciate the fundamental principles of RE to effectively design such experiments. Therefore, we present herein an updated paradigm of RE biology that integrates fundamental RE principles with the current knowledge of muscle cellular and molecular signalling. RE invokes a sequential cascade consisting of: (i) muscle activation; (ii) signalling events arising from mechanical deformation of muscle fibres, hormones, and immune/inflammatory responses; (iii) protein synthesis due to increased transcription and translation; and (iv) muscle fibre hypertrophy. In this paradigm, RE is considered an 'upstream' signal that determines specific downstream events. Therefore, manipulation of the acute RE programme variables (i.e. exercise choice, load, volume, rest period lengths, and exercise order) alters the unique 'fingerprint' of the RE stimulus and subsequently modifies the downstream cellular and molecular responses. PMID:18557656

  20. MiTF Regulates Cellular Response to Reactive Oxygen Species through Transcriptional Regulation of APE-1/Ref-1

    PubMed Central

    Liu, Feng; Fu, Yan; Meyskens, Frank L.

    2014-01-01

    Microphthalmia-associated transcription factor (MiTF) is a key transcription factor for melanocyte lineage survival. Most previous work on this gene has been focused on its role in development. A role in carcinogenesis has emerged recently, but the mechanism is unclear. We classified melanoma cells into MiTF-positive and -negative groups and explored the function of MiTF in regulating cellular responses to reactive oxygen species (ROS). The MiTF-positive melanoma cell lines accumulated high levels of apurinic/apyrimidinic endonuclease (APE-1/Ref-1, redox effector-1), a key redox sensor and DNA endonuclease critical for oxidative DNA damage repair. We demonstrate that APE-1 is a transcriptional target for MiTF. Knocking down MiTF led to reduced APE-1 protein accumulation, as well as abolished induction of APE-1 by ROS. MiTF-negative melanoma cells survived more poorly under ROS stress than the MiTF-positive cells based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Trypan blue staining. Overexpression of APE-1 partially rescued ROS-induced cell death when MiTF was depleted. We conclude that MiTF regulates cellular response to ROS by regulation of APE-1, and this may provide a mechanism of how MiTF is involved in melanoma carcinogenesis. PMID:18971960

  1. Inhibitory Effects of the Standardized Extract of Phyllanthus amarus on Cellular and Humoral Immune Responses in Balb/C Mice.

    PubMed

    Ilangkovan, Menaga; Jantan, Ibrahim; Mesaik, Mohamed Ahmed; Bukhari, Syed Nasir Abbas

    2016-08-01

    Phyllanthus amarus has been shown to have strong inhibitory effects on phagocytic activity of human neutrophils and on cellular immune responses in Wistar-Kyoto rats. In this study, we investigated the effects of daily treatment of standardized extract of P. amarus at 50, 100 and 200 mg/kg for 14 days in Balb/C mice by measuring the myeloperoxidase activity (MPO), nitric oxide (NO) release, macrophage phagocytosis, swelling of footpad in delayed type hypersensitivity (DTH), and serum immunoglobulins, ceruloplasmin and lysozyme levels. Qualitative and quantitative analyses of the extract using validated reversed-phase HPLC methods identified phyllanthin, hypophyllanthin, corilagin and geraniin as the biomarkers. Significant dose-dependent inhibitions of MPO activity and NO release were observed in treated mice. The extract also inhibited E. coli phagocytic capacity of peritoneal macrophages of treated mice and inhibited the sheep red blood cells (sRBC)-induced swelling rate of mice paw in the DTH. There was also a significant decrease in non-specific humoral immunity including ceruloplasmin and lysozyme levels in the extract-fed groups as well as the release of serum level immunoglobulins. The strong inhibitory effects of the extract on the cellular and humoral immune responses suggest the potential of the plant to be developed as an effective immunosuppressive agent. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Nano LC-MS Based Proteomic Analysis as a Predicting Approach to Study Cellular Responses of Carbon Nanotubes.

    PubMed

    Li, Ruibin; Wang, Fangjun; Liu, Hongwei; Wu, Ren'an; Zou, Hanfa

    2016-03-01

    Nano-bio interface has been paid much attention recently, though with the lack of methodology to predict the potential responses in biological systems such as cells induced by nanomaterials. In this study, we described a proteomic approach to investigate the proteome change in K562 cells exposed to oxidized single-walled carbon nanotubes (o-SWCNTs). 605 proteins were identified by semi-quantitative proteomic analysis (SQPA), including 29 significantly changed proteins with spectra count (SpC) ratios lager than 2 or less than 0.5. Three of them including HBA, CFL1 and LMAN2 were further validated by western blotting. The differential proteins were further classified by Ingenuity Pathways Analysis (IPA) to integrate them into a signaling network. Based on the information by this network, we predict that o-SWCNT treatment activated cell aggregation, decreased cell migration, but had no effect on cell death. And these cellular responses were further experimentally demonstrated. The protein signaling network established in this study would greatly benefit the studies on the bio-applications of o-SWCNTs and their toxicity studies. Our study demonstrated that proteomics could be used as a predicting tool to study nano-bio interface at cellular level.

