Science.gov

Sample records for activity-a cellular response

  1. PLAGL2 translocation and SP-C promoter activity-A cellular response of lung cells to hypoxia

    SciTech Connect

    Guo, Yuhong; Yang, Meng-Chun; Weissler, Jonathan C.; Yang, Yih-Sheng . E-mail: Yih-Sheng.Yang@UTSouthwestern.edu

    2007-08-31

    Cobalt is a transition metal which can substitute for iron in the oxygen-sensitive protein and mimic hypoxia. Cobalt was known to be associated with the development of lung disease. In this study, when lung cells were exposed to hypoxia-induced by CoCl{sub 2} at a sub-lethal concentration (100 {mu}M), their thyroid transcription factor-1 (TTF-1) expression was greatly reduced. Under this condition, SP-B promoter activity was down-regulated, but SP-C promoter remained active. Therefore, we hypothesized that other factor(s) besides TTF-1 might contribute to the modulation of SP-C promoter in hypoxic lung cells. Pleomorphic adenoma gene like-2 (PLAGL2), a previously identified TTF-1-independent activator of the SP-C promoter, was not down-regulated, nor increased, within those cells. Its cellular location was redistributed from the cytoplasm to the nucleus. Chromatin immunoprecipitation (ChIP) and quantitative RT-PCR analyses demonstrated that nuclear PLAGL2 occupied and transactivated the endogenous SP-C promoter in lung cells. Thereby, through relocating and accumulating of PLAGL2 inside the nucleus, PLAGL2 interacted with its target genes for various cellular functions. These results further suggest that PLAGL2 is an oxidative stress responding regulator in lung cells.

  2. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  3. Cellular immune response experiment MA-031

    NASA Technical Reports Server (NTRS)

    Criswell, B. S.

    1976-01-01

    Significant changes in phytohemagglutinin (PHA) lymphocytic responsiveness occurred in the cellular immune response of three astronauts during the 9 day flight of the Apollo Soyuz Test Project. Parameters studied were white blood cell concentrations, lymphocyte numbers, B- and T-lymphocyte distributions in peripheral blood, and lymphocyte responsiveness to PHA, pokeweed mitogen, Concanavalin A, and influenza virus antigen.

  4. Cellular responses to environmental DNA damage

    SciTech Connect

    Not Available

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  5. Effect of cellular mobility on immune response

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Mannion, R.; Ruskin, H. J.

    2000-08-01

    Mobility of cell types in our HIV immune response model is subject to an intrinsic mobility and an explicit directed mobility, which is governed by Pmob. We investigate how restricting the explicit mobility, while maintaining the innate mobility of a viral-infected cell, affects the model's results. We find that increasing the explicit mobility of the immune system cells leads to viral dominance for certain levels of viral mutation. We conclude that increasing immune system cellular mobility indirectly increases the virus’ inherent mobility.

  6. Complex cellular responses to reactive oxygen species.

    PubMed

    Temple, Mark D; Perrone, Gabriel G; Dawes, Ian W

    2005-06-01

    Genome-wide analyses of yeast provide insight into cellular responses to reactive oxygen species (ROS). Many deletion mutants are sensitive to at least one ROS, but no one oxidant is representative of 'oxidative stress' despite the widespread use of a single compound such as H(2)O(2). This has major implications for studies of pathological situations. Cells have a range of mechanisms for maintaining resistance that involves either induction or repression of many genes and extensive remodeling of the transcriptome. Cells have constitutive defense systems that are largely unique to each oxidant, but overlapping, inducible repair systems. The pattern of the transcriptional response to a particular ROS depends on its concentration, and 'classical' antioxidant systems that are induced by high concentrations of ROS can be repressed when cells adapt to low concentrations of ROS.

  7. Cellular immune response in intraventricular experimental neurocysticercosis.

    PubMed

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile.

  8. Cellular immune responses towards regulatory cells.

    PubMed

    Larsen, Stine Kiær

    2016-01-01

    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  9. Chiral hexagonal cellular sandwich structures: dynamic response

    NASA Astrophysics Data System (ADS)

    Spadoni, A.; Ruzzene, M.; Scarpa, F.

    2005-05-01

    Periodic cellular configurations with negative Poisson's ratio have attracted the attention of several researchers because of their superior dynamic characteristics. Among the geometries featuring a negative Poisson's ratio, the chiral topology possesses a geometric complexity that guarantees unique deformed configurations when excited at one of its natural frequencies. Specifically, localized deformations have been observed even at relatively low excitation frequencies. This is of particular importance as resonance can be exploited to minimize the power required for the appearance of localized deformations, thus giving practicality to the concept. The particular nature of these deformed configurations and the authority provided by the chiral geometry, suggest the application of the proposed structural configuration for the design of innovative lifting bodies, such as helicopter rotor blades or airplane wings. The dynamic characteristics of chiral structures are here investigated through a numerical model and experimental investigations. The numerical formulation uses dynamic shape functions to accurately describe the behavior of the considered structural assembly over a wide frequency range. The model is used to predict frequency response functions, and to investigate the occurrence of localized deformations. Experimental tests are also performed to demonstrate the accuracy of the model and to illustrate the peculiarities of the behavior of the considered chiral structures.

  10. Aggresomes: A Cellular Response to Misfolded Proteins

    PubMed Central

    Johnston, Jennifer A.; Ward, Cristina L.; Kopito, Ron R.

    1998-01-01

    Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins. PMID:9864362

  11. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    EPA Science Inventory

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  12. Dynamic Simulation of 1D Cellular Automata in the Active aTAM.

    PubMed

    Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke

    2015-07-01

    The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location.

  13. Dynamic Simulation of 1D Cellular Automata in the Active aTAM

    PubMed Central

    Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke

    2016-01-01

    The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location. PMID:27789918

  14. Endothelial Cellular Responses to Biodegradable Metal Zinc.

    PubMed

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    Biodegradable zinc (Zn) metals, a new generation of biomaterials, have attracted much attention due to their excellent biodegradability, bioabsorbability, and adaptability to tissue regeneration. Compared with magnesium (Mg) and iron (Fe), Zn exhibits better corrosion and mechanical behaviors in orthopedic and stent applications. After implantation, Zn containing material will slowly degrade, and Zn ions (Zn(2+)) will be released to the surrounding tissue. For stent applications, the local Zn(2+)concentration near endothelial tissue/cells could be high. However, it is unclear how endothelia will respond to such high concentrations of Zn(2+), which is pivotal to vascular remodeling and regeneration. Here, we evaluated the short-term cellular behaviors of primary human coronary artery endothelial cells (HCECs) exposed to a concentration gradient (0-140 μM) of extracellular Zn(2+). Zn(2+) had an interesting biphasic effect on cell viability, proliferation, spreading, and migration. Generally, low concentrations of Zn(2+) promoted viability, proliferation, adhesion, and migration, while high concentrations of Zn(2+) had opposite effects. For gene expression profiles, the most affected functional genes were related to cell adhesion, cell injury, cell growth, angiogenesis, inflammation, vessel tone, and coagulation. These results provide helpful information and guidance for Zn-based alloy design as well as the controlled release of Zn(2+)in stent and other related medical applications.

  15. Innate cellular responses to rotavirus infection.

    PubMed

    Holloway, Gavan; Coulson, Barbara S

    2013-06-01

    Rotavirus is a leading cause of severe dehydrating diarrhoea in infants and young children. Following rotavirus infection in the intestine an innate immune response is rapidly triggered. This response leads to the induction of type I and type III interferons (IFNs) and other cytokines, resulting in a reduction in viral replication. Here we review the current literature describing the detection of rotavirus infection by pattern recognition receptors within host cells, the subsequent molecular mechanisms leading to IFN and cytokine production, and the processes leading to reduced rotavirus replication and the development of protective immunity. Rotavirus countermeasures against innate responses, and their roles in modulating rotavirus replication in mice, also are discussed. By linking these different aspects of innate immunity, we provide a comprehensive overview of the host's first line of defence against rotavirus infection. Understanding these processes is expected to be of benefit in improving strategies to combat rotavirus disease.

  16. Cellular basis for the olfactory response to nicotine.

    PubMed

    Bryant, Bruce; Xu, Jiang; Audige, Valery; Lischka, Fritz W; Rawson, Nancy E

    2010-03-17

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (Rose J. E., et al. (1993) Pharmacol., Biochem. Behav.44 (4), 891-900). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (Mombaerts P. (1999) Annu. Rev. Neurosci.22, 487-509), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (Gomez G., et al. (2000) J. Neurosci. Res.62 (5), 737-749), and rat olfactory neurons. Rat and human OSNs responded to S(-)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation.

  17. Electrical Stimulation of Cellular Response: Responses and Mechanisms.

    DTIC Science & Technology

    1986-10-01

    frequencies using this new method. This should provide invaluable information regarding the kinetics of the electrochemical transductive coupling at...provide invaluable information regarding the kinetics of the electrochemical transductive coupling at the plasma membrane. Thus far, the installation of...dependence with the kinetics of known cellular processes may provide insight to the putative mechanisms of energy transduction. II.b Methods Connective

  18. miRNA modulation of the cellular stress response.

    PubMed

    Babar, Imran A; Slack, Frank J; Weidhaas, Joanne B

    2008-04-01

    Cellular stress responses are potent and dynamic, allowing cells to effectively counteract diverse stresses. These pathways are crucial not only for maintaining normal cellular homeostasis, but also for protecting cells from what would otherwise lead to their demise. A novel class of genes, termed miRNAs, has recently been implicated in the cellular stress response. For example, it has been demonstrated that a cardiac-specific miRNA that is not required for normal development is requisite for a normal cardiac stress response in mice. In addition, we have found that a miRNA family is able to modulate the cellular response to cytotoxic cancer treatment both in vitro and in vivo. In this review, we will discuss these and other important developments in the field. In particular, we will focus on studies that have linked miRNAs to the genotoxic stress response and will suggest how this connection may be both important for our understanding of biology and pertinent for the development of novel cancer therapies.

  19. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    EPA Science Inventory

    With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate t...

  20. Cellular and molecular regulation of innate inflammatory responses

    PubMed Central

    Liu, Juan; Cao, Xuetao

    2016-01-01

    Innate sensing of pathogens by pattern-recognition receptors (PRRs) plays essential roles in the innate discrimination between self and non-self components, leading to the generation of innate immune defense and inflammatory responses. The initiation, activation and resolution of innate inflammatory response are mediated by a complex network of interactions among the numerous cellular and molecular components of immune and non-immune system. While a controlled and beneficial innate inflammatory response is critical for the elimination of pathogens and maintenance of tissue homeostasis, dysregulated or sustained inflammation leads to pathological conditions such as chronic infection, inflammatory autoimmune diseases. In this review, we discuss some of the recent advances in our understanding of the cellular and molecular mechanisms for the establishment and regulation of innate immunity and inflammatory responses. PMID:27818489

  1. Circadian Clock Control of the Cellular Response to DNA Damage

    PubMed Central

    Sancar, Aziz; Lindsey-Boltz, Laura A.; Kang, Tae-Hong; Reardon, Joyce T.; Lee, Jin Hyup; Ozturk, Nuri

    2010-01-01

    Mammalian cells possess a cell-autonomous molecular clock which controls the timing of many biochemical reactions and hence the cellular response to environmental stimuli including genotoxic stress. The clock consists of an autoregulatory transcription-translation feedback loop made up of four genes/proteins, BMal1, Clock, Cryptochrome, and Period. The circadian clock has an intrinsic period of about 24 hours, and it dictates the rates of many biochemical reactions as a function of the time of the day. Recently, it has become apparent that the circadian clock plays an important role in determining the strengths of cellular responses to DNA damage including repair, checkpoints, and apoptosis. These new insights are expected to guide development of novel mechanism-based chemotherapeutic regimens. PMID:20227409

  2. Micro-thermocouple probe for measurement of cellular thermal responses.

    PubMed

    Watanabe, M; Kakuta, N; Mabuchi, K; Yamada, Y

    2005-01-01

    We have produced micro-thermocouple probes for the measurement of cellular thermal responses. Cells generate heat with their metabolisms and more heat with reactions to a certain physical or chemical stimulation. Therefore, the analysis of the cellular thermal responses would provide new physiological information. However, a real-time thermal measurement technique on a target of a single cell has not been established. In this study, glass micropipettes, which are widely used in bioengineering and medicine, are used for the base of the thermocouple probes. Using microfabrication techniques, the junction of two different metal films is formed at the micropipette tip with a diameter of 1 μm. This probe can inject a chemical substance into a cell and to detect its subsequent temperature changes simultaneously.

  3. Microfluidic Device for Studying Controllable Hydrodynamic Flow Induced Cellular Responses.

    PubMed

    Zheng, Chunhong; Zhang, Xiannian; Li, Chunmei; Pang, Yuhong; Huang, Yanyi

    2017-03-07

    Hydrodynamic flow is an essential stimulus in many cellular functions, regulating many mechanical sensitive pathways and closely associating with human health status and diseases. The flow pattern of blood in vessels is the key factor in causing atherosclerosis. Hemodynamics has great effect on endothelial cells' gene expression and biological functions. There are various tools that can be used for studying flow-induced cellular responses but most of them are either bulky or lack precise controllability. We develop an integrated microfluidic device that can precisely generate different flow patterns to human endothelial cells cultured on-chip. We monitored cell morphology and used small-input RNA-seq technology to depict the transcriptome profiles of human umbilical vein endothelial cells under uni- or bidirectional flow. Such integrated and miniatured device has greatly facilitated our understanding of endothelial functions with shear stimulus, not only providing new data on the transcriptomic scale but also building the connection between cell phenotypic changes and expression alternations.

  4. HSV-I and the cellular DNA damage response.

    PubMed

    Smith, Samantha; Weller, Sandra K

    2015-04-01

    Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al. that DNA-dependent protein kinase catalytic subunit levels were depleted in an ICP0-dependent manner during Herpes simplex virus 1 infection. Since then, there have been numerous reports describing the interactions between HSV infection and cellular DDR pathways. Due to space limitations, this review will focus predominantly on the most recent observations regarding how HSV navigates a potentially hostile environment to replicate its genome.

  5. Antioxidant responses and cellular adjustments to oxidative stress.

    PubMed

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases.

  6. Antioxidant responses and cellular adjustments to oxidative stress

    PubMed Central

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-01-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. PMID:26233704

  7. Cellular stress response pathways and ageing: intricate molecular relationships.

    PubMed

    Kourtis, Nikos; Tavernarakis, Nektarios

    2011-05-17

    Ageing is driven by the inexorable and stochastic accumulation of damage in biomolecules vital for proper cellular function. Although this process is fundamentally haphazard and uncontrollable, senescent decline and ageing is broadly influenced by genetic and extrinsic factors. Numerous gene mutations and treatments have been shown to extend the lifespan of diverse organisms ranging from the unicellular Saccharomyces cerevisiae to primates. It is becoming increasingly apparent that most such interventions ultimately interface with cellular stress response mechanisms, suggesting that longevity is intimately related to the ability of the organism to effectively cope with both intrinsic and extrinsic stress. Here, we survey the molecular mechanisms that link ageing to main stress response pathways, and mediate age-related changes in the effectiveness of the response to stress. We also discuss how each pathway contributes to modulate the ageing process. A better understanding of the dynamics and reciprocal interplay between stress responses and ageing is critical for the development of novel therapeutic strategies that exploit endogenous stress combat pathways against age-associated pathologies.

  8. Durable response of intracranial cellular hemangioma to bevacizumab and temozolomide.

    PubMed

    Yeo, Kee Kiat; Puscasiu, Elena; Keating, Robert F; Rood, Brian R

    2013-06-01

    Cellular hemangioma is a subtype of hemangioma that is associated with cellular immaturity and the potential for recurrence. Intracranial location of these lesions is extremely rare, and definitive treatment often requires radical neurosurgical resection. The authors report a case of a 12-year-old boy with a subtemporal cellular hemangioma. He underwent gross-total resection of the tumor, but within 1.5 months the tumor recurred, necessitating a second resection. Because of its proximity to vascular structures, only subtotal resection was possible. Repeat MRI 1 month after the second surgery showed significant tumor recurrence. Given the tumor's demonstrated capacity for recurrence and its proximity to the vein of Labbé and sigmoid sinus, further resection was not indicated. In an effort to limit radiation therapy for this young patient, treatment with bevacizumab and temozolomide was chosen and achieved a complete response that has proven durable for 36 months after cessation of therapy. This is the first report of the successful use of chemotherapy to treat an intracranial hemangioma, a rare condition with limited therapeutic options.

  9. Cellular Bases of Light-regulated Gravity Responses

    NASA Technical Reports Server (NTRS)

    Roux, Stanley J.

    2003-01-01

    This report summarizes the most significant research accomplished in our NAG2-1347 project on the cellular bases of light-regulated gravity responses, It elaborates mainly on our discovery of the role of calcium currents in gravity-directed polar development in single germinating spore cells of the fern Ceratopteris, our development of RNA silencing as a viable method of suppressing the expression of specific genes in Ceratopteris, and on the structure, expression and distribution of members of the annexin family in flowering plants, especially Arabidopsis.

  10. Untranslated regions (UTRs) orchestrate translation reprogramming in cellular stress responses.

    PubMed

    Sajjanar, Basavaraj; Deb, Rajib; Raina, Susheel Kumar; Pawar, Sachin; Brahmane, Manoj P; Nirmale, Avinash V; Kurade, Nitin P; Manjunathareddy, Gundallahalli B; Bal, Santanu Kumar; Singh, Narendra Pratap

    2017-04-01

    Stress is the result of an organism's interaction with environmental challenges. Regulations of gene expression including translation modulations are critical for adaptation and survival under stress. Untranslated regions (UTRs) of the transcripts play significant roles in translation regulation and continue to raise many intriguing questions in our understanding of cellular stress physiology. IRES (Internal ribosome entry site) and uORF (upstream open reading frame) mediated alternative translation initiations are emerging as unique mechanisms. Recent studies have revealed novel means of mRNAs stabilization in stress granules and their reversible modifications. Differential regulation of select transcripts is possible by the interplay between the adenine/uridine-rich elements (AREs) in 3'UTR with their binding proteins (AUBP) and by microRNA-mediated effects. Coordination of these various mechanisms control translation and thereby enables appropriate responses to environmental stress. In this review, we focus on the role of sequence signatures both at 5' and 3'UTRs in translation reprogramming during cellular stress responses.

  11. Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass

    PubMed Central

    2015-01-01

    Nanopatterning of biomaterials is rapidly emerging as a tool to engineer cell function. Bulk metallic glasses (BMGs), a class of biocompatible materials, are uniquely suited to study nanopattern–cell interactions as they allow for versatile fabrication of nanopatterns through thermoplastic forming. Work presented here employs nanopatterned BMG substrates to explore detection of nanopattern feature sizes by various cell types, including cells that are associated with foreign body response, pathology, and tissue repair. Fibroblasts decreased in cell area as the nanopattern feature size increased, and fibroblasts could detect nanopatterns as small as 55 nm in size. Macrophages failed to detect nanopatterns of 150 nm or smaller in size, but responded to a feature size of 200 nm, resulting in larger and more elongated cell morphology. Endothelial cells responded to nanopatterns of 100 nm or larger in size by a significant decrease in cell size and elongation. On the basis of these observations, nondimensional analysis was employed to correlate cellular morphology and substrate nanotopography. Analysis of the molecular pathways that induce cytoskeletal remodeling, in conjunction with quantifying cell traction forces with nanoscale precision using a unique FIB-SEM technique, enabled the characterization of underlying biomechanical cues. Nanopatterns altered serum protein adsorption and effective substrate stiffness, leading to changes in focal adhesion density and compromised activation of Rho-A GTPase in fibroblasts. As a consequence, cells displayed restricted cell spreading and decreased collagen production. These observations suggest that topography on the nanoscale can be designed to engineer cellular responses to biomaterials. PMID:24724817

  12. Cellular properties and chemosensory responses of the human carotid body

    PubMed Central

    Ortega-Sáenz, Patricia; Pardal, Ricardo; Levitsky, Konstantin; Villadiego, Javier; Muñoz-Manchado, Ana Belén; Durán, Rocío; Bonilla-Henao, Victoria; Arias-Mayenco, Ignacio; Sobrino, Verónica; Ordóñez, Antonio; Oliver, María; Toledo-Aral, Juan José; López-Barneo, José

    2013-01-01

    The carotid body (CB) is the major peripheral arterial chemoreceptor in mammals that mediates the acute hyperventilatory response to hypoxia. The CB grows in response to sustained hypoxia and also participates in acclimatisation to chronic hypoxaemia. Knowledge of CB physiology at the cellular level has increased considerably in recent times thanks to studies performed on lower mammals, and rodents in particular. However, the functional characteristics of human CB cells remain practically unknown. Herein, we use tissue slices or enzymatically dispersed cells to determine the characteristics of human CB cells. The adult human CB parenchyma contains clusters of chemosensitive glomus (type I) and sustentacular (type II) cells as well as nestin-positive progenitor cells. This organ also expresses high levels of the dopaminotrophic glial cell line-derived neurotrophic factor (GDNF). We found that GDNF production and the number of progenitor and glomus cells were preserved in the CBs of human subjects of advanced age. Moreover, glomus cells exhibited voltage-dependent Na+, Ca2+ and K+ currents that were qualitatively similar to those reported in lower mammals. These cells responded to hypoxia with an external Ca2+-dependent increase of cytosolic Ca2+ and quantal catecholamine secretion, as reported for other mammalian species. Interestingly, human glomus cells are also responsive to hypoglycaemia and together these two stimuli can potentiate each other's effects. The chemosensory responses of glomus cells are also preserved at an advanced age. These new data on the cellular and molecular physiology of the CB pave the way for future pathophysiological studies involving this organ in humans. PMID:24167224

  13. The Cellular Bases of Antibody Responses during Dengue Virus Infection.

    PubMed

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated.

  14. Systematic quantitative characterization of cellular responses induced by multiple signals

    PubMed Central

    2011-01-01

    Background Cells constantly sense many internal and environmental signals and respond through their complex signaling network, leading to particular biological outcomes. However, a systematic characterization and optimization of multi-signal responses remains a pressing challenge to traditional experimental approaches due to the arising complexity associated with the increasing number of signals and their intensities. Results We established and validated a data-driven mathematical approach to systematically characterize signal-response relationships. Our results demonstrate how mathematical learning algorithms can enable systematic characterization of multi-signal induced biological activities. The proposed approach enables identification of input combinations that can result in desired biological responses. In retrospect, the results show that, unlike a single drug, a properly chosen combination of drugs can lead to a significant difference in the responses of different cell types, increasing the differential targeting of certain combinations. The successful validation of identified combinations demonstrates the power of this approach. Moreover, the approach enables examining the efficacy of all lower order mixtures of the tested signals. The approach also enables identification of system-level signaling interactions between the applied signals. Many of the signaling interactions identified were consistent with the literature, and other unknown interactions emerged. Conclusions This approach can facilitate development of systems biology and optimal drug combination therapies for cancer and other diseases and for understanding key interactions within the cellular network upon treatment with multiple signals. PMID:21624115

  15. Bronchopulmonary Cellular Response to Aluminum and Zirconium Salts

    PubMed Central

    Stankus, Richard P.; Schuyler, Mark R.; D'Amato, Robert A.; Salvaggio, John E.

    1978-01-01

    The bronchopulmonary cellular immunological response to repeated intratracheal inoculation of aluminum chlorhydrate, sodium zirconium lactate, and zirconium aluminum glycine was examined in rabbits. Results of a dose-response experiment using 0.1, 1.0, and 10.0-mg intratracheal inoculations of each metallic salt demonstrated significant bronchopulmonary histopathology in the 10.0-mg dose-response groups only. Acute lesions were histologically characterized by an inflammatory response centered around respiratory bronchioles. Although epithelioid cell formation was evident in 10.0 mg of aluminum salt (aluminum chlorhydrate and zirconium aluminum glycine) -injected animals, no well-defined granulomas characterized by an orderly arrangement of epithelioid cells, lymphocytes, and giant cells were evident in any of the experimental groups employed. All three metallic salts induced “activated” bronchopulmonary macrophages as determined by an in vitro phagocytic assay. This activation was likely nonimmunological since no measurable differences were observed in metallic salt-induced delayed skin reactivity or migration inhibition factor production between inoculated and uninoculated rabbits. The above observations suggest that aluminum and zirconium salts administered in comparatively high dosage via the respiratory tract route can induce respiratory bronchiolitis and activation of alveolar macrophages in the absence of demonstrable delayed hypersensitivity. Images PMID:352963

  16. The Cellular Bases of Antibody Responses during Dengue Virus Infection

    PubMed Central

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618

  17. The DNA damage response in viral-induced cellular transformation.

    PubMed

    Nikitin, P A; Luftig, M A

    2012-01-31

    The DNA damage response (DDR) has emerged as a critical tumour suppressor pathway responding to cellular DNA replicative stress downstream of aberrant oncogene over-expression. Recent studies have now implicated the DDR as a sensor of oncogenic virus infection. In this review, we discuss the mechanisms by which tumour viruses activate and also suppress the host DDR. The mechanism of tumour virus induction of the DDR is intrinsically linked to the need for these viruses to promote an S-phase environment to replicate their nucleic acid during infection. However, inappropriate expression of viral oncoproteins can also activate the DDR through various mechanisms including replicative stress, direct interaction with DDR components and induction of reactive oxygen species. Given the growth-suppressive consequences of activating the DDR, tumour viruses have also evolved mechanisms to attenuate these pathways. Aberrant expression of viral oncoproteins may therefore promote tumourigenesis through increased somatic mutation and aneuploidy due to DDR inactivation. This review will focus on the interplay between oncogenic viruses and the DDR with respect to cellular checkpoint control and transformation.

  18. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    PubMed

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response.

  19. Marine Bivalve Cellular Responses to Beta Blocker Exposures ...

    EPA Pesticide Factsheets

    β blockers are prescription drugs used for medical treatment of hypertension and arrhythmias. They prevent binding of agonists such as catecholamines to β adrenoceptors. In the absence of agonist induced activation of the receptor, adenylate cyclase is not activated which in turn limits cAMP production and protein kinase A activation, preventing increases in blood pressure and arrhythmias. After being taken therapeutically, commonly prescribed β blockers may make their way to coastal habitats via discharge from waste water treatment plants (WWTP) posing a potential risk to aquatic organisms. The aim of our research is to evaluate cellular responses of three commercially important marine bivalves - Eastern oysters, blue mussels and hard clams - upon exposure to two β blocker drugs, propranolol and metoprolol, and to find molecular initiating events (MIEs) indicative of the exposure. Bivalves were obtained from Narragansett Bay (Rhode Island, USA) and acclimated in the laboratory. Following acclimation, gills and hepatopancreas (HP) tissues were harvested and separately exposed to 0, 1, 10, 100 and 1000 ng/l of each drug. Tissues were bathed in 30 parts per thousand (ppt) filtered seawater, antibiotic mix, Leibovitz nutrient media, and the test drug. Exposures were conducted for 24 hours and samples were saved for cellular biomarker assays. A lysosomal destabilization assay, which is a marker of membrane damage, was also performed at the end of each exposure.

  20. Investigation of cellular responses upon interaction with silver nanoparticles

    PubMed Central

    Subbiah, Ramesh; Jeon, Seong Beom; Park, Kwideok; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    In order for nanoparticles (NPs) to be applied in the biomedical field, a thorough investigation of their interactions with biological systems is required. Although this is a growing area of research, there is a paucity of comprehensive data in cell-based studies. To address this, we analyzed the physicomechanical responses of human alveolar epithelial cells (A549), mouse fibroblasts (NIH3T3), and human bone marrow stromal cells (HS-5), following their interaction with silver nanoparticles (AgNPs). When compared with kanamycin, AgNPs exhibited moderate antibacterial activity. Cell viability ranged from ≤80% at a high AgNPs dose (40 µg/mL) to >95% at a low dose (10 µg/mL). We also used atomic force microscopy-coupled force spectroscopy to evaluate the biophysical and biomechanical properties of cells. This revealed that AgNPs treatment increased the surface roughness (P<0.001) and stiffness (P<0.001) of cells. Certain cellular changes are likely due to interaction of the AgNPs with the cell surface. The degree to which cellular morphology was altered directly proportional to the level of AgNP-induced cytotoxicity. Together, these data suggest that atomic force microscopy can be used as a potential tool to develop a biomechanics-based biomarker for the evaluation of NP-dependent cytotoxicity and cytopathology. PMID:26346562

  1. Cellular response to titanium discs coated with polyelectrolyte multilayer films

    NASA Astrophysics Data System (ADS)

    Zhan, Jing; Luo, Qiao-jie; Huang, Ying; Li, Xiao-dong

    2014-09-01

    The purpose of this study was to investigate the effects of polyelectrolyte multilayer (PEM) coatings on the biological behavior of titanium (Ti) substrates. Collagen type Ι/hyaluronic acid (Col/HA) and chitosan/hyaluronic acid (Chi/HA) multilayer PEM coatings were introduced onto Ti substrates using layer-by-layer assembly. Contact angle instruments and quartz crystal microbalance were used for film characterization. The results obtained showed that both Col/HA and Chi/HA surfaces had high hydrophilicity and promoted cell adhesion in MC3T3-E1 pre-osteoblast and human gingival fibroblast cells. In addition, the synthesis of function-related proteins and gene expression levels in both MC3T3-E1 and fibroblast cells was higher for the Col/HA coating compared with the Chi/HA coating, indicating better cellular response to the Col/HA coating.

  2. Cellular response of titanium and its alloys as implants.

    PubMed

    Bhola, Rahul; Bhola, Shaily M; Mishra, Brajendra; Ayers, Reed; Olson, David L; Ohno, Timothy

    2011-08-01

    The cellular response of osteocytes to commercially pure titanium (α) and its alloys (α + β and β) has been tested in a culture media, and the results have been supplemented by analyses from various techniques such as inductively coupled plasma atomic emission spectroscopic (ICP-AES) analysis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), metallography, and electrochemical measurements. These results have been correlated with respect to the presence of various alloying elements in these alloys to qualify them for human application. The newer β alloys have been examined for their potential use as implants. These results serve as a preliminary baseline to characterize the best alloy system for a comprehensive long-term investigation.

  3. Dynamic involvement of ATG5 in cellular stress responses

    PubMed Central

    Lin, H H; Lin, S-M; Chung, Y; Vonderfecht, S; Camden, J M; Flodby, P; Borok, Z; Limesand, K H; Mizushima, N; Ann, D K

    2014-01-01

    Autophagy maintains cell and tissue homeostasis through catabolic degradation. To better delineate the in vivo function for autophagy in adaptive responses to tissue injury, we examined the impact of compromised autophagy in mouse submandibular glands (SMGs) subjected to main excretory duct ligation. Blocking outflow from exocrine glands causes glandular atrophy by increased ductal pressure. Atg5f/−;Aqp5-Cre mice with salivary acinar-specific knockout (KO) of autophagy essential gene Atg5 were generated. While duct ligation induced autophagy and the expression of inflammatory mediators, SMGs in Atg5f/−;Aqp5-Cre mice, before ligation, already expressed higher levels of proinflammatory cytokine and Cdkn1a/p21 messages. Extended ligation period resulted in the caspase-3 activation and acinar cell death, which was delayed by Atg5 knockout. Moreover, expression of a set of senescence-associated secretory phenotype (SASP) factors was elevated in the post-ligated glands. Dysregulation of cell-cycle inhibitor CDKN1A/p21 and activation of senescence-associated β-galactosidase were detected in the stressed SMG duct cells. These senescence markers peaked at day 3 after ligation and partially resolved by day 7 in post-ligated SMGs of wild-type (WT) mice, but not in KO mice. The role of autophagy-related 5 (ATG5)-dependent autophagy in regulating the tempo, duration and magnitude of cellular stress responses in vivo was corroborated by in vitro studies using MEFs lacking ATG5 or autophagy-related 7 (ATG7) and autophagy inhibitors. Collectively, our results highlight the role of ATG5 in the dynamic regulation of ligation-induced cellular senescence and apoptosis, and suggest the involvement of autophagy resolution in salivary repair. PMID:25341032

  4. Reduced cellular immune response in social insect lineages

    PubMed Central

    Sconiers, Warren B.; Frank, Steven D.; Dunn, Robert R.; Tarpy, David R.

    2016-01-01

    Social living poses challenges for individual fitness because of the increased risk of disease transmission among conspecifics. Despite this challenge, sociality is an evolutionarily successful lifestyle, occurring in the most abundant and diverse group of organisms on earth—the social insects. Two contrasting hypotheses predict the evolutionary consequences of sociality on immune systems. The social group hypothesis posits that sociality leads to stronger individual immune systems because of the higher risk of disease transmission in social species. By contrast, the relaxed selection hypothesis proposes that social species have evolved behavioural immune defences that lower disease risk within the group, resulting in lower immunity at the individual level. We tested these hypotheses by measuring the encapsulation response in 11 eusocial and non-eusocial insect lineages. We built phylogenetic mixed linear models to investigate the effect of behaviour, colony size and body size on cellular immune response. We found a significantly negative effect of colony size on encapsulation response (Markov chain Monte Carlo generalized linear mixed model (mcmcGLMM) p < 0.05; phylogenetic generalized least squares (PGLS) p < 0.05). Our findings suggest that insects living in large societies may rely more on behavioural mechanisms, such as hygienic behaviours, than on immune function to reduce the risk of disease transmission among nest-mates. PMID:26961895

  5. MOF maintains transcriptional programs regulating cellular stress response.

    PubMed

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-05-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.

  6. Mechano-biological Coupling of Cellular Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan

    2015-11-01

    Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.

  7. Biophysical responses upon the interaction of nanomaterials with cellular interfaces.

    PubMed

    Wu, Yun-Long; Putcha, Nirupama; Ng, Kee Woei; Leong, David Tai; Lim, Chwee Teck; Loo, Say Chye Joachim; Chen, Xiaodong

    2013-03-19

    The explosion of study of nanomaterials in biological applications (the nano-bio interface) can be ascribed to nanomaterials' growing importance in diagnostics, therapeutics, theranostics (therapeutic diagnostics), and targeted modulation of cellular processes. However, a growing number of critics have raised concerns over the potential risks of nanomaterials to human health and safety. It is essential to understand nanomaterials' potential toxicity before they are tested in humans. These risks are complicated to unravel, however, because of the complexity of cells and their nanoscale macromolecular components, which enable cells to sense and respond to environmental cues, including nanomaterials. In this Account, we explore these risks from the perspective of the biophysical interactions between nanomaterials and cells. Biophysical responses to the uptake of nanomaterials can include conformational changes in biomolecules like DNA and proteins, and changes to the cellular membrane and the cytoskeleton. Changes to the latter two, in particular, can induce changes in cell elasticity, morphology, motility, adhesion, and invasion. This Account reviews what is known about cells' biophysical responses to the uptake of the most widely studied and used nanoparticles, such as carbon-based, metal, metal-oxide, and semiconductor nanomaterials. We postulate that the biophysical structure impairment induced by nanomaterials is one of the key causes of nanotoxicity. The disruption of cellular structures is affected by the size, shape, and chemical composition of nanomaterials, which are also determining factors of nanotoxicity. Currently, popular nanotoxicity characterizations, such as the MTT and lactate dehydrogenase (LDH) assays, only provide end-point results through chemical reactions. Focusing on biophysical structural changes induced by nanomaterials, possibly in real-time, could deepen our understanding of the normal and altered states of subcellular structures and

  8. Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast

    PubMed Central

    Pérez-Torrado, Roberto

    2016-01-01

    Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although, many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two S. cerevisiae strains, CECT10094, and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico) respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR) and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus, our data suggest that there

  9. Transcription Factors in the Cellular Response to Charged Particle Exposure

    PubMed Central

    Hellweg, Christine E.; Spitta, Luis F.; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90–300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  10. Cellular Mechanisms of Gravitropic Response in Higher Plants

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Smolikova, Galina; Pozhvanov, Gregory; Suslov, Dmitry

    The evolutionary success of land plants in adaptation to the vectorial environmental factors was based mainly on the development of polarity systems. In result, normal plant ontogenesis is based on the positional information. Polarity is a tool by which the developing plant organs and tissues are mapped and the specific three-dimensional structure of the organism is created. It is due to their polar organization plants are able to orient themselves relative to the gravity vector and different vectorial cues, and to respond adequately to various stimuli. Gravitation is one of the most important polarized environmental factor that guides the development of plant organisms in space. Every plant can "estimate" its position relative to the gravity vector and correct it, if necessary, by means of polarized growth. The direction and the magnitude of gravitational stimulus are constant during the whole plant ontogenesis. The key plant response to the action of gravity is gravitropism, i.e. the directed growth of organs with respect to the gravity vector. This response is a very convenient model to study the mechanisms of plant orientation in space. The present report is focused on the main cellular mechanisms responsible for graviropic bending in higher plants. These mechanisms and structures include electric polarization of plant cells, Ca ({2+) }gradients, cytoskeleton, G-proteins, phosphoinositides and the machinery responsible for asymmetric auxin distribution. Those mechanisms tightly interact demonstrating some hierarchy and multiple feedbacks. The Ca (2+) gradients provide the primary physiological basis of polarity in plant cells. Calcium ions influence on the bioelectric potentials, the organization of actin cytoskeleton, the activity of Ca (2+) -binding proteins and Ca (2+) -dependent protein kinases. Protein kinases modulate transcription factors activity thereby regulating the gene expression and switching the developmental programs. Actin cytoskeleton affects

  11. Dichotomy of protective cellular immune responses to human visceral leishmaniasis.

    PubMed

    Khalil, E A G; Ayed, N B; Musa, A M; Ibrahim, M E; Mukhtar, M M; Zijlstra, E E; Elhassan, I M; Smith, P G; Kieny, P M; Ghalib, H W; Zicker, F; Modabber, F; Elhassan, A M

    2005-05-01

    cellular immune responses to human VL are dichotomatous, and that IFN-gamma production and the LST response are not in a causal relationship. Following vaccination and probably cure of VL infection, the IFN-gamma response declines with time while the LST response persists. LST is a simple test that can be used to assess candidate vaccine efficacy.

  12. Pairing of heterochromatin in response to cellular stress

    SciTech Connect

    Abdel-Halim, H.I.; Mullenders, L.H.F. . E-mail: L.Mullenders@lumc.nl; Boei, J.J.W.A.

    2006-07-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair.

  13. Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations.

    PubMed

    Mattenberger, Florian; Sabater-Muñoz, Beatriz; Hallsworth, John E; Fares, Mario A

    2017-03-01

    Glycerol synthesis is key to central metabolism and stress biology in Saccharomyces cerevisiae, yet the cellular adjustments needed to respond and adapt to glycerol stress are little understood. Here, we determined impacts of acute and chronic exposures to glycerol stress in S. cerevisiae. Glycerol stress can result from an increase of glycerol concentration in the medium due to the S. cerevisiae fermenting activity or other metabolic activities. Acute glycerol-stress led to a 50% decline in growth rate and altered transcription of more than 40% of genes. The increased genetic diversity in S. cerevisiae population, which had evolved in the standard nutrient medium for hundreds of generations, led to an increase in growth rate and altered transcriptome when such population was transferred to stressful media containing a high concentration of glycerol; 0.41 M (0.990 water activity). Evolution of S. cerevisiae populations during a 10-day period in the glycerol-containing medium led to transcriptome changes and readjustments to improve control of glycerol flux across the membrane, regulation of cell cycle, and more robust stress response; and a remarkable increase of growth rate under glycerol stress. Most of the observed regulatory changes arose in duplicated genes. These findings elucidate the physiological mechanisms, which underlie glycerol-stress response, and longer-term adaptations, in S. cerevisiae; they also have implications for enigmatic aspects of the ecology of this otherwise well-characterized yeast.

  14. Flavivirus Infection Uncouples Translation Suppression from Cellular Stress Responses

    PubMed Central

    Roth, Hanna; Magg, Vera; Uch, Fabian; Mutz, Pascal; Klein, Philipp; Haneke, Katharina; Lohmann, Volker; Bartenschlager, Ralf; Fackler, Oliver T.; Locker, Nicolas; Stoecklin, Georg

    2017-01-01

    ABSTRACT As obligate parasites, viruses strictly depend on host cell translation for the production of new progeny, yet infected cells also synthesize antiviral proteins to limit virus infection. Modulation of host cell translation therefore represents a frequent strategy by which viruses optimize their replication and spread. Here we sought to define how host cell translation is regulated during infection of human cells with dengue virus (DENV) and Zika virus (ZIKV), two positive-strand RNA flaviviruses. Polysome profiling and analysis of de novo protein synthesis revealed that flavivirus infection causes potent repression of host cell translation, while synthesis of viral proteins remains efficient. Selective repression of host cell translation was mediated by the DENV polyprotein at the level of translation initiation. In addition, DENV and ZIKV infection suppressed host cell stress responses such as the formation of stress granules and phosphorylation of the translation initiation factor eIF2α (α subunit of eukaryotic initiation factor 2). Mechanistic analyses revealed that translation repression was uncoupled from the disruption of stress granule formation and eIF2α signaling. Rather, DENV infection induced p38-Mnk1 signaling that resulted in the phosphorylation of the eukaryotic translation initiation factor eIF4E and was essential for the efficient production of virus particles. Together, these results identify the uncoupling of translation suppression from the cellular stress responses as a conserved strategy by which flaviviruses ensure efficient replication in human cells. PMID:28074025

  15. Cellular Response of Campylobacter jejuni to Trisodium Phosphate

    PubMed Central

    Riedel, Charlotte Tandrup; Cohn, Marianne Thorup; Stabler, Richard A.; Wren, Brendan

    2012-01-01

    The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal concentrations of TSP. Preexposure of C. jejuni to TSP resulted in a significant increase in heat sensitivity, suggesting that a combined heat and TSP treatment may increase reduction of C. jejuni. A microarray analysis identified a limited number of genes that were differently expressed after sublethal TSP exposure; however, the response was mainly associated with ion transport processes. C. jejuni NCTC11168 nhaA1 (Cj1655c) and nhaA2 (Cj1654c), which encode orthologues to the Escherichia coli NhaA cation/proton antiporter, were able to partially restore TSP, alkaline, and sodium resistance phenotypes to an E. coli cation/proton antiporter mutant. In addition, inhibition of resistance-nodulation-cell division (RND) multidrug efflux pumps by the inhibitor PaβN (Phe-Arg β-naphthylamide dihydrochloride) decreased tolerance to sublethal TSP. Therefore, we propose that NhaA1/NhaA2 cation/proton antiporters and RND multidrug efflux pumps function in tolerance to sublethal TSP exposure in C. jejuni. PMID:22194296

  16. New insights into the cellular response to radiation using microbeams

    NASA Astrophysics Data System (ADS)

    Folkard, Melvyn; Prise, Kevin; Schettino, Giuseppe; Shao, Chunlin; Gilchrist, Stuart; Vojnovic, Boris

    2005-04-01

    Micro-irradiation techniques continue to be highly relevant to a number of radiobiological studies, due to their ability to deliver precise doses of radiation to selected individual cells (or sub-cellular targets) in vitro. The Gray cancer institute (GCI) ion microbeam uses a 1 μm diameter bore glass capillary to vertically collimate protons, or helium ions accelerated by a 4 MV Van de Graaff. Using 3He2+ ions, 99% of cells are targeted with an accuracy of ±2 μm, and with a particle counting accuracy >99%. Using automated cell finding and irradiation procedures, up to 10,000 cells per hour can be individually irradiated. Microbeams are now being used to study a number of novel 'non-targeted' responses that do not follow the standard radiation model based on direct DNA damage and are now known to occur when living cells and tissues are irradiated. One such response is the so-called 'bystander effect' where unirradiated cells are damaged through signalling pathways initiated by a nearby irradiated cell. This effect predominates at low doses and profoundly challenges our understanding of environmental radiation risk. Furthermore, we now have evidence that simple molecules (such as nitric oxide) are involved in the signalling process, such that it may be possible to chemically influence the bystander response. If so, then this could eventually lead to improvements in the treatment of cancer by radiotherapy. Other studies have shown that the bystander effect is induced with equal effectiveness if either the nucleus or the cytoplasm of a cell is targeted.

  17. A Computational Model of Cellular Response to Modulated Radiation Fields

    SciTech Connect

    McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  18. Cellular unfolded protein response against viruses used in gene therapy

    PubMed Central

    Sen, Dwaipayan; Balakrishnan, Balaji; Jayandharan, Giridhara R.

    2014-01-01

    Viruses are excellent vehicles for gene therapy due to their natural ability to infect and deliver the cargo to specific tissues with high efficiency. Although such vectors are usually “gutted” and are replication defective, they are subjected to clearance by the host cells by immune recognition and destruction. Unfolded protein response (UPR) is a naturally evolved cyto-protective signaling pathway which is triggered due to endoplasmic reticulum (ER) stress caused by accumulation of unfolded/misfolded proteins in its lumen. The UPR signaling consists of three signaling pathways, namely PKR-like ER kinase, activating transcription factor 6, and inositol-requiring protein-1. Once activated, UPR triggers the production of ER molecular chaperones and stress response proteins to help reduce the protein load within the ER. This occurs by degradation of the misfolded proteins and ensues in the arrest of protein translation machinery. If the burden of protein load in ER is beyond its processing capacity, UPR can activate pro-apoptotic pathways or autophagy leading to cell death. Viruses are naturally evolved in hijacking the host cellular translation machinery to generate a large amount of proteins. This phenomenon disrupts ER homeostasis and leads to ER stress. Alternatively, in the case of gutted vectors used in gene therapy, the excess load of recombinant vectors administered and encountered by the cell can trigger UPR. Thus, in the context of gene therapy, UPR becomes a major roadblock that can potentially trigger inflammatory responses against the vectors and reduce the efficiency of gene transfer. PMID:24904562

  19. Global cellular response to chemotherapy-induced apoptosis

    PubMed Central

    Wiita, Arun P; Ziv, Etay; Wiita, Paul J; Urisman, Anatoly; Julien, Olivier; Burlingame, Alma L; Weissman, Jonathan S; Wells, James A

    2013-01-01

    How cancer cells globally struggle with a chemotherapeutic insult before succumbing to apoptosis is largely unknown. Here we use an integrated systems-level examination of transcription, translation, and proteolysis to understand these events central to cancer treatment. As a model we study myeloma cells exposed to the proteasome inhibitor bortezomib, a first-line therapy. Despite robust transcriptional changes, unbiased quantitative proteomics detects production of only a few critical anti-apoptotic proteins against a background of general translation inhibition. Simultaneous ribosome profiling further reveals potential translational regulation of stress response genes. Once the apoptotic machinery is engaged, degradation by caspases is largely independent of upstream bortezomib effects. Moreover, previously uncharacterized non-caspase proteolytic events also participate in cellular deconstruction. Our systems-level data also support co-targeting the anti-apoptotic regulator HSF1 to promote cell death by bortezomib. This integrated approach offers unique, in-depth insight into apoptotic dynamics that may prove important to preclinical evaluation of any anti-cancer compound. DOI: http://dx.doi.org/10.7554/eLife.01236.001 PMID:24171104

  20. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins.

    PubMed

    Culler, Stephanie J; Hoff, Kevin G; Smolke, Christina D

    2010-11-26

    Synthetic genetic devices that interface with native cellular pathways can be used to change natural networks to implement new forms of control and behavior. The engineering of gene networks has been limited by an inability to interface with native components. We describe a class of RNA control devices that overcome these limitations by coupling increased abundance of particular proteins to targeted gene expression events through the regulation of alternative RNA splicing. We engineered RNA devices that detect signaling through the nuclear factor κB and Wnt signaling pathways in human cells and rewire these pathways to produce new behaviors, thereby linking disease markers to noninvasive sensing and reprogrammed cellular fates. Our work provides a genetic platform that can build programmable sensing-actuation devices enabling autonomous control over cellular behavior.

  1. Using partial least squares regression to analyze cellular response data.

    PubMed

    Kreeger, Pamela K

    2013-04-16

    This Teaching Resource provides lecture notes, slides, and a problem set for a lecture introducing the mathematical concepts and interpretation of partial least squares regression (PLSR) that were part of a course entitled "Systems Biology: Mammalian Signaling Networks." PLSR is a multivariate regression technique commonly applied to analyze relationships between signaling or transcriptional data and cellular behavior.

  2. Cellular Responses to Beta Blocker Exposures in Marine ...

    EPA Pesticide Factsheets

    β blockers are prescription drugs used for medical treatment of hypertension and arrhythmias. They prevent activation of adenylate cyclase and increases in blood pressure by limiting cAMP production and protein kinase A activation. After being taken therapeutically, β blockers may make their way to coastal habitats via discharge from waste water treatment plants, posing a potential risk to aquatic organisms. The aim of our research is to evaluate cellular biomarkers of β blocker exposure using two drugs, propranolol and metoprolol, in three commercially important marine bivalves -Crassostrea virginica, Mytilus edulis and Mercenaria mercenaria. Bivalves were obtained from Narragansett Bay (Rhode Island, USA) and acclimated in the laboratory. Following acclimation, gills and hepatopancreas tissues were harvested and separately exposed to 0, 1, 10, 100 and 1000 ng/l of each drug for 24 hours. Samples were preserved for cellular biomarker assays. Elevated cellular damage and changes in enzymatic activities were noted at environmentally relevant concentrations, and M. mercenaria was found to be the most sensitive bivalve out of the three species tested. These studies enhance our understanding of the potential impacts of commonly used prescription medication on organisms in coastal ecosystems, and demonstrate that filter feeders such as marine bivalves may serve as good model organisms to examine the effects of water soluble drugs. Evaluating a suite of biomarkers

  3. Marine molluscs in environmental monitoring. I. Cellular and molecular responses

    NASA Astrophysics Data System (ADS)

    Bresler, Vladimir; Abelson, Avigdor; Fishelson, Lev; Feldstein, Tamar; Rosenfeld, Michael; Mokady, Ofer

    2003-10-01

    The study reported here is part of an ongoing effort to establish sensitive and reliable biomonitoring markers for probing the coastal marine environment. Here, we report comparative measurements of a range of histological, cellular and sub-cellular parameters in molluscs sampled in polluted and reference sites along the Mediterranean coast of Israel and in the northern tip of the Gulf of Aqaba, Red Sea. Available species enabled an examination of conditions in two environmental 'compartments': benthic (Donax trunculus) and intertidal (Brachidontes pharaonis, Patella caerulea) in the Mediterranean; pelagic (Pteria aegyptia) and intertidal (Cellana rota) in the Red Sea. The methodology used provides rapid results by combining specialized fluorescent probes and contact microscopy, by which all parameters are measured in unprocessed animal tissue. The research focused on three interconnected levels. First, antixenobiotic defence mechanisms aimed at keeping hazardous agents outside the cell. Paracellular permeability was 70-100% higher in polluted sites, and membrane pumps (MXRtr and SATOA) activity was up to 65% higher in polluted compared to reference sites. Second, intracellular defence mechanisms that act to minimize potential damage by agents having penetrated the first line of defence. Metallothionein expression and EROD activity were 160-520% higher in polluted sites, and lysosomal functional activity (as measured by neutral red accumulation) was 25-50% lower. Third, damage caused by agents not sufficiently eliminated by the above mechanisms (e.g. single-stranded DNA breaks, chromosome damage and other pathological alterations). At this level, the most striking differences were observed in the rate of micronuclei formation and DNA breaks (up to 150% and 400% higher in polluted sites, respectively). The different mollusc species used feature very similar trends between polluted and reference sites in all measured parameters. Concentrating on relatively basic

  4. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  5. Activation of cellular immune response in acute pancreatitis.

    PubMed Central

    Mora, A; Pérez-Mateo, M; Viedma, J A; Carballo, F; Sánchez-Payá, J; Liras, G

    1997-01-01

    BACKGROUND: Inflammatory mediators have recently been implicated as potential markers of severity in acute pancreatitis. AIMS: To determine the value of neopterin and polymorphonuclear (PMN) elastase as markers of activation of cellular immunity and as early predictors of disease severity. PATIENTS: Fifty two non-consecutive patients classified according to their clinical outcome into mild (n = 26) and severe pancreatitis (n = 26). METHODS: Neopterin in serum and the PMN elastase/A1PI complex in plasma were measured during the first three days of hospital stay. RESULTS: Within three days after the onset of acute pancreatitis, PMN elastase was significantly higher in the severe pancreatitis group. Patients with severe disease also showed significantly higher values of neopterin on days 1 and 2 but not on day 3 compared with patients with mild disease. There was a significant correlation between PMN elastase and neopterin values on days 1 and 2. PMN elastase on day 1 predicted disease severity with a sensitivity of 76.7% and a specificity of 91.6%. Neopterin did not surpass PMN elastase in the probability of predicting disease severity. CONCLUSIONS: These data show that activation of cellular immunity is implicated in the pathogenesis of acute pancreatitis and may be a main contributory factor to disease severity. Neopterin was not superior to PMN elastase in the prediction of severity. PMID:9245935

  6. Response of MICROTOX organisms to leachates of autoclaved cellular concrete

    SciTech Connect

    Latona, M.C.; Neufeld, R.D.; Hu, W.; Kelly, C.; Vallejo, L.E.

    1997-08-01

    The MICROTOX bioassay, a toxicity test involving bioluminescent microorganisms, was conducted on aqueous leachates derived from a construction material made using coal fly ash as the key siliceous ingredient. The material is known as autoclaved cellular concrete (ACC). The test indicated an absence of toxic effects attributable to soluble species, which included the priority heavy metals in the filtered leachates. Toxic or inhibitive effects on the test bacteria were observed for the toxicity characteristic leaching procedure (TCLP) leachates, but this was probably due to acetic acid in the extractant rather than the solubilized metals. The ASTM (distilled-deionized water extractant) and simulated acid rain leachates, by comparison, produced a repeatable stimulative effect. Stimulation observed in the form of enhanced light output may be a manifestation of hormesis, a phenomenon reportedly caused by exposure to extremely low concentrations (part-per-billion range) of otherwise toxic agents such as heavy metals.

  7. Development of second generation peptides modulating cellular adiponectin receptor responses

    NASA Astrophysics Data System (ADS)

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John; Surmacz, Eva; Lovas, Sandor

    2014-10-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.

  8. The Inhibitor of Apoptosis (IAPs) in Adaptive Response to Cellular Stress

    PubMed Central

    Marivin, Arthur; Berthelet, Jean; Plenchette, Stéphanie; Dubrez, Laurence

    2012-01-01

    Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various “guardian molecules.” These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages. The Inhibitor of Apoptosis (IAPs) proteins display both anti-apoptotic and pro-survival properties and their expression can be induced by a variety of cellular stress such as hypoxia, endoplasmic reticular stress and DNA damage. Thus, IAPs can confer tolerance to cellular stress. This review presents the anti-apoptotic and survival functions of IAPs and their role in the adaptive response to cellular stress. The involvement of IAPs in human physiology and diseases in connection with a breakdown of cellular homeostasis will be discussed. PMID:24710527

  9. Cellular evaluation of the toxicity of combustion derived particulate matter: influence of particle grinding and washing on cellular response.

    PubMed

    Katterman, Matthew E; Birchard, Stephanie; Seraphin, Supapan; Riley, Mark R

    2007-01-01

    There is increasing interest in continual monitoring of air for the presence of inhalation health hazards, such as particulate matter, produced through combustion of fossil fuels. Currently there are no means to rapidly evaluate the relative toxicity of materials or to reliably predict potential health impact due to the complexity of the composition, size, and physical properties of particulate matter. This research evaluates the feasibility of utilizing cell cultures as the biological recognition element of an inhalation health monitoring system. The response of rat lung type II epithelial (RLE-6TN) cells to a variety of combustion derived particulates and their components has been evaluated. The focus of the current work is an evaluation of how particles are delivered to a cellular sensing array and to what degree does washing or grinding of the particles impacts the cellular response. There were significant differences in the response of these lung cells to PM's of varying sources. Mechanical grinding or washing was found to alter the toxicity of some of these particulates; however these effects were strongly dependent on the fuel source. Washing reduced toxicity of oil PM's, but had little effect on those from diesel or coal. Mechanical grinding could significantly increase the toxicity of coal PM's, but not for oil or diesel.

