Science.gov

Sample records for activity-modifying proteins ramps

  1. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology

    PubMed Central

    J Gingell, Joseph; Simms, John; Barwell, James; Poyner, David R; Watkins, Harriet A; Pioszak, Augen A; Sexton, Patrick M; Hay, Debbie L

    2016-01-01

    G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor

  2. Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age.

    PubMed

    Dackor, Ryan; Fritz-Six, Kim; Smithies, Oliver; Caron, Kathleen

    2007-06-22

    RAMPs (receptor activity modifying proteins) impart remarkable effects on G protein-coupled receptor (GPCR) signaling. First identified through an interaction with the calcitonin receptor-like receptor (CLR), these single transmembrane proteins are now known to modulate the in vitro ligand binding affinity, trafficking, and second messenger pathways of numerous GPCRs. Consequently, the receptor-RAMP interface represents an attractive pharmacological target for the treatment of disease. Although the three known mammalian RAMPs differ in their sequences and tissue expression, results from in vitro biochemical and pharmacological studies suggest that they have overlapping effects on the GPCRs with which they interact. Therefore, to determine whether RAMP2 and RAMP3 have distinct functions in vivo, we generated mice with targeted deletions of either the RAMP2 or RAMP3 gene. Strikingly, we found that, although RAMP2 is required for survival, mice that lack RAMP3 appear normal until old age, at which point they have decreased weight. In addition, mice with reduced expression of RAMP2 (but not RAMP3) display remarkable subfertility. Thus, each gene has functions in vivo that cannot be accomplished by the other. Because RAMP2, RAMP3, and CLR transduce the signaling of the two potent vasodilators adrenomedullin and calcitonin gene-related peptide, we tested the effects of our genetic modifications on blood pressure, and no effects were detected. Nevertheless, our studies reveal that RAMP2 and RAMP3 have distinct physiological functions throughout embryogenesis, adulthood, and old age, and the mice we have generated provide novel genetic tools to further explore the utility of the receptor-RAMP interface as a pharmacological target.

  3. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization

    SciTech Connect

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Nozaki, Naomi; Kato, Johji

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer RAMP3 mediates CLR internalization much less effectively than does RAMP2. Black-Right-Pointing-Pointer The RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization. Black-Right-Pointing-Pointer A new strategy of promoting internalization and resensitization of the receptor was found. -- Abstract: Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [{sup 125}I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr{sup 130}-Val{sup 131} sequence in the RAMP3 TMD with the corresponding sequence (Ile{sup 157}-Pro{sup 158}) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala{sup 130}-Ala{sup 131} did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile-Pro sequence into the RAMP3 TMD may be a

  4. Molecular basis of association of receptor activity-modifying protein 3 with the family B G protein-coupled secretin receptor.

    PubMed

    Harikumar, Kaleeckal G; Simms, John; Christopoulos, George; Sexton, Patrick M; Miller, Laurence J

    2009-12-15

    The three receptor activity-modifying proteins (RAMPs) have been recognized as being important for the trafficking and function of a subset of family B G protein-coupled receptors, although the structural basis for this has not been well established. In the current work, we use morphological fluorescence techniques, bioluminescence resonance energy transfer, and bimolecular fluorescence complementation to demonstrate that the secretin receptor associates specifically with RAMP3, but not with RAMP1 or RAMP2. We use truncation constructs, peptide competition experiments, and chimeric secretin-GLP1 receptor constructs to establish that this association is structurally specific, dependent on the intramembranous region of the RAMP and TM6 and TM7 of this receptor. There were no observed changes in secretin-stimulated cAMP, intracellular calcium, ERK1/2 phosphorylation, or receptor internalization in receptor-bearing COS or CHO-K1 cells in the presence or absence of exogenous RAMP transfection, although the secretin receptor trafficks normally to the cell surface in these cells in a RAMP-independent manner, resulting in both free and RAMP-associated receptor on the cell surface. RAMP3 association with this receptor was shown to be capable of rescuing a receptor mutant (G241C) that is normally trapped intracellularly in the biosynthetic machinery. Similarly, secretin receptor expression had functional effects on adrenomedullin activity, with increasing secretin receptor expression competing for RAMP3 association with the calcitonin receptor-like receptor to yield a functional adrenomedullin receptor. These data provide important new insights into the structural basis for RAMP3 interaction with a family B G protein-coupled receptor, potentially providing a highly selective target for drug action. This may be representative of similar interactions between other members of this receptor family and RAMP proteins.

  5. Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors*

    PubMed Central

    Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J.; Mobarec, Juan Carlos; Woodlock, David A.; Reynolds, Christopher A.; Poyner, David R.; Watkins, Harriet A.; Ladds, Graham

    2016-01-01

    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. PMID:27566546

  6. Complexing receptor pharmacology: modulation of family B G protein-coupled receptor function by RAMPs.

    PubMed

    Sexton, Patrick M; Morfis, Maria; Tilakaratne, Nanda; Hay, Debbie L; Udawela, Madhara; Christopoulos, George; Christopoulos, Arthur

    2006-07-01

    The most well-characterized subgroup of family B G protein-coupledreceptors (GPCRs) comprises receptors for peptide hormones, such as secretin, calcitonin (CT), glucagon, and vasoactive intestinal peptide (VIP). Recent data suggest that many of these receptors can interact with a novel family of GPCR accessory proteins termed receptor activity modifying proteins (RAMPs). RAMP interaction with receptors can lead to a variety of actions that include chaperoning of the receptor protein to the cell surface as is the case for the calcitonin receptor-like receptor (CLR) and the generation of novel receptor phenotypes. RAMP heterodimerization with the CLR and related CT receptor is required for the formation of specific CT gene-related peptide, adrenomedullin (AM) or amylin receptors. More recent work has revealed that the specific RAMP present in a heterodimer may modulate other functions such as receptor internalization and recycling and also the strength of activation of downstream signaling pathways. In this article we review our current state of knowledge of the consequence of RAMP interaction with family B GPCRs.

  7. Calcitonin Receptor-Like Receptor and Receptor Activity Modifying Protein 1 in the rat dorsal horn: localization in glutamatergic presynaptic terminals containing opioids and adrenergic α2C receptors

    PubMed Central

    Marvizón, Juan Carlos G.; Pérez, Orlando A.; Song, Bingbing; Chen, Wenling; Bunnett, Nigel W.; Grady, Eileen F.; Todd, Andrew J.

    2008-01-01

    Calcitonin-gene related peptide (CGRP) is abundant in the central terminals of primary afferents. However, the function of CGRP receptors in the spinal cord remains unclear. CGRP receptors are heterodimers of calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1). We studied the localization of CRLR and RAMP1 in the rat dorsal horn using well-characterized antibodies against them, which labeled numerous puncta in laminae I–II. In addition, RAMP1 was found in cell bodies, forming patches at the cell surface. The CRLR- and RAMP1-immunoreactive puncta were further characterized using double and triple labeling. Colocalization was quantified in confocal stacks using Imaris software. CRLR did not colocalize with primary afferent markers, indicating that these puncta were not primary afferent terminals. CRLR- and RAMP1-immunoreactive puncta contained synaptophysin and vesicular glutamate transporter-2 (VGLUT2), showing that they were glutamatergic presynaptic terminals. Electron microscopic immunohistochemistry confirmed that CRLR immunoreactivity was present in axonal boutons that were not in synaptic glomeruli. Using tyramide signal amplification for double labeling with the CRLR and RAMP1 antibodies, we found some clear instances of colocalization of CRLR with RAMP1 in puncta, but their overall colocalization was low. In particular, CRLR was absent from RAMP1-containing cells. Many of the puncta stained for CRLR and RAMP1 were labeled by anti-opioid and anti-enkephalin antibodies. CRLR and, to a lesser extent, RAMP1 also colocalized with adrenergic a2C receptors. Triple label studies demonstrated three-way colocalization of CRLR-VGLUT2-synaptophysin, CRLR-VGLUT2-opioids, and CRLR-opioids-a2C receptors. In conclusion, CRLR is located in glutamatergic presynaptic terminals in the dorsal horn that contain a2C adrenergic receptors and opioids. Some of these terminals contain RAMP1, which may form CGRP receptors with CRLR, but in

  8. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2

    SciTech Connect

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Hikosaka, Tomomi; Kato, Johji

    2010-02-12

    Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.

  9. Ligand-induced internalization, recycling, and resensitization of adrenomedullin receptors depend not on CLR or RAMP alone but on the receptor complex as a whole.

    PubMed

    Nag, Kakon; Sultana, Naznin; Kato, Akira; Dranik, Anna; Nakamura, Nobuhiro; Kutsuzawa, Koichi; Hirose, Shigehisa; Akaike, Toshihiro

    2015-02-01

    Adrenomedullins (AM) is a multifaceted distinct subfamily of peptides that belongs to the calcitonin gene-related peptide (CGRP) superfamily. These peptides exert their functional activities via associations of calcitonin receptor-like receptors (CLRs) and receptor activity-modifying proteins (RAMPs) RAMP2 and RAMP3. Recent studies established that RAMPs and CLRs can modify biochemical properties such as trafficking and glycosylation of each other. However there is very little or no understanding regarding how RAMP or CLR influence ligand-induced events of AM-receptor complex. In this study, using pufferfish homologs of CLR (mfCLR1-3) and RAMP (mfRAMP2 and mfRAMP3), we revealed that all combinations of CLR and RAMP quickly underwent ligand-induced internalization; however, their recycling rates were different as follows: mfCLR1-mfRAMP3>mfCLR2-mfRAMP3>mfCLR3-mfRAMP3. Functional receptor assay confirmed that the recycled receptors were resensitized on the plasma membrane. In contrast, a negligible amount of mfCLR1-mfRAMP2 was recycled and reconstituted. Immunocytochemistry results indicated that the lower recovery rate of mfCLR3-mfRAMP3 and mfCLR1-mfRAMP2 was correlated with higher proportion of lysosomal localization of these receptor complexes compared to the other combinations. Collectively our results indicate, for the first time, that the ligand-induced internalization, recycling, and reconstitution properties of RAMP-CLR receptor complexes depend on the receptor-complex as a whole, and not on individual CLR or RAMP alone.

  10. Role of CGRP-receptor component protein (RCP) in CLR/RAMP function.

    PubMed

    Dickerson, Ian M

    2013-08-01

    The receptor for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) requires an intracellular peripheral membrane protein named CGRP-receptor component protein (RCP) for signaling. RCP is required for CGRP and AM receptor signaling, and it has recently been discovered that RCP enables signaling by binding directly to the receptor. RCP is present in most immortalized cell lines, but in vivo RCP expression is limited to specific subsets of cells, usually co-localizing with CGRP-containing neurons. RCP protein expression correlates with CGRP efficacy in vivo, suggesting that RCP regulates CGRP signaling in vivo as it does in cell culture. RCP is usually identified in cytoplasm or membranes of cells, but recently has been observed in nucleus of neurons, suggesting an additional transcriptional role for RCP in cell function. Together, these data support an essential role for RCP in CGRP and AM receptor function, in which RCP expression enhances signaling of the CGRP or AM receptor, and therefore increases the efficacy of CGRP and AM in vivo.

  11. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  12. 43. VIEW OF THE RAMP ABOVE LOWER PORTAL AND RAMP, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. VIEW OF THE RAMP ABOVE LOWER PORTAL AND RAMP, LOOKING NORTHWEST. THE RAMP WAS USED TO GUIDE RUN-OFF FROM THUNDERSTORMS AWAY FROM THE PORTAL. - Independent Coal & Coke Company, Kenilworth, Carbon County, UT

  13. RAMP MANAGEMENT IN RHIC.

    SciTech Connect

    KEWISCH,J.; VAN ZEIJTS,J.; PEGGS,S.; SATOGATA,T.

    1999-03-29

    In RHIC, magnets and RF cavities are controlled by Wave Form Generators (WFGs), simple real time computers which generate the set points. The WFGs are programmed to change set points from one state to another in a synchronized way. Such transition is called a ''Ramp'' and consists of a sequence of ''stepping stones'' which contain the set point of every WFG controlled device at a point in time. An appropriate interpolation defines the set points between these stepping stones. This report describes the implementation of the ramp system. The user interface, tools to create and modify ramps, interaction with modeling tools and measurements and correction programs are discussed.

  14. Wind Plant Ramping Behavior

    SciTech Connect

    Ela, E.; Kemper, J.

    2009-12-01

    With the increasing wind penetrations, utilities and operators (ISOs) are quickly trying to understand the impacts on system operations and planning. This report focuses on ramping imapcts within the Xcel service region.

  15. Precision linear ramp function generator

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  16. Precision linear ramp function generator

    DOEpatents

    Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  17. Meniscal Ramp Lesions

    PubMed Central

    Chahla, Jorge; Dean, Chase S.; Moatshe, Gilbert; Mitchell, Justin J.; Cram, Tyler R.; Yacuzzi, Carlos; LaPrade, Robert F.

    2016-01-01

    Meniscal ramp lesions are more frequently associated with anterior cruciate ligament (ACL) injuries than previously recognized. Some authors suggest that this entity results from disruption of the meniscotibial ligaments of the posterior horn of the medial meniscus, whereas others support the idea that it is created by a tear of the peripheral attachment of the posterior horn of the medial meniscus. Magnetic resonance imaging (MRI) scans have been reported to have a low sensitivity, and consequently, ramp lesions often go undiagnosed. Therefore, to rule out a ramp lesion, an arthroscopic evaluation with probing of the posterior horn of the medial meniscus should be performed. Several treatment options have been reported, including nonsurgical management, inside-out meniscal repair, or all-inside meniscal repair. In cases of isolated ramp lesions, a standard meniscal repair rehabilitation protocol should be followed. However, when a concomitant ACL reconstruction (ACLR) is performed, the rehabilitation should follow the designated ACLR postoperative protocol. The purpose of this article was to review the current literature regarding meniscal ramp lesions and summarize the pertinent anatomy, biomechanics, diagnostic strategies, recommended treatment options, and postoperative protocol. PMID:27504467

  18. Pathfinder Rear Ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mars Pathfinder's rear rover ramp can be seen successfully unfurled in this image, taken at the end of Sol 2 by the Imager for Mars Pathfinder (IMP). This ramp was later used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. Areas of a lander petal and deflated airbag are visible at left. The image helped Pathfinder scientists determine that the rear ramp was the one to use for rover deployment. At upper right is the rock dubbed 'Barnacle Bill,' which Sojourner will later study.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C.

  19. Crescentic ramp turbine stage

    NASA Technical Reports Server (NTRS)

    Lee, Ching-Pang (Inventor); Tam, Anna (Inventor); Kirtley, Kevin Richard (Inventor); Lamson, Scott Henry (Inventor)

    2007-01-01

    A turbine stage includes a row of airfoils joined to corresponding platforms to define flow passages therebetween. Each airfoil includes opposite pressure and suction sides and extends in chord between opposite leading and trailing edges. Each platform includes a crescentic ramp increasing in height from the leading and trailing edges toward the midchord of the airfoil along the pressure side thereof.

  20. Investigating Ramps and Sliders.

    ERIC Educational Resources Information Center

    Malone, Mark R.

    1986-01-01

    Offers a series of hands-on activities for introducing students to concepts of energy transfer and conversion. Describes how simple devices as marbles, ramps, and sliders can be used to gauge the transfer of energy and assist in the development of investigative skills. (ML)

  1. Receptor component protein (RCP): a member of a multi-protein complex required for G-protein-coupled signal transduction.

    PubMed

    Prado, M A; Evans-Bain, B; Dickerson, I M

    2002-08-01

    The calcitonin-gene-related peptide (CGRP) receptor component protein (RCP) is a 148-amino-acid intracellular protein that is required for G-protein-coupled signal transduction at receptors for the neuropeptide CGRP. RCP works in conjunction with two other proteins to constitute a functional CGRP receptor: calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying protein 1 (RAMP1). CRLR has the stereotypical seven-transmembrane topology of a G-protein-coupled receptor; it requires RAMP1 for trafficking to the cell surface and for ligand specificity, and requires RCP for coupling to the cellular signal transduction pathway. We have made cell lines that expressed an antisense construct of RCP and determined that CGRP-mediated signal transduction was reduced, while CGRP binding was unaffected. Furthermore, signalling at two other endogenous G-protein-coupled receptors was unaffected, suggesting that RCP was specific for a limited subset of receptors.

  2. A microfluidic separation platform using an array of slanted ramps

    NASA Astrophysics Data System (ADS)

    Risbud, Sumedh; Bernate, Jorge; Drazer, German

    2013-03-01

    The separation of the different components of a sample is a crucial step in many micro- and nano-fluidic applications, including the detection of infections, the capture of circulating tumor cells, the isolation of proteins, RNA and DNA, to mention but a few. Vector chromatography, in which different species migrate in different directions in a planar microfluidic device thus achieving spatial as well as temporal resolution, offers the promise of high selectivity along with high throughput. In this work, we present a microfluidic vector chromatography platform consisting of slanted ramps in a microfluidic channel for the separation of suspended particles. We construct these ramps using inclined UV lithography, such that the inclined portion of the ramps is upstream. We show that particles of different size displace laterally to a different extent when driven by a flow field over a slanted ramp. The flow close to the ramp reorients along the ramp, causing the size-dependent deflection of the particles. The cumulative effect of an array of these ramps would cause particles of different size to migrate in different directions, thus allowing their passive and continuous separation.

  3. Repair and Maintenance Programs (RAMP)

    SciTech Connect

    Hostetler, D.

    1999-07-01

    The purpose of the paper is to explain in a general way how the development of Komatsu RAMPs can help accomplish the worthy ideal set forth in that theme for all parties involved--the OEM (Original Equipment Manufacturer), the equipment dealer, and the mining company. The goal of the RAMP is to utilize the resources of the OEM, the dealer, and the mining company to minimize the costs, maximize the efficiency, increase the productivity, and improve the profits of all parties. The paper describes how a RAMP works.

  4. Analytical results of asymmetric exclusion processes with ramps

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Wei

    2005-07-01

    We present the analytical results in a simple traffic model describing a single-lane highway with ramps. Both on-ramps and off-ramps are considered. Complete classification of distinct phases is achieved. Exact phase diagrams are derived. In the case of a single ramp (either on-ramp or off-ramp), the bottleneck effect is absent. The traffic conditions of congestion before the ramp and free-flowing after the ramp cannot be realized. In the case of two consecutive ramps, the bottleneck emerges when the on-ramp is placed before the off-ramp and the flow in between the ramps saturates.

  5. Rural Alaska Mentoring Project (RAMP)

    ERIC Educational Resources Information Center

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  6. Model for RHIC ramp controls

    SciTech Connect

    Kewisch, J.; Mane, V.; Clifford, T.; Hartmann, H.; Kahn, T.; Oerter, B.; Peggs, S.

    1994-08-01

    This paper introduces the hardware and software concepts for the implementation of the ramp controls. The hardware part of the ramp controls consists of a number of multi-purpose Wave Form Generators (WFGS) which control the settings of accelerator hardware directly or indirectly by controlling their WFG. A Real Time Data Link (RTDL) data transfer system connects the WFGs in a three layer architecture. To the usual two layers which generate an independent timing signal and dependent set points, respectively, an intermediate layer is added which produces accelerator parameters such as the magnet strength. The task of the bottom layer is therefore reduced to the function of implementing those parameters. This architecture de-couples two independent functions which axe normally folded together. The function of the hardware becomes modular and easily maintainable. The ramp control software is layered in the same way. Between the top layer (the ramp procedure application program) and the bottom layer (the hardware interface) an additional layer of ``manager`` programs allow operation of accelerator subsystems.

  7. Bell 47 #822 on ramp

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Bell 47 #822 on ramp. The helicopter arrived at the NASA Flight Research Center on November 4, 1973 from the NASA Johnson Space Center in Texas. It operated for more than 11 years, before being sent to the Napa City Fire Department on June 21, 1985.

  8. Ramp-induced transitions in traffic dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Wei

    2006-01-01

    We present the analytical results of ramp effects in asymmetric simple exclusion processes. Both on-ramp and off-ramp are included in between the two open boundaries. The ramps can be taken as the nontrivial boundaries to trigger the phase transitions. Exact phase diagrams are obtained analytically in the full parameter space. We find that the order of the two ramps is crucial. When the on-ramp is placed after the off-ramp along the traffic direction, there are only four distinct phases: free-free-free, free-free-jam, free-jam-jam, and jam-jam-jam. The other four phases from naive expectation cannot be realized, i.e., jam-free-free, jam-jam-free, jam-free-jam, and free-jam-free are all absent. The free flow will not follow the congestion. When the on-ramp is placed before the off-ramp, we observe an interesting phase: jam-max.-free. The bottleneck emerges as the flow in between the two ramps saturates to its maximum. We further show that the roadway configuration is equivalent to a nonstandard intersection. Applications to a traffic rotary are discussed.

  9. JF-102A on ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Convair JF-102A (54-1374) on the ramp at NACA High-Speed Flight Station , Edwards, California in 1956. The most prominent new feature distinguishing the JF-102A from the YF-102 was a longer fuselage with a pinched or 'coke-bottle' waist. Note wing-fences on both wings. The JF-102A Characteristics are: Wing Span, ft. 38.1 Fuselage length, ft. 63.4 Vertical Tail height, ft. 21.2 Power Plant: Pratt & Whitney J57-P-23 turbojet

  10. Launch of a Vehicle from a Ramp

    ERIC Educational Resources Information Center

    Cross, Rod

    2011-01-01

    A vehicle proceeding up an inclined ramp will become airborne if the ramp comes to a sudden end and if the vehicle fails to stop before it reaches the end of the ramp. A vehicle may also become airborne if it passes over the top of a hill at sufficient speed. In both cases, the vehicle becomes airborne if the point of support underneath the…

  11. Airport ramp safety and crew performance issues

    NASA Technical Reports Server (NTRS)

    Chamberlin, Roy; Drew, Charles; Patten, Marcia; Matchette, Robert

    1995-01-01

    This study examined 182 ramp operations incident reports from the Aviation Safety Reporting System (ASRS) database, to determine which factors influence ramp operation incidents. It was found that incidents occurred more often during aircraft arrival operations than during departure operations; incidents occurred most often at the gate stop area, less so at the gate entry/exit areas, and least on the ramp fringe areas; and reporters cited fewer incidents when more ground crew were present. The authors offer suggestions for both airline management and flight crews to reduce the rate of ramp incidents.

  12. The role of the CGRP-receptor component protein (RCP) in adrenomedullin receptor signal transduction.

    PubMed

    Prado, M A; Evans-Bain, B; Oliver, K R; Dickerson, I M

    2001-11-01

    G protein-coupled receptors are usually thought to act as monomer receptors that bind ligand and then interact with G proteins to initiate signal transduction. In this study we report an intracellular peripheral membrane protein named the calcitonin gene-related peptide (CGRP)-receptor component protein (RCP) required for signal transduction at the G protein-coupled receptor for adrenomedullin. Cell lines were made that expressed an antisense construct of the RCP cDNA, and in these cells diminished RCP expression correlated with loss of adrenomedullin signal transduction. In contrast, loss of RCP did not diminish receptor density or affinity, therefore RCP does not appear to act as a chaperone protein. Instead, RCP represents a novel class of protein required to couple the adrenomedullin receptor to the cellular signal transduction pathway. A candidate adrenomedullin receptor named the calcitonin receptor-like receptor (CRLR) has been described, which forms high affinity adrenomedullin receptors when co-expressed with the accessory protein receptor-activity modifying protein 2 (RAMP2). RCP co-immunoprecipitated with CRLR and RAMP2, indicating that a functional adrenomedullin receptor is composed of at least three proteins: the ligand binding protein (CRLR), an accessory protein (RAMP2), and a coupling protein for signal transduction (RCP).

  13. B-47A on ramp

    NASA Technical Reports Server (NTRS)

    1953-01-01

    Boeing B-47A (NACA 150) shown on the ramp near NACA High-Speed Flight Research Station at South Base of Edwards Air Force Base, California, in 1953. The B-47A Stratojet's wing is mounted high on the fuselage with a sweep back of 36 degrees and a span of 116 feet, with wing vortex generators installed. A two engine pod under each wing, and an additional engine pod at each wing tip using General Electric J-47-GE-23 turbojets. The airplane is fitted with a nose boom for measuring airspeed, altitude, angle-of-attack and angle-of-sideslip, and an optigraph for measuring the movements of target lights on the wing and tail.

  14. GLOBAL DECOUPLING ON THE RHIC RAMP.

    SciTech Connect

    LUO, Y.; CAMERON, P.; DELLA PENNA, A.; FISCHER, W.; ET AL.

    2005-05-16

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC), especially in the RHIC polarized proton (pp) run. To avoid the major betatron and spin resonances on the ramp, the betatron tunes are constrained. And the rms value of the vertical closed orbit should be smaller than 0.5mm. Both require the global coupling on the ramp to be well corrected. Several ramp decoupling schemes were found and tested at RHIC, like N-turn map decoupling, three-ramp correction, coupling amplitude modulation, and coupling phase modulation. In this article, the principles of these methods are shortly reviewed and compared. Among them, coupling angle modulation is a robust and fast one. It has been applied to the global decoupling in the routine RHIC operation.

  15. Detecting and characterising ramp events in wind power time series

    NASA Astrophysics Data System (ADS)

    Gallego, Cristóbal; Cuerva, Álvaro; Costa, Alexandre

    2014-12-01

    In order to implement accurate models for wind power ramp forecasting, ramps need to be previously characterised. This issue has been typically addressed by performing binary ramp/non-ramp classifications based on ad-hoc assessed thresholds. However, recent works question this approach. This paper presents the ramp function, an innovative wavelet- based tool which detects and characterises ramp events in wind power time series. The underlying idea is to assess a continuous index related to the ramp intensity at each time step, which is obtained by considering large power output gradients evaluated under different time scales (up to typical ramp durations). The ramp function overcomes some of the drawbacks shown by the aforementioned binary classification and permits forecasters to easily reveal specific features of the ramp behaviour observed at a wind farm. As an example, the daily profile of the ramp-up and ramp-down intensities are obtained for the case of a wind farm located in Spain.

  16. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... height of not less than 6 feet 6 inches. The incline of the ramps shall not exceed 1:2 (261/2°) between the ramps and the horizontal plane. The ramps shall be fitted with footlocks of approximately...

  17. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... height of not less than 6 feet 6 inches. The incline of the ramps shall not exceed 1:2 (261/2°) between the ramps and the horizontal plane. The ramps shall be fitted with footlocks of approximately...

  18. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... height of not less than 6 feet 6 inches. The incline of the ramps shall not exceed 1:2 (261/2°) between the ramps and the horizontal plane. The ramps shall be fitted with footlocks of approximately...

  19. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... height of not less than 6 feet 6 inches. The incline of the ramps shall not exceed 1:2 (261/2°) between the ramps and the horizontal plane. The ramps shall be fitted with footlocks of approximately...

  20. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... height of not less than 6 feet 6 inches. The incline of the ramps shall not exceed 1:2 (261/2°) between the ramps and the horizontal plane. The ramps shall be fitted with footlocks of approximately...

  1. IMPROVEMENTS OF THE RHIC RAMP EFFICIENCY.

    SciTech Connect

    TRBOJEVIC,D.; PTITSYN,V.; FISCHER,W.; AHRENS,L.; BLASKIEWICZ,M.; HAYES,T.; PILAT,F.; ROSER,T.; ET AL

    2002-06-02

    The last nms in both gold-gold and polarized proton-proton required necessary corrections in the ramp as the intensities in the two rings were rising towards design values. Corrections were made with respect to the beam-beam effects, transverse and longitudinal instabilities, transition crossing (for the gold-gold ramps), transverse tune resonances, local and global coupliug problems, aperture restrictions, chromatic effects. Along the ramps we had to use the beam separation, ''Landau'' cavities, chromatic and tune control, orbit correction, special gamma-t quadrupole system for the transition crossing in the gold run, correction octupole circuits, beam position monitor system decoupling etc.

  2. Ramp technique for dc partial discharge testing

    NASA Astrophysics Data System (ADS)

    Bever, R. S.

    1985-02-01

    The partial discharge (PD) data presently obtained by means of a stepwise ramp technique, for the cases of high voltage (HV) components and such resin-packaged HV devices as the Space Telescope's Faint Object Camera, is acquired separately on part-way ramps to rated voltage and on the intermediate voltage plateaus. For test specimens intended for dc service, this ramp method yields more data on insulation integrity than quiescent dc measurements, especially in the case of specimens of high resistivity which causes the discharge frequency to be deceptively low at constant dc voltage. During upward ramping the voltage distribution is capacitive, and the PD behavior resembles that of an ac test. Many more pulses are obtained in the voids without the heat otherwise generated by the application of 60-Hz ac. PD histograms are presented for various materials, with and without intentional defects.

  3. YF-12C on ramp

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The so-called YF-12C on the NASA Flight Research Center ramp. Following the loss of a YF-12A in a non-fatal accident in June 1971, NASA acquired the second production SR-71A (61-7951) from the Air Force. Because the SR-71 program was shrouded in the highest secrecy, the Air Force restricted NASA to using the aircraft solely for propulsion testing with YF-12A inlets and engines. It was designated the YF-12C, and given a bogus tail number (06937). The two YF-12As in the program had actual tail numbers 06935 and 06936. The first NASA flight of the YF-12C took place on 24 May 1972. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 606936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made

  4. Quantum strongly secure ramp secret sharing

    NASA Astrophysics Data System (ADS)

    Zhang, Paul; Matsumoto, Ryutaroh

    2015-02-01

    Quantum secret sharing is a scheme for encoding a quantum state (the secret) into multiple shares and distributing them among several participants. If a sufficient number of shares are put together, then the secret can be fully reconstructed. If an insufficient number of shares are put together however, no information about the secret can be revealed. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an unqualified set, that cannot fully reconstruct the secret. By allowing this, the size of a share can be drastically reduced. This paper introduces a quantum analog of classical strong security in ramp secret sharing schemes. While the ramp secret sharing scheme still leaks partial information about the secret to unqualified sets of participants, the strong security condition ensures that qudits with critical information can no longer be leaked.

  5. Mars pathfinder Rover egress deployable ramp assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian R.; Sword, Lee F.

    1996-01-01

    The Mars Pathfinder Program is a NASA Discovery Mission, led by the Jet Propulsion Laboratory, to launch and place a small planetary Rover for exploration on the Martian surface. To enable safe and successful egress of the Rover vehicle from the spacecraft, a pair of flight-qualified, deployable ramp assemblies have been developed. This paper focuses on the unique, lightweight deployable ramp assemblies. A brief mission overview and key design requirements are discussed. Design and development activities leading to qualification and flight systems are presented.

  6. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted aircraft, seen here on the ramp at NASA's Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which

  7. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The long, slender wing of the Perseus B remotely piloted research aircraft can be clearly seen in this photo, taken on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later

  8. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The long, slender wing of the Perseus B high-altitude, remotely piloted research aircraft is clearly visible in this photo of the vehicle, taken on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  9. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The long, slender wing of the Perseus B high-altitude, remotely piloted research aircraft is clearly visible in this photo of the vehicle, taken on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  10. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The long, slender wing of the Perseus B remotely piloted research aircraft can be clearly seen in this photo, taken on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later

  11. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted aircraft, seen here on the ramp at NASA's Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which

  12. Identifying Wind and Solar Ramping Events: Preprint

    SciTech Connect

    Florita, A.; Hodge, B. M.; Orwig, K.

    2013-01-01

    Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in power system operations. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here the Swinging Door Algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as the ability to quantify the value of probabilistic approaches for future use in practice.

  13. VISUAL ACCESSIBILITY OF RAMPS AND STEPS

    PubMed Central

    Legge, Gordon E.; Yu, Deyue; Kallie, Christopher S.; Bochsler, Tiana M.; Gage, Rachel

    2010-01-01

    The visual accessibility of a space refers to the effectiveness with which vision can be used to travel safely through the space. For people with low vision, the detection of steps and ramps is an important component of visual accessibility. We used ramps and steps as visual targets to examine the interacting effects of lighting, object geometry, contrast, viewing distance and spatial resolution. Wooden staging was used to construct a sidewalk with transitions to ramps or steps. 48 normally sighted subjects viewed the sidewalk monocularly through acuity-reducing goggles, and made recognition judgments about the presence of the ramps or steps. The effects of variation in lighting were milder than expected. Performance declined for the largest viewing distance, but exhibited a surprising reversal for nearer viewing. Of relevance to pedestrian safety, the step up was more visible than the step down. We developed a probabilistic cue model to explain the pattern of target confusions. Cues determined by discontinuities in the edge contours of the sidewalk at the transition to the targets were vulnerable to changes in viewing conditions. Cues associated with the height in the picture plane of the targets were more robust. PMID:20884503

  14. A simple computer-controlled analogue ramp generator for producing multiple ramp-and-hold stimuli.

    PubMed

    Matheson, T; Ditz, F

    1991-08-01

    This report describes an inexpensive ramp generator which produces multiple ramp-and-hold stimuli ("staircase-type" wave forms). The output voltage is analogue and is, therefore, free of stepping artifacts characteristic of digital function generators. When coupled with a standard power amplifier and mechanical vibrator, this system is particularly suitable for stimulation of mechanoreceptive sense organs. Connection to the serial port of an IBM personal computer, or the user port of a BBC computer allows complex ramp-and-hold sequences to be developed and repeated. The number, duration and sign of ramps, and the duration of intervening hold periods can be set using the computer. This system has been used successfully to characterise phasic and tonic neurones in the locust metathoracic femoral chordotonal organ (a leg position and movement detector).

  15. Forward modeling of shock-ramped tantalum

    NASA Astrophysics Data System (ADS)

    Brown, Justin L.; Carpenter, John H.; Seagle, Christopher T.

    2017-01-01

    Dynamic materials experiments on the Z-machine are beginning to reach a regime where traditional analysis techniques break down. Time dependent phenomena such as strength and phase transition kinetics often make the data obtained in these experiments difficult to interpret. We present an inverse analysis methodology to infer the equation of state (EOS) from velocimetry data in these types of experiments, building on recent advances in the propagation of uncertain EOS information through a hydrocode simulation. An example is given for a shock-ramp experiment in which tantalum was shock compressed to 40 GPa followed by a ramp to 80 GPa. The results are found to be consistent with isothermal compression and Hugoniot data in this regime.