  3. Histological Lesions and Cellular Response in the Skin of Alpine Chamois (Rupicapra r. rupicapra) Spontaneously Affected by Sarcoptic Mange

    PubMed Central

    Salvadori, Claudia; Lazzarotti, Camilla; Trogu, Tiziana; Lanfranchi, Paolo

    2016-01-01

    Population dynamics of chamois (genus Rupicapra, subfamily Caprinae) can be influenced by infectious diseases epizootics, of which sarcoptic mange is probably the most severe in the Alpine chamois (Rupicapra rupicapra rupicapra). In this study, skin lesions and cellular inflammatory infiltrates were characterized in 44 Alpine chamois affected by sarcoptic mange. Dermal cellular responses were evaluated in comparison with chamois affected by trombiculosis and controls. In both sarcoptic mange and trombiculosis, a significantly increase of eosinophils, mast cells, T and B lymphocytes, and macrophages was detected. Moreover, in sarcoptic mange significant higher numbers of T lymphocytes and macrophages compared to trombiculosis were observed. Lesions in sarcoptic mange were classified in three grades, according to crusts thickness, correlated with mite counts. Grade 3 represented the most severe form with crust thickness more than 3.5 mm, high number of mites, and severe parakeratosis with diffuse bacteria. Evidence of immediate and delayed hypersensitivity was detected in all three forms associated with diffuse severe epidermal hyperplasia. In grade 3, a significant increase of B lymphocytes was evident compared to grades 1 and 2, while eosinophil counts were significantly higher than in grade 1, but lower than in grade 2 lesions. An involvement of nonprotective Th2 immune response could in part account for severe lesions of grade 3. PMID:27403422

  4. Tetanus toxoid-loaded layer-by-layer nanoassemblies for efficient systemic, mucosal, and cellular immunostimulatory response following oral administration.

    PubMed

    Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog

    2015-10-01

    The present study reports the tetanus toxoid (TT)-loaded layer-by-layer nanoassemblies (layersomes) with enhanced protection, permeation, and presentation for comprehensive oral immunization. The stable and lyophilized TT-loaded layersomes were prepared by a thin-film hydration method followed by alternate layer-by-layer coating of an electrolyte. The developed system was assessed for in vitro stability of antigen and formulation, cellular uptake, ex vivo intestinal uptake, and immunostimulatory response using a suitable experimental protocol. Layersomes improved the stability in simulated biological media as well as protected the integrity/conformation and native 3D structure of TT as confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), and fluorescence spectroscopy, respectively. The cell culture studies demonstrated a 3.8-fold higher permeation of layersomes in Caco-2 cells and an 8.5-fold higher uptake by antigen-presenting cells (RAW 264.7). The TT-loaded layersomes elicited a complete immunostimulatory profile consisting of higher systemic (serum IgG titer), mucosal (sIgA titer), and cellular (interleukin-2 (IL-2) and interferon-γ (IFN-γ) levels) immune response after peroral administration in mice. The modified TT inhibition assay further confirmed the elicitation of complete protective levels of anti-TT antibody (>0.1 IU/mL) by layersomes. In conclusion, the proposed strategy is expected to contribute significantly in the field of stable liposome technology for mass immunization through the oral route.

  5. Molecular and cellular profiling of acute responses to total body radiation exposure in ovariectomized female cynomolgus macaques

    PubMed Central

    DeBo, Ryne J.; Register, Thomas C.; Caudell, David L.; Sempowski, Gregory D.; Dugan, Gregory; Gray, Shauna; Owzar, Kouros; Jiang, Chen; Bourland, J. Daniel; Chao, Nelson J.; Cline, J. Mark

    2015-01-01

    Purpose The threat of radiation exposure requires a mechanistic understanding of radiation-induced immune injury and recovery. The study objective was to evaluate responses to ionizing radiation in ovariectomized (surgically post-menopausal) female cynomolgus macaques. Materials and methods Animals received a single total-body irradiation (TBI) exposure at doses of 0, 2 or 5 Gy with scheduled necropsies at 5 days, 8 weeks and 24 weeks post-exposure. Blood and lymphoid tissues were evaluated for morphologic, cellular, and molecular responses. Results Irradiated animals developed symptoms of acute hematopoietic syndrome, and reductions in thymus weight, thymopoiesis, and bone marrow cellularity. Acute, transient increases in plasma monocyte chemoattractant protein 1 (MCP-1) were observed in 5 Gy animals along with dose-dependent alterations in messenger ribonucleic acid (mRNA) signatures in thymus, spleen, and lymph node. Expression of T cell markers was lower in thymus and spleen, while expression of macrophage marker CD68 (cluster of differentiation 68) was relatively elevated in lymphoid tissues from irradiated animals. Conclusions Ovariectomized female macaques exposed to moderate doses of radiation experienced increased morbidity, including acute, dose-dependent alterations in systemic and tissue-specific biomarkers, and increased macrophage/T cell ratios. The effects on mortality exceeded expectations based on previous studies in males, warranting further investigation. PMID:25786585

  6. Nano LC-MS Based Proteomic Analysis as a Predicting Approach to Study Cellular Responses of Carbon Nanotubes.

    PubMed

    Li, Ruibin; Wang, Fangjun; Liu, Hongwei; Wu, Ren'an; Zou, Hanfa

    2016-03-01

    Nano-bio interface has been paid much attention recently, though with the lack of methodology to predict the potential responses in biological systems such as cells induced by nanomaterials. In this study, we described a proteomic approach to investigate the proteome change in K562 cells exposed to oxidized single-walled carbon nanotubes (o-SWCNTs). 605 proteins were identified by semi-quantitative proteomic analysis (SQPA), including 29 significantly changed proteins with spectra count (SpC) ratios lager than 2 or less than 0.5. Three of them including HBA, CFL1 and LMAN2 were further validated by western blotting. The differential proteins were further classified by Ingenuity Pathways Analysis (IPA) to integrate them into a signaling network. Based on the information by this network, we predict that o-SWCNT treatment activated cell aggregation, decreased cell migration, but had no effect on cell death. And these cellular responses were further experimentally demonstrated. The protein signaling network established in this study would greatly benefit the studies on the bio-applications of o-SWCNTs and their toxicity studies. Our study demonstrated that proteomics could be used as a predicting tool to study nano-bio interface at cellular level. PMID:27455640