  10. Cellular immune responses to methylcholanthrene-induced fibrosarcoma in BALB/c mice

    PubMed Central

    1975-01-01

    Several in vitro parameters of cellular immunity were examined in BALB/c mice with an experimentally induced fibrosarcoma tumor. The results of capillary migration of spleen cells in high tumor cell dose inoculated mice show appearance of cellular immune response in the early stages of the tumor growth. As the tumor progresses, the cellular response declines and rapidly disappears, culminating in stimulation values near the time of the death of these mice. The blastogenic studies also show early cellular recognition of tumor antigen by mouse spleen cells and whole blood (Z24 h). After the 2nd day following tumor injection, no blast transformation is noted. However, the results obtained with a lower inoculating tumor cell dose demonstrate an initial cellular recognition on the 7th day. This response gradually disappears by the 19th day and remains negative up to the time of the death of these mice. This cellular immunity was confirmed by the cytotoxic experiments showing that the primary cells responsible for this cellular reactivity were the immune cells. An interesting finding was the presence of a factor(s) capable of blocking the cytotoxic effect. The nature and mechanism of this blocking factor(s) is now under investigation. PMID:1185107

  11. Cellular responses to egg-oil (charismon©).

    PubMed

    Bereiter-Hahn, Jürgen; Bernd, August; Beschmann, Heike; Eberle, Irina; Kippenberger, Stefan; Rossberg, Maila; Strecker, Valentina; Zöller, Nadja

    2014-01-01

    Egg-oil (Charismon©) is known for its beneficial action in wound healing and other skin irritancies and its antibacterial activity. The physiological basis for these actions has been investigated using cells in culture: HaCaT-cells (immortalized human keratinocytes), human endothelial cells in culture (HUVEC), peripheral blood mononuclear lymphocytes (PBML) and a full thickness human skin model (FTSM). Emphasis was on the influence of egg-oil on cell migration and IL-8 production in HaCaT cells, respiration, mitochondrial membrane potential, reactive oxygen (ROS) production and proliferation in HUVEC and HaCaT cells, cytokine and interleukin production in PBML and UV-light induced damage of FTSM. IL-8 production by HaCaT cells is stimulated by egg-oil whilst in phythemagglutin in-activated PBMLs production of the interleukins IL-2, IL-6, IL-10 and IFN-γ and TFN-α is reduced. ROS-production after H(2)O(2) stimulation first is enhanced but later on reduced. Respiration becomes activated due to partial uncoupling of the mitochondrial respiratory chain and proliferation of HaCaT and HUVEC is reduced. Recovery of human epidermis cells in FTSM after UV-irradiation is strongly supported by egg-oil. These results support the view that egg-oil acts through reduction of inflammatory processes and ROS production. Both these processes are equally important in cellular aging as in healing of chronic wounds.

  12. MagR Alone Is Insufficient to Confer Cellular Calcium Responses to Magnetic Stimulation

    PubMed Central

    Pang, Keliang; You, He; Chen, Yanbo; Chu, Pengcheng; Hu, Meiqin; Shen, Jianying; Guo, Wei; Xie, Can; Lu, Bai

    2017-01-01

    Magnetic manipulation of cell activity offers advantages over optical manipulation but an ideal tool remains elusive. The MagR protein was found through its interaction with cryptochrome (Cry) and the protein in solution appeared to respond to magnetic stimulation (MS). After we initiated an investigation on the specific role of MagR in cellular response to MS, a subsequent study claimed that MagR expression alone could achieve cellular activation by MS. Here we report that despite systematically testing different ways of measuring intracellular calcium and different MS protocols, it was not possible to detect any cellular or neuronal responses to MS in MagR-expressing HEK cells or primary neurons from the dorsal root ganglion and the hippocampus. By contrast, in neurons co-expressing MagR and channelrhodopin, optical but not MS increased calcium influx in hippocampal neurons. Our results indicate that MagR alone is not sufficient to confer cellular magnetic responses. PMID:28360843

  13. Regulation of Cellular Immune Responses in Sepsis by Histone Modifications.

    PubMed

    Carson, W F; Kunkel, S L

    2017-01-01

    Severe sepsis, septic shock, and related inflammatory syndromes are driven by the aberrant expression of proinflammatory mediators by immune cells. During the acute phase of sepsis, overexpression of chemokines and cytokines drives physiological stress leading to organ failure and mortality. Following recovery from sepsis, the immune system exhibits profound immunosuppression, evidenced by an inability to produce the same proinflammatory mediators that are required for normal responses to infectious microorganisms. Gene expression in inflammatory responses is influenced by the transcriptional accessibility of the chromatin, with histone posttranslational modifications determining whether inflammatory gene loci are set to transcriptionally active, repressed, or poised states. Experimental evidence indicates that histone modifications play a central role in governing the cytokine storm of severe sepsis, and that aberrant chromatin modifications induced during the acute phase of sepsis may mediate chronic immunosuppression in sepsis survivors. This review will focus on the role of histone modifications in governing immune responses in severe sepsis, with an emphasis on specific leukocyte subsets and the histone modifications observed in these cells during chronic stages of sepsis. Additionally, the expression and function of chromatin-modifying enzymes (CMEs) will be discussed in the context of severe sepsis, as potential mediators of epigenetic regulation of gene expression in sepsis responses. In summary, this review will argue for the use of chromatin modifications and CME expression in leukocytes as potential biomarkers of immunosuppression in patients with severe sepsis.

  14. Cellular responses to endogenous electrochemical gradients in morphological development

    NASA Technical Reports Server (NTRS)

    Desrosiers, M. F.

    1996-01-01

    Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: (1) intercellular organization and development through their effects on the membrane potential, (2) direct effects such as electrophoresis of membrane components, and (3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: (1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, (2) the ionic conductance changes within seconds showing altered transport between the tissues, and (3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature.

  15. Immune Responses: Getting Close to Experimental Results with Cellular Automata Models

    NASA Astrophysics Data System (ADS)

    Dos Santos, Rita Maria Zorzenon

    Cellular automata approaches are powerful tools to model local and nonlocal interactions generating cooperative behavior. In the last decade, the question of whether cellular automata could embed realistic assumptions about the interactions among cells and molecules of the immune system was quite controversial. Recent results have shown that it is possible to use cellular automata approaches to describe realistically the interactions between the elements of the immune system. The first models using cellular automata approaches, boolean and threshold or window automata, were based on experimental evidence and were mainly used to understand the logic of global immune responses like immunization, tolerance, paralysis, etc. Recently, new classes of cellular automata models which include time delay, stochasticity or adaptation have lead to results that can be compared with in vivo experimental data.

  16. Cellular specificity of the gravitropic motor response in roots

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Ishikawa, H.

    1997-01-01

    A number of features of the gravitropic response of roots are not readily accounted for by the classical Cholodny-Went theory. These include the observations that (i) in the later stages of the response the growth gradient is reversed with no evident reversal of the auxin gradient; (ii) a major component of the acceleration of growth along the upper side occurs in the distal elongation zone (DEZ), a group of cells located between the meristem and the main elongation, not within the central elongation zone; and (iii) the initiation of differential growth in the DEZ appears to be independent of the establishment of auxin asymmetry. Alternative candidates for mediation of differential growth in the DEZ include calcium ions and protons. Gravi-induced curvature is accompanied by polar movement of calcium toward the lower side of the maize root tip and the DEZ is shown to be particularly sensitive to growth inhibition by calcium. Also, gravistimulation of maize roots causes enhanced acid efflux from the upper side of the DEZ. Evidence for gravi-induced modification of ion movements in the root tip includes changes in intracellular potentials and current flow. It is clear that there is more than one motor region in the root with regard to gravitropic responses and there is evidence that the DEZ itself consists of more than one class of responding cells. In order to gain a more complete understanding of the mechanism of gravitropic curvature, the physiological properties of the sub-zones of the root apex need to be thoroughly characterized with regard to their sensitivity to hormones, calcium, acid pH and electrical perturbations.

  17. Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite

    PubMed Central

    Auld, Stuart K. J. R.; Scholefield, Jennifer A.; Little, Tom J.

    2010-01-01

    Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host–parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence—a genetically determined barrier to parasite establishment and a cellular response once establishment has begun. PMID:20534618

  18. Educating for Political Activity: A Younger Generational Response

    ERIC Educational Resources Information Center

    Mac an Ghaill, Mairtin

    2010-01-01

    This paper is a response to Professor Chitty's "Educational Review" Guest Lecture article, "Educating for political activity". I address the three sections of his paper: a global and national-based politics of war, corporate manipulation and parliamentary scandals. This provides a basis to draw upon empirical material from a…

  19. Urokinase receptor modulates cellular and angiogenic responses in obstructive nephropathy.

    PubMed

    Zhang, Guoqiang; Kim, Heungsoo; Cai, Xiaohe; Lopez-Guisa, Jesus M; Carmeliet, Peter; Eddy, Allison A

    2003-05-01

    Interstitial cells have been implicated in the pathogenesis of renal fibrosis. Given that the urokinase receptor (uPAR) is known to play a role in cell adhesion, migration, and angiogenesis, the present study was designed to evaluate the role of uPAR in the regulation of the phenotypic composition of interstitial cells (macrophages, myofibroblasts, capillaries) in response to chronic renal injury. Groups of uPAR wild-type (+/+) and knockout (-/-) mice were investigated between 3 and 14 d after unilateral ureteral obstruction (UUO) or sham surgery (n = 8 mice per group). The density of F4/80+ interstitial macrophages (Mphi) was significantly lower in the -/- mice (3.3 +/- 0.4 versus 6.9 +/- 1.7% area at day 3 UUO; 10.8 +/- 1.6 versus 15.7 +/- 1.0% at day 14 UUO; -/- versus +/+). In contrast, in the -/- mice there were significantly more alpha smooth muscle actin (alphaSMA)-positive cells (12.9 +/- 3.2 versus 7.8 +/- 1.5% area at day 3 UUO; 21.0 +/- 4.7 versus 9.7 +/- 1.9% at day 14 UUO) and CD34-positive endothelial cells (8.4 +/- 1.9 versus 4.0 +/- 1.1% area at day 14 UUO). These differences were associated with significantly more interstitial fibrosis in the -/- mice based on Sirius red staining (4.6 +/- 0.9 versus 2.3 +/- 0.9% area at 14 d UUO). Absence of the uPAR scavenger receptor was associated with significantly greater accumulation of plasminogen activator inhibitor-1 protein (PAI-1) (20.5 +/- 3.5 versus 9.1 +/- 2.9% area, day 14 UUO) and vitronectin protein (2.4 +/- 1.1 versus 0.9 +/- 0.4% area, day 14 UUO). By immunostaining alphaSMA+ cells, CD34+ cells, vitronectin and PAI-1 co-localized to the same tubulointerstitial area. The number of apoptotic cells increased in response to UUO but was significantly higher in the -/- mice (2.0 +/- 0.2 versus 1.2 +/- 0.2 per 100 tubulointerstitial cells, day 14 UUO) while the number of proliferating cells was significantly lower in the uPAR-/- mice. These data suggest that uPAR deficiency suppresses renal Mphi

  20. Tuning the Poisson's Ratio of Biomaterials for Investigating Cellular Response

    PubMed Central

    Meggs, Kyle; Qu, Xin; Chen, Shaochen

    2013-01-01

    Cells sense and respond to mechanical forces, regardless of whether the source is from a normal tissue matrix, an adjacent cell or a synthetic substrate. In recent years, cell response to surface rigidity has been extensively studied by modulating the elastic modulus of poly(ethylene glycol) (PEG)-based hydrogels. In the context of biomaterials, Poisson's ratio, another fundamental material property parameter has not been explored, primarily because of challenges involved in tuning the Poisson's ratio in biological scaffolds. Two-photon polymerization is used to fabricate suspended web structures that exhibit positive and negative Poisson's ratio (NPR), based on analytical models. NPR webs demonstrate biaxial expansion/compression behavior, as one or multiple cells apply local forces and move the structures. Unusual cell division on NPR structures is also demonstrated. This methodology can be used to tune the Poisson's ratio of several photocurable biomaterials and could have potential implications in the field of mechanobiology. PMID:24076754

  1. Cellular Response of Shewanella oneidensis to StrontiumStress

    SciTech Connect

    Brown, Steven D.; Martin, Madhavi; Deshpande, Sameer; Seal,Sudipta; Huang, Katherine; Alm, Eric; Yang, Yunfeng; Wu, Liyou; Yan,Tengfen; Liu, Xueduan; Arkin, Adam; Chourey, Karuna; Zhou, Jizhong; Thompson, Dorothea K.

    2007-03-30

    The physiology and transcriptome dynamics of the metalion-reducing bacterium Shewanella oneidensis strain MR-1 in response tononradioactive strontium (Sr) exposure were investigated. Studiesindicated that MR-1 was able to grow aerobically in complex medium in thepresence of 180 mMSrCl2 but showed severe growth inhibition at levelsabove that concentration. Temporal gene expression profiles weregenerated from aerobically grown, mid-exponential-phase MR-1 cellsshocked with 180 mM SrCl2 and analyzed for significant differences inmRNA abundance with reference to data for nonstressed MR-1 cells. Geneswith annotated functions in siderophore biosynthesis and iron transportwere among the most highly induced (>100-fold [P<0.05]) openreading frames in response to acute Sr stress, and a mutant(SO3032::pKNOCK) defective in siderophore production was found to behypersensitive to SrCl2 exposure, compared to parental and wild-typestrains. Transcripts encoding multidrug and heavy metal efflux pumps,proteins involved in osmotic adaptation, sulfate ABC transporters, andassimilative sulfur metabolism enzymes also were differentially expressedfollowing Sr exposure but at levels that were several orders of magnitudelower than those for iron transport genes. Precipitate formation wasobserved during aerobic growth of MR-1 in broth cultures amended with 50,100, or 150 mM SrCl2 but not in cultures of the SO3032::pKNOCK mutant orin the abiotic control. Chemical analysis of this precipitate usinglaser-induced breakdown spectroscopy and static secondary ion massspectrometry indicated extracellular solid-phase sequestration of Sr,with at least a portion of the heavy metal associated with carbonatephases.

  2. Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses

    PubMed Central

    Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.

    2014-01-01

    Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a

  3. Cellular response of freshwater green algae to perfluorooctanoic acid toxicity.

    PubMed

    Xu, Dongmei; Li, Chandan; Chen, Hong; Shao, Bo

    2013-02-01

    Perfluorooctanoic acid (PFOA) is a kind of persistent organic pollutants and its aquatic eco-toxicity has attracted wide attention; however, the mechanism involved in its toxicity as well as the cell response against PFOA have not been well established. Herein, using single-celled green algae Chlorella pyrenoidosa and Selenastrum capricornutum at the logarithmic growth stage as test organisms, we studied the toxic effects of PFOA on the cell permeability, The 96 h-EC(50) values of PFOA for C. pyrenoidosa and S. capricornutum were 207.46 mg L(-1) and 190.99 mg L(-1), respectively, lower than the 96 h-EC(50) values reported in the literatures. After 96 h of PFOA exposure, the permeability of the cell membranes of both algae was significantly decreased, and the chlorophyll concentration mirrored the trends of algal growth. In both algal species, after a 192-h exposure to a low concentration of PFOA, the activities of superoxide dismutase and catalase were greater than those of the control. At higher concentrations of PFOA, activities of superoxide dismutase and catalase were strongly inhibited. These results indicate that long-term exposure to low levels of PFOA may induce excessive generation of reactive oxygen species in algal cells, causing oxidative damage to cells.

  4. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    PubMed Central

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2013-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors like dehydration and ultraviolet radiation. The ability to act as an ‘aldehyde scavenger’ during lipid peroxidation is another ostensibly universal ALDH function found across species. Up-regulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation) and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that significantly contributes to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, underscoring the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  5. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  6. The role of thiols in cellular response to radiation and drugs

    SciTech Connect

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-09-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole.

  7. Heterogeneity in cellular and humoral immune responses against Toxoplasma gondii antigen in humans

    PubMed Central

    FATOOHI, A F; COZON, G J N; GONZALO, P; MAYENCON, M; GREENLAND, T; PICOT, S; PEYRON, F

    2004-01-01

    Protection against Toxoplasma gondii in infected patients is mainly attributed to cellular immunity. We here attempt to improve the characterization of the proteins that induce cellular immunity in naturally infected patients. Cellular immunity was evaluated by flow cytometry after 7 days of blood culture from 31 chronically T. gondii infected and 8 noninfected pregnant women, in the presence of soluble T. gondii antigen (ST-Ag) or fractionated proteins from ST-Ag, separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Blood cultures from infected patients with ST-Ag induced 39·5 ± 12·7% of activated (CD25+) CD4+ T cells using flow cytometry. This contrasts with the absence of activated CD4+ T cells after either culture with PBS or in blood cultures from noninfected women. The protein fraction between 21 and 41·9 kD induced the highest response (14·7 ± 10·0%). Blood samples from 20 infected and 5 uninfected women were cultured in presence of 12 protein subfractions of 2–208 kD. The highest frequencies of response among infected patients were seen with fractions (Fr) 26–31·9 kD (C.I. 85–100%) and Fr 32–36·9 kD (C.I. 77–100%). Although we note a good concordance between cellular and humoral response, Western blot analysis of ST-Ag does not completely predict the panel of proteins recognized by cellular immunity. Two-dimensional separation of the ST-Ag revealed more than 200 protein spots in these fractions. However, only two proteins in the 20–40 kD range induced a significant humoral response. Further studies are necessary to determine which proteins in the Fr 26–31·9 kD and 32–36·9 kD are superior immunogens for cellular responses. PMID:15147357

  8. Heterogeneity in cellular and humoral immune responses against Toxoplasma gondii antigen in humans.

    PubMed

    Fatoohi, A F; Cozon, G J N; Gonzalo, P; Mayencon, M; Greenland, T; Picot, S; Peyron, F

    2004-06-01

    Protection against Toxoplasma gondii in infected patients is mainly attributed to cellular immunity. We here attempt to improve the characterization of the proteins that induce cellular immunity in naturally infected patients. Cellular immunity was evaluated by flow cytometry after 7 days of blood culture from 31 chronically T. gondii infected and 8 noninfected pregnant women, in the presence of soluble T. gondii antigen (ST-Ag) or fractionated proteins from ST-Ag, separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Blood cultures from infected patients with ST-Ag induced 39.5 +/- 12.7% of activated (CD25+) CD4+ T cells using flow cytometry. This contrasts with the absence of activated CD4+ T cells after either culture with PBS or in blood cultures from noninfected women. The protein fraction between 21 and 41.9 kD induced the highest response (14.7 +/- 10.0%). Blood samples from 20 infected and 5 uninfected women were cultured in presence of 12 protein subfractions of 2-208 kD. The highest frequencies of response among infected patients were seen with fractions (Fr) 26-31.9 kD (C.I. 85-100%) and Fr 32-36.9 kD (C.I. 77-100%). Although we note a good concordance between cellular and humoral response, Western blot analysis of ST-Ag does not completely predict the panel of proteins recognized by cellular immunity. Two-dimensional separation of the ST-Ag revealed more than 200 protein spots in these fractions. However, only two proteins in the 20-40 kD range induced a significant humoral response. Further studies are necessary to determine which proteins in the Fr 26-31.9 kD and 32-36.9 kD are superior immunogens for cellular responses.

  9. Dynamics of cellular immune responses in the acute phase of dengue virus infection.

    PubMed

    Yoshida, Tomoyuki; Omatsu, Tsutomu; Saito, Akatsuki; Katakai, Yuko; Iwasaki, Yuki; Kurosawa, Terue; Hamano, Masataka; Higashino, Atsunori; Nakamura, Shinichiro; Takasaki, Tomohiko; Yasutomi, Yasuhiro; Kurane, Ichiro; Akari, Hirofumi

    2013-06-01

    In this study, we examined the dynamics of cellular immune responses in the acute phase of dengue virus (DENV) infection in a marmoset model. Here, we found that DENV infection in marmosets greatly induced responses of CD4/CD8 central memory T and NKT cells. Interestingly, the strength of the immune response was greater in animals infected with a dengue fever strain than in those infected with a dengue hemorrhagic fever strain of DENV. In contrast, when animals were re-challenged with the same DENV strain used for primary infection, the neutralizing antibody induced appeared to play a critical role in sterilizing inhibition against viral replication, resulting in strong but delayed responses of CD4/CD8 central memory T and NKT cells. The results in this study may help to better understand the dynamics of cellular and humoral immune responses in the control of DENV infection.

  10. Role of thiols in cellular response to radiation and drugs. Symposium: thiols

    SciTech Connect

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-09-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme. A GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole. In conclusion, we propose an altered thiol model which includes a mechanism for thiol involvement in the aerobic radiation response of cells.

  11. Imaging the cellular response to transient shear stress using time-resolved digital holography

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Antkowiak, Maciej; Gunn-Moore, Frank; Dholakia, Kishan

    2014-02-01

    Shear stress has been recognized as one of the biophysical methods by which to permeabilize plasma membranes of cells. In particular, high pressure transient hydrodynamic flows created by laser-induced cavitation have been shown to lead to the uptake of fluorophores and plasmid DNA. While the mechanism and dynamics of cavitation have been extensively studied using a variety of time-resolved imaging techniques, the cellular response to the cavitation bubble and cavitation induced transient hydrodynamic flows has never been shown in detail. We use time-resolved quantitative phase microscopy to study cellular response to laser-induced cavitation bubbles. Laser-induced breakdown of an optically trapped polystyrene nanoparticle (500nm in diameter) irradiated with a single nanosecond laser pulse at 532nm creates transient shear stress to surrounding cells without causing cell lysis. A bi-directional transient displacement of cytoplasm is observed during expansion and collapse of the cavitation bubble. In some cases, cell deformation is only observable at the microsecond time scale without any permanent change in cell shape or optical thickness. On a time scale of seconds, the cellular response to shear stress and cytoplasm deformation typically leads to retraction of the cellular edge most exposed to the flow, rounding of the cell body and, in some cases, loss of cellular dry mass. These results give a new insight into the cellular response to laser-induced shear stress and related plasma membrane permeabilization. This study also demonstrates that laser-induced breakdown of an optically trapped nanoparticle offers localized cavitation (70 μm in diameter), which interacts with a single cell.

  12. Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells.

    PubMed

    Park, Eun-Jung; Lee, Ah Young; Chang, Seung-Hee; Yu, Kyeong-Nam; Kim, Jae-Ho; Cho, Myung-Haing

    2014-01-03

    Abnormal accumulation of fatty acids triggers the harmful cellular response called lipotoxicity. In this study, we investigated the cellular response following accumulation of oleic acid (OA), a monounsaturated fatty acid, in human Chang liver cells. OA droplets were distributed freely in the cytoplasm and/or degraded within lysosomes. OA exposure increased ATP production and concomitantly dilated mitochondria. At 24h after OA exposure, cell viability decreased slightly and was coupled with a reduction in mitochondrial Ca(2+) concentration, the alteration in cell viability was also associated with the generation of reactive oxygen species and changes in the cell cycle. Moreover, OA treatment increased the expression of autophagy- and apoptotic cell death-related proteins in a dose-dependent manner. Furthermore, we investigated the role of p53, a tumor suppressor protein, in the cellular response elicited by OA accumulation. OA-induced changes in cell viability and ATP production were rescued to control levels when cells were pretreated with pifithrin-alpha (PTA), a p53 inhibitor. By contrast, the expressions of LC3-II and perilipin, proteins required for lipophagy, were down-regulated by PTA pretreatment. Taken together, our results suggest that p53 plays a key role in the cellular response elicited by OA accumulation in Chang liver cells.

  13. Cellular and humoral local immune responses in sheep experimentally infected with Oestrus ovis (Diptera: Oestridae).

    PubMed

    Tabouret, Guillaume; Lacroux, Caroline; Andreoletti, Olivier; Bergeaud, Jean Paul; Hailu-Tolosa, Yacob; Hoste, Hervé; Prevot, Françoise; Grisez, Christelle; Dorchies, Philippe; Jacquiet, Philippe

    2003-01-01

    Cellular and humoral local responses were investigated following repetitive artificial Oestrus ovis infections in lambs. The presence of larvae induced a huge local recruitment of either leucocytes (T and B lymphocytes, macrophages) or granulocytes (eosinophils, mast cells and globule leucocytes). This cellular response was more pronounced in the ethmoid and sinus (development sites of second and third instar larvae) than in the septum or turbinates where first instar larvae migrate. Infected lambs produced Oestrus ovis specific IgG and IgA antibodies in their mucus. This local humoral response was mainly directed against larval salivary gland antigens and not against larval digestive tract antigens. Compared to the control animals, the sinusal mucosa of infected animals was extremely thickened and the epithelium exhibited hyperplasia, metaplasia and eosinophilic exocytosis. The possible roles of these local immune responses in the regulation of O. ovis larvae populations in sheep are discussed.

  14. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  15. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis

    PubMed Central

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J. Pablo; Lopez, Bernard S.

    2016-01-01

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [3H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [3H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses. PMID:27406380

  16. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    PubMed Central

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives

  17. Intraspecific variation in cellular and biochemical heat response strategies of Mediterranean Xeropicta derbentina [Pulmonata, Hygromiidae].

    PubMed

    Troschinski, Sandra; Di Lellis, Maddalena A; Sereda, Sergej; Hauffe, Torsten; Wilke, Thomas; Triebskorn, Rita; Köhler, Heinz-R

    2014-01-01

    Dry and hot environments challenge the survival of terrestrial snails. To minimize overheating and desiccation, physiological and biochemical adaptations are of high importance for these animals. In the present study, seven populations of the Mediterranean land snail species Xeropicta derbentina were sampled from their natural habitat in order to investigate the intraspecific variation of cellular and biochemical mechanisms, which are assigned to contribute to heat resistance. Furthermore, we tested whether genetic parameters are correlated with these physiological heat stress response patterns. Specimens of each population were individually exposed to elevated temperatures (25 to 52°C) for 8 h in the laboratory. After exposure, the health condition of the snails' hepatopancreas was examined by means of qualitative description and semi-quantitative assessment of histopathological effects. In addition, the heat-shock protein 70 level (Hsp70) was determined. Generally, calcium cells of the hepatopancreas were more heat resistant than digestive cells - this phenomenon was associated with elevated Hsp70 levels at 40°C.We observed considerable variation in the snails' heat response strategy: Individuals from three populations invested much energy in producing a highly elevated Hsp70 level, whereas three other populations invested energy in moderate stress protein levels - both strategies were in association with cellular functionality. Furthermore, one population kept cellular condition stable despite a low Hsp70 level until 40°C exposure, whereas prominent cellular reactions were observed above this thermal limit. Genetic diversity (mitochondrial cytochrome c oxidase subunit I gene) within populations was low. Nevertheless, when using genetic indices as explanatory variables in a multivariate regression tree (MRT) analysis, population structure explained mean differences in cellular and biochemical heat stress responses, especially in the group exposed to 40°C. Our

  18. Intraspecific Variation in Cellular and Biochemical Heat Response Strategies of Mediterranean Xeropicta derbentina [Pulmonata, Hygromiidae

    PubMed Central

    Troschinski, Sandra; Di Lellis, Maddalena A.; Sereda, Sergej; Hauffe, Torsten; Wilke, Thomas; Triebskorn, Rita; Köhler, Heinz-R.

    2014-01-01

    Dry and hot environments challenge the survival of terrestrial snails. To minimize overheating and desiccation, physiological and biochemical adaptations are of high importance for these animals. In the present study, seven populations of the Mediterranean land snail species Xeropicta derbentina were sampled from their natural habitat in order to investigate the intraspecific variation of cellular and biochemical mechanisms, which are assigned to contribute to heat resistance. Furthermore, we tested whether genetic parameters are correlated with these physiological heat stress response patterns. Specimens of each population were individually exposed to elevated temperatures (25 to 52°C) for 8 h in the laboratory. After exposure, the health condition of the snails' hepatopancreas was examined by means of qualitative description and semi-quantitative assessment of histopathological effects. In addition, the heat-shock protein 70 level (Hsp70) was determined. Generally, calcium cells of the hepatopancreas were more heat resistant than digestive cells - this phenomenon was associated with elevated Hsp70 levels at 40°C.We observed considerable variation in the snails' heat response strategy: Individuals from three populations invested much energy in producing a highly elevated Hsp70 level, whereas three other populations invested energy in moderate stress protein levels - both strategies were in association with cellular functionality. Furthermore, one population kept cellular condition stable despite a low Hsp70 level until 40°C exposure, whereas prominent cellular reactions were observed above this thermal limit. Genetic diversity (mitochondrial cytochrome c oxidase subunit I gene) within populations was low. Nevertheless, when using genetic indices as explanatory variables in a multivariate regression tree (MRT) analysis, population structure explained mean differences in cellular and biochemical heat stress responses, especially in the group exposed to 40°C. Our

  19. TC1 (C8orf4) is upregulated by cellular stress and mediates heat shock response.

    PubMed

    Park, Juhee; Jung, Yusun; Kim, Jungtae; Kim, Ka-Young; Ahn, Sang-Gun; Song, Kyuyoung; Lee, Inchul

    2007-08-24

    TC1 (C8orf4) is associated with aggressive behavior and poor survival in cancer. We have recently reported that it is a target gene of NF-kappaB and regulates the Wnt/beta-catenin pathway. Here, we show that TC1 is upregulated by various cellular stresses and mediates heat shock response. Heat shock and other cellular stresses including H2O2, 12-O-tetradecanoylphorbol 13-acetate (TPA), lipopolysaccharide (LPS), and UV enhance TC1 transcription in HeLa, KATO-III, HEK293T, and HK cells. TC1 protein then moves into the nuclei independently of NF-kappaB activation. TC1 upregulates heat shock proteins, and TC1-knockdown inhibits stress-induced downstream regulation significantly. Heat shock factor 1(HSF1) and TC1 upregulate each other, suggesting a potential positive feedback in the heat shock response regulation. Our data suggest that TC1 is a novel heat shock response regulator.

  20. Cellular Senescence, Radiation Damage to Mitochondria, and the Compensatory Response in Ripening Pear Fruits 1

    PubMed Central

    Romani, Roger J.; Yu, Ida K.; Ku, Lily L.; Fisher, L. Karl; Dehgan, Nancy

    1968-01-01

    A compensatory response, viz. in vivo recovery from radiation damage to mitochondria, occurs in preclimacteric pear fruits (Pyrus communis L.) treated with ionizing radiation. The compensatory response is absent or markedly impaired in senescent fruits irradiated at or near the climacteric peak. Senescent cells failed to recover from harmful effects of radiation on: 1) mitochondrial yield, 2) in vivo incorporation of amino acids into mitochondrial protein, and 3) mitochondrial respiratory control and ADP/O. A diminished response to “split-dose” irradiation and a delayed rate of recovery confirmed the degeneracy and loss of compensatory power with cell age. A loss of restorative activity, especially in mitochondria that supply the cell with essential energy, may underlie the more obvious signs of cumulative stress that accompany cellular senescence. Use of ionizing radiation as an investigative tool and the molecular implications of radiation damage, recovery, and cellular senescence are discussed. PMID:16656887

  1. Cellular immune responses in multiple sclerosis patients treated with interferon-beta

    PubMed Central

    Bustamante, M. F.; Rio, J.; Castro, Z.; Sánchez, A.; Montalban, X.; Comabella, M.

    2013-01-01

    Summary We investigated cellular immune responses at baseline in peripheral blood mononuclear cells (PBMC) of patients with multiple sclerosis (MS) treated with interferon (IFN)-β and classified into responders and non-responders according to clinical response criteria. Levels for IFN-γ, interleukin (IL)-17A, IL-17F, IL-10 and IL-4 were determined in activated PBMC of 10 responders, 10 non-responders and 10 healthy controls by cytometric bead arrays. Cytokine levels in cell culture supernatants were similar between responders and non-responders, and comparable to those obtained in healthy controls. These findings do not support differential cellular immune responses in PBMC at baseline between IFN-β responders and non-responders. PMID:23379429

  2. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  3. A signature microRNA expression profile for the cellular response to thermal stress

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Roth, Caleb C.; Ketchum, Norma; Ibey, Bennett L.; Waterworth, Angela; Suarez, Maria; Roach, William P.

    2009-02-01

    Recently, an extensive layer of intra-cellular signals was discovered that was previously undetected by genetic radar. It is now known that this layer consists primarily of a class of short noncoding RNA species that are referred to as microRNAs (miRNAs). MiRNAs regulate protein synthesis at the post-transcriptional level, and studies have shown that they are involved in many fundamental cellular processes. In this study, we hypothesized that miRNAs may be involved in cellular stress response mechanisms, and that cells exposed to thermal stress may exhibit a signature miRNA expression profile indicative of their functional involvement in such mechanisms. To test our hypothesis, human dermal fibroblasts were exposed to an established hyperthermic protocol, and the ensuing miRNA expression levels were evaluated 4 hr post-exposure using microRNA microarray gene chips. The microarray data shows that 123 miRNAs were differentially expressed in cells exposed to thermal stress. We collectively refer to these miRNAs as thermalregulated microRNAs (TRMs). Since miRNA research is in its infancy, it is interesting to note that only 27 of the 123 TRMs are currently annotated in the Sanger miRNA registry. Prior to publication, we plan to submit the remaining novel 96 miRNA gene sequences for proper naming. Computational and thermodynamic modeling algorithms were employed to identify putative mRNA targets for the TRMs, and these studies predict that TRMs regulate the mRNA expression of various proteins that are involved in the cellular stress response. Future empirical studies will be conducted to validate these theoretical predictions, and to further examine the specific role that TRMs play in the cellular stress response.

  4. Development of a micro cell compression stimulator for evaluating real-time cellular responses

    NASA Astrophysics Data System (ADS)

    Nakashima, Y.; Yang, Y.; Minami, K.

    2012-05-01

    This paper presents a micro cell compression stimulator for evaluating real-time cellular responses to compression stimuli. The device was produced by a micro three-dimensional structure fabrication process using multiple exposures to the photoresist. The device consists of a pressure inlet port, cell inlet ports, a gasket, microchannels, cell culture chambers, and a diaphragm on the culture chamber for applying compressive pressure to cells. Compression stimuli applied to the cells can be controlled by regulating the expansion of the diaphragm via a pressure control. The device permits the observation of cellular responses to compressive pressure in real time because it is made of transparent materials and stimulates the cells without deforming the cell culture surface, when observed by optical microscopy. We demonstrated the validity of the fabrication process, evaluated the performance of the fabricated device, and compared the experimental results with the FEM structural analysis results. We found through operational testing that the diaphragm was deformed quickly by applying negative/positive pressure and that the diaphragm displacement became larger with increasing applied pressure. These results indicate that this device can be used to control the intensity and the cell stimulus profile by regulating the applied pressure. In all cases, the cellular deformation during compression stimulus was successfully observed in real time using an optical microscope. The device is expected to facilitate the control of stem cell differentiation and the clarification of cellular mechanoreceptor mechanisms and signal transduction pathways.

  5. Protein O-GlcNAcylation: A critical regulator of the cellular response to stress

    PubMed Central

    Chatham, John C.; Marchase, Richard B.

    2012-01-01

    The post-translational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide ß-N-acetyl-glucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification that plays a critical role in regulating numerous biological processes. Much of our understanding of the mechanisms underlying the role of O-GlcNAc on cellular function has been in the context of chronic disease processes. However, there is increasing evidence that O-GlcNAc levels are increased in response to stress and that acute augmentation of this response is cytoprotective, at least in the short term. Conversely, a reduction in O-GlcNAc levels appears to be associated with decreased cell survival in response to an acute stress. Here we summarize our current understanding of protein O-GlcNAcylation on the cellular response to stress and in mediating cellular protective mechanisms focusing primarily on the cardiovascular system as an example. We consider the potential link between O-GlcNAcylation and cardiomyocyte calcium homeostasis and explore the parallels between O-GlcNAc signaling and redox signaling. We also discuss the apparent paradox between the reported adverse effects of increased O-GlcNAcylation with its recently reported role in mediating cell survival mechanisms. PMID:22308107

  6. Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway

    PubMed Central

    Iwamoto, Kazunari; Shindo, Yuki; Takahashi, Koichi

    2016-01-01

    Cellular heterogeneity, which plays an essential role in biological phenomena, such as drug resistance and migration, is considered to arise from intrinsic (i.e., reaction kinetics) and extrinsic (i.e., protein variability) noise in the cell. However, the mechanistic effects of these types of noise to determine the heterogeneity of signal responses have not been elucidated. Here, we report that the output of epidermal growth factor (EGF) signaling activity is modulated by cellular noise, particularly by extrinsic noise of particular signaling components in the pathway. We developed a mathematical model of the EGF signaling pathway incorporating regulation between extracellular signal-regulated kinase (ERK) and nuclear pore complex (NPC), which is necessary for switch-like activation of the nuclear ERK response. As the threshold of switch-like behavior is more sensitive to perturbations than the graded response, the effect of biological noise is potentially critical for cell fate decision. Our simulation analysis indicated that extrinsic noise, but not intrinsic noise, contributes to cell-to-cell heterogeneity of nuclear ERK. In addition, we accurately estimated variations in abundance of the signal proteins between individual cells by direct comparison of experimental data with simulation results using Apparent Measurement Error (AME). AME was constant regardless of whether the protein levels varied in a correlated manner, while covariation among proteins influenced cell-to-cell heterogeneity of nuclear ERK, suppressing the variation. Simulations using the estimated protein abundances showed that each protein species has different effects on cell-to-cell variation in the nuclear ERK response. In particular, variability of EGF receptor, Ras, Raf, and MEK strongly influenced cellular heterogeneity, while others did not. Overall, our results indicated that cellular heterogeneity in response to EGF is strongly driven by extrinsic noise, and that such heterogeneity

  7. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology

    PubMed Central

    Cervantes-Ortiz, Sandra L.; Zamorano Cuervo, Natalia; Grandvaux, Nathalie

    2016-01-01

    Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis. PMID:27187445

  8. Cellular Immune Responses in Seronegative Sexual Contacts of Acute Hepatitis C Patients

    PubMed Central

    Kamal, Sanaa M.; Amin, Ashraf; Madwar, Mohamed; Graham, Camilla S.; He, Qi; Al Tawil, Ahmed; Rasenack, Jens; Nakano, Tatsunori; Robertson, Betty; Ismail, Alaa; Koziel, Margaret James

    2004-01-01

    Acute hepatitis C virus (HCV) is typically defined as new viremia and antibody seroconversion. Rates and immunologic correlates of hepatitis C clearance have therefore been based on clearance of viremia only in individuals who initially had an antibody response. We sought to characterize the immunological correlates of clearance in patients with acute hepatitis C and their sexual contacts. We prospectively determined CD4+ and CD8+ cytotoxic T-lymphocyte responses in index patients with acute HCV and their sexual contacts who developed acute infection, either with or without spontaneous clearance, as well as those contacts who never developed viremia. Responses were measured using proliferation and ELISpot assays for CD4+ and CD8+ responses. We demonstrate in this prospective study that cellular immune responses can develop in exposed but persistently aviremic and antibody-negative individuals as well as those individuals with spontaneous clearance of acute HCV. These findings lend further credence to the importance of cellular immune responses in recovery from HCV and suggest that low exposure to HCV may lead to development of HCV-specific immune responses without ongoing HCV replication. This finding has important implications for HCV vaccine and therapeutic development. PMID:15507612

  9. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  10. Cellular Dysfunction in Diabetes as Maladaptive Response to Mitochondrial Oxidative Stress

    PubMed Central

    Naudi, Alba; Jove, Mariona; Ayala, Victoria; Cassanye, Anna; Serrano, Jose; Gonzalo, Hugo; Boada, Jordi; Prat, Joan; Portero-Otin, Manuel; Pamplona, Reinald

    2012-01-01

    Oxidative stress has been implicated in diabetes long-term complications. In this paper, we summarize the growing evidence suggesting that hyperglycemia-induced overproduction of superoxide by mitochondrial electron transport chain triggers a maladaptive response by affecting several metabolic and signaling pathways involved in the pathophysiology of cellular dysfunction and diabetic complications. In particular, it is our goal to describe physiological mechanisms underlying the mitochondrial free radical production and regulation to explain the oxidative stress derived from a high intracellular glucose concentration and the resulting maladaptive response that leads to a cellular dysfunction and pathological state. Finally, we outline potential therapies for diabetes focused to the prevention of mitochondrial oxidative damage. PMID:22253615

  11. Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures

    PubMed Central

    Lee, Anna Y.; St.Onge, Robert P.; Proctor, Michael J.; Wallace, Iain M.; Nile, Aaron H.; Spagnuolo, Paul A.; Jitkova, Yulia; Gronda, Marcela; Wu, Yan; Kim, Moshe K.; Cheung-Ong, Kahlin; Torres, Nikko P.; Spear, Eric D.; Han, Mitchell K. L.; Schlecht, Ulrich; Suresh, Sundari; Duby, Geoffrey; Heisler, Lawrence E.; Surendra, Anuradha; Fung, Eula; Urbanus, Malene L.; Gebbia, Marinella; Lissina, Elena; Miranda, Molly; Chiang, Jennifer H.; Aparicio, Ana Maria; Zeghouf, Mahel; Davis, Ronald W.; Cherfils, Jacqueline; Boutry, Marc; Kaiser, Chris A.; Cummins, Carolyn L.; Trimble, William S.; Brown, Grant W.; Schimmer, Aaron D.; Bankaitis, Vytas A.; Nislow, Corey; Bader, Gary D.; Giaever, Guri

    2014-01-01

    Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes. PMID:24723613

  12. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection.

    PubMed

    Yang, Hairu; Kronhamn, Jesper; Ekström, Jens-Ola; Korkut, Gül Gizem; Hultmark, Dan

    2015-12-01

    The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.

  13. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms.

    PubMed

    Baldwin, Kenneth M; Haddad, Fadia

    2002-11-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  14. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches.

    PubMed

    Denning, Denise; Roos, Wouter H

    2016-09-02

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a defined microenvironment has also garnered deep insight into the engineering mechanisms existing within the cell. This review presents recent experimental findings on the influence of several parameters of the extracellular environment on cell behavior and fate, such as substrate topography, stiffness, chemistry and charge. In addition, the use of synthetic environments to measure physical properties of the reconstituted cytoskeleton and their interaction with intracellular proteins such as molecular motors is discussed, which is relevant for understanding cell migration, division and structural integrity, as well as intracellular transport. Insight is provided regarding the next steps to be taken in this interdisciplinary field, in order to achieve the global aim of artificially directing cellular response.

  15. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases

    PubMed Central

    Hoon, Jing Ling; Tan, Mei Hua; Koh, Cheng-Gee

    2016-01-01

    The Rho GTPases regulate many cellular signaling cascades that modulate cell motility, migration, morphology and cell division. A large body of work has now delineated the biochemical cues and pathways, which stimulate the GTPases and their downstream effectors. However, cells also respond exquisitely to biophysical and mechanical cues such as stiffness and topography of the extracellular matrix that profoundly influence cell migration, proliferation and differentiation. As these cellular responses are mediated by the actin cytoskeleton, an involvement of Rho GTPases in the transduction of such cues is not unexpected. In this review, we discuss an emerging role of Rho GTPase proteins in the regulation of the responses elicited by biophysical and mechanical stimuli. PMID:27058559

  16. Cytokine, antibody and proliferative cellular responses elicited by Taenia solium calreticulin upon experimental infection in hamsters.

    PubMed

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis.

  17. Cytokine, Antibody and Proliferative Cellular Responses Elicited by Taenia solium Calreticulin upon Experimental Infection in Hamsters

    PubMed Central

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis. PMID:25811778

  18. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    NASA Astrophysics Data System (ADS)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  19. Cellular Neural Network Models of Growth and Immune of Effector Cells Response to Cancer

    NASA Astrophysics Data System (ADS)

    Su, Yongmei; Min, Lequan

    Four reaction-diffusion cellular neural network (R-D CNN) models are set up based on the differential equation models for the growths of effector cells and cancer cells, and the model of the immune response to cancer proposed by Allison et al. The CNN models have different reaction-diffusion coefficients and coupling parameters. The R-D CNN models may provide possible quantitative interpretations, and are good in agreement with the in vitro experiment data reported by Allison et al.

  20. An integrated systems approach for understanding cellular responses to gamma radiation.

    PubMed

    Whitehead, Kenia; Kish, Adrienne; Pan, Min; Kaur, Amardeep; Reiss, David J; King, Nichole; Hohmann, Laura; DiRuggiero, Jocelyne; Baliga, Nitin S

    2006-01-01

    Cellular response to stress entails complex mRNA and protein abundance changes, which translate into physiological adjustments to maintain homeostasis as well as to repair and minimize damage to cellular components. We have characterized the response of the halophilic archaeon Halobacterium salinarum NRC-1 to (60)Co ionizing gamma radiation in an effort to understand the correlation between genetic information processing and physiological change. The physiological response model we have constructed is based on integrated analysis of temporal changes in global mRNA and protein abundance along with protein-DNA interactions and evolutionarily conserved functional associations. This systems view reveals cooperation among several cellular processes including DNA repair, increased protein turnover, apparent shifts in metabolism to favor nucleotide biosynthesis and an overall effort to repair oxidative damage. Further, we demonstrate the importance of time dimension while correlating mRNA and protein levels and suggest that steady-state comparisons may be misleading while assessing dynamics of genetic information processing across transcription and translation.

  1. Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt.

    PubMed

    Mukai, Akiko; Yamamoto-Hino, Miki; Awano, Wakae; Watanabe, Wakako; Komada, Masayuki; Goto, Satoshi

    2010-07-07

    Wingless (Wg)/Wnt has been proposed to exert various functions as a morphogen depending on the levels of its signalling. Therefore, not just the concentration of Wg/Wnt, but also the responsiveness of Wg/Wnt-target cells to the ligand, must have a crucial function in controlling cellular outputs. Here, we show that a balance of ubiquitylation and deubiquitylation of the Wg/Wnt receptor Frizzled determines the cellular responsiveness to Wg/Wnt both in mammalian cells and in Drosophila, and that the cell surface level of Frizzled is regulated by deubiquitylating enzyme UBPY/ubiquitin-specific protease 8 (USP8). Although ubiquitylated Frizzled underwent lysosomal trafficking and degradation, UBPY/USP8-dependent deubiquitylation led to recycling of Frizzled to the plasma membrane, thereby elevating its surface level. Importantly, a gain and loss of UBPY/USP8 function led to up- and down-regulation, respectively, of canonical Wg/Wnt signalling. These results unveil a novel mechanism that regulates the cellular responsiveness to Wg/Wnt by controlling the cell surface level of Frizzled.

  2. In vivo and in vitro cellular response to PEG-based hydrogels for wound repair

    NASA Astrophysics Data System (ADS)

    Waldeck, Heather

    Biomaterials are continuously being explored as a means to support, improve, or influence wound healing processes. Understanding the determining factors controlling the host response to biomaterials is crucial in developing strategies to employ materials for biomedical uses. In order to evaluate the host response to poly(ethylene glycol) (PEG)-based hydrogels, both in vivo and in vitro studies were performed to determine its efficacy as a dermal wound treatment and to investigate the mechanisms controlling cell-material interaction, respectively. The results of an in vivo study using a full thickness wound in a rat model demonstrated that both soluble and immobilized bioactive factors could be incorporated into a PEG-based semi-interpenetrating network (sIPN) to enhance the rate and the quality of dermal wound healing. To gain a better understanding of the results observed in vivo, in vitro studies were then conducted to examine the dynamics and mechanisms of the cell-material interaction. Degradation of the sIPN was explored as an influential factor in both mediating cellular response and controlling solute transport from the material. As degradation through gelatin dissolution could be influenced by simple alterations to the material formulation, these results provide facile guidelines to control the delivery of high molecular weight compounds. Further investigation of the cellular response to PEG-based biomaterials focused on key factors influencing cell-material interaction. Specifically, the role of the beta1 integrin subunit and several serum proteins (TGF-aalpha, IL-1beta and PDGF-BB) in mediating cellular response was explored. As cell-material interactions are based on commonly occurring interfaces between cells and molecules of the native extracellular environment, these studies provided insight into the mechanisms controlling the observed cellular response. Finally, the inflammatory response of primary monocytes to biomaterials was examined. Monocytes

  3. Role for zinc in a cellular response mediated by protein kinase C in human B lymphocytes

    SciTech Connect

    Forbes, I.J.; Zalewski, P.D.; Giannakis, C. )

    1991-07-01

    Recent studies have suggested a role for Zn{sup 2+}, distinct from that of CA{sup 2+}, in the subcellular distribution and activation of protein kinase C (PKC). Here the author show that Zn{sup 2+} is required for a cellular response mediated by PKC, the rapid loss of expression of a human B cell receptor MER, detected by resetting with mouse erythrocytes. Zn{sup 2+}, in the presence of the Zn{sup 2+} ionophore pyrithione, caused rapid inhibition of MER rosetting at concentrations which induce the translocation and activation of PKC. This required cellular uptake of Zn{sup 2+} and was blocked by 1,10-phenanthroline and TPEN which chelate Zn{sup 2+} but not Ca{sup 2+}. Gold, a metal with similar properties, also induced translocation of PKC and inhibition of MER. Phenanthroline and TPEN also blocked the inhibition of MER induced by the PKC activators phorbol ester and sodium fluoride, suggesting that endogenous cellular Zn{sup 2+} is required. They propose that some cellular actions of PKC require a Zn{sup 2+}-dependent event and that these may be a target for gold during chrysotherapy in rheumatoid arthritis.

  4. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis

    PubMed Central

    Knippschild, Uwe; Krüger, Marc; Richter, Julia; Xu, Pengfei; García-Reyes, Balbina; Peifer, Christian; Halekotte, Jakob; Bakulev, Vasiliy; Bischof, Joachim

    2014-01-01

    Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis. PMID:24904820

  5. Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders

    PubMed Central

    Cornelius, Carolin; Dinkova-Kostova, Albena T.; Calabrese, Edward J.; Mattson, Mark P.

    2010-01-01

    Abstract Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose–response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling. Antioxid. Redox Signal. 13, 1763–1811. PMID:20446769

  6. AMP-activated protein kinase regulates L-arginine mediated cellular responses

    PubMed Central

    2013-01-01

    Background Our prior study revealed the loss in short-term L-Arginine (ARG) therapeutic efficacy after continuous exposure; resulting in tolerance development, mediated by endothelial nitric oxide synthase (eNOS) down-regulation, secondary to oxidative stress and induced glucose accumulation. However, the potential factor regulating ARG cellular response is presently unknown. Method Human umbilical vein endothelial cells were incubated with 100 μM ARG for 2 h in buffer (short-term or acute), or for 7 days in culture medium and challenged for 2 h in buffer (continuous or chronic), in the presence or absence of other agents. eNOS activity was determined by analyzing cellular nitrite/nitrate (NO2–/NO3–), and AMP-activated protein kinase (AMPK) activity was assayed using SAMS peptide. 13C6 glucose was added to medium to measure glucose uptake during cellular treatments, which were determined by LC-MS/MS. Cellular glucose was identified by o-toluidine method. Superoxide (O2•–) was identified by EPR-spin-trap, and peroxynitrite (ONOO–) was measured by flow-cytometer using aminophenyl fluorescein dye. Results Short-term incubation of cells with 100 μM ARG in the presence or absence of 30 μM L-NG-Nitroarginine methyl ester (L-NAME) or 30 μM AMPK inhibitor (compound C, CMP-C) increased cellular oxidative stress and overall glucose accumulation with no variation in glucose transporter-1 (GLUT-1), or AMPK activity from control. The increase in total NO2–/NO3– after 2 h 100 μM ARG exposure, was suppressed in cells co-incubated with 30 μM CMP-C or L-NAME. Long-term exposure of ARG with or without CMP-C or L-NAME suppressed NO2–/NO3–, glucose uptake, GLUT-1, AMPK expression and activity below control, and increased overall cellular glucose, O2•– and ONOO–. Gluconeogenesis inhibition with 30 μM 5-Chloro-2-N-2,5-dichlorobenzenesulfonamido-benzoxazole (CDB) during ARG exposure for 2 h maintained overall cellular glucose to control, but increased

  7. Peroxisomes are platforms for cytomegalovirus’ evasion from the cellular immune response

    PubMed Central

    Magalhães, Ana Cristina; Ferreira, Ana Rita; Gomes, Sílvia; Vieira, Marta; Gouveia, Ana; Valença, Isabel; Islinger, Markus; Nascimento, Rute; Schrader, Michael; Kagan, Jonathan C.; Ribeiro, Daniela

    2016-01-01

    The human cytomegalovirus developed distinct evasion mechanisms from the cellular antiviral response involving vMIA, a virally-encoded protein that is not only able to prevent cellular apoptosis but also to inhibit signalling downstream from mitochondrial MAVS. vMIA has been shown to localize at mitochondria and to trigger their fragmentation, a phenomenon proven to be essential for the signalling inhibition. Here, we demonstrate that vMIA is also localized at peroxisomes, induces their fragmentation and inhibits the peroxisomal-dependent antiviral signalling pathway. Importantly, we demonstrate that peroxisomal fragmentation is not essential for vMIA to specifically inhibit signalling downstream the peroxisomal MAVS. We also show that vMIA interacts with the cytoplasmic chaperone Pex19, suggesting that the virus has developed a strategy to highjack the peroxisomal membrane proteins’ transport machinery. Furthermore, we show that vMIA is able to specifically interact with the peroxisomal MAVS. Our results demonstrate that peroxisomes constitute a platform for evasion of the cellular antiviral response and that the human cytomegalovirus has developed a mechanism by which it is able to specifically evade the peroxisomal MAVS-dependent antiviral signalling. PMID:27181750

  8. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles

    PubMed Central

    Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.

    2017-01-01

    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility. PMID:28045082

  9. Cellular Proteomes Drive Tissue-Specific Regulation of the Heat Shock Response

    PubMed Central

    Ma, Jian; Grant, Christopher E.; Plagens, Rosemary N.; Barrett, Lindsey N.; Guisbert, Karen S. Kim; Guisbert, Eric

    2017-01-01

    The heat shock response (HSR) is a cellular stress response that senses protein misfolding and restores protein folding homeostasis, or proteostasis. We previously identified an HSR regulatory network in Caenorhabditis elegans consisting of highly conserved genes that have important cellular roles in maintaining proteostasis. Unexpectedly, the effects of these genes on the HSR are distinctly tissue-specific. Here, we explore this apparent discrepancy and find that muscle-specific regulation of the HSR by the TRiC/CCT chaperonin is not driven by an enrichment of TRiC/CCT in muscle, but rather by the levels of one of its most abundant substrates, actin. Knockdown of actin subunits reduces induction of the HSR in muscle upon TRiC/CCT knockdown; conversely, overexpression of an actin subunit sensitizes the intestine so that it induces the HSR upon TRiC/CCT knockdown. Similarly, intestine-specific HSR regulation by the signal recognition particle (SRP), a component of the secretory pathway, is driven by the vitellogenins, some of the most abundant secretory proteins. Together, these data indicate that the specific protein folding requirements from the unique cellular proteomes sensitizes each tissue to disruption of distinct subsets of the proteostasis network. These findings are relevant for tissue-specific, HSR-associated human diseases such as cancer and neurodegenerative diseases. Additionally, we characterize organismal phenotypes of actin overexpression including a shortened lifespan, supporting a recent hypothesis that maintenance of the actin cytoskeleton is an important factor for longevity. PMID:28143946

  10. Characterization of the cellular response triggered by gold nanoparticle-mediated laser manipulation

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Keil, Sebastian; Sender, Sina; Hammer, Susanne C.; Antonopoulos, Georgios C.; Schomaker, Markus; Ripken, Tammo; Escobar, Hugo Murua; Meyer, Heiko; Heinemann, Dag

    2015-11-01

    Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle-mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle-mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle-mediated laser manipulation.

  11. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  12. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.

    2017-01-01

    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility.