  16. Ramp compression of iron to 273 GPa

    DOE PAGES

    Wang, Jue; Smith, Raymond F.; Eggert, Jon H.; ...

    2013-07-11

    Multiple thickness Fe foils were ramp compressed over several nanoseconds to pressure conditions relevant to the Earth’s core. Using wave-profile analysis, the sound speed and the stress-density response were determined to a peak longitudinal stress of 273 GPa. The measured stress-density states lie between shock compression and 300-K static data, and are consistent with relatively low temperatures being achieved in these experiments. Phase transitions generally display time-dependent material response and generate a growing shock. We demonstrate for the first time that a low-pressure phase transformation (α-Fe to ε-Fe) can be overdriven by an initial steady shock to avoid both themore » time-dependent response and the growing shock that has previously limited ramp-wave-loading experiments. Additionally, the initial steady shock pre-compresses the Fe and allows different thermodynamic compression paths to be explored.« less

  17. Ramp compression of iron to 273 GPa

    SciTech Connect

    Wang, Jue; Smith, Raymond F.; Eggert, Jon H.; Braun, Dave G.; Boehly, Thomas R.; Patterson, J. Reed; Celliers, Peter M.; Jeanloz, Raymond; Collins, Gilbert W.; Duffy, Thomas S.

    2013-07-11

    Multiple thickness Fe foils were ramp compressed over several nanoseconds to pressure conditions relevant to the Earth’s core. Using wave-profile analysis, the sound speed and the stress-density response were determined to a peak longitudinal stress of 273 GPa. The measured stress-density states lie between shock compression and 300-K static data, and are consistent with relatively low temperatures being achieved in these experiments. Phase transitions generally display time-dependent material response and generate a growing shock. We demonstrate for the first time that a low-pressure phase transformation (α-Fe to ε-Fe) can be overdriven by an initial steady shock to avoid both the time-dependent response and the growing shock that has previously limited ramp-wave-loading experiments. Additionally, the initial steady shock pre-compresses the Fe and allows different thermodynamic compression paths to be explored.

  18. Assigning on-ramp flows to maximize capacity of highway with two on-ramps and one off-ramp in between

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Lin, Lan; Jiang, Rui

    2017-01-01

    In this paper, we study the capacity of a highway with two on-ramps and one off-ramp in between by using a cellular automaton traffic flow model. We investigate how to maximize the system capacity by assigning proper traffic flow to the two on-ramps. The system phase diagram is presented and eight different regions are observed under different conditions. It is shown that in region I, in which both on-ramps are in free flow and the main road upstream of the upstream on-ramp is in congestion, assigning proper proportion of the demand to two on-ramps could maximize the system capacity. Two critical values of the off-ramp flow ratio poff have been observed. When poff

    ramp. When poff >p off , c 2, no demand should be assigned to the upstream on-ramp. An analytical investigation has been performed to calculate the critical values. The analytical results are in good agreement with the simulation ones.

  19. A survey on wind power ramp forecasting.

    SciTech Connect

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  20. Rapid Assessment of Marine Pollution (RAMP).

    PubMed

    Bowen, Robert E; Depledge, Michael H

    2006-01-01

    RAMP embraces the integrated use of methods for the rapid measurement, assessment and access to information on the nature, sources and influences of coastal environmental change. It embraces approaches held in the literature, research and programs of RAMP (Rapid Assessment of Marine Pollution) and the emerging work described as RASE (Rapid Assessment of Socio-Economic Indicators). To protect coastal ecosystems and the health of communities effectively, management infrastructure requires the tools and resources necessary to detect damage to coastal ecosystems and their components, identify causative agents, impose remedial action, and demonstrate that measures have been effective. Pragmatic monitoring and prediction capabilities must also be built to provide further confidence that human impacts are being minimized and that threats to human health have been contained. For most of the world, however, the ability to build such capability is a technical challenge and often cost prohibitive. These constraints point to the need to develop and expand the integrated use of simple, robust, cost-effective environmental assessment procedures. This paper suggests that a system built around the Rapid Assessment of Marine Pollution (RAMP) and the Rapid Assessment of Socio-Economic Indicators (RASE) can, should and in some cases already has been effective in meeting such informational and management needs.

  1. Public transit bus ramp slopes measured in situ.

    PubMed

    Bertocci, Gina; Frost, Karen; Smalley, Craig

    2014-05-02

    Abstract Purpose: The slopes of fixed-route bus ramps deployed for wheeled mobility device (WhMD) users during boarding and alighting were assessed. Measured slopes were compared to the proposed Americans with Disabilities Act (ADA) maximum allowable ramp slope. Methods: A ramp-embedded inclinometer measured ramp slope during WhMD user boarding and alighting on a fixed-route transit bus. The extent of bus kneeling was determined for each ramp deployment. In-vehicle video surveillance cameras captured ramp deployment level (street versus sidewalk) and WhMD type. Results: Ramp slopes ranged from -4° to 15.5° with means of 4.3° during boarding (n = 406) and 4.2° during alighting (n = 405). Ramp slope was significantly greater when deployed to street level. During boarding, the proposed ADA maximum allowable ramp slope (9.5°) was exceeded in 66.7% of instances when the ramp was deployed to street level, and in 1.9% of instances when the ramp was deployed to sidewalk level. During alighting, the proposed ADA maximum allowable slope was exceeded in 56.8% of instances when the ramp was deployed to street level and in 1.4% of instances when the ramp was deployed to sidewalk level. Conclusions: Deployment level, built environment and extent of bus kneeling can affect slope of ramps ascended/descended by WhMD users when accessing transit buses. Implications for Rehabilitation Since public transportation services are critical for integration of wheeled mobility device (WhMD) users into the community and society, it is important that they, as well as their therapists, are aware of conditions that may be encountered when accessing transit buses. Knowledge of real world ramp slope conditions that may be encountered when accessing transit buses will allow therapists to better access capabilities of WhMD users in a controlled clinical setting. Real world ramp slope conditions can be recreated in a clinical setting to allow WhMD users to develop and practice necessary

  2. Status of the SNS Power Ramp Up

    SciTech Connect

    Plum, Michael A

    2010-01-01

    The Spallation Neutron Source accelerator complex consists of a 2.5 MeV H front-end injector system, a 186 MeV normal-conducting linear accelerator, a 1 GeV superconducting linear accelerator, an accumulator ring, and associated beam transport lines. Since formal operations began in 2006, the beam power has been steadily increasing toward the design goal of 1.4 MW. In September 2009 the power surpassed 1 MW for the first time, and operation at the 1 MW level is now routine. The status of the beam power ramp-up program and present operational limitations will be described.

  3. Quantum Ramp Secret Sharing Scheme and Quantum Operations

    NASA Astrophysics Data System (ADS)

    Xiao, Heling; Wang, Huifeng; Wang, Bin

    2016-09-01

    In order to improve the efficiency of quantum secret sharing, quantum ramp secret sharing schemes were proposed (Ogawa et al., Phys. Rev. A 72, 032318 [2005]), which had a trade-off between security and coding efficiency. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an intermediate set, which cannot fully reconstruct the secret. This paper revisits the size of a share in the quantum ramp secret scheme based on a relation between the quantum operations and the coherent information. We also propose an optimal quantum ramp secret sharing scheme.

  4. Rainfall Manipulation Plot Study (RaMPS)

    DOE Data Explorer

    Blair, John [Kansas State University; Fay, Phillip [USDA-ARS; Knapp, Alan [Colorado State University; Collins, Scott [University of New Mexico; Smith, Melinda [Yale University

    Rainfall Manipulation Plots facility (RaMPs) is a unique experimental infrastructure that allows us to manipulate precipitation events and temperature, and assess population community, and ecosystem responses in native grassland. This facility allows us to manipulate the amount and timing of individual precipitation events in replicated field plots at the Konza Prairie Long-Term Ecological Research (LTER) site. Questions we are addressing include: • What is the relative importance of more extreme precipitation patterns (increased climatic variability) vs. increased temperatures (increased climatic mean) with regard to their impact on grassland ecosystem structure and function? Both projected climate change factors are predicted to decrease soil water availability, but the mechanisms by which this resource depletion occurs differ. • Will altered precipitation patterns, increased temperatures and their interaction increase opportunities for invasion by exotic species? • Will long-term (6-10 yr) trajectories of community and ecosystem change in response to more extreme precipitation patterns continue at the same rate as initial responses from years 1-6? Or will non-linear change occur as potential ecological thresholds are crossed? And will increased temperatures accelerate these responses? Data sets are available as ASCII files, in Excel spreadsheets, and in SAS format. (Taken from http://www.konza.ksu.edu/ramps/backgrnd.html

  5. Chaotic Pattern Dynamics in Spatially Ramped Turbulence

    NASA Astrophysics Data System (ADS)

    Wiener, R. J.; Ashbaker, E.; Olsen, T.; Bodenschatz, E.

    2003-11-01

    In previous experiments(Richard J. Wiener et al), Phys. Rev. E 55, 5489 (1997)., Taylor vortex flow in an hourglass geometry has demonstrated a period-doubling cascade to chaotic pattern dynamics. A spatial ramp exists in the Reynolds number. For low reduced Reynolds numbesr \\varepsilon, supercritical vortex flow occurs between regions of subcritical structureless flow with soft boundaries that allow for pattern dynamics. At \\varepsilon ≈ 0.5, the pattern exhibits phase slips that occur irregularly in time. At \\varepsilon ≈ 1.0 the entire system is supercritical, and the pattern is stabilized against phase slips. At \\varepsilon > 15, shear flow creates a spatial ramp in turbulence. Remarkably, the phase slip instability reoccurs. Vortex pairs are created chaotically, possibly due to the spatial variation of the turbulence. The variance and Fourier spectra of time series of light scattered off Kalliroscope tracer were measured. These indicate that a region of turbulence exists, within which phase slips occur, bounded by regions of laminar flow which may provide soft boundaries that allow for the phase dynamics. Despite the presence of turbulence, the dynamics might be describable by a phase equation.

  6. Cretaceous tide-dominated carbonate ramp: Comparison of reservoir hetergeneity in tide-versus wave-dominated carbonate ramp systems

    SciTech Connect

    Kerans, C.

    1995-08-01

    Cretaceous (upper Albian) carbonate ramp strata, Pecos River Canyon, Texas, provide a uniquely continuous exposure of a tide-dominated ramp reservoir analog. The continuous 100-km shelf-to-basin outcrop begins in inner ramp mud-rich facies that record both high-frequency (20-100 ky) and intermediate frequency (>200 ky) cyclicity. The ramp-crest is up to 40 km across depositional dip. Intermediate-scale cycles in the ramp crest include basal oyster and toucasid wackestones, chondrodontid-rudist packstones, rudist-skeletal grainstones, and caprinid biostromes. Ramp-crest grainstones are 4-23 m in thickness and extend more than 20 km in a shelf to basin direction. Rudist biostromes are 3-7 m in thickness and are up to several kilometers in dip continuity except in deeper outer ramp settings where 100-200 m wide mounds are more common. The ramp crest is dominated by grain-rich facies with moderate to high permeability. Toucasid wackestones and oyster marls are 1-5 m in thickness and extend tens of kilometers in a dip direction, representing potential fluid flow barriers. Wave-dominated ramp systems of the Permian of West Texas provide a contrast to the Cretaceous tide-dominated setting. Low-permeability high-frequency cycle base mudstones and high-permeability cycle-top grainstones are preserved in both inner ramp and ramp crest settings. Fluid-flow modeling of these Permian wave-dominated reservoir strata illustrates that the intercalation of thin high- and low-permeability layers result in crossflow trapping and thief zones controlling the position and amount of remaining oil saturation. The depositional homogeneity of the Cretaceous tide-dominated ramp indicates that diagenetic heterogeneities and gravitational effects are potentially dominant controls on reservoir performance for these strata.

  7. 14. VIEW OF THE MODERN CONCRETE RAMP THAT CONNECTED THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF THE MODERN CONCRETE RAMP THAT CONNECTED THE UPPER AND LOWER MINE ROADS. TRUCKS USED THIS RAMP AND THE ROADS TO HAUL SLAG TO THE MINE DUMP. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  8. 9 CFR 313.1 - Livestock pens, driveways and ramps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Livestock pens, driveways and ramps. 313.1 Section 313.1 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.1 Livestock pens, driveways and ramps....

  9. 9 CFR 313.1 - Livestock pens, driveways and ramps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Livestock pens, driveways and ramps. 313.1 Section 313.1 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.1 Livestock pens, driveways and ramps....

  10. 9 CFR 313.1 - Livestock pens, driveways and ramps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Livestock pens, driveways and ramps. 313.1 Section 313.1 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.1 Livestock pens, driveways and ramps....

  11. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Alternative ramped modal cycles. 1033.520 Section 1033.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped...

  12. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Alternative ramped modal cycles. 1033.520 Section 1033.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped...

  13. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Alternative ramped modal cycles. 1033.520 Section 1033.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped...

  14. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Alternative ramped modal cycles. 1033.520 Section 1033.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped...

  15. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Alternative ramped modal cycles. 1033.520 Section 1033.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped...

  16. DETAIL VIEW OF THREE CONCENTRATION TABLES, LOADING RAMP, AND CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THREE CONCENTRATION TABLES, LOADING RAMP, AND CLASSIFIER, LOOKING EST. THE RAKE THAT WAS ORIGINALLY INSIDE THE CLASSIFIER IS AT CENTER RIGHT ON TOP OF THE LOADING RAMP. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  17. Fast current ramp experiments on TFTR

    SciTech Connect

    Fredrickson, E.D.; McGuire, K.; Goldston, R.J.; Bell, M.; Grek, B.; Johnson, D.; Morris, A.W.; Stauffer, F.J.; Taylor, G.; Zarnstorff, M.C.

    1987-05-01

    Electron heat transport on TFTR and other tokamaks is several orders of magnitude larger than neoclassical calculations would predict. Despite considerable effort, there is still no clear theoretical understanding of this anomalous transport. The electron temperature profile T/sub e/(r), shape has shown a marked consistency on many machines, including TFTR, for a wide range of plasma parameters and heating profiles. This could be an important clue as to the process responsible for this enhanced thermal transport. In this paper 'profile consistency' in TFTR is described and an experiment which uses a fast current ramp to transiently decouple the current density profile J(r), and the T/sub e/(r) profiles is discussed. From this experiment the influence of J(r) on electron temperature profile consistency can be determined.

  18. Trunk Highway 169: Dynamic ramp metering evaluation. Final report

    SciTech Connect

    1998-03-01

    Peak period travel demand has exceed unmanaged road capacity on most of Twin Cities metropolitan area freeways for more than two decades. During this time, the Minnesota Department of Transportation (MN/DOT) has developed and implemented its freeway traffic management system (FTMS). MN/DOT continues to expand the FTMS, which includes ramp metering as one component. This report documents the impact of dynamic ramp metering on Trunk Highway 169 (TH 16) from Minnetonka Boulevard in Minnetonka to 77th Avenue in Brooklyn Park. The study examines changes in traffic performance with regard to traffic flow, congestion levels, travel times, and accident rates before and after implementation of dynamic ramp metering.

  19. Tu-144LL ramp taxi and takeoff

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A jointly funded activity by the NASA High Speed Research (HSR) program and the Boeing Commercial Airplane Group took place to obtain experimental flight data on the Tu-144 supersonic transport built by Russia. The Tu-144 was modified by the Tupolev Aircraft Design Bureau, Moscow, Russia, in 1995-1996 into the Tu-144LL Flying Laboratory to perform flight experiments as part of the NASA HSR Program. Knowledge gained from the flights will benefit the NASA efforts to develop technology that may enable design of an efficient, environmentally friendly second-generation supersonic transport in this country. This program involved eight experiments -- six aboard the aircraft and two ground test engine experiments. Between November 1996 and February 1998 the Tu-144LL flew 19 research flights. The follow-on Tu-144LL program encompassed about eight flights, focusing on extensions of five experiments from the first project and two new experiments to measure fuel system temperatures and to define in-flight wing deflections. This 31-second clip shows the Russian Tu-144 LL supersonic transport on the ramp in Moscow, then taxiing into position and making its takeoff run, rotating from the runway and climbing away.

  20. Accelerating Science Driven System Design With RAMP

    SciTech Connect

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  1. Forward ramp and Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A lander petal and the forward ramp are featured in this image, taken by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. There are several prominent rocks, including Wedge at left; Shark, Half-Dome, and Pumpkin in the background; and Flat Top and Little Flat Top at center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  2. Ramp loading in Russian doll poroelasticity

    NASA Astrophysics Data System (ADS)

    Gailani, Gaffar; Cowin, Stephen

    2011-01-01

    Aporoelastic model for porous materials with a nested pore space structure is developed to represent the interstitial fluid flow in bone tissue. The nested porosity model is applied to the problem of determining the exchange of pore fluid between the vascular porosity (PV) and the lacunar-canalicular porosity (PLC) in bone tissue in a ramp loading in the case where the fluid and solid constituents are assumed to be compressible. The compressibility assumption is appropriate for hard tissues while the incompressibility assumption is appropriate for soft tissues. The influence of blood pressure in the PV is included in the analysis. A formula for the fluid that moves between the two porosities is developed. The analysis showed the coupling of the two porosities and their influence on each other and concluded that the PV pore pressure has an influence less than 3% on the PLC pore pressure while the absence of the PV pore pressure will affect the fluid exchange between the PV and PLC by less than 6% (the blood pressure range is 40-60 mmHg). Also the analysis has shown that the draining time of the PLC is inversely proportional to its permeability. The significance of the result is basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells.

  3. Synaptic activation modifies microtubules underlying transport of postsynaptic cargo.

    PubMed

    Maas, Christoph; Belgardt, Dorthe; Lee, Han Kyu; Heisler, Frank F; Lappe-Siefke, Corinna; Magiera, Maria M; van Dijk, Juliette; Hausrat, Torben J; Janke, Carsten; Kneussel, Matthias

    2009-05-26

    Synaptic plasticity, the ability of synapses to change in strength, requires alterations in synaptic molecule compositions over time, and synapses undergo selective modifications on stimulation. Molecular motors operate in sorting/transport of neuronal proteins; however, the targeting mechanisms that guide and direct cargo delivery remain elusive. We addressed the impact of synaptic transmission on the regulation of intracellular microtubule (MT)-based transport. We show that increased neuronal activity, as induced through GlyR activity blockade, facilitates tubulin polyglutamylation, a posttranslational modification thought to represent a molecular traffic sign for transport. Also, GlyR activity blockade alters the binding of the MT-associated protein MAP2 to MTs. By using the kinesin (KIF5) and the postsynaptic protein gephyrin as models, we show that such changes of MT tracks are accompanied by reduced motor protein mobility and cargo delivery into neurites. Notably, the observed neurite targeting deficits are prevented on functional depletion or gene expression knockdown of neuronal polyglutamylase. Our data suggest a previously undescribed concept of synaptic transmission regulating MT-dependent cargo delivery.

  4. Facility S 372, replacement dolphins and ramp from upper deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility S 372, replacement dolphins and ramp from upper deck of ferry boat (YFB 87). - U.S. Naval Base, Pearl Harbor, Ferry Landing Type, Halawa Landing on Ford Island, Pearl City, Honolulu County, HI

  5. North side, eastern section, looking southwest at east ramp and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North side, eastern section, looking southwest at east ramp and pavilion in CO-172-BR-17. - Fitzsimons General Hospital, Infirmary, Northwest Corner of East Bushnell Avenue & South Page Street, Aurora, Adams County, CO

  6. North side, showing ramp at western section but photograph taken ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North side, showing ramp at western section but photograph taken to east of CO-172-BR-8 and looking southwesterly. - Fitzsimons General Hospital, Infirmary, Northwest Corner of East Bushnell Avenue & South Page Street, Aurora, Adams County, CO

  7. Facility 596, detail of ramp from below, with replacement sheetpile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility 596, detail of ramp from below, with replacement sheet-pile dolphin on right and southernmost dolphins in background. - U.S. Naval Base, Pearl Harbor, Ferry Landing Type, Halawa Landing on Ford Island, Pearl City, Honolulu County, HI

  8. 124. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: RAMP DETAILS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    124. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: RAMP DETAILS Sheet 6 of 11 (#3278) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  9. 125. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: MODIFIED RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: MODIFIED RAMP DETAILS Sheet 6A of 11 (#3279) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  10. A Scenario Generation Method for Wind Power Ramp Events Forecasting

    SciTech Connect

    Cui, Ming-Jian; Ke, De-Ping; Sun, Yuan-Zhang; Gan, Di; Zhang, Jie; Hodge, Bri-Mathias

    2015-07-03

    Wind power ramp events (WPREs) have received increasing attention in recent years due to their significant impact on the reliability of power grid operations. In this paper, a novel WPRE forecasting method is proposed which is able to estimate the probability distributions of three important properties of the WPREs. To do so, a neural network (NN) is first proposed to model the wind power generation (WPG) as a stochastic process so that a number of scenarios of the future WPG can be generated (or predicted). Each possible scenario of the future WPG generated in this manner contains the ramping information, and the distributions of the designated WPRE properties can be stochastically derived based on the possible scenarios. Actual data from a wind power plant in the Bonneville Power Administration (BPA) was selected for testing the proposed ramp forecasting method. Results showed that the proposed method effectively forecasted the probability of ramp events.

  11. 3. Cement and Plaster Warehouse, north facade. Loading ramp on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Cement and Plaster Warehouse, north facade. Loading ramp on the right. Utility building, intrusion, on the far right. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  12. 56. View below deck of Manhattan side span showing ramps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. View below deck of Manhattan side span showing ramps to East Side Expressway. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  13. 1. VIEW TO SOUTH; RAMP AND WEST FRONT MAIL, BAGGAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO SOUTH; RAMP AND WEST FRONT MAIL, BAGGAGE AND EXPRESS BUILDING (MBE) IN RELATION TO TERMINAL BUILDING (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  14. 28. VIEW TO NORTHWEST; SOUTH VEHICULAR RAMP FROM BASE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW TO NORTHWEST; SOUTH VEHICULAR RAMP FROM BASE AT ALISO STREET (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  15. 4. VIEW TO NORTH; SIDE SIDE OF RAMP IN FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW TO NORTH; SIDE SIDE OF RAMP IN FRONT OF U.S. POST OFFICE TERMINAL ANNEX BUILDING (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  16. 33. VIEW TO NORTHWEST; DETAIL OF VEHICULAR RAMP LIGHTING PYLON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW TO NORTHWEST; DETAIL OF VEHICULAR RAMP LIGHTING PYLON (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  17. 34. VIEW TO EAST; DETAIL OF LAMP ON VEHICULAR RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW TO EAST; DETAIL OF LAMP ON VEHICULAR RAMP LIGHTING PYLON (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  18. 1. VIEW OF PARK FROM NORTHWEST SHOWING BUS RAMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF PARK FROM NORTHWEST SHOWING BUS RAMP AND PUBLIC PARKING LOT IN CENTER, HARVARD YARD BUILDINGS IN REAR, HOLYOKE CENTER AT REAR RIGHT. - Flagstaff Park, Massachusetts Avenue & Kirkland Street, Cambridge, Middlesex County, MA

  19. 2. VIEW OF BUS RAMP FROM NORTH LOOKING DOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF BUS RAMP FROM NORTH LOOKING DOWN INTO TUNNEL ENTRANCE, HARVARD YARD IN REAR LEFT, HOLYOKE CENTER IN MIDDLE, FIRST CHURCH ON RIGHT - Flagstaff Park, Massachusetts Avenue & Kirkland Street, Cambridge, Middlesex County, MA

  20. North rear, east part. Ramp leads to basement utility rooms ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North rear, east part. Ramp leads to basement utility rooms and specimen preparation rooms. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  1. East view; Mechanical Building south elevation, covered ramp, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East view; Mechanical Building - south elevation, covered ramp, and Street Car Waiting House, left to right - North Philadelphia Station, Mechanical Building, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  2. Viaduct, looking west with downtown Harrisburg in background. Note ramp ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Viaduct, looking west with downtown Harrisburg in background. Note ramp descending from viaduct to Cameron Street at left. - Mulberry Street Viaduct, Spanning Paxton Creek & Cameron Street (State Route 230) at Mulberry Street (State Route 3012), Harrisburg, Dauphin County, PA

  3. Wind Power Ramping Product for Increasing Power System Flexibility

    SciTech Connect

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2016-05-05

    With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus System show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.

  4. 3. West facade, looking east, with concrete truck ramp leading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. West facade, looking east, with concrete truck ramp leading to main floor. - Charlestown Navy Yard, Incinerator, Midway along northern boundary of Charlestown Navy Yard, on Little Mystic Channel, near junction of Eighteenth Street & Second Avenue, Boston, Suffolk County, MA

  5. ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE GROVE AVENUE. ORANGE GROVE AVENUE BRIDGE IN REAR. LOOKING 278°W - Arroyo Seco Parkway, Orange Grove Avenue Bridge, Milepost 30.59, Los Angeles, Los Angeles County, CA

  6. 27. LOOKING SOUTHEAST AT MARIANO RETRACTABLE RAMP IN FULL UP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LOOKING SOUTHEAST AT MARIANO RETRACTABLE RAMP IN FULL UP POSITION. CONTROL BOX IN FOREGROUND. USN PHOTO, JANUARY 20, 1942. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  7. Truck ramp construction from clean coal technology waste products

    SciTech Connect

    Wolfe, W.E.; Beeghly, J.H.

    1993-12-31

    The construction and performance of a truck ramp made from clean coal technology waste products are described. The specific waste product used in this project was generated at the power plant located on the campus of The Ohio State University in Columbus. The ramp is used by University vehicles depositing hard trash at a central disposal facility on the OSU campus. Laboratory tests which had been conducted on samples made from the power plant waste product clearly showed that, when the material is property compacted, strengths could be obtained that were much higher than those of the natural soils the clean coal waste would replace. In addition, the permeability and swelling characteristics of the waste product should make it an attractive alternative to importing select borrow materials. Based on the results of the laboratory tests, a decision was made to use the power plant waste in the truck ramp rather than the soil that was called for in the original design. Prior to the start of construction, the area on which the ramp was to be located was covered with an impermeable geomembrane. Drain lines were installed on top of the geomembrane so that water that might leach through the ramp could be collected. The waste product from the power plant was placed on the geomembrane in 20 to 30 centimeter lifts by University maintenance personnel without special equipment. A drain line was installed across the toe of the ramp to intercept surface runoff, and a wearing surface of 7 to 15 centimeters of crushed limestone was placed over the compacted ash. The finished ramp structure recycled approximately 180 metric tons of the power plant byproduct. After over a year in service there is no indication of erosion or rutting in the ramp surface. Tests performed on the leachate and runoff water have shown the high pH characteristic of these materials, but concentrations of metals fall below the established limits.

  8. Vibratory high pressure coal feeder having a helical ramp

    DOEpatents

    Farber, Gerald

    1978-01-01

    Apparatus and method for feeding powdered coal from a helical ramp into a high pressure, heated, reactor tube containing hydrogen for hydrogenating the coal and/or for producing useful products from coal. To this end, the helical ramp is vibrated to feed the coal cleanly at an accurately controlled rate in a simple reliable and trouble-free manner that eliminates complicated and expensive screw feeders, and/or complicated and expensive seals, bearings and fully rotating parts.

  9. PDR with a foot-mounted IMU and ramp detection.

    PubMed

    Jiménez, Antonio R; Seco, Fernando; Zampella, Francisco; Prieto, José C; Guevara, Jorge

    2011-01-01

    The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person's body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person's foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps.

  10. Dynamic control for nanostructures through slowly ramping parameters.

    PubMed

    Yoo, Jaeyun; Blick, Robert; Ahn, Kang-Hun

    2016-06-01

    We propose a nanostructure control method which uses slowly ramping parameters. We demonstrate the dynamics of this method in both a nonlinear classical system and a quantum system. When a quantum mechanical two-level atom (quantum dot) is irradiated by an electric field with a slowly increasing frequency, there exists a sudden transition from ground (excited) to excited (ground) state. This occurs when the ramping rate is smaller than the square of the Rabi frequency. The transition arises when its "instant frequency"-the time derivative of the driving field phase-matches the resonance frequency, satisfying the Fermi golden rule. We also find that the parameter ramping is an efficient control manner for classical nanomechanical shuttles. For ramping of driving amplitudes, the shuttle's mechanical oscillation is amplified and even survives when the ramping is stopped outside the original oscillation region. This strange oscillation is due to the entrance into a multistable dynamic region in phase space. For ramping of driving frequencies, an onset of oscillation arises when the instant frequency enters the oscillation region. Thus, regardless of being classical or quantum, the instant frequency is physically relevant. We discuss in which conditions the dynamic control is efficient.

  11. Dynamic control for nanostructures through slowly ramping parameters

    NASA Astrophysics Data System (ADS)

    Yoo, Jaeyun; Blick, Robert; Ahn, Kang-Hun

    2016-06-01

    We propose a nanostructure control method which uses slowly ramping parameters. We demonstrate the dynamics of this method in both a nonlinear classical system and a quantum system. When a quantum mechanical two-level atom (quantum dot) is irradiated by an electric field with a slowly increasing frequency, there exists a sudden transition from ground (excited) to excited (ground) state. This occurs when the ramping rate is smaller than the square of the Rabi frequency. The transition arises when its "instant frequency"—the time derivative of the driving field phase—matches the resonance frequency, satisfying the Fermi golden rule. We also find that the parameter ramping is an efficient control manner for classical nanomechanical shuttles. For ramping of driving amplitudes, the shuttle's mechanical oscillation is amplified and even survives when the ramping is stopped outside the original oscillation region. This strange oscillation is due to the entrance into a multistable dynamic region in phase space. For ramping of driving frequencies, an onset of oscillation arises when the instant frequency enters the oscillation region. Thus, regardless of being classical or quantum, the instant frequency is physically relevant. We discuss in which conditions the dynamic control is efficient.

  12. YO-3A parked on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's YO-3A parked on the Dryden ramp. The YO-3A aircraft was originally a Schweizer SGS-2-23 sailplane. During the late 1960s Lockheed modified over a dozen of these sailplanes to create ultra-quiet observation aircraft for use over South Vietnam during the conflict there. This particular YO-3A flew combat missions and was later sold to an airframe and powerplant mechanics school. NASA's Ames Research Center at Mountain Veiw, California, acquired the aircraft from the school in 1978. It restored the YO-3A to flight status and fitted it with wing- and tail-mounted microphones as an accoustic research aircraft. Ames operated it at Edwards Air Force Base for noise measurements of helicopters and tilt rotor aircraft. One set of tests in December 1995 obtained free-flight noise data on the XV-15 tilt rotor. NASA also used the YO-3A for sonic boom measurements of a NASA SR-71 assigned to the Dryden Flight Research Center. NASA transferred the YO-3A to Dryden in December 1997, and as of April 2001 it was in flyable storage there. The designation YO-3A indicates that this aircraft was a pre-production (Y) observation (O) aircraft. Even though the YO-3A saw operational use, the Y designation was never removed. Its 210-horsepower Continental V-6 was modified to reduce noise. The engine was connected to a propeller through a belt-driven reduction system. This reduced the propeller's rotation speed. The propeller blades themselves were made of birch plywood and were wider than standard propellers. The result of these modifications was an aircraft so quiet that its noise was drowned out by the background sounds.

  13. Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling.

    PubMed

    Egea, Sophie C; Dickerson, Ian M

    2012-04-01

    Calcitonin gene-related peptide (CGRP) is a neuropeptide with multiple neuroendocrine roles, including vasodilation, migraine, and pain. The receptor for CGRP is a G protein-coupled receptor (GPCR) that requires three proteins for function. CGRP binds to a heterodimer composed of the GPCR calcitonin-like receptor (CLR) and receptor activity-modifying protein (RAMP1), a single transmembrane protein required for pharmacological specificity and trafficking of the CLR/RAMP1 complex to the cell surface. In addition, the CLR/RAMP1 complex requires a third protein named CGRP-receptor component protein (RCP) for signaling. Previous studies have demonstrated that depletion of RCP from cells inhibits CLR signaling, and in vivo studies have demonstrated that expression of RCP correlates with CLR signaling and CGRP efficacy. It is not known whether RCP interacts directly with CLR to exert its effect. The current studies identified a direct interaction between RCP and an intracellular domain of CLR using yeast two-hybrid analysis and coimmunoprecipitation. When this interacting domain of CLR was expressed as a soluble fusion protein, it coimmunoprecipitated with RCP and inhibited signaling from endogenous CLR. Expression of this dominant-negative domain of CLR did not significantly inhibit trafficking of CLR to the cell surface, and thus RCP may not have a chaperone function for CLR. Instead, RCP may regulate CLR signaling in the cell membrane, and direct interaction between RCP and CLR is required for CLR activation. To date, RCP has been found to interact only with CLR and represents a novel neuroendocrine regulatory step in GPCR signaling.

  14. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins

    PubMed Central

    Magalhaes, Ana C; Dunn, Henry; Ferguson, Stephen SG

    2012-01-01

    GPCRs represent the largest family of integral membrane proteins and were first identified as receptor proteins that couple via heterotrimeric G-proteins to regulate a vast variety of effector proteins to modulate cellular function. It is now recognized that GPCRs interact with a myriad of proteins that not only function to attenuate their signalling but also function to couple these receptors to heterotrimeric G-protein-independent signalling pathways. In addition, intracellular and transmembrane proteins associate with GPCRs and regulate their processing in the endoplasmic reticulum, trafficking to the cell surface, compartmentalization to plasma membrane microdomains, endocytosis and trafficking between intracellular membrane compartments. The present review will overview the functional consequence of β-arrestin, receptor activity-modifying proteins (RAMPS), regulators of G-protein signalling (RGS), GPCR-associated sorting proteins (GASPs), Homer, small GTPases, PSD95/Disc Large/Zona Occludens (PDZ), spinophilin, protein phosphatases, calmodulin, optineurin and Src homology 3 (SH3) containing protein interactions with GPCRs. LINKED ARTICLES This article is part of a themed section on the Molecular Pharmacology of G Protein-Coupled Receptors (GPCRs). To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-6. To view the 2010 themed section on the same topic visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2010.159.issue-5/issuetoc PMID:21699508

  15. Design features of portable wheelchair ramps and their implications for curb and vehicle access.

    PubMed

    Storr, Tim; Spicer, Julie; Frost, Peggy; Attfield, Steve; Ward, Christopher D; Pinnington, Lorraine L

    2004-05-01

    This study evaluated a range of portable wheelchair ramps to highlight the effect of different product features on ease of use when wheelchair users climb curbs or access vehicles. Twelve portable ramps were evaluated. Although all the ramps were designed to load powered wheelchairs into motor vehicles, they were manufactured in different designs. The ramps were based on a "singlewide" platform or "channel" design. Some ramps had fixed dimensions, whereas others could be reduced in size because they were telescopic or designed to allow folding. Overall, the ramps could be divided into four subgroups on the basis of their key features. These were horizontally and longitudinally folding ramps, telescopic ramps, and ramps with fixed dimensions. The telescopic ramps could be subdivided into "U"-shaped gutter ramps and reverse profile ramps. Product appraisals and trials involving wheelchair users and caregivers of wheelchair users were done to evaluate each of these ramp designs. Although wheelchair ramps are available in a wide range of designs and configurations, we found that no single ramp design successfully met the needs of all wheelchair users or their caregivers. The evaluation highlighted a number of specific problems and potential hazards. Some ramps were found to move during a maneuver, showed poor stability when used with some vehicles, or were too narrow to allow wheelchair castors to pass through the channel without jamming. Some features, such as handles and locking mechanisms, influenced the ease with which the caregivers could use the ramps. Wheelchair users preferred the wide platform ramps because they were able to drive up these with ease and little preparation. The caregivers preferred folding or telescopic channel ramps because these were easier to handle and store.