  7. The Responses of Preschoolers with Cochlear Implants to Musical Activities: A Multiple Case Study

    ERIC Educational Resources Information Center

    Schraer-Joiner, Lyn E.; Chen-Hafteck, Lily

    2009-01-01

    The purpose of this study was to investigate the musical experiences of preschool cochlear implant users. Research objectives were to examine: (1) musical, social and emotional responses to activities; and (2) whether length of experience with the implant influenced responses. Participants were three prelingually deafened children, age 4,…

  8. d-Amino Acids Modulate the Cellular Response of Enzymatic-Instructed Supramolecular Nanofibers of Small Peptides

    PubMed Central

    2015-01-01

    Peptides made of d-amino acids, as the enantiomer of corresponding l-peptides, are able to resist proteolysis. It is, however, unclear or much less explored whether or how d-amino acids affect the cellular response of supramolecular nanofibers formed by enzyme-triggered self-assembly of d-peptides. In this work, we choose a cell compatible molecule, Nap-l-Phe-l-Phe-l-pTyr (LLL-1P), and systematically replace the l-amino acids in this tripeptidic precursor or its hydrogelator by the corresponding d-amino acid(s). The replacement of even one d-amino acid in this tripeptidic precursor increases its proteolytic resistance. The results of static light scattering and TEM images show the formation of nanostructures upon the addition of alkaline phosphatase, even at concentrations below the minimum gelation concentration (mgc). All these isomers are able to form ordered nanostructures and exhibit different morphologies. According to the cell viability assay on these stereochemical isomers, cells exhibit drastically different responses to the enantiomeric precursors, but almost same responses to the enantiomeric hydrogelators. Furthermore, the different cellular responses of LLL-1P and DDD-1P largely originate from the ecto-phosphatases catalyzed self-assembly of DDD-1 on the surface of cells. Therefore, this report not only illustrates a new way for tailoring the properties of supramolecular assemblies, but also provides new insights to answering the fundamental question of how mammalian cells respond to enzymatic formation of nanoscale supramolecular assemblies (e.g., nanofibers) of d-peptides. PMID:25230147

  9. Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer's disease.

    PubMed

    Mattson, M P; Barger, S W; Furukawa, K; Bruce, A J; Wyss-Coray, T; Mark, R J; Mucke, L

    1997-02-01

    beta-Amyloid precursor protein (beta APP), transforming growth factor beta (TGF beta), and tumor necrosis factor-alpha (TNF alpha) are remarkably pleiotropic neural cytokines/neurotrophic factors that orchestrate intricate injury-related cellular and molecular interactions. The links between these three factors include: their responses to injury; their interactive effects on astrocytes, microglia and neurons; their ability to induce cytoprotective responses in neurons; and their association with cytopathological alterations in Alzheimer's disease. Astrocytes and microglia each produce and respond to TGF beta and TNF alpha in characteristic ways when the brain is injured. TGF beta, TNF alpha and secreted forms of beta APP (sAPP) can protect neurons against excitotoxic, metabolic and oxidative insults and may thereby serve neuroprotective roles. On the other hand, under certain conditions TNF alpha and the fibrillogenic amyloid beta-peptide (A beta) derivative of beta APP can promote damage of neuronal and glial cells, and may play roles in neurodegenerative disorders. Studies of genetically manipulated mice in which TGF beta, TNF alpha or beta APP ligand or receptor levels are altered suggest important roles for each factor in cellular responses to brain injury and indicate that mediators of neural injury responses also have the potential to enhance amyloidogenesis and/or to interfere with neuroregeneration if expressed at abnormal levels or modified by strategic point mutations. Recent studies have elucidated signal transduction pathways of TGF beta (serine/threonine kinase cascades), TNF alpha (p55 receptor linked to a sphingomyelin-ceramide-NF kappa B pathway), and secreted forms of beta APP (sAPP; receptor guanylate cyclase-cGMP-cGMP-dependent kinase-K+ channel activation). Knowledge of these signaling pathways is revealing novel molecular targets on which to focus neuroprotective therapeutic strategies in disorders ranging from stroke to Alzheimer's disease

  10. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    NASA Astrophysics Data System (ADS)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; van Dorsselaer, Alain; Rabilloud, Thierry

    2014-05-01

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate

  11. Calcium mobilizations in response to changes in the gravity vector in Arabidopsis seedlings: possible cellular mechanisms.

    PubMed

    Tatsumi, Hitoshi; Toyota, Masatsugu; Furuichi, Takuya; Sokabe, Masahiro

    2014-01-01

    Gravity influences the growth direction of higher plants. Changes in the gravity vector (gravistimulation) immediately promote the increase in the cytoplasmic free calcium ion concentration ([Ca(2+)]c) in Arabidopsis (Arabidopsis thaliana) seedlings. When the seedlings are gravistimulated by reorientation at 180°, a transient two peaked (biphasic) [Ca(2+)]c-increase arises in their hypocotyl and petioles. Parabolic flights (PFs) can generate a variety of gravity-stimuli, and enables us to measure gravity-induced [Ca(2+)]c-increases without specimen rotation, which demonstrate that Arabidopsis seedlings possess a rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes into Ca(2+) signals on a sub-second timescale. Hypergravity by centrifugation (20 g or 300 g) also induces similar transient [Ca(2+)]c-increases. In this review, we propose models for possible cellular processes of the garavi-stimulus-induced [Ca(2+)]c-increase, and evaluate those by examining whether the model fits well with the kinetic parameters derived from the [Ca(2+)]c-increases obtained by applying gravistimulus with different amplitudes and time sequences.