  13. A Review on Hemeoxygenase-2: Focus on Cellular Protection and Oxygen Response

    PubMed Central

    Muñoz-Sánchez, Jorge; Chánez-Cárdenas, María Elena

    2014-01-01

    Hemeoxygenase (HO) system is responsible for cellular heme degradation to biliverdin, iron, and carbon monoxide. Two isoforms have been reported to date. Homologous HO-1 and HO-2 are microsomal proteins with more than 45% residue identity, share a similar fold and catalyze the same reaction. However, important differences between isoforms also exist. HO-1 isoform has been extensively studied mainly by its ability to respond to cellular stresses such as hemin, nitric oxide donors, oxidative damage, hypoxia, hyperthermia, and heavy metals, between others. On the contrary, due to its apparently constitutive nature, HO-2 has been less studied. Nevertheless, its abundance in tissues such as testis, endothelial cells, and particularly in brain, has pointed the relevance of HO-2 function. HO-2 presents particular characteristics that made it a unique protein in the HO system. Since attractive results on HO-2 have been arisen in later years, we focused this review in the second isoform. We summarize information on gene description, protein structure, and catalytic activity of HO-2 and particular facts such as its cellular impact and activity regulation. Finally, we call attention on the role of HO-2 in oxygen sensing, discussing proposed hypothesis on heme binding motifs and redox/thiol switches that participate in oxygen sensing as well as evidences of HO-2 response to hypoxia. PMID:25136403

  14. Induction of a Cellular DNA Damage Response by Porcine Circovirus Type 2 Facilitates Viral Replication and Mediates Apoptotic Responses

    PubMed Central

    Wei, Li; Zhu, Shanshan; Wang, Jing; Quan, Rong; Yan, Xu; Li, Zixue; Hou, Lei; Wang, Naidong; Yang, Yi; Jiang, Haijun; Liu, Jue

    2016-01-01

    Cellular DNA damage response (DDR) triggered by infection of DNA viruses mediate cell cycle checkpoint activation, DNA repair, or apoptosis induction. In the present study, infection of porcine circovirus type 2 (PCV2), which serves as a major etiological agent of PCV2-associated diseases (PCVAD), was found to elicit a DNA damage response (DDR) as observed by the phosphorylation of H2AX and RPA32 following infection. The response requires active viral replication, and all the ATM (ataxia telangiectasia-mutated kinase), ATR (ATM- and Rad3-related kinase), and DNA-PK (DNA-dependent protein kinase) are the transducers of the DDR signaling events in the PCV2-infected cells as demonstrated by the phosphorylation of ATM, ATR, and DNA-PK signalings as well as reductions in their activations after treatment with specific kinase inhibitors. Inhibitions of ATM, ATR, and DNA-PK activations block viral replication and prevent apoptotic responses as observed by decreases in cleaved poly-ADP ribose polymerase (PARP) and caspase-3 as well as fragmented DNA following PCV2 infection. These results reveal that PCV2 is able to exploit the cellular DNA damage response machinery for its own efficient replication and for apoptosis induction, further extending our understanding for the molecular mechanism of PCV2 infection. PMID:27982097

  15. Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis

    PubMed Central

    Welsh, Michael D; Cunningham, Rodat T; Corbett, David M; Girvin, R Martyn; McNair, James; Skuce, Robin A; Bryson, David G; Pollock, John M

    2005-01-01

    Studies of tuberculosis have suggested a shift in dominance from a T helper type 1 (Th1) towards a Th2 immune response that is associated with suppressed cell-mediated immune (CMI) responses and increased humoral responses as the disease progresses. In this study a natural host disease model was used to investigate the balance of the evolving immune response towards Mycobacterium bovis infection in cattle with respect to pathogenesis. Cytokine analysis of CD4 T-cell clones derived from M. bovis-infected animals gave some indication that there was a possible relationship between enhanced pathogenesis and an increased ratio of Th0 [interleukin-4-positive/interferon-γ-positive (IL-4+/IFN-γ+)] clones to Th1 (IFN-γ+) clones. All animals developed strong antimycobacterial CMI responses, but depressed cellular responses were evident as the disease progressed, with the IFN-γ test failing to give consistently positive results in the latter stages. Furthermore, a stronger Th0 immune bias, depressed in vitro CMI responses, elevated levels of IL-10 expression and enhanced humoral responses were also associated with increased pathology. In minimal disease, however, a strong Th1 immune bias was maintained and an anti-M. bovis humoral response failed to develop. It was also seen that the level of the anti-M. bovis immunoglobulin G1 (IgG1) isotype antibody responses correlated with the pathology scores, whereas CMI responses did not have as strong a relationship with the development of pathology. Therefore, the development and maintenance of a Th1 IFN-γ response is associated with a greater control of M. bovis infection. Animals progressing from a Th1-biased to a Th0-biased immune response developed more extensive pathology and performed less well in CMI-based diagnostic tests but developed strong IgG1 humoral responses. PMID:15606800

  16. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    NASA Astrophysics Data System (ADS)

    Karamooz Ravari, M. R.; Nasr Esfahani, S.; Taheri Andani, M.; Kadkhodaei, M.; Ghaei, A.; Karaca, H.; Elahinia, M.

    2016-02-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress-strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure.

  17. Stress-induced cellular responses and cell death mechanisms during inflammatory cholangiopathies.

    PubMed

    Sasaki, Motoko; Nakanuma, Yasuni

    2017-03-01

    Various cellular responses including apoptosis, necrosis, autophagy and cellular senescence are involved in the pathogenesis of inflammatory cholangiopathies, such as primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and biliary atresia (BA). For example, dysregulated autophagy may play a role in abnormal expression of mitochondrial antigens and following autoimmune pathogenesis in bile duct lesions in PBC. Recently, new types of regulated cell death including necroptosis, parthanatos, pyroptosis, immunogenic cell death are the subject of numerous reports and they may play roles in pathogenesis of liver diseases, such as nonalcoholic steatohepatitis. Although there have been few studies on these new types of regulated cell death in inflammatory cholangiopathies, so far, they may play important roles in the pathophysiology of inflammatory cholangiopathies. Further studies on new types of regulated cell death are mandatory, since they could be targets of new therapeutic approaches for these diseases.

  18. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases.

    PubMed

    Cuenca, Nicolás; Fernández-Sánchez, Laura; Campello, Laura; Maneu, Victoria; De la Villa, Pedro; Lax, Pedro; Pinilla, Isabel

    2014-11-01

    Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.

  19. The transition between immune and disease states in a cellular automaton model of clonal immune response

    NASA Astrophysics Data System (ADS)

    Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-02-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infections virus and killer T cells (cellular response). The model represents molecules and cells with bitstrings. The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connected to spatial extension is lost, as is the oscillating feature. Thus the mean field approximation introduced with coupled maps destroys oscillations.

  20. Implication of diethylcarbamazine induced morbidity and the role of cellular responses associated with bancroftian filariasis pathologies.

    PubMed

    Makunde, W H; Kamugisha, M L; Makunde, R A; Malecela-Lazaro, M N; Kitua, A Y

    2006-01-01

    Pre and post-diethylcarbamazine treatment clinical expression, microfilaraemia prevalence and cellular responses were investigated in individuals in Tanga, Tanzania. Fifty-seven male individuals (aged = 15 years old) were identified for further studies on IL-4, IL-6, IL-8. IFN-gamma, IL-beta, TNF-alpha and nitric oxide in plasma and hydrocoele fluid. Microfilarial prevalence in the examined individuals was 12% with a geometric mean intensity (GMI) of 838 mff/ml in a community with a population of 1018 individuals. Microfilaraemic hydrocoele stage II and III were the most frequent pathologies observed with prevalence of 17.5% and 42. 1 %, respectively. All study individuals treated with diethylcarbamazine (DEC) standard dose of 6 mg/kg experienced post-treatment adverse events. There was no direct relationship between elevated IL-6 and the occurrence and severity of clinical adverse effects post-treatment. The findings from this study suggests that, blood elevated cytokine profile is not the main etiological factor in the inflammatory responses developing after treatment of bancroftian filariasis infections and pathology with DEC. Plasma levels of cellular (cytokines) responses during treatment revealed a proportion of symptomatic patients. Prior to treatment, patients with hydroecoele had high levels of IL-6 than those without the pathology. In conclusion these findings do not support the hypothesis that pro-inflammatory cytokines are directly responsible for adverse events to DEC chemotherapy in bancroftian filariasis infections and pathologies such as hydrocoele, lymphoedema and elephantiasis.

  1. Cellular responses of osteoblast-like cells to 17 elemental metals.

    PubMed

    Zhang, Dongmei; Wong, Cynthia S; Wen, Cuie; Li, Yuncang

    2017-01-01

    Elemental metals have been widely used to alloy metallic orthopedic implants. However, there is still insufficient research data elucidating the cell responses of osteoblastic cells to alloying elemental metals, which impedes the development of new metallic implant materials. In this study, the cellular responses of osteoblast-like cells (SaOS2) to 17 pure alloying elemental metals, that is, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), manganese (Mn), iron (Fe), ruthenium (Ru), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), silicon (Si), and tin (Sn) were comparatively investigated in vitro. Cellular responses including intracellular total protein synthesis and collagen content, cell adhesion, cell proliferation, and alkaline phosphatase (ALP) activity on these elemental metals were systematically assessed and compared. It was found that these elemental metals could be categorized into three groups based on the cellular functions on them. Group 1, including Ti, Zr, Hf, Nb, Ta, Cr, Ru, and Si, showed excellent cell proliferation and varied ALP activity for SaOS2 cells. Cells exposed to Group 2, including Mo and Sn, although initially attached and grew, did not proliferate over time. In contrast, Group 3, including V, Mn, Fe, Co, Ni, Cu, and Zn, showed severe cytotoxicity toward SaOS2 cells. It is vital to consider the cell responses to the elemental metals when designing a new metallic implant material and the findings of this study provide insights into the biological performance of the elemental metals. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 148-158, 2017.

  2. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    PubMed Central

    Tóth, Renáta; Alonso, Maria F.; Bain, Judith M.; Vágvölgyi, Csaba; Erwig, Lars-Peter; Gácser, Attila

    2015-01-01

    Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure, and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as Candida parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response toward this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi's virulence by detecting altered innate cellular responses. In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host–pathogen interactions. PMID:26528256

  3. Deciphering the acute cellular phosphoproteome response to irradiation with X-rays, protons and carbon ions.

    PubMed

    Winter, Martin; Dokic, Ivana; Schlegel, Julian; Warnken, Uwe; Debus, Jürgen; Abdollahi, Amir; Schnölzer, Martina

    2017-03-16

    Radiotherapy is a cornerstone of cancer therapy. The recently established particle therapy with raster-scanning protons and carbon ions landmarks a new era in the field of high-precision cancer medicine. However, molecular mechanisms governing radiation induced intracellular signaling remain elusive. Here, we present the first comprehensive proteomic and phosphoproteomic study applying stable isotope labeling by amino acids in cell culture (SILAC) in combination with high-resolution mass spectrometry to decipher cellular response to irradiation with X-rays, protons and carbon ions. At protein expression level limited alterations were observed 2h post irradiation of human lung adenocarcinoma cells. In contrast, 181 phosphorylation sites were found to be differentially regulated out of which 151 sites were not hitherto attributed to radiation response as revealed by crosscheck with the PhosphoSitePlus database. Radiation-induced phosphorylation of the p(S/T)Q motif was the prevailing regulation pattern affecting proteins involved in DNA damage response signaling. Since radiation doses were selected to produce same level of cell kill and DNA double-strand breakage for each radiation quality, DNA damage responsive phosphorylation sites were regulated to same extent. However, differential phosphorylation between radiation qualities was observed for 55 phosphorylation sites indicating the existence of distinct signaling circuitries induced by X-ray versus particle (proton/carbon) irradiation beyond the canonical DNA damage response. This unexpected finding was confirmed in targeted spike-in experiments using synthetic isotope labeled phosphopeptides. Herewith, we successfully validated uniform DNA damage response signaling coexisting with altered signaling involved in apoptosis and metabolic processes induced by X-ray and particle based treatments. In summary, the comprehensive insight into the radiation-induced phosphoproteome landscape is instructive for the design of

  4. The nociception genes painless and Piezo are required for the cellular immune response of Drosophila larvae to wasp parasitization.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Schulz, Robert A

    2017-03-22

    In vertebrates, interaction between the nervous system and immune system is important to protect a challenged host from stress inputs from external sources. In this study, we demonstrate that sensory neurons are involved in the cellular immune response elicited by wasp infestation of Drosophila larvae. Multidendritic class IV neurons sense contacts from external stimuli and induce avoidance behaviors for host defense. Our findings show that inactivation of these sensory neurons impairs the cellular response against wasp parasitization. We also demonstrate that the nociception genes encoding the mechanosensory receptors Painless and Piezo, both expressed in class IV neurons, are essential for the normal cellular immune response to parasite challenge.

  5. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, affects on the cellular response to DNA damage induced by exposures to radiation or other toxic chemicals will have an impact on the radiation risks for the astronauts, as well as on the mutation rate in microorganisms, is still an open question. Although the possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on the cellular response to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induces DNA damages including the double strand breaks (DSB) similar to the ionizing radiation. Damage in the DNA was measured by the phosphorylation of a histone protein H2AX (-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in the DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ti-67 signals. Our results suggested that the difference in -H2AX between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect the response of the DNA damage response genes to bleomycin treatment.

  6. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  7. Cellular and biomolecular responses of human ovarian cancer cells to cytostatic dinuclear platinum(II) complexes.

    PubMed

    Lin, Miaoxin; Wang, Xiaoyong; Zhu, Jianhui; Fan, Damin; Zhang, Yangmiao; Zhang, Junfeng; Guo, Zijian

    2011-03-01

    Polynuclear platinum(II) complexes represent a class of potential anticancer agents that have shown promising pharmacological properties in preclinical studies. The nature of cellular responses induced by these complexes, however, is poorly understood. In this research, the cellular responses of human ovarian cancer COC1 cells to dinuclear platinum(II) complexes {[cis-Pt(NH₃)₂Cl]₂L¹}(NO₃)₂ (1) and {[cis-Pt(NH₃)₂Cl]₂L²}(NO₃)₂ (2) (L¹ = α,α'-diamino-p-xylene, L² = 4,4'-methylenedianiline) has been studied using cisplatin as a reference. The effect of platinum complexes on the proliferation, death mode, mitochondrial membrane potential, and cell cycle progression has been examined by MTT assay and flow cytometry. The activation of cell cycle checkpoint kinases (CHK1/2), extracellular signal-regulated kinases (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) of the cells by the complexes has also been analyzed using phospho-specific flow cytometry. Complex 1 is more cytotoxic than complex 2 and cisplatin at most concentrations; complex 2 and cisplatin are comparably cytotoxic. These complexes kill the cells through an apoptotic or apoptosis-like pathway characterized by exposure of phosphatidylserine and dissipation of mitochondrial membrane potential. Complex 1 shows the strongest inductive effect on the morphological changes of the cells, followed by cisplatin and complex 2. Complexes 1 and 2 arrest the cell cycle in G2 or M phase, while cisplatin arrests the cell cycle in S phase. The influence of these complexes on CHK1/2, ERK1/2, and p38 MAPK varies with the dose of the drugs or reaction time. Activation of phospho-ERK1/2 and phospho-p38 MAPK by these complexes is closely related to the cytostatic activity. The results demonstrate that dinuclear platinum(II) complexes can induce some cellular responses different from those caused by cisplatin.

  8. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain.

    PubMed

    Martin, David A; Nichols, Charles D

    2016-09-01

    There has recently been a resurgence of interest in psychedelics, substances that profoundly alter perception and cognition and have recently demonstrated therapeutic efficacy to treat anxiety, depression, and addiction in the clinic. The receptor mechanisms that drive their molecular and behavioral effects involve activation of cortical serotonin 5-HT2A receptors, but the responses of specific cellular populations remain unknown. Here, we provide evidence that a small subset of 5-HT2A-expressing excitatory neurons is directly activated by psychedelics and subsequently recruits other select cell types including subpopulations of inhibitory somatostatin and parvalbumin GABAergic interneurons, as well as astrocytes, to produce distinct and regional responses. To gather data regarding the response of specific neuronal populations, we developed methodology for fluorescence-activated cell sorting (FACS) to segregate and enrich specific cellular subtypes in the brain. These methods allow for robust neuronal sorting based on cytoplasmic epitopes followed by downstream nucleic acid analysis, expanding the utility of FACS in neuroscience research.

  9. Cellular and humoral responses in coeliac disease. 1. Wheat protein fractions.

    PubMed

    Penttila, I A; Devery, J M; Gibson, C E; LaBrooy, J T; Skerritt, J H

    1991-12-31

    The humoral and cellular immune response of coeliac individuals to various wheat protein fractions was studied using serum antibody ELISA assays and the indirect leucocyte migration inhibition factor (LMIF) assays. Greater migration inhibition factor activity was seen in coeliacs on a gluten-free-diet having low serum antibody titres, and using purified T-cells instead of total peripheral blood mononucleocytes. Gliadin was the most active fraction in both assays. Raised antibodies to low-molecular weight and high-molecular weight glutenin polypeptides was observed, though these proteins had little migration inhibition factor activity. No cellular or humoral response was seen to albumins or globulins. Proteins associated with the granules of well-washed wheat starch are distinct from gluten proteins and had little T-cell activity, correlating with clinical observations that properly prepared wheat starch is devoid of coeliac toxicity. The greater specificity of the humoral response for individual wheat protein fractions in this study, compared with the earlier reports, likely results from cross-contamination in the earlier work of each fraction with gliadin.

  10. A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum

    PubMed Central

    Varadarajan, S; Bampton, E T W; Smalley, J L; Tanaka, K; Caves, R E; Butterworth, M; Wei, J; Pellecchia, M; Mitcheson, J; Gant, T W; Dinsdale, D; Cohen, G M

    2012-01-01

    Canonical endoplasmic reticulum (ER) stress, which occurs in many physiological and disease processes, results in activation of the unfolded protein response (UPR). We now describe a new, evolutionarily conserved cellular stress response characterised by a striking, but reversible, reorganisation of ER membranes that occurs independently of the UPR, resulting in impaired ER transport and function. This reorganisation is characterised by a dramatic redistribution and clustering of ER membrane proteins. ER membrane aggregation is regulated, in part, by anti-apoptotic BCL-2 family members, particularly MCL-1. Using connectivity mapping, we report the widespread occurrence of this stress response by identifying several structurally diverse chemicals from different pharmacological classes, including antihistamines, antimalarials and antipsychotics, which induce ER membrane reorganisation. Furthermore, we demonstrate the potential of ER membrane aggregation to result in pathological consequences, such as the long-QT syndrome, a cardiac arrhythmic abnormality, arising because of a novel trafficking defect of the human ether-a-go-go-related channel protein from the ER to the plasma membrane. Thus, ER membrane reorganisation is a feature of a new cellular stress pathway, clearly distinct from the UPR, with important consequences affecting the normal functioning of the ER. PMID:22955944

  11. Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials.

    PubMed

    Autefage, Hélène; Gentleman, Eileen; Littmann, Elena; Hedegaard, Martin A B; Von Erlach, Thomas; O'Donnell, Matthew; Burden, Frank R; Winkler, David A; Stevens, Molly M

    2015-04-07

    Despite the increasing sophistication of biomaterials design and functional characterization studies, little is known regarding cells' global response to biomaterials. Here, we combined nontargeted holistic biological and physical science techniques to evaluate how simple strontium ion incorporation within the well-described biomaterial 45S5 bioactive glass (BG) influences the global response of human mesenchymal stem cells. Our objective analyses of whole gene-expression profiles, confirmed by standard molecular biology techniques, revealed that strontium-substituted BG up-regulated the isoprenoid pathway, suggesting an influence on both sterol metabolite synthesis and protein prenylation processes. This up-regulation was accompanied by increases in cellular and membrane cholesterol and lipid raft contents as determined by Raman spectroscopy mapping and total internal reflection fluorescence microscopy analyses and by an increase in cellular content of phosphorylated myosin II light chain. Our unexpected findings of this strong metabolic pathway regulation as a response to biomaterial composition highlight the benefits of discovery-driven nonreductionist approaches to gain a deeper understanding of global cell-material interactions and suggest alternative research routes for evaluating biomaterials to improve their design.

  12. Cellular response in the dermis of common wombats (Vombatus ursinus) infected with Sarcoptes scabiei var. wombati.

    PubMed

    Skerratt, Lee F

    2003-01-01

    The cellular response in the dermis of common wombats (Vombatus ursinus) with sarcoptic mange exhibited some typical aspects of an immune response to Sarcoptes scabiei. There was an induction phase for wombats experimentally infected with S. scabiei represented by absence of a dermal inflammatory infiltrate for at least 12 days after infection. T lymphocytes, plasma cells, mast cells, and neutrophils then entered the dermis, consistent with a type IV (delayed) hypersensitivity response. In free-living wombats with severe parakeratotic sarcoptic mange eosinophils were also present in the dermis suggesting that a type I (immediate) hypersensitivity response may develop after a type IV hypersensitivity response. Absence of plasma cells and B lymphocytes in free-living wombats with severe parakeratotic sarcoptic mange compared with their presence in wombats experimentally infected with S. scabiei suggested that some immune tolerance may develop with severe infections. A large proportion of cells in the dermal response were not identified but were possibly cells of connective tissue. The thickness of the epidermis increased within 4 days in response to S. scabiei infection. Some antibodies raised against human leucocyte antigens CD3, CD5, HLA-DP, DQ, DR, and CD79b cross-reacted with leucocyte antigens of common wombats and were used to identify cell types in inflammatory infiltrates using immunohistochemistry.

  13. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics.

    PubMed

    Verano-Braga, Thiago; Miethling-Graff, Rona; Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina; Brewer, Jonathan R; Erdmann, Helmut; Kjeldsen, Frank

    2014-03-25

    The use of nanoparticles in foods, materials, and clinical treatments has increased dramatically in the past decade. Because of the possibility of human exposure to nanoparticles, there is an urgent need to investigate the molecular mechanisms underlying the cellular responses that might be triggered. Such information is necessary to assess potential health risks arising from the use of nanoparticles, and for developing new formulations of next generation nanoparticles for clinical treatments. Using mass spectrometry-based proteomic technologies and complementary techniques (e.g., Western blotting and confocal laser scanning microscopy), we present insights into the silver nanoparticle-protein interaction in the human LoVo cell line. Our data indicate that some unique cellular processes are driven by the size. The 100 nm nanoparticles exerted indirect effects via serine/threonine protein kinase (PAK), mitogen-activated protein kinase (MAPK), and phosphatase 2A pathways, and the 20 nm nanoparticles induced direct effects on cellular stress, including generation of reactive oxygen species and protein carbonylation. In addition, we report that proteins involved in SUMOylation were up-regulated after exposure to 20 nm silver nanoparticles. These results were further substantiated by the observation of silver nanoparticles entering the cells; however, data indicate that this was determined by the size of the nanoparticles, since 20 nm particles entered the cells while 100 nm particles did not.

  14. A Stochastic Cellular Automata Approach to Population Dynamics of Cells in a HIV Immune Response Model

    NASA Astrophysics Data System (ADS)

    Pandey, Ras B.

    1998-03-01

    A stochastic cellular automata (SCA) approach is introduced to study the growth and decay of cellular population in an immune response model relevant to HIV. Four cell types are considered: macrophages (M), helper cells (H), cytotoxic cells (C), and viral infected cells (V). Mobility of the cells is introduced and viral mutation is considered probabilistically. In absence of mutation, the population of the host cells, helper (N_H) and cytotxic (N_C) cells in particular, dominates over the viral population (N_V), i.e., N_H, NC > N_V, the immune system wins over the viral infection. Variation of cellular population with time exhibits oscillations. The amplitude of oscillations in variation of N_H, NC and NV with time decreases at high mobility even at low viral mutation; the rate of viral growth is nonmonotonic with NV > N_H, NC in the long time regime. The viral population is much higher than that of the host cells at higher mutation rate, a possible cause of AIDS.

  15. Serine and SAM Responsive Complex SESAME Regulates Histone Modification Crosstalk by Sensing Cellular Metabolism.

    PubMed

    Li, Shanshan; Swanson, Selene K; Gogol, Madelaine; Florens, Laurence; Washburn, Michael P; Workman, Jerry L; Suganuma, Tamaki

    2015-11-05

    Pyruvate kinase M2 (PKM2) is a key enzyme for glycolysis and catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate, which supplies cellular energy. PKM2 also phosphorylates histone H3 threonine 11 (H3T11); however, it is largely unknown how PKM2 links cellular metabolism to chromatin regulation. Here, we show that the yeast PKM2 homolog, Pyk1, is a part of a novel protein complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex), which contains serine metabolic enzymes, SAM (S-adenosylmethionine) synthetases, and an acetyl-CoA synthetase. SESAME interacts with the Set1 H3K4 methyltransferase complex, which requires SAM synthesized from SESAME, and recruits SESAME to target genes, resulting in phosphorylation of H3T11. SESAME regulates the crosstalk between H3K4 methylation and H3T11 phosphorylation by sensing glycolysis and glucose-derived serine metabolism. This leads to auto-regulation of PYK1 expression. Thus, our study provides insights into the mechanism of regulating gene expression, responding to cellular metabolism via chromatin modifications.

  16. Role of cytoskeleton and elastic moduli in cellular response to nanosecond pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Thompson, Gary L.; Roth, Caleb; Tolstykh, Gleb; Kuipers, Marjorie; Ibey, Bennett L.

    2013-02-01

    Nanosecond pulsed electric fields (nsPEFs) are known to increase cell membrane permeability to small molecules in accordance with dosages. As previous work has focused on nsPEF exposures in whole cells, electrodeformation may contribute to this induced-permeabilization in addition to other biological mechanisms. Here, we hypothesize that cellular elasticity, based upon the cytoskeleton, affects nsPEF-induced decrease in cellular viability. Young's moduli of various types of cells have been calculated from atomic force microscopy (AFM) force curve data, showing that CHO cells are stiffer than non-adherent U937 and Jurkat cells, which are more susceptible to nsPEF exposure. To distinguish any cytoskeletal foundation for these observations, various cytoskeletal reagents were applied. Inhibiting actin polymerization significantly decreased membrane integrity, as determined by relative propidium uptake and phosphatidylserine externalization, upon exposure at 150 kV/cm with 100 pulses of 10 ns pulse width. Exposure in the presence of other drugs resulted in insignificant changes in membrane integrity and 24-hour viability. However, Jurkat cells showed greater lethality than latrunculin-treated CHO cells of comparable elasticity. From these results, it is postulated that cellular elasticity rooted in actin-membrane interaction is only a minor contributor to the differing responses of adherent and non-adherent cells to nsPEF insults.

  17. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    NASA Astrophysics Data System (ADS)

    Nikiforov, M. P.; Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.; Guo, S.; Kalinin, S. V.; Jesse, S.

    2009-10-01

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  18. Use of /sup 51/Cr-labeled mononuclear cells for measuring the cellular immune response in mouse lungs

    SciTech Connect

    Zarkower, A.; Scheuchenzuber, W.J.; Ferguson, F.G.

    1981-02-01

    Spleen cells labeled with /sup 51/Cr were used in sensitized syngeneic mice to measure the degree of mononuclear cell infiltration into antigen-challenged tissues. With this method, increased cellular infiltration was found after footpad challenge of mice sensitized with sheep erythrocyte, Escherichia coli, and BCG antigens. Cellular response also was determined by using this technique in the lungs of mice sensitized with sheep erythrocytes and BCG. This procedure offers the opportunity to measure cellular infiltration, whether due to cellular or humoral influences, in tissues not easily accessible to conventional immunological manipulation.

  19. Use of 51Cr-labeled mononuclear cells for measuring the cellular immune response in mouse lungs

    SciTech Connect

    Zarkower, A.; Scheuchenzuber, W.J.; Ferguson, F.G.

    1981-02-01

    Spleen cells labeled with 51Cr were used in sensitized syngeneic mice to measure the degree of mononuclear cell infiltration into antigen-challenged tissues. With this method, increased cellular infiltration was found after footpad challenge of mice sensitized with sheep erythrocyte, Escherichia coli, and BCG antigens. Cellular response also was determined by using this technique in the lungs of mice sensitized with sheep erythrocytes and BCG. This procedure offers the opportunity to measure cellular infiltration, whether due to cellular or humoral influences, in tissues not easily accessible to conventional immunological manipulation.

  20. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes.

    PubMed

    Hooper, Philip L; Balogh, Gabor; Rivas, Eric; Kavanagh, Kylie; Vigh, Laszlo

    2014-07-01

    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease.

  1. Human leukocyte antigens and cellular immune responses to anthrax vaccine adsorbed.

    PubMed

    Ovsyannikova, Inna G; Pankratz, V Shane; Vierkant, Robert A; Pajewski, Nicholas M; Quinn, Conrad P; Kaslow, Richard A; Jacobson, Robert M; Poland, Gregory A

    2013-07-01

    Interindividual variations in vaccine-induced immune responses are in part due to host genetic polymorphisms in the human leukocyte antigen (HLA) and other gene families. This study examined associations between HLA genotypes, haplotypes, and homozygosity and protective antigen (PA)-specific cellular immune responses in healthy subjects following immunization with Anthrax Vaccine Adsorbed (AVA). While limited associations were observed between individual HLA alleles or haplotypes and variable lymphocyte proliferative (LP) responses to AVA, analyses of homozygosity supported the hypothesis of a "heterozygote advantage." Individuals who were homozygous for any HLA locus demonstrated significantly lower PA-specific LP than subjects who were heterozygous at all eight loci (median stimulation indices [SI], 1.84 versus 2.95, P = 0.009). Similarly, we found that class I (HLA-A) and class II (HLA-DQA1 and HLA-DQB1) homozygosity was significantly associated with an overall decrease in LP compared with heterozygosity at those three loci. Specifically, individuals who were homozygous at these loci had significantly lower PA-specific LP than subjects heterozygous for HLA-A (median SI, 1.48 versus 2.13, P = 0.005), HLA-DQA1 (median SI, 1.75 versus 2.11, P = 0.007), and HLA-DQB1 (median SI, 1.48 versus 2.13, P = 0.002) loci, respectively. Finally, homozygosity at an increasing number (≥ 4) of HLA loci was significantly correlated with a reduction in LP response (P < 0.001) in a dose-dependent manner. Additional studies are needed to reproduce these findings and determine whether HLA-heterozygous individuals generate stronger cellular immune response to other virulence factors (Bacillus anthracis LF and EF) than HLA-homozygous subjects.

  2. A role for nematocytes in the cellular immune response of the Drosophilid Zaprionus indianus

    PubMed Central

    Kacsoh, Balint Z.; Bozler, Julianna; Schlenke, Todd A.

    2015-01-01

    SUMMARY The melanotic encapsulation response mounted by Drosophila melanogaster against macroparasites, which is based on haemocyte binding to foreign objects, is poorly characterized relative to its humoral immune response against microbes, and appears to be variable across insect lineages. The genus Zaprionus is a diverse clade of flies embedded within the genus Drosophila. Here we characterize the immune response of Zaprionus indianus against endoparasitoid wasp eggs, which elicit the melanotic encapsulation response in D. melanogaster. We find that Z. indianus is highly resistant to diverse wasp species. Although Z. indianus mounts the canonical melanotic encapsulation response against some wasps, it can also potentially fight off wasp infection using two other mechanisms: encapsulation without melanization and a non-cellular form of wasp killing. Zaprionus indianus produces a large number of haemocytes including nematocytes, which are large fusiform haemocytes absent in D. melanogaster, but which we found in several other species in the subgenus Drosophila. Several lines of evidence suggest these nematocytes are involved in anti-wasp immunity in Z. indianus and in particular in the encapsulation of wasp eggs. Altogether, our data show that the canonical anti-wasp immune response and haemocyte make-up of the model organism D. melanogaster vary across the genus Drosophila. PMID:24476764

  3. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses.

    PubMed

    Barth, Kenneth; Genco, Caroline Attardo

    2016-10-04

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses.

  4. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses

    PubMed Central

    Barth, Kenneth; Genco, Caroline Attardo

    2016-01-01

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses. PMID:27698456

  5. Cellular responses and disease expression in oysters (Crassostrea virginica) exposed to suspended field contaminated sediments.

    PubMed

    Chu, Fu-Lin E; Volety, Aswani K; Hale, Robert C; Huang, Yongqin

    2002-02-01

    Exposure of oysters to water soluble fractions derived from field-contaminated sediments (FCS) containing predominantly lower molecular weight organic aromatic compounds, has been previously demonstrated to enhance pre-existing infections caused by the protozoan parasite, Perkinsus marinus (Dermo), and the prevalence of experimentally induced infections. To further explore the role of pollution on the onset and progression of disease, effects of suspended FCS from an estuarine creek in Virginia, USA, dominated by higher molecular weight polycyclic aromatic hydrocarbons (PAHs) on cellular responses and Dermo disease expression in oysters (Crassostrea virginica) were examined. Sediments were collected from a PAH polluted estuarine creek in Virginia, USA. To test effects on cellular response, oysters from Maine were exposed daily to 0, 1.0, 1.5, or 2.0 g suspended FCS (corresponding to 0, 70.2, 105, or 140 microg PAHs, respectively) for 5, 10, 20, and 40 days. Hemocyte activities and plasma lipid, protein and lactate dehydrogenase (LDH) levels were then measured. Exposure stimulated neutral red uptake, MTT reduction, and 3H-leucine incorporation in oyster hemocytes at various exposure times, but did not affect the plasma protein, lipid and LDH levels. To test effects on Dermo expression, oysters from a Dermo enzootic area, with an initial estimated infection prevalence of 39%, were exposed daily to 0, 1.0, 1.5, or 2.0 g suspended FCS (corresponding to 0, 75.0, 113, or 150 microg PAHs, respectively) for 30 days. Exposure enhanced disease expression in oysters. However, no significant change was noted in any measured cellular or humoral parameters.

  6. Differential influenza H1N1-specific humoral and cellular response kinetics in kidney transplant patients.

    PubMed

    Rambal, Vinay; Müller, Karin; Dang-Heine, Chantip; Sattler, Arne; Dziubianau, Mikalai; Weist, Benjamin; Luu, Si-Hong; Stoyanova, Alexandra; Nickel, Peter; Thiel, Andreas; Neumann, Avidan; Schweiger, Brunhilde; Reinke, Petra; Babel, Nina

    2014-02-01

    Renal transplant recipients (RTR) are considered at high risk for influenza-associated complications due to immunosuppression. The efficacy of standard influenza vaccination in RTRs is unclear. Hence, we evaluated activation of the adaptive immunity by the pandemic influenza A(H1N1) 2009 (A(H1N1)pdm09) vaccine in RTRs as compared to healthy controls. To determine cross-reactivity and/or bystander activation, seasonal trivalent influenza vaccine and tetanus/diphteria toxoid (TT/DT) vaccine-specific T cells along with allospecific T cells were quantified before and after A(H1N1)pdm09 vaccination. Vaccination-induced alloimmunity was additionally determined by quantifying serum creatinine and proinflammatory protein IP-10. Contrary to healthy controls, RTRs required a booster vaccination to achieve seroconversion (13.3 % day 21; 90 % day 90). In contrast to humoral immunity, sufficient A(H1N1)pdm09-specific T-cell responses were mounted in RTRs already after the first immunization with a magnitude comparable with healthy controls. Interestingly, vaccination simultaneously boosted T cells reacting to seasonal flu but not to TT/DT, suggesting cross-activation. No alloimmune effects were recorded. In conclusion, protective antibody responses required booster vaccination. However, sufficient cellular immunity is established already after the first vaccination, demonstrating differential kinetics of humoral and cellular immunity.

  7. Molecular Mechanism for Cellular Response to β-Escin and Its Therapeutic Implications

    PubMed Central

    Perzanowska, Anna; Dutkiewicz, Malgorzata; Kowalewska, Magdalena; Grabowska, Iwona; Maciejko, Dorota; Fogtman, Anna; Dadlez, Michal; Koziak, Katarzyna

    2016-01-01

    β-escin is a mixture of triterpene saponins isolated from the horse chestnut seeds (Aesculus hippocastanum L.). The anti-edematous, anti-inflammatory and venotonic properties of β-escin have been the most extensively clinically investigated effects of this plant-based drug and randomized controlled trials have proved the efficacy of β-escin for the treatment of chronic venous insufficiency. However, despite the clinical recognition of the drug its pharmacological mechanism of action still remains largely elusive. To determine the cellular and molecular basis for the therapeutic effectiveness of β-escin we performed discovery and targeted proteomic analyses and in vitro evaluation of cellular and molecular responses in human endothelial cells under inflammatory conditions. Our results demonstrate that in endothelial cells β-escin potently induces cholesterol synthesis which is rapidly followed with marked fall in actin cytoskeleton integrity. The concomitant changes in cell functioning result in a significantly diminished responses to TNF-α stimulation. These include reduced migration, alleviated endothelial monolayer permeability, and inhibition of NFκB signal transduction leading to down-expression of TNF-α—induced effector proteins. Moreover, the study provides evidence for novel therapeutic potential of β-escin beyond the current vascular indications. PMID:27727329

  8. Trichothiodystrophy, a human DNA repair disorder with heterogeneity in the cellular response to ultraviolet light

    SciTech Connect

    Lehmann, A.R.; Arlett, C.F.; Broughton, B.C.; Harcourt, S.A.; Steingrimsdottir, H.; Stefanini, M.; Malcolm, A.; Taylor, R.; Natarajan, A.T.; Green, S.

    1988-11-01

    Trichothiodystrophy (TTD) is an autosomal recessive disorder characterized by brittle hair with reduced sulfur content, ichthyosis, peculiar face, and mental and physical retardation. Some patients are photosensitive. A previous study by Stefanini et al. showed that cells from four photosensitive patients with TTD had a molecular defect in DNA repair, which was not complemented by cells from xeroderma pigmentosum, complementation group D. In a detailed molecular and cellular study of the effects of UV light on cells cultured from three further TTD patients who did not exhibit photosensitivity we have found an array of different responses. In cells from the first patient, survival, excision repair, and DNA and RNA synthesis following UV irradiation were all normal, whereas in cells from the second patient all these responses were similar to those of excision-defective xeroderma pigmentosum (group D) cells. With the third patient, cell survival measured by colony-forming ability was normal following UV irradiation, even though repair synthesis was only 50% of normal and RNA synthesis was severely reduced. The excision-repair defect in these cells was not complemented by other TTD cell strains. These cellular characteristics of patient 3 have not been described previously for any other cell line. The normal survival may be attributed to the finding that the deficiency in excision-repair is confined to early times after irradiation. Our results pose a number of questions about the relationship between the molecular defect in DNA repair and the clinical symptoms of xeroderma pigmentosum and TTD.

  9. Clot Formation in the Sipunculid Worm Themiste petricola: A Haemostatic and Immune Cellular Response

    PubMed Central

    Lombardo, Tomás; Blanco, Guillermo A.

    2012-01-01

    Clot formation in the sipunculid Themiste petricola, a coelomate nonsegmented marine worm without a circulatory system, is a cellular response that creates a haemostatic mass upon activation with sea water. The mass with sealing properties is brought about by homotypic aggregation of granular leukocytes present in the coelomic fluid that undergo a rapid process of fusion and cell death forming a homogenous clot or mass. The clot structure appears to be stabilized by abundant F-actin that creates a fibrous scaffold retaining cell-derived components. Since preservation of fluid within the coelom is vital for the worm, clotting contributes to rapidly seal the body wall and entrap pathogens upon injury, creating a matrix where wound healing can take place in a second stage. During formation of the clot, microbes or small particles are entrapped. Phagocytosis of self and non-self particles shed from the clot occurs at the clot neighbourhood, demonstrating that clotting is the initial phase of a well-orchestrated dual haemostatic and immune cellular response. PMID:22550489

  10. Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state.

    PubMed

    Calabrese, Vittorio; Giordano, James; Crupi, Rosalia; Di Paola, Rosanna; Ruggieri, Martino; Bianchini, Rio; Ontario, Maria Laura; Cuzzocrea, Salvatore; Calabrese, Edward J

    2017-05-01

    Abnormal redox homeostasis and oxidative stress have been proposed to play a role in the etiology of several neuropsychiatric spectrum disorders. Emerging interest has recently focused on markers of oxidative stress and neuroinflammation in schizophrenic spectrum disorders, at least in particular subgroups of patients. Altered expression of genes related to oxidative stress, oxidative damage to DNA, protein and lipids, as well as reduced glutathione levels in central and peripheral tissues could act synergistically, and contribute to the course of the disease.  Herein, we discuss cellular mechanisms that may be operative in neuroinflammation and contributory to schizophrenia. We address modulation of endogenous cellular defense mechanisms as a potentially innovative approach to therapeutics for schizophrenia, and other neuropsychiatric conditions that are associated with neuroinflammation. Specifically, we discuss the emerging role of heme oxygenase as prominent member of neuroprotective network in redox stress responsive mechanisms, as well as the importance of glutathione relevant in schizophrenia pathophysiology. Finally we introduce the hormetic dose response concept as relevant and important to neuroprotection, and review hormetic mechanisms as possible approaches to manipulation of neuroinflammatory targets that may be viable for treating schizophrenia spectrum disorders. © 2016 Wiley Periodicals, Inc.

  11. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.

    PubMed

    Hyldahl, Robert D; Hubal, Monica J

    2014-02-01

    The response of skeletal muscle to unaccustomed eccentric exercise has been studied widely, yet it is incompletely understood. This review is intended to provide an up-to-date overview of our understanding of how skeletal muscle responds to eccentric actions, with particular emphasis on the underlying molecular and cellular mechanisms of damage and recovery. This review begins by addressing the question of whether eccentric actions result in physical damage to muscle fibers and/or connective tissue. We next review the symptomatic manifestations of eccentric exercise (i.e., indirect damage markers, such as delayed onset muscle soreness), with emphasis on their relatively poorly understood molecular underpinnings. We then highlight factors that potentially modify the muscle damage response following eccentric exercise. Finally, we explore the utility of using eccentric training to improve muscle function in populations of healthy and aging individuals, as well as those living with neuromuscular disorders.

  12. Interferon-Stimulated Gene 15 in the Control of Cellular Responses to Genotoxic Stress

    PubMed Central

    Jeon, Young Joo; Park, Jong Ho; Chung, Chin Ha

    2017-01-01

    Error-free replication and repair of DNA are pivotal to organisms for faithful transmission of their genetic information. Cells orchestrate complex signaling networks that sense and resolve DNA damage. Post-translational protein modifications by ubiquitin and ubiquitin-like proteins, including SUMO and NEDD8, are critically involved in DNA damage response (DDR) and DNA damage tolerance (DDT). The expression of interferon-stimulated gene 15 (ISG15), the first identified ubiquitin-like protein, has recently been shown to be induced under various DNA damage conditions, such as exposure to UV, camptothecin, and doxorubicin. Here we overview the recent findings on the role of ISG15 and its conjugation to target proteins (e.g., p53, ΔNp63α, and PCNA) in the control of cellular responses to genotoxic stress, such as the inhibition of cell growth and tumorigenesis. PMID:28241406

  13. An improved sample loading technique for cellular metabolic response monitoring under pressure

    NASA Astrophysics Data System (ADS)

    Gikunda, Millicent Nkirote

    To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.

  14. Dynamic deformation and fragmentation response of maraging steel linear cellular alloy

    NASA Astrophysics Data System (ADS)

    Jakus, Adam E.; Fredenberg, David A.; McCoy, Tammy; Thadhani, Naresh; Cochran, Joe K.

    2012-03-01

    The dynamic deformation and fragmentation response of 25% dense 9-cell linear cellular alloy (LCA) made of unaged 250 maraging steel, fabricated using a direct reduction and extrusion technique, is investigated. Explicit finite element simulations were implemented using AUTODYN finite element code. The maraging steel properties were defined using a Johnson-Cook strength model with previously validated parameters. Rod-on-anvil impact tests were performed using the 7.6mm helium gas gun and the transient deformation and fragmentation response was recorded with highspeed imaging. Analysis of observed deformation states of specimens and finite element simulations reveal that in the case of the 9-cell LCA, dissipation of stress and strain occurs along the interior cell wells resulting in significant and ubiquitous buckling prior to confined fragmentation.

  15. Early detection of disease program: Evaluation of the cellular immune response

    NASA Technical Reports Server (NTRS)

    Criswell, B. S.; Knight, V.; Martin, R. R.; Kasel, J. A.

    1974-01-01

    The early cellular responses of specific components of the leukocyte and epithelial cell populations to foreign challenges of both an infectious and noninfectious character were evaluated. Procedures for screening potential flight crews were developed, documented, and tested on a control population. Methods for preparing suitable populations of lymphocytes, polymorphonuclear leukocytes, macrophages, and epithelial cells were first established and evaluated. Epithelial cells from viral infected individuals were screened with a number of anti-viral antisera. This procedure showed the earliest indication of disease as well as providing a specific diagnosis to the physicians. Both macrophages and polymorphonuclear leukocytes were studied from normal individuals, smokers, and patients with viral infections. Newer techniques enabling better definition of lymphocyte subpopulations were then developed, namely the E and EAC rosette procedures for recognition of T (thymus-derived) and B (bone-marrow-derived) lymphocyte subpopulations. Lymphocyte and lymphocyte subpopulation response to multiple mitogens have been evaluated.

  16. Enteropathogenic Escherichia coli Tir recruits cellular SHP-2 through ITIM motifs to suppress host immune response.

    PubMed

    Yan, Dapeng; Quan, Heming; Wang, Lin; Liu, Feng; Liu, Haipeng; Chen, Jianxia; Cao, Xuetao; Ge, Baoxue

    2013-09-01

    Immune responses to pathogens are regulated by immune receptors containing either an immunoreceptor tyrosine-based activation motif (ITAM) or an immunoreceptor tyrosine-based inhibitory motif (ITIM). The important diarrheal pathogen enteropathogenic Escherichia coli (EPEC) require delivery and insertion of the bacterial translocated intimin receptor (Tir) into the host plasma membrane for pedestal formation. The C-terminal region of Tir, encompassing Y483 and Y511, shares sequence similarity with cellular ITIMs. Here, we show that EPEC Tir suppresses the production of inflammatory cytokines by recruitment of SHP-2 and subsequent deubiquitination of TRAF6 in an ITIM dependent manner. Our findings revealed a novel mechanism by which the EPEC utilize its ITIM motifs to suppress and evade the host innate immune response, which could lead to the development of novel therapeutics to prevent bacterial infection.

  17. Cellular Response of Sinorhizobium sp. Strain A2 during Arsenite Oxidation

    PubMed Central

    Fukushima, Koh; Huang, He; Hamamura, Natsuko

    2015-01-01

    Arsenic (As) is a widely distributed toxic element in the environment and microorganisms have developed resistance mechanisms in order to tolerate it. The cellular response of the chemoorganotrophic arsenite (As[III])-oxidizing α-Proteobacteria, Sinorhizobium sp. strain A2, to arsenic was examined in the present study. Several proteins associated with arsenite oxidase and As resistance were shown to be accumulated in the presence of As(III). A shift in central carbon metabolism from the tricarboxylic acid pathway to glyoxylate pathway was also observed in response to oxidative stress. Our results revealed the strategy of the As(III)-oxidizing Sinorhizobium strain to mitigate arsenic toxicity and oxidative damage by multiple metabolic adaptations. PMID:26477790

  18. Immunogenetic aspects of the cellular immune response of Drosophilia against parasitoids.

    PubMed

    Carton, Y; Nappi, A J

    2001-01-01

    Host-parasite relationships represent integrating adaptations of considerable complexity involving the host's immune capacity to both recognize and destroy the parasite, and the latter's ability to successfully invade the host and to circumvent its immune response. Compatibility in Drosophila-parasitic wasp (parasitoid) associations has been shown to have a genetic basis, and to be both species and strain specific. Studies using resistant and susceptible strains of Drosophila melanogaster infected with virulent and avirulent strains of the wasp Leptopilina boulardi demonstrate that the success of the host cellular immune response depends on the genetic status of both host and parasitoid. Immunological, physiological, biochemical, and genetic data form the bases of a two-component model proposed here to account for the observed specificity and complexity of two coevolved adaptations, host nonself recognition and parasitoid virulence.

  19. Impaired cellular immune response to tetanus toxoid but not to cytomegalovirus in effectively HAART-treated HIV-infected children.

    PubMed

    Alsina, Laia; Noguera-Julian, Antoni; Fortuny, Clàudia

    2013-05-07

    Despite of highly active antiretroviral therapy, the response to vaccines in HIV-infected children is poor and short-lived, probably due to a defect in cellular immune responses. We compared the cellular immune response (assessed in terms of IFN-γ production) to tetanus toxoid and to cytomegalovirus in a series of 13 HIV-perinatally-infected children and adolescents with optimal immunovirological response to first line antiretroviral therapy, implemented during chronic infection. A stronger cellular response to cytomegalovirus (11 out of 13 patients) was observed, as compared to tetanus toxoid (1 out of 13; p=0.003). These results suggest that the repeated exposition to CMV, as opposed to the past exposition to TT, is able to maintain an effective antigen-specific immune response in stable HIV-infected pediatric patients and strengthen current recommendations on immunization practices in these children.

  20. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    SciTech Connect

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  1. Humoral and cellular immune responses to matrix protein of measles virus in subacute sclerosing panencephalitis.

    PubMed Central

    Dhib-Jalbut, S; McFarland, H F; Mingioli, E S; Sever, J L; McFarlin, D E

    1988-01-01

    The immune response to matrix (M) protein of measles virus was examined in patients with subacute sclerosing panencephalitis (SSPE) and controls. Antibodies specific for M and nucleocapsid (NC) proteins in 11 serum and 8 cerebrospinal fluid (CSF) samples from patients with SSPE were quantitated by enzyme-linked immunosorbent assay by using affinity-purified measles virus proteins. Geometric mean anti-NC antibody titers were higher in the serum (6.58 +/- 0.98 [mean +/- standard deviation]) and CSF (4.38 +/- 0.74) of SSPE patients compared with controls. Anti-M antibodies were present in the serum and CSF of all SSPE samples tested but in titers lower than those of anti-NC antibodies. Geometric mean anti-M antibody titer was 3.35 +/- 0.53 in sera from patients with SSPE compared with 3.05 +/- 0.66 in sera from patients with other neurological diseases and 3.12 +/- 0.74 in sera from healthy individuals. Geometric mean anti-M antibody titer was 2.59 +/- 0.86 in the CSF of eight patients with SSPE compared with a mean less than 1.00 for patients with other neurological disease (controls). Intrathecal synthesis of anti-M or anti-NC antibodies was established in four patients with SSPE. The cellular immune responses to M, F, HA, and NC proteins were examined in four of the patients with SSPE by lymphoproliferation and were not significantly different from those in five healthy controls. The results demonstrate humoral and cellular immune responses to M protein in patients with SSPE and indicate that it is unlikely that a defect in the immune response to this virus component accounts for the disease process in the patients studied. Images PMID:3373575

  2. Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients.

    PubMed

    Ostrowski, Maggie A; Huang, Eva Y; Surya, Vinay N; Poplawski, Charlotte; Barakat, Joseph M; Lin, Gigi L; Fuller, Gerald G; Dunn, Alexander R

    2016-07-01

    Endothelial cells (ECs) line the interior of blood and lymphatic vessels and experience spatially varying wall shear stress (WSS) as an intrinsic part of their physiological function. How ECs, and mammalian cells generally, sense spatially varying WSS remains poorly understood, due in part to a lack of convenient tools for exposing cells to spatially varying flow patterns. We built a multiplexed device, termed a 6-well impinging flow chamber, that imparts controlled WSS gradients to a six-well tissue culture plate. Using this device, we investigated the migratory response of lymphatic microvascular ECs, umbilical vein ECs, primary fibroblasts, and epithelial cells to WSS gradients on hours to days timescales. We observed that lymphatic microvascular ECs migrate upstream, against the direction of flow, a response that was unique among all the cells types investigated here. Time-lapse, live cell imaging revealed that the microtubule organizing center relocated to the upstream side of the nucleus in response to the applied WSS gradient. To further demonstrate the utility of our device, we screened for the involvement of canonical signaling pathways in mediating this upstream migratory response. These data highlight the importance of WSS magnitude and WSS spatial gradients in dictating the cellular response to fluid flow.

  3. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    PubMed Central

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  4. Investigating the Cellular and Metabolic Responses of World-Class Canoeists Training: A Sportomics Approach

    PubMed Central

    Coelho, Wagner Santos; Viveiros de Castro, Luis; Deane, Elizabeth; Magno-França, Alexandre; Bassini, Adriana; Cameron, Luiz-Claudio

    2016-01-01

    (1) Background: We have been using the Sportomics approach to evaluate biochemical and hematological changes in response to exercise. The aim of this study was to evaluate the metabolic and hematologic responses of world-class canoeists during a training session; (2) Methods: Blood samples were taken at different points and analyzed for their hematological properties, activities of selected enzymes, hormones, and metabolites; (3) Results: Muscle stress biomarkers were elevated in response to exercise which correlated with modifications in the profile of white blood cells, where a leukocyte rise was observed after the canoe session. These results were accompanied by an increase in other exercise intensity parameters such as lactatemia and ammonemia. Adrenocorticotropic hormone and cortisol increased during the exercise sessions. The acute rise in both erythrocytes and white blood profile were probably due to muscle cell damage, rather than hepatocyte integrity impairment; (4) Conclusion: The cellular and metabolic responses found here, together with effective nutrition support, are crucial to understanding the effects of exercise in order to assist in the creation of new training and recovery planning. Also we show that Sportomics is a primal tool for training management and performance improvement, as well as to the understanding of metabolic response to exercise. PMID:27845704

  5. Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients.

    PubMed

    Ortiz-Sánchez, Juan P; Cabrera-Chávez, Francisco; de la Barca, Ana M Calderón

    2013-10-21

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet.

  6. Humoral and cellular immune responses after influenza vaccination in patients with postcancer fatigue

    PubMed Central

    Prinsen, Hetty; van Laarhoven, Hanneke WM; Pots, Jeanette M; Duiveman-de Boer, Tjitske; Mulder, Sasja F; van Herpen, Carla ML; Jacobs, Joannes FM; Leer, Jan Willem H; Bleijenberg, Gijs; Stelma, Foekje F; Torensma, Ruurd; de Vries, I Jolanda M

    2015-01-01

    The aim of this study was to compare humoral and cellular immune responses to influenza vaccination in cancer survivors with and without severe symptoms of fatigue. Severely fatigued (n = 15) and non-fatigued (n = 12) disease-free cancer survivors were vaccinated against seasonal influenza. Humoral immunity was evaluated at baseline and post-vaccination by a hemagglutination inhibition assay. Cellular immunity was evaluated at baseline and post-vaccination by lymphocyte proliferation and activation assays. Regulatory T cells were measured at baseline by flow cytometry and heat-shock protein 90 alpha levels by ELISA. Comparable humoral immune responses were observed in fatigued and non-fatigued patients, both pre- and post-vaccination. At baseline, fatigued patients showed a significantly diminished cellular proliferation upon virus stimulation with strain H3N2 (1414 ± 1201 counts), and a trend in a similar direction with strain H1N1 (3025 ± 2339 counts), compared to non-fatigued patients (3099 ± 2401 and 5877 ± 4604 counts, respectively). The percentage of regulatory T lymphocytes was significantly increased (4.4 ± 2.1% versus 2.4 ± 0.8%) and significantly lower amounts of interleukin 2 were detected prior to vaccination in fatigued compared to non-fatigued patients (36.3 ± 44.3 pg/ml vs. 94.0 ± 45.4 pg/ml with strain H3N2 and 28.4 ± 44.0 pg/ml versus 74.5 ± 56.1 pg/ml with strain H1N1). Pre-vaccination heat-shock protein 90 alpha concentrations, post-vaccination cellular proliferation, and post-vaccination cytokine concentrations did not differ between both groups. In conclusion, influenza vaccination is favorable for severely fatigued cancer survivors and should be recommended when indicated. However, compared to non-fatigued cancer survivors, fatigued cancer survivors showed several significant differences in immunological reactivity at baseline, which warrants further investigation. PMID:25996472

  7. Humoral and cellular immune responses after influenza vaccination in patients with postcancer fatigue.

    PubMed

    Prinsen, Hetty; van Laarhoven, Hanneke W M; Pots, Jeanette M; Duiveman-de Boer, Tjitske; Mulder, Sasja F; van Herpen, Carla M L; Jacobs, Joannes F M; Leer, Jan Willem H; Bleijenberg, Gijs; Stelma, Foekje F; Torensma, Ruurd; de Vries, I Jolanda M

    2015-01-01

    The aim of this study was to compare humoral and cellular immune responses to influenza vaccination in cancer survivors with and without severe symptoms of fatigue. Severely fatigued (n = 15) and non-fatigued (n = 12) disease-free cancer survivors were vaccinated against seasonal influenza. Humoral immunity was evaluated at baseline and post-vaccination by a hemagglutination inhibition assay. Cellular immunity was evaluated at baseline and post-vaccination by lymphocyte proliferation and activation assays. Regulatory T cells were measured at baseline by flow cytometry and heat-shock protein 90 alpha levels by ELISA. Comparable humoral immune responses were observed in fatigued and non-fatigued patients, both pre- and post-vaccination. At baseline, fatigued patients showed a significantly diminished cellular proliferation upon virus stimulation with strain H3N2 (1414 ± 1201 counts), and a trend in a similar direction with strain H1N1 (3025 ± 2339 counts), compared to non-fatigued patients (3099 ± 2401 and 5877 ± 4604 counts, respectively). The percentage of regulatory T lymphocytes was significantly increased (4.4 ± 2.1% versus 2.4 ± 0.8%) and significantly lower amounts of interleukin 2 were detected prior to vaccination in fatigued compared to non-fatigued patients (36.3 ± 44.3 pg/ml vs. 94.0 ± 45.4 pg/ml with strain H3N2 and 28.4 ± 44.0 pg/ml versus 74.5 ± 56.1 pg/ml with strain H1N1). Pre-vaccination heat-shock protein 90 alpha concentrations, post-vaccination cellular proliferation, and post-vaccination cytokine concentrations did not differ between both groups. In conclusion, influenza vaccination is favorable for severely fatigued cancer survivors and should be recommended when indicated. However, compared to non-fatigued cancer survivors, fatigued cancer survivors showed several significant differences in immunological reactivity at baseline, which warrants further investigation.