  16. CABLE DESIGN FOR FAST RAMPED SUPERCONDUCTING MAGNETS (COS-0 DESIGN).

    SciTech Connect

    GHOSH,A.

    2004-03-22

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 300 T-m and 100 T-m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of ac loss and magnetic field distortion. The development of the low loss Rutherford cable that can be used is described, together with a novel insulation scheme designed to promote efficient cooling. Measurements of contact resistance in the cable are presented and the results of these measurements are used to predict the ac losses, in the magnets during fast ramp operation. For the high energy ring, a lm model dipole magnet was built, based on the RHIC dipole design. This magnet was tested under boiling liquid helium in a vertical cryostat. The quench current showed very little dependence on ramp rate. The ac losses, measured by an electrical method, were fitted to straight line plots of loss/cycle versus ramp rate, thereby separating the eddy current and hysteresis components. These results were compared with calculated values, using parameters which had previously been measured on short samples of cable. Reasonably good agreement between theory and experiment was found, although the measured hysteresis loss is higher than expected in ramps to the highest field levels.

  17. YF-12A #935 on ramp

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A front, overhead view of the number two YF-12A (60-6935) on the ramp at the NASA Flight Research Center (now NASA Dryden), Edwards, California. Notice how the chines end abruptly, just aft of the nose radome. The aircraft was originally designed as an interceptor. The large radome housed a radar for the Hughes ASG-18 missile fire control system. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made 62 flights. It was lost in a non-fatal crash on 24 June 1971. It was replaced by the so-called YF-12C (SR-71A 61-7951, modified with YF-12A inlets and engines and a bogus tail number 06937). The Lockheed A-12 family, known as the

  18. Guidelines for the Calculation of the Accumulator Magnet Bus Ramps for Fermilab Experiment E835

    SciTech Connect

    McGinnis, Dave; Stancari, Giulio; Werkema, Steve; /Fermilab

    1999-04-15

    This report lists the steps that are required to calculate deceleration ramps for all relevant Accumulator devices. The ramps used for the 1996-97 fixed target run (experiment E835) are saved in files associated with ACNET console application PA1627 (PAUX RAMP DEVELOP). These ramps cannot be re-used because the Accumulator {gamma}{sub t} upgrade has significantly changed the lattice since the last time the ramps were used. Consequently, new deceleration ramps must be calculated and commissioned before the next fixed target run. The deceleration ramp for a particular device is a table that gives the sequence of set values sent to the device as the ramp is executed. The 1997 ramps consist of ramp tables for 100 devices. Appendix 1 gives a list of the devices ramped. Most of these devices will still require ramps for the next fixed target run. Future decelerations will also require ramps for the quadrupole magnet shunts that were installed as part of the {gamma}{sub t} upgrade. Additionally, ramps must be constructed for the two skew-sextupole magnets that will be installed during the summer of 1999.

  19. Shock formation and the ideal shape of ramp compression waves

    SciTech Connect

    Swift, D C; Kraus, R G; Loomis, E; Hicks, D G; McNaney, J M; Johnson, R P

    2008-05-29

    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long duration ramps are desired.

  20. Speed limit and ramp meter control for traffic flow networks

    NASA Astrophysics Data System (ADS)

    Goatin, Paola; Göttlich, Simone; Kolb, Oliver

    2016-07-01

    The control of traffic flow can be related to different applications. In this work, a method to manage variable speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards (LWR) network model is introduced. Following a 'first-discretize-then-optimize' approach, the first order optimality system is derived and the switch of speeds at certain fixed points in time is explained, together with the boundary control for the ramp metering. Sequential quadratic programming methods are used to solve the control problem numerically. For application purposes, experimental setups are presented wherein variable speed limits are used as a traffic guidance system to avoid traffic jams on highway interchanges and on-ramps.

  1. Ramp compression of magnesium oxide to 234 GPa

    DOE PAGES

    Wang, Jue; Smith, R. F.; Coppari, F.; ...

    2014-05-07

    Single-crystal magnesium oxide (MgO) samples were ramp compressed to above 200 GPa pressure at the Omega laser facility. Multi-stepped MgO targets were prepared using lithography and wet etching techniques. Free surface velocities of ramp-compressed MgO were measured with a VISAR. The sound velocity and stress-density response were determined using an iterative Lagrangian analysis. The measured equation of state is consistent with expectations from previous shock and static data as well as with a recent X-ray diffraction measurement under ramp loading. The peak elastic stresses observed in our samples had amplitudes of 3-5.5 GPa, decreasing with propagation distance.

  2. PDR with a Foot-Mounted IMU and Ramp Detection

    PubMed Central

    Jiménez, Antonio R.; Seco, Fernando; Zampella, Francisco; Prieto, José C.; Guevara, Jorge

    2011-01-01

    The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person’s body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person’s foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps. PMID:22163701

  3. Ramp-edge structured tunneling devices using ferromagnet electrodes

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi

    2002-09-03

    The fabrication of ferromagnet-insulator-ferromagnet magnetic tunneling junction devices using a ramp-edge geometry based on, e.g., (La.sub.0.7 Sr.sub.0.3) MnO.sub.3, ferromagnetic electrodes and a SrTiO.sub.3 insulator is disclosed. The maximum junction magnetoresistance (JMR) as large as 23% was observed below 300 Oe at low temperatures (T<100 K). These ramp-edge junctions exhibited JMR of 6% at 200 K with a field less than 100 Oe.

  4. Lower hybrid assisted plasma current ramp-up in ITER

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Artaud, J. F.; Basiuk, V.; Bécoulet, A.; Dokuka, V.; Hoang, G. T.; Imbeaux, F.; Khayrutdinov, R. R.; Lister, J. B.; Lukash, V. E.

    2009-06-01

    Lower hybrid (LH) assisted plasma current ramp-up in ITER is demonstrated using a free-boundary full tokamak discharge simulator which combines the DINA-CH and CRONOS codes. LH applied from the initial phase of the plasma current ramp-up increases the safety margins in operating the superconducting poloidal field coils both by reducing resistive ohmic flux consumption and by providing non-inductively driven plasma current. Loss of vertical control associated with high plasma internal inductance is avoided by tailoring the plasma current density profiles. Effects of early LH application on the plasma shape evolution are identified by the free-boundary plasma simulation.

  5. Analysis of failed ramps during the RHIC FY09 run

    SciTech Connect

    Minty, M.

    2014-08-15

    The Relativistic Heavy Ion Collider (RHIC) is a versatile accelerator that supports operation with polarized protons of up to 250 GeV and ions with up to 100 GeV/nucleon. During any running period, various operating scenarios with different particle species, beam energies or accelerator optics are commissioned. In this report the beam commissioning periods for establishing full energy beams (ramp development periods) from the FY09 run are summarized and, for the purpose of motivating further developments, we analyze the reasons for all failed ramps.

  6. SR-71 Ship #1 on Ramp

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This photo shows a head-on shot of NASA's SR-71A aircraft on the ramp at NASA's Dryden Flight Research Center, Edwards, California. NASA operated two SR-71s, an SR-71A and an SR- 71B pilot trainer aircraft, both based at Dryden, at that particular point in time. The SR-71 was designed and built by the Lockheed Skunk Works, now the Lockheed Martin Skunk Works. Studies have shown that less than 20 percent of the total thrust used to fly at Mach 3 is produced by the basic engine itself. The balance of the total thrust is produced by the unique design of the engine inlet and 'moveable spike' system at the front of the engine nacelles, and by the ejector nozzles at the exhaust which burn air compressed in the engine bypass system. Data from the SR-71 high speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems, including a high speed civil transport. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to

  7. SR-71 - Taxi on Ramp with Engines

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows a head-on shot of NASA's SR-71A aircraft taxiing on the ramp at NASA's Dryden Flight Research Center, Edwards, California, heat waves from its engines blurring the hangars in the background. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena

  8. Three SR-71s on Ramp

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The original trio of SR-71 'Blackbirds' loaned to NASA by the U.S. Air Force for high-speed, high-altitude research line the ramp at the Dryden Flight Research Center, Edwards, California. The three former reconnaissance aircraft, two SR-71 'A' models and one 'B' model, can fly more than 2200 mph and at altitudes of over 80,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in aerodynamics, propulsion, structures, thermal protection materials, atmospheric studies, and sonic boom characterization. One of the 'A' models was later returned the Air Force for active duty. It subsequently returned to Dryden. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system

  9. SR-71 Ship #1 on Ramp

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This look-down, front view of NASA's SR-71A aircraft shows the Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in

  10. SR-71 Ship #1 on Ramp

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This look-down view of NASA's SR-71A aircraft shows the Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California, with Rogers Dry Lake in the background. NASA operated two SR-71s, an SR-71A and an SR- 71B pilot trainer aircraft at that point in time, both based at Dryden. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the

  11. Records Surveys and Schedules: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    Charman, Derek

    Prepared for Unesco's Records and Archives Management Programme (RAMP), this study is intended to introduce workers in archival services to the life cycle concept of records, and to the advantages of establishing a legally authorized and comprehensive program for the orderly disposal of modern institutional records. It is noted that, although the…

  12. Student Surveyors Test Skills on Mississippi Boat Ramp

    ERIC Educational Resources Information Center

    Staley, Glen Lamb

    1978-01-01

    Students enrolled in the construction surveying class at Southern Illinois University's School of Technical Careers gained practical experience and helped the community by giving engineering assistance to the checking of existing design features and to surveying and laying out a project to construct a boat ramp on the Mississippi River. An…

  13. 9 CFR 313.1 - Livestock pens, driveways and ramps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... animal may be injured shall be repaired. (b) Floors of livestock pens, ramps, and driveways shall be constructed and maintained so as to provide good footing for livestock. Slip resistant or waffled floor... the opinion of the inspector, to protect them from the adverse climatic conditions of the locale...

  14. 18. View of W elevation of ramp looking NE showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View of W elevation of ramp looking NE showing entrances and openings to storage spaces below. - Hacienda Azurarera Santa Elena, Sugar Mill Ruins, 1.44 miles North of PR Route 2 Bridge Over Rio De La Plata, Toa Baja, Toa Baja Municipio, PR

  15. The Archival Appraisal of Photographs: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    Leary, William H.

    Prepared for Unesco's Records and Archives Management Programme (RAMP), this study is designed to provide archivists, manuscript and museum curators, and other interested information professionals in both industrialized and developing countries with an understanding of the archival character of photographs, and a set of guidelines for the…

  16. 5. VIEW TO NORTH; RAMP AND WEST FRONT MBE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW TO NORTH; RAMP AND WEST FRONT MBE BUILDING IN RELATION TO U.S. POST OFFICE TERMINAL ANNEX BUILDING (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  17. 24. CUSHMAN #1 CONCRETE SPILLWAY RAMPS PLAN AND DETAILS. January ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. CUSHMAN #1 CONCRETE SPILLWAY RAMPS PLAN AND DETAILS. January 1981. Revised in June 1981. Reference No. BA-081 - Cushman No. 1 Hydroelectric Power Plant, Spillway, North Fork of Skokomish River, 5 miles West of Hood Canal, Hoodsport, Mason County, WA

  18. Unsteady transitions of separation patterns in single expansion ramp nozzle

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Xu, J.; Yu, K.; Mo, J.

    2015-11-01

    The single expansion ramp nozzle is one of the optimal configurations for a planar rocket-based combined cycle engine because of its good integration and self-adaptability at off-design operation. The single expansion ramp nozzle is seriously overexpanded when the vehicle is at low speed, resulting in complex flow separation phenomena. Several separation patterns have been found in the single expansion ramp nozzle. Numerical simulations have shown that the transition between these separation patterns occurs in the nozzle startup and shutdown processes. However, only a few relevant experimental studies have been reported. This study reproduces the nozzle startup and shutdown processes using wind tunnel experiments. Two restricted shock separation patterns are observed in the experiment, namely, a separation bubble either forms on the ramp or the flap. The detailed flow fields in the transition processes are captured using a high-speed camera. The shock wave structures in the two separation patterns, influences of the nozzle pressure ratio (NPR) on the separation patterns and changes of the shock waves in the transition processes are discussed in detail. Shock wave instabilities accompany the separation transition, which usually takes less than 5 ms. The nozzle pressure ratios corresponding to the separation pattern transition are different in the startup and shutdown processes, which leads to a hysteresis effect.

  19. Archives and Records Management for Decision Makers: A RAMP Study.

    ERIC Educational Resources Information Center

    Mazikana, Peter C.

    Intended to highlight those aspects of the archival field that government officials should be aware of, this report on the Records and Archives Management Programme (RAMP) outlines the major principles of records management and archives administration, identifies the information needs of the decision makers, and assesses the ways in which records…

  20. A Framework to Support Generator Ramping Uncertainty Analysis and Visualization

    SciTech Connect

    2015-12-01

    Power system operation requires maintaining a continuous balance between system demand and generation within certain constraints. Traditionally, the balancing processes are based on deterministic models, which do not consider possible random deviations of system generation and load from their predicted values. With the increasing penetration of the renewable generation, unexpected balancing problems can happen due to the deviations. This can result in serious risks to system reliability and efficiency. When the available balancing reserve is not enough to cover the predicted net load range with uncertainty, deficiency of balancing needs occurs. In this case, it is necessary to commit or de-commit additional conventional generators to achieve the desired confidence level for the balancing needs. The framework is built for solving this problem. The ramping tool engine is used to predict additional balancing requirements caused by the variability and uncertainty of the renewable energy, under the constraints of the generation ramping capability and interchange schedule. The webbrowser- based GUI is used to visualize the data in web-environment, which provides flexibility to allow user to see the ramping outputs in any platform. The GOSS structure provides strong support to allow easy communication between ramping engine, and system inputs, as well as the GUI.

  1. Ramp Technology and Intelligent Processing in Small Manufacturing

    NASA Technical Reports Server (NTRS)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  2. Ramp-up of CHI Initiated Plasmas on NSTX

    SciTech Connect

    Mueller, D; Bell, R E; LeBlanc, B; Roquemore, A L; Raman, R; Jarboe, T R; Nelson, B A; Soukhanovskii, V

    2009-10-29

    Experiments on the National Spherical Torus (NSTX) have now demonstrated flux savings using transient coaxial helicity injection (CHI). In these discharges, the discharges initiated by CHI are ramped up with an inductive transformer and exhibit higher plasma current than discharges without the benefit of CHI initiation.

  3. ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE GROVE AVENUE. ORANGE GROVE AVENUE BRIDGE IN REAR. NOTE IRRIGATION AND DRAINAGE FEATURES AT RIGHT. LOOKING 248°WSW - Arroyo Seco Parkway, Orange Grove Avenue Bridge, Milepost 30.59, Los Angeles, Los Angeles County, CA

  4. 20. INTERIOR VIEW TO THE EAST OF THE ACCESS RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. INTERIOR VIEW TO THE EAST OF THE ACCESS RAMP TO THE HOT DISASSEMBLY AREA FROM THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV

  5. Experiencing Production Ramp-Up Education for Engineers

    ERIC Educational Resources Information Center

    Bassetto, S.; Fiegenwald, V.; Cholez, C.; Mangione, F.

    2011-01-01

    This paper presents a game of industrialisation, based on a paper airplane, that mimics real world production ramp-up and blends classical engineering courses together. It is based on a low cost product so that it can be mass produced. The game targets graduate students and practitioners in engineering fields. For students, it offers an experiment…

  6. Facility No. S362, view across the ramp U.S. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility No. S362, view across the ramp - U.S. Naval Base, Pearl Harbor, Seaplane Ramps - World War II Type, Southwest and west shore of Ford Island, near Wasp Boulevard, Pearl City, Honolulu County, HI

  7. Return time statistic of wind power ramp events

    NASA Astrophysics Data System (ADS)

    Calif, Rudy; Schmitt, François G.

    2015-04-01

    Detection and forecasting of wind power ramp events is a critical issue for the management of power generated by wind turbine and a cluster of wind turbines. The wind power ramp events occur suddenly with larges changes (increases or decreases) of wind power output. In this work, the statistic and the dynamic of wind power ramp events are examined. For that, we analyze several datasets of wind power output with different sampling rate and duration. The data considered are delivered by five wind farms and two single turbines, located at different geographic locations. From these datasets, the return time series τr of wind power ramp events, i.e., the time between two successive ramps above a given threshold Δ p. The return time statistic is investigated plotting the complementary cumulative distribution C(τ_r) in log-log representation. Using a robust method developed by Clauset et al., combining maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov Smirnov statistic, we show a scaling behavior of the return time statistic, of the form: C(τ_r)˜ kτ_r-α where k is a positive constant and the exponent α called the tail exponent of the distribution. In this study, the value of α ranges from 1.68 to 2.20. This result is a potential information for the estimation risk of wind power generation based on the return time series. Clauset A, Shalizi CR, Newman MEJ. Power-Law distributions in empirical data. SIAM Review 2009;51(4):661-703.

  8. Numerical study of micro-ramp vortex generator for supersonic ramp flow control at Mach 2.5

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Chen, L.; Li, Q.; Liu, C.

    2017-01-01

    An implicit large eddy simulation, implemented using a fifth-order, bandwidth-optimized weighted essentially non-oscillatory scheme, was used to study the flow past a compression ramp at Mach 2.5 and {Re}_{θ } = 5760 with and without a micro-ramp vortex generator (MVG) upstream. The MVG serves as a passive flow control device. The results suggested that MVGs may distinctly reduce the separation zone at the ramp corner and lower the boundary layer shape factor. New findings regarding the MVG-ramp interacting flow included the surface pressure distribution, three-dimensional structures of the re-compression shock waves, surface separation topology, and a new secondary vortex system. The formation of the momentum deficit was studied in depth. A new mechanism was observed wherein a series of vortex rings originated from the MVG-generated high shear at the boundary of the momentum deficit zone. Vortex rings strongly interact with the shock-separated flow and play an important role in the separation zone reduction.

  9. 30 CFR 57.9303 - Construction of ramps and dumping facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Construction of ramps and dumping facilities... MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites § 57.9303 Construction of ramps and dumping facilities. Ramps...

  10. 30 CFR 56.9303 - Construction of ramps and dumping facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Construction of ramps and dumping facilities... Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites § 56.9303 Construction of ramps and dumping facilities. Ramps and...

  11. Computation of turbulent, separated, unswept compression ramp interactions

    NASA Technical Reports Server (NTRS)

    Marshall, T. A.; Dolling, D. S.

    1992-01-01

    Examination of the literature shows that the comparison between experiment and computation for highly separated unswept compression ramp flows is generally poor, irrespective of the turbulence model used. In general, the upstream influence is not correct, the wall pressure rise through separation is too steep, and the pressures under the separated shear layer are too high. In the current study, the objective is to determine if these discrepancies might be attributed more to other factors such as flowfield unsteadiness or three-dimensionality, rather than to inadequate turbulence modeling. To examine this possibility, multichannel wall pressure fluctuations were measured under the unsteady separation shock wave in a 28-deg unswept compression ramp flow at Mach 5. The results show that the large scale, low frequency separation shock unsteadiness controls the distribution of time-averaged surface properties and that neglect of the unsteadiness is probably the primary cause of the discrepancy between experiment and computation.

  12. Gas turbine power plant with supersonic shock compression ramps

    DOEpatents

    Lawlor, Shawn P.; Novaresi, Mark A.; Cornelius, Charles C.

    2008-10-14

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  13. Measuring Redshifts of Emission-line Galaxies Using Ramp Filters

    NASA Astrophysics Data System (ADS)

    Lesser, Ryan William; Bohman, John; McNeff, Mathew; Holden, Marcus; Moody, Joseph; Joner, Michael D.; Barnes, Jonathan

    2016-01-01

    Photometric redshifts are routinely obtained for galaxies without emission using broadband photometry. It is possible in theory to derive reasonably accurate (< 200 km/sec) photometric redshift values for emission-line objects using "ramp" filters with a linearly increasing/decreasing transmission through the bandpass. To test this idea we have obtained a set of filters tuned for isolating H-alpha at a redshift range of 0-10,000 km/sec. These filters consist of two that vary close to linearly in transmission, have opposite slope, and cover the wavelength range from 655nm - 685nm, plus a Stromgren y and 697nm filter to measure the continuum. Redshifts are derived from the ratio of the ramp filters indices after the continuum has been subtracted out. We are finishing the process of obtaining photometric data on a set of about 100 galaxies with known redshift to calibrate the technique and will report on our results.

  14. Radar echo processing with partitioned de-ramp

    SciTech Connect

    Dubbert, Dale F.; Tise, Bertice L.

    2013-03-19

    The spurious-free dynamic range of a wideband radar system is increased by apportioning de-ramp processing across analog and digital processing domains. A chirp rate offset is applied between the received waveform and the reference waveform that is used for downconversion to the intermediate frequency (IF) range. The chirp rate offset results in a residual chirp in the IF signal prior to digitization. After digitization, the residual IF chirp is removed with digital signal processing.

  15. A VERY FAST RAMPING MUON SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect

    SUMMERS,D.J.BERG,J.S.PALMER,R.B.GARREN,A.A.

    2003-05-12

    A 4600 Hz fast ramping synchrotron is studied as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice. Muon survival is 83%.

  16. Ramp-rate sensitivity of SSC dipole magnet prototypes

    SciTech Connect

    Devred, A.; Ogitsu, T.

    1994-07-01

    One of the major achievements of the magnet R&D program for the Superconducting Super Collider (SSC) is the fabrication and test of a series of 20 5-cm aperture, 15-m long dipole magnet prototypes. The ramp rate sensitivity of these magnets appears to fall in at least two categories that can be correlated to the manufacturer and production batch of the strands used for the inner-coil cables. The first category, referred to as type-A, is characterized by a strong quench current degradation at high ramp rates, usually accompanied by large distortions of the multipole fields and large energy losses. The second category, referred to as type-B, is characterized by a sudden drop of quench current at low ramp rates, followed by a much milder degradation at larger rates. The multipole fields of the type-B magnets show little ramp-rate sensitivity, and the energy losses are smaller than for the type-A magnets. The behavior of the Type-A magnets can be explained in terms of inter-strand eddy currents arising from low and non-uniform resistances at the crossovers between the strands of the two-layer Rutherford-type cable. Anomalies in the transport-current repartition among the cable strands are suggested as a possible cause for the type-B behavior. The origins of these anomalies have not yet been clearly identified. The SSC project was canceled by decision of the United States Congress on October 21, 1994.

  17. Investigation of ramp injectors for supersonic mixing enhancement

    NASA Technical Reports Server (NTRS)

    Haimovitch, Y.; Gartenberg, E.; Roberts, A. S., Jr.

    1994-01-01

    A comparative study of wall mounted swept ramp injectors fitted with injector nozzles of different shape has been conducted in a constant area duct to explore mixing enhancement techniques for scramjet combustors. Six different injector nozzle inserts, all having equal exit and throat areas, were tested to explore the interaction between the preconditioned fuel jet and the vortical flowfield produced by the ramp: circular nozzle (baseline), nozzle with three downstream facing steps, nozzle with four vortex generators, elliptical nozzle, tapered-slot nozzle, and trapezoidal nozzle. The main flow was air at Mach 2, and the fuel was simulated by air injected at Mach 1.63 or by helium injected at Mach 1.7. Pressure and temperature surveys, combined with Mie and Rayleigh scattering visualization, were used to investigate the flow field. The experiments were compared with three dimensional Navier-Stokes computations. The results indicate that the mixing process is dominated by the streamwise vorticity generated by the ramp, the injectors' inner geometry having a minor effect. It was also found that the injectant/air mixing in the far-field is nearly independent of the injector geometry, molecular weight of the injectant, and the initial convective Mach number.

  18. Kinematics investigations of cylinders rolling down a ramp using tracker

    NASA Astrophysics Data System (ADS)

    Prima, Eka Cahya; Mawaddah, Menurseto; Winarno, Nanang; Sriwulan, Wiwin

    2016-02-01

    Nowadays, students' exploration as well as students' interaction in the application stage of learning cycle can be improved by directly model real-world objects based on Newton's Law using Open Source Physics (OSP) computer-modeling tools. In a case of studying an object rolling down a ramp, a traditional experiment method commonly uses a ticker tape sliding through a ticker timer. However, some kinematics parameters such as the instantaneous acceleration and the instantaneous speed of object cannot be investigated directly. By using the Tracker video analysis method, all kinematics parameters of cylinders rolling down a ramp can be investigated by direct visual inspection. The result shows that (1) there are no relations of cylinders' mass as well as cylinders' radius towards their kinetics parameters. (2) Excluding acceleration data, the speed and position as function of time follow the theory. (3) The acceleration data are in the random order, but their trend-lines closely fit the theory with 0.15% error. (4) The decrease of acceleration implicitly occurs due to the air friction acting on the cylinder during rolling down. (5) The cylinder's inertial moment constant has been obtained experimentally with 3.00% error. (6) The ramp angle linearly influences the cylinders' acceleration with 2.36% error. This research implied that the program can be further applied to physics educational purposes.

  19. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  20. Middle Ordovician carbonate ramp deposits of central Appalachians

    SciTech Connect

    Demicco, R.V.

    1986-05-01

    Middle Ordovician carbonates exposed in Maryland and Pennsylvania can be divided into six facies, each a few tens to hundreds of meters thick: (1) cyclic, meter-scale, alternating thin-bedded to massive limestones and mud-cracked, stromatolitic laminites; (2) thick-bedded to massive skeletal wackestones containing diverse fauna; (3) cross-stratified skeletal-oncoid grainstones; (4) graded, thin-bedded limestones with diverse fauna and internal planar lamination or hummocky cross-stratification; (5) nodular, thin-bedded limestones; and (6) shaly, thin-bedded to laminated limestones containing rare breccia beds. These facies are interpreted as deposits of: (1) tidal flats; (2) open, bioturbated muddy shelf; (3) lime-sand shoals; (4) below normal wave-base shelf; (5) deep ramp; and (6) basin. Palinspastic reconstructions of facies distribution in Maryland and Pennsylvania suggest that these facies developed during flooding of a carbonate ramp that deepened northeastward into a foreland basin. This northern depocenter of the Middle Ordovician Appalachian foreland basin is notably different that its southern counterpart in Virginia and Tennessee. Large skeletal bioherms did not develop on the northern carbonate ramp, where only one onlap package exists. Thus, although the record of the foundering of the passive Cambrian-Ordovician carbonate shelf is grossly similar in the southern and central Appalachians, there are several significant differences. The overlying Martinsburg Formation contains deep-water facies and taconic-style thrust sheets in the central Appalachians, which suggests that the two depocenters may have had different tectonic settings.

  1. Development of ramp-flat structures during Aegean extension

    NASA Astrophysics Data System (ADS)

    Brun, Jean-Pierre; Sokoutis, Dimitrios

    2014-05-01

    Low-angle extensional shear is frequently observed in the Aegean metamorphic rocks. This deformation is commonly interpreted as being related to detachment at crustal scale, yet it often corresponds to ramp-flat extensional systems that, at many places, control the deposition of Neogene sedimentary basins. From a mechanical point of view, the development of a ramp-flat structure requires the presence of weak layers that can be activated as décollement between stronger rocks units. In the Aegean, the décollement generally develops within the upper brittle crust (i.e. with temperatures lower than about 400°C) that consists in recently exhumed metamorphic rocks. The process by which, these layers become weak enough to form efficient décollements in extension is somewhat intriguing and not well understood. In this contribution we examine the particular case of ramp-flat structures of the Southern Rhodope Core Complex that controlled the deposition of late Miocene to Pleistocene sediments in continental and marine basins. Field evidence is used to argue that the décollement corresponds to marble layers that separate orthogneisses at 2-3 km depth within an upper brittle crust whose thickness is around 5 km. Field observation and stable isotope measurements suggest that the ramp-flat structure observed on the island of Thassos occurred in a marble unit rich in fluids at a temperature of around 200°C. Using laboratory experiments, we explore the geometry of extensional structures (fault systems, rollovers, piggy-back basins…) that can develop at crustal-scale as a function of: i) décollement depth and dip, ii) number of décollements, and iii) strength contrast, between the décollement and overlying strong units. The results are compared with the situation observed in the Southern Rhodope Core Complex. We are convinced that the principles of ramp-flat extension discussed here have a strong potential of application in many other orogenic domains affected by large

  2. Effect of aging on the expression of adrenomedullin and its receptor component proteins in the male reproductive system of the rat.

    PubMed

    Li, Yuk-Yin; O, Wai-Sum; Tang, Fai

    2007-12-01

    This study investigated the levels of adrenomedullin (AM) and the gene expression of AM, calcitonin receptor-like receptor (CRLR), receptor activity-modifying proteins (RAMPs), and receptor-coupling protein (RCP) in the testis, ventral prostate, seminal vesicle, and epididymis in rats aged 3, 12, and 20 months by radioimmunoassay and semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). The results indicate an age-related increase in AM and its messenger RNA (mRNA) levels in the testis and decrease in the sex accessory glands. The gene expression of CRLR and RCP decreased only in the sex accessory glands. The changes in the gene expression of RAMPs suggest that the major increase was in CGRP receptors in the testis, whereas the major decreases in the ventral prostate and the seminal vesicles might be CGRP and AM receptors, respectively. The decreases in these receptors were similar in the epididymis. The results suggest possible roles of AM in the male reproductive system during aging.

  3. Recognition of Ramps and Steps by People with Low Vision

    PubMed Central

    Bochsler, Tiana M.; Legge, Gordon E.; Gage, Rachel; Kallie, Christopher S.

    2013-01-01

    Purpose. Detection and recognition of ramps and steps are important for the safe mobility of people with low vision. Our primary goal was to assess the impact of viewing conditions and environmental factors on the recognition of these targets by people with low vision. A secondary goal was to determine if results from our previous studies of normally sighted subjects, wearing acuity-reducing goggles, would generalize to low vision. Methods. Sixteen subjects with heterogeneous forms of low vision participated—acuities from approximately 20/200 to 20/2000. They viewed a sidewalk interrupted by one of five targets: a single step up or down, a ramp up or down, or a flat continuation of the sidewalk. Subjects reported which of the five targets was shown, and percent correct was computed. The effects of viewing distance, target–background contrast, lighting arrangement, and subject locomotion were investigated. Performance was compared with a group of normally sighted subjects who viewed the targets through acuity-reducing goggles. Results. Recognition performance was significantly better at shorter distances and after locomotion (compared with purely stationary viewing). The effects of lighting arrangement and target–background contrast were weaker than hypothesized. Visibility of the targets varied, with the step up being more visible than the step down. Conclusions. The empirical results provide insight into factors affecting the visibility of ramps and steps for people with low vision. The effects of distance, target type, and locomotion were qualitatively similar for low vision and normal vision with artificial acuity reduction. However, the effects of lighting arrangement and background contrast were only significant for subjects with normal vision. PMID:23221068

  4. On the Effect of Ramp Rate in Damage Accumulation of the CPV Die-Attach: Preprint

    SciTech Connect

    Bosco, N. S.; Silverman, T. J.; Kurtz, S. R.

    2012-06-01

    It is commonly understood that thermal cycling at high temperature ramp rates may activate unrepresentative failure mechanisms. Increasing the temperature ramp rate of thermal cycling, however, could dramatically reduce the test time required to achieve an equivalent amount of thermal fatigue damage, thereby reducing overall test time. Therefore, the effect of temperature ramp rate on physical damage in the CPV die-attach is investigated. Finite Element Model (FEM) simulations of thermal fatigue and thermal cycling experiments are made to determine if the amount of damage calculated results in a corresponding amount of physical damage measured to the die-attach for a variety of fast temperature ramp rates. Preliminary experimental results are in good agreement with simulations and reinforce the potential of increasing temperature ramp rates. Characterization of the microstructure and resulting fatigue crack in the die-attach suggest a similar failure mechanism across all ramp rates tested.

  5. When driving on the left side is safe: Safety of the diverging diamond interchange ramp terminals.

    PubMed

    Claros, Boris; Edara, Praveen; Sun, Carlos

    2017-03-01

    How safe are the ramp terminals of a diverging diamond interchange (DDI)? This paper answered this question using data from DDI sites in Missouri. First, crash prediction models for ramp terminals for different crash severities were developed. These models were then utilized in the Empirical Bayes (EB) evaluation of DDI ramp terminals. Due to inconsistencies in crash reporting for freeways in Missouri, individual crash reports were reviewed to properly identify ramp terminal crashes. A total of 13,000 crash reports were reviewed for model development and EB evaluation. The study found that the DDI ramp terminals were safer than the conventional diamond signalized terminals. The DDI ramp terminals experienced 55% fewer fatal and injury crashes, 31.4% fewer property damage only crashes, and 37.5% fewer total crashes.

  6. Experiencing production ramp-up education for engineers

    NASA Astrophysics Data System (ADS)

    Bassetto, S.; Fiegenwald, V.; Cholez, C.; Mangione, F.