  12. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold.

    PubMed

    Zulkifli, Farah Hanani; Jahir Hussain, Fathima Shahitha; Abdull Rasad, Mohammad Syaiful Bahari; Mohd Yusoff, Mashitah

    2015-02-01

    The aim of this research is to develop biocompatible nanofibrous mats using hydroxyethyl cellulose with improved cellular adhesion profiles and stability and use these fibrous mats as potential scaffold for skin tissue engineering. Glutaraldehyde was used to treat the scaffolds water insoluble as well as improve their biostability for possible use in biomedical applications. Electrospinning of hydroxyethyl cellulose (5 wt%) with poly(vinyl alcohol) (15 wt%) incorporated with and without collagen was blended at (1:1:1) and (1:1) ratios, respectively, and was evaluated for optimal criteria as tissue engineering scaffolds. The nanofibrous mats were crosslinked and characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Scanning electron microscope images showed that the mean diameters of blend nanofibers were gradually increased after chemically crosslinking with glutaraldehyde. Fourier transform infrared spectroscopy was carried out to understand chemical interactions in the presence of aldehyde groups. Thermal characterization results showed that the stability of hydroxyethyl cellulose/poly(vinyl alcohol) and hydroxyethyl cellulose/poly(vinyl alcohol)/collagen nanofibers was increased with glutaraldehyde treatment. Studies on cell-scaffolds interaction were carried out by culturing human fibroblast (hFOB) cells on the nanofibers by assessing the growth, proliferation, and morphologies of cells. The scanning electron microscope results show that better cell proliferation and attachment appeared on hydroxyethyl cellulose/poly(vinyl alcohol)/collagen substrates after 7 days of culturing, thus, promoting the potential of electrospun scaffolds as a promising candidate for tissue engineering applications.

  13. Highly Dynamic Cellular-Level Response of Symbiotic Coral to a Sudden Increase in Environmental Nitrogen

    PubMed Central

    Kopp, C.; Pernice, M.; Domart-Coulon, I.; Djediat, C.; Spangenberg, J. E.; Alexander, D. T. L.; Hignette, M.; Meziane, T.; Meibom, A.

    2013-01-01

    ABSTRACT Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reef-building corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase 15N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments. PMID:23674611

  14. Sequence of cellular responses in rabbit aortas following one and two injuries with a balloon catheter.

    PubMed Central

    Jørgensen, L.; Grøthe, A. G.; Groves, H. M.; Kinlough-Rathbone, R. L.; Richardson, M.; Mustard, J. F.

    1988-01-01

    In order to further elucidate the pathogenesis of intimal proliferation and increased thrombogenesis following repeated arterial injuries we studied the sequence of the cellular changes following two injuries of rabbit aortas with a balloon catheter. Following the first injury, the de-endothelialized surface was covered by a platelet monolayer. Polymorphonuclear leucocytes adhered to the inner surface of this monolayer and did not appear to penetrate the vessel wall. By 4 to 7 days, areas of neointima had formed. Within seconds after the reinjury at 7 days after the de-endothelialization small platelet aggregates formed on injured neointimal smooth muscle cells. Within I min platelet thrombi and fibrin strands formed. At 30 min most of the platelet thrombi had become fibrin-rich. Polymorphonuclear leucocytes had accumulated and many had begun to penetrate into the neointimal tissue. The number and extent of penetration of leucocytes into the inner parts of the arterial wall increased with time. Four days after the injury the neointimal cushions were restored and thickened. Both following the first and second injury the formation of neointimal cushions was accompanied by a change in the polarity of the inner layers of medial smooth muscle cells, some of which appeared to have migrated into the neointima. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:3179197

  15. Immunostimulant Adjuvant Patch Enhances Humoral and Cellular Immune Responses to DNA Immunization

    PubMed Central

    Mkrtichyan, Mikayel; Ghochikyan, Anahit; Movsesyan, Nina; Karapetyan, Adrine; Begoyan, Gayane; Yu, Jianmei; Glenn, Gregory M.; Ross, Ted M.; Agadjanyan, Michael G.; Cribbs, David H.

    2008-01-01

    The focus of this report is on the development of an improved DNA immunization protocol, which takes advantage of the strengths of DNA immunization, as well as those associated with adjuvant delivered by transcutaneous immunostimulatory (IS) patches. Because transcutaneous delivery of adjuvants to the skin at the vaccination site has been shown to amplify the immune response to protein antigens, we hypothesized that the same IS patch when placed on the skin at the site of DNA injection could further enhance the immune response to a DNA influenza vaccine. We have combined an influenza DNA vaccine, hemagglutinin fused with three copies of complement C3d, to enhance uptake and antigen presentation, with an IS patch containing heat-labile enterotoxin from Escherichia coli. Coadministration of a potent adjuvant in IS patches placed on the skin at the site of DNA vaccination dramatically amplifies anti-influenza antibody immune response. Supplementing DNA vaccines with IS patches may be a particularly valuable strategy because DNA vaccines can be rapidly modified in response to mutations in pathogens, and individuals with compromised immune systems such as transplant patients and the elderly will benefit from the enhanced antibody response induced by the IS patches. PMID:17961074