  8. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.

    PubMed

    Tam, Roger Y; Smith, Laura J; Shoichet, Molly S

    2017-03-27

    Conventional cell culture techniques using 2D polystyrene or glass have provided great insight into key biochemical mechanisms responsible for cellular events such as cell proliferation, differentiation, and cell-cell interactions. However, the physical and chemical properties of 2D culture in vitro are dramatically different than those found in the native cellular microenvironment in vivo. Cells grown on 2D substrates differ significantly from those grown in vivo, and this explains, in part, why many promising drug candidates discovered through in vitro drug screening assays fail when they are translated to in vivo animal or human models. To overcome this obstacle, 3D cell culture using biomimetic hydrogels has emerged as an alternative strategy to recapitulate native cell growth in vitro. Hydrogels, which are water-swollen polymers, can be synthetic or naturally derived. Many methods have been developed to control the physical and chemical properties of the hydrogels to match those found in specific tissues. Compared to 2D culture, cells cultured in 3D gels with the appropriate physicochemical cues can behave more like they naturally do in vivo. While conventional hydrogels involve modifications to the bulk material to mimic the static aspects of the cellular microenvironment, recent progress has focused on using more dynamic hydrogels, the chemical and physical properties of which can be altered with external stimuli to better mimic the dynamics of the native cellular microenvironment found in vivo. In this Account, we describe our progress in designing stimuli-responsive, optically transparent hydrogels that can be used as biomimetic extracellular matrices (ECMs) to study cell differentiation and migration in the context of modeling the nervous system and cancer. Specifically, we developed photosensitive agarose and hyaluronic acid hydrogels that are activated by single or two-photon irradiation for biomolecule immobilization at specific volumes within the 3D

  9. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome

    PubMed Central

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W.; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  10. Cellular Immune Responses against Simian T-Lymphotropic Virus Type 1 Target Tax in Infected Baboons

    PubMed Central

    Castro, Iris; Giret, Teresa M.; Magnani, Diogo M.; Maxwell, Helen S.; Umland, Oliver; Perry, Jessica K.; Pecotte, Jerilyn K.; Brasky, Kathleen M.; Barber, Glen N.; Desrosiers, Ronald C.

    2016-01-01

    ABSTRACT There are currently 5 million to 10 million human T-lymphotropic virus type 1 (HTLV-1)-infected people, and many of them will develop severe complications resulting from this infection. A vaccine is urgently needed in areas where HTLV-1 is endemic. Many vaccines are best tested in nonhuman primate animal models. As a first step in designing an effective HTLV-1 vaccine, we defined the CD8+ and CD4+ T cell response against simian T-lymphotropic virus type 1 (STLV-1), a virus closely related to HTLV-1, in olive baboons (Papio anubis). Consistent with persistent antigenic exposure, we observed that STLV-1-specific CD8+ T cells displayed an effector memory phenotype and usually expressed CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α). To assess the viral targets of the cellular immune response in STLV-1-infected animals, we used intracellular cytokine staining to detect responses against overlapping peptides covering the entire STLV-1 proteome. Our results show that, similarly to humans, the baboon CD8+ T cell response narrowly targeted the Tax protein. Our findings suggest that the STLV-1-infected baboon model may recapitulate some of the important aspects of the human response against HTLV-1 and could be an important tool for the development of immune-based therapy and prophylaxis. IMPORTANCE HTLV-1 infection can lead to many different and often fatal conditions. A vaccine deployed in areas of high prevalence might reduce the incidence of HTLV-1-induced disease. Unfortunately, there are very few animal models of HTLV-1 infection useful for testing vaccine approaches. Here we describe cellular immune responses in baboons against a closely related virus, STLV-1. We show for the first time that the immune response against STLV-1 in naturally infected baboons is largely directed against the Tax protein. Similar findings in humans and the sequence similarity between the human and baboon viruses suggest that the STLV-1-infected baboon

  11. Cellular immune responses and occult infection in seronegative heterosexual partners of chronic hepatitis C patients.

    PubMed

    Roque-Cuéllar, M C; Sánchez, B; García-Lozano, J R; Praena-Fernández, J M; Núñez-Roldán, A; Aguilar-Reina, J

    2011-10-01

    It is unknown whether hepatitis C virus (HCV)-specific cellular immune responses can develop in seronegative sexual partners of chronically HCV-infected patients and whether they have occult infection. Thirty-one heterosexual partners of patients with chronic HCV were studied, fifteen of them with HCV transmission risks. Ten healthy individuals and 17 anti-HCV seropositive patients, without viremia, were used as controls. Virus-specific CD4+ and CD8+ T-cell responses were measured by flow cytometry against six HCV peptides, situated within the nonstructural (NS) proteins NS3, NS4 and NS5, through intracellular detection of gamma interferon (IFN-γ) or interleukin 4 (IL-4) production and CD69 expression. Sexual partners had a higher production of IFN-γ and IL-4 by CD4+ cells against NS3-p124 (P = 0.003), NS5b-p257 (P = 0.005) and NS5b-p294 (P = 0.012), and CD8+ cells against NS3-p124 (P = 0.002), NS4b-p177 (P = 0.001) and NS3-p294 (P = 0.004) as compared with healthy controls. We observed elevated IFN-γ production by CD4+ T cells against NS5b-p257 (P = 0.042) and NS5b-p294 (P = 0.009) in the sexual partners with HCV transmission risks (sexual, professional and familial altogether) than in those without risks. RNA was extracted from peripheral blood mononuclear cells (PBMC), and detection of HCV-RNA positive and replicative (negative) strands was performed by strand-specific real-time PCR. In four sexual partners, the presence of positive and negative HCV- RNA strands in PBMC was confirmed. Hence, we found an HCV-specific cellular immune response as well as occult HCV infection in seronegative and aviremic sexual partners of chronically HCV-infected patients.

  12. Repeatedly administered antidepressant drugs modulate humoral and cellular immune response in mice through action on macrophages

    PubMed Central

    Kozlowski, Michael; Bryniarski, Pawel; Strobel, Spencer; Bryk, Agata; Myszka, Michal; Tyszka, Anna; Kuszmiersz, Piotr; Nowakowski, Jaroslaw; Filipczak-Bryniarska, Iwona

    2016-01-01

    Depression is associated with an altered immune response, which could be normalized by antidepressant drugs. However, little is known about the influence of antidepressants on the peripheral immune response and function of macrophages in individuals not suffering from depression. Our studies were aimed at determining the influence of antidepressant drugs on the humoral and cellular immune response in mice. Mice were treated intraperitoneally with imipramine, fluoxetine, venlafaxine, or moclobemide and contact immunized with trinitrophenyl hapten followed by elicitation and measurement of contact sensitivity by ear swelling response. Peritoneal macrophages from drug-treated mice were either pulsed with sheep erythrocytes or conjugated with trinitrophenyl and transferred into naive recipients to induce humoral or contact sensitivity response, respectively. Secretion of reactive oxygen intermediates, nitric oxide, and cytokines by macrophages from drug-treated mice was assessed, respectively, in chemiluminometry, Griess-based colorimetry and enzyme-linked immunosorbent assay, and the expression of macrophage surface markers was analyzed cytometrically. Treatment of mice with fluoxetine, venlafaxine, and moclobemide results in suppression of humoral and cell-mediated immunity with a reduction of the release of macrophage proinflammatory mediators and the expression of antigen-presentation markers. In contrast, treatment with imipramine enhanced the humoral immune response and macrophage secretory activity but slightly suppressed active contact sensitivity. Our studies demonstrated that systemically delivered antidepressant drugs modulate the peripheral humoral and cell-mediated immune responses, mostly through their action on macrophages. Imipramine was rather proinflammatory, whereas other tested drugs expressed immunosuppressive potential. Current observations may be applied to new therapeutic strategies dedicated to various disorders associated with excessive

  13. Cellular Immune Responses of Preterm Infants after Vaccination with Whole-Cell or Acellular Pertussis Vaccines▿

    PubMed Central

    Vermeulen, Françoise; Verscheure, Virginie; Damis, Eliane; Vermeylen, Danièle; Leloux, Gaëlle; Dirix, Violette; Locht, Camille; Mascart, Françoise

    2010-01-01

    Based on studies reporting specific antibody titers, it is recommended to vaccinate preterm infants against Bordetella pertussis according to their chronological age. However, as specific T-cell responses also are involved in the protection against B. pertussis, we have determined whether highly preterm infants (<31 weeks) are able to mount these immune responses during vaccination. Forty-eight premature infants were vaccinated at 2, 3, and 4 months of their chronological age with an acellular (Pa; n = 24) or a whole-cell (Pw; n = 24) tetravalent diphtheria-tetanus-pertussis-polio vaccine, and blood samples were collected at 2, 3, and 6 months of age. Most of the Pa- and Pw-vaccinated infants developed at 3 or 6 months of age a gamma interferon (IFN-γ) response to the B. pertussis antigens, accompanied by an interleukin-5 (IL-5) and IL-13 secretion for the Pa-vaccinated infants. No association was found between a very low infant birth weight, the occurrence of severe infections, and corticosteroid treatment or the administration of gammaglobulins with a low level of antigen-induced IFN-γ secretion. We conclude that like full-term infants, most preterm infants are able to mount a specific cellular immune response to the administration of the first doses of an acellular or a whole-cell pertussis vaccine. PMID:20016042

  14. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals

    PubMed Central

    Mckenzie, Grahame; Ward, George; Stallwood, Yvette; Briend, Emmanuel; Papadia, Sofia; Lennard, Andrew; Turner, Martin; Champion, Brian; Hardingham, Giles E

    2006-01-01

    Background Notch plays a wide-ranging role in controlling cell fate, differentiation and development. The PI3K-Akt pathway is a similarly conserved signalling pathway which regulates processes such as differentiation, proliferation and survival. Mice with disrupted Notch and PI3K signalling show phenotypic similarities during haematopoietic cell development, suggesting functional interaction between these pathways. Results We show that cellular responsiveness to Notch signals depends on the activity of the PI3K-Akt pathway in cells as diverse as CHO cells, primary T-cells and hippocampal neurons. Induction of the endogenous PI3K-Akt pathway in CHO cells (by the insulin pathway), in T-cells (via TCR activation) or in neurons (via TrKB activation) potentiates Notch-dependent responses. We propose that the PI3K-Akt pathway exerts its influence on Notch primarily via inhibition of GSK3-beta, a kinase known to phosphorylate and regulate Notch signals. Conclusion The PI3K-Akt pathway acts as a "gain control" for Notch signal responses. Since physiological levels of intracellular Notch are often low, coincidence with PI3K-activation may be crucial for induction of Notch-dependent responses. PMID:16507111

  15. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  16. Cellular response to empty and palladium-conjugated amino-polystyrene nanospheres uptake: a proteomic study.

    PubMed

    Pietrovito, Laura; Cano-Cortés, Victoria; Gamberi, Tania; Magherini, Francesca; Bianchi, Laura; Bini, Luca; Sánchez-Martín, Rosario M; Fasano, Mauro; Modesti, Alessandra

    2015-01-01

    Amino polystyrene nanospheres are shown to be efficient and controllable delivery devices, capable of transporting several bioactive cargoes. Recently, the design of a new device for prodrug activation, using these nanospheres with palladium encapsulated onto them, has been developed successfully. To study the influence of the cellular uptake of these nanodevices, we investigated the cellular response of human embryonic kidney cells (HEK-293T) and murine fibroblasts (L929) treated with empty or palladium-conjugated amino polystyrene nanospheres. To identify differentially expressed proteins, we performed an exhaustive proteomic analysis. In accordance with genomic data previously obtained, the uptake of the empty nanospheres did not induce significant variation in protein expression levels. Following the treatment with palladium-conjugated nanospheres, some changes in protein profiles in both cell lines were observed; these alterations affect proteins involved in cell metabolism and intracellular transport. No key regulator of the cell cycle result was differentially expressed after the treatment, confirming that these innovative drug delivery systems are harmless and well tolerated by the cells.

  17. Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells

    PubMed Central

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-01-01

    Bioabsorbable metal zinc (Zn) is a promising new generation of implantable scaffold for cardiovascular and orthopedic applications. In cardiovascular stent applications, zinc ion (Zn2+) will be gradually released into the surrounding vascular tissues from such Zn-containing scaffolds after implantation. However, the interactions between vascular cells and Zn2+ are still largely unknown. We explored the short-term effects of extracellular Zn2+ on human smooth muscle cells (SMCs) up to 24 h, and an interesting biphasic effect of Zn2+ was observed. Lower concentrations (<80 μM) of Zn2+ had no adverse effects on cell viability but promoted cell adhesion, cell spreading, cell proliferation, cell migration, and enhanced the expression of F-actin and vinculin. Cells treated with such lower concentrations of Zn2+ displayed an elongated shape compared to controls without any treatment. In contrast, cells treated with higher Zn2+ concentrations (80–120 μM) had opposite cellular responses and behaviors. Gene expression profiles revealed that the most affected functional genes were related to angiogenesis, inflammation, cell adhesion, vessel tone, and platelet aggregation. Results indicated that Zn has interesting concentration-dependent biphasic effects on SMCs with low concentrations being beneficial to cellular functions. PMID:27248371

  18. Comparison of cellular responses induced by low level light in different cell types

    NASA Astrophysics Data System (ADS)

    Huang, Ying-Ying; Chen, Aaron C.-H.; Sharma, Sulbha K.; Wu, Qiuhe; Hamblin, Michael R.

    2010-02-01

    Discoveries are rapidly being made in multiple laboratories that shed "light" on the fundamental molecular and cellular mechanisms underlying the use of low level light therapy (LLLT) in vitro, in animal models and in clinical practice. Increases in cellular levels of respiration, in cytochrome c oxidase activity, in ATP levels and in cyclic AMP have been found. Increased expression of reactive oxygen species and release of nitric oxide have also been shown. In order for these molecular changes to have a major effect on cell behavior, it is likely that various transcription factors will be activated, possibly via different signal transduction pathways. In this report we compare and contrast the effects of LLLT in vitro on murine embryonic fibroblasts, primary cortical neurons, cardiomyocytes and bone-marrow derived dendritic cells. We also examined two human cell lines, HeLa cancer cells and HaCaT keratinocytes. The effects of 810-nm near-infra-red light delivered at low and high fluences were addressed. Reactive oxygen species generation, transcription factor activation and ATP increases are reported. The data has led to the hypothesis that cells with a high level of mitochondrial activity (mitochondrial membrane potential) have a higher response to light than cells with low mitochondrial activity.

  19. Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants

    PubMed Central

    Filippou, Panagiota; Antoniou, Chrystalla

    2011-01-01

    Effects of water stress on plants have been well-documented. However, the combined responses to drought and rewatering and their underlying mechanisms are relatively unknown. The present study attempts to describe spatiotemporal alterations in the physiology and cellular status of Medicago truncatula tissues that result from and subsequently follow a period of moderate water deficit. Physiological processes and cellular damage levels were monitored in roots and leaves by determining lipid peroxidation levels, as well as nitric oxide and hydrogen peroxide content, further supported by stomatal conductance and chlorophyll fluorescence measurements in leaves. During water stress, cells in both organs displayed increased damage levels and reactive oxygen and nitrogen species content, while leaves showed reduced stomatal conductance. Furthermore, both tissues demonstrated increased proline content. Upon rewatering, plants recovered displaying readings similar to pre-stress control conditions. Furthermore, molecular analysis of antioxidant gene expression by quantitative real-time RT-PCR revealed differential spatiotemporal regulation in a number of genes examined (including catalase, cytosolic ascorbate peroxidase, copper/zinc and iron superoxide dismutase and alternative oxidase). Overall, M. truncatula plants demonstrated increased sensitivity to drought-induced oxidative damage; however, this was reversed following rewatering indicating a great elasticity in the plant's capacity to cope with free oxygen and nitrogen radicals. PMID:21330785

  20. Cellular mechanisms for response heterogeneity among L2/3 pyramidal cells in whisker somatosensory cortex.

    PubMed

    Elstrott, Justin; Clancy, Kelly B; Jafri, Haani; Akimenko, Igor; Feldman, Daniel E

    2014-07-15

    Whisker deflection evokes sparse, low-probability spiking among L2/3 pyramidal cells in rodent somatosensory cortex (S1), with spiking distributed nonuniformly between more and less responsive cells. The cellular and local circuit factors that determine whisker responsiveness across neurons are unclear. To identify these factors, we used two-photon calcium imaging and loose-seal recording to identify more and less responsive L2/3 neurons in S1 slices in vitro, during feedforward recruitment of the L2/3 network by L4 stimulation. We observed a broad gradient of spike recruitment thresholds within local L2/3 populations, with low- and high-threshold cells intermixed. This recruitment gradient was significantly correlated across different L4 stimulation sites, and between L4-evoked and whisker-evoked responses in vivo, indicating that a substantial component of responsiveness is independent of tuning to specific feedforward inputs. Low- and high-threshold L2/3 pyramidal cells differed in L4-evoked excitatory synaptic conductance and intrinsic excitability, including spike threshold and the likelihood of doublet spike bursts. A gradient of intrinsic excitability was observed across neurons. Cells that spiked most readily to L4 stimulation received the most synaptic excitation but had the lowest intrinsic excitability. Low- and high-threshold cells did not differ in dendritic morphology, passive membrane properties, or L4-evoked inhibitory conductance. Thus multiple gradients of physiological properties exist across L2/3 pyramidal cells, with excitatory synaptic input strength best predicting overall spiking responsiveness during network recruitment.

  1. Thioredoxin-dependent Redox Regulation of Cellular Signaling and Stress Response through Reversible Oxidation of Methionines

    SciTech Connect

    Bigelow, Diana J.; Squier, Thomas C.

    2011-06-01

    Generation of reactive oxygen species (ROS) is a common feature of many forms of stress to which plants are exposed. Successful adaptation to changing environmental conditions requires sensitive sensors of ROS such as protein-bound methionines that are converted to their corresponding methionine sulfoxides, which in turn can influence cellular signaling pathways. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress response in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the sensitivity of individual methionines within plant and animal calmodulin to ROS, the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes.

  2. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization

    PubMed Central

    Maier, Patrick; Hartmann, Linda; Wenz, Frederik; Herskind, Carsten

    2016-01-01

    During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization. PMID:26784176

  3. Improvement influenza HA2 DNA vaccine cellular and humoral immune responses with Mx bio adjuvant.

    PubMed

    Soleimani, Sina; Shahsavandi, Shahla; Maddadgar, Omid

    2017-03-01

    Immunization with DNA vaccines as a novel alternative to conventional vaccination strategy requires adjuvant for improving vaccine efficacy. The conserved immunogenic HA2 subunit, which harbors neutralizing epitopes is a promising vaccine candidate against influenza viruses. In this study, for the first time we explore the idea of using host interferon inducible Mx protein to increase the immunogenicity of HA2 H9N2 influenza DNA vaccine. The potency and safety of the Mx adjuvanted-HA2 vaccine was evaluated in BALB/c mice by different prime-boost strategies. To assess the effect of the vaccination on the virus clearance rate, mice were challenged with homologous influenza virus. Administration of the adjuvanted vaccine and boosting with the same regimen could effectively enhance both humoral and cellular immune responses in treated mice. These data demonstrated that Mx as host defense peptide can be potentiated for improving influenza vaccine efficacy.

  4. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization.

    PubMed

    Maier, Patrick; Hartmann, Linda; Wenz, Frederik; Herskind, Carsten

    2016-01-14

    During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization.

  5. Cellular and molecular mechanisms for the bone response to mechanical loading

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.

    2001-01-01

    To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.

  6. Cellular responses evoked by different surface characteristics of intraosseous titanium implants.

    PubMed

    Feller, Liviu; Jadwat, Yusuf; Khammissa, Razia A G; Meyerov, Robin; Schechter, Israel; Lemmer, Johan

    2015-01-01

    The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration.

  7. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells.

    PubMed

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA1-LPA6) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA1 and LPA5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA1.

  8. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.

    PubMed

    Kumar, Sachin; Azam, Dilkash; Raj, Shammy; Kolanthai, Elayaraja; Vasu, K S; Sood, A K; Chatterjee, Kaushik

    2016-05-01

    Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81° to 87° whereas GO decreased it to 77°. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites.

  9. In situ CUTANEOUS CELLULAR IMMUNE RESPONSE IN DOGS NATURALLY AFFECTED BY VISCERAL LEISHMANIASIS

    PubMed Central

    ROSSI, Claudio Nazaretian; TOMOKANE, Thaise Yumie; BATISTA, Luis Fábio da Silva; MARCONDES, Mary; LARSSON, Carlos Eduardo; LAURENTI, Márcia Dalastra

    2016-01-01

    SUMMARY Thirty-eight dogs naturally affected by visceral leishmaniasis were recruited in Araçatuba, São Paulo State, Brazil - an endemic area for visceral leishmaniasis. The animals were distributed into one of two groups, according to their clinical and laboratory features, as either symptomatic or asymptomatic dogs. Correlations between clinical features and inflammatory patterns, cellular immune responses, and parasitism in the macroscopically uninjured skin of the ear were investigated. Histological skin patterns were similar in both groups, and were generally characterized by a mild to intense inflammatory infiltrate in the dermis, mainly consisting of mononuclear cells. There was no difference in the number of parasites in the skin (amastigotes/mm²) between the two groups. Concerning the characterization of the cellular immune response, the number of positive inducible nitric oxide synthase (iNOS+) cells was higher in the dermis of symptomatic than in asymptomatic dogs (p = 0.0368). A positive correlation between parasite density and macrophages density (p = 0.031), CD4+ T-cells (p = 0.015), and CD8+ T-cells (p = 0.023) was observed. Furthermore, a positive correlation between density of iNOS+ cells and CD3+ T-cells (p = 0.005), CD4+ T-cells (p = 0.001), and CD8+ T-cells (p = 0.0001) was also found. The results showed the existence of a non-specific chronic inflammatory infiltrate in the dermis of dogs affected by visceral leishmaniasis, characterized by the presence of activated macrophages and T-lymphocytes, associated to cutaneous parasitism, independent of clinical status. PMID:27410908

  10. Transcriptional and cellular responses of the green alga Chlamydomonas reinhardtii to perfluoroalkyl phosphonic acids.

    PubMed

    Sanchez, David; Houde, Magali; Douville, Mélanie; De Silva, Amila O; Spencer, Christine; Verreault, Jonathan

    2015-03-01

    Perfluoroalkyl phosphonic acids (PFPAs), a new class of perfluoroalkyl substances used primarily in the industrial sector as surfactants, were recently detected in surface water and wastewater treatment plant effluents. Toxicological effects of PFPAs have as yet not been investigated in aquatic organisms. The objective of the present study was to evaluate the effects of perfluorooctylphosphonic acid (C8-PFPA) and perfluorodecylphosphonic acid (C10-PFPA) exposure (31-250μg/L) on Chlamydomonas reinhardtii using genomic (qRT-PCR), biochemical (reactive oxygen species production (ROS) and lipid peroxidation), and physiological (cellular viability) indicators. After 72h of exposure, no differences were observed in cellular viability for any of the two perfluorochemicals. However, increase in ROS concentrations (36% and 25.6% at 125 and 250μg/L, respectively) and lipid peroxidation (35.5% and 35.7% at 125 and 250μg/L, respectively) was observed following exposure to C10-PFPA. C8-PFPA exposure did not impact ROS production and lipid peroxidation in algae. To get insights into the molecular response and modes of action of PFPA toxicity, qRT-PCR-based assays were performed to analyze the transcription of genes related to antioxidant responses including superoxide dismutase (SOD-1), glutathione peroxidase (GPX), catalase (CAT), glutathione S-transferase (GST), and ascorbate peroxidase (APX I). Genomic analyses revealed that the transcription of CAT and APX I was up-regulated for all the C10-PFPA concentrations. In addition, PFPAs were quantified in St. Lawrence River surface water samples and detected at concentrations ranging from 250 to 850pg/L for C8-PFPA and 380 to 650pg/L for C10-PFPA. This study supports the prevalence of PFPAs in the aquatic environment and suggests potential impacts of PFPA exposure on the antioxidant defensive system in C. reinhardtii.

  11. Radiation-quality dependent cellular response in mutation induction in normal human cells.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Uchihori, Yukio; Kitamura, Hisashi; Liu, Cui Hua

    2009-09-01

    We studied cellular responses in normal human fibroblasts induced with low-dose (rate) or low-fluence irradiations of different radiation types, such as gamma rays, neutrons and high linear energy transfer (LET) heavy ions. The cells were pretreated with low-dose (rate) or low-fluence irradiations (approximately 1 mGy/7-8 h) of 137Cs gamma rays, 241Am-Be neutrons, helium, carbon and iron ions before irradiations with an X-ray challenging dose (1.5 Gy). Helium (LET = 2.3 keV/microm), carbon (LET = 13.3 keV/microm) and iron (LET = 200 keV/microm) ions were produced by the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. No difference in cell-killing effect, measured by a colony forming assay, was observed among the pretreatment with different radiation types. In mutation induction, which was detected in the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus to measure 6-thioguanine resistant clones, there was no difference in mutation frequency induced by the X-ray challenging dose between unpretreated and gamma-ray pretreated cells. In the case of the pretreatment of heavy ions, X-ray-induced mutation was around 1.8 times higher in helium-ion pretreated and 4.0 times higher in carbon-ion pretreated cells than in unpretreated cells (X-ray challenging dose alone). However, the mutation frequency in cells pretreated with iron ions was the same level as either unpretreated or gamma-ray pretreated cells. In contrast, it was reduced at 0.15 times in cells pretreated with neutrons when compared to unpretreated cells. The results show that cellular responses caused by the influence of hprt mutation induced in cells pretreated with low-dose-rate or low-fluence irradiations of different radiation types were radiation-quality dependent manner.

  12. Dynamic Deformation and Fragmentation Response of Maraging Steel Linear Cellular Alloy

    NASA Astrophysics Data System (ADS)

    Jakus, Adam; Fredenburg, D. A.; McCoy, T.; Thadhani, N. N.; Cochran, J.

    2011-06-01

    The dynamic deformation and fragmentation response of 25% dense 9-cell linear cellular alloy (LCA) made of unaged 250 maraging steel, fabricated using a direct reduction and extrusion technique, is investigated. Explicit finite element simulations were implemented using AUTODYN. The maraging steel properties were defined using a Johnson-Cook strength model with previously validated parameters. Rod-on-anvil impact tests were performed using the 7.6 mm helium gas gun and the transient deformation and fragmentation response was recorded with high-speed imaging. For purpose of comparison, the response of 25% dense hollow cylinders of same density as the 9-cell LCA was also studied. Analysis of observed states of specimens and finite element simulations reveal that in the case of the 9-cell LCA, dissipation of stress and strain occurs along the interior cell wells resulting in significant and ubiquitous buckling prior to confined fragmentation. In comparison, the simple hollow cylinder undergoes significant radial lipping, eventually producing larger sized, external fragments. DTRA Grant No. HDTRA1-07-1-0018 and NDSEG Fellowship Program.

  13. Cellular Stress Response and Immune Signaling in Retinal Ischemia–Reperfusion Injury

    PubMed Central

    Minhas, Gillipsie; Sharma, Jyoti; Khan, Nooruddin

    2016-01-01

    Ischemia–reperfusion injury is a well-known pathological hallmark associated with diabetic retinopathy, glaucoma, and other related retinopathies that ultimately can lead to visual impairment and vision loss. Retinal ischemia pathogenesis involves a cascade of detrimental events that include energy failure, excitotoxic damage, calcium imbalance, oxidative stress, and eventually cell death. Retina for a long time has been known to be an immune privileged site; however, recent investigations reveal that retina, as well as the central nervous system, elicits immunological responses during various stress cues. Stress condition, such as reperfusion of blood supply post-ischemia results in the sequestration of different immune cells, inflammatory mediators including cytokines, chemokines, etc., to the ischemic region, which in turn facilitates induction of inflammatory conditions in these tissues. The immunological activation during injury or stress per se is beneficial for repair and maintenance of cellular homeostasis, but whether the associated inflammation is good or bad, during ischemia–reperfusion injury, hitherto remains to be explored. Keeping all these notions in mind, the current review tries to address the immune response and host stress response mechanisms involved in ischemia–reperfusion injury with the focus on the retina. PMID:27822213

  14. Gene Expression Profiling Reveals Early Cellular Responses to Intracellular Magnetic Labeling with Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Kedziorek, Dorota A.; Muja, Naser; Walczak, Piotr; Ruiz-Cabello, Jesus; Gilad, Assaf A.; Jie, Chunfa C.; Bulte, Jeff W. M.

    2010-01-01

    With MRI (stem) cell tracking having entered the clinic, studies on the cellular genomic response toward labeling are warranted. Gene expression profiling was applied to C17.2 neural stem cells following superparamagnetic iron oxide/PLL (poly-L-lysine) labeling over the course of 1 week. Relative to unlabeled cells, less than 1% of genes (49 total) exhibited greater than 2-fold difference in expression in response to superparamagnetic iron oxide/PLL labeling. In particular, transferrin receptor 1 (Tfrc) and heme oxygenase 1 (Hmox1) expression was downregulated early, whereas genes involved in lysosomal function (Sulf1) and detoxification (Clu, Cp, Gstm2, Mgst1) were upregulated at later time points. Relative to cells treated with PLL only, cells labeled with superparamagnetic iron oxide/PLL complexes exhibited differential expression of 1399 genes. Though these differentially expressed genes exhibited altered expression over time, the overall extent was limited. Gene ontology analysis of differentially expressed genes showed that genes encoding zinc-binding proteins are enriched after superparamagnetic iron oxide/PLL labeling relative to PLL only treatment, whereas members of the apoptosis/ programmed cell death pathway did not display increased expression. Overexpression of the differentially expressed genes Rnf138 and Abcc4 were confirmed by quantitative real-time polymerase chain reaction. These results demonstrate that, although early reactions responsible for iron homeostasis are induced, overall neural stem cell gene expression remains largely unaltered following superparamagnetic iron oxide/PLL labeling. PMID:20373404

  15. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    PubMed

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen.

  16. FBXW7 modulates cellular stress response and metastatic potential via HSF1 post-translational modification

    PubMed Central

    Aranda-Orgilles, Beatriz; Lui, Kevin; Aydin, Iraz T.; Trimarchi, Thomas; Darvishian, Farbod; Salvaggio, Christine; Zhong, Judy; Bhatt, Kamala; Chen, Emily I.; Celebi, Julide T.; Lazaris, Charalampos; Tsirigos, Aristotelis; Osman, Iman; Hernando, Eva; Aifantis, Iannis

    2015-01-01

    Heat-shock factor 1 (HSF1) orchestrates the heat-shock response in eukaryotes. Although this pathway has been evolved to help cells adapt in the presence of challenging conditions, it is co-opted in cancer to support malignancy. However, the mechanisms that regulate HSF1 and thus cellular stress response are poorly understood. Here we show that the ubiquitin ligase FBXW7 α interacts with HSF1 through a conserved motif phosphorylated by GSK3β and ERK1. FBXW7α ubiquitylates HSF1 and loss of FBXW7α results in impaired degradation of nuclear HSF1 and defective heat-shock response attenuation. FBXW7α is either mutated or transcriptionally downregulated in melanoma and HSF1 nuclear stabilization correlates with increased metastatic potential and disease progression. FBXW7α deficiency and subsequent HSF1 accumulation activates an invasion-supportive transcriptional program and enhances the metastatic potential of human melanoma cells. These findings identify a post-translational mechanism of regulation of the HSF1 transcriptional program both in the presence of exogenous stress and in cancer. PMID:25720964

  17. A mathematical model representing cellular immune development and response to Salmonella of chicken intestinal tissue.

    PubMed

    Schokker, D; Bannink, A; Smits, M A; Rebel, J M J

    2013-08-07

    The aim of this study was to create a dynamic mathematical model of the development of the cellular branch of the intestinal immune system of poultry during the first 42 days of life and of its response towards an oral infection with Salmonella enterica serovar Enteritidis. The system elements were grouped in five important classes consisting of intra- and extracellular S. Enteritidis bacteria, macrophages, CD4+, and CD8+ cells. Twelve model variables were described by ordinary differential equations, including 50 parameters. Parameter values were estimated from literature or from own immunohistochemistry data. The model described the immune development in non-infected birds with an average R² of 0.87. The model showed less accuracy in reproducing the immune response to S. Enteritidis infection, with an average R² of 0.51, although model response did follow observed trends in time. Evaluation of the model against independent data derived from several infection trials showed strong/significant deviations from observed values. Nevertheless, it was shown that the model could be used to simulate the effect of varying input parameters on system elements response, such as the number of immune cells at hatch. Model simulations allowed one to study the sensitivity of the model outcome for varying model inputs. The initial number of immune cells at hatch was shown to have a profound impact on the predicted development in the number of systemic S. Enteritidis bacteria after infection. The theoretical contribution of this work is the identification of responses in system elements of the developing intestinal immune system of poultry obtaining a mathematical representation which allows one to explore the relationships between these elements under contrasting environmental conditions during different stages of intestinal development.

  18. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva

    PubMed Central

    CH Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-01-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates. PMID:27192936

  19. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva.

    PubMed

    Ch Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-10-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.

  20. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Kanehira, Koki; Taniguchi, Akiyoshi

    2013-02-01

    Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs) are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs) and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP) agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  1. Humoral and cellular immune responses to influenza vaccination in children with cancer receiving chemotherapy

    PubMed Central

    WONG-CHEW, ROSA MARÍA; FRÍAS, MARGARITA NAVA; GARCÍA-LEÓN, MIGUEL LEONARDO; ARRIAGA-PIZANO, LOURDES; SANSON, AURORA MEDINA; LOPEZ-MACÍAS, CONSTANTINO; ISIBASI, ARMANDO; SANTOS-PRECIADO, JOSÉ IGNACIO

    2012-01-01

    The immune response to influenza vaccination in children with cancer is controversial. The objective of this study was to characterize the cellular and humoral immune responses to an influenza vaccine in children with cancer who were receiving chemotherapy. In this study, children with cancer, who were not previously immunized, received an influenza vaccine via intramuscular injection. Blood samples were obtained prior to and at 4 weeks after immunization. Antibodies were measured using a hemagglutination inhibition (HI) assay. Cell-mediated immunity was measured by specific lymphoproliferation with 3H-thymidine incorporation and by measuring cell frequencies following staining with monoclonal antibodies (CD8, CD4, CD19, CD45RA and CD27) using flow cytometry following incubation with the influenza antigen for 5 days. Geometric mean titers (GMT), mean counts per minute (cpm), cell frequencies prior to and following vaccination and percentage patient responses were compared using the Mann-Whitney non-parametric U and Chi-square tests; where p<0.05 was considered to indicate a statistically significant result. A total of 56 children were included. Their mean age was 6.64±3.61 years. Acute lymphoblastic leukemia (ALL) was diagnosed in 75, solid tumors in 23 and lymphoma in 2% of the children. Subjects with titers ≥40 hemagglutination units (HU) increased from 43% prior to vaccination to 73% following vaccination (p=0.01), whereas the GMT increased from 31.35 [95% confidence interval (CI), 29–111] to 143.45 HU (95% CI, 284–640) following vaccination (p<0.001). An increase in CD45RA expression in CD8+ T cells was observed following vaccination (p=0.01). An increase in CD27 expression was observed in the CD4/8-negative cell population stimulated with the influenza antigen following vaccination (p<0.05). No serious adverse effects were observed. An increase in the seropositivity rate and GMT values following influenza vaccination were also observed. Influenza

  2. Only signaling modules that discriminate sharply between stimulatory and nonstimulatory inputs require basal signaling for fast cellular responses

    NASA Astrophysics Data System (ADS)

    Artomov, Mykyta; Kardar, Mehran; Chakraborty, Arup K.

    2010-09-01

    In many types of cells, binding of molecules to their receptors enables cascades of intracellular chemical reactions to take place (signaling). However, a low level of signaling also occurs in most unstimulated cells. Such basal signaling in resting cells can have many functions, one of which is that it is thought to be required for fast cellular responses to external stimuli. A mechanistic understanding of why this is true and which features of cellular signaling networks make basal signaling necessary for fast responses is unknown. We address this issue by obtaining the time required for activation of common types of cell signaling modules with and without basal signaling. Our results show that the absence of basal signaling does not have any dramatic effects on the response time for signaling modules that exhibit a graded response to increasing stimulus levels. In sharp contrast, signaling modules that exhibit sharp dose-response curves which discriminate sensitively between stimuli to which the cell needs to respond and low-grade inputs (or stochastic noise) require basal signaling for fast cellular responses. In such cases, we find that an optimal level of basal signaling balances the requirements for fast cellular responses while minimizing spurious activation without appropriate stimulation.

  3. Positron emission tomography in the quantification of cellular and biochemical responses to intrapulmonary particulates

    SciTech Connect

    Jones, Hazel A. . E-mail: hazel.jones@imperial.ac.uk; Hamacher, Kurt; Clark, John C.; Schofield, John B.; Krausz, Thomas; Haslett, Christopher; Boobis, Alan R.

    2005-09-01

    Inhaled mineral dusts and fibres can cause chronic pulmonary inflammation, often leading to permanent scarring with loss of function, but the mechanisms involved remain obscure. There are currently no good methods for monitoring inflammatory processes in situ. Positron emission tomography (PET) of suitable intravenously injected radiolabelled markers provides non-invasive and repeatable methods of quantifying biochemical and cellular responses. We have developed animal models of fibrotic and non-fibrotic pulmonary response to particulate instillation and characterised these by histology. Different components of the inflammatory response have been investigated by PET: (1) [{sup 18}F]-labelled fluoro-deoxyglucose, a positron emitting glucose analogue, accumulates in cells in proportion to their glucose uptake; ex vivo microautoradiography indicates that neutrophils are the cells responsible for an increased signal during pulmonary inflammation; a persistently high uptake is associated with lung scarring. (2) The radioligand [{sup 11}C]-R-PK11195 binds to benzodiazepine-like receptors abundant in macrophages; following particulate instillation, the [{sup 11}C]-R-PK11195 PET signal tracks with lung macrophage accumulation and also localises to regions consistent with macrophage clearance; poor macrophage clearance is associated with fibrosis. (3) [{sup 18}F]-fluoroproline is likely a substrate for extracellular matrix production, especially proline-rich collagen; during active scarring, the rate of lung uptake of fluoroproline is elevated. Localisation of radioactivity in the lung has been validated ex vivo by microautoradiography of tritium analogues of each of the positron emitting tracers. The use of PET to monitor different inflammatory processes by repeated scanning of the same animal or individual is helping to identify key events in the fibrotic process.

  4. Regional Differences in the Cellular Immune Response to Experimental Cutaneous or Visceral Infection with Leishmania donovani

    PubMed Central

    Melby, Peter C.; Yang, Yan-Zhu; Cheng, Jun; Zhao, Weiguo

    1998-01-01

    Infection with the protozoan Leishmania donovani can cause serious visceral disease or subclinical infection in humans. To better understand the pathogenesis of this dichotomy, we have investigated the host cellular immune response to cutaneous or visceral infection in a murine model. Mice infected in the skin developed no detectable visceral parasitism, whereas intravenous inoculation resulted in hepatosplenomegaly and an increasing visceral parasite burden. Spleen cells from mice with locally controlled cutaneous infection showed strong parasite-specific proliferative and gamma interferon (IFN-γ) responses, but spleen cells from systemically infected mice were unresponsive to parasite antigens. The in situ expression of IFN-γ, interleukin-4 (IL-4), IL-10, IL-12, and inducible nitric oxide synthase (iNOS) mRNAs was determined in the spleen, draining lymph node (LN), and cutaneous site of inoculation. There was considerably greater expression of IFN-γ and IL-12 p40 mRNAs in the LN draining a locally controlled cutaneous infection than in the spleen following systemic infection. Similarly, there was a high level of IFN-γ production by LN cells following subcutaneous infection but no IFN-γ production by spleen cells following systemic infection. Splenic IL-4 expression was transiently increased early after systemic infection, but splenic IL-10 transcripts increased throughout the course of visceral infection. IL-4 and IL-10 mRNAs were also increased in the LN following cutaneous infection. iNOS mRNA was detected earlier in the LN draining a cutaneous site of infection compared to the spleen following systemic challenge. Thus, locally controlled cutaneous infection was associated with antigen-specific spleen cell responsiveness and markedly increased levels of IFN-γ, IL-12, and iNOS mRNA in the draining LN. Progressive splenic parasitism was associated with an early IL-4 response, markedly increased IL-10 but minimal IL-12 expression, and delayed expression of i

  5. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis.

    PubMed

    Schmitt, Estelle; Paquet, Claudie; Beauchemin, Myriam; Bertrand, Richard

    2007-06-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senescence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving "sensor" proteins that sense the damage, and transmit signals to "transducer" proteins, which, in turn, convey the signals to numerous "effector" proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.

  6. Cellular-mediated immune responses in the liver tissue of patients with severe Plasmodium falciparum malaria.

    PubMed

    Punsawadl, Chuchard; Setthapramote, Chayanee; Viriyavejakul, Parnpen

    2014-09-01

    The immune responses against Plasmodiumfalciparum malaria infections are complex and poorly understood. No published studies have yet reported the lymphocyte subsets involved in the human liver tissue of P. falciparum malaria patients. To understand the cellular-mediated immune responses in the liver during malaria infection, we determined the numbers of the various lymphocyte subsets in tissue samples obtained at autopsy from patients who died with P. falciparum malaria infection. All the liver tissue specimens had been stored at the Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Thailand. On the basis of total bilirubin (TB) levels prior to death, patients were divided into 2 groups: those with hyperbilirubinemia [total bilirubin (TB) > or =51.3 micromol/l) (n = 9)] and those without hyperbilirubinemia (TB < 51.3 micromol/l) (n = 12). Normal liver specimens (n = 10) were used as controls. An immunohistochemistry method was used to analyze the types and numbers of lymphocytes (T and B lymphocytes), and Kupffer cells, using specific antibodies against CD3+, CD4+, CD8+, CD20+, and CD68+. Our findings reveal the numbers of T lymphocytes (CD3+ T-cells) and their subsets (CD4+ and CD8+ T-cells) were significantly greater in the portal tracts and sinusoids of liver tissue obtained from P. falciparum malaria cases with hyperbilirubinemia than those without hyperbilirubinemia or controls. CD8+ T-cells were the major lymphocyte subset in the liver tissue of patients with severe falciparum malaria. A significant positive correlation was seen between the numbers of CD4+ and CD8+ T-cells and the liver enzyme levels among P. falciparum malaria patients. The number of CD68+ cells (Kupffer cells) was significantly greater in the liver sinusoids of P. falciparum malaria cases with hyperbilirubinemia than those without hyperbilirubinemia. These findings suggest T-cells, especially CD8+ T-cells and Kupffer cells are an important part of the

  7. Cellular Interactions and Immune Response of Spherical Nucleic Acid (SNA) Nanoconjugates

    NASA Astrophysics Data System (ADS)

    Massich, Matthew David

    Spherical nucleic acid (SNA) nanoconjugates consist of a densely packed monolayer shell of highly-oriented oligonucleotides covalently bound to a gold nanoparticle core. The nanoconjugates exhibit several important qualities, which make them useful for various biological applications, such as antisense gene regulation strategies and the intracellular detection of biomolecules. The focus of this thesis was to characterize the nanoconjugates interaction with cultured cells and specifically the immune response to their intracellular presence. The immune response of macrophage cells to internalized nanoconjugates was studied, and due to the dense functionalization of oligonucleotides on the surface of the nanoparticle and the resulting high localized salt concentration the innate immune response to the nanoconjugates is ˜25-fold less when compared to a lipoplex carrying the same sequence. Additionally, genome-wide expression profiling was used to study the biological response of cultured cells to the nanoconjugates. The biological response of HeLa cells to gold nanoparticles stabilized by weakly bound ligands was significant, yet when these same nanoparticles were stably functionalized with covalently attached oligonucleotides the cells showed no measurable response. In human keratinocytes, the oligonucleotide sequences caused 427 genes to be differentially expressed when complexed with Dharmafect, but when the oligonucleotides were conjugated to nanoparticles only 7 genes were differentially expressed. Beyond characterizing the cellular interactions and immune response of the nanoconjugates, the optimal length of siRNA (from 19--34 base pairs) that induces the most gene knockdown while maintaining limited immune activation was determined to be 24 base pairs. Further, the SNAs were shown to be useful as a potential antiviral gene therapy by demonstrating approximately 50% knockdown of the Ebola VP35 gene. Lastly, a scanning probe-enabled method was used to rapidly

  8. Cellular responses to disruption of the permeability barrier in a three-dimensional organotypic epidermal model

    SciTech Connect

    Ajani, Gati; Sato, Nobuyuki; Mack, Judith A.; Maytin, Edward V. . E-mail: maytine@ccf.org

    2007-08-15

    Repeated injury to the stratum corneum of mammalian skin (caused by friction, soaps, or organic solvents) elicits hyperkeratosis and epidermal thickening. Functionally, these changes serve to restore the cutaneous barrier and protect the organism. To better understand the molecular and cellular basis of this response, we have engineered an in vitro model of acetone-induced injury using organotypic epidermal cultures. Rat epidermal keratinocytes (REKs), grown on a collagen raft in the absence of any feeder fibroblasts, developed all the hallmarks of a true epidermis including a well-formed cornified layer. To induce barrier injury, REK cultures were treated with intermittent 30-s exposures to acetone then were fixed and paraffin-sectioned. After two exposures, increased proliferation (Ki67 and BrdU staining) was observed in basal and suprabasal layers. After three exposures, proliferation became confined to localized buds in the basal layer and increased terminal differentiation was observed (compact hyperkeratosis of the stratum corneum, elevated levels of K10 and filaggrin, and heightened transglutaminase activity). Thus, barrier disruption causes epidermal hyperplasia and/or enhances differentiation, depending upon the extent and duration of injury. Given that no fibroblasts are present in the model, the ability to mount a hyperplastic response to barrier injury is an inherent property of keratinocytes.

  9. Studies on the cellular bystander response after exposure to high LET irradiation

    NASA Astrophysics Data System (ADS)

    Fournier, C.; Becker, D.; Heiss, M.; Barberet, P.; Topsch, J.; Winter, M.; Ritter, S.; Taucher-Scholz, G.

    In this study various cellular responses of non-targeted cells following heavy ion exposure of human fibroblasts were investigated Heavy ions are an excellent tool to elucidate the impact of ionisation density on the occurrence of bystander effects An improved understanding of bystander responses is important with respect to risk estimation for accidental or therapeutical radiation exposure Human fibroblasts were exposed to low fluences of heavy ions C Ar and U with LETs in the range of 170 to 15000 keV 956 m traversing only a few cells by a particle For selected endpoints targeted irradiation of single cells was performed using a heavy ion microbeam A medium transfer technique was applied to study the transmission of signals limited to soluble factors At several time intervals after exposure the cell cycle progression FACS the expression of CDKN1A and other cycle regulators Western blot immuno-fluorescence and the amount of intracellular reactive oxygen species ROS DCF fluorescence were assessed In addition the frequencies of sister chromatid exchanges SCE and the number of cells containing micronuclei MN were determined 3 days after exposure as indicators for changes or damage on chromosomal level in bystander cells An overall induction of CDKN1A but no distinct clusters of cells bearing an elevated expression level in the direct neighbourhood of the hit cells were observed several hours after exposure This effect was accompanied by a transient delay in the initial G1 phase after exposure The question was addressed whether the cell

  10. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds.

    PubMed

    Fazli, Mustafa; Bjarnsholt, Thomas; Kirketerp-Møller, Klaus; Jørgensen, Anne; Andersen, Claus Bøgelund; Givskov, Michael; Tolker-Nielsen, Tim

    2011-01-01

    Chronic wounds are an important problem worldwide. These wounds are characterized by a persistent inflammatory stage associated with excessive accumulation and elevated cell activity of neutrophils, suggesting that there must be a persistent stimulus that attracts and recruits neutrophils to the wound. One such stimulus might be the presence of bacterial biofilms in chronic wounds. In the present study, biopsy specimens from chronic venous leg ulcers were investigated for the detection of bacteria using peptide nucleic acid-based fluorescence in situ hybridization (PNA-FISH) and confocal laser scanning microscopy. The bacteria in the wounds were often situated in large aggregates. To obtain a measure of the cellular inflammatory response against the bacteria in the chronic wounds, the amount of neutrophils accumulated at the site of infection was evaluated through differential neutrophil counting on the tissue sections from wounds containing either Pseudomonas aeruginosa or Staphylococcus aureus. The P. aeruginosa-containing wounds had significantly higher numbers of neutrophils accumulated compared with the S. aureus-containing wounds. These results are discussed in relation to the hypothesis that the presence of P. aeruginosa biofilms in chronic wounds may be one of the main factors leading to a persistent inflammatory response and impaired wound healing.

  11. Cleavage of Interferon Regulatory Factor 7 by Enterovirus 71 3C Suppresses Cellular Responses

    PubMed Central

    Lei, Xiaobo; Xiao, Xia; Xue, Qinghua; Jin, Qi

    2013-01-01

    Enterovirus 71 (EV71) is a positive-stranded RNA virus which is capable of inhibiting innate immunity. Among virus-encoded proteins, the 3C protein compromises the type I interferon (IFN-I) response mediated by retinoid acid-inducible gene-I (RIG-I) or Toll-like receptor 3 that activates interferon regulatory 3 (IRF3) and IRF7. In the present study, we report that enterovirus 71 downregulates IRF7 through the 3C protein, which inhibits the function of IRF7. When expressed in mammalian cells, the 3C protein mediates cleavage of IRF7 rather than that of IRF3. This process is insensitive to inhibitors of caspase, proteasome, lysosome, and autophagy. H40D substitution in the 3C active site abolishes its activity, whereas R84Q or V154S substitution in the RNA binding motif has no effect. Furthermore, 3C-mediated cleavage occurs at the Q189-S190 junction within the constitutive activation domain of IRF7, resulting in two cleaved IRF7 fragments that are incapable of activating IFN expression. Ectopic expression of wild-type IRF7 limits EV71 replication. On the other hand, expression of the amino-terminal domain of IRF7 enhances EV71 infection, which correlates with its ability to interact with and inhibit IRF3. These results suggest that control of IRF7 by the 3C protein may represent a viral mechanism to escape cellular responses. PMID:23175366

  12. Cellular responses to disruption of the permeability barrier in a three-dimensional organotypic epidermal model.

    PubMed

    Ajani, Gati; Sato, Nobuyuki; Mack, Judith A; Maytin, Edward V

    2007-08-15

    Repeated injury to the stratum corneum of mammalian skin (caused by friction, soaps, or organic solvents) elicits hyperkeratosis and epidermal thickening. Functionally, these changes serve to restore the cutaneous barrier and protect the organism. To better understand the molecular and cellular basis of this response, we have engineered an in vitro model of acetone-induced injury using organotypic epidermal cultures. Rat epidermal keratinocytes (REKs), grown on a collagen raft in the absence of any feeder fibroblasts, developed all the hallmarks of a true epidermis including a well-formed cornified layer. To induce barrier injury, REK cultures were treated with intermittent 30-s exposures to acetone then were fixed and paraffin-sectioned. After two exposures, increased proliferation (Ki67 and BrdU staining) was observed in basal and suprabasal layers. After three exposures, proliferation became confined to localized buds in the basal layer and increased terminal differentiation was observed (compact hyperkeratosis of the stratum corneum, elevated levels of K10 and filaggrin, and heightened transglutaminase activity). Thus, barrier disruption causes epidermal hyperplasia and/or enhances differentiation, depending upon the extent and duration of injury. Given that no fibroblasts are present in the model, the ability to mount a hyperplastic response to barrier injury is an inherent property of keratinocytes.

  13. Rab3 is involved in cellular immune responses of the cotton bollworm, Helicoverpa armigera.

    PubMed

    Li, Jie; Song, Cai-Xia; Li, Yu-Ping; Li, Li; Wei, Xiu-Hong; Wang, Jia-Lin; Liu, Xu-Sheng

    2015-06-01

    Rab3, a member of the Rab GTPase family, has been found to be involved in innate immunity. However, the precise function of this GTPase in innate immunity remains unknown. In this study, we identified a Rab3 gene (Ha-Rab3) from the cotton bollworm, Helicoverpa armigera and studied its roles in innate immune responses. Expression of Ha-Rab3 was upregulated in the hemocytes of H. armigera larvae after the injection of Escherichia coli or chromatography beads. The dsRNA-mediated knockdown of Ha-Rab3 gene in H. armigera larval hemocytes led to significant reduction in the phagocytosis and nodulation activities of hemocytes against E. coli, significant increase in the bacterial load in larval hemolymph, and significant reduction in the encapsulation activities of hemocytes toward invading chromatography beads. Furthermore, Ha-Rab3 knockdown significantly suppressed spreading of plasmatocytes. These results suggest that Ha-Rab3 plays important roles in H. armigera cellular immune responses, possibly by mediating spreading of hemocytes.

  14. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    PubMed Central

    Simón-Vázquez, Rosana; Lozano-Fernández, Tamara; Dávila-Grana, Angela; González-Fernández, Africa

    2016-01-01

    Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps) was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO) to study the three most relevant mitogen-activated protein kinase subfamilies and the nuclear factor kappa-light-chain-enhancer of the activated B-cell inhibitor, IκBα, as well as the expression of several genes by immune cells incubated with these Nps. The moNps activated different signaling pathways and altered the gene expression in human lymphocyte cells. The ZnO Nps were the most active and the release of Zn2+ ions was the main mechanism of toxicity. CeO2 Nps induced the smallest changes in gene expression and in the IκBα protein. The effects of the particles were strongly dependent on the type and concentration of the Nps and on the cell activation status prior to Np exposure. PMID:27695324

  15. Lysosomal recruitment of TSC2 is a universal response to cellular stress

    PubMed Central

    Demetriades, Constantinos; Plescher, Monika; Teleman, Aurelio A.

    2016-01-01

    mTORC1 promotes cell growth and is therefore inactivated upon unfavourable growth conditions. Signalling pathways downstream of most cellular stresses converge on TSC1/2, which serves as an integration point that inhibits mTORC1. The TSC1/2 complex was shown to translocate to lysosomes to inactivate mTORC1 in response to two stresses: amino-acid starvation and growth factor removal. Whether other stresses also regulate TSC2 localization is not known. How TSC2 localization responds to combinations of stresses and other stimuli is also unknown. We show that both amino acids and growth factors are required simultaneously to maintain TSC2 cytoplasmic; when one of the two is missing, TSC2 relocalizes to lysosomes. Furthermore, multiple different stresses that inhibit mTORC1 also drive TSC2 lysosomal accumulation. Our findings indicate that lysosomal recruitment of TSC2 is a universal response to stimuli that inactivate mTORC1, and that the presence of any single stress is sufficient to cause TSC2 lysosomal localization. PMID:26868506

  16. Cellular and Humoral Antibody Responses of Normal Pastel and Sapphire Mink to Goat Erythrocytes

    PubMed Central

    Lodmell, D. L.; Bergman, R. K.; Hadlow, W. J.; Munoz, J. J.

    1971-01-01

    This study was undertaken to determine whether normal sapphire and royal pastel mink differ immunologically at the cellular and humoral levels. Two days after primary intraperitoneal (ip) inoculation of goat erythrocytes (GE), essentially no 19 or 7S plaque-forming cells (PFC) per 106 cells were detected in spleen or in abdominal and peripheral lymph nodes of either color phase. On the 4th day, more 19S PFC were detected in pastel than in sapphire tissues; pastel tissues also contained 7S PFC, whereas essentially none was present in sapphires until the 6th day. After an ip booster inoculation, the number of PFC was markedly different between the two color phases. These differences were most apparent in spleen and peripheral lymph nodes. In parallel with differences observed in PFC responses between the color phases, total hemolysin and 2-mercaptoethanol-resistant hemolysin titers of pastels exceeded those of sapphires in all but one interval after the primary, and at every interval after the booster, inoculation. These data indicate that sapphire mink are not immunological cripples, nor are they immunologically hyperactive, but that differences do exist between sapphire and royal pastel mink, especially in the response to booster injections of GE. PMID:16557957

  17. Cellular and humoral antibody responses of normal pastel and sapphire mink to goat erythrocytes.

    PubMed

    Lodmell, D L; Bergman, R K; Hadlow, W J; Munoz, J J

    1971-02-01

    This study was undertaken to determine whether normal sapphire and royal pastel mink differ immunologically at the cellular and humoral levels. Two days after primary intraperitoneal (ip) inoculation of goat erythrocytes (GE), essentially no 19 or 7S plaque-forming cells (PFC) per 10(6) cells were detected in spleen or in abdominal and peripheral lymph nodes of either color phase. On the 4th day, more 19S PFC were detected in pastel than in sapphire tissues; pastel tissues also contained 7S PFC, whereas essentially none was present in sapphires until the 6th day. After an ip booster inoculation, the number of PFC was markedly different between the two color phases. These differences were most apparent in spleen and peripheral lymph nodes. In parallel with differences observed in PFC responses between the color phases, total hemolysin and 2-mercaptoethanol-resistant hemolysin titers of pastels exceeded those of sapphires in all but one interval after the primary, and at every interval after the booster, inoculation. These data indicate that sapphire mink are not immunological cripples, nor are they immunologically hyperactive, but that differences do exist between sapphire and royal pastel mink, especially in the response to booster injections of GE.