    2011-08-01

    This paper presents a game of industrialisation, based on a paper airplane, that mimics real world production ramp-up and blends classical engineering courses together. It is based on a low cost product so that it can be mass produced. The game targets graduate students and practitioners in engineering fields. For students, it offers an experiment in which methods learned in separate courses can be applied. For practitioners, it affords an opportunity to engage in reflexive practices related to industrialisation. Both students and practitioners are able to experience integrated management, required by industrialisation, in a controlled environment: the laboratory.

  7. Online Analysis of Wind and Solar Part I: Ramping Tool

    SciTech Connect

    Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.; Subbarao, Krishnappa

    2012-01-31

    To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. This tool predicts and displays additional capacity and ramping requirements caused by uncertainties in forecasts of loads and renewable generation. The tool is currently operational in the CAISO operations center. This is one of two final reports on the project.

  8. Status of the SNS Ring Power Ramp UP

    SciTech Connect

    Plum, Michael A; Aleksandrov, Alexander V; Allen, Christopher K; Cousineau, Sarah M; Danilov, Viatcheslav; Galambos, John D; Holmes, Jeffrey A; Jeon, Dong-O; Pelaia II, Tom; Shishlo, Andrei P; Zhang, Yan

    2008-01-01

    Beam was first circulated in the Spallation Neutron Source (SNS) ring in January 2006. Since that time we have been working to raise the beam power to the design value of 1.4 MW. In general the power ramp up has been proceeding very well, but several issues have been uncovered. Examples include poor transmission of the waste beams in the injection dump beam line, and cross-plane coupling in the ring to target beam transport line. In this paper we will discuss these issues and present an overall status of the ring and the transport beam lines.

  9. X-1E Loaded in B-29 Mothership on Ramp

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1E airplane being loaded under the mothership, Boeing B-29. The X-planes had originally been lowered into a loading pit and the launch aircraft towed over the pit, where the rocket plane was hoisted by belly straps into the bomb bay. By the early 1950s a hydraulic lift had been installed on the ramp at the NACA High-Speed Flight Station to elevate the launch aircraft and then lower it over the rocket plane for mating.

  10. Getting to the On-ramp of the Information Superhighway

    DTIC Science & Technology

    1996-01-01

    manager may elect to automatically forward all incoming e- mail from selected senders to his deputy. It is not necessary to have an AMH installed if users...establish a process to quickly identify the important and rou- tine messages. Most e- mail systems have an inbox which sorts unread e- mail and...messages FYI: for all �unofficial� For Your In- 27 Getting to the On-Ramp formation, or optional messages E- mail should also be � sender friendly.� Some

  11. XB-70A during startup and ramp taxi

    NASA Technical Reports Server (NTRS)

    1968-01-01

    The XB-70 was the world's largest experimental aircraft. Capable of flight at speeds of three times the speed of sound (2,000 miles per hour) at altitudes of 70,000 feet, the XB-70 was used to collect in-flight information for use in the design of future supersonic aircraft, military and civilian. This 35-second video shows the startup of the XB-70A airplane engines, the beginning of its taxi to the runway, and a turn on the ramp that shows the unique configuration of this aircraft.

  12. A Management Case Study: The Implementation of the Rapid Acquisition of Manufactured Parts (RAMP) Program

    DTIC Science & Technology

    1993-06-01

    manufacturing needs based on the dollars available to support this new technology. In December 1987, the staif at NAVSUP awarded the current RAMP contract to...describes the implementation of the Navy’s Rapid Acquisition of Manufactured Parts (RAMP) program. The RAMP program was implemented in 1989 by the Naval...time and cost for manufactured spare parts. This management case study concentrates on the examination of how new technology is implemented into current

  13. Magnetic ramp scale at supercritical perpendicular collisionless shocks: Full particle electromagnetic simulations

    SciTech Connect

    Yang, Zhongwei; Lu, Quanming; Gao, Xinliang; Huang, Can; Yang, Huigen; Hu, Hongqiao; Han, Desheng; Liu, Ying

    2013-09-15

    Supercritical perpendicular collisionless shocks are known to exhibit foot, ramp, and overshoot structures. The shock ramp structure is in a smaller scale in contrast to other microstructures (foot and overshoot) within the shock front. One-dimensional full particle simulations of strictly perpendicular shocks over wide ranges of ion beta β{sub i}, Alfvén Mach number M{sub A}, and ion-to-electron mass ratio m{sub i}/m{sub e} are presented to investigate the impact of plasma parameters on the shock ramp scale. Main results are (1) the ramp scale can be as small as several electron inertial length. (2) The simulations suggest that in a regime below the critical ion beta value, the shock front undergoes a periodic self-reformation and the shock ramp scale is time-varying. At higher ion beta values, the shock front self-reformation is smeared. At still higher ion beta value, the motion of reflected ions is quite diffuse so that they can lead to a quasi-steady shock ramp. Throughout the above three conditions, the shock ramp thickness increases with β{sub i}. (3) The increase (decrease) in Mach number and the decrease (increase) in the beta value have almost equivalent impact on the state (i.e., stationary or nonstationary) of the shock ramp. Both of front and ramp thicknesses are increased with M{sub A}.

  14. Pressurized heavy water reactor fuel behaviour in power ramp conditions

    NASA Astrophysics Data System (ADS)

    Ionescu, S.; Uţă, O.; Pârvan, M.; Ohâi, D.

    2009-03-01

    In order to check and improve the quality of the Romanian CANDU fuel, an assembly of six CANDU fuel rods has been subjected to a power ramping test in the 14 MW TRIGA reactor at INR. After testing, the fuel rods have been examined in the hot cells using post-irradiation examination (PIE) techniques such as: visual inspection and photography, eddy current testing, profilometry, gamma scanning, fission gas release and analysis, metallography, ceramography, burn-up determination by mass spectrometry, mechanical testing. This paper describes the PIE results from one out of the six fuel rods. The PIE results concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the sheath, the fission-products activity distribution in the fuel column, the pressure, volume and composition of the fission gas, the burn-up, the isotopic composition and structural changes of the fuel enabled the characterization of the behaviour of the Romanian CANDU fuel in power ramping conditions performed in the TRIGA materials testing reactor.

  15. Predictability of wind ramps in the Columbia River Gorge

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2013-12-01

    Wind generation capacity in the Bonneville Power Administration (BPA) system, which stands at 4,500 MW currently, can at time account for 70% of total electricity demand. With 2,500 additional MW of wind generation capacity expected by 2015, increasingly accurate forecasts are required to avoid water quality issues associated with hydropower dam overspill. Wind ramps, or large increases or decreases in wind generation over a short period of time, are particularly difficult to accurately forecast in the Columbia River Gorge area. Industry standard computational resources, combined with turbulence grey-zone issues associated with planetary boundary (PBL) schemes, suggest a leveling off of numerical weather prediction (NWP) model skill score with respect to increasing grid resolution until eddy resolving scales are resolved. However, we show that dispersion errors, which associated with wind ramps, continue to decrease for locations and seasons in which meso-scale and topographically forced diurnal motions account for a significant portion of the power spectral density of hub-height wind speeds.

  16. Pure rotation of a prism on a ramp

    PubMed Central

    Zhao, Zhen; Liu, Caishan; Ma, Daolin

    2014-01-01

    In this work, we study a prism with a cross section in polygon rolling on a ramp inclined at a small angle. The prism under gravity rolls purely around each individual edge, intermittently interrupted by a sequence of face collisions between the side face of the prism and the ramp. By limiting the prism in a planar motion, we propose a mathematical model to deal with the events of the impacts. With a pair of laser-Doppler vibrometers, experiments are also conducted to measure the motions of various prisms made of different materials and with different edge number. Not only are good agreements achieved between our numerical and experimental results, but also an intriguing physical phenomenon is discovered: the purely rolling motion is nearly independent of the prism's materials, yet it is closely related to the prism's geometry. Imagine that an ideal circular section can be approximately equivalent to a polygon with a large enough edge number N, the finding presented in this paper may help discover the physical mechanism of rolling friction. PMID:25197242

  17. Ramp exercise protocols for clinical and cardiopulmonary exercise testing.

    PubMed

    Myers, J; Bellin, D

    2000-07-01

    Historically, the protocol used for exercise testing has been based on tradition, convenience or both. In the 1990s, a considerable amount of research has focused on the effect of the exercise protocol on test performance, including exercise tolerance, diagnostic accuracy, gas exchange patterns and the accuracy with which oxygen uptake (VO2) is predicted from the work rate. Studies have suggested that protocols which contain large and/or unequal increments in work cause a disruption in the normal linear relation between VO2 and work rate, leading to an overprediction of metabolic equivalents. Other studies have demonstrated that such protocols can mask the salutary effects of an intervention, and some have suggested that the protocol design can influence the diagnostic performance of the test. Guidelines published by major organisations have therefore suggested that the protocol be individualised based on the patient being tested and the purpose of the test. The ramp approach to exercise testing has recently been advocated because it facilitates recommendations made in these guidelines. This article reviews these issues and discusses the evolution of ramp testing which has occurred in the 1990s.

  18. Feedback simulation of ramped power transients using transfer functions

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-01-01

    The dynamic simulation of reactor transients is important in determining the feedback and temperature responses of various subassembly components. One method of determining component feedbacks (or associated temperature increments) is by using the feedback reactivity transfer functions of the system. For any variation of power with time the component feedback reactivity responses are then obtained by the convolutions of the feedback reactivity transfer functions and the fractional change in system power. (The nodal feedback reactivity transfer functions for the system were obtained, using the EROS computer code, from nodal feedback responses for a step change in power.) This paper discusses the application of these transfer functions in calculating nodal feedback reactivities in the experimental breeder reactor-II (EBR-II) reactor assuming a fractional power shape that can be defined by a series of ramp inputs. For a comparison, these transfer-function calculated nodal reactivities are compared with nodal reactivities calculated using the EROS kinetics code assuming an input reactivity which gives the described ramp power shape.

  19. Reattachment heating upstream of short compression ramps in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Estruch-Samper, David

    2016-05-01

    Hypersonic shock-wave/boundary-layer interactions with separation induce unsteady thermal loads of particularly high intensity in flow reattachment regions. Building on earlier semi-empirical correlations, the maximum heat transfer rates upstream of short compression ramp obstacles of angles 15° ⩽ θ ⩽ 135° are here discretised based on time-dependent experimental measurements to develop insight into their transient nature (Me = 8.2-12.3, Re_h= 0.17× 105-0.47× 105). Interactions with an incoming laminar boundary layer experience transition at separation, with heat transfer oscillating between laminar and turbulent levels exceeding slightly those in fully turbulent interactions. Peak heat transfer rates are strongly influenced by the stagnation of the flow upon reattachment close ahead of obstacles and increase with ramp angle all the way up to θ =135°, whereby rates well over two orders of magnitude above the undisturbed laminar levels are intermittently measured (q'_max>10^2q_{u,L}). Bearing in mind the varying degrees of strength in the competing effect between the inviscid and viscous terms—namely the square of the hypersonic similarity parameter (Mθ )^2 for strong interactions and the viscous interaction parameter bar{χ } (primarily a function of Re and M)—the two physical factors that appear to most globally encompass the effects of peak heating for blunt ramps (θ ⩾ 45°) are deflection angle and stagnation heat transfer, so that this may be fundamentally expressed as q'_max∝ {q_{o,2D}} θ ^2 with further parameters in turn influencing the interaction to a lesser extent. The dominant effect of deflection angle is restricted to short obstacle heights, where the rapid expansion at the top edge of the obstacle influences the relaxation region just downstream of reattachment and leads to an upstream displacement of the separation front. The extreme heating rates result from the strengthening of the reattaching shear layer with the increase in

  20. Application of multi-objective nonlinear optimization technique for coordinated ramp-metering

    SciTech Connect

    Haj Salem, Habib; Farhi, Nadir; Lebacque, Jean Patrick E-mail: nadir.frahi@ifsttar.fr

    2015-03-10

    This paper aims at developing a multi-objective nonlinear optimization algorithm applied to coordinated motorway ramp metering. The multi-objective function includes two components: traffic and safety. Off-line simulation studies were performed on A4 France Motorway including 4 on-ramps.

  1. Thermal ramp tritium release in COBRA-1A2 C03 beryllium pebbles

    SciTech Connect

    Baldwin, D.L.

    1998-03-01

    Tritium release kinetics, using the method of thermal ramp heating at three linear ramp rates, were measured on the COBRA-1A2 C03 1-mm beryllium pebbles. This report includes a brief discussion of the test, and the test data in graph format.

  2. Facility No. S362, view up the ramp. Note the mooring ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility No. S362, view up the ramp. Note the mooring cleat on the top edge of the curb at the right - U.S. Naval Base, Pearl Harbor, Seaplane Ramps - World War II Type, Southwest and west shore of Ford Island, near Wasp Boulevard, Pearl City, Honolulu County, HI

  3. Effects of compression and expansion ramp fuel injector configuration on scramjet combustion and heat transfer

    NASA Technical Reports Server (NTRS)

    Stouffer, Scott D.; Baker, N. R.; Capriotti, D. P.; Northam, G. B.

    1993-01-01

    A scramjet combustor with four wall-ramp injectors containing Mach-1.7 fuel jets in the base of the ramps was investigated experimentally. During the test program, two swept ramp injector designs were evaluated. One swept-ramp model had 10-deg compression-ramps and the other had 10-deg expansion cavities between flush wall ramps. The scramjet combustor model was instrumented with pressure taps and heat-flux gages. The pressure measurements indicated that both injector configurations were effective in promoting mixing and combustion. Autoignition occurred for the compression-ramp injectors, and the fuel began to burn immediately downstream of the injectors. In tests of the expansion ramps, a pilot was required to ignite the fuel, and the fuel did not burn for a distance of at least two gaps downstream of the injectors. Once initiated, combustion was rapid in this configuration. Heat transfer measurements showed that the heat flux differed greatly both across the width of the combustor and along the length of the combustor.

  4. 29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25 Section 1918.25 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car...

  5. The Effects of Truncated Dome Detectable Warnings on Travelers Negotiating Curb Ramps in Wheelchairs

    ERIC Educational Resources Information Center

    Lee, Helen

    2011-01-01

    Truncated domes on curb ramps benefit travelers with visual impairments. However, concerns associated with the safety and negotiability of such detectable warnings for other travelers have resulted in much controversy. The findings of the study presented here indicate that detectable warnings did not adversely affect the negotiability of ramps by…

  6. Structure function analysis of two-scale Scalar Ramps. Part I: Theory and Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parameterize remote turbulence measurements, and to characterize ramp features in the turbulent field. The ramp features are associated with turbulent coherent structures, which dominate energy an...

  7. Experimental Results on Shock-Wave Interaction on Compression Ramps

    NASA Astrophysics Data System (ADS)

    Passaro, A.; Fantoni, G.; Biagioni, L.; Cardone, G.

    2005-02-01

    A set of new experimental tests was carried out with intrusive and non-intrusive measurements related to Shock-Wave Boundary-Layer Interaction (SWBLI) on a 15 deg compression ramp model in a Mach 6 flow with total enthalpy of 1.8-2.5 MJ/kg. The facility was the modified High Enthalpy Arc-heated Tunnel at Alta, Pisa, Italy, with improved performance and diagnostics, in order to provide good control on the actual properties of the tunnel flow. The model shape and test conditions were the same of the previous test campaign carried out during the FESTIP programme. The new results confirmed a good agreement between intrusive and non-intrusive measurements and were also compared with success with numerical predictions, eventually explaining the discrepancy on wall heat flux that was found on the previous test campaign.

  8. Generation of ramp waves using variable areal density flyers

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.

    2016-07-01

    Ramp loading using graded density impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacturing technique, was used to manufacture a graded density flyer, termed the "bed-of-nails" (BON). A 2.5-mm-thick × 99.4-mm-diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 5.5 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 and 1100 m/s using the 100-mm gas gun at the Institute of Shock Physics at Imperial College London. In each experiment, a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry (Het-V) was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ˜ 2.5 μs, with no indication of a shock jump. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.

  9. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  10. Extracting strength from high pressure ramp-release experiments

    SciTech Connect

    Brown, J. L.; Alexander, C. S.; Asay, J. R.; Vogler, T. J.; Ding, J. L.

    2013-12-14

    Unloading from a plastically deformed state has long been recognized as a sensitive measure of a material's deviatoric response. In the case of a ramp compression and unload, time resolved particle velocity measurements of a sample/window interface may be used to gain insight into the sample material's strength. Unfortunately, measurements of this type are often highly perturbed by wave interactions associated with impedance mismatches. Additionally, wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects further complicate the analysis. Here, we present a methodology that overcomes these shortcomings to accurately calculate a mean shear stress near peak compression for experiments of this type. A new interpretation of the self-consistent strength analysis is presented and then validated through the analysis of synthetic data sets on tantalum to 250 GPa. The synthetic analyses suggest that the calculated shear stresses are within 3% of the simulated values obtained using both rate-dependent and rate-independent constitutive models. Window effects are addressed by a new technique referred to as the transfer function approach, where numerical simulations are used to define a mapping to transform the experimental measurements to in situ velocities. The transfer function represents a robust methodology to account for complex wave interactions and a dramatic improvement over the incremental impedance matching methods traditionally used. The technique is validated using experiments performed on both lithium fluoride and tantalum ramp compressed to peak stresses of 10 and 15 GPa, respectively. In each case, various windows of different shock impedance are used to ensure consistency within the transfer function analysis. The data are found to be independent of the window used and in good agreement with previous results.

  11. Extracting strength from high pressure ramp-release experiments

    NASA Astrophysics Data System (ADS)

    Brown, J. L.; Alexander, C. S.; Asay, J. R.; Vogler, T. J.; Ding, J. L.

    2013-12-01

    Unloading from a plastically deformed state has long been recognized as a sensitive measure of a material's deviatoric response. In the case of a ramp compression and unload, time resolved particle velocity measurements of a sample/window interface may be used to gain insight into the sample material's strength. Unfortunately, measurements of this type are often highly perturbed by wave interactions associated with impedance mismatches. Additionally, wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects further complicate the analysis. Here, we present a methodology that overcomes these shortcomings to accurately calculate a mean shear stress near peak compression for experiments of this type. A new interpretation of the self-consistent strength analysis is presented and then validated through the analysis of synthetic data sets on tantalum to 250 GPa. The synthetic analyses suggest that the calculated shear stresses are within 3% of the simulated values obtained using both rate-dependent and rate-independent constitutive models. Window effects are addressed by a new technique referred to as the transfer function approach, where numerical simulations are used to define a mapping to transform the experimental measurements to in situ velocities. The transfer function represents a robust methodology to account for complex wave interactions and a dramatic improvement over the incremental impedance matching methods traditionally used. The technique is validated using experiments performed on both lithium fluoride and tantalum ramp compressed to peak stresses of 10 and 15 GPa, respectively. In each case, various windows of different shock impedance are used to ensure consistency within the transfer function analysis. The data are found to be independent of the window used and in good agreement with previous results.

  12. Current ramp-up with lower hybrid current drive in EAST

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, M. H.; Fisch, N. J.; Qin, H.; Li, J. G.; Wilson, J. R.; Kong, E. H.; Zhang, L.; Wei, W.; Li, Y. C.; Wang, M.; Xu, H. D.; Gong, X. Z.; Shen, B.; Liu, F. K.; Shan, J. F.

    2012-12-01

    More economical fusion reactors might be enabled through the cyclic operation of lower hybrid current drive. The first stage of cyclic operation would be to ramp up the plasma current with lower hybrid waves alone in low-density plasma. Such a current ramp-up was carried out successfully on the EAST tokamak. The plasma current was ramped up with a time-averaged rate of 18 kA/s with lower hybrid (LH) power. The average conversion efficiency Pel/PLH was about 3%. Over a transient phase, faster ramp-up was obtained. These experiments feature a separate measurement of the L/R time at the time of current ramp up.

  13. Does physical activity modify the association between body mass index and colorectal adenomas?

    PubMed

    Guilera, Magda; Connelly-Frost, Alexandra; Keku, Temitope O; Martin, Christopher F; Galanko, Joseph; Sandler, Robert S

    2005-01-01

    Although both physical inactivity and obesity have been associated with an increased risk of colorectal adenomas, it is unclear whether physical activity modifies the relationship between obesity and colorectal adenomas or through what mechanism this might occur. The aim of this study is to evaluate whether physical activity modifies the relationship between body mass index (BMI) and colorectal adenomas and whether apoptosis is a plausible mechanism responsible for this effect modification. Study subjects were part of a large, cross-sectional study, the Diet and Health Study III. Consecutive patients underwent colonoscopy between August 1998 and March 2000. Apoptosis was measured by morphological evaluation of hematoxylin and eosin-stained sections obtained from rectal pinch biopsy samples. There were 226 patients with adenomas and 494 adenoma-free controls. When comparing overweight subjects with the referent group (high physical activity/normal BMI), the relative odds of having an adenoma decreased as physical activity increased: low (odds ratio, OR=1.6; 95% confidence interval, CI=0.7-3.4); moderate (OR=1.1; 95% CI=0.6-2.0); and high (OR=0.8; 95% CI=0.4-1.6). When comparing obese subjects with the referent group, relative odds of having an adenoma were increased regardless of physical activity level. Apoptosis was not associated with obesity or physical activity. Our results suggest that physical activity may modify the association between obesity and colorectal adenoma until a high level of obesity is achieved. Apoptosis does not appear to be associated with obesity or physical activity.

  14. Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Li, Zhipeng; Sun, Jian

    2015-12-01

    Recurring bottlenecks at freeway/expressway are considered as the main cause of traffic congestion in urban traffic system while on-ramp bottlenecks are the most significant sites that may result in congestion. In this paper, the traffic bottleneck characteristics for a simple and typical expressway on-ramp are investigated by the means of simulation modeling under the open boundary condition. In simulations, the running behaviors of each vehicle are described by a car-following model with a calibrated optimal velocity function, and lane changing actions at the merging section are modeled by a novel set of rules. We numerically derive the traffic volume of on-ramp bottleneck under different upstream arrival rates of mainline and ramp flows. It is found that the vehicles from the ramp strongly affect the pass of mainline vehicles and the merging ratio changes with the increasing of ramp vehicle, when the arrival rate of mainline flow is greater than a critical value. In addition, we clarify the dependence of the merging ratio of on-ramp bottleneck on the probability of lane changing and the length of the merging section, and some corresponding intelligent control strategies are proposed in actual traffic application.

  15. Comparator circuits with local ramp buffering for a column-parallel single slope ADC

    DOEpatents

    Milkov, Mihail M.

    2016-04-26

    A comparator circuit suitable for use in a column-parallel single-slope analog-to-digital converter comprises a comparator, an input voltage sampling switch, a sampling capacitor arranged to store a voltage which varies with an input voltage when the sampling switch is closed, and a local ramp buffer arranged to buffer a global voltage ramp applied at an input. The comparator circuit is arranged such that its output toggles when the buffered global voltage ramp exceeds the stored voltage. Both DC- and AC-coupled comparator embodiments are disclosed.

  16. Performance evaluation and parametric analysis on cantilevered ramp injector in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Shi-bin; Yan, Li; Wang, Zhen-guo

    2013-03-01

    The cantilevered ramp injector is one of the most promising candidates for the mixing enhancement between the fuel and the supersonic air, and its parametric analysis has drawn an increasing attention of researchers. The flow field characteristics and the drag force of the cantilevered ramp injector in the supersonic flow with the freestream Mach number 2.0 have been investigated numerically, and the predicted injectant mole fraction and static pressure profiles have been compared with the available experimental data in the open literature. At the same time, the grid independency analysis has been performed by using the coarse, the moderate and the refined grid scales, and the influence of the turbulence model on the flow field of the cantilevered ramp injector has been carried on as well. Further, the effects of the swept angle, the ramp angle and the length of the step on the performance of the cantilevered ramp injector have been discussed subsequently. The obtained results show that the grid scale has only a slight impact on the flow field of the cantilevered ramp injector except in the region near the fuel injector, and the predicted results show reasonable agreement with the experimental data. Additionally, the turbulence model makes a slight difference to the numerical results, and the results obtained by the RNG k-ɛ and SST k-ω turbulence models are almost the same. The swept angle and the ramp angle have the same impact on the performance of the cantilevered ramp injector, and the kidney-shaped plume is formed with shorter distance with the increase of the swept and ramp angles. At the same time, the shape of the injectant mole fraction contour at X/H=6 goes through a transition from a peach-shaped plume to a kidney-shaped plume, and the cantilevered ramp injector with larger swept and ramp angles has the higher mixing efficiency and the larger drag force. The length of the step has only a slight impact on the drag force performance of the cantilevered

  17. RAMP: A fault tolerant distributed microcomputer structure for aircraft navigation and control

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.

    1980-01-01

    RAMP consists of distributed sets of parallel computers partioned on the basis of software and packaging constraints. To minimize hardware and software complexity, the processors operate asynchronously. It was shown that through the design of asymptotically stable control laws, data errors due to the asynchronism were minimized. It was further shown that by designing control laws with this property and making minor hardware modifications to the RAMP modules, the system became inherently tolerant to intermittent faults. A laboratory version of RAMP was constructed and is described in the paper along with the experimental results.

  18. Aphotic zone carbonate production on a Miocene ramp, Central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Corda, Laura; Brandano, Marco

    2003-09-01

    The lower Miocene Latium-Abruzzi platform was a low-angle ramp that developed under tropical-to-subtropical conditions, but was dominated by bryomol and rhodalgal sediment associations. The Aquitanian to Serravallian sequence described here paraconformably overlies the Cretaceous limestones. It consists of a lowstand systems tract, a transgressive systems tract and a highstand systems tract. Based on facies analysis and on the light dependence of biotic associations, the ramp is divided into three parts: an inner ramp, a middle ramp and an outer ramp. The inner ramp facies are represented by a few metres of coral framestone, rhodolith floatstone-rudstone and balanid macroids floatstone without wave-related structures. The middle ramp consists of structureless bioclastic grainstone to packstone, floatstone and rudstone with rhodoliths and larger foraminifera. The outer ramp facies—proximal sector—are composed of crudely stratified bryozoan-dominated packstone to floatstone which extend over the whole platform. The outer ramp facies—intermediate sector—are represented by wackestone, packstone and rarely grainstone with foraminifera and echinoid fragments. The final depositional profile of the ramp was strongly influenced by the main organisms producing sediment. During the lowstand, the resulting profile is a ramp type. During the transgressive phase, the rapid spreading of the outer ramp facies belt, as a consequence of the enhanced productivity of the light-independent biota, is believed to be promoted by a change from oligotrophic to eutrophic conditions. Climate and/or tectonics are presumed to have played an important role in continental runoff and then in the nutrients delivery. During the highstand phase, the system returns to rates of production uniform throughout the platform. The high rates of carbonate production occurring in the aphotic zone are quite unusual in tropical settings and represent a provocative trend in apparent contrast with the

  19. Static internal performance of convergent single-expansion-ramp nozzles with various combinations of internal geometric parameters

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Capone, Francis J.

    1989-01-01

    An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.

  20. Micro-Ramps for External Compression Low-Boom Inlets

    NASA Technical Reports Server (NTRS)

    Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.

    2010-01-01

    The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.

  1. Improving Wind-Ramp Forecasts in the Stable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jahn, David E.; Takle, Eugene S.; Gallus, William A.

    2017-02-01

    The viability of wind-energy generation is dependent on highly accurate numerical wind forecasts, which are impeded by inaccuracies in model representation of boundary-layer processes. This study revisits the basic theory of the Mellor, Yamada, Nakanishi, and Niino (MYNN) planetary boundary-layer parametrization scheme, focusing on the onset of wind-ramp events related to nocturnal low-level jets. Modifications to the MYNN scheme include: (1) calculation of new closure parameters that determine the relative effects of turbulent energy production, dissipation, and redistribution; (2) enhanced mixing in the stable boundary layer when the mean wind speed exceeds a specified threshold; (3) explicit accounting of turbulent potential energy in the energy budget. A mesoscale model is used to generate short-term (24 h) wind forecasts for a set of 15 cases from both the U.S.A. and Germany. Results show that the new set of closure parameters provides a marked forecast improvement only when used in conjunction with the new mixing length formulation and only for cases that are originally under- or over-forecast (10 of the 15 cases). For these cases, the mean absolute error (MAE) of wind forecasts at turbine-hub height is reduced on average by 17%. A reduction in MAE values on average by 26% is realized for these same cases when accounting for the turbulent potential energy together with the new mixing length. This last method results in an average reduction by at least 13% in MAE values across all 15 cases.

  2. Tier 3- DarkStar engine run on ramp

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Lockheed Martin/Boeing Tier III- (minus) unpiloted aerial vehicle undergoing an engine run on the ramp at, following its arrival at the Dryden Flight Research Center, Edwards, California. The Tier III Minus project used Dryden ground facilities during the flight test program. The vehicle was developed by Lockheed Martin Skunk Works and Boeing Defense and Space Group to satisfy a goal of the Defense Airborne Reconnaissance Office to supply responsive and sustained data from anywhere within enemy territory, day or night, in all types of weather. Dubbed DarkStar, the vehicle, with a wing span of 69 feet, was designed to fly above 45,000 feet at subsonic speeds on missions lasting more than eight hours. The first DarkStar prototype (article #695) made its first flight on March 29, 1996. At the begininning of its second flight, on April 22, 1996, it crashed on takeoff, and was destroyed. More than two years passed before the second Darkstar prototype (article #696) took to the air on June 29, 1998. The vehicle made a total of five flights, the last on January 9, 1999. The program was cancelled on January 28, 1999.

  3. SOUTH RAMP 3.01.X AREA GROUND SUPPORT ANALYSIS

    SciTech Connect

    S. Bonabian

    1999-07-12

    The purpose of this analysis is to evaluate the stability and determine ground support requirements for the 3.01.X areas in the Exploratory Studies Facility (ESF) South Ramp. The 3.01.X area refers to the ESF tunnel portions that were constructed under Section 3.01.X of the ESF General Construction Specification (Reference 8.4). Four 3.01.X areas in the ESF Main Loop are covered in this analysis that extend from Station 60+15.28 to 60+49.22, 62+04.82 to 62+32.77, 75+21.02 to 75+28.38, and 76+63.08 to 77+41.23. The scope of the analysis is (1) to document the as-built configuration including existing voids and installed ground support, (2) to evaluate the existing ground conditions, (3) to determine applicable design loads, (4) to evaluate the stability and determine a ground support system, and (5) to analyze the recommended system.

  4. Terasaki Ramps in the Endoplasmic Reticulum: Structure, Function and Formation

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Guven, Jemal; Valencia, Dulce-Maria

    2015-03-01

    The endoplasmic reticulum (ER) has long been considered an exceedingly important and complex cellular organelle in eukaryotes (like you). It is a membrane structure, part folded lamellae, part tubular network, that both envelopes the nucleus and threads its way outward, all the way to the cell's periphery. Despite the elegant mechanics of bilayer membranes offered by the work of Helfrich and Canham, as far as the ER is concerned, theory has mostly sat on the sidelines. However, refined imaging of the ER has recently revealed beautiful and subtle geometrical forms - simple geometries, from the mathematical point of view - which some have called a ``parking garage for ribosomes.'' I'll review the discovery and physics of Terasaki ramps and discuss their relation to cell-biological questions, such as ER and nuclear-membrane re-organization during mitosis. Rather than being a footnote in a textbook on differential geometry, these structures suggest answers to a number of the ER's structure-function problems.

  5. Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes

    SciTech Connect

    Montazer-Torbati, Mohammad Bagher; Hue-Beauvais, Cathy; Droineau, Stephanie; Ballester, Maria; Coant, Nicolas; Aujean, Etienne; Petitbarat, Marie; Rijnkels, Monique; Devinoy, Eve

    2008-03-10

    Whey Acidic Protein (WAP) gene expression is specific to the mammary gland and regulated by lactogenic hormones to peak during lactation. It differs markedly from the more constitutive expression of the two flanking genes, Ramp3 and Tbrg4. Our results show that the tight regulation of WAP gene expression parallels variations in the chromatin structure and DNA methylation profile throughout the Ramp3-WAP-Tbrg4 locus. Three Matrix Attachment Regions (MAR) have been predicted in this locus. Two of them are located between regions exhibiting open and closed chromatin structures in the liver. The third, located around the transcription start site of the Tbrg4 gene, interacts with topoisomerase II in HC11 mouse mammary cells, and in these cells anchors the chromatin loop to the nuclear matrix. Furthermore, if lactogenic hormones are present in these cells, the chromatin loop surrounding the WAP gene is more tightly attached to the nuclear structure, as observed after a high salt treatment of the nuclei and the formation of nuclear halos. Taken together, our results point to a combination of several epigenetic events that may explain the differential expression pattern of the WAP locus in relation to tissue and developmental stages.

  6. North side, middle section, top of the ramp in CO17214 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North side, middle section, top of the ramp in CO-172-14 is at the right in this photograph. - Fitzsimons General Hospital, Infirmary, Northwest Corner of East Bushnell Avenue & South Page Street, Aurora, Adams County, CO

  7. Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2016-01-01

    Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.

  8. Near- and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths

    SciTech Connect

    Tucker, Eric; Boreman, Glenn; D'Archangel, Jeffrey; Raschke, Markus B.

    2014-07-28

    Near- and far-field measurements of phase-ramped loop and patch structures are presented and compared to simulations. The far-field deflection measurements show that the phase-ramped structures can deflect a beam away from specular reflection, consistent with simulations. Scattering scanning near-field optical microscopy of the elements comprising the phase ramped structures reveals part of the underlying near-field phase contribution that dictates the far-field deflection, which correlates with the far-field phase behavior that was expected. These measurements provide insight into the resonances, coupling, and spatial phase variation among phase-ramped frequency selective surface (FSS) elements, which are important for the performance of FSS reflectarrays.

  9. Investigation of supersonic turbulent boundary-layer separation on a compression ramp by an integral method

    NASA Technical Reports Server (NTRS)

    Patel, D. K.; Czarnecki, K. R.

    1977-01-01

    An investigation was made to determine the feasibility of using a boundary layer integral method to study the separation of a turbulent boundary layer on a two dimensional ramp at supersonic speeds. The numerical calculations were made for a free stream Mach number of 3, a Reynolds number of 10 million, and over a ramp angle range from 0 deg to 30 deg. For ramp angles where no flow separation was indicated, theoretical calculations were in reasonable agreement with experimental data except for a somewhat belated rise in pressure. For larger ramp angles, where separation was present, the investigation produced results that were not in agreement with experiment or with results calculated by time dependent Navier-Stokes methods. This apparently was true because no provision had been made for a proper shock boundary layer interaction where strong normal pressure gradients are induced within the boundary layer under the shock independent of surface curvature effects.