  16. Real-time QCM-D monitoring of cellular responses to different cytomorphic agents.

    PubMed

    Fatisson, Julien; Azari, Fereshteh; Tufenkji, Nathalie

    2011-03-15

    Quartz crystal microbalance with dissipation monitoring (QCM-D) is used for real-time in situ detection of cytoskeletal changes in live primary endothelial cells in response to different cytomorphic agents; namely, the surfactant Triton-X 100 (TX-100) and bacterial lipopolysaccharide (LPS). Reproducible dissipation versus frequency (Df) plots provide unique signatures of the interactions between endothelial cells and cytomorphic agents. While the QCM-D response for TX-100 can be described in two steps (changes in the osmotic pressure of the medium prior to observing the expected cell lysis), LPS results in a different single-phase signal. A complementary analysis is carried out to evaluate the possible competitive effects of TX-100 and LPS through the QCM-D response to BAEC stress by analyzing the Df plots obtained. Experiments with non-toxic components (fibronectin or serum) produce a different QCM-D response than that observed for the toxic chemicals, suggesting the use of Df plot signatures for the possible differentiation between cytotoxic or non-cytotoxic effects. Observations obtained by QCM-D signals are confirmed by conducting fluorescence microscopy at the same time. Our results show that a fast (few minutes) sensing response can be obtained in situ and in real-time. The conclusions from this study suggest that QCM-D can potentially be used in biodetection for applications in drug screening tests and diagnosis. PMID:21237634

  17. Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2)

    PubMed Central

    Pérez-Caro, M; Bermejo-Rodríguez, C; González-Herrero, I; Sánchez-Beato, M; Piris, M A; Sánchez-García, I

    2008-01-01

    Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in response to DNA damage. Although examination of the response showed that overall expression of p53 target gene expression patterns was similarly altered in both control and Snai2-deficient cells, we have identified and validated candidate Snai2 target genes linked to Snai2 gene function in response to DNA damage. This work defines for the first time the effect of Snai2 on p53 target genes in cells undergoing growth arrest, elucidates the Snai2-dependent molecular network induced by DNA damage, points to novel putative Snai2 targets, and suggest a mechanistic model, which has implications for cancer management. PMID:18182996

  18. Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts.

    PubMed

    Heo, Jongbae; Antkiewicz, Dagmara S; Shafer, Martin M; Perkins, Dawn A K; Sioutas, Constantinos; Schauer, James J

    2015-08-01

    In order to further our understanding of the influence of chemical components and ultimately specific sources of atmospheric particulate matter (PM) on pro-inflammatory and other adverse cellular responses, we promulgate and apply a suite of chemical fractionation tools to aqueous aerosol extracts of PM samples for analysis in toxicity assays. We illustrate the approach with a study that used water extracts of quasi-ultrafine PM (PM0.25) collected in the Los Angeles Basin. Filtered PM extracts were fractionated using Chelex, a weak anion exchanger diethylaminoethyl (DEAE), a strong anion exchanger (SAX), and a hydrophobic C18 resin, as well as by desferrioxamine (DFO) complexation that binds iron. The fractionated extracts were then analyzed using high-resolution sector field inductively coupled plasma mass spectrometry (SF-ICPMS) to determine elemental composition. Cellular responses to the fractionated extracts were probed in an in vitro rat alveolar macrophages model with measurement of reactive oxygen species (ROS) production and the cytokine tumor necrosis factor-α (TNF-α). The DFO treatment that chelates iron was very effective at reducing the cellular ROS activity but had only a small impact on the TNF-α production. In contrast, the hydrophobic C18 resin treatment had a small impact on the cellular ROS activity but significantly reduced the TNF-α production. The use of statistical methods to integrate the results across all treatments led to the conclusion that sufficient iron must be present to participate in the chemistry needed for ROS activity, but the amount of ROS activity is not proportional to the iron solution concentration. ROS activity was found to be most related to cationic mono- and divalent metals (i.e., Mn and Ni) and oxyanions (i.e., Mo and V). Although the TNF-α production was not significantly affected by the chelexation of iron, it was greatly impacted by the removal of organics with the C18 resin and all other metal removal methods

  19. Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma.

    PubMed

    Dheilly, Nolwenn M; Haynes, Paul A; Raftos, David A; Nair, Sham V

    2012-06-01

    Genome sequences and high diversity cDNA arrays have provided a detailed molecular understanding of immune responses in a number of invertebrates, including sea urchins. However, complementary analyses have not been undertaken at the level of proteins. Here, we use shotgun proteomics to describe changes in the abundance of proteins from coelomocytes of sea urchins after immunological challenge and wounding. The relative abundance of 345 reproducibly identified proteins were measured 6, 24 and 48 h after injection. Significant changes in the relative abundance of 188 proteins were detected. These included pathogen-binding proteins, such as the complement component C3 and scavenger receptor cysteine rich proteins, as well as proteins responsible for cytoskeletal remodeling, endocytosis and intracellular signaling. An initial systemic reaction to wounding was followed by a more specific response to immunological challenge involving proteins such as apolipophorin, dual oxidase, fibrocystin L, aminopeptidase N and α-2-macroglobulin.

  20. Mechanisms of Progesterone Receptor Inhibition of Inflammatory Responses in Cellular Models of Breast Cancer

    PubMed Central

    Kobayashi, Sakiko; Stice, James P.; Kazmin, Dmitri; Wittmann, Bryan M.; Kimbrel, Erin A.; Edwards, Dean P.; Chang, Ching-Yi; McDonnell, Donald P.