  18. Humoral and cellular immune responses to Yersinia pestis infection in long-term recovered plague patients.

    PubMed

    Li, Bei; Du, Chunhong; Zhou, Lei; Bi, Yujing; Wang, Xiaoyi; Wen, Li; Guo, Zhaobiao; Song, Zhizhong; Yang, Ruifu

    2012-02-01

    Plague is one of the most dangerous diseases and is caused by Yersinia pestis. Effective vaccine development requires understanding of immune protective mechanisms against the bacterium in humans. In this study, the humoral and memory cellular immune responses in plague patients (n = 65) recovered from Y. pestis infection during the past 16 years were investigated using a protein microarray and an enzyme-linked immunosorbent spot assay (ELISpot). The seroprevalence to the F1 antigen in all recovered patients is 78.5%. In patients infected more than a decade ago, the antibody-positive rate still remains 69.5%. There is no difference in the antibody presence between gender, age, and infected years, but it seems to be associated with the F1 antibody titers during infection (r = 0.821; P < 0.05). Except F1 antibody, the antibodies against LcrV and YopD were detected in most of the patients, suggesting they could be the potential diagnostic markers for detecting the infection of F1-negative strains. Regarding cellular immunity, the cell number producing gamma interferon (IFN-γ), stimulated by F1 and LcrV, respectively, in vitro to the peripheral blood mononuclear cells of 7 plague patients and 4 negative controls, showed no significant difference, indicating F1 and LcrV are not dominant T cell antigens against plague for a longer time in humans. Our findings have direct implications for the future design and development of effective vaccines against Y. pestis infection and the development of new target-based diagnostics.

  19. A novel model for studies of blood-mediated long-term responses to cellular transplants

    PubMed Central

    Lindblom, Susanne; Hong, Jaan; Nilsson, Bo; Korsgren, Olle; Ronquist, Gunnar

    2015-01-01

    Aims Interaction between blood and bio-surfaces is important in many medical fields. With the aim of studying blood-mediated reactions to cellular transplants, we developed a whole-blood model for incubation of small volumes for up to 48 h. Methods Heparinized polyvinyl chloride tubing was cut in suitable lengths and sealed to create small bags. Multiple bags, with fresh venous blood, were incubated attached to a rotating wheel at 37°C. Physiological variables in blood were monitored: glucose, blood gases, mono- and divalent cations and chloride ions, osmolality, coagulation (platelet consumption, thrombin-antithrombin complexes (TAT)), and complement activation (C3a and SC5b-9), haemolysis, and leukocyte viability. Results Basic glucose consumption was high. Glucose depletion resulted in successive elevation of extracellular potassium, while sodium and calcium ions decreased due to inhibition of energy-requiring ion pumps. Addition of glucose improved ion balance but led to metabolic acidosis. To maintain a balanced physiological environment beyond 6 h, glucose and sodium hydrogen carbonate were added regularly based on analyses of glucose, pH, ions, and osmotic pressure. With these additives haemolysis was prevented for up to 72 h and leukocyte viability better preserved. Despite using non-heparinized blood, coagulation and complement activation were lower during long-term incubations compared with addition of thromboplastin and collagen. Conclusion A novel whole-blood model for studies of blood-mediated responses to a cellular transplant is presented allowing extended observations for up to 48 h and highlights the importance of stringent evaluations and adjustment of physiological conditions. PMID:25322825

  20. Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON)

    SciTech Connect

    Pietsch, Constanze; Bucheli, Thomas D.; Wettstein, Felix E.; Burkhardt-Holm, Patricia

    2011-10-01

    Contamination of animal feed with mycotoxins is a major problem for fish feed mainly due to usage of contaminated ingredients for production and inappropriate storage of feed. The use of cereals for fish food production further increases the risk of a potential contamination. Potential contaminants include the mycotoxin deoxynivalenol (DON) which is synthesized by globally distributed fungi of the genus Fusarium. The toxicity of DON is well recognized in mammals. In this study, we confirm cytotoxic effects of DON in established permanent fish cell lines. We demonstrate that DON is capable of influencing the metabolic activity and cell viability in fish cells as determined by different assays to indicate possible cellular targets of this toxin. Evaluation of cell viability by measurement of membrane integrity, mitochondrial activity and lysosomal function after 24 h of exposure of fish cell lines to DON at a concentration range of 0-3000 ng ml{sup -1} shows a biphasic effect on cells although differences in sensitivity occur. The cell lines derived from rainbow trout are particularly sensitive to DON. The focus of this study lies, furthermore, on the effects of DON at different concentrations on production of reactive oxygen species (ROS) in the different fish cell lines. The results show that DON mainly reduces ROS production in all cell lines that were used. Thus, our comparative investigations reveal that the fish cell lines show distinct species-related endpoint sensitivities that also depend on the type of tissue from which the cells were derived and the severity of exposure. - Highlights: > DON uptake by cells is not extensive. > All fish cell lines are sensitive to DON. > DON is most cytotoxic to rainbow trout cells. > Biphasic cellular responses were frequently observed. > Our results are similar to studies on mammalian cell lines.

  1. Effects of dietary conjugated linoleic acids on cellular immune response of piglets after cyclosporin A injection.

    PubMed

    Liu, Y X; Zhu, K Y; Liu, Y L; Jiang, D F

    2016-10-01

    The present study investigated the effects of dietary conjugated linoleic acid (CLA) on the cellular immune response of piglets after cyclosporin A (CsA) treatment. The experimental study had a 2×2 factorial design, and the main factors consisted of diets (0% or 2% CLA) and immunosuppression treatments (CsA or saline injection). CsA injection significantly increased feed : gain (F : G) of piglets (P<0.05); however, dietary CLA significantly decreased F : G of piglets (P<0.05). Dietary CLA partly ameliorated the deterioration of the feed conversion rate caused by CsA treatment (P<0.01). CsA treatment significantly decreased the percentages of CD4+ and CD8+ T lymphocytes in the thymus (P<0.01). Dietary CLA increased the percentages of CD4+ CD8+ double-positive and CD8+ single-positive T lymphocytes in the thymus (P<0.05), and had the trend to inhibit the decrease of CD4+ T lymphocytes in the thymus after CsA injection (P=0.07). CsA treatment significantly depleted the peripheral blood CD3+, CD4+ and CD8+ T lymphocytes (P<0.01). Dietary CLA significantly increased the number of peripheral blood CD8+ T lymphocytes and interleukin-2 (IL-2) production (P<0.05), and inhibited the decreases of peripheral blood CD3+, CD4+ and CD8+ T lymphocytes counts (P<0.01) as well as IL-2 production (P<0.05) after CsA treatment. Dietary CLA partly rescued the decrease of lymphocyte proliferation after CsA injection (P<0.05). In summary, dietary CLA effectively ameliorated CsA-induced cellular immunosuppression in piglets.

  2. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket.

    PubMed

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  3. Expression of Cellular Components in Granulomatous Inflammatory Response in Piaractus mesopotamicus Model

    PubMed Central

    Manrique, Wilson Gómez; da Silva Claudiano, Gustavo; de Castro, Marcello Pardi; Petrillo, Thalita Regina; Figueiredo, Mayra Araguaia Pereira; de Andrade Belo, Marco Antonio; Berdeal, María Isabel Quiroga; de Moraes, Julieta Engracia Rodini; de Moraes, Flávio Ruas

    2015-01-01

    The present study aimed to describe and characterize the cellular components during the evolution of chronic granulomatous inflammation in the teleost fish pacus (P. mesopotamicus) induced by Bacillus Calmette-Guerin (BCG), using S-100, iNOS and cytokeratin antibodies. 50 fish (120±5.0 g) were anesthetized and 45 inoculated with 20 μL (40 mg/mL) (2.0 x 106 CFU/mg) and five inoculated with saline (0,65%) into muscle tissue in the laterodorsal region. To evaluate the inflammatory process, nine fish inoculated with BCG and one control were sampled in five periods: 3rd, 7th, 14th, 21st and 33rd days post-inoculation (DPI). Immunohistochemical examination showed that the marking with anti-S-100 protein and anti-iNOS antibodies was weak, with a diffuse pattern, between the third and seventh DPI. From the 14th to the 33rd day, the marking became stronger and marked the cytoplasm of the macrophages. Positivity for cytokeratin was initially observed in the 14th DPI, and the stronger immunostaining in the 33rd day, period in which the epithelioid cells were more evident and the granuloma was fully formed. Also after the 14th day, a certain degree of cellular organization was observed, due to the arrangement of the macrophages around the inoculated material, with little evidence of edema. The arrangement of the macrophages around the inoculum, the fibroblasts, the lymphocytes and, in most cases, the presence of melanomacrophages formed the granuloma and kept the inoculum isolated in the 33rd DPI. The present study suggested that the granulomatous experimental model using teleost fish P. mesopotamicus presented a similar response to those observed in mammals, confirming its importance for studies of chronic inflammatory reaction. PMID:25811875

  4. Contributions of Channel Noise to Cellular Responses in the Hippocampal Formation

    NASA Astrophysics Data System (ADS)

    White, John A.

    1998-03-01

    Synchronized firing of nerve cells seems to be an important mechanism used in information processing by higher brain centers. Often, this synchronized activity is oscillatory: rates at which cells fire action potentials rise and fall sinusoidally. In the hippocampal region of the brain -- a part of the brain crucial for learning and memory -- a synchronized pattern of oscillatory activity called the theta rhythm seems crucial for memory-related functions. Some nerve cells of the hippocampal region are individual oscillators: their nonlinear properties make them electrically ``resonant'' at theta frequencies (4-12 Hz). It is presumed that these properties are important for theta-locked synchronization. We have used coordinate experimental and computational studies to study the cellular mechanisms underlying membrane-potential oscillations, with several conclusions. First, nonlinear oscillations and action potentials in these nerve cells are generated principally by four populations of ion channels: two that are selective for sodium and two that are selective for potassium. Second, the number of sodium channels contributing to theta-locked oscillations is small (< 10^4), making ``channel noise'' from the stochastic flicker between conductance states in sodium channels an important noise source in these cells. Third, simulations indicate that channel noise broadens the range of qualitative behaviors that these nerve cells can exhibit with DC stimulation. Fourth, the nonlinear dependence of channel noise on membrane potential may contribute to inter-spike interval statistics seen in experimental preparations. Fifth, channel noise is likely to increase the probability of response to weak periodic stimuli that roughly mimic stimulation patterns seen in live animals. The details of this effect depend critically on the mean lifetime of the open-channel state. Together, these results imply that the properties of single ion channels have important manifestations at the

  5. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket

    PubMed Central

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  6. Cellular stress response in Eca-109 cells inhibits apoptosis during early exposure to isorhamnetin.

    PubMed

    Shi, C; Fan, L Y; Cai, Z; Liu, Y Y; Yang, C L

    2012-01-01

    The flavonol aglycone isorhamnetin shows anti-proliferative activity in a variety of cancer cells. Previous work, from our laboratory showed that isorhamnetin inhibits the proliferation of human esophageal squamous carcinoma Eca-109 cells in vitro, but only after 72 h of exposure. This led us to propose that isorhamnetin exposure induces a cellular stress response that inhibits the antiproliferative and apoptotic effects of the compound during early exposure. To test this hypothesis, the present study examined the effects of isorhamnetin on Eca-109 cells during the first 72 h of exposure. Cell growth was assessed using the trypan blue exclusion assay, and expression of IκBα, NF-κB/p65, NF-κB/p50, phospho-Akt, Bcl-2, COX-2, Mcl-1, Bax, p53 and Id-1 were analyzed by Western blot. During the first 72 h of exposure, NF-κB/p65 and NF-κB/p50 accumulated in nuclei and expression of COX-2, Bcl-2 and Mcl-1 increased. In contrast, expression of IκBα and Bax fell initially but later increased. Expression of phospho-Akt and p53 showed no detectable change during the first 48 h. Pretreatment with the NF-κB inhibitor MG132 before exposure to isorhamnetin blocked the nuclear accumulation of p50 and p65, thereby inhibiting cell proliferation. These results show that during early exposure of Eca-109 cells to isorhamnetin, the NF-κB signaling pathway is activated and COX-2 expression increases, and this increase in expression partially inhibits isorhamnetin-induced apoptosis. Beyond 72 h of exposure, however, the apoptotic effect of isorhamnetin dominates, leading to inhibition of the NF-κB pathway and of cellular proliferation. These results will need to be taken into account when exploring the use of isorhamnetin against cancer in vivo.

  7. Spatiotemporal effects of a controlled-release anti-inflammatory drug on the cellular dynamics of host response

    PubMed Central

    Dang, Tram T.; Bratlie, Kaitlin M.; Bogatyrev, Said R.; Chen, Xiao Y.; Langer, Robert; Anderson, Daniel G.

    2017-01-01

    In general, biomaterials induce a non-specific host response when implanted in the body. This reaction has the potential to interfere with the function of the implanted materials. One method for controlling the host response is through local, controlled release of anti-inflammatory agents. Herein, we investigate the spatial and temporal effects of an anti-inflammatory drug on the cellular dynamics of the innate immune response to subcutaneously implanted poly(lactic-co-glycolic) microparticles. Noninvasive fluorescence imaging was used to investigate the influence of dexamethasone drug loading and release kinetics on the local and systemic inhibition of inflammatory cellular activities. Temporal monitoring of host response showed that inhibition of inflammatory proteases in the early phase was correlated with decreased cellular infiltration in the later phase of the foreign body response. We believe that using controlled-release anti-inflammatory platforms to modulate early cellular dynamics will be useful in reducing the foreign body response to implanted biomaterials and medical devices. PMID:21429573

  8. Antiviral responses in mouse embryonic stem cells: differential development of cellular mechanisms in type I interferon production and response.

    PubMed

    Wang, Ruoxing; Wang, Jundi; Acharya, Dhiraj; Paul, Amber M; Bai, Fengwei; Huang, Faqing; Guo, Yan-Lin

    2014-09-05

    We have recently reported that mouse embryonic stem cells (mESCs) are deficient in expressing type I interferons (IFNs) in response to viral infection and synthetic viral RNA analogs (Wang, R., Wang, J., Paul, A. M., Acharya, D., Bai, F., Huang, F., and Guo, Y. L. (2013) J. Biol. Chem. 288, 15926-15936). Here, we report that mESCs are able to respond to type I IFNs, express IFN-stimulated genes, and mediate the antiviral effect of type I IFNs against La Crosse virus and chikungunya virus. The major signaling components in the IFN pathway are expressed in mESCs. Therefore, the basic molecular mechanisms that mediate the effects of type I IFNs are functional in mESCs; however, these mechanisms may not yet be fully developed as mESCs express lower levels of IFN-stimulated genes and display weaker antiviral activity in response to type I IFNs when compared with fibroblasts. Further analysis demonstrated that type I IFNs do not affect the stem cell state of mESCs. We conclude that mESCs are deficient in type I IFN expression, but they can respond to and mediate the cellular effects of type I IFNs. These findings represent unique and uncharacterized properties of mESCs and are important for understanding innate immunity development and ESC physiology.

  9. Generally detected genes in comparative transcriptomics in bivalves: toward the identification of molecular markers of cellular stress response.

    PubMed

    Miao, Jingjing; Chi, Luping; Pan, Luqing; Song, Ying

    2015-01-01

    The specificity and representativeness of protein-coding genes identified by transcriptomics as biomarkers for environmental toxicological stress is crucial. We extracted the differential gene expression profile data from 49 published comparative transcriptomic studies of bivalves from January 2004 till November 2014 performed in 15 different bivalve species. Among the studies, 77 protein-coding genes were frequently detected when we use threefold of the average detection frequency as cut-off. Cellular organization and communication, protein and energy metabolism, stress response are the main functional classes of these proteins. We consider if these protein-coding genes represent common cellular stress responses of bivalves.

  10. The reconstitution of the thymus in immunosuppressed individuals restores CD4-specific cellular and humoral immune responses

    PubMed Central

    Plana, Montserrat; Garcia, Felipe; Darwich, Laila; Romeu, Joan; López, Anna; Cabrera, Cecilia; Massanella, Marta; Canto, Esther; Ruiz-Hernandez, Raul; Blanco, Julià; Sánchez, Marcelo; Gatell, Josep M; Clotet, Bonaventura; Ruiz, Lidia; Bofill, Margarita

    2011-01-01

    Infection with HIV-1 frequently results in the loss of specific cellular immune responses and an associated lack of antibodies. Recombinant growth hormone (rGH) administration reconstitutes thymic tissue and boosts the levels of peripheral T cells, so rGH therapy may be an effective adjuvant through promoting the recovery of lost cellular and T-cell-dependent humoral immune responses in immunosuppressed individuals. To test this concept, we administered rGH to a clinically defined group of HIV-1-infected subjects with defective cellular and serological immune responses to at least one of three commonly employed vaccines (hepatitis A, hepatitis B or tetanus toxoid). Of the original 278 HIV-1-infected patients entering the trial, only 20 conformed to these immunological criteria and were randomized into three groups: Group A (n = 8) receiving rGH and challenged with the same vaccine to which they were unresponsive and Groups B (n = 5) and C (n = 7) who received either rGH or vaccination alone, respectively. Of the eight subjects in Group A, five recovered CD4 cellular responses to vaccine antigen and four of these produced the corresponding antibodies. In the controls, three of the five in group B recovered cellular responses with two producing antibodies, whereas three of the seven in Group C recovered CD4 responses, with only two producing antibodies. Significantly, whereas seven of ten patients receiving rGH treatment in Group A (six patients) and B (one patient) recovered T-cell responses to HIVp24, only two of six in Group C responded similarly. In conclusion, reconstitution of the thymus in immunosuppressed adults through rGH hormone treatment restored both specific antibody and CD4 T-cell responses. PMID:21501161

  11. HIV-1 transgenic rats display alterations in immunophenotype and cellular responses associated with aging.

    PubMed

    Abbondanzo, Susan J; Chang, Sulie L

    2014-01-01

    Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg) rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS) to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.

  12. NR4A2 Is Regulated by Gastrin and Influences Cellular Responses of Gastric Adenocarcinoma Cells

    PubMed Central

    Misund, Kristine; Selvik, Linn-Karina Myrland; Rao, Shalini; Nørsett, Kristin; Bakke, Ingunn; Sandvik, Arne K.; Lægreid, Astrid; Bruland, Torunn; Prestvik, Wenche S.; Thommesen, Liv

    2013-01-01

    The peptide hormone gastrin is known to play a role in differentiation, growth and apoptosis of cells in the gastric mucosa. In this study we demonstrate that gastrin induces Nuclear Receptor 4A2 (NR4A2) expression in the adenocarcinoma cell lines AR42J and AGS-GR, which both possess the gastrin/CCK2 receptor. In vivo, NR4A2 is strongly expressed in the gastrin responsive neuroendocrine ECL cells in normal mucosa, whereas gastric adenocarcinoma tissue reveals a more diffuse and variable expression in tumor cells. We show that NR4A2 is a primary early transient gastrin induced gene in adenocarcinoma cell lines, and that NR4A2 expression is negatively regulated by inducible cAMP early repressor (ICER) and zinc finger protein 36, C3H1 type-like 1 (Zfp36l1), suggesting that these gastrin regulated proteins exert a negative feedback control of NR4A2 activated responses. FRAP analyses indicate that gastrin also modifies the nucleus-cytosol shuttling of NR4A2, with more NR4A2 localized to cytoplasm upon gastrin treatment. Knock-down experiments with siRNA targeting NR4A2 increase migration of gastrin treated adenocarcinoma AGS-GR cells, while ectopically expressed NR4A2 increases apoptosis and hampers gastrin induced invasion, indicating a tumor suppressor function of NR4A2. Collectively, our results uncover a role of NR4A2 in gastric adenocarcinoma cells, and suggest that both the level and the localization of NR4A2 protein are of importance regarding the cellular responses of these cells. PMID:24086717

  13. NR4A2 is regulated by gastrin and influences cellular responses of gastric adenocarcinoma cells.

    PubMed

    Misund, Kristine; Selvik, Linn-Karina Myrland; Rao, Shalini; Nørsett, Kristin; Bakke, Ingunn; Sandvik, Arne K; Lægreid, Astrid; Bruland, Torunn; Prestvik, Wenche S; Thommesen, Liv

    2013-01-01

    The peptide hormone gastrin is known to play a role in differentiation, growth and apoptosis of cells in the gastric mucosa. In this study we demonstrate that gastrin induces Nuclear Receptor 4A2 (NR4A2) expression in the adenocarcinoma cell lines AR42J and AGS-GR, which both possess the gastrin/CCK2 receptor. In vivo, NR4A2 is strongly expressed in the gastrin responsive neuroendocrine ECL cells in normal mucosa, whereas gastric adenocarcinoma tissue reveals a more diffuse and variable expression in tumor cells. We show that NR4A2 is a primary early transient gastrin induced gene in adenocarcinoma cell lines, and that NR4A2 expression is negatively regulated by inducible cAMP early repressor (ICER) and zinc finger protein 36, C3H1 type-like 1 (Zfp36l1), suggesting that these gastrin regulated proteins exert a negative feedback control of NR4A2 activated responses. FRAP analyses indicate that gastrin also modifies the nucleus-cytosol shuttling of NR4A2, with more NR4A2 localized to cytoplasm upon gastrin treatment. Knock-down experiments with siRNA targeting NR4A2 increase migration of gastrin treated adenocarcinoma AGS-GR cells, while ectopically expressed NR4A2 increases apoptosis and hampers gastrin induced invasion, indicating a tumor suppressor function of NR4A2. Collectively, our results uncover a role of NR4A2 in gastric adenocarcinoma cells, and suggest that both the level and the localization of NR4A2 protein are of importance regarding the cellular responses of these cells.

  14. Plastid Osmotic Stress Activates Cellular Stress Responses in Arabidopsis1[C][W][OPEN

    PubMed Central

    Wilson, Margaret E.; Basu, Meera R.; Bhaskara, Govinal Badiger; Verslues, Paul E.; Haswell, Elizabeth S.

    2014-01-01

    Little is known about cytoplasmic osmoregulatory mechanisms in plants, and even less is understood about how the osmotic properties of the cytoplasm and organelles are coordinately regulated. We have previously shown that Arabidopsis (Arabidopsis thaliana) plants lacking functional versions of the plastid-localized mechanosensitive ion channels Mechanosensitive Channel of Small Conductance-Like2 (MSL2) and MSL3 contain leaf epidermal plastids under hypoosmotic stress, even during normal growth and development. Here, we use the msl2 msl3 mutant as a model to investigate the cellular response to constitutive plastid osmotic stress. Under unstressed conditions, msl2 msl3 seedlings exhibited several hallmarks of drought or environmental osmotic stress, including solute accumulation, elevated levels of the compatible osmolyte proline (Pro), and accumulation of the stress hormone abscisic acid (ABA). Furthermore, msl2 msl3 mutants expressed Pro and ABA metabolism genes in a pattern normally seen under drought or osmotic stress. Pro accumulation in the msl2 msl3 mutant was suppressed by conditions that reduce plastid osmotic stress or inhibition of ABA biosynthesis. Finally, treatment of unstressed msl2 msl3 plants with exogenous ABA elicited a much greater Pro accumulation response than in the wild type, similar to that observed in plants under drought or osmotic stress. These results suggest that osmotic imbalance across the plastid envelope can elicit a response similar to that elicited by osmotic imbalance across the plasma membrane and provide evidence for the integration of the osmotic state of an organelle into that of the cell in which it resides. PMID:24676856

  15. Membrane-associated HB-EGF modulates HGF-induced cellular responses in MDCK cells.

    PubMed

    Singh, Amar B; Tsukada, Toshiaki; Zent, Roy; Harris, Raymond C

    2004-03-15

    In MDCK cells, hepatocyte growth factor/scatter factor (HGF/SF) induces epithelial cell dissociation, scattering, migration, growth and formation of branched tubular structures. By contrast, these cells neither scatter nor form tubular structures in response to the epidermal growth factor (EGF) family of growth factors. Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors and is synthesized as a membrane-associated precursor molecule (proHB-EGF). ProHB-EGF is proteolytically cleaved to release a soluble ligand (sHB-EGF) that activates the EGF receptor. Although recent studies suggest possible physiological functions, the role of proHB-EGF remains largely undefined. Using MDCK cells stably expressing proHB-EGF, a noncleavable deletion mutant of proHB-EGF or soluble HB-EGF, we show that epithelial cell functions differ depending on the form of HB-EGF being expressed. Expression of noncleavable membrane-anchored HB-EGF promoted cell-matrix and cell-cell interactions and decreased cell migration, HGF/SF-induced cell scattering and formation of tubular structures. By contrast, expression of soluble HB-EGF induced increased cell migration, decreased cell-matrix and cell-cell interactions and promoted the development of long unbranched tubular structures in response to HGF/SF. These findings suggest that HB-EGF can not only modulate HGF/SF-induced cellular responses in MDCK cells but also that membrane-bound HB-EGF and soluble HB-EGF give rise to distinctly different effects on cell-cell and cell-extracellular matrix interactions.

  16. Resistance to tumour challenge after tumour laser thermotherapy is associated with a cellular immune response

    PubMed Central

    Ivarsson, K; Myllymäki, L; Jansner, K; Stenram, U; Tranberg, K-G

    2005-01-01

    Previous studies in our laboratory have shown that interstitial laser thermotherapy (ILT) of an experimental liver tumour is superior to surgical excision, at least partly due to a laser-induced immunological effect. The aim of the present study was to investigate the time–response relationship of the ILT-induced immunisation and the cellular response of macrophages and lymphocytes. A dimethylhydrazine-induced adenocarcinoma was transplanted into the liver of syngeneic rats. Rats with tumour were treated 6–8 days later (tumour size 0.25–0.40 cm3) with ILT of tumour or resection of the tumour-bearing lobe. Two groups of rats without tumour were treated with resection of a normal liver lobe or ILT of normal liver. A challenging tumour was implanted into the liver of each rat 2, 5 or 10 weeks after primary treatment. Rats were killed 6, 12 and 48 days (or earlier due to their condition) after challenge (n=8 in all groups). Immunohistochemical techniques were used to determine lymphocytes (CD8, CD4) and macrophages (ED1, ED2) in rats having had treatment of a primary tumour. Interstitial laser thermotherapy of the first tumour was followed by eradication of challenging tumour and absence of tumour spread. This contrasted with rapid growth and spread of challenging tumour in the other groups. In the challenging vital tumour tissue and in the interface between the tumour and surroundings, the number of ED1 macrophages and CD8 lymphocytes was higher in rats having been treated with the ILT of tumour than in those having undergone resection of the tumour-bearing lobe. The number of ED2 macrophages and CD4 lymphocytes was low and did not vary between these two groups. Interstitial laser thermotherapy elicited an immune response that eradicated a challenging tumour and was associated with increased numbers of tumour-infiltrating macrophages and CD8 lymphocytes. PMID:16091763

  17. Clinical response of advanced cancer patients to cellular immunotherapy and intensity-modulated radiation therapy

    PubMed Central

    Hasumi, Kenichiro; Aoki, Yukimasa; Wantanabe, Ryuko; Mann, Dean L

    2013-01-01

    Patients afflicted with advanced cancers were treated with the intratumoral injection of autologous immature dendritic cells (iDCs) followed by activated T-cell infusion and intensity-modulated radiation therapy (IMRT). A second round of iDCs and activated T cells was then administered to patients after the last radiation cycle. This complete regimen was repeated for new and recurring lesions after 6 weeks of follow-up. One year post therapy, outcome analyses were performed to evaluate treatment efficacy. Patients were grouped according to both the number and size of tumors and clinical parameters at treatment initiation, including recurrent disease after standard cancer therapy, Stage IV disease, and no prior therapy. Irrespective of prior treatment status, 23/37 patients with ≤ 5 neoplastic lesions that were ≤ 3 cm in diameter achieved complete responses (CRs), and 5/37 exhibited partial responses (PRs). Among 130 individuals harboring larger and more numerous lesions, CRs were observed in 7/74 patients that had received prior SCT and in 2/56 previously untreated patients. Some patients manifested immune responses including an increase in CD8+CD56+ lymphocytes among circulating mononuclear cells in the course of treatment. To prospectively explore the therapeutic use of these cells, CD8+ cells were isolated from patients that had been treated with cellular immunotherapy and IMRT, expanded in vitro, and injected into recurrent metastatic sites in 13 individuals who underwent the same immunoradiotherapeutic regimens but failed to respond. CRs were achieved in 34 of 58 of such recurrent lesions while PRs in 17 of 58. These data support the expanded use of immunoradiotherapy in advanced cancer patients exhibiting progressive disease. PMID:24349874

  18. Space experiment "Cellular Responses to Radiation in Space (CELLRAD)": Hardware and biological system tests

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine E.; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F.; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment ;Cellular Responses to Radiation in Space; (CELLRAD, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CELLRAD in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  19. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests.

    PubMed

    Hellweg, Christine E; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CellRad, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CellRad in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  20. Assessment of the cellular and electrophysiological response of cardiomyocytes to radiation

    NASA Astrophysics Data System (ADS)

    Helm, Alexander; Ritter, Sylvia; Durante, Marco; Friess, Johannes; Thielemann, Christiane; Mr; Frank, Simon

    Cardiac disease is considered as a late effect resulting from an exposure during long-term space missions. Yet, the underlying mechanisms and the impact of radiation quality and dose are not well understood. To address this topic, we used cardiomyocytes derived from mouse embryonic stem cells (mESC) as a model system. This model has already been successfully used for cardiotoxicity screening of new drugs. Both, the cellular and electrophysiological response to X-ray irradiation were examined. Cellular endpoints such as the induction of micronuclei, apoptosis, number of binucleated cells and expression of connexin43 (Cx 43) were analyzed by standard techniques. For electrophysiological studies a microelectrode array (MEA) was used allowing non-invasive recordings of electrical signals such as signal amplitude and shape, beat rate and conduction velocity. Data analysis was performed using the MATLAB based software DrCell. As a first approach, cardiomyocytes were generated by differentiation of mESC via the formation of embryoid bodies. However, the system proved to be unsuitable due to large intra- and inter-sample variations. In consecutive experiments we used commercially available Cor.At cells, i.e. a pure culture of mESC derived cardiomyocytes. For the analysis of cellular and electrophysiological endpoints Cor.At cells were seeded onto chamber slides or MEA chips, respectively. Irradiation with 0.5 and 2 Gy X-rays (250 kV, 16 mA) was performed two days after seeding. At that time cardiomyocytes are electrically coupled through gap junctions and form a spontaneously beating network. Samples were examined up to four days after exposure. Analysis of the electrophysiological data revealed only minor differences between controls and X-irradiated samples indicating the functionality of cardiomyocytes is not within the dose range examined. Currently, further experiments are performed to statistically verify this finding. Additionally, the expression of Cx 43, a major

  1. The molecular and cellular response of normal and progressed human bronchial epithelial cells to HZE particles

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Larsen, Jill

    We have used a model of non-oncogenically immortalized normal human bronchial epithelial cells to determine the response of such cells to particles found outside the protection of the earth’s electromagnetic field. We have identified an enhanced frequency of cellular transformation, as measured by growth in soft agar, for both 56Fe and 28Si (1 GeV/n) that is maximal (4-6 fold) at 0.25 Gy and 0.40 Gy, respectively. At 4 months post-irradiation 38 individual soft agar clones were isolated. These clones were characterized extensively for cellular and molecular changes. Gene expression analysis suggested that these clones had down-regulated several genes associated with anti-oxidant pathways including GLS2, GPX1 and 4, SOD2, PIG3, and NQO1 amongst others. As a result, many of these transformed clones were exposed to high levels of intracellular radical oxygen species (ROS), although there appeared not to be any enhanced mitochondrial ROS. DNA repair pathways associated with ATM/ATR signaling were also upregulated. However, these transformants do not develop into tumors when injected into immune-compromised mice, suggesting that they have not progressed sufficiently to become oncogenic. Therefore we chose 6 soft agar clones for continuous culture for an additional 14 months. Amongst the 6 clones, only one clone showed any significant change in phenotype. Clone 3kt-ff.2a, propagated for 18 months, were 2-fold more radioresistant, had a shortened doubling time and the background rate of transformation more than doubled. Furthermore, the morphology of transformed clones changed. Clones from this culture are being compared to the original clone as well as the parental HBEC3KT and will be injected into immune-compromised mice for oncogenic potential. Oncogenically progressed HBECs, HBEC3KT cells that overexpress a mutant RAS gene and where p53 has been knocked down, designated HBEC3KTR53, responded quite differently to HZE particle exposure. First, these cells are more

  2. Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library.

    PubMed

    Yoshino, Seiko; Hara, Toshiro; Weng, Jane S; Takahashi, Yuka; Seiki, Motoharu; Sakamoto, Takeharu

    2012-01-01

    Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress.

  3. Ubiquitylation-dependent regulation of NEIL1 by Mule and TRIM26 is required for the cellular DNA damage response

    PubMed Central

    Edmonds, Matthew J.; Carter, Rachel J.; Nickson, Catherine M.; Williams, Sarah C.; Parsons, Jason L.

    2017-01-01

    Endonuclease VIII-like protein 1 (NEIL1) is a DNA glycosylase involved in initiating the base excision repair pathway, the major cellular mechanism for repairing DNA base damage. Here, we have purified the major E3 ubiquitin ligases from human cells responsible for regulation of NEIL1 by ubiquitylation. Interestingly, we have identified two enzymes that catalyse NEIL1 polyubiquitylation, Mcl-1 ubiquitin ligase E3 (Mule) and tripartite motif 26 (TRIM26). We demonstrate that these enzymes are capable of polyubiquitylating NEIL1 in vitro, and that both catalyse ubiquitylation of NEIL1 within the same C-terminal lysine residues. An siRNA-mediated knockdown of Mule or TRIM26 leads to stabilisation of NEIL1, demonstrating that these enzymes are important in regulating cellular NEIL1 steady state protein levels. Similarly, a mutant NEIL1 protein lacking residues for ubiquitylation is more stable than the wild type protein in vivo. We also demonstrate that cellular NEIL1 protein is induced in response to ionising radiation (IR), although this occurs specifically in a Mule-dependent manner. Finally we show that stabilisation of NEIL1, particularly following TRIM26 siRNA, contributes to cellular resistance to IR. This highlights the importance of Mule and TRIM26 in maintaining steady state levels of NEIL1, but also those required for the cellular DNA damage response. PMID:27924031

  4. Signaling pathways involved in PDGF-evoked cellular responses in human RPE cells

    SciTech Connect

    Hollborn, Margrit . E-mail: hollbm@medizin.uni-leipzig.de; Bringmann, Andreas; Faude, Frank; Wiedemann, Peter; Kohen, Leon

    2006-06-09

    We examined whether PDGF may directly stimulate the expression of VEGF by retinal pigment epithelial (RPE) cells in vitro, and the involvement of three signal transduction pathways in the regulation of PDGF-evoked cell proliferation, migration, and production of VEGF-A was investigated. PDGF stimulated the gene and protein expression of VEGF-A by RPE cells, and increased cell proliferation and chemotaxis. PDGF activated all signaling pathways investigated, as determined by increased phosphorylation levels of ERK1/2, p38, and Akt proteins. The three signaling pathways were involved in the mediation of PDGF-evoked cell proliferation, while p38 and PI3K mediated cell migration, and PI3K mediated secretion of VEGF-A. In addition to VEGF-A, the cells expressed mRNAs for various members of the VEGF family and for their receptors, including VEGF-B, -C, -D, flt-1, and KDR. The data indicate that PDGF selectively stimulates the expression of VEGF-A in RPE cells. PDGF evokes at least three signal transduction pathways which are differentially involved in various cellular responses.

  5. C-type lectin from red swamp crayfish Procambarus clarkii participates in cellular immune response.

    PubMed

    Zhang, Xiao-Wen; Wang, Xian-Wei; Sun, Chen; Zhao, Xiao-Fan; Wang, Jin-Xing

    2011-03-01

    Lectins are potential immune recognition proteins. In this study, a novel C-type lectin (Pc-Lec1) is reported in freshwater crayfish Procambarus clarkii. Pc-Lec1 encodes a protein of 163 amino acids with a putative signal peptide and a single carbohydrate recognition domain. It was constitutively expressed in various tissues of a normal crayfish, especially in the hepatopancreas and gills. Expressions of Pc-Lec1 were up-regulated in the hepatopancreas and gills of crayfish challenged with Vibrio anguillarum, Staphylococcus aureus, or the white spot syndrome virus. Recombinant mature Pc-Lec1 bound bacteria and polysaccharides (peptidoglycan, lipoteichoic acid, and lipopolysaccharide) but did not agglutinate bacteria. Pc-Lec1 enhanced hemocyte encapsulation of the sepharose beads in vitro, and the blocking of beads by a polyclonal antibody inhibited encapsulation. Pc-Lec1 promoted clearance of V. anguillarum in vivo. These results suggest that Pc-Lec1 is a pattern recognition receptor and participates in cellular immune response. Pc-Lec1 performs its function as an opsonin by enhancing the encapsulation or clearance of pathogenic bacteria.

  6. Monitoring the biochemical and cellular responses of marine bivalves during thermal stress by using biomarkers.

    PubMed

    Dimitriadis, Vasileios K; Gougoula, Christina; Anestis, Andreas; Pörtner, Hans O; Michaelidis, Basile

    2012-02-01

    The present work aimed to study the cellular, biochemical and molecular biomarkers in the digestive glands and hemocytes of Modiolus barbatus and whether there is a hierarchy in their response to thermal stress. We determined a) the neutral red retention assay (NRR) in heamotocytes and b) the lysosomal membrane stability (LMS), the levels of second messenger cAMP, the activity of acetylcholinesterase (AChE) in the digestive glands of Modiolus barbatus after acclimation to 18 °C, 24 °C, 28 °C or 30 °C for 30 days. Moreover, in order to estimate the threshold of temperature inducing expression of stress proteins we determined the levels of Hsp70 and Hsp90 in the digestive glands. Hsps are expressed at lower temperature than those causing reduction in the LMS and NNR times. The reduction in the LMS and NNR times at high temperatures of acclimation might be related to inability of Modiolus barbatus to gain energy from the ingested food.

  7. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

    SciTech Connect

    Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S; Neve, Richard M; Das, Debopriya; Gray, Joe W; Groves, Jay T

    2009-09-09

    Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitative analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.

  8. Cellular response of the amoeba Acanthamoeba castellanii to chlorine, chlorine dioxide, and monochloramine treatments.

    PubMed

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-07-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii.

  9. Beneficial effects of low dose radiation in response to the oncogenic KRAS induced cellular transformation

    PubMed Central

    Kim, Rae-Kwon; Kim, Min-Jung; Seong, Ki Moon; Kaushik, Neha; Suh, Yongjoon; Yoo, Ki-Chun; Cui, Yan-Hong; Jin, Young Woo; Nam, Seon Young; Lee, Su-Jae

    2015-01-01

    Recently low dose irradiation has gained attention in the field of radiotherapy. For lack of understanding of the molecular consequences of low dose irradiation, there is much doubt concerning its risks on human beings. In this article, we report that low dose irradiation is capable of blocking the oncogenic KRAS-induced malignant transformation. To address this hypothesis, we showed that low dose irradiation, at doses of 0.1 Gray (Gy); predominantly provide defensive response against oncogenic KRAS -induced malignant transformation in human cells through the induction of antioxidants without causing cell death and acts as a critical regulator for the attenuation of reactive oxygen species (ROS). Importantly, we elucidated that knockdown of antioxidants significantly enhanced ROS generation, invasive and migratory properties and abnormal acini formation in KRAS transformed normal as well as cancer cells. Taken together, this study demonstrates that low dose irradiation reduces the KRAS induced malignant cellular transformation through diminution of ROS. This interesting phenomenon illuminates the beneficial effects of low dose irradiation, suggesting one of contributory mechanisms for reducing the oncogene induced carcinogenesis that intensify the potential use of low dose irradiation as a standard regimen. PMID:26515758

  10. Label-free quantitative phosphoproteomic profiling of cellular response induced by an insect cytokine paralytic peptide.

    PubMed

    Song, Liang; Wang, Fei; Dong, Zhaoming; Hua, Xiaoting; Xia, Qingyou

    2017-02-10

    Paralytic peptide (PP) participates in diverse physiological processes as an insect cytokine, such as immunity control, paralysis induction, regulation of cell morphology and proliferation. To investigate the molecular mechanism underlying those physiological activities, we systematically investigated the global phosphorylation events in fat body of silkworm larvae induced by PP through label-free quantitative phosphoproteomics. 2534 phosphosites were finally identified, of which the phosphorylation level of 620 phosphosites on 244 proteins was significantly up-regulated and 67 phosphosites on 43 proteins was down-regulated. Among those proteins, 13 were protein kinases (PKs), 13 were transcription factors (TFs) across 10 families and 17 were metabolism related enzymes. Meanwhile, Motif-X analysis of the phosphorylation sites showed that 16 motifs are significantly enriched, including 8 novel phosphorylation motifs. In addition, KEGG and functional interacting network analysis revealed that phosphorylation cascades play the crucial regulation roles in PP-dependent signaling pathways, and highlighted the potential central position of the mitogen-activated protein kinases (MAPKs) in them. These analyses provide direct insights into the molecule mechanisms of cellular response induced by PP.

  11. Molecular and Cellular Mechanisms of Antitumor Immune Response Activation by Dendritic Cells

    PubMed Central

    Markov, O. V.; Mironova, N. L.; Vlasov, V. V.; Zenkova, M. A.

    2016-01-01

    Dendritic cells (DCs) play a crucial role in the initiation and regulation of the antitumor immune response. Already , DC-based antitumor vaccines have been thoroughly explored both in animal tumor models and in clinical trials. DC-based vaccines are commonly produced from DC progenitors isolated from peripheral blood or bone marrow by culturing in the presence of cytokines, followed by loading the DCs with tumor-specific antigens, such as DNA, RNA, viral vectors, or a tumor cell lysate. However, the efficacy of DC-based vaccines remains low. Undoubtedly, a deeper understanding of the molecular mechanisms by which DCs function would allow us to enhance the antitumor efficacy of DC-based vaccines in clinical applications. This review describes the origin and major subsets of mouse and human DCs, as well as the differences between them. The cellular mechanisms of presentation and cross-presentation of exogenous antigens by DCs to T cells are described. We discuss intracellular antigen processing in DCs, cross-dressing, and the acquisition of the antigen cross-presentation function. A particular section in the review describes the mechanisms of tumor escape from immune surveillance through the suppression of DCs functions. PMID:27795841

  12. Tailoring hydrogel surface properties to modulate cellular response to shear loading.

    PubMed

    Meinert, Christoph; Schrobback, Karsten; Levett, Peter A; Lutton, Cameron; Sah, Robert L; Klein, Travis J

    2016-10-08

    Biological tissues at articulating surfaces, such as articular cartilage, typically have remarkable low-friction properties that limit tissue shear during movement. However, these frictional properties change with trauma, aging, and disease, resulting in an altered mechanical state within the tissues. Yet, it remains unclear how these surface changes affect the behaviour of embedded cells when the tissue is mechanically loaded. Here, we developed a cytocompatible, bilayered hydrogel system that permits control of surface frictional properties without affecting other bulk physicochemical characteristics such as compressive modulus, mass swelling ratio, and water content. This hydrogel system was applied to investigate the effect of variations in surface friction on the biological response of human articular chondrocytes to shear loading. Shear strain in these hydrogels during dynamic shear loading was significantly higher in high-friction hydrogels than in low-friction hydrogels. Chondrogenesis was promoted following dynamic shear stimulation in chondrocyte-encapsulated low-friction hydrogel constructs, whereas matrix synthesis was impaired in high-friction constructs, which instead exhibited increased catabolism. Our findings demonstrate that the surface friction of tissue-engineered cartilage may act as a potent regulator of cellular homeostasis by governing the magnitude of shear deformation during mechanical loading, suggesting a similar relationship may also exist for native articular cartilage.

  13. Beneficial effects of low dose radiation in response to the oncogenic KRAS induced cellular transformation.

    PubMed

    Kim, Rae-Kwon; Kim, Min-Jung; Seong, Ki Moon; Kaushik, Neha; Suh, Yongjoon; Yoo, Ki-Chun; Cui, Yan-Hong; Jin, Young Woo; Nam, Seon Young; Lee, Su-Jae

    2015-10-30

    Recently low dose irradiation has gained attention in the field of radiotherapy. For lack of understanding of the molecular consequences of low dose irradiation, there is much doubt concerning its risks on human beings. In this article, we report that low dose irradiation is capable of blocking the oncogenic KRAS-induced malignant transformation. To address this hypothesis, we showed that low dose irradiation, at doses of 0.1 Gray (Gy); predominantly provide defensive response against oncogenic KRAS -induced malignant transformation in human cells through the induction of antioxidants without causing cell death and acts as a critical regulator for the attenuation of reactive oxygen species (ROS). Importantly, we elucidated that knockdown of antioxidants significantly enhanced ROS generation, invasive and migratory properties and abnormal acini formation in KRAS transformed normal as well as cancer cells. Taken together, this study demonstrates that low dose irradiation reduces the KRAS induced malignant cellular transformation through diminution of ROS. This interesting phenomenon illuminates the beneficial effects of low dose irradiation, suggesting one of contributory mechanisms for reducing the oncogene induced carcinogenesis that intensify the potential use of low dose irradiation as a standard regimen.

  14. Assessment of the cellular immune response to HL-A antigens in human renal allograft recipients

    PubMed Central

    Falk, R. E.; Guttmann, R. D.; Falk, J. A.; Beaudoin, J. G.; Deveber, G.; Morehouse, D. D.; Wilson, D. R.

    1973-01-01

    The cellular response to HL-A antigens has been studied in thirty-one patients who had received a renal allograft from either a cadaveric or living donor, utilizing the leucocyte migration technique. The results indicate that inhibition of migration develops prior to or during the onset of a clinical rejection episode. This inhibition of migration reverts to non-inhibition in autologous serum when the rejection crisis is reversed. Inhibition of migration is still noted in allogeneic serum following this clinical reversal, but after varying time intervals the inhibition reaction also decreases in this serum. The abrogation of inhibition in autologous serum is specific to the HL-A antigens of the donor. These observations suggest that survival of human renal allografts depends on a blocking substance in the serum initially; subsequently, the loss of inhibition of migration with HL-A antigens in both autologous and allogeneic serum suggests an inactivation of specific antigen sensitive cells to the histocompatibility antigens of the donor. PMID:4577287

  15. Cellular and molecular responses to increased skeletal muscle loading after irradiation

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Caiozzo, Vincent J.; Haddad, Fadia; Baldwin, Kenneth M.

    2002-01-01

    Irradiation of rat skeletal muscles before increased loading has been shown to prevent compensatory hypertrophy for periods of up to 4 wk, possibly by preventing satellite cells from proliferating and providing new myonuclei. Recent work suggested that stem cell populations exist that might allow irradiated muscles to eventually hypertrophy over time. We report that irradiation essentially prevented hypertrophy in rat muscles subjected to 3 mo of functional overload (OL-Ir). The time course and magnitude of changes in cellular and molecular markers of anabolic and myogenic responses were similar in the OL-Ir and the contralateral nonirradiated, overloaded (OL) muscles for the first 3-7 days. These markers then returned to control levels in OL-Ir muscles while remaining elevated in OL muscles. The number of myonuclei and amount of DNA were increased markedly in OL but not OL-Ir muscles. Thus it appears that stem cells were not added to the irradiated muscles in this time period. These data are consistent with the theory that the addition of new myonuclei may be required for compensatory hypertrophy in the rat.

  16. Endoplasmic reticulum stress as a novel cellular response to di (2-ethylhexyl) phthalate exposure.

    PubMed

    Peropadre, Ana; Fernández Freire, Paloma; Pérez Martín, José Manuel; Herrero, Óscar; Hazen, María José

    2015-12-25

    Di (2-ethylhexyl) phthalate is a high-production chemical widely used as a plasticizer for polyvinyl chloride products. Due to its ubiquitous presence in environmental compartments and the constant exposure of the general population through ingestion, inhalation, and dermal absorption, this compound has been subjected to extensive in vivo and in vitro toxicological studies. Despite the available information, research on the cytotoxicity of di (2-ethylhexyl) phthalate in mammalian cells is relatively limited.In this paper, an in vitro multi-parametric approach was used to provide further mechanistic data on the toxic activity of this chemical in Vero and HaCaT cells. Our results reveal that a 24 h exposure to di (2-ethylhexyl) phthalate causes, in both cell lines, an inhibition of cell proliferation that was linked to cell cycle delay at the G1 phase. Concomitantly, the tested compound induces mild endoplasmic reticulum stress which leads to an adaptive rather than a pro-apoptotic response in mammalian cells. These findings demonstrate that there are multiple potential cellular targets of di (2-ethylhexyl) phthalate-induced toxicity and the need to develop further experimental studies for the risk assessment of this ubiquitous plasticizer.

  17. Shape Effect of Glyco-Nanoparticles on Macrophage Cellular Uptake and Immune Response

    PubMed Central

    2016-01-01

    The shells of various poly(dl-lactide)-b-poly(acrylic acid) (PDLLA-b-PAA) spherical micelles and poly(l-lactide)-b-poly(acrylic acid) (PLLA-b-PAA) cylindrical micelles were functionalized with mannose to yield glyco-nanoparticles (GNPs) with different shapes and dimensions. All of these GNPs were shown to have good biocompatibility (up to 1 mg/mL). Cellular uptake experiments using RAW 264.7 have shown that the spherical GNPs were internalized to a much greater extent than the cylindrical GNPs and such a phenomenon was attributed to their different endocytosis pathways. It was demonstrated that spherical GNPs were internalized based on clathrin- and caveolin-mediated endocytosis while cylindrical GNPs mainly depended on clathrin-mediated endocytosis. We also found that longer cylindrical GNPs (Ln × Wn = 215 × 47 nm) can induce an inflammatory response (specifically interleukin 6) more efficiently than shorter cylindrical GNPs (Ln × Wn = 99 × 50 nm) and spherical GNPs (Dn = 46 nm). PMID:27695648

  18. Kinin Peptides Enhance Inflammatory and Oxidative Responses Promoting Apoptosis in a Parkinson's Disease Cellular Model

    PubMed Central

    Kozik, Andrzej

    2016-01-01

    Kinin peptides ubiquitously occur in nervous tissue and participate in inflammatory processes associated with distinct neurological disorders. These substances have also been demonstrated to promote the oxidative stress. On the other hand, the importance of oxidative stress and inflammation has been emphasized in disorders that involve the neurodegenerative processes such as Parkinson's disease (PD). A growing number of reports have demonstrated the increased expression of kinin receptors in neurodegenerative diseases. In this study, the effect of bradykinin and des-Arg10-kallidin, two representative kinin peptides, was analyzed with respect to inflammatory response and induction of oxidative stress in a PD cellular model, obtained after stimulation of differentiated SK-N-SH cells with a neurotoxin, 1-methyl-4-phenylpyridinium. Kinin peptides caused an increased cytokine release and enhanced production of reactive oxygen species and NO by cells. These changes were accompanied by a loss of cell viability and a greater activation of caspases involved in apoptosis progression. Moreover, the neurotoxin and kinin peptides altered the dopamine receptor 2 expression. Kinin receptor expression was also changed by the neurotoxin. These results suggest a mediatory role of kinin peptides in the development of neurodegeneration and may offer new possibilities for its regulation by using specific antagonists of kinin receptors. PMID:27721576

  19. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds.

    PubMed

    Liao, Huihui; Qi, Ruiling; Shen, Mingwu; Cao, Xueyan; Guo, Rui; Zhang, Yanzhong; Shi, Xiangyang

    2011-06-01

    We report the fabrication of multiwalled carbon nanotube (MWCNT)-incorporated electrospun polyvinyl alcohol (PVA)/chitosan (CS) nanofibers with improved cellular response for potential tissue engineering applications. In this study, smooth and uniform PVA/CS and PVA/CS/MWCNTs nanofibers with water stability were formed by electrospinning, followed by crosslinking with glutaraldehyde vapor. The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and mechanical testing, respectively. We showed that the incorporation of MWCNTs did not appreciably affect the morphology of the PVA/CS nanofibers; importantly the protein adsorption ability of the nanofibers was significantly improved. In vitro cell culture of mouse fibroblasts (L929) seeded onto the electrospun scaffolds showed that the incorporation of MWCNTs into the PVA/CS nanofibers significantly promoted cell proliferation. Results from this study hence suggest that MWCNT-incorporated PVA/CS nanofibrous scaffolds with small diameters (around 160 nm) and high porosity can mimic the natural extracellular matrix well, and potentially provide many possibilities for applications in the fields of tissue engineering and regenerative medicine.

  20. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    PubMed Central

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii. PMID:21602398

  1. Cellular Stress Response Gene Expression During Upper and Lower Body High Intensity Exercises

    PubMed Central

    Kochanowicz, Andrzej; Sawczyn, Stanisław; Niespodziński, Bartłomiej; Mieszkowski, Jan; Kochanowicz, Kazimierz

    2017-01-01

    Objectives The aim was to compare the effect of upper and lower body high-intensity exercise on chosen genes expression in athletes and non-athletes. Method Fourteen elite male artistic gymnasts (EAG) aged 20.6 ± 3.3 years and 14 physically active men (PAM) aged 19.9 ± 1.0 years performed lower and upper body 30 s Wingate Tests. Blood samples were collected before, 5 and 30 minutes after each effort to assess gene expression via PCR. Results Significantly higher mechanical parameters after lower body exercise was observed in both groups, for relative power (8.7 ± 1.2 W/kg in gymnasts, 7.2 ± 1.2 W/kg in controls, p = 0.01) and mean power (6.7 ± 0.7 W/kg in gymnasts, 5.4 ± 0.8 W/kg in controls, p = 0.01). No differences in lower versus upper body gene expression were detected for all tested genes as well as between gymnasts and physical active man. For IL-6 m-RNA time-dependent effect was observed. Conclusions Because of no significant differences in expression of genes associated with cellular stress response the similar adaptive effect to exercise may be obtained so by lower and upper body exercise. PMID:28141870

  2. Computer simulation of a cellular automata model for the immune response in a retrovirus system

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.

    1989-02-01

    Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viral cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B ca ( B cq). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B ca ( B cq).

  3. Computer simulation of a cellular automata model for the immune response in a retrovirus system

    SciTech Connect

    Pandey, R.B.

    1989-02-01

    Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viral cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B/sub ca/ (B/sub cq/). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B/sub ca/ (B/sub cq/).

  4. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses.

    PubMed

    Shrestha, Roshan P; Hildebrand, Mark

    2015-01-01

    The utilization of silicon by diatoms has both global and small-scale implications, from oceanic primary productivity to nanotechnological applications of their silica cell walls. The sensing and transport of silicic acid are key aspects of understanding diatom silicon utilization. At low silicic acid concentrations (<30 μM), transport mainly occurs through silicic acid transport proteins (SITs), and at higher concentrations it occurs through diffusion. Previous analyses of the SITs were done either in heterologous systems or without a distinction between individual SITs. In the present study, we examined individual SITs in Thalassiosira pseudonana in terms of transcript and protein abundance in response to different silicic acid regimes and examined knockdown lines to evaluate the role of the SITs in transport, silica incorporation, and lipid accumulation resulting from silicon starvation. SIT1 and SIT2 were localized in the plasma membrane, and protein levels were generally inversely correlated with cellular silicon needs, with a distinct response being found when the two SITs were compared. We developed highly effective approaches for RNA interference and antisense knockdowns, the first such approaches developed for a centric diatom. SIT knockdown differentially affected the uptake of silicon and the incorporation of silicic acid and resulted in the induction of lipid accumulation under silicon starvation conditions far earlier than in the wild-type cells, suggesting that the cells were artificially sensing silicon limitation. The data suggest that the transport role of the SITs is relatively minor under conditions with sufficient silicic acid. Their primary role is to sense silicic acid levels to evaluate whether the cell can proceed with its cell wall formation and division processes.