  10. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens

    PubMed Central

    Lloyd, Kevin; Dayan, Peter

    2015-01-01

    Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning’s temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a) the resolution of uncertainty about the timing of action; (b) the direct influence of dopamine over mechanisms associated with making choices; and (c) a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps. PMID:26699940

  11. Optimized Swinging Door Algorithm for Wind Power Ramp Event Detection: Preprint

    SciTech Connect

    Cui, Mingjian; Zhang, Jie; Florita, Anthony R.; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-06

    Significant wind power ramp events (WPREs) are those that influence the integration of wind power, and they are a concern to the continued reliable operation of the power grid. As wind power penetration has increased in recent years, so has the importance of wind power ramps. In this paper, an optimized swinging door algorithm (SDA) is developed to improve ramp detection performance. Wind power time series data are segmented by the original SDA, and then all significant ramps are detected and merged through a dynamic programming algorithm. An application of the optimized SDA is provided to ascertain the optimal parameter of the original SDA. Measured wind power data from the Electric Reliability Council of Texas (ERCOT) are used to evaluate the proposed optimized SDA.

  12. Static internal performance of a single expansion ramp nozzle with multiaxis thrust vectoring capability

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Schirmer, Alberto W.

    1993-01-01

    An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.

  13. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.

    2010-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  14. Analyzing the Impact of Solar Power on Multi-Hourly Thermal Generator Ramping

    SciTech Connect

    Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias

    2016-04-08

    Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar power and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.

  15. 29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car plates (dockboards). Bridge and car plates used afloat shall be well maintained and shall: (1) Be strong enough...

  16. 29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car plates (dockboards). Bridge and car plates used afloat shall be well maintained and shall: (1) Be strong enough...

  17. 29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car plates (dockboards). Bridge and car plates used afloat shall be well maintained and shall: (1) Be strong enough...

  18. 29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car plates (dockboards). Bridge and car plates used afloat shall be well maintained and shall: (1) Be strong enough...

  19. Application of Micro-ramp Flow Control Devices to an Oblique Shock Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie; Anderson, Bernhard

    2007-01-01

    Tests are planned in the 15cm x 15cm supersonic wind tunnel at NASA Glenn to demonstrate the applicability of micro-ramp flow control to the management of shock wave boundary layer interactions. These tests will be used as a database for computational fluid dynamics (CFD) validation and Design of Experiments (DoE) design information. Micro-ramps show potential for mechanically simple and fail-safe boundary layer control.

  20. Mesoscale Simulations of a Wind Ramping Event for Wind Energy Prediction

    SciTech Connect

    Rhodes, M; Lundquist, J K

    2011-09-21

    Ramping events, or rapid changes of wind speed and wind direction over a short period of time, present challenges to power grid operators in regions with significant penetrations of wind energy in the power grid portfolio. Improved predictions of wind power availability require adequate predictions of the timing of ramping events. For the ramping event investigated here, the Weather Research and Forecasting (WRF) model was run at three horizontal resolutions in 'mesoscale' mode: 8100m, 2700m, and 900m. Two Planetary Boundary Layer (PBL) schemes, the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) schemes, were run at each resolution as well. Simulations were not 'tuned' with nuanced choices of vertical resolution or tuning parameters so that these simulations may be considered 'out-of-the-box' tests of a numerical weather prediction code. Simulations are compared with sodar observations during a wind ramping event at a 'West Coast North America' wind farm. Despite differences in the boundary-layer schemes, no significant differences were observed in the abilities of the schemes to capture the timing of the ramping event. As collaborators have identified, the boundary conditions of these simulations probably dominate the physics of the simulations. They suggest that future investigations into characterization of ramping events employ ensembles of simulations, and that the ensembles include variations of boundary conditions. Furthermore, the failure of these simulations to capture not only the timing of the ramping event but the shape of the wind profile during the ramping event (regardless of its timing) indicates that the set-up and execution of such simulations for wind power forecasting requires skill and tuning of the simulations for a specific site.

  1. Comparison of energy output during ramp and staircase shortening in frog muscle fibres.

    PubMed Central

    Linari, M; Woledge, R C

    1995-01-01

    1. We compared the rates of work and heat production during ramp shortening with those during staircase shortening (sequence of step releases of the same amplitude, separated by regular time intervals). Ramp or staircase shortening was applied to isolated muscle fibres (sarcomere length, 2.2 microns; temperature, approximately 1 degree C) at the plateau of an isometric tetanus. The total amount of shortening was no greater than 6% of the fibre length. 2. During ramp shortening the power output showed a maximum at about 0.8 fibre lengths per second (Lo s-1), which corresponds to 1/3 the maximum shortening velocity (Vo). For the same average shortening velocity during staircase shortening (step size, approximately 0.5% Lo) the power output was 40-60% lower. The rate of heat production for the same average shortening velocity was approximately 45% higher during staircase shortening than during ramp shortening. 3. The relation between rate of total energy output and shortening velocity was well described by a second order regression line in the range of velocities used (0.1-2.3 Lo s-1). For any shortening velocity the rate of total energy output (power plus heat rate) was not statistically different for staircase (step size, approximately 0.5% Lo) and ramp shortening. 4. The mechanical efficiency (the ratio of the power over the total energy rate) during ramp shortening had a maximum value of 0.36 at 1/5 Vo; during staircase shortening, for any given shortening velocity, the mechanical efficiency was reduced compared with ramp shortening: with a staircase step of about 0.5% Lo at 1/5 Vo the efficiency was approximately 0.2. 5. The results indicate that a cross-bridge is able to convert different quantities of energy into work depending on the different shortening protocol used. The fraction of energy dissipated as heat is larger during staircase shortening than during ramp shortening. PMID:8544132

  2. DNA exit ramps are revealed in the binding landscapes obtained from simulations in helical coordinates.

    PubMed

    Echeverria, Ignacia; Papoian, Garegin A

    2015-02-01

    DNA molecules are highly charged semi-flexible polymers that are involved in a wide variety of dynamical processes such as transcription and replication. Characterizing the binding landscapes around DNA molecules is essential to understanding the energetics and kinetics of various biological processes. We present a curvilinear coordinate system that fully takes into account the helical symmetry of a DNA segment. The latter naturally allows to characterize the spatial organization and motions of ligands tracking the minor or major grooves, in a motion reminiscent of sliding. Using this approach, we performed umbrella sampling (US) molecular dynamics (MD) simulations to calculate the three-dimensional potentials of mean force (3D-PMFs) for a Na+ cation and for methyl guanidinium, an arginine analog. The computed PMFs show that, even for small ligands, the free energy landscapes are complex. In general, energy barriers of up to ~5 kcal/mol were measured for removing the ligands from the minor groove, and of ~1.5 kcal/mol for sliding along the minor groove. We shed light on the way the minor groove geometry, defined mainly by the DNA sequence, shapes the binding landscape around DNA, providing heterogeneous environments for recognition by various ligands. For example, we identified the presence of dissociation points or "exit ramps" that naturally would terminate sliding. We discuss how our findings have important implications for understanding how proteins and ligands associate and slide along DNA.

  3. Comparative depositional geometries and facies within windward rimmed platform and carbonate ramp sequences

    SciTech Connect

    Boss, S.K.; Rasmussen, K.A.; Neumann, A.C. )

    1992-01-01

    Northern Great Bahama Bank (NGBB) combines geomorphic aspects of rimmed platforms and carbonate ramps in a windward (high-energy) environment. Analysis of Holocene sediment cores, seismic reflection mapping of the Holocene-Pleistocene unconformity and transgressive Holocene deposits and petrographic study of excavated Holocene submarine-cemented horizons provides an integrated view of evolving depositional geometries within both rimmed platform and ramp settings. Cores display gross textural and compositional homogeneity; all sediments are medium to coarse sands comprised of composite peloids, Halimeda sp., benthic foraminifera and molluscs. Three-dimensional seismic mapping reveals that this basal unconformity exhibits variation in topographic relief related to both constructional and erosional processes; rimmed portions of the platform are associated with topographic plateaus'' with fringing eolianite ridges or (rarely) reefs. These plateaus'' are separated by a somewhat deeper (ca. 5m deep) trough'' exhibiting little relief, but sloping seaward to form a ramp. Multiple intrasequence cemented horizons are a common feature of the thinner deposits of the NGBB ramp where tidal exchange is vigorous and sediment deposition is episodic or in dynamic balance with sediment export. Thus, rimmed carbonate platform facies are thick marine sands with relatively little submarine cementation while open, unsheltered ramp facies are characterized by thin sediment sequences containing numerous, discontinuous submarine-cemented horizons. In the absence of other obvious facies or geomorphic indicators (e.g. preserved reefal rims), the preservation of similar depositional features in ancient limestones may serve as a useful discriminant of rimmed platform versus carbonate ramp settings.

  4. Cellular automata model simulating traffic car accidents in the on-ramp system

    NASA Astrophysics Data System (ADS)

    Echab, H.; Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2015-01-01

    In this paper, using Nagel-Schreckenberg model we study the on-ramp system under the expanded open boundary condition. The phase diagram of the two-lane on-ramp system is computed. It is found that the expanded left boundary insertion strategy enhances the flow in the on-ramp lane. Furthermore, we have studied the probability of the occurrence of car accidents. We distinguish two types of car accidents: the accident at the on-ramp site (Prc) and the rear-end accident in the main road (Pac). It is shown that car accidents at the on-ramp site are more likely to occur when traffic is free on road A. However, the rear-end accidents begin to occur above a critical injecting rate αc1. The influence of the on-ramp length (LB) and position (xC0) on the car accidents probabilities is studied. We found that large LB or xC0 causes an important decrease of the probability Prc. However, only large xC0 provokes an increase of the probability Pac. The effect of the stochastic randomization is also computed.

  5. Risk assessment in ramps for heavy vehicles--A French study.

    PubMed

    Cerezo, Veronique; Conche, Florence

    2016-06-01

    This paper presents the results of a study dealing with the risk for heavy vehicles in ramps. Two approaches are used. On one hand, statistics are applied on several accidents databases to detect if ramps are more risky for heavy vehicles and to define a critical value for longitudinal slope. χ(2) test confirmed the risk in ramps and statistical analysis proved that a longitudinal slope superior to 3.2% represents a higher risk for heavy vehicles. On another hand, numerical simulations allow defining the speed profile in ramps for two types of heavy vehicles (tractor semi-trailer and 2-axles rigid body) and different loads. The simulations showed that heavy vehicles must drive more than 1000 m on ramps to reach their minimum speed. Moreover, when the slope is superior to 3.2%, tractor semi-trailer presents a strong decrease of their speed until 50 km/h. This situation represents a high risk of collision with other road users which drive at 80-90 km/h. Thus, both methods led to the determination of a risky configuration for heavy vehicles: ramps with a length superior to 1000 m and a slope superior to 3.2%. An application of this research work concerns design methods and guidelines. Indeed, this study provides threshold values than can be used by engineers to make mandatory specific planning like a lane for slow vehicles.

  6. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  7. Flow control of micro-ramps on supersonic forward-facing step flow

    NASA Astrophysics Data System (ADS)

    Qing-Hu, Zhang; Tao, Zhu; Shihe, Yi; Anping, Wu

    2016-05-01

    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326 and 11502280).

  8. Structural Analysis of the Redesigned Ice/Frost Ramp Bracket

    NASA Technical Reports Server (NTRS)

    Phillips, D. R.; Dawicke, D. S.; Gentz, S. J.; Roberts, P. W.; Raju, I. S.

    2007-01-01

    This paper describes the interim structural analysis of a redesigned Ice/Frost Ramp bracket for the Space Shuttle External Tank (ET). The proposed redesigned bracket consists of mounts for attachment to the ET wall, supports for the electronic/instrument cables and propellant repressurization lines that run along the ET, an upper plate, a lower plate, and complex bolted connections. The eight nominal bolted connections are considered critical in the summarized structural analysis. Each bolted connection contains a bolt, a nut, four washers, and a non-metallic spacer and block that are designed for thermal insulation. A three-dimensional (3D) finite element model of the bracket is developed using solid 10-node tetrahedral elements. The loading provided by the ET Project is used in the analysis. Because of the complexities associated with accurately modeling the bolted connections in the bracket, the analysis is performed using a global/local analysis procedure. The finite element analysis of the bracket identifies one of the eight bolted connections as having high stress concentrations. A local area of the bracket surrounding this bolted connection is extracted from the global model and used as a local model. Within the local model, the various components of the bolted connection are refined, and contact is introduced along the appropriate interfaces determined by the analysts. The deformations from the global model are applied as boundary conditions to the local model. The results from the global/local analysis show that while the stresses in the bolts are well within yield, the spacers fail due to compression. The primary objective of the interim structural analysis is to show concept viability for static thermal testing. The proposed design concept would undergo continued design optimization to address the identified analytical assumptions and concept shortcomings, assuming successful thermal testing.

  9. Temperature-Ramped 129Xe Spin-Exchange Optical Pumping

    PubMed Central

    2015-01-01

    We describe temperature-ramped spin-exchange optical pumping (TR-SEOP) in an automated high-throughput batch-mode 129Xe hyperpolarizer utilizing three key temperature regimes: (i) “hot”—where the 129Xe hyperpolarization rate is maximal, (ii) “warm”—where the 129Xe hyperpolarization approaches unity, and (iii) “cool”—where hyperpolarized 129Xe gas is transferred into a Tedlar bag with low Rb content (<5 ng per ∼1 L dose) suitable for human imaging applications. Unlike with the conventional approach of batch-mode SEOP, here all three temperature regimes may be operated under continuous high-power (170 W) laser irradiation, and hyperpolarized 129Xe gas is delivered without the need for a cryocollection step. The variable-temperature approach increased the SEOP rate by more than 2-fold compared to the constant-temperature polarization rate (e.g., giving effective values for the exponential buildup constant γSEOP of 62.5 ± 3.7 × 10–3 min–1 vs 29.9 ± 1.2 × 10–3 min–1) while achieving nearly the same maximum %PXe value (88.0 ± 0.8% vs 90.1% ± 0.8%, for a 500 Torr (67 kPa) Xe cell loading—corresponding to nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) enhancements of ∼3.1 × 105 and ∼2.32 × 108 at the relevant fields for clinical imaging and HP 129Xe production of 3 T and 4 mT, respectively); moreover, the intercycle “dead” time was also significantly decreased. The higher-throughput TR-SEOP approach can be implemented without sacrificing the level of 129Xe hyperpolarization or the experimental stability for automation—making this approach beneficial for improving the overall 129Xe production rate in clinical settings. PMID:25008290

  10. Temperature-ramped (129)Xe spin-exchange optical pumping.

    PubMed

    Nikolaou, Panayiotis; Coffey, Aaron M; Barlow, Michael J; Rosen, Matthew S; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-08-19

    We describe temperature-ramped spin-exchange optical pumping (TR-SEOP) in an automated high-throughput batch-mode (129)Xe hyperpolarizer utilizing three key temperature regimes: (i) "hot"-where the (129)Xe hyperpolarization rate is maximal, (ii) "warm"-where the (129)Xe hyperpolarization approaches unity, and (iii) "cool"-where hyperpolarized (129)Xe gas is transferred into a Tedlar bag with low Rb content (<5 ng per ∼1 L dose) suitable for human imaging applications. Unlike with the conventional approach of batch-mode SEOP, here all three temperature regimes may be operated under continuous high-power (170 W) laser irradiation, and hyperpolarized (129)Xe gas is delivered without the need for a cryocollection step. The variable-temperature approach increased the SEOP rate by more than 2-fold compared to the constant-temperature polarization rate (e.g., giving effective values for the exponential buildup constant γSEOP of 62.5 ± 3.7 × 10(-3) min(-1) vs 29.9 ± 1.2 × 10(-3) min(-1)) while achieving nearly the same maximum %PXe value (88.0 ± 0.8% vs 90.1% ± 0.8%, for a 500 Torr (67 kPa) Xe cell loading-corresponding to nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) enhancements of ∼3.1 × 10(5) and ∼2.32 × 10(8) at the relevant fields for clinical imaging and HP (129)Xe production of 3 T and 4 mT, respectively); moreover, the intercycle "dead" time was also significantly decreased. The higher-throughput TR-SEOP approach can be implemented without sacrificing the level of (129)Xe hyperpolarization or the experimental stability for automation-making this approach beneficial for improving the overall (129)Xe production rate in clinical settings.

  11. Loading and Unloading Finishing Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    PubMed Central

    Garcia, Arlene; McGlone, John J.

    2014-01-01

    Simple Summary Current guidelines suggest the use of ramps below 20 degrees to load and unload pigs; however, they do not suggest the use of any specific bedding. Bedding types (nothing, feed, sand, wood shavings, and hay) were tested with finishing pigs (70–120 kg) to determine which was most effective in reducing slips, falls, and vocalizations at three ramp angles, two moisture levels, over two seasons. Slips, falls, and vocalizations were summed to establish a scoring system for the types of beddings. Heart rate and the total time it took to load and unload pigs, increased as the slope increased. Bedding, bedding moisture, season, and ramp slope interacted to impact the total time it took for finishing pigs to load and unload the ramp. Selection of the best bedding depends on ramp slope, season, and wetness of bedding. Abstract The use of non-slip surfaces during loading and unloading of finishing pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps with a slope below 20 degrees to load and unload pigs. However, the total time it takes to load and unload animals and slips, falls, and vocalizations are a welfare concern. Three ramp angles (0, 10 or 20 degrees), five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay), two moistures (dry or wet bedding, >50% moisture) over two seasons (>23.9 °C summer, <23.9 °C winter) were assessed for slips/falls/vocalizations (n = 2400 pig observations) and analyzed with a scoring system. The use of bedding during summer or winter played a role in the total time it took to load and unload the ramp (p < 0.05). Bedding, bedding moisture, season, and slope significantly interacted to impact the total time to load and unload finishing pigs (p < 0.05). Heart rate and the total time it took to load and unload the ramp increased as the slope of the ramp increased (p < 0.05). Heart rates were higher during the

  12. Anatomy of a cyclically packaged Mesoproterozoic carbonate ramp in northern Canada

    NASA Astrophysics Data System (ADS)

    Sherman, A. G.; Narbonne, G. M.; James, N. P.

    2001-03-01

    Carbonates in the upper member of the Mesoproterozoic Victor Bay Formation are dominated by lime mud and packaged in cycles of 20-50 m. These thicknesses exceed those of classic shallowing-upward cycles by almost a factor of 10. Stratigraphic and sedimentological evidence suggests high-amplitude, high-frequency glacio-eustatic cyclicity, and thus a cool global climate ca. 1.2 Ga. The Victor Bay ramp is one of several late Proterozoic carbonate platforms where the proportions of lime mud, carbonate grains, and microbialites are more typical of younger Phanerozoic successions which followed the global waning of stromatolites. Facies distribution in the study area is compatible with deposition on a low-energy, microtidal, distally steepened ramp. Outer-ramp facies are hemipelagic lime mudstone, shale, carbonaceous rhythmite, and debrites. Mid-ramp facies are molar-tooth limestone tempestite with microspar-intraclast lags. In a marine environment where stromatolitic and oolitic facies were otherwise rare, large stromatolitic reefs developed at the mid-ramp, coeval with inner-ramp facies of microspar grainstone, intertidal dolomitic microbial laminite, and supratidal evaporitic red shale. Deep-subtidal, outer-ramp cycles occur in the southwestern part of the study area. Black dolomitic shale at the base is overlain by ribbon, nodular, and carbonaceous carbonate facies, all of which exhibit signs of synsedimentary disruption. Cycles in the northeast are shallow-subtidal and peritidal in character. Shallow-subtidal cycles consist of basal deep-water facies, and an upper layer of subtidal molar-tooth limestone tempestite interbedded with microspar calcarenite facies. Peritidal cycles are identical to shallow-subtidal cycles except that they contain a cap of dolomitic tidal-flat microbial laminite, and rarely of red shale sabkha facies or of sandy polymictic conglomerate. A transect along the wall of a valley extending 8.5 km perpendicular to depositional strike reveals

  13. Sequence development of a latest Devonian-Tournaisian distally-steepened mixed carbonate-siliciclastic ramp, Canning Basin, Australia

    NASA Astrophysics Data System (ADS)

    Seyedmehdi, Zahra; George, Annette D.; Tucker, Maurice E.

    2016-03-01

    The sequence development and evolution of latest Devonian-earliest Carboniferous Fairfield Group in the Canning Basin have been established through integration of detailed sedimentological analysis of core, petrophysical data, existing biostratigraphic data and new seismic interpretations. The Fairfield Group on the Lennard Shelf was deposited on a mixed carbonate-siliciclastic distally-steepened ramp with a broad inner ramp, narrow mid ramp and steepened outer ramp. The majority of facies associations (FA1-FA8) were formed in intertidal-shallow subtidal conditions in proximal to distal inner ramp including siliciclastic tidal flats (FA1), carbonate intertidal flats (FA2), tidal flats and channels (FA3), lagoons (FA4-FA5), and shallow subtidal (FA6), backshoal (FA7) and fore-shoal areas (FA8). Bioclastic muddy sandstone (FA9) and bioclastic mudstone (FA10) are the dominant mid-ramp facies. Recognition of turbiditic facies of middle to lower slope of the outer ramp (FA11-FA13) led to the identification of a distally-steepened ramp. Antecedent topography exerted a significant control on platform morphology and the development of the widespread inner-ramp facies on the Lennard Shelf. A sequence-stratigraphic analysis reveals that the Fairfield Group ramp deposits consists of four third-order sequences (S1-S4) that were largely deposited during sea-level highstands (HST) characterized by progradational trends and dominant shallow subtidal inner-ramp facies associations. Transgressive systems tracts (TST) are well developed in S1 and S3 and have a retrogradational facies pattern with dominant deep subtidal mid-outer ramp facies associations. Lowstand systems tracts, characterized by lowstand wedges and turbiditic facies, are identified in the lower parts of S2 and S3. Coarse and fine-grained siliciclastic facies are mixed with carbonate facies as a result of coeval deposition on the inner and mid ramp, and reciprocal deposition on the outer ramp. A temporal variation in

  14. PIK-20 and LRV Vehicles Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photo shows NASA's PIK-20 motor-glider sailplane on the ramp at the Dryden Flight Research Center, Edwards, California. Next to the PIK-20 is the Low Reynolds Number Vehicle (LRV) remotely-piloted research vehicle. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.

  15. XS-1 on ramp with B-29 mothership

    NASA Technical Reports Server (NTRS)

    1949-01-01

    XS-1 on the ramp with the B-29 mothership in 1949. This is the second XS-1 built; it later was converted into the X-1E. Unlike the XS-1-1, which was flown by the Air Force, the XS-1-2 was flown mostly by Bell and NACA pilots. It gathered much more research data than the more famous XS-1-1, known as 'Glamorous Glennis.' The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the NACA. The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' The first of the three X-1s was glide-tested at Pinecastle Army Air Field, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Edwards Air Force Base with Chalmers Goodlin, a Bell test pilot, at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after the B-29 air-launched it from under the bomb bay of a B-29 at 21,000 feet. The 6,000-pound thrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed the aircraft up to a speed of 700 miles per hour in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed, 957 miles per hour. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 feet. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before ever making any powered flights. A single-place monoplane, the X-1 was 30 feet, 11 inches long; 10 feet, 10 inches high; and had a wingspan of 29 feet. It weighed 6,784 pounds and carried 6,250 pounds of fuel. It had a flush cockpit with a side entrance and no ejection seat.

  16. Probabilistic Swinging Door Algorithm as Applied to Photovoltaic Power Ramping Event Detection

    SciTech Connect

    Florita, Anthony; Zhang, Jie; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias; Cui, Mingjian

    2015-10-02

    Photovoltaic (PV) power generation experiences power ramping events due to cloud interference. Depending on the extent of PV aggregation and local grid features, such power variability can be constructive or destructive to measures of uncertainty regarding renewable power generation; however, it directly influences contingency planning, production costs, and the overall reliable operation of power systems. For enhanced power system flexibility, and to help mitigate the negative impacts of power ramping, it is desirable to analyze events in a probabilistic fashion so degrees of beliefs concerning system states and forecastability are better captured and uncertainty is explicitly quantified. A probabilistic swinging door algorithm is developed and presented in this paper. It is then applied to a solar data set of PV power generation. The probabilistic swinging door algorithm builds on results from the original swinging door algorithm, first used for data compression in trend logging, and it is described by two uncertain parameters: (i) e, the threshold sensitivity to a given ramp, and (ii) s, the residual of the piecewise linear ramps. These two parameters determine the distribution of ramps and capture the uncertainty in PV power generation.

  17. Evaluation of genetic diversity of Clinacanthus nutans (Acanthaceaea) using RAPD, ISSR and RAMP markers.

    PubMed

    Ismail, Noor Zafirah; Arsad, Hasni; Samian, Mohammed Razip; Ab Majid, Abdul Hafiz; Hamdan, Mohammad Razak

    2016-10-01

    Three polymerase chain reaction (PCR) techniques were compared to analyse the genetic diversity of Clinacanthus nutans eight populations in the northern region of Peninsular Malaysia. The PCR techniques were random amplified polymorphic deoxyribonucleic acids (RAPD), inter-simple sequence repeats (ISSR) and random amplified microsatellite polymorphisms (RAMP). Leaf genomic DNA was PCR amplified using 17 RAPD, 8 ISSR and 136 RAMP primers . However, only 10 RAPD primers, 5 ISSR primers and 37 RAMP primers produced reproducible bands. The results were evaluated for polymorphic information content (PIC), marker index (MI) and resolving power (RP). The RAMP marker was the most useful marker compared to RAPD and ISSR markers because it showed the highest average value of PIC (0.25), MI (11.36) and RP (2.86). The genetic diversity showed a high percentage of polymorphism at the species level compared to the population level. Furthermore, analysis of molecular variance revealed that the genetic diversity was higher within populations, as compared to among populations of C. nutans. From the results, the RAMP technique was recommended for the analysis of genetic diversity of C. nutans.

  18. Solar Power Ramp Events Detection Using an Optimized Swinging Door Algorithm

    SciTech Connect

    Cui, Mingjian; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-05

    Solar power ramp events (SPREs) significantly influence the integration of solar power on non-clear days and threaten the reliable and economic operation of power systems. Accurately extracting solar power ramps becomes more important with increasing levels of solar power penetrations in power systems. In this paper, we develop an optimized swinging door algorithm (OpSDA) to enhance the state of the art in SPRE detection. First, the swinging door algorithm (SDA) is utilized to segregate measured solar power generation into consecutive segments in a piecewise linear fashion. Then we use a dynamic programming approach to combine adjacent segments into significant ramps when the decision thresholds are met. In addition, the expected SPREs occurring in clear-sky solar power conditions are removed. Measured solar power data from Tucson Electric Power is used to assess the performance of the proposed methodology. OpSDA is compared to two other ramp detection methods: the SDA and the L1-Ramp Detect with Sliding Window (L1-SW) method. The statistical results show the validity and effectiveness of the proposed method. OpSDA can significantly improve the performance of the SDA, and it can perform as well as or better than L1-SW with substantially less computation time.

  19. Optimizing the current ramp-up phase for the hybrid ITER scenario

    NASA Astrophysics Data System (ADS)

    Hogeweij, G. M. D.; Artaud, J.-F.; Casper, T. A.; Citrin, J.; Imbeaux, F.; Köchl, F.; Litaudon, X.; Voitsekhovitch, I.; the ITM-TF ITER Scenario Modelling Group

    2013-01-01

    The current ramp-up phase for the ITER hybrid scenario is analysed with the CRONOS integrated modelling suite. The simulations presented in this paper show that the heating systems available at ITER allow, within the operational limits, the attainment of a hybrid q profile at the end of the current ramp-up. A reference ramp-up scenario is reached by a combination of NBI, ECCD (UPL) and LHCD. A heating scheme with only NBI and ECCD can also reach the target q profile; however, LHCD can play a crucial role in reducing the flux consumption during the ramp-up phase. The optimum heating scheme depends on the chosen transport model, and on assumptions of parameters like ne peaking, edge Te,i and Zeff. The sensitivity of the current diffusion on parameters that are not easily controlled, shows that development of real-time control is important to reach the target q profile. A first step in that direction has been indicated in this paper. Minimizing resistive flux consumption and optimizing the q profile turn out to be conflicting requirements. A trade-off between these two requirements has to be made. In this paper it is shown that fast current ramp with L-mode current overshoot is at the one extreme, i.e. the optimum q profile at the cost of increased resistive flux consumption, whereas early H-mode transition is at the other extreme.

  20. The Effect of Micro-ramps on Supersonic Flow over a Forward-Facing Step

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Hu; Yi, Shi-He; Zhu, Yang-Zhu; Chen, Zhi; Wu, Yu

    2013-04-01

    The effect of micro-ramp control on fully developed turbulent flow over a forward-facing step (FFS) is investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and supersonic particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and the average velocity profiles of supersonic flow over the FFS with and without the control of the micro-ramps are captured. The fine structures of both cases, including the coherent structures of fully developed boundary layer and the large-scale hairpin-like vortices originated from the micro-ramps as well as the interaction of shock waves with the large-scale structures, are revealed and compared. Based on the time-correlation images, the temporal and spatial evolutionary characteristics of the coherent structures are investigated. It is beneficial to understand the dynamic mechanisms of the separated flow and the control mechanisms of the micro-ramps. The size of the separation region is determined by the NPLS and PIV. The results indicate that the control of the micro-ramps is capable of delaying the separation and diminishing the extent of recirculation zone.

  1. Solar Power Ramp Events Detection Using an Optimized Swinging Door Algorithm: Preprint

    SciTech Connect

    Cui, Mingjian; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-07

    Solar power ramp events (SPREs) are those that significantly influence the integration of solar power on non-clear days and threaten the reliable and economic operation of power systems. Accurately extracting solar power ramps becomes more important with increasing levels of solar power penetrations in power systems. In this paper, we develop an optimized swinging door algorithm (OpSDA) to detection. First, the swinging door algorithm (SDA) is utilized to segregate measured solar power generation into consecutive segments in a piecewise linear fashion. Then we use a dynamic programming approach to combine adjacent segments into significant ramps when the decision thresholds are met. In addition, the expected SPREs occurring in clear-sky solar power conditions are removed. Measured solar power data from Tucson Electric Power is used to assess the performance of the proposed methodology. OpSDA is compared to two other ramp detection methods: the SDA and the L1-Ramp Detect with Sliding Window (L1-SW) method. The statistical results show the validity and effectiveness of the proposed method. OpSDA can significantly improve the performance of the SDA, and it can perform as well as or better than L1-SW with substantially less computation time.

  2. Lunar Landing Research Vehicle (LLRV) sitting on ramp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    In this 1966 NASA Flight Reserch Center photograph, the Lunar Landing Research Vehicle (LLRV) number 2 sitting on the ramp. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. On

  3. Dryden B-52 Launch Aircraft on Dryden Ramp

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership sits on the ramp in front of the Dryden Flight Research Center, Edwards, California. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  4. X-1E Loaded in B-29 Mothership on Ramp

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1E airplane being loaded under the mothership, Boeing B-29. The X planes had originally been lowered into a loading pit and the launch aircraft towed over the pit, where the rocket plane was hoisted by belly straps into the bomb bay. By the early 1950s a hydraulic lift had been installed on the ramp at the NACA High-Speed Flight Station to elevate the launch aircraft and then lower it over the rocket plane for mating. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force

  5. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.

  6. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.

    2012-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  7. Iterative ramp sharpening for structure signature-preserving simplification of images

    SciTech Connect

    Grazzini, Jacopo A; Soille, Pierre

    2010-01-01

    In this paper, we present a simple and heuristic ramp sharpening algorithm that achieves local contrast enhancement of vector-valued images. The proposed algorithm performs a local comparison of intensity values as well as gradient strength and directional information derived from the gradient structure tensor so that the sharpening is applied only for pixels found on the ramps around true edges. This way, the contrast between objects and regions separated by a ramp is enhanced correspondingly, avoiding ringing artefacts. It is found that applying this technique in an iterative manner on blurred imagery produces sharpening preserving both structure and signature of the image. The final approach reaches a good compromise between complexity and effectiveness for image simplification, enhancing in an efficient manner the image details and maintaining the overall image appearance.

  8. Numerical solution of shock and ramp compression for general material properties

    SciTech Connect

    Swift, D C

    2009-01-28

    A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scalar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.

  9. Exploring how sand ramps respond to Quaternary environmental change in Southern Africa

    NASA Astrophysics Data System (ADS)

    Rowell, Alex; Thomas, David; Bailey, Richard

    2014-05-01

    The current climate of southern Africa is particularly complex and interesting due to the interaction of several climatic systems. However, reconstructions of how these systems behaved in the past, and how the environment responded, have been hampered by a general paucity of records and poor chronological control. Sand ramps may provide the potential to improve palaeoenvironmental reconstructions of southern Africa (and beyond). Formed against a topographic barrier, sand ramps include a combination of aeolian, fluvial and colluvial deposits in varying proportions. Therefore, they have the potential to record changes in moisture availability, circulation patterns and sediment supply which can be independently dated using luminescence dating. Nevertheless relatively little attention has been paid to these features and thus the environmental controls on their formation are not yet fully understood. In particular, there is debate as to whether they reflect deposition during a 'window of opportunity' in which high-magnitude, low-frequency events are recorded (Bateman et al. 2012) or whether they record more gradual, cyclic climate change (Bertram, 2003) or even if there is a uniform control on their formation. This research aims to investigate how sand ramps respond to environmental change and what they can tell us about the paleoenvironment of southern Africa. This poster displays preliminary results based on initial field investigation. This confirmed sand ramps to be ubiquitous in southern Africa and that they record a complex interaction of aeolian, fluvial and colluvial deposits which appears to differ between sand ramps. Preliminary luminescence dating results and sedimentology are displayed for two sand ramps, one from south west Namibia the other from the Karoo region of South Africa.