    2010-01-01

    Both pro- and antimitogenic activities have been ascribed to progesterone receptor (PR) agonists and antagonists in breast cancer cells; however, the transcriptional responses that underlie these paradoxical functions are not apparent. Using nontransformed, normal human mammary epithelial cells engineered to express PR and standard microarray technology, we defined 2370 genes that were significantly regulated by the PR agonist R5020. Gene ontology (GO) analysis revealed that GO terms involved in inflammation and nuclear factor-κB (NF-κB) signaling were among the most significantly regulated. Interestingly, on those NF-κB responsive genes that were inhibited by agonist-activated PR, antagonists either 1) mimicked the actions of agonists or 2) reversed the inhibitory actions of agonists. This difference in pharmacological response could be attributed to the fact that although agonist- and antagonist-activated PR is recruited to NF-κB-responsive promoters, the physical presence of PR tethered to the promoter of some genes is sufficient for transcriptional inhibition, whereas on others, an agonist-activated PR conformation is required for inhibition of NF-κB signaling. Importantly, the actions of PR on the latter class of genes were reversed by an activation function-2-inhibiting, LXXLL-containing peptide. Consideration of the relative activities of these distinct antiinflammatory pathways in breast cancer may be instructive with respect to the likely therapeutic activity of PR agonists or antagonists in the treatment of breast cancer. PMID:20980435

  1. Cross reactive cellular immune responses in chickens previously exposed to low pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) infection in poultry can result in high morbidity and mortality, and negatively affect international trade. Because most AI vaccines used for poultry are inactivated, our knowledge of immunity against AI is based largely on humoral immune responses. In fact, little is known abo...

  2. Cellular Immune Response Against Firefly Luciferase After Sleeping Beauty–Mediated Gene Transfer In Vivo

    PubMed Central

    Podetz-Pedersen, Kelly M.; Vezys, Vaiva; Somia, Nikunj V.; Russell, Stephen J.

    2014-01-01

    Abstract The Sleeping Beauty (SB) transposon system has been shown to mediate new gene sequence integration resulting in long-term expression. Here the effectiveness of hyperactive SB100X transposase was tested, and we found that hydrodynamic co-delivery of a firefly luciferase transposon (pT2/CaL) along with SB100X transposase (pCMV-SB100X) resulted in remarkably sustained, high levels of luciferase expression. However, after 4 weeks there was a rapid, animal-by-animal loss of luciferase expression that was not observed in immunodeficient mice. We hypothesized that this sustained, high-level luciferase expression achieved using the SB100X transposase elicits an immune response in pT2/CaL co-administered mice, which was supported by the rapid loss of luciferase expression upon challenge of previously treated animals and in naive animals adoptively transferred with splenocytes from previously treated animals. Specificity of the immune response to luciferase was demonstrated by increased cytokine expression in splenocytes after exposure to luciferase peptide in parallel with MHC I–luciferase peptide tetramer binding. This anti-luciferase immune response observed following continuous, high-level luciferase expression in vivo clearly impacts its use as an in vivo reporter. As both an immunogen and an extremely sensitive reporter, luciferase is also a useful model system for the study of immune responses following in vivo gene transfer and expression. PMID:25093708

  3. Effect of surface topography of titanium on surface chemistry and cellular response.

    PubMed

    Ong, J L; Prince, C W; Raikar, G N; Lucas, L C

    1996-01-01

    Surface topography plays a critical role in the interaction of dental implants with adjacent tissues. It has been hypothesized that an increase in surface roughness will result in an increase in calcium and phosphorus deposition after immersion in a simulated physiological solution and will increase protein production and calcium uptake by osteoblast-like cells. With the use of a profilometer, titanium samples ground with 600 grit silicon carbide paper were observed to have an average roughness (Ra) value of 0.28 +/- 0.03 micron, whereas titanium samples polished with 0.3 micron Al2O3 exhibited a Ra value of 0.11 +/- 0.01 micron. X-ray photoelectron spectroscopy analyses indicated the presence of calcium, phosphorus, sodium, and chlorine on both surface conditions after immersion in a protein-free physiologic solution. No significant difference in calcium and phosphorus concentrations were observed between the 600 grit or Al2O3 polished titanium samples after immersion in solution. The Ca/P ratio for both 600 grit and Al2O3 polished titanium was in the range of 0.8 to 1.1 after 12 days in solution. The percent protein retained by the rat bone marrow cell layer on both the Al2O3 polished and 600 grit titanium surfaces increased dramatically during the initial 3 days of the study. The 45Ca assays revealed no significant difference in cellular calcification on Al2O3 polished and 600 grit titanium surfaces. For both the Al2O3 polished and 600 grit surfaces, a sharp increase in 45Ca incorporation was observed after 9 days incubation.