  5. A New In Vitro Model to Study Cellular Responses after Thermomechanical Damage in Monolayer Cultures

    PubMed Central

    Hettler, Alice; Werner, Simon; Eick, Stefan; Laufer, Stefan; Weise, Frank

    2013-01-01

    Although electrosurgical instruments are widely used in surgery to cut tissue layers or to achieve hemostasis by coagulation (electrocautery), only little information is available concerning the inflammatory or immune response towards the debris generated. Given the elevated local temperatures required for successful electrocautery, the remaining debris is likely to contain a plethora of compounds entirely novel to the intracorporal setting. A very common in vitro method to study cell migration after mechanical damage is the scratch assay, however, there is no established model for thermomechanical damage to characterise cellular reactions. In this study, we established a new in vitro model to investigate exposure to high temperature in a carefully controlled cell culture system. Heatable thermostat-controlled aluminium stamps were developed to induce local damage in primary human umbilical vein endothelial cells (HUVEC). The thermomechanical damage invoked is reproducibly locally confined, therefore allowing studies, under the same experimental conditions, of cells affected to various degrees as well as of unaffected cells. We show that the unaffected cells surrounding the thermomechanical damage zone are able to migrate into the damaged area, resulting in a complete closure of the ‘wound’ within 48 h. Initial studies have shown that there are significant morphological and biological differences in endothelial cells after thermomechanical damage compared to the mechanical damage inflicted by using the unheated stamp as a control. Accordingly, after thermomechanical damage, cell death as well as cell protection programs were activated. Mononuclear cells adhered in the area adjacent to thermomechanical damage, but not to the zone of mechanical damage. Therefore, our model can help to understand the differences in wound healing during the early phase of regeneration after thermomechanical vs. mechanical damage. Furthermore, this model lends itself to study the

  6. Cellular responses to low-gravity: Pilot studies on suborbital rockets and orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1993-01-01

    The allocated funding supported, in part, experiments conducted on two Consort sounding rockets and five Shuttle flights. The primary parameters investigated were signal transduction in response to various mediators, cellular differentiation and metabolism in microgravity, and effect of microgravity on cytoskeletal morphology. Achievements include: demonstration of effect of spaceflight on the actin cytoskeleton in mouse osteoblasts and frog cells; confirmation that the T cell receptor-mediated signal transduction pathway in T lymphocytes is not affected by low-gravity compared to non-TCR-mediated stimulation (Con-A) which classically does not promote proliferative response; indication that microgravity may allow separation of proliferative signaling and secretory function in lymphocytes; demonstration that T lymphocytes and bone cells utilized less glucose indicating a shift in metabolism and confirming Spacelab results with WI-38 cells which used significantly less glucose, during spaceflight; confirmation that activation of human splenic B cells with a number of different mediators is not affected during spaceflight; demonstration of increased prostaglandin synthesis during reduced bone cell growth suggesting an effect of microgravity on prostaglandin-induced mitogenesis. The funding contributed significantly to the database described above and resulted in submission of six collaborative abstracts in 1993 (five to the ASGSB Annual Meeting and one to the ASCB Annual Meeting). Two abstracts were presented at the 1992 ASGSB Annual Meeting in Tucson. In addition, several peer reviewed papers are being generated and data will be included as background in preparation of future proposals, which hopefully will allow us to continue this type of extremely productive collaborative research.

  7. Effect of MWCNT surface and chemical modification on in vitro cellular response

    NASA Astrophysics Data System (ADS)

    Fraczek-Szczypta, Aneta; Menaszek, Elzbieta; Syeda, Tahmina Bahar; Misra, Anil; Alavijeh, Mohammad; Adu, Jimi; Blazewicz, Stanislaw

    2012-10-01

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10-30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment-material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell-nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT's agglomerates surrounded by numerous cells releasing toxic substances.

  8. Proteomic-based mechanistic investigation of low-dose radiation-induced cellular responses/effects

    SciTech Connect

    Chen, Xian

    2013-10-23

    The goal of our project is to apply our unique systems investigation strategy to reveal the molecular mechanisms underlying the radiation induction and transmission of oxidative damage, adaptive response, and bystander effect at low-doses. Beginning with simple in vitro systems such as fibroblast or epithelial pure culture, our amino acid-coded mass tagging (AACT) comparative proteomic platform will be used to measure quantitatively proteomic changes at high- or low-dose level with respect to their endogenous damage levels respectively, in which a broad range of unique regulated proteins sensitive to low-dose IR will be distinguished. To zoom in how these regulated proteins interact with other in the form of networks in induction/transmission pathways, these regulated proteins will be selected as baits for making a series of fibroblast cell lines that stably express each of them. Using our newly developed method of ?dual-tagging? quantitative proteomics that integrate the capabilities of natural complex expression/formation, simple epitope affinity isolation (not through tandem affinity purification or TAP), and ?in-spectra? AACT quantitative measurements using mass spectrometry (MS), we will be able to distinguish systematically interacting proteins with each bait in real time. Further, in addition to both proteome-wide (global differentially expressed proteins) and pathway-scale (bait-specific) profiling information, we will perform a computational network analysis to elucidate a global pathway/mechanisms underlying cellular responses to real-time low-dose IR. Similarly, we will extend our scheme to investigate systematically those induction/transmission pathways occurring in a fibroblast-epithelial interacting model in which the bystander cell (fibroblast) monitor the IR damage to the target cell (epithelial cell). The results will provide the proteome base (molecular mechanisms/pathways for signaling) for the low dose radiation-induced essential tissue

  9. Genome Wide Expression Profiling during Spinal Cord Regeneration Identifies Comprehensive Cellular Responses in Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Sengupta, Dhriti; Lee, Serene Gek Ping; Sen, Triparna; Kundu, Sudip; Mathavan, Sinnakaruppan; Ghosh, Sukla

    2014-01-01

    Background Among the vertebrates, teleost and urodele amphibians are capable of regenerating their central nervous system. We have used zebrafish as a model to study spinal cord injury and regeneration. Relatively little is known about the molecular mechanisms underlying spinal cord regeneration and information based on high density oligonucleotide microarray was not available. We have used a high density microarray to profile the temporal transcriptome dynamics during the entire phenomenon. Results A total of 3842 genes expressed differentially with significant fold changes during spinal cord regeneration. Cluster analysis revealed event specific dynamic expression of genes related to inflammation, cell death, cell migration, cell proliferation, neurogenesis, neural patterning and axonal regrowth. Spatio-temporal analysis of stat3 expression suggested its possible function in controlling inflammation and cell proliferation. Genes involved in neurogenesis and their dorso-ventral patterning (sox2 and dbx2) are differentially expressed. Injury induced cell proliferation is controlled by many cell cycle regulators and some are commonly expressed in regenerating fin, heart and retina. Expression pattern of certain pathway genes are identified for the first time during regeneration of spinal cord. Several genes involved in PNS regeneration in mammals like stat3, socs3, atf3, mmp9 and sox11 are upregulated in zebrafish SCI thus creating PNS like environment after injury. Conclusion Our study provides a comprehensive genetic blue print of diverse cellular response(s) during regeneration of zebrafish spinal cord. The data highlights the importance of different event specific gene expression that could be better understood and manipulated further to induce successful regeneration in mammals. PMID:24465396

  10. Single-cell bioelectrical impedance platform for monitoring cellular response to drug treatment

    PubMed Central

    Asphahani, Fareid; Wang, Kui; Thein, Myo; Veiseh, Omid; Yung, Sandy; Xu, Jian; Zhang, Miqin

    2011-01-01

    The response of cells to a chemical or biological agent in terms of their impedance changes in real-time is a useful mechanism that can be utilized for a wide variety of biomedical and environmental applications. The use of a single-cell based analytical platform could be an effective approach to acquiring more sensitive cell impedance measurements, particularly in applications where only diminutive changes in impedance are expected. Here, we report the development of an on-chip cell impedance biosensor with two types of electrodes that hosts individual cells and cell populations, respectively, to study its efficacy in detecting cellular response. Human glioblastoma (U87MG) cells were patterned on single- and multi-cell electrodes through ligand-mediated natural cell adhesion. We comparatively investigated how these cancer cells on both types of electrodes respond to an ion channel inhibitor, chlorotoxin (CTX), in terms of their shape alternations and impedance changes to exploit the fine detectability of the single-cell based system. The detecting electrodes hosting single cells exhibited a significant reduction in the real impedance signal, while electrodes hosting confluent monolayer of cells showed little to no impedance change. When single-cell electrodes were treated with CTX of different doses, a dose-dependent impedance change was observed. This enables us to identify the effective dose needed for this particular treatment. Our study demonstrated that this single-cell impedance system may potentially serve as a useful analytical tool for biomedical applications such as environmental toxin detection and drug evaluation. PMID:21301069

  11. Evolution of a Cellular Immune Response in Drosophila: A Phenotypic and Genomic Comparative Analysis

    PubMed Central

    Salazar-Jaramillo, Laura; Paspati, Angeliki; van de Zande, Louis; Vermeulen, Cornelis Joseph; Schwander, Tanja; Wertheim, Bregje

    2014-01-01

    Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila. PMID:24443439

  12. Neuronal Cellular Responses to Extremely Low Frequency Electromagnetic Field Exposure: Implications Regarding Oxidative Stress and Neurodegeneration

    PubMed Central

    Reale, Marcella; Kamal, Mohammad A.; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H.

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2−, which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  13. The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver.

    PubMed

    Chorley, Brian; Ward, William; Simmons, Steven O; Vallanat, Beena; Veronesi, Bellina

    2014-12-01

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5 ppm) to a set of nanoAg of different sizes (10nm, 75 nm) and coatings (PVP, citrate) and their physicochemical, cellular and genomic response measured. Both coatings retained their manufactured sizes in culture media, however, the zeta potentials of both sizes of PVP-coated nanoAg were significantly less electronegative than those of their citrate-coated counterparts. Markers of oxidative stress, measured at 0.5-5 ppm exposure concentrations, indicated that caspase 3/7 activity and glutathione levels were significantly increased by both sizes of PVP-coated nanoAg and by the 75 nm citrate-coated nanoAg. Both sizes of PVP-coated nanoAg also increased intra-neuronal nitrite levels and activated ARE/NRF2, a reporter gene for the oxidative stress-protection pathway. Global gene expression on N27 neurons, exposed to 0.5 ppm for 8h, indicated a dominant effect by PVP-coated nanoAg over citrate. The 75 nm PVP-coated material altered 196 genes that were loosely associated with mitochondrial dysfunction. In contrast, the 10nm PVP-coated nanoAg altered 82 genes that were strongly associated with NRF2 oxidative stress pathways. Less that 20% of the affected genes were shared by both sizes of PVP-coated nanoAg. These cellular and genomic findings suggest that PVP-coated nanoAg is more bioactive than citrate-coated nanoAg. Although both sizes of PVP-coated nanoAg altered the genomic expression of N27 neurons along oxidative stress pathways, exposure to the 75 nm nanoAg favored pathways associated with mitochondrial dysfunction, whereas the 10nm PVP-coated nanoAg affected NRF2 neuronal protective pathways.

  14. Conversion of psychological stress into cellular stress response: roles of the sigma-1 receptor in the process.

    PubMed

    Hayashi, Teruo

    2015-04-01

    Psychiatrists empirically recognize that excessive or chronic psychological stress can result in long-lasting impairments of brain functions that partly involve neuronal cell damage. Recent studies begin to elucidate the molecular pathways activated/inhibited by psychological stress. Activation of the hypothalamic-pituitary-adrenal axis under psychological stress causes inflammatory oxidative stresses in the brain, in part due to elevation of cytokines. Psychological stress or neuropathological conditions (e.g., accumulation of β-amyloids) trigger 'cellular stress responses', which promote upregulation of molecular chaperones to protect macromolecules from degradation. The unfolded protein response, the endoplasmic reticulum (ER)-specific cellular stress response, has been recently implicated in the pathophysiology of neuropsychiatric disorders and the pharmacology of certain clinically used drugs. The sigma-1 receptor is an ER protein whose ligands are shown to exert antidepressant-like and neuroprotective actions. Recent studies found that the sigma-1 receptor is a novel ligand-operated ER chaperone that regulates bioenergetics, free radical generation, oxidative stress, unfolded protein response and cytokine signaling. The sigma-1 receptor also regulates morphogenesis of neuronal cells, such as neurite outgrowth, synaptogenesis, and myelination, which can be perturbed by cellular stress. The sigma-1 receptor may thus contribute to a cellular defense system that protects nervous systems against chronic psychological stress. Findings from sigma receptor research imply that not only cell surface monoamine effectors but also intracellular molecules, especially those at the ER, may provide novel therapeutic targets for future drug developments.

  15. Toxicity of cadmium in Japanese quail: Evaluation of body weight, hepatic and renal function, and cellular immune response

    SciTech Connect

    Sant'Ana, M.G.; Moraes, R.; Bernardi, M.M. . E-mail: bernarde@usp.com

    2005-10-01

    Cadmium (Cd) is an environmental pollutant that is able to alter the immune function. Previous studies have shown that, in mammals, chronic exposure to Cd decreases the release of macrophagic cytokines such as IL1 and TN{alpha} and decreases phagocytosis activity. On the other hand contradictory results showed an increase in the humoral response. The cellular response could be decreased by exposure to Cd. These alterations were observed in mammals. The present study aimed to investigate some of the toxic effects of Cd exposure in birds. In particular, the main objective of this work was to elucidate the effects of exposure to this pollutant on the cellular immune function of the Japanese quail as a model for the study of toxicity in animals exposed in nature. The animals were exposed to the metal (100 ppm, per os) during development, i.e., from 1 to 28 days old. Body weight, biochemical parameters, and cellular immune response were measured during and at the end of treatment. The results showed that the exposure to Cd for 28 days significantly reduced the body weight and induced hepatic toxicity. The kidney function and cellular immune response were not affected by the Cd exposure.

  16. Comparative Analysis of SIV-specific Cellular Immune Responses Induced by Different Vaccine Platforms in Rhesus Macaques

    PubMed Central

    Valentin, Antonio; McKinnon, Katherine; Li, Jinyao; Rosati, Margherita; Kulkarni, Viraj; Pilkington, Guy R.; Bear, Jenifer; Alicea, Candido; Vargas-Inchaustegui, Diego A.; Patterson, L. Jean; Pegu, Poonam; Liyanage, Namal P. M.; Gordon, Shari N.; Vaccari, Monica; Wang, Yichuan; Hogg, Alison E.; Frey, Blake; Sui, Yongjun; Reed, Steven G.; Sardesai, Niranjan Y.; Berzofsky, Jay A.; Franchini, Genoveffa; Robert-Guroff, Marjorie; Felber, Barbara K.; Pavlakis, George N.

    2014-01-01

    To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites. PMID:25229164

  17. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques.

    PubMed

    Valentin, Antonio; McKinnon, Katherine; Li, Jinyao; Rosati, Margherita; Kulkarni, Viraj; Pilkington, Guy R; Bear, Jenifer; Alicea, Candido; Vargas-Inchaustegui, Diego A; Jean Patterson, L; Pegu, Poonam; Liyanage, Namal P M; Gordon, Shari N; Vaccari, Monica; Wang, Yichuan; Hogg, Alison E; Frey, Blake; Sui, Yongjun; Reed, Steven G; Sardesai, Niranjan Y; Berzofsky, Jay A; Franchini, Genoveffa; Robert-Guroff, Marjorie; Felber, Barbara K; Pavlakis, George N

    2014-11-01

    To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.

  18. Adaptive Cellular Interactions in the Immune System: The Tunable Activation Threshold and the Significance of Subthreshold Responses

    NASA Astrophysics Data System (ADS)

    Grossman, Zvi; Paul, William E.

    1992-11-01

    A major challenge for immunologists is to explain how the immune system adjusts its responses to the microenvironmental context in which antigens are recognized. We propose that lymphocytes achieve this by tuning and updating their responsiveness to recurrent signals. In particular, cellular anergy in vivo is a dynamic state in which the threshold for a stereotypic mode of activation has been elevated. Anergy is associated with other forms of cellular activity, not paralysis. Cells engaged in such subthreshold interactions mediate functions such as maintenance of immunological memory and control of infections. In such interactions, patterns of signals are recognized and classified and evoke selective responses. The robust mechanism proposed for segregation of suprathreshold and subthreshold immune responses allows lymphocytes to use recognition of self-antigens in executing physiological functions. Autoreactivity is allowed where it is dissociated from uncontrolled aggression.

  19. Flavones induce immunomodulatory and anti-inflammatory effects by activating cellular anti-oxidant activity: a structure-activity relationship study.

    PubMed

    Kilani-Jaziri, Soumaya; Mustapha, Nadia; Mokdad-Bzeouich, Imen; El Gueder, Dorra; Ghedira, Kamel; Ghedira-Chekir, Leila

    2016-05-01

    Flavonoids impart a variety of biological activities, including anti-oxidant, anti-inflammatory, and anti-genotoxic effects. This study investigated the effects of flavone luteolin and apigenin on immune cell functions, including proliferation, natural killer (NK) cell activity, and cytotoxic T lymphocyte (CTL) activity of isolated murine splenocytes. We report for the first time that flavones enhance lymphocyte proliferation at 10 μM. Luteolin and apigenin significantly promote lipopolysaccharide (LPS)-stimulated splenocyte proliferation and enhance humoral immune responses. Luteolin induces a weak cell proliferation of lectin-stimulated splenic T cells, when compared to apigenin. In addition, both flavones significantly enhance NK cell and CTL activities. Furthermore, our study demonstrated that both flavones could inhibit lysosomal enzyme activity, suggesting a potential anti-inflammatory effect. The anti-inflammatory activity was concomitant with the cellular anti-oxidant effect detected in macrophages, red blood cells, and splenocytes. We conclude from this study that flavones exhibited an immunomodulatory effect which could be ascribed, in part, to its cytoprotective capacity via its anti-oxidant activity.

  20. Transcriptome and Proteome Dynamics of the Cellular Response of Shewanella oneidensis to Chromium Stress

    SciTech Connect

    Thompson, D.K.

    2005-04-18

    The overall goal of this DOE NABIR project is to characterize the molecular basis and regulation of hexavalent chromium [Cr(VI)] stress response and reduction by Shewanella oneidensis strain MR-1. Temporal genomic profiling and mass spectrometry-based proteomic analysis were employed to characterize the dynamic molecular response of S. oneidensis MR-1 to both acute and chronic Cr(VI) exposure. The acute stress response of aerobic, mid-exponential phase cells shocked to a final concentration of 1 mM potassium chromate (K2CrO4) was examined at post-exposure time intervals of 5, 30, 60, and 90 min relative to untreated cells. The transcriptome of mid-exponential cultures was also analyzed 30 min after shock doses of 0.3, 0.5, or 1 mM K{sub 2}CrO{sub 4}. The tonB1-exbB1-exbD1 genes comprising the TonB1 iron transport system were some of the most highly induced coding sequences (CDSs) after 90 min (up to {approx}240 fold), followed by other genes involved in heme transport, sulfate transport, and sulfur assimilation pathways. In addition, transcript levels for CDSs with annotated functions in DNA repair (dinP, recX, recA, recN) and detoxification processes (so3585, so3586) were substantially increased in Cr(VI)-exposed cells compared to untreated cells. By contrast, genes predicted to encode hydrogenases (HydA, HydB), oxidoreductases (SO0902-03-04, SO1911), iron-sulfur cluster binding proteins (SO4404), decaheme cytochrome c proteins (MtrA, OmcA, OmcB), and a number of LysR or TetR family transcriptional regulators were some of the most highly repressed CDSs following the 90-min shock period. Transcriptome profiles generated from MR-1 cells adapted to 0.3 mM Cr(VI) differed significantly from those characterizing cells exposed to acute Cr(VI) stress without adaptation. Parallel proteomic characterization of soluble protein and membrane protein fractions extracted from Cr(VI)-shocked and Cr(VI)-adapted MR-1 cells was performed using multidimensional HPLC-ESI-MS/MS (both

  1. SILICOMB PEEK Kirigami cellular structures: mechanical response and energy dissipation through zero and negative stiffness

    NASA Astrophysics Data System (ADS)

    Virk, K.; Monti, A.; Trehard, T.; Marsh, M.; Hazra, K.; Boba, K.; Remillat, C. D. L.; Scarpa, F.; Farrow, I. R.

    2013-08-01

    The work describes the manufacturing, testing and parametric analysis of cellular structures exhibiting zero Poisson’s ratio-type behaviour, together with zero and negative stiffness effects. The cellular structures are produced in flat panels and curved configurations, using a combination of rapid prototyping techniques and Kirigami (Origami and cutting) procedures for PEEK (Polyether Ether Ketone) thermoplastic composites. The curved cellular configurations show remarkable large deformation behaviours, with zero and negative stiffness regimes depending also on the strain rate applied. These unusual stiffness characteristics lead to a large increase of energy absorption during cyclic tests.

  2. Cellular Immune Responses in Guinea Pigs Immunized with Cell Walls of Histoplasma capsulatum Prepared by Several Different Procedures

    PubMed Central

    Domer, Judith E.; Ichinose, H.

    1977-01-01

    Since guinea pigs immunized with water-washed cell walls of Histoplasma capsulatum developed cellular immune responses detectable with cytoplasmic substances, attempts were made to determine whether cytoplasmic contamination of the walls was responsible for the induction of the immune response. Cell walls were treated by several procedures designed to remove possible contamination, namely, extraction with lipid solvents, incubation with proteolytic enzymes, and washing with sodium dodecyl sulfate, and each of the treated preparations was compared with water-washed walls for its ability to induce cellular responses demonstrable with cytoplasmic substances. For comparison, wall glycoprotein was also used as a test antigen. Immune responses were assessed by gross and histological examinations of skin test sites and by assays for the production of migration inhibition factor. A portion of the material inducing the response detectable with cytoplasmic substances was apparently removed or altered by each of the purifying procedures. The cellular immune responses to wall glycoprotein were also altered, however, indicating that more than the mere removal of cytoplasmic substances had occurred. On the basis of the data collected from each of the cellular assays involving wall glycoprotein as the test antigen, the hypothesis is proposed that sodium dodecyl sulfate altered or removed protein from the wall and thus augmented its ability to induce a more intense immediate-type hypersensitivity, whereas incubation with Pronase altered the walls in such a way as to shift the balance toward a more intense delayed-type hypersensitivity. The latter effect was probably due to the removal of carbohydrate from the wall by glucanase or to mannosidase contaminating the Pronase preparation. Images PMID:326673

  3. Effect of carotenoid β-cryptoxanthin on cellular and humoral immune response in rabbit.

    PubMed

    Ghodratizadeh, Soroush; Kanbak, Güngör; Beyramzadeh, Mojtaba; Dikmen, Zeliha Gunnur; Memarzadeh, Salar; Habibian, Reza

    2014-03-01

    Beta-cryptoxanthin (b-Cr) is a pro-vitamin A and one of the major carotenoids that can be commonly found in mammalian serum and tissues. Foods rich in certain fatty acids are known to be effective to gain a healthy immune system. In the present study, we evaluated the effect of b-Cr on rabbit humoral and cellular immune responses to have a better vision about the mechanism of effect of carotenoids on immune system. Twenty rabbits were randomly divided into five groups (4 per group): Groups consisted of: 1) control group (normal saline; 2) b-Cr (control); 3) vaccine control; 4) 5 mg/kg b-Cr o.p. + vaccine; 5) 10 mg/kg b-Cr o.p. + vaccine. Blood samples were obtained from the marginal ear artery at three time points: days 0, 14 and 21 of the study. Blood CD4+ and CD8+ lymphocytes and Serum Immunoglobulin and Cytokines content were evaluated. Results show that b-Cr administration increased the blood CD4+ lymphocytes count (P > 0.01). Serum IgG, IgM and IgA levels increased (P > 0.05) following b-Cr administration. b-Cr treatment increased serum IL-4 levels (P > 0.05). According to presented results, b-Cr may increase the humoral immunity in mammals. So, it would possible has a potentially beneficial effect on health and on prevention of the immunity related diseases.

  4. Cellular and transcriptional responses in Microcystis aeruginosa exposed to two antibiotic contaminants.

    PubMed

    Liu, Ying; Zhang, Jian; Gao, Baoyu

    2015-04-01

    The responses of Microcystis aeruginosa under exposure to spiramycin and amoxicillin were investigated on both cellular and genetic levels through a 7-day exposure test. Algal growth was inhibited by spiramycin while promoted by amoxicillin at test concentrations of 0.6-1.8 μg L(-1), indicating a higher toxicity of spiramycin than amoxicillin. During the whole exposure period, the chlorophyll a content and expression levels of psbA, psaB, and rbcL were significantly inhibited by spiramycin at test concentrations of 1.2 and 1.8 μg L(-1) (p < 0.05) and stimulated by 0.6-1.8 μg L(-1) of amoxicillin (p < 0.05), with respective decreases of up to 26, 75, 72, and 82% compared to the control and respective increases of 20, 70, 135, and 55%. During the 4 to 7 days of exposure, the microcystin-LR content and expression levels of mcyB and grpE were reduced by up to 66, 47, and 72% in spiramycin-treated algal cells, respectively, and stimulated by up to 1.3-, 1.4-, and 1.5-folds in amoxicillin-treated algal cells, respectively. Elevated recA expression was only observed in 1.2 and 1.8 μg L(-1) of spiramycin-treated algal cells, indicating severe DNA damage due to the high toxicity. Target antibiotics were suspected to regulate the growth and microcystin-production in M. aeruginosa via the photosynthesis system.

  5. Cellular response to orthodontically-induced short-term hypoxia in dental pulp cells.

    PubMed

    Römer, Piero; Wolf, Michael; Fanghänel, Jochen; Reicheneder, Claudia; Proff, Peter

    2014-01-01

    Orthodontic force application is well known to induce sterile inflammation, which is initially caused by the compression of blood vessels in tooth-supporting apparatus. The reaction of periodontal ligament cells to mechanical loading has been thoroughly investigated, whereas knowledge on tissue reactions of the dental pulp is rather limited. The aim of the present trial is to analyze the effect of orthodontic treatment on the induction and cellular regulation of intra-pulpal hypoxia. To investigate the effect of orthodontic force on dental pulp cells, which results in circulatory disturbances within the dental pulp, we used a rat model for the immunohistochemical analysis of the accumulation of hypoxia-inducible factor-1α in the initial phase of orthodontic tooth movement. To further examine the regulatory role of circulatory disturbances and hypoxic conditions, we analyze isolated dental pulp cells from human teeth with regard to their specific reaction under hypoxic conditions by means of flow cytometry, immunoblot, ELISA and real-time PCR on markers (Hif-1α, VEGF, Cox-2, IL-6, IL-8, ROS, p65). In vivo experiments showed the induction of hypoxia in dental pulp after orthodontic tooth movement. The induction of oxidative stress in human dental pulp cells showed up-regulation of the pro-inflammatory and angiogenic genes Cox-2, VEGF, IL-6 and IL-8. The present data suggest that orthodontic tooth movement affects dental pulp circulation by hypoxia, which leads to an inflammatory response inside treated teeth. Therefore, pulp tissue may be expected to undergo a remodeling process after tooth movement.

  6. Effect of ivermectin on the cellular and humoral immune responses of rabbits.

    PubMed

    Sajid, Muhammad Sohail; Iqbal, Zafar; Muhammad, Ghulam; Sandhu, Mansur Abdullah; Khan, Muhammad Nisar; Saqib, Muhammad; Iqbal, Muhammad Umair

    2007-05-01

    The objective of this paper is to determine the effect of ivermectin administration on cell mediated (CMI) and humoral immunity (HI) of rabbits. CMI against dinitrochlorobenzene (DNCB) and sheep red blood cells (SRBC) in rabbits was determined by delayed-type hypersensitivity and macrophage engulfment assay (MEA), respectively; whereas, HI to Pasteurella multocida B2 vaccine and SRBC was determined by indirect haemagglutination assay (IHA) and Jerne hemolytic plaque formation assay (JHPFA), respectively. The rabbits were divided into four major groups (A through D) each subdivided into four sub-groups (1 through 4). Rabbits of group A served as vehicle control while those of groups B, C and D were treated with ivermectin at the dose rates of 200 microg/kg, 400 microg/kg and 600 microg/kg b.w., respectively. Cellular immunity was determined in sub-groups 1 and 2 through DNCB and MEA, respectively while HI was determined in sub-groups 3 and 4 through IHA and JHPFA, respectively. The skin sensitivity to DNCB at 24 and 48 h and macrophage engulfment of SRBC were highest (P>0.05) in rabbits administered with 600 microg/kg b.w. The highest geometric mean titers (14.00+/-0.31) and number of plaque forming units (1860+/-0.75) were found in rabbits that received ivermectin at a dose of 600 microg/kg b.w. followed, in order by the groups that received 400 microg/kg, 200 microg/kg b.w. and controls. Leukocyte counts were significantly higher in ivermectin-treated groups (C and D) than group A (vehicle control) and B (ivermectin at the rate of 200 microg/kg). A graded dose immune response suggested an immunopotentiating effect of ivermectin at higher doses.

  7. Respiratory symptoms, lung function, and nasal cellularity in Indonesian wood workers: a dose-response analysis

    PubMed Central

    Borm, P; Jetten, M; Hidayat, S; van de Burgh, N; Leunissen, P; Kant, I; Houba, R; Soeprapto, H

    2002-01-01

    Objectives: It was hypothesised that inflammation plays a dominant part in the respiratory effects of exposure to wood dust. The purpose of this study was to relate the nasal inflammatory responses of workers exposed to meranti wood dust to (a) levels of exposure, (b) respiratory symptoms and (c) respiratory function. Methods: A cross sectional study was carried out in 1997 in a woodworking plant that used mainly meranti, among 982 workers exposed to different concentrations of wood dust. Personal sampling (n=243) of inhalable dust measurements indicated mean exposure in specific jobs, and enabled classification of 930 workers in three exposure classes (<2, 2–5, and >5 mg/m3) based on job title. Questionnaires were used to screen respiratory symptoms in the entire population. Lung function was measured with two different techniques, conventional flow-volume curves and the forced oscillation technique. Nasal lavage was done to assess inflammation in the upper respiratory tract. Results: A negative trend between years of employment and most flow-volume variables was found in men, but not in women workers. Current exposure, however, was not related to spirometric outcomes, respiratory symptoms, or nasal cellularity. Some impedance variables were related to current exposure but also with better function at higher exposure. Conclusions: Exposure to meranti wood dust did not cause an inflammation in the upper respiratory tract nor an increase of respiratory symptoms or decrease of lung function. These data do not corroborate the hypothesis that inflammation plays a part in airway obstruction induced by wood dust. PMID:11983850

  8. The cellular immune response plays an important role in protecting against dengue virus in the mouse encephalitis model.

    PubMed

    Gil, Lázaro; López, Carlos; Blanco, Aracelys; Lazo, Laura; Martín, Jorge; Valdés, Iris; Romero, Yaremis; Figueroa, Yassel; Guillén, Gerardo; Hermida, Lisset

    2009-02-01

    For several years, researchers have known that the generation of neutralizing antibodies is a prerequisite for attaining adequate protection against dengue virus. Nevertheless, the cellular immune response is the principal arm of the adaptive immune system against non-cytopathic viruses such as dengue, as once the virus enters into the cell it is necessary to destroy it to eliminate the virus. To define the role of the cellular immune response in the protection against dengue, we selected the mouse encephalitis model. Mice were immunized with a single dose of infective dengue 2 virus and different markers of both branches of the induced adaptive immunity were measured. Animals elicited a broad antibody response against the four dengue virus serotypes, but neutralizing activity was only detected against the homologous serotype. On the other hand, the splenocytes of the infected animals strongly proliferated after in vitro stimulation with the homologous virus, and specifically the CD8 T-cell subset was responsible for the secretion of the cytokine IFN-gamma. Finally, to define the role of T cells in in vivo protection, groups of animals were inoculated with the depleting monoclonal antibodies anti-CD4 or anti-CD8. Only depletion with anti-CD8 decreased to 50% the level of protection reached in the non-depleted mice. The present work constitutes the first report defining the role of the cellular immune response in protection against dengue virus in the mouse model.

  9. Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans

    PubMed Central

    Abegglen, Lisa M.; Caulin, Aleah F.; Chan, Ashley; Lee, Kristy; Robinson, Rosann; Campbell, Michael S.; Kiso, Wendy K.; Schmitt, Dennis L.; Waddell, Peter J; Bhaskara, Srividya; Jensen, Shane T.; Maley, Carlo C.; Schiffman, Joshua D.

    2016-01-01

    IMPORTANCE Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. OBJECTIVE To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). DESIGN, SETTING, AND PARTICIPANTS A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n = 644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n = 8), patients with LFS (n = 10), and age-matched human controls (n = 11). Human samples were collected at the University of Utah between June 2014 and July 2015. EXPOSURES Ionizing radiation and doxorubicin. MAIN OUTCOMES AND MEASURES Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. RESULTS Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95%CI, 0%–5%]; African wild dog, 8%[95%CI, 0%–16%]; lion, 2%[95%CI, 0% –7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95%CI, 3.14%–6.49%), compared with humans, who have 11% to 25%cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain

  10. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans

    DOE PAGES

    Abegglen, Lisa M.; Caulin, Aleah F.; Chan, Ashley; ...

    2015-10-08

    Here, evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). Design, Setting, and Participants A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n=644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro inmore » the laboratory for DNA damage response. The study included African and Asian elephants (n=8), patients with LFS (n=10), and age-matched human controls (n=11). Human samples were collected at the University of Utah between June 2014 and July 2015. Exposures Ionizing radiation and doxorubicin. Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95% CI, 0%-5%]; African wild dog, 8% [95% CI, 0%-16%]; lion, 2% [95% CI, 0%-7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95% CI, 3.14%-6.49%), compared with humans, who have 11% to 25% cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain reaction. In response to DNA damage, elephant lymphocytes

  11. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans

    SciTech Connect

    Abegglen, Lisa M.; Caulin, Aleah F.; Chan, Ashley; Lee, Kristy; Robinson, Rosann; Campbell, Michael S.; Kiso, Wendy K.; Schmitt, Dennis L.; Waddell, Peter J.; Bhaskara, Srividya; Jensen, Shane T.; Maley, Carlo C.; Schiffman, Joshua D.

    2015-10-08

    Here, evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). Design, Setting, and Participants A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n=644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n=8), patients with LFS (n=10), and age-matched human controls (n=11). Human samples were collected at the University of Utah between June 2014 and July 2015. Exposures Ionizing radiation and doxorubicin. Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95% CI, 0%-5%]; African wild dog, 8% [95% CI, 0%-16%]; lion, 2% [95% CI, 0%-7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95% CI, 3.14%-6.49%), compared with humans, who have 11% to 25% cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain reaction. In response to DNA damage, elephant lymphocytes

  12. The interplay among chromatin dynamics, cell cycle checkpoints and repair mechanisms modulates the cellular response to DNA damage.

    PubMed

    Lazzaro, Federico; Giannattasio, Michele; Muzi-Falconi, Marco; Plevani, Paolo

    2007-06-01

    Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.

  13. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities

    SciTech Connect

    Lim, Seong-Rin; Schoenung, Julie M.

    2010-08-15

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.

  14. Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice.

    PubMed

    Cibulski, Samuel Paulo; Silveira, Fernando; Mourglia-Ettlin, Gustavo; Teixeira, Thais Fumaco; dos Santos, Helton Fernandes; Yendo, Anna Carolina; de Costa, Fernanda; Fett-Neto, Arthur Germano; Gosmann, Grace; Roehe, Paulo Michel

    2016-04-01

    A saponin fraction extracted from Quillaja brasiliensis leaves (QB-90) and a semi-purified aqueous extract (AE) were evaluated as adjuvants in a bovine viral diarrhea virus (BVDV) vaccine in mice. Animals were immunized on days 0 and 14 with antigen plus either QB-90 or AE or an oil-adjuvanted vaccine. Two-weeks after boosting, antibodies were measured by ELISA; cellular immunity was evaluated by DTH, lymphoproliferation, cytokine release and single cell IFN-γ production. Serum anti-BVDV IgG, IgG1 and IgG2b were significantly increased in QB-90- and AE-adjuvanted vaccines. A robust DTH response, increased splenocyte proliferation, Th1-type cytokines and enhanced production of IFN-γ by CD4(+) and CD8(+) T lymphocytes were detected in mice that received QB-90-adjuvanted vaccine. The AE-adjuvanted preparation stimulated humoral responses but not cellular immune responses. These findings reveal that QB-90 is capable of stimulating both cellular and humoral immune responses when used as adjuvant.

  15. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities.

    PubMed

    Lim, Seong-Rin; Schoenung, Julie M

    2010-01-01

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.

  16. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    SciTech Connect

    Roper, Katherine; Coverley, Dawn

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  17. SINGLE-CELL LEVEL INVESTIGATION OF CYTOSKELETAL/CELLULAR RESPONSE TO EXTERNAL STIMULI

    SciTech Connect

    Hiddessen, A L

    2007-02-26

    A detailed understanding of the molecular mechanisms by which chemical signals control cell behavior is needed if the complex biological processes of embryogenesis, development, health and disease are to be completely understood. Yet, if we are to fully understand the molecular mechanisms controlling cell behavior, measurements at the single cell level are needed to supplement information gained from population level studies. One of the major challenges to accomplishing studies at the single cell level has been a lack of physical tools to complement the powerful molecular biological assays which have provided much of what we currently know about cell behavior. The goal of this exploratory project is the development of an experimental platform that facilitates integrated observation, tracking and analysis of the responses of many individual cells to controlled environmental factors (e.g. extracellular signals). Toward this goal, we developed chemically-patterned microarrays of both adherent and suspension mammalian cell types. A novel chemical patterning methodology, based on photocatalytic lithography, was developed to construct biomolecule and cell arrays that facilitate analysis of biological function. Our patterning techniques rely on inexpensive stamp materials and visible light, and do not necessitate mass transport or specified substrates. Patterned silicon and glass substrates are modified such that there is a non-biofouling polymer matrix surrounding the adhesive regions that target biomolecules and cells. Fluorescence and reflectance microscopy reveal successful patterning of proteins and single to small clusters of mammalian cells. In vitro assays conducted upon cells on the patterned arrays demonstrate the viability of cells interfacing with this synthetic system. Hence, we have successfully established a versatile cell measurement platform which can be used to characterize the molecular regulators of cellular behavior in a variety of important

  18. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response.

    PubMed

    Oguro, Ami; Koyama, Chika; Xu, Jing; Imaoka, Susumu

    2014-02-28

    NADPH-P450 reductase (NPR) was previously found to contribute to the hypoxic response of cells, but the mechanism was not clarified. In this study, we identified a cellular stress response (CSR) as a new factor interacting with NPR by a yeast two-hybrid system. Overexpression of CSR enhanced the induction of erythropoietin and hypoxia response element (HRE) activity under hypoxia in human hepatocarcinoma cell lines (Hep3B), while knockdown of CSR suppressed them. This new finding regarding the interaction of NPR with CSR provides insight into the function of NPR in hypoxic response.

  19. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae

    NASA Astrophysics Data System (ADS)

    López, Javier Hernández; Krainer, Sophie; Engert, Antonia; Schuehly, Wolfgang; Riessberger-Gallé, Ulrike; Crailsheim, Karl

    2017-02-01

    Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health.

  20. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells.

    PubMed

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko

    2015-12-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR.

  1. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae

    PubMed Central

    López, Javier Hernández; Krainer, Sophie; Engert, Antonia; Schuehly, Wolfgang; Riessberger-Gallé, Ulrike; Crailsheim, Karl

    2017-01-01

    Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health. PMID:28145462

  2. Familial Parkinson's disease iPSCs show cellular deficits in mitochondrial responses that can be pharmacologically rescued

    PubMed Central

    Cooper, Oliver; Seo, Hyemyung; Andrabi, Shaida; Guardia-Laguarta, Cristina; Graziotto, John; Sundberg, Maria; McLean, Jesse R.; Carrillo-Reid, Luis; Xie, Zhong; Osborn, Teresia; Hargus, Gunnar; Deleidi, Michela; Lawson, Tristan; Bogetofte, Helle; Perez-Torres, Eduardo; Clark, Lorraine; Moskowitz, Carol; Mazzulli, Joseph; Chen, Li; Volpicelli-Daley, Laura; Romero, Norma; Jiang, Houbo; Uitti, Ryan J.; Huang, Zhigao; Opala, Grzegorz; Scarffe, Leslie A.; Dawson, Valina L.; Klein, Christine; Feng, Jian; Ross, Owen A.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Marder, Karen; Surmeier, D. James; Wszolek, Zbigniew K.; Przedborski, Serge; Krainc, Dimitri; Dawson, Ted M.; Isacson, Ole

    2012-01-01

    Parkinson's disease (PD) is a common neurodegenerative disease caused by genetic and environmental factors. We analyzed induced pluripotent stem cell (iPSC)-derived neural cells from PD patients and presymptomatic individuals carrying mutations in the PINK1 and LRRK2 genes, and healthy control subjects. We measured several aspects of mitochondrial responses in the iPSC-derived neural cells including production of reactive oxygen species, mitochondrial respiration, proton leakage and intraneuronal movement of mitochondria. Cellular vulnerability associated with mitochondrial function in iPSC-derived neural cells from PD patients and at-risk individuals could be rescued with coenzyme Q10, rapamycin or the LRRK2 kinase inhibitor GW5074. Analysis of mitochondrial responses in iPSC-derived neural cells from PD patients carrying different mutations provides insights into convergence of cellular disease mechanisms between different familial forms of PD and highlights the importance of oxidative stress and mitochondrial dysfunction in PD. PMID:22764206

  3. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae.

    PubMed

    López, Javier Hernández; Krainer, Sophie; Engert, Antonia; Schuehly, Wolfgang; Riessberger-Gallé, Ulrike; Crailsheim, Karl

    2017-02-01

    Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health.

  4. Adaptive Posttranslational Control in Cellular Stress Response Pathways and Its Relationship to Toxicity Testing and Safety Assessment

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Pi, Jingbo; Clewell, Rebecca A.; Carmichael, Paul L.; Andersen, Melvin E.

    2015-01-01

    Although transcriptional induction of stress genes constitutes a major cellular defense program against a variety of stressors, posttranslational control directly regulating the activities of preexisting stress proteins provides a faster-acting alternative response. We propose that posttranslational control is a general adaptive mechanism operating in many stress pathways. Here with the aid of computational models, we first show that posttranslational control fulfills two roles: (1) handling small, transient stresses quickly and (2) stabilizing the negative feedback transcriptional network. We then review the posttranslational control pathways for major stress responses—oxidative stress, metal stress, hyperosmotic stress, DNA damage, heat shock, and hypoxia. Posttranslational regulation of stress protein activities occurs by reversible covalent modifications, allosteric or non-allosteric enzymatic regulations, and physically induced protein structural changes. Acting in feedback or feedforward networks, posttranslational control may establish a threshold level of cellular stress. Sub-threshold stresses are handled adequately by posttranslational control without invoking gene transcription. With supra-threshold stress levels, cellular homeostasis cannot be maintained and transcriptional induction of stress genes and other gene programs, eg, those regulating cell metabolism, proliferation, and apoptosis, takes place. The loss of homeostasis with consequent changes in cellular function may lead to adverse cellular outcomes. Overall, posttranslational and transcriptional control pathways constitute a stratified cellular defense system, handling stresses coherently across time and intensity. As cell-based assays become a focus for chemical testing anchored on toxicity pathways, examination of proteomic and metabolomic changes as a result of posttranslational control occurring in the absence of transcriptomic alterations deserves more attention. PMID:26408567

  5. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    PubMed Central

    Landeras-Bueno, Sara; Fernández, Yolanda; Falcón, Ana; Oliveros, Juan Carlos

    2016-01-01

    ABSTRACT Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK) as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection. PMID:27094326

  6. IFI16, an amplifier of DNA-damage response: Role in cellular senescence and aging-associated inflammatory diseases.

    PubMed

    Choubey, Divaker; Panchanathan, Ravichandran

    2016-07-01

    DNA-damage induces a DNA-damage response (DDR) in mammalian cells. The response, depending upon the cell-type and the extent of DNA-damage, ultimately results in cell death or cellular senescence. DDR-induced signaling in cells activates the ATM-p53 and ATM-IKKα/β-interferon (IFN)-β signaling pathways, thus leading to an induction of the p53 and IFN-inducible IFI16 gene. Further, upon DNA-damage, DNA accumulates in the cytoplasm, thereby inducing the IFI16 protein and STING-dependent IFN-β production and activation of the IFI16 inflammasome, resulting in the production of proinflammatory cytokines (e.g., IL-1β and IL-18). Increased expression of IFI16 protein in a variety of cell-types promotes cellular senescence. However, reduced expression of IFI16 in cells promotes cell proliferation. Because expression of the IFI16 gene is induced by activation of DNA-damage response in cells and increased levels of IFI16 protein in cells potentiate the p53-mediated transcriptional activation of genes and p53 and pRb-mediated cell cycle arrest, we discuss how an improved understanding of the role of IFI16 protein in cellular senescence and associated inflammatory secretory phenotype is likely to identify the molecular mechanisms that contribute to the development of aging-associated human inflammatory diseases and a failure to cancer therapy.

  7. Cellular Immune Responses in Humans Induced by Two Serogroup B Meningococcal Outer Membrane Vesicle Vaccines Given Separately and in Combination

    PubMed Central

    Korsvold, Gro Ellen; Aase, Audun; Næss, Lisbeth M.

    2016-01-01

    MenBvac and MeNZB are safe and efficacious outer membrane vesicle (OMV) vaccines against serogroup B meningococcal disease. Antibody responses have previously been investigated in a clinical trial with these two OMV vaccines given separately (25 μg/dose) or in combination (12.5 and 12.5 μg/dose) in three doses administered at 6-week intervals. Here, we report the results from analyzing cellular immune responses against MenBvac and MeNZB OMVs in terms of antigen-specific CD4+ T cell proliferation and secretion of cytokines. The proliferative CD4+ T cell responses to the combined vaccine were of the same magnitude as the homologous responses observed for each individual vaccine. The results also showed cross-reactivity in the sense that both vaccine groups receiving separate vaccines responded to both homologous and heterologous OMV antigen when assayed for antigen-specific cellular proliferation. In addition, a multiplex bead array assay was used to analyze the presence of Th1 and Th2 cytokines in cell culture supernatants. The results showed that gamma interferon, interleukin-4 (IL-4), and IL-10 responses could be detected as a result of vaccination with both the MenBvac and the MeNZB vaccines given separately, as well as when given in combination. With respect to cross-reactivity, the cytokine results paralleled the observations made for proliferation. In conclusion, the results demonstrate that cross-reactive cellular immune responses involving both Th1 and Th2 cytokines can be induced to the same extent by different tailor-made OMV vaccines given either separately or in combination with half the dose of each vaccine. PMID:26865595

  8. Proteomic Analysis of Cellular Response Induced by Multi-Walled Carbon Nanotubes Exposure in A549 Cells

    PubMed Central

    Zhang, Xing; Jia, Zhenyu; Gao, Xiangjing; Jiang, Ying; Yan, Chunlan; Duerksen-Hughes, Penelope J.; Chen, Fanqing Frank; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2014-01-01

    The wide application of multi-walled carbon nanotubes (MWCNT) has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS) of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml) and short time period (24 h), MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS). PMID:24454774

  9. Changes in Stoichiometry, Cellular RNA, and Alkaline Phosphatase Activity of Chlamydomonas in Response to Temperature and Nutrients

    PubMed Central

    Hessen, Dag O.; Hafslund, Ola T.; Andersen, Tom; Broch, Catharina; Shala, Nita K.; Wojewodzic, Marcin W.

    2017-01-01

    Phytoplankton may respond both to elevated temperatures and reduced nutrients by changing their cellular stoichiometry and cell sizes. Since increased temperatures often cause increased thermal stratification and reduced vertical flux of nutrients into the mixed zone, it is difficult to disentangle these drivers in nature. In this study, we used a factorial design with high and low levels of phosphorus (P) and high and low temperature to assess responses in cellular stoichiometry, levels of RNA, and alkaline phosphatase activity (APA) in the chlorophyte Chlamydomonas reinhardtii. Growth rate, C:P, C:N, N:P, RNA, and APA all responded primarily to P treatment, but except for N:P and APA, also temperature contributed significantly. For RNA, the contribution from temperature was particularly strong with higher cellular levels of RNA at low temperatures, suggesting a compensatory allocation to ribosomes to maintain protein synthesis and growth. These experiments suggest that although P-limitation is the major determinant of growth rate and cellular stoichiometry, there are pronounced effects of temperature also via interaction with P. At the ecosystem level, nutrients and temperature will thus interact, but temperatures would likely exert a stronger impact on these phytoplankton traits indirectly via its force on stratification regimes and vertical nutrient fluxes. PMID:28167934

  10. Changes in Stoichiometry, Cellular RNA, and Alkaline Phosphatase Activity of Chlamydomonas in Response to Temperature and Nutrients.

    PubMed

    Hessen, Dag O; Hafslund, Ola T; Andersen, Tom; Broch, Catharina; Shala, Nita K; Wojewodzic, Marcin W

    2017-01-01

    Phytoplankton may respond both to elevated temperatures and reduced nutrients by changing their cellular stoichiometry and cell sizes. Since increased temperatures often cause increased thermal stratification and reduced vertical flux of nutrients into the mixed zone, it is difficult to disentangle these drivers in nature. In this study, we used a factorial design with high and low levels of phosphorus (P) and high and low temperature to assess responses in cellular stoichiometry, levels of RNA, and alkaline phosphatase activity (APA) in the chlorophyte Chlamydomonas reinhardtii. Growth rate, C:P, C:N, N:P, RNA, and APA all responded primarily to P treatment, but except for N:P and APA, also temperature contributed significantly. For RNA, the contribution from temperature was particularly strong with higher cellular levels of RNA at low temperatures, suggesting a compensatory allocation to ribosomes to maintain protein synthesis and growth. These experiments suggest that although P-limitation is the major determinant of growth rate and cellular stoichiometry, there are pronounced effects of temperature also via interaction with P. At the ecosystem level, nutrients and temperature will thus interact, but temperatures would likely exert a stronger impact on these phytoplankton traits indirectly via its force on stratification regimes and vertical nutrient fluxes.

  11. Analysis of the cellular stress response in MCF10A cells exposed to combined radio frequency radiation.

    PubMed

    Kim, Han-Na; Han, Na-Kyung; Hong, Mi-Na; Chi, Sung-Gil; Lee, Yun-Sil; Kim, Taehong; Pack, Jeong-Ki; Choi, Hyung-Do; Kim, Nam; Lee, Jae-Seon

    2012-01-01

    Exposure to environmental stressors can be measured by monitoring the cellular stress response in target cells. Here, we used the cellular stress response to investigate whether single or combined radio frequency (RF) radiation could induce stress response in human cells. Cellular stress responses in MCF10A human breast epithelial cells were characterized after exposure to 4 h of RF radiation [code division multiple access (CDMA) or CDMA plus wideband CDMA (WCDMA)] or 2 h RF radiation on 3 consecutive days. Specific absorption rate (SAR) was 4.0 W/kg for CDMA signal alone exposure and 2.0 W/kg each, 4.0 W/kg in total for combined CDMA plus WCDMA signals. Expression levels and phosphorylation states of specific heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs) were analyzed by Western blot. It was found that HSP27 and ERK1/2 phosphorylations are the most sensitive markers of the stress response in MCF10A cells exposed to heat shock or ionizing radiation. Using these markers, we demonstrated that neither one-time nor repeated single (CDMA alone) or combined (CDMA plus WCDMA) RF radiation exposure significantly altered HSP27 and ERK1/2 phosphorylations in MCF10A cells (p > 0.05). The lack of a statistically significant alteration in HSP27 and ERK1/2 phosphorylations suggests that single or combined RF radiation exposure did not elicit activation of HSP27 and ERK1/2 in MCF10A cells.

  12. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses.

    PubMed

    Leonard, Stephen S; Xia, Chang; Jiang, Bin-Hua; Stinefelt, Beth; Klandorf, Hillar; Harris, Gabriel K; Shi, Xianglin

    2003-10-03

    Scavenging or quenching of the reactive oxygen species (ROS) involved in oxidative stress has been the subject of many recent studies. Resveratrol, found in various natural food products, has been linked to decreased coronary artery disease and preventing cancer development. The present study measured the effect of resveratrol on several different systems involving the hydroxyl, superoxide, metal/enzymatic-induced, and cellular generated radicals. The rate constant for reaction of resveratrol with the hydroxyl radical was determined, and resveratrol was found to be an effective scavenger of hydroxyl, superoxide, and metal-induced radicals as well as showing antioxidant abilities in cells producing ROS. Resveratrol exhibits a protective effect against lipid peroxidation in cell membranes and DNA damage caused by ROS. Resveratrol was also found to have a significant inhibitory effect on the NF-kappaB signaling pathway after cellular exposure to metal-induced radicals. It was concluded that resveratrol in foods plays an important antioxidant role.

  13. The MYpop toolbox: Putting yeast stress responses in cellular context on single cell and population scales.

    PubMed

    Spiesser, Thomas; Kühn, Clemens; Krantz, Marcus; Klipp, Edda

    2016-09-01

    Systems biology holds the promise to integrate multiple sources of information in order to build ever more complete models of cellular function. To do this, the field must overcome two significant challenges. First, the current strategy to model average cells must be replaced with population based models accounting for cell-to-cell variability. Second, models must be integrated with each other and with basic cellular function. This requires a core model of cellular physiology as well as a multiscale simulation platform to support large-scale simulation of culture or tissues from single cells. Here, we present such a simulation platform with a core model of yeast physiology as scaffold to integrate and simulate SBML models. The software automates this integration helping users simulate their model of choice in context of the cell division cycle. We benchmark model merging, simulation and analysis by integrating a minimal model of osmotic stress into the core model and analyzing it. We characterize the effect of single cell differences on the dynamics of osmoadaptation, estimating when normal cell growth is resumed and obtaining an explanation for experimentally observed glycerol dynamics based on population dynamics. Hence, the platform can be used to reconcile single cell and population level data.

  14. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    PubMed Central

    Hazan, Roshasnorlyza; Mat, Ishak

    2017-01-01

    Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics. PMID:28337249

  15. Response of cellular stoichiometry and phosphorus storage of the cyanobacteria Aphanizomenon flos-aquae to small-scale turbulence

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Xiao, Yan; Yang, Jixiang; Li, Chao; Gao, Xia; Guo, Jinsong

    2017-01-01

    Turbulent mixing, in particular on a small scale, affects the growth of microalgae by changing diffusive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under different turbulent mixing conditions. Aphanizomenon flos-aquae were cultivated in different stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s3 to 0.050 58 m2/s3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory effect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum effective quantum yield of PSII (the ratio of F v/F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the diffusive sublayer, regulating the nutrient flux of cells.

  16. Comparison of cellular responses of mesenchymal stem cells derived from bone marrow and synovium on combined silk scaffolds.

    PubMed

    Liu, Haifeng; Wei, Xing; Ding, Xili; Li, Xiaoming; Zhou, Gang; Li, Ping; Fan, Yubo

    2015-01-01

    As a brand new member in mesenchymal stem cells (MSCs) families, synovium-derived mesenchymal stem cells (SMSCs) have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration. However, there are few reports mentioning ligamentogenesis of SMSCs and especially null for their engineering use towards ligament regeneration. The aim of this study was to investigate and compare the cellular responses of MSCs derived from bone marrow and synovium on combined silk scaffolds that can be used to determine the cell source most appropriate for tissue-engineered ligament. Rabbit SMSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro for two weeks after seeding on the combined silk scaffolds. Samples were studied and compared for their cellular morphology, proliferation, collagen production, gene, and protein expression of ligament-related extracellular matrix (ECM) markers. In addition, the two cell types were transfected with green fluorescent protein to evaluate their fate after implantation in an intraarticular environment of the knee joint. After 14 days of culturing, SMSCs showed a significant increase in proliferation as compared with BMSCs. The transcript and protein expression levels of ligament-related ECM markers in SMSCs were significantly higher than those in BMSCs. Moreover, 6 weeks postoperatively, more viable cells were presented in SMSC-loaded constructs than in BMSC-loaded constructs. Therefore, based on the cellular response in vitro and in vivo, SMSCs may represent a more suitable cell source than BMSCs for further study and development of tissue-engineered ligament.

  17. Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale.