  10. Seeing Steps and Ramps with Simulated Low Acuity: Impact of Texture and Locomotion

    PubMed Central

    Bochsler, Tiana M.; Legge, Gordon E.; Kallie, Christopher S.; Gage, Rachel

    2012-01-01

    Purpose Detecting and recognizing steps and ramps is an important component of the visual accessibility of public spaces for people with impaired vision. The present study, which is part of a larger program of research on visual accessibility, investigated the impact of two factors that may facilitate the recognition of steps and ramps during low-acuity viewing. Visual texture on the ground plane is an environmental factor that improves judgments of surface distance and slant. Locomotion (walking) is common during observations of a layout, and may generate visual motion cues that enhance the recognition of steps and ramps. Methods In two experiments, normally sighted subjects viewed the targets monocularly through blur goggles that reduced acuity to either approx. 20/150 Snellen (mild blur) or 20/880 (severe blur). The subjects judged whether a step, ramp or neither was present ahead on a sidewalk. In the texture experiment, subjects viewed steps and ramps on a surface with a coarse black-and-white checkerboard pattern. In the locomotion experiment, subjects walked along the sidewalk toward the target before making judgments. Results Surprisingly, performance was lower with the textured surface than with a uniform surface, perhaps because the texture masked visual cues necessary for target recognition. Subjects performed better in walking trials than in stationary trials, possibly because they were able to take advantage of visual cues that were only present during motion. Conclusions We conclude that under conditions of simulated low acuity, large, high-contrast texture elements can hinder the recognition of steps and ramps while locomotion enhances recognition. PMID:22863792

  11. Simulations of Sample-Up-The-Ramp for Space-Based Observations of Faint Sources

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2008-01-01

    We have conducted simulations of a memory-efficient up-the-ramp sampling algorithm for infrared detector arrays. Our simulations use realistic sky models of galaxy brightness, shapes, and distributions, and include the contributions of zodiacal light and cosmic rays. A simulated readout is based on the HAWAII-2RG arrays, and includes read noise, dark current, pedestal, and other effects. The up-the-ramp algorithm rejects cosmic rays and produces a best estimate of the source flux under the assumption of very low signal-to-noise. We present an analysis of the fidelity of image brightness recovery with this algorithm.

  12. Thermal tolerance limits of diamondback moth in ramping and plunging assays.

    PubMed

    Nguyen, Chi; Bahar, Md Habibullah; Baker, Greg; Andrew, Nigel R

    2014-01-01

    Thermal sensitivity is a crucial determinant of insect abundance and distribution. The way it is measured can have a critical influence on the conclusions made. Diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae) is an important insect pest of cruciferous crops around the world and the thermal responses of polyphagous species are critical to understand the influences of a rapidly changing climate on their distribution and abundance. Experiments were carried out to the lethal temperature limits (ULT₀ and LLT₀: temperatures where there is no survival) as well as Upper and Lower Lethal Temperature (ULT₂₅ and LLT₂₅) (temperature where 25% DBM survived) of lab-reared adult DBM population to extreme temperatures attained by either two-way ramping (ramping temperatures from baseline to LT₂₅ and ramping back again) or sudden plunging method. In this study the ULT0 for DBM was recorded as 42.6°C and LLT₀ was recorded as -16.5°C. DBM had an ULT₂₅ of 41.8°C and LLT25 of -15.2°C. The duration of exposure to extreme temperatures had significant impacts on survival of DBM, with extreme temperatures and/or longer durations contributing to higher lethality. Comparing the two-way ramping temperature treatment to that of direct plunging temperature treatment, our study clearly demonstrated that DBM was more tolerant to temperature in the two-way ramping assay than that of the plunging assay for cold temperatures, but at warmer temperatures survival exhibited no differences between ramping and plunging. These results suggest that DBM will not be put under physiological stress from a rapidly changing climate, rather access to host plants in marginal habitats has enabled them to expand their distribution. Two-way temperature ramping enhances survival of DBM at cold temperatures, and this needs to be examined across a range of taxa and life stages to determine if enhanced survival is widespread incorporating a ramping recovery method.

  13. Thermal Tolerance Limits of Diamondback Moth in Ramping and Plunging Assays

    PubMed Central

    Nguyen, Chi; Bahar, Md Habibullah; Baker, Greg; Andrew, Nigel R.

    2014-01-01

    Thermal sensitivity is a crucial determinant of insect abundance and distribution. The way it is measured can have a critical influence on the conclusions made. Diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae) is an important insect pest of cruciferous crops around the world and the thermal responses of polyphagous species are critical to understand the influences of a rapidly changing climate on their distribution and abundance. Experiments were carried out to the lethal temperature limits (ULT0 and LLT0: temperatures where there is no survival) as well as Upper and Lower Lethal Temperature (ULT25 and LLT25) (temperature where 25% DBM survived) of lab-reared adult DBM population to extreme temperatures attained by either two-way ramping (ramping temperatures from baseline to LT25 and ramping back again) or sudden plunging method. In this study the ULT0 for DBM was recorded as 42.6°C and LLT0 was recorded as −16.5°C. DBM had an ULT25 of 41.8°C and LLT25 of −15.2°C. The duration of exposure to extreme temperatures had significant impacts on survival of DBM, with extreme temperatures and/or longer durations contributing to higher lethality. Comparing the two-way ramping temperature treatment to that of direct plunging temperature treatment, our study clearly demonstrated that DBM was more tolerant to temperature in the two-way ramping assay than that of the plunging assay for cold temperatures, but at warmer temperatures survival exhibited no differences between ramping and plunging. These results suggest that DBM will not be put under physiological stress from a rapidly changing climate, rather access to host plants in marginal habitats has enabled them to expand their distribution. Two-way temperature ramping enhances survival of DBM at cold temperatures, and this needs to be examined across a range of taxa and life stages to determine if enhanced survival is widespread incorporating a ramping recovery method. PMID:24475303

  14. Perseus B Parked on Ramp - View from Above

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted aircraft, seen here on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which

  15. Perseus B Parked on Ramp - View from Above

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted aircraft, seen here on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which

  16. Ramping up for College Readiness in Minnesota High Schools: Implementation of a Schoolwide Program. REL 2016-146

    ERIC Educational Resources Information Center

    Lindsay, Jim; Davis, Elisabeth; Stephan, Jennifer; Bonsu, Pamela; Narlock, Jason

    2016-01-01

    The College Readiness Consortium at the University of Minnesota has developed Ramp-Up to Readiness™ (Ramp-Up), a schoolwide advisory program to increase students' likelihood of college enrollment and completion by enhancing five dimensions of college readiness (academic, admissions, career, financial, and personal-social) among students in middle…

  17. Structure function analysis of two-scale Scalar Ramps. Part II: Coherent structure scaling and surface renewal applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parameterize remote turbulence measurements, and to characterize ramp features in the turbulent field. The ramp features are associated with turbulent coherent structures, which dominate energy a...

  18. A case report of a severe musculoskeletal injury in a wheelchair user caused by an incorrect wheelchair ramp design.

    PubMed

    Edlich, Richard F; Kelley, Angela R; Morton, Karrie; Gellman, Richard E; Berkey, Richard; Greene, Jill Amanda; Hill, Larry; Mears, Roy; Long, William B

    2010-02-01

    The Americans with Disabilities Act (ADA) gives all Americans with disabilities a chance to achieve the same quality of life that individuals without disabilities enjoy. In this case report, we will be discussing the consequences of having inaccessible ramps to persons with disabilities that can result in severe musculoskeletal injuries in a wheelchair user. While going down an inaccessible ramp in the garage of a hospital, a wheelchair tipped over, causing a fracture to the user's right femur. The injured patient was taken to the Emergency Department, where the diagnosis of a fracture of the right femur was made. The fracture then had to be repaired with an intramedullary rod under general anesthesia in the hospital. It was discovered that the ramps in the hospital garage did not comply with the guidelines of the ADA. The wheelchair ramps had a ramp run with a rise > 6 inches (150 mm) and a horizontal projection > 72 inches (1830 mm). This led to the redesign and construction of safe ramps for individuals using wheelchairs as well as for pedestrians using canes, within 1 month after the patient's injury, making it safe for wheelchair users as well as pedestrians using the parking facilities. The ADA specifies guidelines for safe ramps for patients with disabilities. It is important to ensure that hospital ramps comply with these guidelines.

  19. Evaluation of Pushback Decision-Support Tool Concept for Charlotte Douglas International Airport Ramp Operations

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Hoang, Ty; Jung, Yoon C.; Malik, Waqar; Lee, Hanbong; Dulchinos, Victoria L.

    2015-01-01

    This paper proposes a new departure pushback decision-support tool (DST) for airport ramp-tower controllers. It is based on NASA's Spot and Runway Departure Advisor (SARDA) collaborative decision-making concept, except with the modification that the gate releases now are controlled by tactical pushback (or gate-hold) advisories instead of strategic pre-assignments of target pushback times to individual departure flights. The proposed ramp DST relies on data exchange with the airport traffic control tower (ATCT) to coordinate pushbacks with the ATCT's flow-management intentions under current operational constraints, such as Traffic Management Initiative constraints. Airlines would benefit in reduced taxi delay and fuel burn. The concept was evaluated in a human-in-the-loop simulation experiment with current ramp-tower controllers at the Charlotte Douglas International Airport as participants. The results showed that the tool helped reduce taxi time by one minute per flight and overall departure flight fuel consumption by 10-12% without reducing runway throughput. Expect Departure Clearance Time (EDCT) conformance also was improved when advisories were provided. These benefits were attained without increasing the ramp-tower controllers' workload. Additionally, the advisories reduced the ATCT controllers' workload.

  20. The effects of ramp gait exercise with PNF on stroke patients’ dynamic balance

    PubMed Central

    Seo, Kyo Chul; Kim, Hyeon Ae

    2015-01-01

    [Purpose] This study examined the effects of ramp gait training using lower extremity patterns of proprioceptive neuromuscular facilitation (PNF) on chronic stroke patients’ dynamic balance ability. [Subjects and Methods] In total, 30 stroke patients participated in this study, and they were assigned randomly and equally to an experimental group and a control group. The experimental group received exercise treatment for 30 min and ramp gait training with PNF for 30 min. The control group received exercise treatment for 30 min and ground gait training for 30 min. The interventions were conducted in 30 min sessions, three times per week for four week. The subjects were assessed with the Berg balance scale test, timed up and go test, and functional reach test before and after the experiment and the results were compared. [Results] After the intervention, the BBS and FRT values had significantly increased and the TUG value had significantly decreased in the experimental group; however, the BBS, FRT, and TUG values showed no significant differences in the control group. In addition, differences between the two groups before the intervention and after the intervention were not significant. [Conclusion] In conclusion, ramp gait training with PNF improved stroke patients’ dynamic balance ability, and a good outcome of ramp gait training with PNF is also expected for other neurological system disease patients. PMID:26180312

  1. Ramp-hold relaxation solutions for the KVFD model applied to soft viscoelastic media

    NASA Astrophysics Data System (ADS)

    Zhang, HongMei; Wang, Yue; Insana, Michael F.

    2016-02-01

    The standard step-hold load-relaxation profile can yield variable estimates of mechanical properties due to the difficulty in achieving a step strain experimentally. A ramp-hold profile overcomes this limitation if appropriate model functions can be derived. Utilizing Boltzmann hereditary integral operators for two indentation geometries, analytical ramp solutions for load-relaxation were developed based on the Kelvin-Voigt fractional derivative (KVFD) model. The results identify three model parameters for characterizing viscoelastic behavior from a single model curve fit to the data: the elastic modulus E 0, fractional-order parameter α, and relaxation time constant τ . The quantitative nature of the analysis was validated through measurements on gelatin emulsion samples exhibiting viscoelastic behavior. KVFD-model-based solutions provide mathematically simple and experimentally flexible descriptions of load-relaxation behavior for a range of viscoelastic properties and experimental conditions; e.g. one closed-form solution can fit the ramp and the hold phases of the relaxation time series. Experiments show that the solution for a spherical indenter and plate compressor each fit well to the corresponding experimental relaxation curves with a coefficient of determination R 2  >  0.98. Parameters obtained from the spherical-tip indentation and plate-compression geometries agree within one standard deviation, confirming that the ramp solution based KVFD model yields consistent measurements for characterizing viscoelastic materials.

  2. Preferential Magnetospheric Power Excitation by Rising Frequency Ramps from 1986 Siple Station Data

    NASA Astrophysics Data System (ADS)

    Li, J.; Spasojevic, M.; Harid, V.; Golkowski, M.; Carpenter, D. L.; Inan, U.

    2013-12-01

    Controlled experiments using ground-based ELF/VLF transmitters are invaluable in studying nonlinear wave growth and triggered emissions resulting from gyroresonant interactions between whistler mode waves and energetic electrons in the magnetosphere. Typical studies have focused on the narrowband and discrete features present in the received signal and triggered emissions, but have not considered the potential total power excited during the interaction in the magnetosphere. Here, we develop a metric for estimating the total magnetospheric power excited in the propagation ducts and apply this metric to data transmitted from Siple Station, Antarctica. The transmitted STACO format in 1986 includes a series of ascending and descending ramp and staircase elements, allowing for a quantitative comparison of total power excited by frequency ramps of different orientations. We find that rising frequency ramps result in preferentially higher power excitation and that higher noise measurements in the duct correspond to significantly higher measures of power excitation by the transmitted signal. These results provide insight into the structure of the background cold plasma and the distribution of the hot plasma and the conditions favorable for nonlinear wave amplification and triggering. Portion of the STACO transmissions format on 8/18/1986 at 12:21:00 UT, illustrating the differences in magnetospheric amplification and generation for ascending and descending ramp segments.

  3. Efficiency promotion for an on-ramp system based on intelligent transportation system information

    NASA Astrophysics Data System (ADS)

    Xie, Dong-Fan; Gao, Zi-You; Zhao, Xiao-Mei

    2010-08-01

    The effect of cars with intelligent transportation systems (ITSs) on traffic flow near an on-ramp is investigated by car-following simulations. By numerical simulations, the dependences of flux on the inflow rate are investigated for various proportions of cars with ITSs. The phase diagrams as well as the spatiotemporal diagrams are presented to show different traffic flow states on the main road and the on-ramp. The results show that the saturated flux on the main road increases and the free flow region is enlarged with the increase of the proportion of cars with ITS. Interestingly, the congested regions of the main road disappear completely when the proportion is larger than a critical value. Further investigation shows that the capacity of the on-ramp system can be promoted by 13% by using the ITS information, and the saturated flux on the on-ramp can be kept at an appropriate value by adjusting the proportion of cars with ITS.

  4. The Archival Appraisal of Moving Images: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    Kula, Sam

    Produced as part of the United Nations Educational, Scientific, and Cultural Organization (UNESCO) Records and Archives Management Programme (RAMP), this publication provides government and non-government archivists and records managers with a comparative study of past and present policies and practices for selecting moving images for…

  5. Selected Guidelines for the Management of Records and Archives: A RAMP Reader.

    ERIC Educational Resources Information Center

    Walne, Peter, Comp.

    The guidelines contained in this book are taken from studies published by UNESCO's Records and Archives Management Program (RAMP) between 1981 and 1987. Each set of guidelines is accompanied by an introduction to provide chronological or methodological context. The guidelines are titled as follows: (1) "The Use of Sampling Techniques in the…

  6. Investigation of shock wave-boundary layer instability on the heated ramp surface

    NASA Astrophysics Data System (ADS)

    Glushneva, A. V.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2015-11-01

    By means of particle image velocimetry method shock-wave boundary layer interaction on the pre-heated ramp surface was investigated. The influence of surface heating on separation region unsteadiness was proved. It was found experimentally that increasing of wall to outer flow temperature ratio raises amplitude of separation region oscillation.

  7. Accurate Electron Densities at Nuclei Using Small Ramp-Gaussian Basis Sets.

    PubMed

    McKemmish, Laura K; Gilbert, Andrew T B

    2015-08-11

    Electron densities at nuclei are difficult to calculate accurately with all-Gaussian basis sets because they lack an electron-nuclear cusp. The newly developed mixed ramp-Gaussian basis sets, such as R-31G, possess electron-nuclear cusps due to the presence of ramp functions in the basis. The R-31G basis set is a general-purpose mixed ramp-Gaussian basis set modeled on the 6-31G basis set. The prediction of electron densities at nuclei using R-31G basis sets for Li-F outperforms Dunning, Pople, and Jensen general purpose all-Gaussian basis sets of triple-ζ quality or lower and the cc-pVQZ basis set. It is of similar quality to the specialized pcJ-0 basis set which was developed with partial decontraction of core functions and extra high exponent s-Gaussians to predict electron density at the nucleus. These results show significant advantages in the properties of mixed ramp-Gaussian basis sets compared to all-Gaussian basis sets.

  8. Localization of duplex thrust-ramps by buckling: analog and numerical modelling

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Dixon, John M.

    1995-06-01

    Duplex structures in natural fold-thrust belts occur over a wide range of geometric scales. Duplex thrust ramps exhibit a regular spacing linearly related to the thickness of strata involved in the duplex. We suggest that buckling instability in layered systems can produce local stress concentrations which localize thrust ramps with regular spacing. This mechanism is demonstrated through analog (centrifuge) and numerical (finite element) modelling. Centrifuge models containing finely-laminated multilayers composed of plasticine and silicone putty (simulating rocks such as limestone and shale) are compressed from one edge; folds propagate from hinterland to foreland. As shortening continues, the lowest competent unit is thrust into a blind duplex structure by breakthrusting. The duplex develops by serial nucleation of faults from hinterland to foreland; the ramp locations are inherited from the initial buckling instability. Finite-element models based on the analog models and their natural prototypes demonstrate that stress concentrations develop in fore-limbs of anticlines within competent stratigraphie units. Models containing thrust discontinuities (at sites of calculated stress concentration) display additional stress concentrations in the forelimbs of unfaulted folds closer to the foreland. The locus of stress concentration thus propagates towards the foreland, consistent with foreland thrust propagation in nature. The location and regular spacing of ramps are inherited from early (possibly even incipient) buckle folds.

  9. Static internal performance of single expansion-ramp nozzles with thrust vectoring and reversing

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Berrier, B. L.

    1982-01-01

    The effects of geometric design parameters on the internal performance of nonaxisymmetric single expansion-ramp nozzles were investigated at nozzle pressure ratios up to approximately 10. Forward-flight (cruise), vectored-thrust, and reversed-thrust nozzle operating modes were investigated.

  10. Experimental and Computational Investigation of a Translating-Throat Single-Expansion-Ramp Nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Asbury, Scott C.

    1999-01-01

    An experimental and computational study was conducted on a high-speed, single-expansion-ramp nozzle (SERN) concept designed for efficient off-design performance. The translating-throat SERN concept adjusts the axial location of the throat to provide a variable expansion ratio and allow a more optimum jet exhaust expansion at various flight conditions in an effort to maximize nozzle performance. Three design points (throat locations) were investigated to simulate the operation of this concept at subsonic-transonic, low supersonic, and high supersonic flight conditions. The experimental study was conducted in the jet exit test facility at the Langley Research Center. Internal nozzle performance was obtained at nozzle pressure ratios (NPR's) up to 13 for six nozzles with design nozzle pressure ratios near 9, 42, and 102. Two expansion-ramp surfaces, one concave and one convex, were tested for each design point. Paint-oil flow and focusing schlieren flow visualization techniques were utilized to acquire additional flow data at selected NPR'S. The Navier-Stokes code, PAB3D, was used with a two-equation k-e turbulence model for the computational study. Nozzle performance characteristics were predicted at nozzle pressure ratios of 5, 9, and 13 for the concave ramp, low Mach number nozzle and at 10, 13, and 102 for the concave ramp, high Mach number nozzle.

  11. The Effects of Offsetting and Wedging Cell Lattices in the On-Ramp System

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Zhou, Feng-Yan; Chen, Jian-Hua

    On-ramp is generally regarded as one of the key bottlenecks along the highway. In the present paper, three different merging relationships between on-ramp and main lane are analyzed and presented. The first case parallels each cellular position of accelerating lane to that of main lane. In the second case, each cell of accelerating lane keeps half cell ahead. The third case wedges each cell of accelerating lane into cells of main lane from 1/4 overlap to all. Based on a cellular automaton model, the simulations have been done to demonstrate how vehicles from on-ramp affect the traffic flow moving on main road under the above three different cases. The results show that driver behavior under the third case is closer to the real traffic situation in China, where an on-ramp car finds it hard to merge into main lane with the same velocity. All three phase diagrams show the complex phase transitions, but this reflects the degree of the stochastic nature of traffic flow in reality.

  12. Efficient calculation of integrals in mixed ramp-Gaussian basis sets.

    PubMed

    McKemmish, Laura K

    2015-04-07

    Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RampItUp. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or very large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.

  13. An Experimental and Computational Investigation of a Translating Throat Single Expansion-Ramp Nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Asbury, Scott C.

    1996-01-01

    A translating throat single expansion-ramp nozzle (SERN) concept was designed to improve the off-design performance of a SERN with a large, fixed expansion ratio. The concept of translating the nozzle throat provides the SERN with a variable expansion ratio. An experimental and computational study was conducted to predict and verify the internal performance of this concept. Three nozzles with expansion ratios designed for low, intermediate, and high Mach number operating conditions were tested in the Jet-Exit Test Facility at the NASA Langley Research Center. Each nozzle was tested with a concave and a convex geometric expansion ramp surface design. Internal nozzle performance, paint-oil flow and focusing Schlieren flow visualization were obtained for nozzle pressure ratios (NPR's) up to 13. The Navier-Stokes code, PAB3D, with a k-epsilon turbulence model was utilized to verify experimental results at selected NPR's and to predict the performance at conditions unattainable in the test facility. Two-dimensional simulations were computed with near static free-stream conditions and at nozzle pressure ratios of 5, 9, and 13 for the concave ramp, low Mach number configuration and at the design NPR of 102 for the concave ramp, high Mach number configuration. Remarkable similarities between predicted and experimental flow characteristics, as well as performance quantities, were obtained.

  14. An experimental and computational investigation of a translating throat single expansion-ramp nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Asbury, Scott C.

    1996-01-01

    A translating throat single expansion-ramp nozzle (SERN) concept was designed to improve the off-design performance of a SERN with a large, fixed expansion ratio. The concept of translating the nozzle throat provides the SERN with a variable expansion ratio. An experimental and computational study was conducted to predict and verify the internal performance of this concept. Three nozzles with expansion ratios designed for low, intermediate, and high Mach number operating conditions were tested in the Jet-Exit Test Facility at the NASA Langley Research Center. Each nozzle was tested with a concave and a convex geometric expansion ramp surface design. Internal nozzle performance, paint-oil flow and focusing Schlieren flow visualization were obtained for nozzle pressure ratios (NPR's) up to 13. The Navier-Stokes code, PAB3D, with a k-epsilon turbulence model was utilized to verify experimental results at selected NPRs and to predict the performance at conditions unattainable in the test facility. Two-dimensional simulations were computed with near static free-stream conditions and at nozzle pressure ratios of 5, 9, and 13 for the concave ramp, low Mach number configuration and at the design NPR of 102 for the concave ramp, high Mach number configuration. Remarkable similarities between predicted and experimental flow characteristics, as well as performance quantities, were obtained.

  15. Gap Detection in School-Age Children and Adults: Center Frequency and Ramp Duration

    ERIC Educational Resources Information Center

    Buss, Emily; Porter, Heather L.; Hall, Joseph W., III; Grose, John H.

    2017-01-01

    Purpose: The age at which gap detection becomes adultlike differs, depending on the stimulus characteristics. The present study evaluated whether the developmental trajectory differs as a function of stimulus frequency region or duration of the onset and offset ramps bounding the gap. Method: Thresholds were obtained for wideband noise (500-4500…

  16. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control

    NASA Astrophysics Data System (ADS)

    Bo, Wang; Weidong, Liu; Yuxin, Zhao; Xiaoqiang, Fan; Chao, Wang

    2012-05-01

    Using a nanoparticle-based planar laser-scattering technique and supersonic particle image velocimetry, we investigated the effects of micro-ramp control on incident shockwave and boundary-layer interaction (SWBLI) in a low-noise supersonic wind-tunnel with Mach number 2.7 and Reynolds number Rθ = 5845. High spatiotemporal resolution wake structures downstream of the micro-ramps were detected, while a complex evolution process containing a streamwise counter-rotating vortex pair and large-scale hairpin-like vortices with Strouhal number Stδ of about 0.5-0.65 was revealed. The large-scale structures could survive while passing through the SWBLI region. Reflected shockwaves are clearly seen to be distorted accompanied by high-frequency fluctuations. Micro-ramp applications have a distinct influence on flow patterns of the SWBLI field that vary depending on spanwise locations. Both the shock foot and separation line exhibit undulations corresponding with modifications of the velocity distribution of the incoming boundary layer. Moreover, by energizing parts of the boundary flow, the micro-ramp is able to dampen the separation.

  17. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    SciTech Connect

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I.; Winey, J. Michael; Gupta, Yogendra Mohan; Lane, J. Matthew D.; Ditmire, Todd; Quevedo, Hernan J.

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  18. Plasma current ramp-up by lower hybrid wave using innovative antennas on TST-2

    NASA Astrophysics Data System (ADS)

    Takase, Yuichi; Ejiri, Akira; Moeller, Charles; Roidl, Benedikt; Shinya, Takahiro; Tsujii, Naoto; Yajima, Satoru; Yamazaki, Hibiki; Kitayama, Akichika; Matsumoto, Naoki; Sato, Akito; Sonehara, Masateru; Takahashi, Wataru; Tajiri, Yoshiyuki; Takei, Yuki; Togashi, Hiro; Toida, Kazuya; Yoshida, Yusuke

    2016-10-01

    Non-inductive plasma current (Ip) ramp-up by RF power in the lower hybrid frequency range is being studied on the TST-2 spherical tokamak (R = 0.36 m, a = 0.23 m, Bt = 0.3 T, Ip = 0.1 MA). Up to 400 kW of RF power is available at a frequency of 200 MHz. An innovative antenna called the capacitively-coupled combline (CCC) antenna was developed to excite a sharp, highly directional traveling wave with the electric field polarized in the toroidal direction. It is an array of resonant circuit elements made of capacitance and inductance, coupled to neighboring elements by mutual capacitance. Two CCC antennas are installed in TST-2, a 13-element outboard-launch antenna and a 6-element top-launch antenna. The latter was installed in March 2016 to improve accessibility to the core and to achieve single-pass damping. The suspected wave power loss in the scrape-off layer plasma should also be avoided. Ip ramp-up to 25 kA has been achieved so far. An upgrade of the Bt power supply is planned to take advantage of the observed improvement of Ip ramp-up with Bt. Higher Bt for longer pulses should improve the Ip ramp-up efficiency by improving wave accessibility and by reducing prompt orbit losses of energetic electrons.

  19. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice

    PubMed Central

    Ayachi, Mohamed; Niel, Romain; Momken, Iman; Billat, Véronique L.; Mille-Hamard, Laurence

    2016-01-01

    In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min−1 speed and increases by 3 m.min−1 every 3 min. (b) a ramp protocol with slow acceleration (3 m.min−2), and (c) a ramp protocol with fast acceleration (12 m.min−2). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg 0.75.min−1) for the 3 m.min−2 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l−1 and a respiratory exchange ratio >1). The total duration of the 3 m.min−2 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope. PMID:27621709

  20. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice.

    PubMed

    Ayachi, Mohamed; Niel, Romain; Momken, Iman; Billat, Véronique L; Mille-Hamard, Laurence

    2016-01-01

    In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min(-1) speed and increases by 3 m.min(-1) every 3 min. (b) a ramp protocol with slow acceleration (3 m.min(-2)), and (c) a ramp protocol with fast acceleration (12 m.min(-2)). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg (0.75).min(-1)) for the 3 m.min(-2) 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l(-1) and a respiratory exchange ratio >1). The total duration of the 3 m.min(-2) 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope.

  1. First-order analysis of deformation of a thrust sheet moving over a ramp

    USGS Publications Warehouse

    Berger, P.; Johnson, A.M.

    1980-01-01

    John L. Rich introduced the revolutionary concept that many folds in the Appalachian Mountains can be explained as superficial structures formed by passive translation of thrust blocks over ramps in detachment surfaces. The amount of layer-parallel shortening can be negligible in the formation of these folds. Rich primarily was concerned with an explanation for the Powell Valley anticline, in the southern Appalachians, but the essential kinematic features of his model of folding have been verified in other folds in the Appalachians, in the Canadian Rockies, in the Idaho-Wyoming thrust belt, and in the Pyrenees. In this paper we solve the boundary-value problem for an idealized thrust block moving over a detachment surface and ramp with zero drag, and produce theoretical fold forms in the thrust block that closely resemble those in Rich's idealized model. The anticline is narrow and rounded if the translation is small, and broad and flat-topped if the translation is large. The limbs of the anticline are symmetric. We also incorporate drag along the ramp part of the detachment surface in order to derive a possible explanation for the asymmetry of dips of the two limbs of the Powell Valley anticline. We show that drag can explain the asymmetry, particularly if drag between relatively competent rocks in opposition at the ramp caused an initial anticline to form as the thrust block began to move, and then drag reduced markedly as relatively soft shales at the base of the block were thrust over competent rocks in the ramp. The existence of the initial anticline should be reflected in asymmetry of the two limbs and in a bulge at the distal edge of the broad anticline. ?? 1980.

  2. Quantification of tsunami-induced flows on a Mediterranean carbonate ramp reveals catastrophic evolution

    NASA Astrophysics Data System (ADS)

    Slootman, Arnoud; Cartigny, Matthieu J. B.; Moscariello, Andrea; Chiaradia, Massimo; de Boer, Poppe L.

    2016-06-01

    Cool-water carbonates are the dominant limestones in the Mediterranean Basin since the Early Pliocene. Their deposition typically resulted in ramp morphologies due to high rates of resedimentation. Several such fossil carbonate ramps are characterised by a bimodal facies stacking pattern, where background deposition of subaqueous dune and/or tempestite deposits is repeatedly interrupted by anomalously thick sedimentary units, dominated by backset-stratification formed by supercritical flows. A multitude of exceptional triggers (e.g. storms, floods, tsunamis) have been invoked to explain the origin of these supercritical flows, which, in the absence of a quantitative analysis, remains speculative as yet. Here, for the first time, the catastrophic evolution of one such Mediterranean carbonate ramp, on Favignana Island (Italy), is quantified by combining 87Sr/86Sr dating, outcrop-based palaeoflow reconstructions and hydraulic calculations. We demonstrate that rare tsunami-induced flows, occurring on average once every 14 to 35 kyr, lasting a few hours only, deposited the anomalously thick backset-bedded units that form half of the sedimentary record. In between such events, cumulative two years of storm-induced flows deposited the remaining half of the succession by the stacking of subaqueous dunes. The two to four orders of magnitude difference in average recurrence period between the two flow types, and their associated sedimentation rates, emphasises the genetic differences between the two styles of deposition. In terms of sediment transport, the studied carbonate ramp was inactive for at least 99% of the time with gradual progradation during decennial to centennial storm activity. Carbonate ramp evolution attained a catastrophic signature by the contribution of rare tsunamis, producing short-lived, high-energy sediment gravity flows.

  3. Mixed Linear/Square-Root Encoded Single Slope Ramp Provides a Fast, Low Noise Analog to Digital Converter with Very High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Newton, Kenneth W. (Inventor); Cunningham, Thomas J. (Inventor)

    2014-01-01

    An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.

  4. Effectiveness of a multidisciplinary risk assessment and management programme-diabetes mellitus (RAMP-DM) on patient-reported outcomes.

    PubMed

    Wan, Eric Yuk Fai; Fung, Colman Siu Cheung; Wong, Carlos King Ho; Choi, Edmond Pui Hang; Jiao, Fang Fang; Chan, Anca Ka Chun; Chan, Karina Hiu Yen; Lam, Cindy Lo Kuen

    2017-02-01

    Little is known about how the patient-reported outcomes is influenced by multidisciplinary-risk-assessment-and-management-programme for patients with diabetes mellitus (RAMP-DM). This paper aims to evaluate the effectiveness of RAMP-DM on patient-reported outcomes. This was a prospective longitudinal study on 1039 diabetes mellitus patients (714/325 RAMP-DM/non-RAMP-DM) managed in primary care setting. 536 and 402 RAMP-DM participants, and 237 and 187 non-RAMP-DM participants were followed up at 12 and 24 months with completed survey, respectively. Patient-reported outcomes included health-related quality of life, change in global health condition and patient enablement measured by Short Form-12 Health Survey version-2 (SF-12v2), Global Rating Scale, Patient Enablement Instrument respectively. The effects of RAMP-DM on patient-reported outcomes were evaluated by mixed effect models. Subgroup analysis was performed by stratifying haemoglobin A1c (HbA1c) (optimal HbA1c < 7 % and suboptimal HbA1c ≥ 7 %). RAMP-DM with suboptimal HbA1c was associated with greater improvement in SF-12v2 physical component summary score at 12-month (coefficient:3.80; P-value < 0.05) and 24-month (coefficient:3.82;P-value < 0.05), more likely to feel more enabled at 12-month (odds ratio: 2.57; P-value < 0.05), and have improved in GRS at 24-month (odds ratio:4.05; P-value < 0.05) compared to non-RAMP-DM participants. However, there was no significant difference in patient-reported outcomes between RAMP-DM and non-RAMP-DM participants with optimal HbA1c. Participation in RAMP-DM is effective in improving physical component of HRQOL, Global Rating Scale and patient enablement among diabetes mellitus patients with suboptimal HbA1c, but not in those with optimal HbA1c. Patients with sub-optimal diabetes mellitus control should be the priority target population for RAMP-DM. This observational study design may have potential bias in the characteristics between

  5. Lateral ramps in the folded Appalachians and in overthrust belts worldwide; a fundamental element of thrust-belt architecture

    USGS Publications Warehouse

    Pohn, Howard A.