  4. The Cellular Immune Response of the Pea Aphid to Foreign Intrusion and Symbiotic Challenge

    PubMed Central

    Schmitz, Antonin; Anselme, Caroline; Ravallec, Marc; Rebuf, Christian; Simon, Jean-Christophe; Gatti, Jean-Luc; Poirié, Marylène

    2012-01-01

    Recent studies suggest that the pea aphid (Acyrthosiphon pisum) has low immune defenses. However, its immune components are largely undescribed, and notably, extensive characterization of circulating cells has been missing. Here, we report characterization of five cell categories in hemolymph of adults of the LL01 pea aphid clone, devoid of secondary symbionts (SS): prohemocytes, plasmatocytes, granulocytes, spherulocytes and wax cells. Circulating lipid-filed wax cells are rare; they otherwise localize at the basis of the cornicles. Spherulocytes, that are likely sub-cuticular sessile cells, are involved in the coagulation process. Prohemocytes have features of precursor cells. Plasmatocytes and granulocytes, the only adherent cells, can form a layer in vivo around inserted foreign objects and phagocytize latex beads or Escherichia coli bacteria injected into aphid hemolymph. Using digital image analysis, we estimated that the hemolymph from one LL01 aphid contains about 600 adherent cells, 35% being granulocytes. Among aphid YR2 lines differing only in their SS content, similar results to LL01 were observed for YR2-Amp (without SS) and YR2-Ss (with Serratia symbiotica), while YR2-Hd (with Hamiltonella defensa) and YR2(Ri) (with Regiella insecticola) had strikingly lower adherent hemocyte numbers and granulocyte proportions. The effect of the presence of SS on A. pisum cellular immunity is thus symbiont-dependent. Interestingly, Buchnera aphidicola (the aphid primary symbiont) and all SS, whether naturally present, released during hemolymph collection, or artificially injected, were internalized by adherent hemocytes. Inside hemocytes, SS were observed in phagocytic vesicles, most often in phagolysosomes. Our results thus raise the question whether aphid symbionts in hemolymph are taken up and destroyed by hemocytes, or actively promote their own internalization, for instance as a way of being transmitted to the next generation. Altogether, we demonstrate here a

  5. Cellular and Matrix Response of the Mandibular Condylar Cartilage to Botulinum Toxin

    PubMed Central

    Dutra, Eliane H.; O’ Brien, Mara H.; Lima, Alexandro; Kalajzic, Zana; Tadinada, Aditya; Nanda, Ravindra; Yadav, Sumit

    2016-01-01

    Objectives To evaluate the cellular and matrix effects of botulinum toxin type A (Botox) on mandibular condylar cartilage (MCC) and subchondral bone. Materials and Methods Botox (0.3 unit) was injected into the right masseter of 5-week-old transgenic mice (Col10a1-RFPcherry) at day 1. Left side masseter was used as intra-animal control. The following bone labels were intraperitoneally injected: calcein at day 7, alizarin red at day 14 and calcein at day 21. In addition, EdU was injected 48 and 24 hours before sacrifice. Mice were sacrificed 30 days after Botox injection. Experimental and control side mandibles were dissected and examined by x-ray imaging and micro-CT. Subsequently, MCC along with the subchondral bone was sectioned and stained with tartrate resistant acid phosphatase (TRAP), EdU, TUNEL, alkaline phosphatase, toluidine blue and safranin O. In addition, we performed immunohistochemistry for pSMAD and VEGF. Results Bone volume fraction, tissue density and trabecular thickness were significantly decreased on the right side of the subchondral bone and mineralized cartilage (Botox was injected) when compared to the left side. There was no significant difference in the mandibular length and condylar head length; however, the condylar width was significantly decreased after Botox injection. Our histology showed decreased numbers of Col10a1 expressing cells, decreased cell proliferation and increased cell apoptosis in the subchondral bone and mandibular condylar cartilage, decreased TRAP activity and mineralization of Botox injected side cartilage and subchondral bone. Furthermore, we observed reduced proteoglycan and glycosaminoglycan distribution and decreased expression of pSMAD 1/5/8 and VEGF in the MCC of the Botox injected side in comparison to control side. Conclusion Injection of Botox in masseter muscle leads to decreased mineralization and matrix deposition, reduced chondrocyte proliferation and differentiation and increased cell apoptosis in the

  6. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene.

    PubMed

    Fang, Qi; Wang, Lei; Zhu, Yangkeng; Stanley, David W; Chen, Xuexin; Hu, Cui; Ye, Gongyin

    2011-11-01

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we report on a newly discovered immune-disabling mechanism in the Pieris rapae/Pteromalus puparum host/parasitoid system. Because venom injections and parasitization suppresses host phagocytosis, we turned attention to the P. rapae scavenger receptor (Pr-SR), posing the hypothesis that P. puparum venom suppresses expression of the host Pr-SR gene. To test our hypothesis, we cloned a full-length cDNA of the Pr-SR. Multiple sequences alignment showed the deduced amino acid sequence of Pr-SR is similar to scavenger receptors of other lepidopterans. Bacterial and bead injections induced Pr-SR mRNA and protein expression, which peaked at 4h post-bead injection. Venom injection inhibited Pr-SR expression. Pr-SR was specifically expressed in granulocytes compared to plasmatocytes. We localized the Pr-SR protein in cytoplasm and cellular membrane, with no evidence of secretion into host plasma. Double-strand RNA designed to Pr-SR mRNA silenced expression of Pr-SR and significantly impaired host phagocytosis and encapsulation reactions. Venom injections similarly silenced Pr-SR expression during the first 8h post-treatment, after which the silencing effects gradually abated. We infer from these findings that one mechanism of impairing P. rapae hemocytic immune reactions is by silencing expression of Pr-SR.

  7. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    SciTech Connect

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  8. Fine specificity of cellular immune responses in humans to human cytomegalovirus immediate-early 1 protein.