    SciTech Connect

    Brinker, C. Jeffrey; Dunphy, Darren Robert; Ashley, Carlee E.; Fan, Hongyou; Lopez, DeAnna (University of New Mexico, Albuquerque, NM); Simpson, Regina Lynn; Tallant, David Robert; Burckel, David Bruce; Baca, Helen Kennicott; Carnes, Eric C.; Singh, Seema

    2006-01-01

    Our discovery that the introduction of living cells (Saccharomyces cerevisiae) alters dramatically the evaporation driven self-assembly of lipid-silica nanostructures suggested the formation of novel bio/nano interfaces useful for cellular interrogation at the nanoscale. This one year ''out of the box'' LDRD focused on the localization of metallic and semi-conducting nanocrystals at the fluid, lipid-rich interface between S. cerevisiae and the surrounding phospholipid-templated silica nanostructure with the primary goal of creating Surface Enhanced Raman Spectroscopy (SERS)-active nanostructures and platforms for cellular integration into electrode arrays. Such structures are of interest for probing cellular responses to the onset of disease, understanding of cell-cell communication, and the development of cell-based bio-sensors. As SERS is known to be sensitive to the size and shape of metallic (principally gold and silver) nanocrystals, various sizes and shapes of nanocrystals were synthesized, functionalized and localized at the cellular surface by our ''cell-directed assembly'' approach. Laser scanning confocal microscopy, SEM, and in situ grazing incidence small angle x-ray scattering (GISAXS) experiments were performed to study metallic nanocrystal localization. Preliminary Raman spectroscopy studies were conducted to test for SERS activity. Interferometric lithography was used to construct high aspect ratio cylindrical holes on patterned gold substrates and electro-deposition experiments were performed in a preliminary attempt to create electrode arrays. A new printing procedure was also developed for cellular integration into nanostructured platforms that avoids solvent exposure and may mitigate osmotic stress. Using a different approach, substrates comprised of self-assembled nanoparticles in a phospholipid templated silica film were also developed. When printed on top of these substrates, the cells integrate themselves into the mesoporous silica film and

  18. The Bioavailability of Soluble Cigarette Smoke Extract Is Reduced through Interactions with Cells and Affects the Cellular Response to CSE Exposure

    PubMed Central

    Bourgeois, Jeffrey S.; Jacob, Jeeva; Garewal, Aram; Ndahayo, Renata; Paxson, Julia

    2016-01-01

    Cellular exposure to cigarette smoke leads to an array of complex responses including apoptosis, cellular senescence, telomere dysfunction, cellular aging, and neoplastic transformation. To study the cellular response to cigarette smoke, a common in vitro model exposes cultured cells to a nominal concentration (i.e. initial concentration) of soluble cigarette smoke extract (CSE). However, we report that use of the nominal concentration of CSE as the only measure of cellular exposure is inadequate. Instead, we demonstrate that cellular response to CSE exposure is dependent not only on the nominal concentration of CSE, but also on specific experimental variables, including the total cell number, and the volume of CSE solution used. As found in other similar xenobiotic assays, our work suggests that the effective dose of CSE is more accurately related to the amount of bioavailable chemicals per cell. In particular, interactions of CSE components both with cells and other physical factors limit CSE bioavailability, as demonstrated by a quantifiably reduced cellular response to CSE that is first modified by such interactions. This has broad implications for the nature of cellular response to CSE exposure, and for the design of in vitro assays using CSE. PMID:27649082

  19. Ebi, a Drosophila homologue of TBL1, regulates the balance between cellular defense responses and neuronal survival

    PubMed Central

    Lim, Young-Mi; Tsuda, Leo

    2016-01-01

    Transducin β-like 1 (TBL1), a transcriptional co-repressor complex, is a causative factor for late-onset hearing impairments. Transcriptional co-repressor complexes play pivotal roles in gene expression by making a complex with divergent transcription factors. However, it remained to be clarified how co-repressor complex regulates cellular survival. We herein demonstrated that ebi, a Drosophila homologue of TBL1, suppressed photoreceptor cell degeneration in the presence of excessive innate immune signaling. We also showed that the balance between NF-κB and AP-1 is a key component of cellular survival under stress conditions. Given that Ebi plays an important role in innate immune responses by regulating NF-κB activity and inhibition of apoptosis induced by associating with AP-1, it may be involved in the regulation of photoreceptor cell survival by modulating cross-talk between NF-κB and AP-1. PMID:27073743

  20. Characterization of effector components from the humoral and cellular immune response stimulated by melanoma cells exhibiting modified IGF-1 expression.

    PubMed

    Zhu, Chaobin; Trabado, Séverine; Fan, Ye; Trojan, Jerzy; Lone, Yu-Chun; Giron-Michel, Julien; Duc, Huynh-Thien

    2015-03-01

    Modified melanoma B16 cells inhibited in their IGF-1 expression (B16MOD), on the contrary to the IGF-1 fully expressed parental wild-type (B16WT) counterpart, were shown to stimulate humoral as well as cellular immune responses. Among humoral components, the neutralizing and complement-fixing antibodies of IgM and essentially IgG2 (a+b) isotypes exhibited in vitro and in vivo effects upon tumour growth, while the IgG1 antibody isotype promoted enhanced tumour proliferation. As for the cellular immunity, it was found that the T CD8(+) lymphocyte subpopulation remained the main potent and long lasting immune active effector regulating tumour growth.

  1. Transgenic mouse model for imaging of ATF4 translational activation-related cellular stress responses in vivo

    PubMed Central

    Iwawaki, Takao; Akai, Ryoko; Toyoshima, Takae; Takeda, Naoki; Ishikawa, Tomo-o; Yamamura, Ken-ichi

    2017-01-01

    Activating transcription factor 4 (ATF4) is a translationally activated protein that plays a role in cellular adaptation to several stresses. Because these stresses are associated with various diseases, the translational control of ATF4 needs to be evaluated from the physiological and pathological points of view. We have developed a transgenic mouse model to monitor the translational activation of ATF4 in response to cellular stress. By using this mouse model, we were able to detect nutrient starvation response, antivirus response, endoplasmic reticulum (ER) stress response, and oxidative stress in vitro and ex vivo, as well as in vivo. The reporter system introduced into our mouse model was also shown to work in a stress intensity-dependent manner and a stress duration-dependent manner. The mouse model is therefore a useful tool for imaging ATF4 translational activation at various levels, from cell cultures to whole bodies, and it has a range of useful applications in investigations on the physiological and pathological roles of ATF4-related stress and in the development of clinical drugs for treating ATF4-associated diseases. PMID:28387317

  2. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles.

    PubMed

    Gustafsson, Åsa; Bergström, Ulrika; Ågren, Lina; Österlund, Lars; Sandström, Thomas; Bucht, Anders

    2015-10-01

    The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 and 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials.

  3. Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae

    PubMed Central

    Ayer, Anita; Sanwald, Julia; Pillay, Bethany A.; Meyer, Andreas J.; Perrone, Gabriel G.; Dawes, Ian W.

    2013-01-01

    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (EGSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. EGSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions. PMID:23762325

  4. Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling

    PubMed Central

    Cornelius, Carolin; Koverech, Guido; Crupi, Rosalia; Di Paola, Rosanna; Koverech, Angela; Lodato, Francesca; Scuto, Maria; Salinaro, Angela T.; Cuzzocrea, Salvatore; Calabrese, Edward J.; Calabrese, Vittorio

    2014-01-01

    Alzheimer’s disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-κB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose–response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process. PMID:24959146

  5. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae.

    PubMed

    Ayer, Anita; Sanwald, Julia; Pillay, Bethany A; Meyer, Andreas J; Perrone, Gabriel G; Dawes, Ian W

    2013-01-01

    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+)/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+)/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.

  6. Synergistic and additive effects of cimetidine and levamisole on cellular immune responses to hepatitis B virus DNA vaccine in mice.

    PubMed

    Niu, X; Yang, Y; Wang, J

    2013-02-01

    We and others have previously shown that both cimetidine (CIM) and levamisole (LMS) enhance humoral and cellular responses to DNA vaccines via different mechanisms. In this study, we investigated the synergistic and additive effects of CIM and LMS on the potency of antigen-specific immunities generated by a DNA vaccine encoding the hepatitis B surface antigen (HBsAg, pVax-S2). Compared with CIM or LMS alone, the combination of CIM and LMS elicited a robust HBsAg-specific cellular response that was characterized by higher IgG2a, but did not further increase HBsAg-specific antibody IgG and IgG1 production. Consistent with these results, the combination of CIM and LMS produced the highest level of IL-2 and IFN-γ in antigen-specific CD4(+) T cells, whereas the combination of CIM and LMS did not further increase IL-4 production. Significantly, a robust HBsAg-specific cytotoxic response was also observed in the animals immunized with pVax-S2 in the presence of the combination of CIM and LMS. Further mechanistic studies demonstrated that the combination of CIM and LMS promoted dendritic cell (DC) activation and blocked anti-inflammatory cytokine IL-10 and TGF-β production in CD4(+) CD25(+) T cells. These findings suggest that CIM and LMS have the synergistic and additive ability to enhance cellular response to hepatitis B virus DNA vaccine, which may be mediated by DC activation and inhibition of anti-inflammatory cytokine expression. Thus, the combination of cimetidine and levamisole may be useful as an effective adjuvant in DNA vaccinations for chronic hepatitis B virus infection.

  7. Peptide-MHC Cellular Microarray with Innovative Data Analysis System for Simultaneously Detecting Multiple CD4 T-Cell Responses

    PubMed Central

    Ge, Xinhui; Gebe, John A.; Bollyky, Paul L.; James, Eddie A.; Yang, Junbao; Stern, Lawrence J.; Kwok, William W.

    2010-01-01

    Background Peptide:MHC cellular microarrays have been proposed to simultaneously characterize multiple Ag-specific populations of T cells. The practice of studying immune responses to complicated pathogens with this tool demands extensive knowledge of T cell epitopes and the availability of peptide:MHC complexes for array fabrication as well as a specialized data analysis approach for result interpretation. Methodology/Principal Findings We co-immobilized peptide:DR0401 complexes, anti-CD28, anti-CD11a and cytokine capture antibodies on the surface of chamber slides to generate a functional array that was able to detect rare Ag-specific T cell populations from previously primed in vitro T cell cultures. A novel statistical methodology was also developed to facilitate batch processing of raw array-like data into standardized endpoint scores, which linearly correlated with total Ag-specific T cell inputs. Applying these methods to analyze Influenza A viral antigen-specific T cell responses, we not only revealed the most prominent viral epitopes, but also demonstrated the heterogeneity of anti-viral cellular responses in healthy individuals. Applying these methods to examine the insulin producing beta-cell autoantigen specific T cell responses, we observed little difference between autoimmune diabetic patients and healthy individuals, suggesting a more subtle association between diabetes status and peripheral autoreactive T cells. Conclusions/Significance The data analysis system is reliable for T cell specificity and functional testing. Peptide:MHC cellular microarrays can be used to obtain multi-parametric results using limited blood samples in a variety of translational settings. PMID:20634998

  8. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.

    PubMed

    Bilyk, Kevin T; Cheng, C-H Christina

    2014-12-01

    Through evolution in the isolated, freezing (-1.9°C) Southern Ocean, Antarctic notothenioid fish have become cold-adapted as well as cold-specialized. Notothenioid cold specialization is most evident in their limited tolerance to heat challenge, and an apparent loss of the near universal inducible heat shock (HSP70) response. Beyond these it remains unclear how broadly cold specialization pervades the underlying tissue-wide cellular responses. We report the first analysis of massively parallel RNA sequencing (RNA-seq) to identify gene expression changes in the liver in response to elevated body temperature of a high-latitude Antarctic nototheniid, the highly cold-adapted and cold-specialized cryopelagic bald notothen, Pagothenia borchgrevinki. From a large (14,873) mapped set of qualified, annotated liver transcripts, we identified hundreds of significantly differentially expressed genes following two and four days of 4°C exposure, suggesting substantial transcriptional reorganization in the liver when body temperature was raised 5°C above native water temperature. Most notably, and in sharp contrast to heat stressed non-polar fish species, was a widespread down-regulation of nearly all classes of molecular chaperones including HSP70, as well as polyubiquitins that are associated with proteosomal degradation of damaged proteins. In parallel, genes involved in the cell cycle were down-regulated by day two of 4°C exposure, signifying slowing cellular proliferation; by day four, genes associated with transcriptional and translational machineries were down-regulated, signifying general slowing of protein biosynthesis. The log2 fold differential transcriptional changes are generally of small magnitudes but significant, and in total portray a broad down turn of cellular activities in response to four days of elevated body temperature in the cold-specialized bald notothen.

  9. Low-Dose Priming Before Vaccination with the Phase I Chloroform-Methanol Residue Vaccine Against Q Fever Enhances Humoral and Cellular Immune Responses to Coxiella Burnetii

    DTIC Science & Technology

    2008-10-01

    Vaccination with the Phase I Chloroform-Methanol Residue Vaccine against Q Fever Enhances Humoral and Cellular Immune Responses to Coxiella burnetii David... I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are...inadvertently vaccinated. The phase I chloroform- methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers

  10. SIRT4 has tumor suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism

    PubMed Central

    Jeong, Seung Min; Xiao, Cuiying; Finley, Lydia W.S; Lahusen, Tyler; Souza, Amanda L.; Pierce, Kerry; Li, Ying-Hua; Wang, Xiaoxu; Laurent, Gaëlle; German, Natalie J.; Xu, Xiaoling; Li, Cuiling; Wang, Rui-Hong; Lee, Jaewon; Csibi, Alfredo; Cerione, Richard; Blenis, John; Clish, Clary B.; Kimmelman, Alec; Deng, Chu-Xia; Haigis, Marcia C.

    2013-01-01

    SUMMARY DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into TCA cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest and tumor suppression. PMID:23562301

  11. Inhibiting the NF-kappaB pathway to assess its function in the cellular response to space radiation

    NASA Astrophysics Data System (ADS)

    Koch, Kristina; Baumstark-Khan, Christa; Hellweg, Christine; Testard, Isabelle; Reitz, Guenther

    2012-07-01

    Radiation is regarded as one of the limiting factors for space missions. Therefore the cellular radiation response needs to be studied in order to estimate risks and to develop appropriate countermeasures. Exposure of human cells to ionizing radiation can provoke cell cycle arrest, leading to cellular senescence or premature differentiation, and different types of cell death. Previous heavy ion experiments have shown that the Nuclear Factor κB (NF-κB) pathway is activated by fluences that can be reached during long-term missions and thereby NF-κB was identified as an important modulating factor in the cellular radiation response. It could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts. The classical and the genotoxic stress induced NF-κB pathway result in nuclear translocation of the p65/p50 dimer. Both pathways might contribute to the cellular radiation response. Chemical inhibitors were tested to suppress the NF-κB pathway in recombinant HEK-pNF-κB-d2EGFP/Neo cells. The efficacy and cytotoxicity of the inhibitors targeting different elements of the NF-κB pathway were analyzed and found mostly inappropriate as inhibitors were partly cytotoxic or unspecific. Alternatively a functional knock-out of RelA (p65) was used to identify the contribution of the NF-κB pathway to different cellular outcomes. Small hairpin RNA constructs (shRNA) were transfected into the HEK-pNF-κB-d2EGFP/Neo cell line. Their functionality was assessed by quantitative Reverse Transcriptase real-time PCR (qRT-PCR) to verify that the RelA mRNA amount was reduced by more than 80% in the knock-down cells The original cell line had been stably transfected with a reporter system to monitor NF-κB activation by measuring destabilized Enhanced Green Fluorescent Protein (d2EGFP)-expression. It was shown that after 18 hours d2EGFP reaches its highest expression level after activation of NF-κB and can be measured by FACS analysis

  12. Impaired cellular immune response to diphtheria and tetanus vaccines in children after thoracic transplantation.

    PubMed

    Urschel, Simon; Rieck, Birgit D; Birnbaum, Julia; Dalla Pozza, Robert; Rieber, Nikolaus; Januszewska, Katarzyna; Fuchs, Alexandra; West, Lori J; Netz, Heinrich; Belohradsky, Bernd H

    2011-05-01

    Safety and immunogenicity of diphtheria and tetanus booster vaccination were evaluated in 28 children after thoracic transplantation. Adverse events were documented in a patient diary. Blood was collected prior to and four wk after vaccination. Specific antibody concentrations were measured by ELISA. Lymphocytes were investigated for expression of activation markers (CD25, HLA-DR) by flow cytometry and proliferation assays with and without stimulation. Post-vaccination antibody titers were higher than prevaccination (p < 0.001), with more patients having protective antibody levels against diphtheria (p < 0.02) and tetanus (p < 0.001). There was no increased proliferation in non-stimulated or stimulated cultures after vaccination. The number of T-lymphocytes activated by the vaccination antigens was similar pre- and post-vaccination, whereas HLA-DR-expression on stimulated and non-stimulated CD4(+) T-cells increased significantly. Increase in antibodies was negatively correlated with tacrolimus dose, and impaired cellular immunity was associated with higher tacrolimus dose and steroid use. Adverse events were similar to the general population; serious adverse events and rejection did not occur. Vaccination with inactivated vaccines can be performed safely in immunosuppressed children after thoracic transplantation and induces protective antibody levels in the majority of patients. Impaired induction of specific cellular immunity is correlated with intensity of immunosuppression and may explain reduced sustainability of antibodies.

  13. Adsorption of glycosaminoglycans to the cell surface is responsible for cellular donnan effects.

    PubMed

    Hagenfeld, Daniel; Kathagen, Nadine; Prehm, Peter

    2014-07-01

    In previous publications, we showed that extracellular glycosaminoglycans reduced the membrane potential, caused cell blebbing and swelling and decreased the intracellular pH independently of cell surface receptors. These phenomena were explained by Donnan effects. The effects were so large that they could not be attributed to glycosaminoglycans in solution. Therefore, we tested the hypothesis that glycosaminoglycans were concentrated on the cell membrane and analysed the mechanism of adsorption by fluorescent hyaluronan, chondroitin sulphate and heparin. The influence of the CD44 receptor was evaluated by comparing CD44 expressing human fibroblasts with CD44 deficient HEK cells. Higher amounts of glycosaminoglycans adsorbed to fibroblasts than to HEK cells. When the membrane potential was annihilated by substituting NaCl by KCl in the medium, adsorption was reduced and intracellular pH decrease was abolished. To eliminate other cellular interfering factors, potential-dependent adsorption was demonstrated for hyaluronan which adsorbed to inert gold foils in physiological salt concentrations at pH 7.2 and surface potentials up to 120 mV. From these results, we conclude that large cellular Donnan effects of glycosaminoglycans results from receptor mediated, hydrophobic and ionic adsorption to cell surfaces.

  14. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications.

  15. Mapping Variation in Cellular and Transcriptional Response to 1,25-Dihydroxyvitamin D3 in Peripheral Blood Mononuclear Cells

    PubMed Central

    Kariuki, Silvia N.; Maranville, Joseph C.; Baxter, Shaneen S.; Jeong, Choongwon; Nakagome, Shigeki; Hrusch, Cara L.; Witonsky, David B.; Sperling, Anne I.; Di Rienzo, Anna

    2016-01-01

    The active hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is an important modulator of the immune system, inhibiting cellular proliferation and regulating transcription of immune response genes. In order to characterize the genetic basis of variation in the immunomodulatory effects of 1,25D, we mapped quantitative traits of 1,25D response at both the cellular and the transcriptional level. We carried out a genome-wide association scan of percent inhibition of cell proliferation (Imax) induced by 1,25D treatment of peripheral blood mononuclear cells from 88 healthy African-American individuals. Two genome-wide significant variants were identified: rs1893662 in a gene desert on chromosome 18 (p = 2.32 x 10−8) and rs6451692 on chromosome 5 (p = 2.55 x 10−8), which may influence the anti-proliferative activity of 1,25D by regulating the expression of nearby genes such as the chemokine gene, CCL28, and the translation initiation gene, PAIP1. We also identified 8 expression quantitative trait loci at a FDR<0.10 for transcriptional response to 1,25D treatment, which include the transcriptional regulator ets variant 3-like (ETV3L) and EH-domain containing 4 (EHD4). In addition, we identified response eQTLs in vitamin D receptor binding sites near genes differentially expressed in response to 1,25D, such as FERM Domain Containing 6 (FRMD6), which plays a critical role in regulating both cell proliferation and apoptosis. Combining information from the GWAS of Imax and the response eQTL mapping enabled identification of putative Imax-associated candidate genes such as PAIP1 and the transcriptional repressor gene ZNF649. Overall, the variants identified in this study are strong candidates for immune traits and diseases linked to vitamin D, such as multiple sclerosis. PMID:27454520

  16. Expression and cellular distribution of ubiquitin in response to injury in the developing spinal cord of Monodelphis domestica.

    PubMed

    Noor, Natassya M; Møllgård, Kjeld; Wheaton, Benjamin J; Steer, David L; Truettner, Jessie S; Dziegielewska, Katarzyna M; Dietrich, W Dalton; Smith, A Ian; Saunders, Norman R

    2013-01-01

    Ubiquitin, an 8.5 kDa protein associated with the proteasome degradation pathway has been recently identified as differentially expressed in segment of cord caudal to site of injury in developing spinal cord. Here we describe ubiquitin expression and cellular distribution in spinal cord up to postnatal day P35 in control opossums (Monodelphis domestica) and in response to complete spinal transection (T10) at P7, when axonal growth through site of injury occurs, and P28 when this is no longer possible. Cords were collected 1 or 7 days after injury, with age-matched controls and segments rostral to lesion were studied. Following spinal injury ubiquitin levels (western blotting) appeared reduced compared to controls especially one day after injury at P28. In contrast, after injury mRNA expression (qRT-PCR) was slightly increased at P7 but decreased at P28. Changes in isoelectric point of separated ubiquitin indicated possible post-translational modifications. Cellular distribution demonstrated a developmental shift between earliest (P8) and latest (P35) ages examined, from a predominantly cytoplasmic immunoreactivity to a nuclear expression; staining level and shift to nuclear staining was more pronounced following injury, except 7 days after transection at P28. After injury at P7 immunostaining increased in neurons and additionally in oligodendrocytes at P28. Mass spectrometry showed two ubiquitin bands; the heavier was identified as a fusion product, likely to be an ubiquitin precursor. Apparent changes in ubiquitin expression and cellular distribution in development and response to spinal injury suggest an intricate regulatory system that modulates these responses which, when better understood, may lead to potential therapeutic targets.

  17. Effects of polyamines on cellular innate immune response and the expression of immune-relevant genes in gilthead seabream leucocytes.

    PubMed

    Reyes-Becerril, Martha; Ascencio-Valle, Felipe; Tovar-Ramírez, Dariel; Meseguer, José; Esteban, María Ángeles

    2011-01-01

    It is well known that the polyamines spermidine and spermine, along with the diamine putrescine, are involved in many cellular processes and they are known to play an important role in the control of the innate immune response in higher vertebrates. However, to the best of our knowledge, no studies have focused on their immunological implications in other vertebrates, such as fish. For this reason, the effects of polyamines on the cellular innate immune response and immune-related gene expression were evaluated in vitro, using seabream head-kidney leucocytes (HKL). For this study, head-kidney leucocytes were incubated with the polyamines putrescine, spermine or spermidine (0.005 and 0.0025%) for 0.50, 1, 2 or 4 h. No significant effect was observed on either leucocyte viability or the innate cellular immune responses (peroxidase content and phagocytic and respiratory burst activities). The polyamines produced an increase in respiratory burst and phagocytic ability when leucocytes were incubated principally with putrescine (0.005 and 0.0025%) after 2 and 4 h of the experiment. Finally, the expression levels of immune-associated genes (IgM, MHCIα, MHCIIα, C3, IL-1β, CD8, Hep, NCCRP-1, CSF-1 and TLR) were quantified by real-time PCR and some of them (C3, MHCI, CD8, IgM and Hep) were up-regulated by the higher polyamine concentration. Further studies are needed to ascertain how polyamines control the immune system of seabream as well as which mechanisms are involved.

  18. Inducing humoral and cellular responses to multiple sporozoite and liver-stage malaria antigens using exogenous plasmid DNA.

    PubMed

    Ferraro, B; Talbott, K T; Balakrishnan, A; Cisper, N; Morrow, M P; Hutnick, N A; Myles, D J; Shedlock, D J; Obeng-Adjei, N; Yan, J; Kayatani, A K K; Richie, N; Cabrera, W; Shiver, R; Khan, A S; Brown, A S; Yang, M; Wille-Reece, U; Birkett, A J; Sardesai, N Y; Weiner, D B

    2013-10-01

    A vaccine candidate that elicits humoral and cellular responses to multiple sporozoite and liver-stage antigens may be able to confer protection against Plasmodium falciparum malaria; however, a technology for formulating and delivering such a vaccine has remained elusive. Here, we report the preclinical assessment of an optimized DNA vaccine approach that targets four P. falciparum antigens: circumsporozoite protein (CSP), liver stage antigen 1 (LSA1), thrombospondin-related anonymous protein (TRAP), and cell-traversal protein for ookinetes and sporozoites (CelTOS). Synthetic DNA sequences were designed for each antigen with modifications to improve expression and were delivered using in vivo electroporation (EP). Immunogenicity was evaluated in mice and nonhuman primates (NHPs) and assessed by enzyme-linked immunosorbent assay (ELISA), gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay, and flow cytometry. In mice, DNA with EP delivery induced antigen-specific IFN-γ production, as measured by ELISpot assay and IgG seroconversion against all antigens. Sustained production of IFN-γ, interleukin-2, and tumor necrosis factor alpha was elicited in both the CD4(+) and CD8(+) T cell compartments. Furthermore, hepatic CD8(+) lymphocytes produced LSA1-specific IFN-γ. The immune responses conferred to mice by this approach translated to the NHP model, which showed cellular responses by ELISpot assay and intracellular cytokine staining. Notably, antigen-specific CD8(+) granzyme B(+) T cells were observed in NHPs. Collectively, the data demonstrate that delivery of gene sequences by DNA/EP encoding malaria parasite antigens is immunogenic in animal models and can harness both the humoral and cellular arms of the immune system.

  19. Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses – A First-In-Man Trial

    PubMed Central

    Boehm, Michael; Herzog, Rebecca; Gruber, Katharina; Lichtenauer, Anton Michael; Kuster, Lilian; Csaicsich, Dagmar; Gleiss, Andreas; Alper, Seth L.; Aufricht, Christoph; Vychytil, Andreas

    2016-01-01

    Background Peritonitis and ultrafiltration failure remain serious complications of chronic peritoneal dialysis (PD). Dysfunctional cellular stress responses aggravate peritoneal injury associated with PD fluid exposure, potentially due to peritoneal glutamine depletion. In this randomized cross-over phase I/II trial we investigated cytoprotective effects of alanyl-glutamine (AlaGln) addition to glucose-based PDF. Methods In a prospective randomized cross-over design, 20 stable PD outpatients underwent paired peritoneal equilibration tests 4 weeks apart, using conventional acidic, single chamber 3.86% glucose PD fluid, with and without 8 mM supplemental AlaGln. Heat-shock protein 72 expression was assessed in peritoneal effluent cells as surrogate parameter of cellular stress responses, complemented by metabolomics and functional immunocompetence assays. Results AlaGln restored peritoneal glutamine levels and increased the primary outcome heat-shock protein expression (effect 1.51-fold, CI 1.07–2.14; p = 0.022), without changes in peritoneal ultrafiltration, small solute transport, or biomarkers reflecting cell mass and inflammation. Further effects were glutamine-like metabolomic changes and increased ex-vivo LPS-stimulated cytokine release from healthy donor peripheral blood monocytes. In patients with a history of peritonitis (5 of 20), AlaGln supplementation decreased dialysate interleukin-8 levels. Supplemented PD fluid also attenuated inflammation and enhanced stimulated cytokine release in a mouse model of PD-associated peritonitis. Conclusion We conclude that AlaGln-supplemented, glucose-based PD fluid can restore peritoneal cellular stress responses with attenuation of sterile inflammation, and may improve peritoneal host-defense in the setting of PD. PMID:27768727

  20. NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer

    PubMed Central

    Özeş, Ali R.; Miller, David F.; Özeş, Osman N.; Fang, Fang; Liu, Yunlong; Matei, Daniela; Huang, Tim; Nephew, Kenneth P.

    2016-01-01

    The transcription factor nuclear factor kappa B (NF-κB) and the long non-coding RNA (lncRNA) HOTAIR (HOX transcript antisense RNA) play diverse functional roles in cancer. In this study, we show that upregulation of HOTAIR induced platinum resistance in ovarian cancer, and increased HOTAIR levels were observed in recurrent platinum-resistant ovarian tumors vs. primary ovarian tumors. To investigate the role of HOTAIR during DNA damage induced by platinum, we monitored double-strand breaks and show that HOTAIR expression results in sustained activation of DNA damage response after platinum treatment. We demonstrate that ectopic expression of HOTAIR induces NF-κB activation during DNA damage response and MMP-9 and IL-6 expression, both key NF-κB target genes. We show that HOTAIR regulates activation of NF-κB by decreasing Iκ-Bα (NF-κB inhibitor) and establish that by inducing prolonged NF-κB activation and expression of NF-κB target genes during DNA damage, HOTAIR plays a critical role in cellular senescence and platinum sensitivity. Our findings suggest that a NF-κB-HOTAIR axis drives a positive-feedback loop cascade during DNA damage response and contributes to cellular senescence and chemotherapy resistance in ovarian and other cancers. PMID:27041570

  1. Changes in cellular response to the damage induced in PC-3 prostate cancer cells by proton microbeam irradiation.

    PubMed

    Lipiec, Ewelina W; Wiecheć, Anna; Dulińska-Litewka, Joanna; Kubica, Małgorzata; Lekki, Janusz; Stachura, Zbigniew; Wiltowska-Zuber, Joanna; Kwiatek, Wojciech M

    2012-03-01

    The aim of this research was to find out whether the passage number effect may influence on the PC-3 cells (the human prostate cancer line derived from bone metastases) response to proton radiation. 2 MeV horizontally focused proton microbeam was used as a radiation source. The cells were treated with a counted number of H(+) ions (50-8000) corresponding to doses of 1.3-209 Gy/cell. For comparison, cell death was also induced by UVC radiation. All cells were stained with Hoechst 33342 and propidium iodide and visualized under a fluorescence microscope. Necrosis was observed at: a) 8000 protons per cell (corresponding to ∼209 Gy/cell) after 2-4 passages, b) 3200 protons per cell (corresponding to ∼84 Gy/cell) for cells after 11-14 passages and c) only 800 protons per cell (corresponding to ∼2 Gy/cell ) after 47-50 passages. Apoptosis was efficiently induced, by protons, only in cells after 50 passages. The results showed that the laboratory conditions affected cellular response of PC-3 cell line to the proton irradiation. The cellular response to the radiation treatment strongly depends on number of passages.

  2. Development of mechano-responsive polymeric scaffolds using functionalized silica nano-fillers for the control of cellular functions.

    PubMed

    Griffin, Michelle; Nayyer, Leila; Butler, Peter E; Palgrave, Robert G; Seifalian, Alexander M; Kalaskar, Deepak M

    2016-08-01

    We demonstrate an efficient method to produce mechano-responsive polymeric scaffolds which can alter cellular functions using two different functionalized (OH and NH2) silica nano-fillers. Fumed silica-hydroxyl and fumed silica-amine nano-fillers were mixed with a biocompatible polymer (POSS-PCU) at various wt% to produce scaffolds. XPS and mechanical testing demonstrate that bulk mechanical properties are modified without changing the scaffold's surface chemistry. Mechanical testing showed significant change in bulk properties of POSS-PCU scaffolds with an addition of silica nanofillers as low as 1% (P<0.01). Scaffolds modified with NH2 silica showed significantly higher bulk mechanical properties compared to the one modified with the OH group. Enhanced cell adhesion, proliferation and collagen production over 14days were observed on scaffolds with higher bulk mechanical properties (NH2) compared to those with lower ones (unmodified and OH modified) (P<0.05) during in vitro analysis. This study provides an effective method of manufacturing mechano-responsive polymeric scaffolds, which can help to customize cellular responses for biomaterial applications.

  3. HIV--Leishmania infantum co-infection: humoral and cellular immune responses to the parasite after chemotherapy.

    PubMed

    Moreno, J; Cañavate, C; Chamizo, C; Laguna, F; Alvar, J

    2000-01-01

    Specific serum antibodies, peripheral blood T-cell subsets, cellular response in vitro to soluble Leishmania antigens, phenotype of stimulated cells, and serum levels of tumour necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta 1 were studied in Spain in 17 patients co-infected with HIV and Leishmania infantum who had been previously treated with pentavalent antimony. Both humoral and cellular responses to Leishmania sp. appeared diminished, 8 out of 17 patients were positive by indirect immunofluorescence, and immunoblotting detected heterogeneous antibody-binding pattern in 11 out of 13 subjects. A blastogenesis test was positive in 4 cases; 2 of them presented proliferation of CD4+ cells while CD8+ cells proliferated in the other 2 patients. Serum levels of TNF-alpha were similar to those observed in patients infected with HIV only, while serum levels of TGF-beta 1 were significantly lower in the co-infected patients. The inability of antibody response to control the parasite and the absence of specific T-cell immunity to Leishmania sp. would explain the high frequency of relapses reported in these patients. The decreased levels of TGF-beta 1 could have an important role in the interaction between the 2 pathogens.

  4. The accessory proteins REEP5 and REEP6 refine CXCR1-mediated cellular responses and lung cancer progression.

    PubMed

    Park, Cho Rong; You, Dong-Joo; Park, Sumi; Mander, Sunam; Jang, Da-Eun; Yeom, Su-Cheong; Oh, Seong-Hyun; Ahn, Curie; Lee, Sang Heon; Seong, Jae Young; Hwang, Jong-Ik

    2016-12-14

    Some G-protein-coupled receptors have been reported to require accessory proteins with specificity for proper functional expression. In this study, we found that CXCR1 interacted with REEP5 and REEP6, but CXCR2 did not. Overexpression of REEP5 and REEP6 enhanced IL-8-stimulated cellular responses through CXCR1, whereas depletion of the proteins led to the downregulation of the responses. Although REEPs enhanced the expression of a subset of GPCRs, in the absence of REEP5 and REEP6, CXCR1 was expressed in the plasma membrane, but receptor internalization and intracellular clustering of β-arrestin2 following IL-8 treatment were impaired, suggesting that REEP5 and REEP6 might be involved in the ligand-stimulated endocytosis of CXCR1 rather than membrane expression, which resulted in strong cellular responses. In A549 lung cancer cells, which endogenously express CXCR1, the depletion of REEP5 and REEP6 significantly reduced growth and invasion by downregulating IL-8-stimulated ERK phosphorylation, actin polymerization and the expression of genes related to metastasis. Furthermore, an in vivo xenograft model showed that proliferation and metastasis of A549 cells lacking REEP5 and REEP6 were markedly decreased compared to the control group. Thus, REEP5 and REEP6 could be novel regulators of G-protein-coupled receptor signaling whose functional mechanisms differ from other accessory proteins.

  5. The accessory proteins REEP5 and REEP6 refine CXCR1-mediated cellular responses and lung cancer progression

    PubMed Central

    Park, Cho Rong; You, Dong-Joo; Park, Sumi; Mander, Sunam; Jang, Da-Eun; Yeom, Su-Cheong; Oh, Seong-Hyun; Ahn, Curie; Lee, Sang Heon; Seong, Jae Young; Hwang, Jong-Ik

    2016-01-01

    Some G-protein-coupled receptors have been reported to require accessory proteins with specificity for proper functional expression. In this study, we found that CXCR1 interacted with REEP5 and REEP6, but CXCR2 did not. Overexpression of REEP5 and REEP6 enhanced IL-8-stimulated cellular responses through CXCR1, whereas depletion of the proteins led to the downregulation of the responses. Although REEPs enhanced the expression of a subset of GPCRs, in the absence of REEP5 and REEP6, CXCR1 was expressed in the plasma membrane, but receptor internalization and intracellular clustering of β-arrestin2 following IL-8 treatment were impaired, suggesting that REEP5 and REEP6 might be involved in the ligand-stimulated endocytosis of CXCR1 rather than membrane expression, which resulted in strong cellular responses. In A549 lung cancer cells, which endogenously express CXCR1, the depletion of REEP5 and REEP6 significantly reduced growth and invasion by downregulating IL-8-stimulated ERK phosphorylation, actin polymerization and the expression of genes related to metastasis. Furthermore, an in vivo xenograft model showed that proliferation and metastasis of A549 cells lacking REEP5 and REEP6 were markedly decreased compared to the control group. Thus, REEP5 and REEP6 could be novel regulators of G-protein-coupled receptor signaling whose functional mechanisms differ from other accessory proteins. PMID:27966653

  6. Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes.

    PubMed

    Nedelcu, Aurora M; Marcu, Oana; Michod, Richard E

    2004-08-07

    Organisms are constantly subjected to factors that can alter the cellular redox balance and result in the formation of a series of highly reactive molecules known as reactive oxygen species (ROS). As ROS can be damaging to biological structures, cells evolved a series of mechanisms (e.g. cell-cycle arrest, programmed cell death) to respond to high levels of ROS (i.e. oxidative stress). Recently, we presented evidence that in a facultatively sexual lineage--the multicellular green alga Volvox carteri--sex is an additional response to increased levels of stress, and probably ROS and DNA damage. Here we show that, in V. carteri, (i) sex is triggered by an approximately twofold increase in the level of cellular ROS (induced either by the natural sex-inducing stress, namely heat, or by blocking the mitochondrial electron transport chain with antimycin A), and (ii) ROS are responsible for the activation of sex genes. As most types of stress result in the overproduction of ROS, we believe that our findings will prove to extend to other facultatively sexual lineages, which could be indicative of the ancestral role of sex as an adaptive response to stress and ROS-induced DNA damage.

  7. The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease.

    PubMed

    Seveso, Davide; Montano, Simone; Reggente, Melissa Amanda Ljubica; Maggioni, Davide; Orlandi, Ivan; Galli, Paolo; Vai, Marina

    2017-03-01

    Black band disease (BBD) is a widespread coral pathology caused by a microbial consortium dominated by cyanobacteria, which is significantly contributing to the loss of coral cover and diversity worldwide. Since the effects of the BBD pathogens on the physiology and cellular stress response of coral polyps appear almost unknown, the expression of some molecular biomarkers, such as Hsp70, Hsp60, HO-1, and MnSOD, was analyzed in the apparently healthy tissues of Goniopora columna located at different distances from the infection and during two disease development stages. All the biomarkers displayed different levels of expression between healthy and diseased colonies. In the healthy corals, low basal levels were found stable over time in different parts of the same colony. On the contrary, in the diseased colonies, a strong up-regulation of all the biomarkers was observed in all the tissues surrounding the infection, which suffered an oxidative stress probably generated by the alternation, at the progression front of the disease, of conditions of oxygen supersaturation and hypoxia/anoxia, and by the production of the cyanotoxin microcystin by the BBD cyanobacteria. Furthermore, in the infected colonies, the expression of all the biomarkers appeared significantly affected by the development stage of the disease. In conclusion, our approach may constitute a useful diagnostic tool, since the cellular stress response of corals is activated before the pathogens colonize the tissues, and expands the current knowledge of the mechanisms controlling the host responses to infection in corals.

  8. Cellular immune responses to amoebic liver abcess in the guinea-pig.

    PubMed Central

    Bray, R S; Harris, W G

    1977-01-01

    Guinea-pigs infected in the liver with the Biswas strain of Entamoeba histolytica showed no dermal hypersensitivity but showed positive lymphocyte transformation and macrophage-migration inhibition. The time sequence showed an activated response at 4 days after infection, a full response at 8 days when the liver abscesses were resolving and a waning response at 12 days when the abscesses had healed. PMID:891028

  9. Separating Fluid Shear Stress from Acceleration during Vibrations in Vitro: Identification of Mechanical Signals Modulating the Cellular Response

    PubMed Central

    Uzer, Gunes; Manske, Sarah L; Chan, M Ete; Chiang, Fu-Pen; Rubin, Clinton T; Frame, Mary D; Judex, Stefan

    2012-01-01

    The identification of the physical mechanism(s) by which cells can sense vibrations requires the determination of the cellular mechanical environment. Here, we quantified vibration-induced fluid shear stresses in vitro and tested whether this system allows for the separation of two mechanical parameters previously proposed to drive the cellular response to vibration – fluid shear and peak accelerations. When peak accelerations of the oscillatory horizontal motions were set at 1g and 60Hz, peak fluid shear stresses acting on the cell layer reached 0.5Pa. A 3.5-fold increase in fluid viscosity increased peak fluid shear stresses 2.6-fold while doubling fluid volume in the well caused a 2-fold decrease in fluid shear. Fluid shear was positively related to peak acceleration magnitude and inversely related to vibration frequency. These data demonstrated that peak shear stress can be effectively separated from peak acceleration by controlling specific levels of vibration frequency, acceleration, and/or fluid viscosity. As an example for exploiting these relations, we tested the relevance of shear stress in promoting COX-2 expression in osteoblast like cells. Across different vibration frequencies and fluid viscosities, neither the level of generated fluid shear nor the frequency of the signal were able to consistently account for differences in the relative increase in COX-2 expression between groups, emphasizing that the eventual identification of the physical mechanism(s) requires a detailed quantification of the cellular mechanical environment. PMID:23074384

  10. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    PubMed

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens.

  11. Effect of the nano-bio interface on the genotoxicity of titanium dioxide nanoparticles and associated cellular responses

    NASA Astrophysics Data System (ADS)

    Prasad, Raju Yashaswi

    Several toxicological studies have shown that titanium dioxide nanoparticles (nano-TiO2), one of the most widely produced engineered nanoparticles, can induce genotoxicity; however, potential adverse health effects associated with their physicochemical properties are not fully understood. Proteins in a biological medium can adsorb to the surface of the nanoparticle resulting in the formation of a protein corona that can alter the physicochemical properties of the particle. Furthermore, the protein corona may impact the interaction between nanoparticles and cells, referred to as the nano-bio interface, effecting the uptake, distribution, and toxicity of the particles. Despite the potential influence of the composition of the biological medium on the physicochemical properties and genotoxicity of titanium dioxide nanoparticles, the majority of studies have not examined systematically the influence of medium composition on protein corona, genotoxicity, and cellular responses. In this dissertation we tested the overall hypothesis that titanium dioxide nanoparticles in medium that produces the smallest agglomerates would be taken up into cells and induce genotoxicity, and that exposure would initiate the signaling of key mediators of a DNA damage and inflammation response. Three major findings were shown in this study: 1) Protein corona formation on the surface of nano-TiO2 can impact the nano-bio interface and change cellular interaction. 2) Smaller agglomerates of nano-TiO2 are taken up more by cells without inducing cell cycle arrest, thereby allowing induced DNA damage to be processed into micronuclei in BEAS-2B cells. 3) Nano-TiO 2 in medium that facilitates increased cellular interaction induces the upregulation of the ATM-Chk2 DNA damage response (similar to ionizing radiation) and NF-kappaB inflammation pathways. Taken together, our research provides a systematic examination of the physicochemical properties, genotoxicity, and cellular responses induced by

  12. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    SciTech Connect

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  13. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.

    PubMed

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2006-01-01

    Plant growth and productivity are greatly affected by environmental stresses such as drought, high salinity, and low temperature. Expression of a variety of genes is induced by these stresses in various plants. The products of these genes function not only in stress tolerance but also in stress response. In the signal transduction network from perception of stress signals to stress-responsive gene expression, various transcription factors and cis-acting elements in the stress-responsive promoters function for plant adaptation to environmental stresses. Recent progress has been made in analyzing the complex cascades of gene expression in drought and cold stress responses, especially in identifying specificity and cross talk in stress signaling. In this review article, we highlight transcriptional regulation of gene expression in response to drought and cold stresses, with particular emphasis on the role of transcription factors and cis-acting elements in stress-inducible promoters.

  14. Comprehensive Interrogation of the Cellular Response to Fluorescent, Detonation and Functionalized Nanodiamonds

    PubMed Central

    Moore, L.; Grobárová, V.; Shen, H.; Man, H. B.; Míčová, J.; Ledvina, M.; Štursa, J.; Nesladek, M.

    2015-01-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation. PMID:25037888

  15. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds.

    PubMed

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-10-21

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  16. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds

    NASA Astrophysics Data System (ADS)

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-09-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  17. Protozoa as model systems for the study of cellular responses to altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Hemmersbach-Krause, R.; Briegleb, W.; Häder, D.-P.; Vogel, K.; Klein, S.; Mulisch, M.

    1994-08-01

    The orientation behavior of Paramecium changed in a similar way after transition to conditions of free-fall in a sounding rocket and after transition to conditions of simulated weightlessness on a fast rotating clinostat. After a period of residual orientation, Paramecium cells distributed themselves randomly 80 s (120 s) after onset of free-fall (simulated weightlessness). Swimming velocity increased significantly; however, the increase was transient and subsided after 3 min in the rocket experiments, while the velocity remained enhanced even during 2 h of rotation on a fast clinostat. Trichocysts were present and without morphological changes in Paramecium cells which had been exposed to a rocket flight, as well as to fast or slow rotation on a clinostat. Regeneration of the oral apparatus of Stentor and morphogenesis of Eufolliculina proceeded normally on the clinostat. The results demonstrate that the clinostat is a useful tool to stimulate the conditions of weightlessness on earth and to detect gravisensitive cellular functions.

  18. Investigation of Cellular and Molecular Responses to Pulsed Focused Ultrasound in a Mouse Model

    PubMed Central

    Burks, Scott R.; Ziadloo, Ali; Hancock, Hilary A.; Chaudhry, Aneeka; Dean, Dana D.; Lewis, Bobbi K.; Frenkel, Victor; Frank, Joseph A.

    2011-01-01

    Continuous focused ultrasound (cFUS) has been widely used for thermal ablation of tissues, relying on continuous exposures to generate temperatures necessary to induce coagulative necrosis. Pulsed FUS (pFUS) employs non-continuous exposures that lower the rate of energy deposition and allow cooling to occur between pulses, thereby minimizing thermal effects and emphasizing effects created by non-thermal mechanisms of FUS (i.e., acoustic radiation forces and acoustic cavitation). pFUS has shown promise for a variety of applications including drug and nanoparticle delivery; however, little is understood about the effects these exposures have on tissue, especially with regard to cellular pro-homing factors (growth factors, cytokines, and cell adhesion molecules). We examined changes in murine hamstring muscle following pFUS or cFUS and demonstrate that pFUS, unlike cFUS, has little effect on the histological integrity of muscle and does not induce cell death. Infiltration of macrophages was observed 3 and 8 days following pFUS or cFUS exposures. pFUS increased expression of several cytokines (e.g., IL-1α, IL-1β, TNFα, INFγ, MIP-1α, MCP-1, and GMCSF) creating a local cytokine gradient on days 0 and 1 post-pFUS that returns to baseline levels by day 3 post-pFUS. pFUS exposures induced upregulation of other signaling molecules (e.g., VEGF, FGF, PlGF, HGF, and SDF-1α) and cell adhesion molecules (e.g., ICAM-1 and VCAM-1) on muscle vasculature. The observed molecular changes in muscle following pFUS may be utilized to target cellular therapies by increasing homing to areas of pathology. PMID:21931834

  19. Cellular Mechanisms Underlying Bone-Forming Cell Proliferative Response to Hypergravity

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Parra, M.; DaCosta, M.; Wing, A.; Roden, C.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2004-01-01

    Life on Earth has evolved under the continuous influence of gravity (1-g). As humans explore and develop space, however, we must learn to adapt to an environment with little or no gravity. Studies indicate that lack of weightbearing for vertebrates occurring with immobilization, paralysis, or in a microgravity environment may cause muscle and bone atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) (consisting of molecules such as collagen, fibronectin, and laminin) in mechanosensitive tissues. We test for the presence of gravity-sensitive pathways in bone-forming cells (osteoblasts) using hypergravity applied by a cell culture centrifuge. Stimulation of 50 times gravity (50-g) increased proliferation in primary rat osteoblasts for cells grown on collagen Type I and fibronectin, but not on laminin or uncoated surfaces. Survival was also enhanced during hypergravity stimulation by the presence of ECM. Bromodeoxyuridine incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. Reverse transcription-polymerase chain reaction was used to test for all possible integrins. Our combined results indicate that beta1 and/or beta3 integrin subunits may be involved. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signalling pathways which are sensitive to g-level. Further research to define the mechanisms involved will provide direction so that we may better adapt and counteract bone atrophy caused by the lack of weightbearing.

  20. The anticancer activity of the fungal metabolite terrecyclic acid A is associated with modulation of multiple cellular stress response pathways.

    PubMed

    Turbyville, Thomas J; Wijeratne, E M Kithsiri; Whitesell, Luke; Gunatilaka, A A Leslie

    2005-10-01

    Tumors are dependent on cellular stress responses, in particular the heat shock response, for survival in their hypoxic, acidotic, and nutrient-deprived microenvironments. Using cell-based reporter assays, we have identified terrecyclic acid A (TCA) from Aspergillus terreus, a fungus inhabiting the rhizosphere of Opuntia versicolor of the Sonoran desert, as a small-molecule inducer of the heat shock response that shows anticancer activity. Further characterization suggested that TCA also affects oxidative and inflammatory cellular stress response pathways. The presence of an alpha-methylene ketone moiety suggested that TCA may form adducts with sulfhydryl groups of proteins. Reaction with labile intracellular cysteines was supported by our finding that the glutathione precursor N-acetyl-cysteine protected tumor cells from the cytotoxic effects of TCA whereas the glutathione-depleting agent buthionine sulfoximine enhanced its activity. Related sesquiterpenes have been shown to increase levels of reactive oxygen species (ROS) and to inhibit nuclear factor kappaB (NF-kappaB) transcriptional activity. To assess whether TCA could have similar activities, we used a ROS-sensitive dye and flow cytometry to show that TCA does indeed increase ROS levels in 3LL cells. When tested in cells carrying NF-kappaB reporter constructs, TCA also exhibited concentration-dependent inhibition of cytokine-induced NF-kappaB transcriptional activity. These findings suggest that TCA modulates multiple stress pathways-the oxidative, heat shock, and inflammatory responses-in tumor cells that promote their survival. Small-molecule natural products such as TCA may serve as useful probes for understanding the relationships between these pathways, potentially providing leads for the design of novel and effective anticancer drugs.

  1. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans.

    PubMed

    Gullón, Sonia; Marín, Silvia; Mellado, Rafael P

    2015-01-01

    Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase) and a Tat-dependent model protein (agarase) in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients' depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host.

  2. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans

    PubMed Central

    Gullón, Sonia; Marín, Silvia; Mellado, Rafael P.

    2015-01-01

    Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase) and a Tat-dependent model protein (agarase) in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients’ depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host. PMID:26200356

  3. Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia.

    PubMed

    Noman, Muhammad Zaeem; Hasmim, Meriem; Messai, Yosra; Terry, Stéphane; Kieda, Claudine; Janji, Bassam; Chouaib, Salem

    2015-11-01

    The tumor microenvironment is a complex system, playing an important role in tumor development and progression. Besides cellular stromal components, extracellular matrix fibers, cytokines, and other metabolic mediators are also involved. In this review we outline the potential role of hypoxia, a major feature of most solid tumors, within the tumor microenvironment and how it contributes to immune resistance and immune suppression/tolerance and can be detrimental to antitumor effector cell functions. We also outline how hypoxic stress influences immunosuppressive pathways involving macrophages, myeloid-derived suppressor cells, T regulatory cells, and immune checkpoints and how it may confer tumor resistance. Finally, we discuss how microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions.

  4. Examining cellular immune responses to inform development of a blood-stage malaria vaccine.

    PubMed

    Stanisic, Danielle I; Good, Michael F

    2016-02-01

    Naturally acquired immunity to the blood-stage of the malaria parasite develops slowly in areas of high endemicity, but is not sterilizing. It manifests as a reduction in parasite density and clinical symptoms. Immunity as a result of blood-stage vaccination has not yet been achieved in humans, although there are many animal models where vaccination has been successful. The development of a blood-stage vaccine has been complicated by a number of factors including limited knowledge of human-parasite interactions and which antigens and immune responses are critical for protection. Opinion is divided as to whether this vaccine should aim to accelerate the acquisition of responses acquired following natural exposure, or whether it should induce a different response. Animal and experimental human models suggest that cell-mediated immune responses can control parasite growth, but these responses can also contribute to significant immunopathology if unregulated. They are largely ignored in most blood-stage malaria vaccine development strategies. Here, we discuss key observations relating to cell-mediated immune responses in the context of experimental human systems and field studies involving naturally exposed individuals and how this may inform the development of a blood-stage malaria vaccine.

  5. Histological Lesions and Cellular Response in the Skin of Alpine Chamois (Rupicapra r. rupicapra) Spontaneously Affected by Sarcoptic Mange

    PubMed Central

    Salvadori, Claudia; Lazzarotti, Camilla; Trogu, Tiziana; Lanfranchi, Paolo

    2016-01-01

    Population dynamics of chamois (genus Rupicapra, subfamily Caprinae) can be influenced by infectious diseases epizootics, of which sarcoptic mange is probably the most severe in the Alpine chamois (Rupicapra rupicapra rupicapra). In this study, skin lesions and cellular inflammatory infiltrates were characterized in 44 Alpine chamois affected by sarcoptic mange. Dermal cellular responses were evaluated in comparison with chamois affected by trombiculosis and controls. In both sarcoptic mange and trombiculosis, a significantly increase of eosinophils, mast cells, T and B lymphocytes, and macrophages was detected. Moreover, in sarcoptic mange significant higher numbers of T lymphocytes and macrophages compared to trombiculosis were observed. Lesions in sarcoptic mange were classified in three grades, according to crusts thickness, correlated with mite counts. Grade 3 represented the most severe form with crust thickness more than 3.5 mm, high number of mites, and severe parakeratosis with diffuse bacteria. Evidence of immediate and delayed hypersensitivity was detected in all three forms associated with diffuse severe epidermal hyperplasia. In grade 3, a significant increase of B lymphocytes was evident compared to grades 1 and 2, while eosinophil counts were significantly higher than in grade 1, but lower than in grade 2 lesions. An involvement of nonprotective Th2 immune response could in part account for severe lesions of grade 3. PMID:27403422

  6. Seasonal variations of cellular stress response in the heart and gastrocnemius muscle of the water frog (Pelophylax ridibundus).

    PubMed

    Feidantsis, Konstantinos; Anestis, Andreas; Vasara, Eleni; Kyriakopoulou-Sklavounou, Pasqualina; Michaelidis, Basile

    2012-08-01

    The present study aimed to investigate the seasonal cellular stress response in the heart and the gastrocnemius muscle of the amphibian Pelophylax ridibundus (former name Rana ridibunda) during an 8 month acclimatization period in the field. Processes studied included heat shock protein expression and protein kinase activation. The cellular stress response was addressed through the expression of Hsp70 and Hsp90 and the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). Due to a general metabolic depression during winter hibernation, the induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs are retained at low levels of expression in the examined tissues of P. ridibundus. Recovery from hibernation induces increased levels of the specific proteins, probably providing stamina to the animals during their arousal.

  7. Tetanus toxoid-loaded layer-by-layer nanoassemblies for efficient systemic, mucosal, and cellular immunostimulatory response following oral administration.

    PubMed

    Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog

    2015-10-01

    The present study reports the tetanus toxoid (TT)-loaded layer-by-layer nanoassemblies (layersomes) with enhanced protection, permeation, and presentation for comprehensive oral immunization. The stable and lyophilized TT-loaded layersomes were prepared by a thin-film hydration method followed by alternate layer-by-layer coating of an electrolyte. The developed system was assessed for in vitro stability of antigen and formulation, cellular uptake, ex vivo intestinal uptake, and immunostimulatory response using a suitable experimental protocol. Layersomes improved the stability in simulated biological media as well as protected the integrity/conformation and native 3D structure of TT as confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), and fluorescence spectroscopy, respectively. The cell culture studies demonstrated a 3.8-fold higher permeation of layersomes in Caco-2 cells and an 8.5-fold higher uptake by antigen-presenting cells (RAW 264.7). The TT-loaded layersomes elicited a complete immunostimulatory profile consisting of higher systemic (serum IgG titer), mucosal (sIgA titer), and cellular (interleukin-2 (IL-2) and interferon-γ (IFN-γ) levels) immune response after peroral administration in mice. The modified TT inhibition assay further confirmed the elicitation of complete protective levels of anti-TT antibody (>0.1 IU/mL) by layersomes. In conclusion, the proposed strategy is expected to contribute significantly in the field of stable liposome technology for mass immunization through the oral route.

  8. Blood Group O-Dependent Cellular Responses to Cholera Toxin: Parallel Clinical and Epidemiological Links to Severe Cholera.