    2000-01-01

    Lateral ramps are zones where decollements change stratigraphic level along strike; they differ from frontal ramps, which are zones where decollements change stratigraphic level perpendicular to strike. In the Appalachian Mountains, the surface criteria for recognizing the subsurface presence of lateral ramps include (1) an abrupt change in wavelength or a termination of folds along strike, (2) a conspicuous change in the frequency of mapped faults or disturbed zones (extremely disrupted duplexes) at the surface, (3) long, straight river trends emerging onto the coastal plain or into the Appalachian Plateaus province, (4) major geomorphic discontinuities in the trend of the Blue Ridge province, (5) interruption of Mesozoic basins by cross-strike border faults, and (6) zones of modern and probable ancient seismic activity. Additional features related to lateral ramps include tectonic windows, cross-strike igneous intrusions, areas of giant landslides, and abrupt changes in Paleozoic sedimentation along strike. Proprietary strike-line seismic-reflection profiles cross three of the lateral ramps that were identified by using the surface criteria. The profiles confirm their presence and show their detailed nature in the subsurface. Like frontal ramps, lateral ramps are one of two possible consequences of fold-and-thrust-belt tectonics and are common elements in the Appalachian fold-and-thrust belt. A survey of other thrust belts in the United States and elsewhere strongly suggests that lateral ramps at depth can be identified by their surface effects. Lateral ramps probably are the result of thrust sheet motion caused by continued activation of ancient cratonic fracture systems. Such fractures localized the transform faults along which the continental segments adjusted during episodes of sea-floor spreading.

  6. Static internal performance of single-expansion-ramp nozzles with thrust-vectoring capability up to 60 deg

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Leavitt, L. D.

    1984-01-01

    An investigation has been conducted at static conditions (wind off) in the static-test facility of the Langley 16-Foot Transonic Tunnel. The effects of geometric thrust-vector angle, sidewall containment, ramp curvature, lower-flap lip angle, and ramp length on the internal performance of nonaxisymmetric single-expansion-ramp nozzles were investigated. Geometric thrust-vector angle was varied from -20 deg. to 60 deg., and nozzle pressure ratio was varied from 1.0 (jet off) to approximately 10.0.

  7. Numerical investigations on the wake structures of micro-ramp and micro-vanes

    NASA Astrophysics Data System (ADS)

    DaWen, Xue; ZhiHua, Chen; XiaoHai, Jiang; BaoChun, Fan

    2014-02-01

    Based on large eddy simulation, combined with the high-order WENO (weighted essentially non-oscillatory schemes) scheme, immersed boundary method and adaptive mesh refinement technique, the supersonic flow past a wall-mounted micro-ramp and two micro-vanes have been simulated. The different wake structures are presented and discussed. Our numerical results showed that wake structures behind the micro-ramp are more complicated, including ring-like vortex train, and streamwise vortex tubes etc. However, the wake structures of the micro-vanes are quite simple; they are mainly the two counter-rotating streamwise vortex tubes. The control of boundary flow of both is achieved through the energy exchange between the main stream and the boundary layer and is presented mainly by the upwash and downwash motion of gases under the entrainment of vortex tubes.

  8. Phase diagram of speed gradient model with an on-ramp

    NASA Astrophysics Data System (ADS)

    Tang, Chang-Fu; Jiang, Rui; Wu, Qing-Song

    2007-04-01

    In this paper, phase transitions are investigated in speed gradient model with an on-ramp. Phase diagrams of traffic flow composed of manually driven vehicles and adaptive cruise control (ACC) vehicles are studied, respectively. The traffic flow composed of ACC vehicles is modeled by enhancing propagation speed of small disturbance. The phase diagram of traffic flow composed of manually driven vehicles is similar to that in previous works, in which such states as pinned localized cluster (PLC), moving localized cluster (MLC), triggered stop-and-go traffic (TSG), oscillatory congested traffic (OCT), and homogeneous congested traffic (HCT) are reproduced. In the phase diagram of traffic flow composed of ACC vehicles, traffic stability is enhanced and such states as PLC, MLC, and TSG disappear. Furthermore, some interesting phenomena, such as stationary OCT upstream of on-ramp and appearance of second OCT in HCT, are identified.

  9. Mechanical models favor a ramp geometry for the Ventura-pitas point fault, California

    NASA Astrophysics Data System (ADS)

    Marshall, Scott T.; Funning, Gareth J.; Krueger, Hannah E.; Owen, Susan E.; Loveless, John P.

    2017-02-01

    Recent investigations have provided new and significantly revised constraints on the subsurface structure of the Ventura-Pitas Point fault system in southern California; however, few data directly constrain fault surfaces below 6 km depth. Here, we use geometrically complex three-dimensional mechanical models driven by current geodetic strain rates to test two proposed subsurface models of the fault system. We find that the model that incorporates a ramp geometry for the Ventura-Pitas Point fault better reproduces both the regional long term geologic slip rate data and interseismic GPS observations of uplift in the Santa Ynez Mountains. The model-calculated average reverse slip rate for the Ventura-Pitas Point fault is 3.5 ± 0.3 mm/yr, although slip rates are spatially variable on the fault surface with > 8 mm/yr predicted on portions of the lower ramp section at depth.

  10. The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping

    NASA Astrophysics Data System (ADS)

    Vopát, Tomáš; Peterka, Jozef; Kováč, Martin

    2014-12-01

    The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life) of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.

  11. Tangential blowing for control of strong normal shock - Boundary layer interactions on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.; Sanders, B. W.

    1982-01-01

    The use of tangential blowing from a row of holes in an aft facing step is found to provide good control of the ramp boundary layer, normal shock interaction on a fixed geometry inlet over a wide range of inlet mass flow ratios. Ramp Mach numbers of 1.36 and 1.96 are investigated. The blowing geometry is found to have a significant effect on system performance at the highest Mach number. The use of high-temperature air in the blowing system, however, has only a slight effect on performance. The required blowing rates are significantly high for the most severe test conditions. In addition, the required blowing coefficient is found to be proportional to the normal shock pressure rise.

  12. Terminated Ramp-Support vector machines: a nonparametric data dependent kernel.

    PubMed

    Merler, Stefano; Jurman, Giuseppe

    2006-12-01

    We propose a novel algorithm, Terminated Ramp-Support Vector Machines (TR-SVM), for classification and feature ranking purposes in the family of Support Vector Machines. The main improvement relies on the fact that the kernel is automatically determined by the training examples. It is built as a function of simple classifiers, generalized terminated ramp functions, obtained by separating oppositely labeled pairs of training points. The algorithm has a meaningful geometrical interpretation, and it is derived in the framework of Tikhonov regularization theory. Its unique free parameter is the regularization one, representing a trade-off between empirical error and solution complexity. Employing the equivalence between the proposed algorithm and two-layer networks, a theoretical bound on the generalization error is also derived, together with Vapnik-Chervonenkis dimension. Performances are tested on a number of synthetic and real data sets.

  13. Numerical Study of Control of Flow Separation Over a Ramp with Nanosecond Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Khoo, B. C.; Cui, Y. D.; Zhao, Z. J.; Li, J.

    2016-06-01

    The nanosecond plasma discharge actuator driven by high voltage pulse with typical rise and decay time of several to tens of nanoseconds is emerging as a promising active flow control means in recent years and is being studied intensively. The characterization study reveals that the discharge induced shock wave propagates through ambient air and introduces highly transient perturbation to the flow. On the other hand, the residual heat remaining in the discharge volume may trigger the instability of external flow. In this study, this type of actuator is used to suppress flow separation over a ramp model. Numerical simulation is carried out to investigate the interaction of the discharge induced disturbance with the external flow. It is found that the flow separation region over the ramp can be reduced significantly. Our work may provide some insights into the understanding of the control mechanism of nanosecond pulse actuator.

  14. Grid-refinement study of hypersonic laminar flow over a 2-D ramp

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Rudy, David H.; Kumar, Ajay; Van Leer, Bram

    1991-01-01

    Computations were made for those test cases of Problem 3 which were designated as laminar flows, viz., test cases 3.1, 3.2, 3.4, and 3.5. These test cases corresponded to flows over a flat plate and a compression ramp at high Mach number and at high Reynolds number. The computations over the compression ramps indicate a substantial streamwise extent of separation. Based on previous experience with separated laminar flows at high Mach numbers which indicated a substantial effect with spatial grid refinement, a series of computations with different grid sizes were performed. Also, for the flat plate, comparisons of the results for two different algorithms were made.

  15. Influence of current ramp rate on voltage current measurement of a conduction-cooled HTS magnet

    NASA Astrophysics Data System (ADS)

    Hiltunen, I.; Korpela, A.; Lehtonen, J.; Mikkonen, R.

    2008-06-01

    High-temperature superconductors (HTS) have notably different voltage current characteristic compared to the low-temperature superconductors (LTS). Due to the anisotropy and slanted electric field - current density characteristics the loss of stability in a Bi-2223/Ag magnet is viewed as a global temperature increase inside the coil rather than a local normal zone. Therefore, the quench current depends strongly on the cooling conditions. In this paper a finite element method based analysis method is presented and example runs are carried out in order to explain in detail the influence of the current ramp rate and cooling on the voltage current characteristics of a conduction-cooled Bi-2223/Ag coil at 20 and 45 K. The results show that in certain operation conditions the coil critical current has a maximum value with respect to the ramp rate used in the measurements.

  16. Heart Rate Variability as a Measure of Airport Ramp-Traffic Controllers Workload

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Dulchinos, Victoria Lee

    2016-01-01

    Heart Rate Variability (HRV) has been reported to reflect the person's cognitive and emotional stress levels, and may offer an objective measure of human-operator's workload levels, which are recorded continuously and unobtrusively to the task performance. The present paper compares the HRV data collected during a human-in-the-loop simulation of airport ramp-traffic control operations with the controller participants' own verbal self-reporting ratings of their workload.

  17. Influence of priming exercise on muscle deoxy[Hb + Mb] during ramp cycle exercise.

    PubMed

    Boone, Jan; Bouckaert, Jacques; Barstow, Thomas J; Bourgois, Jan

    2012-03-01

    The aim of the present study was to gain better insight into the mechanisms underpinning the sigmoid pattern of deoxy[Hb + Mb] during incremental exercise by assessing the changes in the profile following prior high-intensity exercise. Ten physically active students performed two incremental ramp (25 W min(-1)) exercises (AL and LL, respectively) preceded on one occasion by incremental arm (10 W min(-1)) and on another occasion by incremental leg exercise (25 W min(-1)), which served as the reference test (RT). Deoxy[Hb + Mb] was measured by means of near-infrared spectroscopy and surface EMG was recorded at the Vastus Lateralis throughout the exercises. Deoxy[Hb + Mb], integrated EMG and Median Power Frequency (MdPF) were expressed as a function of work rate (W) and compared between the exercises. During RT and AL deoxy[Hb + Mb] followed a sigmoid increase as a function of work rate. However, during LL deoxy[Hb + Mb] increased immediately from the onset of the ramp exercise and thus no longer followed a sigmoid pattern. This different pattern in deoxy[Hb + Mb] was accompanied by a steeper slope of the iEMG/W-relationship below the GET (LL: 0.89 ± 0.11% W(-1); RT: 0.74 ± 0.08% W(-1); AL: 0.72 ± 0.10% W(-1)) and a more pronounced decrease in MdPF in LL (17.2 ± 4.5%) compared to RT (5.0 ± 2.1%) and AL (3.9 ± 3.2%). It was observed that the sigmoid pattern of deoxy[Hb + Mb] was disturbed when the ramp exercise was preceded by priming leg exercise. Since the differences in deoxy[Hb + Mb] were accompanied by differences in EMG it can be suggested that muscle fibre recruitment is an important underlying mechanism for the pattern of deoxy[Hb + Mb] during ramp exercise.

  18. Characterization Of Station Quality From The CHILE RAMP Deployment - Direct Burial Sensor Installation And Its Data

    NASA Astrophysics Data System (ADS)

    Arias, E. Y.; Beaudoin, B. C.; Barstow, N.; Slad, G.

    2010-12-01

    IRIS PASSCAL supported a NSF-funded project to collect an open community dataset from a portable seismograph deployment following the magnitude 8.8 earthquake that occurred off the coast of Chile on February 27, 2010 (an experiment of the Rapid Array Mobilization Program - RAMP). In part, due to logistical constraints, the broadband sensors (Guralp CMG3T) for this deployment were buried directly in soil. Direct burial refers to installation of a broadband sensor in a small hand-dug hole, encased in plastic bags, and ideally backfilled with well tamped and dampened sand. Field conditions did not provide ideal installations in all cases. Because of the variability in actual installation practices, the Chile RAMP data provide an opportunity to examine the impact of several factors on the direct burial data quality. Using McNamara and Boaz (2005) PQLX statistical analysis software, which calculates the power spectral density (PSD) and plots the probability density function (PDF)(McNamara and Buland, 2004), we characterize the background seismic noise levels and signal quality for 58 directly buried installations at the Chile RAMP. Data return and data quality during the deployment (April -September 2010) will be evaluated considering a variety of parameters including installation technique, site characteristics, and equipment performance. Preliminary results using data from two service runs (April - June), suggest variation in the data quality and recovery due to slightly different installation practices and/or possibly environmental factors. We seek to evaluate and characterize parameters that affect the resulting data recovery and their quality; this study is an important test case for future PASSCAL and RAMP installations. If possible we would like to compare data from other local networks to identify distinctive characteristics from different installation set-ups.

  19. The persistence of regular reflection during strong shock diffraction over rigid ramps

    NASA Astrophysics Data System (ADS)

    Henderson, L. F.; Takayama, K.; Crutchfield, W. Y.; Itabashi, S.

    2001-03-01

    We report on calculations and experiments with strong shocks diffracting over rigid ramps in argon. The numerical results were obtained by integrating the conservation equations that included the Navier Stokes equations. The results predict that if the ramp angle [theta] is less than the angle [theta]e that corresponds to the detachment of a shock, [theta] < [theta]e, then the onset of Mach reflection (MR) will be delayed by the initial appearance of a precursor regular reflection (PRR). The PRR is subsequently swept away by an overtaking corner signal (cs) that forces the eruption of the MR which then rapidly evolves into a self-similar state. An objective was to make an experimental test of the predictions. These were confirmed by twice photographing the diffracting shock as it travelled along the ramp. We could get a PRR with the first exposure and an MR with the second. According to the von Neumann perfect gas theory, a PRR does not exist when [theta] < [theta]e. A viscous length scale xint is a measure of the position on the ramp where the dynamic transition PRR [rightward arrow] MR takes place. It is significantly larger in the experiments than in the calculations. This is attributed to the fact that fluctuations from turbulence and surface roughness were not modelled in the calculations. It was found that xint [rightward arrow] [infty infinity] as [theta] [rightward arrow] [theta]e. Experiments were done to find out how xint depended on the initial shock tube pressure p0. The dependence was strong but could be greatly reduced by forming a Reynolds number based on xint. Finally by definition, regular reflection (RR) never interacts with a boundary layer, while PRR always interacts; so they are different phenomena.

  20. Calculation of vertical and ramp-assisted takeoffs for supersonic cruise fighters

    NASA Technical Reports Server (NTRS)

    Liu, G. C.

    1984-01-01

    A procedure that allows rapid preliminary evaluations of the vertical, short, and normal takeoff performance of supersonic cruise aircraft concepts was developed into a numerical computer program. The program is used to determine the effects on takeoff performance of various parameters, such as thrust-weight ratio, wing loading, thrust vector angle, and flap setting. Ramp-assisted takeoffs for overloaded configurations typical of a ground-attack mission are included. The effects of wind on the takeoff performance are also considered.

  1. The Line Operations Safety Audit Program: Transitioning From Flight Operations to Maintenance and Ramp Operations

    DTIC Science & Technology

    2011-09-01

    Jiao Ma and Mark Pedigo Saint Louis University St. Louis, MO 63103 Lauren Blackwell Oak Ridge National Laboratory Oak Ridge, TN 37831 Kevin Gildea...Kali Holcomb, and Carla Hackworth Civil Aerospace Medical Institute Federal Aviation Administration Oklahoma City, OK 73125 John J. Hiles Flight...Maintenance and Ramp Operations 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Ma J,1 Pedigo M,1 Blackwell

  2. MUON ACCELERATION WITH A VERY FAST RAMPING SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect

    SUMMERS,D.J.BERG,J.S.GARREN,A.A.PALMER,R.B.

    2002-07-01

    A 4600 Hz fast ramping synchrotron is explored as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice we describe. Muon survival is 83%.

  3. Rapid Current Ramp-Up by Cyclotron-Driving Electrons beyond Runaway Velocity

    SciTech Connect

    Uchida, M.; Yoshinaga, T.; Tanaka, H.; Maekawa, T.

    2010-02-12

    The toroidal current has been rapidly ramped-up after the formation of an initial closed flux surface in an electron cyclotron heated discharge in the low aspect ratio torus experiment device. A current carrying fast electron tail is developed well beyond the runaway velocity against the reverse voltage from self-induction, suggesting a forward driving force on the tail by the cyclotron absorption of high N{sub ||} electron Bernstein waves.

  4. Validity of Thermal Ramping Assays Used to Assess Thermal Tolerance in Arthropods

    PubMed Central

    Overgaard, Johannes; Kristensen, Torsten Nygaard; Sørensen, Jesper Givskov

    2012-01-01

    Proper assessment of environmental resistance of animals is critical for the ability of researchers to understand how variation in environmental conditions influence population and species abundance. This is also the case for studies of upper thermal limits in insects, where researchers studying animals under laboratory conditions must select appropriate methodology on which conclusions can be drawn. Ideally these methods should precisely estimate the trait of interest and also be biological meaningful. In an attempt to develop such tests it has been proposed that thermal ramping assays are useful assays for small insects because they incorporate an ecologically relevant gradual temperature change. However, recent model-based papers have suggested that estimates of thermal resistance may be strongly confounded by simultaneous starvation and dehydration stress. In the present study we empirically test these model predictions using two sets of independent experiments. We clearly demonstrate that results from ramping assays of small insects (Drosophila melanogaster) are not compromised by starvation- or dehydration-stress. Firstly we show that the mild disturbance of water and energy balance of D. melanogaster experienced during the ramping tests does not confound heat tolerance estimates. Secondly we show that flies pre-exposed to starvation and dehydration have “normal” heat tolerance and that resistance to heat stress is independent of the energetic and water status of the flies. On the basis of our results we discuss the assumptions used in recent model papers and present arguments as to why the ramping assay is both a valid and ecologically relevant way to measure thermal resistance in insects. PMID:22427876

  5. INITIAL TEST OF A FAST RAMPED SUPERCONDUCTING MODEL DIPOLE FOR GSIS PROPOSED SIS200 ACCELERATOR.

    SciTech Connect

    WANDERER,P.; ANERELLA,M.; GANETIS,G.; GHOSH,A.; JOSHI,P.; MARONE,A.; MURATORE,J.; SCHMALZLE,J.; SOIKA,R.; THOMAS,R.; KAUGERTS,J.; MORITZ,G.; HASSENZAHL,W.; WILSON,N.M.

    2003-05-12

    Gesellschaft fur Schwerionenforschung (GSI) has proposed a large expansion of the existing facility in Darmstadt, Germany. The proposal includes an accelerator, SIS200, with rigidity of 200 Tam that utilizes 4 T superconducting dipoles ramped at 1 T/s. An R&D program including both the superconductor and the magnet is directed at achieving the desired ramp rate with minimal energy loss. The RHIC arc dipoles, with 8 cm aperture, possess adequate aperture and field strength but are ramped at only 1/20 of the desired rate. However, for reasons of speed and economy, the RHIC dipole is being used as the basis for this work. The superconductor R&D has progressed far enough to permit the manufacture of an initial cable with satisfactory properties. This cable has been used in the construction of a I m model magnet, appropriately modified from the RHIC design. The magnet has been tested successfully at 2 T/s to 4.38 T.

  6. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Lumpkin, Forrest E., III; Gati, Frank; Yuko, James R.; Motil, Brian J.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module was performed using MSC Patran/Pthermal. The obtained temperature results showed that thermal protection is necessary because of significant heating from the plume.

  7. Turbulence models and Reynolds analogy for two-dimensional supersonic compression ramp flow

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.; Bidek, Maleina C.

    1994-01-01

    Results of the application of turbulence models and the Reynolds analogy to the Navier-Stokes computations of Mach 2.9 two-dimensional compression ramp flows are presented. The Baldwin-Lomax eddy viscosity model and the kappa-epsilon turbulence transport equations for the turbulent momentum flux modeling in the Navier-Stokes equations are studied. The Reynolds analogy for the turbulent heat flux modeling in the energy equation was also studied. The Navier-Stokes equations and the energy equation were numerically solved for the flow properties. The Reynolds shear stress, the skin friction factor, and the surface heat transfer rate were calculated and compared with their measurements. It was concluded that with a hybrid kappa-epsilon turbulence model for turbulence modeling, the present computations predicted the skin friction factors of the 8 deg and 16 deg compression ramp flows and with the turbulent Prandtl number Pr(sub t) = 0.93 and the ratio of the turbulent thermal and momentum transport coefficients mu(sub q)/mu(sub t) = 2/Prt, the present computations also predicted the surface heat transfer rates beneath the boundary layer flow of the 16 compression ramp.

  8. Spatially Ramped Turbulence in Taylor-Couette Flow with Hourglass Geometry

    NASA Astrophysics Data System (ADS)

    Ashbaker, Eric; Wiener, Richard J.; Olsen, Thomas; Bodenschatz, Eberhard

    2003-11-01

    Taylor vortex flow in an hourglass geometry undergoes a period-doubling cascade to chaotic pattern dynamics, as the rotation rate is increased(Richard J. Wiener et al), Phys. Rev. E 55, 5489 (1997).. The pattern of laminar flow in Taylor Vortex is unstable to the formation phase slips, generating new vortex pairs. For higher rotation rates, the pattern freezes. At even greater rotation rates the flow becomes demonstrably turbulent, and remarkably, the pattern again becomes unstable to phase slips. Our measurements document and quantify the spatial variation of this turbulence. Light was scattered off Kalliroscope tracer in the fluid. The time-varying intensity was Fourier transformed and the turbulence was quantified by the Spectral Mode Number, Spectral Number Distribution, and Degrees of Freedom measures. The strength of the turbulence is ramped in a manner consistent with the ramped Reynolds number along the hourglass. This is in keeping with our suggestion that the ramped turbulence gives rise to the persistent dynamics of the phase slips in the presence of turbulence.

  9. Estimation of arterial PCO2 from a lung model during ramp exercise in healthy young subjects.

    PubMed

    Thomas, Vincent; Costes, Frédéric; Busso, Thierry

    2007-06-15

    The aim of this study is to propose a new approach to estimate non-invasively arterial carbon dioxide partial pressure (P(a)CO2) approach was based on the reconstruction of alveolar gas composition over each breath from a tidally ventilated lung model (P(M)(CO2)). Eight healthy young subjects were studied during a ramp exercise test on a cycle ergometer. Arterial samples were drawn at rest and every minute during the exercise test for determination of P(a)CO2 . P(a)CO2 was compared with indirect estimates of P(CO2) : P(M)(CO2), end-tidal P(CO2) (P(ET)(CO2)) and an empirical equation involving P(ET)(CO2) and tidal volume (P(J)(CO2)). The difference between estimated and measured P(a)CO2 on the whole ramp exercise was -0.3+/-1.9mmHg for P(M)(CO2), 1.0+/-2.2mmHg for P(ET)(CO2) and -1.7+/-1.7mmHg for P(J)(CO2) . P(ET)(CO2) and P(J)(CO2) were significantly different from actual P(a)CO2 (P<0.001). It is concluded that, on the basis of the bias, the breathing lung model gave better estimates of P(a)CO2 than the two other indirect methods during ramp exercise.

  10. Three-dimensional supersonic flow around double compression ramp with finite span

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Lee, J. H.; Park, G.; Park, S. H.; Byun, Y. H.

    2017-01-01

    Three-dimensional flows of Mach number 3 around a double-compression ramp with finite span have been investigated numerically. Shadowgraph visualisation images obtained in a supersonic wind tunnel are used for comparison. A three-dimensional Reynolds-averaged Navier-Stokes solver was used to obtain steady numerical solutions. Two-dimensional numerical results are also compared. Four different cases were studied: two different second ramp angles of 30° and 45° in configurations with and without sidewalls, respectively. Results showed that there is a leakage of mass and momentum fluxes heading outwards in the spanwise direction for three-dimensional cases without sidewalls. The leakage changed the flow characteristics of the shock-induced boundary layer and resulted in the discrepancy between the experimental data and two-dimensional numerical results. It is found that suppressing the flow leakage by attaching the sidewalls enhances the two-dimensionality of the experimental data for the double-compression ramp flow.

  11. Self-ordered nanopore arrays through hard anodization assisted by anode temperature ramp

    NASA Astrophysics Data System (ADS)

    Mohammadniaei, M.; Maleki, K.; Kashi, M. Almasi; Ramezani, A.; Mayamei, Y.

    2016-10-01

    In the present work, hard anodization assisted by anode temperature ramp was employed to fabricate self-ordered nanoporous alumina in the wide range of interpore distances (259-405 nm) in pure oxalic acid and mixture of oxalic and phosphoric acid solutions. Anode temperature ramp technique was employed to adjust the anodization current density to optimize the self-ordering of the nanopore arrays in the interpore range in which no ordered self-assembled hard anodized anodic aluminum oxide has reported. It is found that the certain ratios of oxalic and phosphoric acid solutions in this anodization technique increased self-ordering of the nanopores especially for anodization voltages over the 170 V by increasing alumina's viscous flow which could lead to decrease the overall current density of anodization, yet leveled up by anode temperature ramp. However, below 150 V anodization voltage, the ratio of interpore distance to the anodization voltage of the both anodization techniques was the same (~2 nm/V), while above this voltage, it increased to about 2.2 nm/V.

  12. Linking ramped pyrolysis isotope data to oil content through PAH analysis

    NASA Astrophysics Data System (ADS)

    Pendergraft, Matthew A.; Dincer, Zeynep; Sericano, José L.; Wade, Terry L.; Kolasinski, Joanna; Rosenheim, Brad E.

    2013-12-01

    Ramped pyrolysis isotope (13C and 14C) analysis coupled with polycyclic aromatic hydrocarbon (PAH) analysis demonstrates the utility of ramped pyrolysis in screening for oil content in sediments. Here, sediments from Barataria Bay, Louisiana, USA that were contaminated by oil from the 2010 BP Deepwater Horizon spill display relationships between oil contamination, pyrolysis profiles, and isotopic composition. Sediment samples with low PAH concentrations are thermochemically stable until higher temperatures, while samples containing high concentrations of PAHs pyrolyze at low temperatures. High PAH samples are also depleted in radiocarbon (14C), especially in the fractions that pyrolyze at low temperatures. This lack of radiocarbon in low temperature pyrolyzates is indicative of thermochemically unstable, 14C-free oil content. This study presents a proof of concept that oil contamination can be identified by changes in thermochemical stability in organic material and corroborated by isotope analysis of individual pyrolyzates, thereby providing a basis for application of ramped pyrolysis isotope analysis to samples deposited in different environments for different lengths of time.

  13. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Gati, Frank; Yuko, James R.; Motil, Brian J.; Lumpkin, Forrest E.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module showed that thermal protection is necessary because of significant heating from the plume.

  14. Influence of Rapid Thermal Ramp Rate on Phase Transformation of Titanium Silicides

    SciTech Connect

    Bailey, Glenn; Hu, Yao, Zhi; Smith, Paul Martin; Tay, Sing Pin; Thakur, Randhir; Yang, Jiting

    1999-05-03

    ULSI technology requires low resistance, stable silicides formed on small geometry lines. Titanium disilicide (TiSiz), which is the most widely used silicide for ULSI applications, exists in two crystallographic phases: the high resistance, metastable C49 phase and the low resistance, stable C54 phase. The major issue with TiSiz is the increasing thermal budget required to transform the C49 phase into the low resistance C54 phase as linewiths decrease below 0.25 pm. Annealing above 900"C to obtain this transformation often results in thermal degradation, so it is desirable to reduce the transformation temperature. The transformation temperature has been shown to be a fi.mction of many factors including microstructure, grain size, and impurities. In this paper we report an investig+ion of rapid thermal silicidation of titanium films (250, 400, and 600 A) on single crystalline silicon at temperatures from 300 to 1000"C. The ramp rates for these experiments are 5, 30, 70, and 200oC/s. The transformation temperature decreases as the ramp rate increases and as the initial film thickness increases. Scanning electron microscopy (SEM) is used to analyze the resultant film microstructure. The ramp rate influence on Ti silicidation is also investigated on polycrystalline Si lines with widths ranging from 0.27 to 3.0 pm.

  15. The Dynamic Behaviors of Single Crystal RDX Under Ramp Wave Loading to 15GPa

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; Cai, Jintao; Zhao, Jianheng; Zhao, Feng; Wu, Gang; Tan, Fuli; Sun, Chengwei

    Based on high pulsed power generator CQ-4, the single crystal RDX explosive was researched along different crystal orientations under ramp wave loadings up to 15 GPa. The typical three-wave structures were obtained by means of laser interferometry PDV, which show the elastic-plastic transition and α to γ phase transition. The ramp elastic limit (REL) and yield strength of RDX along 210 and 100 crystal orientations were respectively calculated and the resuts show obvious effects of crystal orientaions for RDX. The ramp elastic limit σIEL of RDX along 210 orientation is 0.688-0.758GPa, and the σIEL of RDX along 100 is 1.039 -1.110 GPa. The α to γ phase transformation characteristics were also analyzed based on the experimental data. The initial phase transition pressure for the two crystal orientation of RDX are about 3.5 to 4 GPa, which agree well with the data of about 4-5GPa given by MD simulation. The data directly validate the results given by Raman Spectrum under shock compression and static high pressure, which couldn't be observed by wave profiles. The experimental data can be used to verify and validate the new models of RDX under dynamic loading. Supported by NSFC of China under Contract No.11327803 and 11176002

  16. Efficient calculation of integrals in mixed ramp-Gaussian basis sets

    SciTech Connect

    McKemmish, Laura K.

    2015-04-07

    Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RAMPITUP. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or very large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.

  17. Folding of a detachment and fault - Modified detachment folding along a lateral ramp, southwestern Montana, USA

    NASA Astrophysics Data System (ADS)

    Schmidt, Christopher; Whisner, S. Christopher; Whisner, Jennifer B.

    2014-12-01

    The inversion of the Middle Proterozoic Belt sedimentary basin during Late Cretaceous thrusting in Montana produced a large eastwardly-convex salient, the southern boundary of which is a 200 km-long oblique to lateral ramp subtended by a detachment between the Belt rocks and Archean basement. A 10 km-long lateral ramp segment exposes the upper levels of the detachment where hanging wall Belt rocks have moved out over the Paleozoic and Mesozoic section. The hanging wall structure consists of a train of high amplitude, faulted, asymmetrical detachment folds. Initial west-east shortening produced layer parallel shortening fabrics and dominantly strike slip faulting followed by symmetrical detachment folding. 'Lock-up' of movement on the detachment surface produced regional simple shear and caused the detachment folds to become asymmetrical and faulted. Folding of the detachment surface after lock-up modified the easternmost detachment folds further into a southeast-verging, overturned fold pair with a ramp-related fault along the base of the stretched mutual limb.

  18. Sedimentary structures formed by upper-regime flows on a Pleistocene carbonate ramp (Favignana Calcarenite, Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Slootman, Arnoud; Moscariello, Andrea; Cartigny, Matthieu; de Boer, Poppe

    2015-04-01

    Antidune, chute-and-pool and cyclic step deposits are found in the outcrops of the Pleistocene calcarenite wedge of Favignana Island. These deposits were formed on a prograding carbonate ramp. Three zones are identified: inner-mid ramp (shoreface), ramp slope, and outer ramp (offshore). The ramp slope dips 3° to 10° and drops 30-40 m over 400-600 m. The ramp slope and outer ramp show a succession of bioturbated dune cross beds with up to 10 m-thick, intercalated event beds containing supercritical-flow structures. Grain sizes range from coarse sand to granules, with large rhodoliths (algal balls) and shells as gravel-sized clasts. It is our aim to provide insight into the processes that create upper-regime flow structures and the hydraulic parameters of their generating flows. During normal storms, wind-driven currents generated submarine dunes that migrated across the sea floor. During exceptional high-energy events (megastorms, tsunamis), large amounts of skeletal debris from the carbonate factory were transported towards the top of the ramp slope, where under the effect of gravity sustained supercritical sediment gravity flows were generated. In a case study of bedform evolution, we present the formation of a large downstream-asymmetric bedform with two antidunes superimposed on its upstream flank. A stepwise flow reconstruction reveals the progressive steepening of the antidunes until critical steepness is reached, and the first and, shortly after, the second antidune wave breaks. The two hydraulic jumps thus formed, developed a temporary cyclic step morphology (i.e. hydraulic jump, accelerating subcritical flow, supercritical chute, hydraulic jump etc.). The bedform geometries are used to reconstruct the nature of the catastrophic events that were active on the ramp slope. The wave length of the antidunes is measured from outcrop, which, through hydraulic equations, allows for estimation of mean flow velocity as a function of sediment concentration in the

  19. Effects of ramp slope on physiological characteristic and performance time of healthy adults propelling and pushing wheelchairs.

    PubMed

    Choi, Young Oh; Lee, Ho Young; Lee, Myoung Hee; Kwon, Oh Hyun

    2015-01-01

    [Purpose] This study examined the effects of ramp slope (1:12, 1:10, 1:8, and 1:6) on physiological characteristics and performance times of wheelchair users and the performance times of caregivers to determine which slope would be the best for wheelchairs, in order to propose a ramp slope that incorporates a universal design. [Subjects and Methods] Twenty-four healthy subjects were enrolled in this study. Fifteen of these subjects also volunteered to participate as caregivers. A wooden ramp with an adjustable slope was constructed. As manual wheelchair users, the participants performed propulsion of a wheelchair up the ramp at a self-selected pace. Four ramp slopes (1:12, 1:10, 1:8, and 1:6) were used, and the participants sequentially ascended them in order from the gentlest to the steepest slope. The caregivers also pushed a wheelchair up the ramp at a self-selected pace. The blood pressure and pulse of participants after the ascent, as well as the performance times of the caregivers and manual wheelchair users, were measured on each of the different ramp slopes. The measured data, pulse, blood pressure, and performance time, were analyzed using repeated ANOVA. [Results] Systolic blood pressure was significantly higher after ascending the 1:6 slope than after ascending the 1:12 and 1:8 slopes. Diastolic blood pressure was significantly higher after ascending the 1:6 slope than after ascending the 1:12 and 1:8 slopes. The participants' pulses tended to increase significantly with an increase in slope. An assessment of the propulsion performance times revealed significant differences among the slopes. [Conclusion] Considering the results of the wheelchair users and caregivers, the 1:12 and 1:10 slopes are suitable ramp slopes for wheelchairs.