    PubMed Central

    Alp, N J; Allport, T D; Van Zanten, J; Rodgers, B; Sissons, J G; Borysiewicz, L K

    1991-01-01

    Cell-mediated immunity is important in maintaining the virus-host equilibrium in persistent human cytomegalovirus (HCMV) infection. The HCMV 72-kDa major immediate early 1 protein (IE1) is a target for CD8+ cytotoxic T cells in humans, as is the equivalent 89-kDa protein in mouse. Less is known about responses against this protein by CD4+ T cells, which may be important as direct effector cells or helper cells for antibody and CD8+ responses. Proliferative-T-cell responses to HCMV IE1 were studied in normal seropositive subjects. Peripheral blood mononuclear cells from 85% of seropositive subjects proliferated in response to HCMV from infected fibroblasts, and of these, 73% responded to recombinant baculovirus IE1. Responding cells were predominantly CD3+ CD4+. IE1 antigen preparations, including baculovirus recombinant protein, transfected rat cell nuclei, and synthetic peptides, induced IE1-specific T-cell lines which cross-reacted between the preparations. The fine specificity of these IE1-specific T-cell lines was studied by using overlapping synthetic peptides encompassing the entire sequence of the IE1 protein. The regions of the IE1 molecule recognized were identified and these varied between individuals, possibly reflecting differences in major histocompatibility complex (MHC) class II haplotype. In one subject, the peptide specificities of proliferative and MHC class I-restricted cytotoxic determinants on IE1 were spatially distinct. Thus, no single immunodominant T-cell determinant within HCMV IE1 was identified, suggesting that multiple peptides or a region of the 72-kDa IE1 protein would be required to induce specific T-cell responses in humans. PMID:1714519

  9. Early Systemic Cellular Immune Response in Children and Young Adults Receiving Decellularized Fresh Allografts for Pulmonary Valve Replacement

    PubMed Central

    Neumann, Anneke; Breymann, Thomas; Cebotari, Serghei; Boethig, Dietmar; Horke, Alexander; Beerbaum, Philipp; Westhoff-Bleck, Mechthild; Bertram, Harald; Ono, Masamichi; Tudorache, Igor; Haverich, Axel; Beutel, Gernot

    2014-01-01

    Objectives: The longevity of homografts is determined by the activation of the recipients' immune system resulting from allogenic antigen exposition. Fresh decellularized pulmonary homografts (DPH) have shown promising early results in pulmonary valve replacement in children and young adults and could potentially avoid significant activation of the immune system, as more than 99% of the donor DNA is removed during the decellularization process. While the humoral immune response to decellularized allografts has been studied, detailed information on the more significant cellular immune response is currently lacking. Methods and Results: Peripheral blood samples were obtained from patients undergoing pulmonary valve replacement with DPH before, after, and for approximately 3 years after implantation. Absolute counts and percentages of mature T- (CD3+), B- (CD19+), and natural killer- (CD16+/CD56+) cells, as well as T helper- (CD4+) and cytotoxic T-cell- (CD8+) subsets, were determined by fluorescence-activated cell sorting (FACS). Between May 2009 and September 2013, 199 blood samples taken from 47 patients with a mean age at DPH implantation of 16.6±10.8 years were analyzed. The hemodynamic performance of DPH was excellent in all but one patient, and no valve-related deaths or conduit explantations were observed. The short-term follow up revealed a significant postoperative decrease in cell counts of most subtypes with reconstitution after 3 months. Continued assessment did not show any significant deviations in cell counts from their baseline values. Conclusion: The absence of cellular immune response in patients receiving DPH supports the concept that decellularization can provide a basis for autologous regeneration. PMID:24138470

  10. Interferon (IFN) and Cellular Immune Response Evoked in RNA-Pattern Sensing During Infection with Hepatitis C Virus (HCV).

    PubMed

    Nakai, Masato; Oshiumi, Hiroyuki; Funami, Kenji; Okamoto, Masaaki; Matsumoto, Misako; Seya, Tsukasa; Sakamoto, Naoya

    2015-01-01

    Hepatitis C virus (HCV) infects hepatocytes but not dendritic cells (DCs), but DCs effectively mature in response to HCV-infected hepatocytes. Using gene-disrupted mice and hydrodynamic injection strategy, we found the MAVS pathway to be crucial for induction of type III interferons (IFNs) in response to HCV in mouse. Human hepatocytes barely express TLR3 under non-infectious states, but frequently express it in HCV infection. Type I and III IFNs are induced upon stimulation with polyI:C, an analog of double-stranded (ds)RNA. Activation of TLR3 and the TICAM-1 pathway, followed by DC-mediated activation of cellular immunity, is augmented during exposure to viral RNA. Although type III IFNs are released from replication-competent human hepatocytes, DC-mediated CTL proliferation and NK cell activation hardly occur in response to the released type III IFNs. Yet, type I IFNs and HCV-infected hepatocytes can induce maturation of DCs in either human or mouse origin. In addition, mouse CD8+ DCs mature in response to HCV-infected hepatocytes unless the TLR3/TICAM-1 pathway is blocked. We found the exosomes containing HCV RNA in the supernatant of the HCV-infected hepatocytes act as a source of TLR3-mediated DC maturation. Here we summarize our view on the mechanism by which DCs mature to induce NK and CTL in a status of HCV infection.

  11. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-01

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  12. Interferon (IFN) and Cellular Immune Response Evoked in RNA-Pattern Sensing During Infection with Hepatitis C Virus (HCV)

    PubMed Central

    Nakai, Masato; Oshiumi, Hiroyuki; Funami, Kenji; Okamoto, Masaaki; Matsumoto, Misako; Seya, Tsukasa; Sakamoto, Naoya

    2015-01-01

    Hepatitis C virus (HCV) infects hepatocytes but not dendritic cells (DCs), but DCs effectively mature in response to HCV-infected hepatocytes. Using gene-disrupted mice and hydrodynamic injection strategy, we found the MAVS pathway to be crucial for induction of