    PubMed

    Kuhlmann, F Matthew; Santhanam, Srikanth; Kumar, Pardeep; Luo, Qingwei; Ciorba, Matthew A; Fleckenstein, James M

    2016-08-03

    Because O blood group has been associated with more severe cholera infections, it has been hypothesized that cholera toxin (CT) may bind non-O blood group antigens of the intestinal mucosae, thereby preventing efficient interaction with target GM1 gangliosides required for uptake of the toxin and activation of cyclic adenosine monophosphate (cAMP) signaling in target epithelia. Herein, we show that after exposure to CT, human enteroids expressing O blood group exhibited marked increase in cAMP relative to cells derived from blood group A individuals. Likewise, using CRISPR/Cas9 engineering, a functional group O line (HT-29-A(-/-)) was generated from a parent group A HT-29 line. CT stimulated robust cAMP responses in HT-29-A(-/-) cells relative to HT-29 cells. These findings provide a direct molecular link between blood group O expression and differential cellular responses to CT, recapitulating clinical and epidemiologic observations.

  9. Enhanced cellular responses and environmental sampling within inner foreskin explants: implications for the foreskin's role in HIV transmission.

    PubMed

    Fahrbach, K M; Barry, S M; Anderson, M R; Hope, T J

    2010-07-01

    The decrease in HIV acquisition after circumcision suggests a role for the foreskin in HIV transmission. However, the mechanism leading to protection remains undefined. Using tissue explant cultures we found that Langerhans cells (LCs) in foreskin alter their cellular protein expression in response to external stimuli. Furthermore, we observe that upon treatment with TNF-alpha, tissue-resident LCs became activated and that stimulatory cytokines can specifically cause an influx of CD4+ T-cells into the epithelial layer. Importantly, both of these changes are significant in the inner, but not outer, foreskin. In addition, we find that LCs in the inner foreskin have increased ability to sample environmental proteins. These results suggest differences in permeability between the inner and outer foreskin and indicate that HIV target cells in the inner foreskin have increased interaction with external factors. This increased responsiveness and sampling provides novel insights into the underlying mechanism of how circumcision can decrease HIV transmission.

  10. Biological response at the cellular level within the periodontal ligament on application of orthodontic force – An update

    PubMed Central

    Meeran, Nazeer Ahmed

    2012-01-01

    Orthodontic force elicits a biological response in the tissues surrounding the teeth, resulting in remodeling of the periodontal ligament and the alveolar bone. The force-induced tissue strain result in reorganization of both cellular and extracellular matrix, besides producing changes in the local vascularity. This in turn leads to the synthesis and release of various neurotransmitters, arachidonic acid, growth factors, metabolites, cytokines, colony-stimulating factors, and enzymes like cathepsin K, matrix metalloproteinases, and aspartate aminotransferase. Despite the availability of many studies in the orthodontic and related scientific literature, a concise integration of all data is still lacking. Such a consolidation of the rapidly accumulating scientific information should help in understanding the biological processes that underlie the phenomenon of tooth movement in response to mechanical loading. Therefore, the aim of this review was to describe the biological processes taking place at the molecular level on application of orthodontic force and to provide an update of the current literature. PMID:24987618

  11. The Responses of Preschoolers with Cochlear Implants to Musical Activities: A Multiple Case Study

    ERIC Educational Resources Information Center

    Schraer-Joiner, Lyn E.; Chen-Hafteck, Lily

    2009-01-01

    The purpose of this study was to investigate the musical experiences of preschool cochlear implant users. Research objectives were to examine: (1) musical, social and emotional responses to activities; and (2) whether length of experience with the implant influenced responses. Participants were three prelingually deafened children, age 4,…

  12. Design and synthesis of temperature-responsive polymer/silica hybrid nanoparticles and application to thermally controlled cellular uptake.

    PubMed

    Hiruta, Yuki; Nemoto, Ryo; Kanazawa, Hideko

    2017-02-04

    This study reports the development of temperature-responsive polymer/silica hybrid nanoparticles and their application to temperature-dependent intracellular uptake of hydrophobic encapsulated fluorescence molecules. Amphiphilic diblock copolymer comprising a temperature-responsive segment, poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) [P(NIPAAm-co-DMAAm)] and a trimethyoxysilyl-containing hydrophobic segment was synthesized (PBM-b-ND); this amphiphilic diblock copolymer self-assembled in an aqueous solution, and temperature-responsive polymer/silica hybrid fluorescence nanoparticles were fabricated via a base-catalyzed sol-gel process. The fluorescence probe rhodamine DHPE or boron dipyrromethene derivative was encapsulated into the polymer core with a silica network in a stable manner. Other types of polymer/silica hybrid fluorescence nanoparticles were also developed using either homo-PNIPAAm (PBM-b-N) or homo-PDMAAm (PBM-b-D) segments, instead of P(NIPAAm-co-DMAAm). While PBM-b-D did not exhibit a temperature-dependent phase transition (hydrophilic characteristic), PBM-b-N and PBM-b-ND exhibited temperature-dependent phase transition (hydrophilic/hydrophobic) at 32°C and 38°C, respectively. The cellular uptake of PBM-b-N was clearly observed at both 37°C and 42°C, while the cellular uptake of PBM-b-D was minimal at these temperatures. On the other hand, significant enhancement in the intracellular uptake of PBM-b-ND was observed at 42°C, compared to its uptake at a lower temperature of 37°C. These results indicated that temperature-responsive polymer/silica hybrid nanoparticle, PBM-b-ND demonstrate potential for applications in theranostics with cancer therapy via the combination of local drug delivery and local hyperthermia, as well as for monitoring treatment effectiveness with fluorescence imaging.

  13. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    NASA Astrophysics Data System (ADS)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; van Dorsselaer, Alain; Rabilloud, Thierry

    2014-05-01

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate

  14. Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2)

    PubMed Central

    Pérez-Caro, M; Bermejo-Rodríguez, C; González-Herrero, I; Sánchez-Beato, M; Piris, M A; Sánchez-García, I

    2008-01-01

    Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in response to DNA damage. Although examination of the response showed that overall expression of p53 target gene expression patterns was similarly altered in both control and Snai2-deficient cells, we have identified and validated candidate Snai2 target genes linked to Snai2 gene function in response to DNA damage. This work defines for the first time the effect of Snai2 on p53 target genes in cells undergoing growth arrest, elucidates the Snai2-dependent molecular network induced by DNA damage, points to novel putative Snai2 targets, and suggest a mechanistic model, which has implications for cancer management. PMID:18182996

  15. Vitamin D both facilitates and attenuates the cellular response to lipopolysaccharide

    PubMed Central

    Chen, Ling; Eapen, Mathew Suji; Zosky, Graeme R.

    2017-01-01

    Vitamin D has a range of non-skeletal health effects and has been implicated in the response to respiratory infections. The aim of this study was to assess the effect of vitamin D on the response of epithelial cells, neutrophils and macrophages to lipopolysaccharide (LPS) stimulation. BEAS-2B cells (airway epithelial cell line) and primary neutrophils and macrophages isolated from blood samples were cultured and exposed to LPS with and without vitamin D (1,25(OH)2D). The production of IL-6, IL-8, IL-1β and TNF-α of all cells and the phagocytic capacity of neutrophils and macrophages to E. coli were assessed. Vitamin D had no effect on BEAS-2B cells but enhanced the production of IL-8 in neutrophils (p = 0.007) and IL-1β in macrophages (p = 0.007) in response to LPS. Both vitamin D (p = 0.019) and LPS (p < 0.001) reduced the phagocytic capacity of macrophages. These data suggest that the impact of vitamin D on responses to infection are complex and that the net effect will depend on the cells that respond, the key response that is necessary for resolution of infection (cytokine production or phagocytosis) and whether there is pre-existing inflammation. PMID:28345644

  16. Highly Dynamic Cellular-Level Response of Symbiotic Coral to a Sudden Increase in Environmental Nitrogen

    PubMed Central

    Kopp, C.; Pernice, M.; Domart-Coulon, I.; Djediat, C.; Spangenberg, J. E.; Alexander, D. T. L.; Hignette, M.; Meziane, T.; Meibom, A.

    2013-01-01

    ABSTRACT Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reef-building corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase 15N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments. PMID:23674611

  17. Calcium mobilizations in response to changes in the gravity vector in Arabidopsis seedlings: possible cellular mechanisms.

    PubMed

    Tatsumi, Hitoshi; Toyota, Masatsugu; Furuichi, Takuya; Sokabe, Masahiro

    2014-01-01

    Gravity influences the growth direction of higher plants. Changes in the gravity vector (gravistimulation) immediately promote the increase in the cytoplasmic free calcium ion concentration ([Ca(2+)]c) in Arabidopsis (Arabidopsis thaliana) seedlings. When the seedlings are gravistimulated by reorientation at 180°, a transient two peaked (biphasic) [Ca(2+)]c-increase arises in their hypocotyl and petioles. Parabolic flights (PFs) can generate a variety of gravity-stimuli, and enables us to measure gravity-induced [Ca(2+)]c-increases without specimen rotation, which demonstrate that Arabidopsis seedlings possess a rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes into Ca(2+) signals on a sub-second timescale. Hypergravity by centrifugation (20 g or 300 g) also induces similar transient [Ca(2+)]c-increases. In this review, we propose models for possible cellular processes of the garavi-stimulus-induced [Ca(2+)]c-increase, and evaluate those by examining whether the model fits well with the kinetic parameters derived from the [Ca(2+)]c-increases obtained by applying gravistimulus with different amplitudes and time sequences.

  18. DNA Damage and Its Cellular Response in Mother and Fetus Exposed to Hyperglycemic Environment

    PubMed Central

    Moreli, Jusciele Brogin; Santos, Janine Hertzog; Rocha, Clarissa Ribeiro; Rudge, Marilza Vieira; Bevilacqua, Estela; Calderon, Iracema Mattos Paranhos

    2014-01-01

    The increased production of reactive oxygen species (ROS) plays a key role in pathogenesis of diabetic complications. ROS are generated by exogenous and endogenous factors such as during hyperglycemia. When ROS production exceeds the detoxification and scavenging capacity of the cell, oxidative stress ensues. Oxidative stress induces DNA damage and when DNA damage exceeds the cellular capacity to repair it, the accumulation of errors can overwhelm the cell resulting in cell death or fixation of genome mutations that can be transmitted to future cell generations. These mutations can lead to and/or play a role in cancer development. This review aims at (i) understanding the types and consequences of DNA damage during hyperglycemic pregnancy; (ii) identifying the biological role of DNA repair during pregnancy, and (iii) proposing clinical interventions to maintain genome integrity. While hyperglycemia can damage the maternal genetic material, the impact of hyperglycemia on fetal cells is still unclear. DNA repair mechanisms may be important to prevent the deleterious effects of hyperglycemia both in mother and in fetus DNA and, as such, prevent the development of diseases in adulthood. Hence, in clinical practice, maternal glycemic control may represent an important point of intervention to prevent the deleterious effects of maternal hyperglycemia to DNA. PMID:25197655

  19. Cellular mechanisms for the slow phase of the Frank-Starling response.

    PubMed

    Bluhm, W F; Sung, D; Lew, W Y; Garfinkel, A; McCulloch, A D

    1998-01-01

    Following a step increase in sarcomere length, isometric cardiac muscle tension increases instantaneously by the Frank-Starling mechanism. In isolated papillary muscle and myocytes, there is an additional significant rise in developed tension over the following 15 min due to an unknown mechanism. This slow change in tension could not be explained by mechanical heterogeneity of the muscle preparations or by an increase in myofilament sensitivity to Ca2+. The slow change in tension was not dependent on sarcoplasmic reticulum Ca2+ loading assessed with rapid cooling contractures, and was not significantly altered by sarcoplasmic reticulum Ca2+ depletion (ryanodine) or inhibition of sarcoplasmic reticulum Ca2+ reuptake (cyclopiazonic acid). We used the Luo-Rudy ionic model of the ventricular myocyte together with a model of the length-dependent myofilament activation by Ca2+ to examine the effects of step changes in the parameters of sarcolemmal ion fluxes as possible mechanisms for the slow change in stress. The slow increase in tension was simulated by step changes in the Na+-K+ pump or Na+ leak currents, suggesting that the slow change in stress may be caused by length induced changes in Na+ fluxes. The model also predicted a slow increase in the magnitude of the initial repolarization during phase 1 of the action potential. The combination of experimental and computational models used in this investigation represents a valuable technique in elucidating the cellular mechanisms of fundamental processes in cardiac excitation-contraction coupling.

  20. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold.

    PubMed

    Zulkifli, Farah Hanani; Jahir Hussain, Fathima Shahitha; Abdull Rasad, Mohammad Syaiful Bahari; Mohd Yusoff, Mashitah

    2015-02-01

    The aim of this research is to develop biocompatible nanofibrous mats using hydroxyethyl cellulose with improved cellular adhesion profiles and stability and use these fibrous mats as potential scaffold for skin tissue engineering. Glutaraldehyde was used to treat the scaffolds water insoluble as well as improve their biostability for possible use in biomedical applications. Electrospinning of hydroxyethyl cellulose (5 wt%) with poly(vinyl alcohol) (15 wt%) incorporated with and without collagen was blended at (1:1:1) and (1:1) ratios, respectively, and was evaluated for optimal criteria as tissue engineering scaffolds. The nanofibrous mats were crosslinked and characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Scanning electron microscope images showed that the mean diameters of blend nanofibers were gradually increased after chemically crosslinking with glutaraldehyde. Fourier transform infrared spectroscopy was carried out to understand chemical interactions in the presence of aldehyde groups. Thermal characterization results showed that the stability of hydroxyethyl cellulose/poly(vinyl alcohol) and hydroxyethyl cellulose/poly(vinyl alcohol)/collagen nanofibers was increased with glutaraldehyde treatment. Studies on cell-scaffolds interaction were carried out by culturing human fibroblast (hFOB) cells on the nanofibers by assessing the growth, proliferation, and morphologies of cells. The scanning electron microscope results show that better cell proliferation and attachment appeared on hydroxyethyl cellulose/poly(vinyl alcohol)/collagen substrates after 7 days of culturing, thus, promoting the potential of electrospun scaffolds as a promising candidate for tissue engineering applications.

  1. "Killing the Blues": a role for cellular suicide (apoptosis) in depression and the antidepressant response?

    PubMed

    McKernan, Declan P; Dinan, Timothy G; Cryan, John F

    2009-08-01

    Apoptosis or programmed cell death is a critical regulator of tissue homeostasis and emerging evidence is focused on the role of apoptosis mechanisms in the central nervous system. Generally, apoptosis is necessary to prevent cancerous growths. However, excessive apoptosis in post-mitotic cells such as neurons leads to neurodegeneration. Chronic stress, which can precipitate depression, has been shown to increase the susceptibility of certain populations of neurons to cell death while antidepressant treatment, in general, shows the ability to oppose these effects and promote neuroprotection. Here, we discuss the major players in cell death pathways, the physiological implications of chronic stress and depression, chronic stress models in animals which result in cell death and the different classes of antidepressants and mood stabilizers that have been shown to prevent cell death. We discuss the cellular effects of antidepressants and possible modes of action in preventing apoptosis. Investigations on the role of apoptosis in mediating the molecular, physiological and behavioural effects of antidepressants may help gain a better mechanistic insight into drug action and allow refinement of current therapeutics in order to target these pathways in a specific manner.

  2. Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts.

    PubMed

    Hsu, Shan-Hui; Tseng, Hsiang-Jung; Hung, Huey-Shan; Wang, Ming-Chien; Hung, Chiung-Hui; Li, Pei-Ru; Lin, Jiang-Jen

    2009-11-01

    Nanometer-scale silicate platelet (NSP) materials were previously developed by increasing the interlayer space and exfoliation of layered silicate clays such as montmorillonite and synthetic fluorinated mica by the process of polyamine exfoliation. In this study, the antibacterial activity and cytotoxicity of these nanometer-scale silicate clays were evaluated. The derivatives of NSP (NSP-S) which were modified by C18-fatty amine salts via ionic exchange association exhibited the highest antibacterial activity in the aqueous state among all clays. The high antibacterial activity, however, was accompanied by elevated cytotoxicity. The variations of cell surface markers (CD29 and CD44) and type I collagen expression of fibroblasts treated with the clays were measured to clarify the mechanism of the silicate-induced cytotoxicity. The signal transduction pathway involved the downregulation of extracellular-signal-regulated kinase (ERK), which appeared to participate in silicate-induced cytotoxicity. This study helped to understand the antibacterial potential of NSP and the interaction of natural and modified clays with cellular activities.

  3. Transcutaneous DNA immunization following waxing-based hair depilation elicits both humoral and cellular immune responses

    PubMed Central

    Xiao, Gang; Li, Xinran; Kumar, Amit; Cui, Zhengrong

    2012-01-01

    Previously, we showed that transcutaneous (TC) DNA immunization by applying plasmid DNA onto a mouse skin area wherein the hair follicles were induced into growth stage by plucking the hair using warm waxing induced strong and functional antigen-specific antibody responses. In the present study, using plasmids that encode β-galactosidase gene or ovalbumin (OVA) gene, we showed that this mode of TC DNA immunization not only induced specific antibody responses, but also induced antigen-specific cytotoxic T lymphocyte responses. In fact, TC DNA immunization using a plasmid that encodes OVA gene prevented the growth of OVA-expressing B16-OVA tumor cells in the immunized mice. Moreover, we provided additional evidence supporting that hair follicles are essential for this mode of TC DNA immunization. PMID:22771558

  4. Writ large: Genomic Dissection of the Effect of Cellular Environment on Immune Response

    PubMed Central

    Yosef, Nir; Regev, Aviv

    2016-01-01

    Cells of the immune system routinely respond to cues from their local environment and feedback to their surrounding through transient responses, choice of differentiation trajectories, plastic changes in cell state, and malleable adaptation to their tissue of residence. Genomic approaches have opened the way for comprehensive interrogation of such orchestrated responses. Focusing on genomic profiling of transcriptional and epigenetic cell state, we discuss how they are applied to investigate immune cells faced with various environmental cues. We highlight some of the emerging principles, on the role of dense regulatory circuitry, epigenetic memory, cell type fluidity, and reuse of regulatory modules, in achieving and maintaining appropriate responses to a changing environment. These provide a first step toward a systematic understanding of molecular circuits in complex tissues. PMID:27846493

  5. Simultaneous optical and mechanical probes to investigate complex cellular responses to physical cues

    NASA Astrophysics Data System (ADS)

    Haase, Kristina; Al-Rekabi, Zeinab; Guolla, Louise; Hickey, Ryan; Tremblay, Dominique; Pelling, Andrew E.

    2015-03-01

    Living cells possess an exquisite ability to sense and respond to physical information in their microenvironment. This ability plays a key role in many fundamentally important physiological and pathological processes. We will describe our work utilizing a variety of biophysical tools to investigate the dynamic responses of cells to mechanical stimuli and how physical cues can be employed to re-purpose and manipulate biological processes. These responses to physical cues are not simply a side-product of biology but are key components of biological and physical feedback loops that govern the life of a cell.

  6. Cellular Immune Response Against Firefly Luciferase After Sleeping Beauty–Mediated Gene Transfer In Vivo

    PubMed Central

    Podetz-Pedersen, Kelly M.; Vezys, Vaiva; Somia, Nikunj V.; Russell, Stephen J.

    2014-01-01

    Abstract The Sleeping Beauty (SB) transposon system has been shown to mediate new gene sequence integration resulting in long-term expression. Here the effectiveness of hyperactive SB100X transposase was tested, and we found that hydrodynamic co-delivery of a firefly luciferase transposon (pT2/CaL) along with SB100X transposase (pCMV-SB100X) resulted in remarkably sustained, high levels of luciferase expression. However, after 4 weeks there was a rapid, animal-by-animal loss of luciferase expression that was not observed in immunodeficient mice. We hypothesized that this sustained, high-level luciferase expression achieved using the SB100X transposase elicits an immune response in pT2/CaL co-administered mice, which was supported by the rapid loss of luciferase expression upon challenge of previously treated animals and in naive animals adoptively transferred with splenocytes from previously treated animals. Specificity of the immune response to luciferase was demonstrated by increased cytokine expression in splenocytes after exposure to luciferase peptide in parallel with MHC I–luciferase peptide tetramer binding. This anti-luciferase immune response observed following continuous, high-level luciferase expression in vivo clearly impacts its use as an in vivo reporter. As both an immunogen and an extremely sensitive reporter, luciferase is also a useful model system for the study of immune responses following in vivo gene transfer and expression. PMID:25093708

  7. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    SciTech Connect

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  8. Responses of Bacillus subtilis to hypotonic challenges: physiological contributions of mechanosensitive channels to cellular survival.

    PubMed

    Hoffmann, Tamara; Boiangiu, Clara; Moses, Susanne; Bremer, Erhard

    2008-04-01

    Mechanosensitive channels are thought to function as safety valves for the release of cytoplasmic solutes from cells that have to manage a rapid transition from high- to low-osmolarity environments. Subsequent to an osmotic down-shock of cells grown at high osmolarity, Bacillus subtilis rapidly releases the previously accumulated compatible solute glycine betaine in accordance with the degree of the osmotic downshift. Database searches suggest that B. subtilis possesses one copy of a gene for a mechanosensitive channel of large conductance (mscL) and three copies of genes encoding proteins that putatively form mechanosensitive channels of small conductance (yhdY, yfkC, and ykuT). Detailed mutational analysis of all potential channel-forming genes revealed that a quadruple mutant (mscL yhdY yfkC ykuT) has no growth disadvantage in high-osmolarity media in comparison to the wild type. Osmotic down-shock experiments demonstrated that the MscL channel is the principal solute release system of B. subtilis, and strains with a gene disruption in mscL exhibited a severe survival defect upon an osmotic down-shock. We also detected a minor contribution of the SigB-controlled putative MscS-type channel-forming protein YkuT to cellular survival in an mscL mutant. Taken together, our data revealed that mechanosensitive channels of both the MscL and MscS types play pivotal roles in managing the transition of B. subtilis from hyper- to hypo-osmotic environments.

  9. The cellular force-frequency response in ventricular myocytes from the varanid lizard, Varanus exanthematicus

    PubMed Central

    Galli, Gina L. J.; Patrick, Simon M.; Shiels, Holly A.

    2010-01-01

    To investigate the cellular mechanisms underlying the negative force-frequency relationship (FFR) in the ventricle of the varanid lizard, Varanus exanthematicus, we measured sarcomere and cell shortening, intracellular Ca2+ ([Ca2+]i), action potentials (APs), and K+ currents in isolated ventricular myocytes. Experiments were conducted between 0.2 and 1.0 Hz, which spans the physiological range of in vivo heart rates at 20–22°C for this species. As stimulation frequency increased, diastolic length, percent change in sarcomere length, and relaxation time all decreased significantly. Shortening velocity was unaffected. These changes corresponded to a faster rate of rise of [Ca2+]i, a decrease in [Ca2+]i transient amplitude, and a seven-fold increase in diastolic [Ca2+]i. The time constant for the decay of the Ca2+ transient (τ) decreased at higher frequencies, indicating a frequency-dependent acceleration of relaxation (FDAR) but then reached a plateau at moderate frequencies and did not change above 0.5 Hz. The rate of rise of the AP was unaffected, but the AP duration (APD) decreased with increasing frequency. Peak depolarization tended to decrease, but it was only significant at 1.0 Hz. The decrease in APD was not due to frequency-dependent changes in the delayed inward rectifier (IKr) or the transient outward (Ito) current, as neither appeared to be present in varanid ventricular myocytes. Our results suggest that a negative FFR relationship in varanid lizard ventricle is caused by decreased amplitude of the Ca2+ transient coupled with an increase in diastolic Ca2+, which leads to incomplete relaxation between beats at high frequencies. This coincides with shortened APD at higher frequencies. PMID:20053961

  10. Molecular and cellular response of earthworm Eisenia andrei (Oligochaeta, Lumbricidae) to PCDD/Fs exposure.

    PubMed

    Nusair, Shreen Deeb; Abu Zarour, Yousef Sa'id

    2017-01-01

    The acute toxicity of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) was investigated in the earthworm Eisenia andrei using filter paper toxicity test. Protein content, catalase (CAT) activity, and histology of intestinal wall (chloragogen cells and intestinal epithelium) were investigated in earthworms exposed for 48 h to 0 (control), 0.5, 1.0, and 1.5 ng/cm(2) PCDD/Fs. The results showed an increase in the total protein content 1.56- (p = 0.104), 1.66- (p = 0.042), and 2.26-fold (p < 0.001), respectively, compared to control. The average ± standard deviation of tissular CAT activity showed no significant differences; it was 36.01 ± 7.65, 36.17 ± 9.45, 36.08 ± 9.80, and 40.01 ± 6.98 U/g tissue, respectively. However, the average specific activity of CAT ± standard deviation was significantly decreased (p < 0.001) at all doses compared to control; it was 2.93 ± 0.42, 1.93 ± 0.53, 1.80 ± 0.38, and 1.53 ± 0.44 U/mg protein, respectively. There was a progressive damage in both of the intestinal villi and the chloragogenous tissue associated with the incrementing doses. Since the toxic mixture altered the investigated biomarkers of E. andrei within 48 h, the cellular and molecular alterations resulted from the filter paper contact test could be utilized as a rapid toxicity assessment tool of environmental contamination with dioxins/furans and to assess consequent potential adverse effects on soil biota and other organisms in the ecosystem.

  11. Cellular and Matrix Response of the Mandibular Condylar Cartilage to Botulinum Toxin

    PubMed Central

    Dutra, Eliane H.; O’ Brien, Mara H.; Lima, Alexandro; Kalajzic, Zana; Tadinada, Aditya; Nanda, Ravindra; Yadav, Sumit

    2016-01-01

    Objectives To evaluate the cellular and matrix effects of botulinum toxin type A (Botox) on mandibular condylar cartilage (MCC) and subchondral bone. Materials and Methods Botox (0.3 unit) was injected into the right masseter of 5-week-old transgenic mice (Col10a1-RFPcherry) at day 1. Left side masseter was used as intra-animal control. The following bone labels were intraperitoneally injected: calcein at day 7, alizarin red at day 14 and calcein at day 21. In addition, EdU was injected 48 and 24 hours before sacrifice. Mice were sacrificed 30 days after Botox injection. Experimental and control side mandibles were dissected and examined by x-ray imaging and micro-CT. Subsequently, MCC along with the subchondral bone was sectioned and stained with tartrate resistant acid phosphatase (TRAP), EdU, TUNEL, alkaline phosphatase, toluidine blue and safranin O. In addition, we performed immunohistochemistry for pSMAD and VEGF. Results Bone volume fraction, tissue density and trabecular thickness were significantly decreased on the right side of the subchondral bone and mineralized cartilage (Botox was injected) when compared to the left side. There was no significant difference in the mandibular length and condylar head length; however, the condylar width was significantly decreased after Botox injection. Our histology showed decreased numbers of Col10a1 expressing cells, decreased cell proliferation and increased cell apoptosis in the subchondral bone and mandibular condylar cartilage, decreased TRAP activity and mineralization of Botox injected side cartilage and subchondral bone. Furthermore, we observed reduced proteoglycan and glycosaminoglycan distribution and decreased expression of pSMAD 1/5/8 and VEGF in the MCC of the Botox injected side in comparison to control side. Conclusion Injection of Botox in masseter muscle leads to decreased mineralization and matrix deposition, reduced chondrocyte proliferation and differentiation and increased cell apoptosis in the

  12. Considerations on the role of cardiolipin in cellular responses to PDT

    NASA Astrophysics Data System (ADS)

    Morris, Rachel L.; Azizuddin, Kashif; Berlin, Jeffrey C.; Burda, Clemens; Kenney, Malcolm E.; Samia, Anna C. S.; Oleinick, Nancy L.

    2004-06-01

    Cardiolipin is a unique phospholipid containing two phosphatidyl glycerol moieties and four fatty acids per molecule. It is found exclusively in the mitochondrial inner membrane and at the contact sites between the inner and outer membranes. The acridine derivative, nonyl-acridine orange (NAO), is a highly specific probe of cardiolipin, with a binding affinity approximately two orders of magnitude greater than that for binding to other anionic phospholipids. We recently reported that when NAO is bound in the mitochondria of human prostate cancer PC-3 cells and activated at 488 nm, NAO could transfer fluorescence resonance energy to the phthalocyanine photosensitizer Pc 4. This observation indicates that one site of Pc 4 binding is very near to NAO and therefore very near to cardiolipin. The average distance between the two fluorophores was calculated to be 7 nm. In the present study, we have extended the observation to the endogenously synthesized photosensitizer, protoporphyrin IX, an intermediate in heme biosynthesis that is used for photodynamic therapy of several types of malignant and non-malignant conditions. Protoporphyrin IX is generated in the mitochondria but is known to bind to other cellular sites as well, especially the endoplasmic reticulum. The ability of this molecule to accept resonance energy from NAO in cells is consistent with a localization of at least some of the molecules in the mitochondria either on the inner membrane, the site of cardiolipin, or within about 10 nm of it. Since protoporphyrin IX binds with high affinity to the peripheral benzodiazepine receptor, a component of the permeability transition pore complex that forms at contact sites between the inner and outer membranes, our observations provide evidence for the close association of several critical molecules for mitochondrial functions and suggest that cardiolipin may be an early oxidative target during PDT with at least two photosensitizers.

  13. Histological assessment of cellular immune response to the phytohemagglutinin skin test in Brazilian free-tailed bats (Tadarida brasiliensis).

    PubMed

    Turmelle, Amy S; Ellison, James A; Mendonça, Mary T; McCracken, Gary F

    2010-11-01

    Bats are known reservoirs for numerous emerging infectious diseases, occupy unique ecological niches, and occur globally except for Antarctica. Given their impact on human and agricultural health, it is critical to understand the mechanisms underlying immunocompetence in this reservoir host. To date, few studies have examined immune function in the Order Chiroptera, particularly among natural colonies of bats. The phytohemagglutinin (PHA) skin test has been widely used to measure delayed-type cellular immune response in a wide variety of vertebrates, and has been routinely employed in immunoecological studies. Although this test is frequently described as a measure of T cell proliferation, recent studies indicate it may represent a combination of immune responses. In mammals, the immune response is differentially, temporally and spatially regulated, therefore, we characterized the infiltrating leukocyte response to the PHA skin test in bats by examining a time-series of histological sections from PHA and saline injection areas in 41 Brazilian free-tailed bats (Tadarida brasiliensis). Results suggest that bats exhibit diverse leukocyte traffic within 6 h, and up to 24 h following subcutaneous PHA injection. There was a significant presence of lymphocytes and neutrophils, as well as eosinophils, basophils, and macrophages observed in the PHA-injected tissues, compared with saline-injected control tissues. We observed a highly significant negative correlation between the number of lymphocytes and neutrophils in PHA-injected tissue, with peak lymphocyte response at 12 h, and peak neutrophil response at 24 h post-injection. These results indicate substantial variation in the immune response of individuals, and may aid our understanding of disease emergence in natural populations of bats.

  14. Cellular immune response in Echinococcus multilocularis infection in humans. I. Lymphocyte reactivity to Echinococcus antigens in patients with alveolar echinococcosis.

    PubMed Central

    Bresson-Hadni, S; Vuitton, D A; Lenys, D; Liance, M; Racadot, E; Miguet, J P

    1989-01-01

    The involvement of cellular immunity in alveolar echinococcosis (AE) due to E. multilocularis is strongly suggested by the intense granulomatous infiltration observed around the hepatic parasitic lesions, and a progressive decrease of specific cellular immunity has been described in murine AE. However, specific cellular immunity against E. multilocularis has never been documented in human AE. The reactivity to phytohaemagglutinin (PHA) and E. multilocularis antigens of peripheral blood mononuclear cells (PBMC) from 48 patients with AE and 35 control subjects was evaluated by incorporation of 3H-methylthymidine into DNA. A sequential measurement of the proliferative response of PBMC was performed in 20 patients 2 years later, and again in five of them 4 years after the first determination. After stimulation by PHA, the mean proliferation index (PI) of the patients with AE was somewhat higher than that observed in the uninfected controls, but the difference was not significant. The PI obtained with E. multilocularis antigens was higher than the threshold value in all the patients but one, and in five control subjects. The difference between the PI values in the patients with AE and those obtained in the control subjects was highly significant. There was no correlation between the lymphocyte proliferation indices and the specific antibodies assessed using the Em 2-ELISA, or the volume of the parasitic lesions. All the five 'positive' control subjects were living in areas endemic for AE. A previous contract of these subjects with E. multilocularis in the past, followed by a spontaneous elimination of the parasite is possible. The long-term persistence of lymphocyte reactivity to parasite antigens was emphasized by the results of the follow-up of 20 patients with AE: reactivity of PBMC decreased progressively but persisted more than 4 years after complete resection of the parasitic lesions in the patients who underwent a radical surgical procedure. Conversely, an

  15. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    PubMed Central

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M.; Dhawan, Subhash

    2017-01-01

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this comorbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. PMID:25998388

  16. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis.

    PubMed

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M; Dhawan, Subhash

    2015-08-14

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards.

  17. Humoral and cellular response to infection with Echinostoma revolutum in the golden hamster, Mesocricetus auratus.

    PubMed

    Mabus, J; Huffman, J E; Fried, B

    1988-06-01

    Laboratory hamsters (Mesocricetus auratus) were infected with Echinostoma revolutum (Trematoda). Immunoelectrophoretic studies of hamster serum showed no demonstrable antibody response to E. revolutum. Histopathologic examination of intestinal tissue of infected hamsters showed erosion of intestinal villi and lymphocytic infiltration as the primary host response. Spleens from infected hamsters were hyperplastic during the first 3 weeks of infection and atrophic from 4 to 8 weeks postinfection. Hamsters were unable to acquire a resistance to E. revolutum infection. Lack of resistance was demonstrated in hamsters where the parasite infection was no longer detected based on the absence of eggs in the faeces; these hamsters were then reinfected. Hamsters treated with the anthelmintic oxyclozanide were also reinfected with E. revolutum.

  18. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    PubMed

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species.

  19. Immune system - part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response.

    PubMed

    Cruvinel, Wilson de Melo; Mesquita, Danilo; Araújo, Júlio Antônio Pereira; Catelan, Tânia Tieko Takao; de Souza, Alexandre Wagner Silva; da Silva, Neusa Pereira; Andrade, Luís Eduardo Coelho

    2010-01-01

    The immune system consists of an intricate network of organs, cells, and molecules responsible for maintaining the body's homeostasis and responding to aggression in general. Innate immunity operates in conjunction with adaptive immunity and is characterized by rapid response to aggression, regardless of previous stimulus, being the organism first line of defense. Its mechanisms include physical, chemical and biological barriers, cellular components, as well as soluble molecules. The organism first line of defense against tissue damage involves several steps closely integrated and constituted by different components of this system. The aim of this review is to restore the foundations of this response, which has high complexity and consists of several components that converge to articulate the development of adaptive immune response. We selected some of the following steps to review: perception and molecular recognition of aggressive agents; activation of intracellular pathways, which result in vascular and tissue changes; production of a myriad of mediators with local and systemic effects on cell activation and proliferation, synthesis of new products involved in the chemoattraction and migration of cells specialized in destruction and removal of offending agent; and finally, tissue recovery with restoration of functional tissue or organ.

  20. Interferon (IFN) and Cellular Immune Response Evoked in RNA-Pattern Sensing During Infection with Hepatitis C Virus (HCV).

    PubMed

    Nakai, Masato; Oshiumi, Hiroyuki; Funami, Kenji; Okamoto, Masaaki; Matsumoto, Misako; Seya, Tsukasa; Sakamoto, Naoya

    2015-10-23

    Hepatitis C virus (HCV) infects hepatocytes but not dendritic cells (DCs), but DCs effectively mature in response to HCV-infected hepatocytes. Using gene-disrupted mice and hydrodynamic injection strategy, we found the MAVS pathway to be crucial for induction of type III interferons (IFNs) in response to HCV in mouse. Human hepatocytes barely express TLR3 under non-infectious states, but frequently express it in HCV infection. Type I and III IFNs are induced upon stimulation with polyI:C, an analog of double-stranded (ds)RNA. Activation of TLR3 and the TICAM-1 pathway, followed by DC-mediated activation of cellular immunity, is augmented during exposure to viral RNA. Although type III IFNs are released from replication-competent human hepatocytes, DC-mediated CTL proliferation and NK cell activation hardly occur in response to the released type III IFNs. Yet, type I IFNs and HCV-infected hepatocytes can induce maturation of DCs in either human or mouse origin. In addition, mouse CD8+ DCs mature in response to HCV-infected hepatocytes unless the TLR3/TICAM-1 pathway is blocked. We found the exosomes containing HCV RNA in the supernatant of the HCV-infected hepatocytes act as a source of TLR3-mediated DC maturation. Here we summarize our view on the mechanism by which DCs mature to induce NK and CTL in a status of HCV infection.

  1. Functional, Cellular, and Molecular Characterization of the Angiogenic Response to Chronic Myocardial Ischemia in Diabetes

    PubMed Central

    Boodhwani, Munir; Sodha, Neel R.; Mieno, Shigetoshi; Xu, Shu-Hua; Feng, Jun; Ramlawi, Basel; Clements, Richard T.; Sellke, Frank W.

    2009-01-01

    Background Ischemic heart disease is the most common cause of mortality in diabetic patients. Although therapeutic angiogenesis is an attractive option for these patients, they appear to have reduced collateral formation in response to myocardial ischemia. The aims of this study were to establish a large animal model of diabetes and chronic myocardial ischemia, evaluate the effects of diabetes on the angiogenic response, and elucidate the molecular pathways involved. Methods and Results Diabetes was induced in male Yucatan miniswine using a pancreatic β-cell specific toxin, alloxan (150 mg/kg; n=8). Age-matched swine served as controls (n=8). Eight weeks after induction, chronic ischemia was induced by ameroid constrictor placement around the circumflex coronary artery. Myocardial perfusion and function were assessed at 3 and 7 weeks after ameroid placement using isotope-labeled microspheres. Endothelial cell density and myocardial expression of angiogenic mediators was evaluated. Diabetic animals exhibited significant endothelial dysfunction. Collateral dependent perfusion and LV function were significantly impaired in diabetic animals. Diabetic animals also demonstrated reduced endothelial cell density (173±14 versus 234±23 cells/hpf, P=0.03). Expression of VEGF, Ang-1, and Tie-2 was reduced, whereas antiangiogenic proteins, angiostatin (4.4±0.9-fold increase, P<0.001), and endostatin (2.9±0.4-fold increase, P=0.03) were significantly elevated in the diabetic myocardium. Conclusions Diabetes results in a profound impairment in the myocardial angiogenic response to chronic ischemia. Pro-and antiangiogenic mediators identified in this study offer novel targets for the modulation of the angiogenic response in diabetes. PMID:17846323

  2. Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers

    NASA Astrophysics Data System (ADS)

    Bordeleau, François; Bessard, Judicael; Marceau, Normand; Sheng, Yunlong

    2011-09-01

    The ability of cells to sustain mechanical stress is largely modulated by the cytoskeleton. We present a new application of optical tweezers to study cell's mechanical properties. We trap a fibronectin-coated bead attached to an adherent H4II-EC3 rat hepatoma cell in order to apply the force to the cell surface membrane. The bead position corresponding to the cell's local mechanical response at focal adhesions is measured with a quadrant detector. We assessed the cell response by tracking the evolution of the equilibrium force for 40 cells selected at random and selected a temporal window to assess the cell initial force expression at focal adhesions. The mean value of the force within this time window over 40 randomly selected bead/cell bounds was 52.3 pN. Then, we assessed the responses of the cells with modulation of the cytoskeletons, namely the ubiquitous actin-microfilaments and microtubules, plus the differentiation-dependent keratin intermediate filaments. Notably, a destabilization of the first two networks led to around 50 and 30% reductions in the mean equilibrium forces, respectively, relative to untreated cells, whereas a loss of the third one yielded a 25% increase. The differences in the forces from untreated and treated cells are resolved by the optical tweezers experiment.

  3. Epigenetic and genetic factors in the cellular response to radiations and DNA-damaging chemicals

    SciTech Connect

    Williams, J.R.; D'Arpa, P.

    1981-07-01

    DNA-damaging agents are widely used as therapeutic tools for a variety of disease states. Many such agents are considered to produce detrimental side effects. Thus, it is important to evaluate both therapeutic efficacy and potential risk. DNA-damaging agents can be so evaluated by comparison to agents whose therapeutic benefit and potential hazards are better known. We propose a framework for such comparison, demonstrating that a simple transformation of cytotoxicity-dose response patterns permits a facile comparison of variation between cells exposed to a single DNA-damaging agent or to different cytotoxic agents. Further, by transforming data from experiments which compare responses of 2 cell populations to an effects ratio, different patterns for the changes in cytotoxicity produced by epigenetic and genetic factors were compared. Using these transformations, we found that there is a wide variation (a factor of 4) between laboratories for a single agent (UVC) and only a slightly larger variation (factor of 6) between normal cell response for different types of DNA-damaging agents (x-ray, UVC, alkylating agents, crosslinking agents). Epigenetic factors such as repair and recovery appear to be a factor only at higher dose levels. Comparison in the cytotoxic effect of a spectrum of DNA-damaging agents in xeroderma pigmentosum, ataxia telangiectasia, and Fanconi's anemia cells indicates significantly different patterns, implying that the effect, and perhaps the nature, of these genetic conditions are quite different.

  4. Cellular and humoral inflammatory response after laparoscopic and conventional colorectal surgery. Preliminary report.

    PubMed

    Laforgia, Rita; D'Elia, Giovanna; Lattarulo, Serafina; Mestice, Anna; Volpi, Annalisa

    Our aim is to compare the immune response after colorectal surgery performed laparoscopically and via traditional technique. This response seems to be proportional to the level of the surgical trauma and presumably is directed to improve host defence. This is a prospective reported study based on patients' randomisation. Fourteen patients with colorectal diseases undergoing laparoscopic or open surgery were enrolled. After both laparoscopic and open colorectal surgery, we observed a significant increase of circulating C-Reactive Protein (CRP) levels. The count of lymphocytes subpopulations did not show significant differences after both procedures. IL-6 serum levels increased immediately after laparoscopic approach. IL-6 production was preserved only in the laparoscopic group, while its plasma levels were significantly higher in conventional group. Postoperative cell-mediated immunity was better preserved after laparoscopic than after conventional colorectal resection. Laparoscopy became a popular approach to treat surgically benign and malignant colorectal diseases and several authors reported a better immune response in patients performing laparoscopic surgery after comparing to conventional colorectal surgery. These findings may have important implications in performing a laparoscopic colorectal resection.

  5. The effect of therapeutic hypothermia on drug metabolism and drug response: cellular mechanisms to organ function

    PubMed Central

    Zhou, Jiangquan; Poloyac, Samuel M.

    2011-01-01

    Introduction Therapeutic hypothermia is being employed, clinically based, on its neuro-protective benefits. Both critical illness and therapeutic hypothermia significantly affect drug disposition, potentially contributing to drug-therapy and drug-disease interaction. Currently, there is limited written information of the known alterations in drug concentration and response during mild hypothermia treatment and there is a limited understanding of the specific mechanisms that underlie alterations in drug concentrations and the potential clinical importance of these changes. Areas covered A systemic review of the effect of therapeutic hypothermia on drug metabolism, disposition, and response is provided. Specifically, the clinical and preclinical evidence of the effects of therapeutic hypothermia on blood flow, specific hepatic metabolism pathways, transporter, renal excretion, pharmacodynamics and rewarming effect are reviewed. Expert Opinion Available evidence demonstrates that mild hypothermia decreases the clearance of a variety of drugs with apparently little change in drug protein binding. Recent evidence suggests that the magnitude of the change is elimination route specific. Further research is needed to determine the impact of these alterations on both drug concentration and response in order to optimize the hypothermia therapy in this vulnerable patient population. PMID:21473710

  6. Molecular and Cellular Responses to Interleukin-4 Treatment in a Rat Model of Transient Ischemia

    PubMed Central

    Lively, Starlee; Hutchings, Sarah

    2016-01-01

    Within hours after stroke, potentially cytotoxic pro-inflammatory mediators are elevated within the brain; thus, one potential therapeutic strategy is to reduce them and skew the brain toward an anti-inflammatory state. Because interleukin-4 (IL-4) treatment induces an anti-inflammatory, “alternative-activation” state in microglia and macrophages in vitro, we tested the hypothesis that early supplementation of the brain with IL-4 can shift it toward an anti-inflammatory state and reduce damage after transient focal ischemia. Adult male rat striata were injected with endothelin-1, with or without co-injection of IL-4. Inflammation, glial responses and damage to neurons and white matter were quantified from 1 to 7 days later. At 1 day, IL-4 treatment increased striatal expression of several anti-inflammatory markers (ARG1, CCL22, CD163, PPARγ), increased phagocytic (Iba1-positive, CD68-positive) microglia/macrophages, and increased VEGF-A-positive infiltrating neutrophils in the infarcts. At 7 days, there was evidence of sustained, propagating responses. IL-4 increased CD206, CD200R1, IL-4Rα, STAT6, PPARγ, CD11b, and TLR2 expression and increased microglia/macrophages in the infarct and astrogliosis outside the infarct. Neurodegeneration and myelin damage were not reduced, however. The sustained immune and glial responses when resolution and repair processes have begun warrant further studies of IL-4 treatment regimens and long-term outcomes. PMID:27634961

  7. Potential for cellular stress response to hepatic factor VIII expression from AAV vector

    PubMed Central

    Zolotukhin, Irene; Markusic, David M; Palaschak, Brett; Hoffman, Brad E; Srikanthan, Meera A; Herzog, Roland W

    2016-01-01

    Hemophilia A and B are coagulation disorders resulting from the loss of functional coagulation factor VIII (FVIII) or factor IX proteins, respectively. Gene therapy for hemophilia with adeno-associated virus vectors has shown efficacy in hemophilia B patients. Although hemophilia A patients are more prevalent, the development of therapeutic adeno-associated virus vectors has been impeded by the size of the F8 cDNA and impaired secretion of FVIII protein. Further, it has been reported that over-expression of the FVIII protein induces endoplasmic reticulum stress and activates the unfolded protein response pathway both in vitro and in hepatocytes in vivo, presumably due to retention of misfolded FVIII protein within the endoplasmic reticulum. Engineering of the F8 transgene, including removal of the B domain (BDD-FVIII) and codon optimization, now allows for the generation of adeno-associated virus vectors capable of expressing therapeutic levels of FVIII. Here we sought to determine if the risks of inducing the unfolded protein response in murine hepatocytes extend to adeno-associated virus gene transfer. Although our data show a mild activation of unfolded protein response markers following F8 gene delivery at a certain vector dose in C57BL/6 mice, it was not augmented upon further elevated dosing, did not induce liver pathology or apoptosis, and did not impact FVIII immunogenicity. PMID:27738644

  8. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    NASA Astrophysics Data System (ADS)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  9. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    SciTech Connect

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M.; Dhawan, Subhash

    2015-08-14

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection.

  10. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-induced DNA Damages in Confluent Human Fibroblasts

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Wu, Honglu; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Wong, Michael

    2016-07-01

    Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 mg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by focus pattern and focus number counting of phosphorylated histone protein H2AX (γg-H2AX). The cells on the ISS showed modestly increased average focus counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profiles of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in γg-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not

  11. Biosynthetic hydrogels--studies on chemical and physical characteristics on long-term cellular response for tissue engineering.

    PubMed

    Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2014-07-01

    Biosynthetic hydrogels can meet the drawbacks caused by natural and synthetic ones for biomedical applications. In the current article we present a novel biosynthetic alginate-poly(propylene fumarate) copolymer based chemically crosslinked hydrogel scaffolds for cardiac tissue engineering applications. Partially crosslinked PA hydrogel and fully cross linked PA-A hydrogel scaffolds were prepared. The influence of chemical and physical (morphology and architecture of hydrogel) characteristics on the long term cellular response was studied. Both these hydrogels were cytocompatible and showed no genotoxicity upon contact with fibroblast cells. Both PA and PA-A were able to resist deleterious effects of reactive oxygen species and sustain the viability of L929 cells. The hydrogel incubated oxidative stress induced cells were capable of maintaining the intra cellular reduced glutathione (GSH) expression to the normal level confirmed their protective effect. Relatively the PA hydrogel was found to be unstable in the cell culture medium. The PA-A hydrogel was able to withstand appreciable cyclic stretching. The cyclic stretching introduced complex macro and microarchitectural features with interconnected pores and more structured bound water which would provide long-term viability of around 250% after the 24th day of culture. All these qualities make PA-A hydrogel form a potent candidate for cardiac tissue engineering.

  12. Alumina-zirconia composites functionalized with laminin-1 and laminin-5 for dentistry: effect of protein adsorption on cellular response.

    PubMed

    Vallée, A; Faga, M G; Mussano, F; Catalano, F; Tolosano, E; Carossa, S; Altruda, F; Martra, G

    2014-02-01

    The present paper describes a study on laminin interaction with the surface of two alumina-zirconia composites with different percentages of ZrO2, both with submicrometric grain size. As major molecules within the basement membrane (BM), laminins are important protein fragments for epithelial cell adhesion and migration. On the other hand, alumina-zirconia composites are very attractive materials for dental applications due to their esthetic and mechanical properties. X-Ray photoelectron spectroscopy and atomic force microscopy were used to study the adsorption of two types of laminin, laminin-1 (Ln-1) and laminin-5 (Ln-5), onto the ceramics surfaces. The in vitro cell response was determined by intracellular phosphorylation of major kinases. Ceramics samples functionalized with laminins showed better cellular activation than untreated specimens; furthermore, cellular activation was found to be greater for the composite with higher percentage in zirconia when functionalized with Ln-5, whereas the adsorption of Ln-1 resulted in a greater activation for the alumina-rich oxide.

  13. MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species.

    PubMed

    Lee, Ho-Sung; Hwang, Chae Young; Shin, Sung-Young; Kwon, Ki-Sun; Cho, Kwang-Hyun

    2014-06-03

    Reactive oxygen species (ROS) influence diverse cellular processes, including proliferation and apoptosis. Both endogenous and exogenous ROS activate signaling through mitogen-activated proteins kinase (MAPK) pathways, including those involving extracellular signal-regulated kinases (ERKs) or c-Jun N-terminal kinases (JNKs). Whereas low concentrations of ROS generally stimulate proliferation, high concentrations result in cell death. We found that low concentrations of ROS induced activating phosphorylation of ERKs, whereas high concentrations of ROS induced activating phosphorylation of JNKs. Mixed lineage kinase 3 (MLK3, also known as MAP3K11) directly phosphorylates JNKs and may control activation of ERKs. Mathematical modeling of MAPK networks revealed a positive feedback loop involving MLK3 that determined the relative phosphorylation of ERKs and JNKs by ROS. Cells exposed to an MLK3 inhibitor or cells in which MLK3 was knocked down showed increased activation of ERKs and decreased activation of JNKs and were resistant to cell death when exposed to high concentrations of ROS. Thus, the data indicated that MLK3 is a critical factor controlling the activity of kinase networks that control the cellular responses to different concentrations of ROS.

  14. Differences in the Cellular Response to Acute Spinal Cord Injury between Developing and Mature Rats Highlights the Potential Significance of the Inflammatory Response

    PubMed Central

    Sutherland, Theresa C.; Mathews, Kathryn J.; Mao, Yilin; Nguyen, Tara; Gorrie, Catherine A.

    2017-01-01

    There exists a trend for a better functional recovery from spinal cord injury (SCI) in younger patients compared to adults, which is also reported for animal studies; however, the reasons for this are yet to be elucidated. The post injury tissue microenvironment is a complex milieu of cells and signals that interact on multiple levels. Inflammation has been shown to play a significant role in this post injury microenvironment. Endogenous neural progenitor cells (NPC), in the ependymal layer of the central canal, have also been shown to respond and migrate to the lesion site. This study used a mild contusion injury model to compare adult (9 week), juvenile (5 week) and infant (P7) Sprague-Dawley rats at 24 h, 1, 2, and 6 weeks post-injury (n = 108). The innate cells of the inflammatory response were examined using counts of ED1/IBA1 labeled cells. This found a decreased inflammatory response in the infants, compared to the adult and juvenile animals, demonstrated by a decreased neutrophil infiltration and macrophage and microglial activation at all 4 time points. Two other prominent cellular contributors to the post-injury microenvironment, the reactive astrocytes, which eventually form the glial scar, and the NPC were quantitated using GFAP and Nestin immunohistochemistry. After SCI in all 3 ages there was an obvious increase in Nestin staining in the ependymal layer, with long basal processes extending into the parenchyma. This was consistent between age groups early post injury then deviated at 2 weeks. The GFAP results also showed stark differences between the mature and infant animals. These results point to significant differences in the inflammatory response between infants and adults that may contribute to the better recovery indicated by other researchers, as well as differences in the overall injury progression and cellular responses. This may have important consequences if we are able to mirror and manipulate this response in patients of all ages; however

  15. Exploring Students' Emotional Responses and Participation in an Online Peer Assessment Activity: A Case Study

    ERIC Educational Resources Information Center

    Cheng, Kun-Hung; Hou, Huei-Tse; Wu, Sheng-Yi

    2014-01-01

    In the social interactions among individuals of learning communities, including those individuals engaged in peer assessment activities, emotion may be a key factor in learning. However, research regarding the emotional response of learners in online peer assessment activities is relatively scarce. Detecting learners' emotion when they make…

  16. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice

    PubMed Central

    Barroso, Shana P. C.; Nico, Dirlei; Nascimento, Danielle; Santos, Ana Clara V.; Couceiro, José Nelson S. S.; Bozza, Fernando A.; Ferreira, Ana M. A.; Ferreira, Davis F.; Palatnik-de-Sousa, Clarisa B.; Souza, Thiago Moreno L.; Gomes, Andre M. O.; Silva, Jerson L.; Oliveira, Andréa C.

    2015-01-01

    Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus. PMID:26056825

  17. A continum analysis of cellular growth for a model of immune response relevant to HIV infection

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.

    1992-07-01

    A continuum approach is proposed to study the population dynamics of an immune response model relevant to HIV infections. Effects of dysfunction of the helper/inducer T cells are taken into account by a failure probability p of interleukins. Using the numerical analysis of the inhomogeneous coupled differential equations, it is shown that the incubation time for the viral growth can be increased by reducing the failure probability p. Despite the differences, both the continuum and discrete methods lead to a common result.

  18. C1q binding to Dengue Virus inhibits infection of THP-1 and cellular inflammatory responses

    PubMed Central

    Douradinha, Bruno; McBurney, Sean P.; de Melo, Klecia M. Soares; Smith, Amanda P.; Krishna, Neel K.; Barratt-Boyes, Simon M.; Evans, Jared D.; Nascimento, Eduardo J. M.; Marques, Ernesto T. A

    2014-01-01

    Summary Dengue virus infection elicits a spectrum of clinical presentations ranging from asymptomatic to severe disease. The mechanisms leading to severe dengue are not known, however it has been reported that the complement system is hyper-activated in severe dengue. Screening of complement proteins demonstrated that C1q, a pattern recognition molecule, can bind directly to Dengue Virus Envelope protein and to whole Dengue Virus serotype 2. Incubation of Dengue Virus serotype 2 with C1q prior to infection of THP-1 cells led to decreased virus infectivity and modulation of mRNA expression of immunoregulatory molecules suggesting reduced inflammatory responses. PMID:24246304

  19. Cellular responses and gene expression profile changes due to bleomycin-induced DNA damage in human fibroblasts in space

    PubMed Central

    Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu

    2017-01-01

    Living organisms in space are constantly exposed to radiation, toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage is essential for assessing the radiation risk for astronauts and the mutation rate in microorganisms. In a study conducted on the International Space Station, confluent human fibroblasts in culture were treated with bleomycin for three hours in the true microgravity environment. The degree of DNA damage was quantified by immunofluorescence staining for γ-H2AX, which is manifested in three types of staining patterns. Although similar percentages of these types of patterns were found between flight and ground cells, there was a slight shift in the distribution of foci counts in the flown cells with countable numbers of γ-H2AX foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. We also performed a microarray analysis of gene expressions in response to bleomycin treatment. A qualitative comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. The microarray data was confirmed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly upregulated in both flight and ground cells after bleomycin treatment. Our results suggest that whether microgravity affects DNA damage response in space can be dependent on the cell type and cell growth condition. PMID:28248986

  20. The Master Regulator of the Cellular Stress Response (HSF1) Is Critical for Orthopoxvirus Infection

    PubMed Central

    Filone, Claire Marie; Mendillo, Marc L.; Cowley, Glenn S.; Santagata, Sandro; Rozelle, Daniel K.; Yen, Judy; Rubins, Kathleen H.; Hacohen, Nir; Root, David E.; Hensley, Lisa E.; Connor, John

    2014-01-01

    The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development. PMID:24516381

  1. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.

  2. Mechanical signaling and the cellular response to extracel