  20. Initiation Mechanisms of Low-loss Swept-ramp Obstacles for Deflagration to Detonation Transition in Pulse Detonation Combustors

    DTIC Science & Technology

    2009-12-01

    MECHANISMS OF LOW-LOSS SWEPT-RAMP OBSTACLES FOR DEFLAGRATION TO DETONATION TRANSITION IN PULSE DETONATION COMBUSTORS by Charles B. Myers IV...TITLE AND SUBTITLE Initiation Mechanisms of Low-loss Swept-ramp Obstacles for Deflagration to Detonation Transition in Pulse Detonation Combustors 6...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) In order to enhance the performance of pulse detonation combustors (PDCs), an efficient

  1. A self-focusing, high transformer ratio, collinear plasma dielectric wakefield accelerator driven by a ramped bunch train

    NASA Astrophysics Data System (ADS)

    Sotnikov, Gennadij V.; Marshall, Thomas C.; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    New results of studies of wakefield excitation by a ramped bunch train in a collinear, single-channel dielectriclined THz-wakefield accelerator structure that is filled with a low-temperature plasma are presented. A novel ramped train of drive bunches, together with plasma filling part of the transport channel, makes possible substantial improvement of the transformer ratio of the multimode collinear device to 6:1 while the plasma could stabilize the transverse motion of the drive and witness bunches.

  2. A steep ramp test is valid for estimating maximal power and oxygen uptake during a standard ramp test in type 2 diabetes.

    PubMed

    Rozenberg, R; Bussmann, J B J; Lesaffre, E; Stam, H J; Praet, S F E

    2015-10-01

    A short maximal steep ramp test (SRT, 25 W/10 s) has been proposed to guide exercise interventions in type 2 diabetes, but requires validation. This study aims to (a) determine the relationship between Wmax and V˙O2peak reached during SRT and the standard ramp test (RT); (b) obtain test-retest reliability; and (c) document electrocardiogram (ECG) abnormalities during SRT. Type 2 diabetes patients (35 men, 26 women) performed a cycle ergometer-based RT (women 1.2; men 1.8 W/6 s) and SRT on separate days. A random subgroup (n = 42) repeated the SRT. ECG, heart rate, and V˙O2 were monitored. Wmax during RT: 193 ± 63 (men) and 106 ± 33 W (women). Wmax during SRT: 193 ± 63 (men) and 188 ± 55 W (women). The relationship between RT and SRT was described by men RT V˙O2peak (mL/min) = 152 + 7.67 × Wmax SRT1 (r: 0.859); women RT V ˙ O 2 p e a k (mL/min) = 603 + 4.75 × Wmax SRT1 (r: 0.771); intraclass correlation coefficients between first (SRT1) and second SRT Wmax (SRT2) were men 0.951 [95% confidence interval (CI) 0.899-0.977] and women 0.908 (95% CI 0.727-0.971). No adverse events were noted during any of the exercise tests. This validation study indicates that the SRT is a low-risk, accurate, and reliable test to estimate maximal aerobic capacity during the RT to design exercise interventions in type 2 diabetes patients.

  3. Arrayed SU-8 polymer thermal actuators with inherent real-time feedback for actively modifying MEMS’ substrate warpage

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Xiao, Dingbang; Chen, Zhihua; Wu, Xuezhong

    2016-09-01

    This paper describes the design, fabrication and characterization of a batch-fabricated micro-thermal actuators array with inherent real-time self-feedback, which can be used to actively modify micro-electro-mechanical systems’ (MEMS’) substrate warpage. Arrayed polymer thermal actuators utilize SU-8 polymer (a thick negative photoresist) as a functional material with integrated Ti/Al film-heaters as a microscale heat source. The electro-thermo-mechanical response of a micro-fabricated actuator was measured. The resistance of the Al/Ti film resistor varies obviously with ambient temperature, which can be used as inherent feedback for observing real-time displacement of activated SU-8 bumps (0.43 μm Ω-1). Due to the high thermal expansion coefficient, SU-8 bumps tend to have relatively large deflection at low driving voltage and are very easily integrated with MEMS devices. Experimental results indicated that the proposed SU-8 polymer thermal actuators (array) are able to achieve accurate rectification of MEMS’ substrate warpage, which might find potential applications for solving stress-induced problems in MEMS.

  4. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  5. Intersegmental coordination while walking up inclined surfaces: age and ramp angle effects.

    PubMed

    Noble, Jeremy W; Prentice, Stephen D

    2008-08-01

    The lower-limb segment elevation angles during human locomotion have been shown to co-vary in a manner such that they approximate a plane when plotted against each other over a gait cycle. This relationship has been described as the Planar Co-Variation Law and has been shown to be consistent across various modes of locomotion on level ground. The goal of this study is to determine whether the Planar Co-Variation Law will hold in situations where the orientation of the walking surface is altered and if aging will have an effect on this intersegmental coordination during these locomotor tasks. Nine healthy young females (mean age = 21.4), and nine older adult females (mean age = 73.3) were asked to complete walking trials on level ground, and walking up ramps with inclines of 3 degrees , 6 degrees , 9 degrees and 12 degrees while the kinematics of their lower limbs were measured. It was found that the Planar Co-Variation Law was held across all ramp incline conditions by both the young adult and older adult groups. It was found that the changes in intersegmental coordination required to walk up the ramp resulted in a unique orientation of the co-variation plane for both groups when walking up a particular incline. The results of this study indicate that the Planar Co-Variation Law will include situations where the walking surface is not level and provides further support to models of motor control that have been proposed where walking patterns for different modes of gait can be predicted based on the orientation of the co-variation plane.

  6. Chemistry of decomposition of freshwater wetland sedimentary organic material during ramped pyrolysis

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Rosenheim, B. E.

    2011-12-01

    Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary

  7. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures.

    PubMed

    Andonian, G; Barber, S; O'Shea, F H; Fedurin, M; Kusche, K; Swinson, C; Rosenzweig, J B

    2017-02-03

    Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefield diagnostics and pulse profile reconstruction techniques.

  8. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    SciTech Connect

    Gevorgian, V.; Corbus, D.

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  9. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures

    NASA Astrophysics Data System (ADS)

    Andonian, G.; Barber, S.; O'Shea, F. H.; Fedurin, M.; Kusche, K.; Swinson, C.; Rosenzweig, J. B.

    2017-02-01

    Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefield diagnostics and pulse profile reconstruction techniques.

  10. Flat-ramp vs. convex-concave thrust geometries in a deformable hanging wall: new insights from analogue modeling experiments

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Tomas, Ricardo; Rosas, Filipe; Duarte, Joao; Terrinha, Pedro

    2015-04-01

    Different modes of strain accommodation affecting a deformable hanging-wall in a flat-ramp-flat thrust system were previously addressed through several (sandbox) analog modeling studies, focusing on the influence of different variables, such as: a) thrust ramp dip angle and friction (Bonini et al, 2000); b) prescribed thickness of the hanging-wall (Koy and Maillot, 2007); and c) sin-thrust erosion (compensating for topographic thrust edification, e.g. Persson and Sokoutis, 2002). In the present work we reproduce the same experimental procedure to investigate the influence of two different parameters on hanging-wall deformation: 1) the geometry of the thrusting surface; and 2) the absence of a velocity discontinuity (VD) that is always present in previous similar analogue modeling studies. Considering the first variable we use two end member ramp geometries, flat-ramp-flat and convex-concave, to understand the control exerted by the abrupt ramp edges in the hanging-wall stress-strain distribution, comparing the obtain results with the situation in which such edge singularities are absent (convex-concave thrust ramp). Considering the second investigated parameter, our motivation was the recognition that the VD found in the different analogue modeling settings simply does not exist in nature, despite the fact that it has a major influence on strain accommodation in the deformable hanging-wall. We thus eliminate such apparatus artifact from our models and compare the obtained results with the previous ones. Our preliminary results suggest that both investigated variables play a non-negligible role on the structural style characterizing the hanging-wall deformation of convergent tectonic settings were such thrust-ramp systems were recognized. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013. Pedro Almeida wants to thank to FCT for the Ph.D. grant (SFRH/BD/52556/2014) under the

  11. An improved DNA marker technique for genetic characterization using RAMP-PCR with high-GC primers.

    PubMed

    Wei, C L; Cheng, J L; Khan, M A; Yang, L Q; Imani, S; Chen, H C; Fu, J J

    2016-09-16

    Random amplified polymorphic DNA (RAPD) is a widely used molecular marker technique. As traditional RAPD has poor reproducibility and productivity, we previously developed an improved RAPD method (termed RAMP-PCR), which increased the reproducibility, number of bands, and efficiency of studies on polymorphism. To further develop the efficiency of this method, we used high-GC content primers for improved RAMP-PCR with DNA samples from Lonicera japonica. Comparison of amplification profiles obtained by standard RAPD primers with those obtained by regular PCR and RAMP-PCR, and high-GC primers with regular PCR and RAMP-PCR showed that the average number of bands and polymorphisms per primer gradually and significantly increased (from 6.4 to 15.0 and from 4.6 to 10.2, respectively). Cluster dendrograms showed similar results, indicating that this new method is consistent and reproducible. A total of 22 samples from different species, including plants, animals, and humans, were used for RAMP-PCR with high-GC primers. Multiple bands were successfully amplified from all samples, demonstrating that this method is a reliable technique with consistent results and may be of general interest in studies on different genera and species. We developed highly effective DNA markers, which can provide a more effective and potentially valuable approach than traditional RAPD for the genetic identification of various organisms, particularly of medicinal plants.

  12. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  13. Protein

    MedlinePlus

    ... Go lean with protein. • Choose lean meats and poultry. Lean beef cuts include round steaks (top loin, ... main dishes. • Use nuts to replace meat or poultry, not in addition to meat or poultry (i. ...

  14. Evolution of near-surface ramp-flat-ramp normal faults and implication during intramontane basin formation in the eastern Betic Cordillera (the Huércal-Overa Basin, SE Spain)

    NASA Astrophysics Data System (ADS)

    Pedrera, Antonio; Galindo-ZaldíVar, Jesús; Lamas, Francisco; Ruiz-ConstáN, Ana

    2012-08-01

    The nucleation, propagation, and associated folding of ramp-flat-ramp normal faults were analyzed from field examples developed in a brittle/ductile multilayer sequence of the Huércal-Overa Basin (SE Spain). Gently dipping sandy silt layers, which display a low cohesive strength (C0 = 7 kPa, μ= 34°), favor the development of extensional detachments. A tectonic origin instead of a possible gravitational origin is supported by the perpendicularity between the paleoslope direction of the fluvial-deltaic environment inferred from imbricated pebbles, and the senses of movement deduced from fault slicken-lines. The link between high-angle normal faults (HANFs) —formed at different levels in the layered sequence— with horizontal fault segments comes to develop ramp-flat-ramp normal faults with associated roll-over in the hanging wall. Observed extensional duplexes are formed by parallel detachments connected through synthetic Riedel faults. These Riedel faults would produce the back-rotation of the individual blocks (horses), i.e., extensional folding of the originally subhorizontal layers. There is no correlation between the analyzed ramp-flat-ramp normal faults, accommodating south-southeastward extension during Serravallian-lower Tortonian, and either the regional Alpujarride/Nevado-Filabride west-directed extensional shear zone or the top-to-the-north detachments within Alpujarride units, which are clearly sealed by Serravallian-lower Tortonian sediments. Therefore, the studied normal faults are restricted to the brittle/ductile multilayer fluvio/deltaic sequence and accommodate moderate late extension instead of belonging to a large crustal extensional system connected with a regional detachment at depth. Therefore, the basin formed in a moderate crustal thickness context where small and medium-scale extensional systems were subordinate structures. These natural examples support the development of low-angle normal faults at very shallow crustal levels in

  15. Effect of adaptive cruise control systems on mixed traffic flow near an on-ramp

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2007-06-01

    Mixed traffic flow consisting of vehicles equipped with adaptive cruise control (ACC) and manually driven vehicles is analyzed using car-following simulations. Simulations of merging from an on-ramp onto a freeway reported in the literature have not thus far demonstrated a substantial positive impact of ACC. In this paper cooperative merging for ACC vehicles is proposed to improve throughput and increase distance traveled in a fixed time. In such a system an ACC vehicle senses not only the preceding vehicle in the same lane but also the vehicle immediately in front in the other lane. Prior to reaching the merge region, the ACC vehicle adjusts its velocity to ensure that a safe gap for merging is obtained. If on-ramp demand is moderate, cooperative merging produces significant improvement in throughput (20%) and increases up to 3.6 km in distance traveled in 600 s for 50% ACC mixed flow relative to the flow of all-manual vehicles. For large demand, it is shown that autonomous merging with cooperation in the flow of all ACC vehicles leads to throughput limited only by the downstream capacity, which is determined by speed limit and headway time.

  16. Corticomuscular coherence variation throughout the gait cycle during overground walking and ramp ascent: A preliminary investigation.

    PubMed

    Winslow, Anna T; Brantley, Justin; Zhu, Fangshi; Contreras Vidal, Jose L; Huang, He

    2016-08-01

    Recent designs of neural-machine interfaces (NMIs) incorporating electroencephalography (EEG) or electromyography (EMG) have been used in lower limb assistive devices. While the results of previous studies have shown promise, a NMI which takes advantage of early movement-related EEG activity preceding movement onset, as well as the improved signal-to-noise ratio of EMG, could prove to be more accurate and responsive than current NMI designs based solely on EEG or EMG. Previous studies have demonstrated that the activity of the sensorimotor cortex is coupled to the firing rate of motor units in lower limb muscles during voluntary contraction. However, the exploration of corticomuscular coherence during locomotive tasks has been limited. In this study, coupling between the motor cortex and right tibialis anterior muscle activity was preliminarily investigated during self-paced over-ground walking and ramp ascent. EEG at the motor cortex and surface EMG from the tibialis anterior were collected from one able-bodied subject. Coherence between the two signals was computed and studied across gait cycles. The EEG activity led the EMG activity in the low gamma band in swing phase of level ground walking and in stance phase of ramp ascent. These results may inform the future design of EEG-EMG multimodal NMIs for lower limb devices that assist locomotion of people with physical disabilities.

  17. Flow strength of tantalum under ramp compression to 250 GPa

    SciTech Connect

    Brown, J. L.; Alexander, C. S.; Asay, J. R.; Dolan, D. H.; Vogler, T. J.; Belof, J. L.

    2014-01-28

    A magnetic loading technique was used to study the strength of polycrystalline tantalum ramp compressed to peak stresses between 60 and 250 GPa. Velocimetry was used to monitor the planar ramp compression and release of various tantalum samples. A wave profile analysis was then employed to determine the pressure-dependence of the average shear stress upon unloading at strain rates on the order of 10{sup 5} s{sup −1}. Experimental uncertainties were quantified using a Monte Carlo approach, where values of 5% in the estimated pressure and 9–17% in the shear stress were calculated. The measured deviatoric response was found to be in good agreement with existing lower pressure strength data as well as several strength models. Significant deviations between the experiments and models, however, were observed at higher pressures where shear stresses of up to 5 GPa were measured. Additionally, these data suggest a significant effect of the initial material processing on the high pressure strength. Heavily worked or sputtered samples were found to support up to a 30% higher shear stress upon release than an annealed material.

  18. Simultaneous ramp right heart catheterization and echocardiography in a ReliantHeart left ventricular assist device

    PubMed Central

    Banerjee, Dipanjan; Dutt, Debleena; Duclos, Sebastien; Sallam, Karim; Wheeler, Matthew; Ha, Richard

    2017-01-01

    Many clinicians caring for patients with continuous flow left ventricular assist devices (CF-LVAD) use ramp right heart catheterization (RHC) studies to optimize pump speed and also to troubleshoot CF-LVAD malfunction. An investigational device, the ReliantHeart Heart Assist 5 (Houston, TX), provides the added benefit of an ultrasonic flow probe on the outflow graft that directly measures flow through the CF-LVAD. We performed a simultaneous ramp RHC and echocardiogram on a patient who received the above CF-LVAD to optimize pump parameters and investigate elevated flow through the CF-LVAD as measured by the flow probe. We found that the patient’s hemodynamics were optimized at their baseline pump speed, and that the measured cardiac output via the Fick principle was lower than that measured by the flow probe. Right heart catheterization may be useful to investigate discrepancies between flow measured by a CF-LVAD and a patient’s clinical presentation, particularly in investigational devices where little clinical experience exists. More data is needed to elucidate the correlation between the flow measured by an ultrasonic probe and cardiac output as measured by RHC. PMID:28163837

  19. Facies architecture of a Late Jurassic carbonate ramp: the Korallenoolith of the Lower Saxony Basin

    NASA Astrophysics Data System (ADS)

    Kästner, M.; Schülke, I.; Winsemann, J.

    2008-09-01

    The sedimentary succession of a Late Jurassic (Oxfordian to basal Kimmeridgian) carbonate ramp is described and interpreted. The study area is located in the central part of the Lower Saxony Basin in NW Germany, which forms part of the Central European Basin. Eight well-exposed and undeformed sections of the study area (Süntel area, Wesergebirge and eastern part of the Wiehengebirge) provide detailed information about lithofacies and lateral thickness variations. Biostratigraphically, the age of these sediments is poorly constrained. Twenty microfacies types are recognized that can be grouped into seven facies associations: (a) strongly bioturbated marlstones deposited near storm wave base (SWB), (b) foraminifera-rich wackestones, (c) wackestones and floatstones with biostromes and (d) bioclastic limestones deposited between SWB and fair-weather wave base (FWWB), (e) oolitic and iron-oolitic limestones and (f) siliciclastic sediments deposited above FWWB, and (g) lagoonal deposits. These facies associations characterize a storm dominated shallow mixed carbonate-siliciclastic ramp. Based on facies changes, quartz content, and gamma ray logs, the Korallenoolith Formation can be subdivided into a lower carbonate-dominated and an upper siliciclastic-dominated part, build up by different scales of small- to large-scale deepening- and shallowing-upward cycles. A preliminary correlation of measured outcrops of this formation is presented.

  20. Closed-loop separation control over a sharp edge ramp using genetic programming

    NASA Astrophysics Data System (ADS)

    Debien, Antoine; von Krbek, Kai A. F. F.; Mazellier, Nicolas; Duriez, Thomas; Cordier, Laurent; Noack, Bernd R.; Abel, Markus W.; Kourta, Azeddine

    2016-03-01

    We experimentally perform open and closed-loop control of a separating turbulent boundary layer downstream from a sharp edge ramp. The turbulent boundary layer just above the separation point has a Reynolds number Re_{θ }≈ 3500 based on momentum thickness. The goal of the control is to mitigate separation and early re-attachment. The forcing employs a spanwise array of active vortex generators. The flow state is monitored with skin-friction sensors downstream of the actuators. The feedback control law is obtained using model-free genetic programming control (GPC) (Gautier et al. in J Fluid Mech 770:442-457, 2015). The resulting flow is assessed using the momentum coefficient, pressure distribution and skin friction over the ramp and stereo PIV. The PIV yields vector field statistics, e.g. shear layer growth, the back-flow area and vortex region. GPC is benchmarked against the best periodic forcing. While open-loop control achieves separation reduction by locking-on the shedding mode, GPC gives rise to similar benefits by accelerating the shear layer growth. Moreover, GPC uses less actuation energy.

  1. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  2. Delay of Turbulent Boundary Layer Detachment by Mechanical Excitation: Application to Rearward-facing Ramp

    NASA Technical Reports Server (NTRS)

    McKinzie, Daniel J., Jr.

    1996-01-01

    A vane oscillating about a fixed point at the inlet to a two-dimensional 20 deg rearward-facing ramp proved effective in delaying the detachment of a turbulent boundary layer. Flow-field, surface static pressure, and smoke-wire flow visualization measurements were made. Surface pressure coefficient distributions revealed that two different effects occurred with axial distance along the ramp surface. The surface pressure coefficient varied as a complex function of the vane oscillation frequency and its trailing edge displacement amplitude; that is, it varied as a function of the vane oscillation frequency throughout the entire range of frequencies covered during the test, but it varied over only a limited range of the trailing edge displacement amplitudes covered.The complexity of these findings prompted a detailed investigation, the results of which revealed a combination of phenomena that explain qualitatively how the mechanically generated, periodic, sinusoidal perturbing signal produced by the oscillating vane reacts with the fluid flow to delay the detachment of a turbulent boundary layer experiencing transitory detachment.

  3. Effect of dilute tungsten alloying on the dynamic strength of tantalum under ramp compression

    NASA Astrophysics Data System (ADS)

    Alexander, C. S.; Brown, J. L.; Millett, J. C. F.; Whiteman, G.; Asay, J. R.; Bourne, N. K.

    2015-06-01

    The strength of tantalum and tantalum alloys are of considerable interest due to their widespread use in both military and industrial applications. Previous work has shown that strength in these materials is tied to dislocation density and mobility within the microstructure. Accordingly, strength has been observed to increase with dilute alloying which serves to increase the dislocation density. In this study, we examine the effect of alloying on the strength of a dilute tantalum-tungsten alloy (2.5 weight percent W) under ramp compression. The strength of the alloy is measured using the ``self-consistent'' technique which examines the response under longitudinal unloading from peak compression. The results are compared to previous studies of pure tantalum and dilute tantalum-tungsten alloys under both shock and ramp compression and indicate strengthening of the alloy when compared to pure tantalum. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Dynamic Behaviors of Materials under Ramp Wave Loading on Compact Pulsed Power Generators

    NASA Astrophysics Data System (ADS)

    Zhao, Jianheng; Luo, Binqiang; Wang, Guiji; Chong, Tao; Tan, Fuli; Liu, Cangli; Sun, Chengwei

    The technique using intense current to produce magnetic pressure provides a unique way to compress matter near isentrope to high density without obvious temperature increment, which is characterized as ramp wave loading, and firstly developed by Sandia in 1998. Firstly recent advances on compact pulsed power generators developed in our laboratory, such as CQ-4, CQ-3-MMAF and CQ-7 devices, are simply introduced here, which devoted to ramp wave loading from 50GPa to 200 GPa, and to ultrahigh-velocity flyer launching up to 30 km/s. And then, we show our progress in data processing methods and experiments of isentropic compression conducted on these devices mentioned above. The suitability of Gruneisen EOS and Vinet EOS are validated by isentropic experiments of tantalum, and the parameters of SCG constitutive equation of aluminum and copper are modified to give better prediction under isentropic compression. Phase transition of bismuth and tin are investigated under different initial temperatures, parameters of Helmholtz free energy and characteristic relaxation time in kinetic phase transition equation are calibrated. Supported by NNSF of China under Contract No.11327803 and 11176002

  5. Delta wing vortex manipulation using pulsed and steady blowing during ramp pitching

    NASA Technical Reports Server (NTRS)

    Moreira, J.; Johari, H.

    1995-01-01

    The effectiveness of steady and pulsed blowing as a method of controlling delta wing vortices during ramp pitching has been investigated in flow visualization experiments conducted in a water tunnel. The recessed angled spanwise blowing technique was utilized for vortex manipulation. This technique was implemented on a beveled 60 delta wing using a pair of blowing ports located beneath the vortex core at 40% chord. The flow was injected primarily in the spanwise direction but was also composed of a component normal to the wing surface. The location of vortex burst was measured as a function of blowing intensity and pulsing frequency under static conditions, and the optimum blowing case was applied at three different wing pitching rates. Experimental results have shown that, when the burst location is upstream of the blowing port, pulsed blowing delays vortex breakdown in static and dynamic cases. Dynamic tests verified the existence of a hysteresis effect and demonstrated the improvements offered by pulsed blowing over both steady blowing and no-blowing scenarios. The application of blowing, at the optimum pulsing frequency, made the vortex breakdown location comparable in static and ramp pitch-up conditions.

  6. Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis.

    PubMed

    Pendergraft, Matthew A; Rosenheim, Brad E

    2014-09-16

    Degradation of oil contamination yields stabilized products by removing and transforming reactive and volatile compounds. In contaminated coastal environments, the processes of degradation are influenced by shoreline energy, which increases the surface area of the oil as well as exchange between oil, water, sediments, microbes, oxygen, and nutrients. Here, a ramped pyrolysis carbon isotope technique is employed to investigate thermochemical and isotopic changes in organic material from coastal environments contaminated with oil from the 2010 BP Deepwater Horizon oil spill. Oiled beach sediment, tar ball, and marsh samples were collected from a barrier island and a brackish marsh in southeast Louisiana over a period of 881 days. Stable carbon ((13)C) and radiocarbon ((14)C) isotopic data demonstrate a predominance of oil-derived carbon in the organic material. Ramped pyrolysis profiles indicate that the organic material was transformed into more stable forms. Our data indicate relative rates of stabilization in the following order, from fastest to slowest: high energy beach sediments > low energy beach sediments > marsh > tar balls. Oil was transformed most rapidly where shoreline energy and the rates of oil dispersion and exchange with water, sediments, microbes, oxygen, and nutrients were greatest. Still, isotope data reveal persistence of oil.

  7. Simultaneous ramp right heart catheterization and echocardiography in a ReliantHeart left ventricular assist device.

    PubMed

    Banerjee, Dipanjan; Dutt, Debleena; Duclos, Sebastien; Sallam, Karim; Wheeler, Matthew; Ha, Richard

    2017-01-26

    Many clinicians caring for patients with continuous flow left ventricular assist devices (CF-LVAD) use ramp right heart catheterization (RHC) studies to optimize pump speed and also to troubleshoot CF-LVAD malfunction. An investigational device, the ReliantHeart Heart Assist 5 (Houston, TX), provides the added benefit of an ultrasonic flow probe on the outflow graft that directly measures flow through the CF-LVAD. We performed a simultaneous ramp RHC and echocardiogram on a patient who received the above CF-LVAD to optimize pump parameters and investigate elevated flow through the CF-LVAD as measured by the flow probe. We found that the patient's hemodynamics were optimized at their baseline pump speed, and that the measured cardiac output via the Fick principle was lower than that measured by the flow probe. Right heart catheterization may be useful to investigate discrepancies between flow measured by a CF-LVAD and a patient's clinical presentation, particularly in investigational devices where little clinical experience exists. More data is needed to elucidate the correlation between the flow measured by an ultrasonic probe and cardiac output as measured by RHC.

  8. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    SciTech Connect

    Rousseau, J.P.; Kwicklis, E.M.; Gillies, D.C.

    1999-03-01

    Yucca Mountain, in southern Nevada, is being investigated by the US Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the US Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Shallow infiltration is not discussed in detail in this report because the focus in on three major aspects of the deep unsaturated-zone system: geologic framework, the gaseous-phase system, and the aqueous-phase system. However, because the relation between shallow infiltration and deep percolation is important to an overall understanding of the unsaturated-zone flow system, a summary of infiltration studies conducted to date at Yucca Mountain is provided in the section titled Shallow Infiltration. This report describes results of several Site Characterization Plan studies that were ongoing at the time excavation of the ESF North Ramp began and that continued as excavation proceeded.

  9. Experiment to Measure Ramped Electron Bunches at the UCLA Neptune Laboratory Using a Transverse Deflecting Cavity

    SciTech Connect

    England, R. J.; O'Shea, B.; Rosenzweig, J. B.; Travish, G.; Alesini, D.

    2006-11-27

    A proof of principle experiment is underway at the UCLA Neptune laboratory to test the concept of generating linearly ramped relativistic electron bunches (rising in density from head to tail followed by a sharp cutoff) by using a sextupole-corrected dogleg section as a bunch compressor. Bunches with this structure have been predicted to be ideal for use as a plasma wake-field drive beam. The diagnostic being developed to measure the time profile of the beam is an X-Band (9.6 GHz) deflecting cavity. The recently completed cavity is a 9-cell standing wave structure operating in a TM110-like mode, designed to measure the temporal structure of the 2 to 10 ps, 14 MeV electron bunches generated by the Neptune S-band photoinjector and plane-wave transformer (PWT) accelerator beamline, with 50 fs resolution. We discuss the experimental plan for the ramped bunch experiment and present preliminary data related to the tuning and operation of the deflecting cavity.

  10. ITER-like current ramps in JET with ILW: experiments, modelling and consequences for ITER

    NASA Astrophysics Data System (ADS)

    Hogeweij, G. M. D.; Calabrò, G.; Sips, A. C. C.; Maggi, C. F.; De Tommasi, G. M.; Joffrin, E.; Loarte, A.; Maviglia, F.; Mlynar, J.; Rimini, F. G.; Pütterich, Th.; EFDA Contributors, JET

    2015-01-01

    Since the ITER-like wall in JET (JET-ILW) came into operation, dedicated ITER-like plasma current (Ip) ramp-up (RU) and ramp-down (RD) experiments have been performed and matched to similar discharges with the carbon wall (JET-C). The experiments show that access to H-mode early in the Ip RU phase and maintaining H-mode in the Ip RD as long as possible are instrumental to achieve low internal plasma inductance (li) and to minimize flux consumption. In JET-ILW, at a given current rise rate similar variations in li (0.7-0.9) are obtained as in JET-C. In most discharges no strong W accumulation is observed. However, in some low density cases during the early phase of the Ip RU(n_e/n_e^Gw ˜ 0.2) strong core radiation due to W influx led to hollow electron temperature (Te) profiles. In JET-ILW Zeff is significantly lower than in JET-C. W significantly disturbs the discharge evolution when the W concentration approaches 10-4 this threshold is confirmed by predictive transport modelling using the CRONOS code. Ip RD experiments in JET-ILW confirm the result of JET-C that sustained H-mode and elongation reduction are both instrumental in controlling li.

  11. Electron cyclotron heating and current drive studies during current ramp-up in Tore-Supra

    NASA Astrophysics Data System (ADS)

    Rimini, F. G.; Basiuk, V.; Bourdelle, C.; Bucalossi, J.; Fenzi-Bonizec, C.; Giruzzi, G.; Hoang, G. T.; Lennholm, M.; Sabot, R.; Ségui, J. L.; Thomas, P. R.

    2005-06-01

    In a recent series of experiments, electron cyclotron current drive (ECCD) has been successfully used, at a level of 0.75 MW, for current profile tailoring during the current ramp-up in Tore-Supra. The electron cyclotron resonance heating power deposition was varied from on-axis to off-axis and the direction of the driven current from co to counter. In these conditions, the current profile is significantly modified with respect to those typically obtained in pure ohmic scenarios. Central reversed magnetic shear conditions have been achieved with on-axis counter-ECCD, accompanied by high electron temperature gradients, exhibiting internal transport barrier features. This improved electron transport is maintained for some time on the current flat-top when combining ECCD with ion cyclotron resonance heating in a (H)D minority scheme. Integrated interpretative analysis with the CRONOS code confirms that deeply reversed magnetic shear is indeed attained by on-axis counter-ECCD in low density conditions and in combination with a relatively fast controlled current ramp. The high electron temperature gradient is found to be located inside the negative magnetic shear region.

  12. Large Eddy Simulation of Supersonic Cold Flow in Ramp-Cavity Combustor with Fuel Injector

    NASA Astrophysics Data System (ADS)

    Ghiasi, Zia; Li, Dongru; Komperda, Jonathan; Mashayek, Farzad

    2015-11-01

    Numerical simulation of supersonic flows is technologically important in efficient design and development of high-speed propulsion systems. The supersonic flow within the combustion chamber of scramjet is a prime example of multi-scale and multi-physics flow and is generally accompanied by concurrent presence of shock waves and turbulence. Developing a robust numerical method for such simulations leads to various technical challenges due to the presence of complex geometries, shocks, and turbulence, and normally requires massively parallel computation. In the present work, we employ the Discontinuous Spectral Element Method (DSEM) for high-fidelity simulation of supersonic and turbulent flows. The numerical code features an entropy-based artificial viscosity method for capturing shock waves and standard Smagorinsky-Lilly model for turbulence modeling. Two different turbulence sensors are also developed to improve the turbulent viscosity at the shocked areas and the inlet boundary layer. A supersonic cold flow within a ramp-cavity flame holder featuring a round fuel injector at the ramped side of the cavity is simulated. Results are provided and the physics of the flow is studied.

  13. Scheduling and Pricing for Expected Ramp Capability in Real-Time Power Markets

    SciTech Connect

    Ela, Erik; O'Malley, Mark

    2016-05-01

    Higher variable renewable generation penetrations are occurring throughout the world on different power systems. These resources increase the variability and uncertainty on the system which must be accommodated by an increase in the flexibility of the system resources in order to maintain reliability. Many scheduling strategies have been discussed and introduced to ensure that this flexibility is available at multiple timescales. To meet variability, that is, the expected changes in system conditions, two recent strategies have been introduced: time-coupled multi-period market clearing models and the incorporation of ramp capability constraints. To appropriately evaluate these methods, it is important to assess both efficiency and reliability. But it is also important to assess the incentive structure to ensure that resources asked to perform in different ways have the proper incentives to follow these directions, which is a step often ignored in simulation studies. We find that there are advantages and disadvantages to both approaches. We also find that look-ahead horizon length in multi-period market models can impact incentives. This paper proposes scheduling and pricing methods that ensure expected ramps are met reliably, efficiently, and with associated prices based on true marginal costs that incentivize resources to do as directed by the market. Case studies show improvements of the new method.

  14. Computer programs for pressurization (RAMP) and pressurized expulsion from a cryogenic liquid propellant tank

    NASA Technical Reports Server (NTRS)

    Masters, P. A.

    1974-01-01

    An analysis to predict the pressurant gas requirements for the discharge of cryogenic liquid propellants from storage tanks is presented, along with an algorithm and two computer programs. One program deals with the pressurization (ramp) phase of bringing the propellant tank up to its operating pressure. The method of analysis involves a numerical solution of the temperature and velocity functions for the tank ullage at a discrete set of points in time and space. The input requirements of the program are the initial ullage conditions, the initial temperature and pressure of the pressurant gas, and the time for the expulsion or the ramp. Computations are performed which determine the heat transfer between the ullage gas and the tank wall. Heat transfer to the liquid interface and to the hardware components may be included in the analysis. The program output includes predictions of mass of pressurant required, total energy transfer, and wall and ullage temperatures. The analysis, the algorithm, a complete description of input and output, and the FORTRAN 4 program listings are presented. Sample cases are included to illustrate use of the programs.

  15. Ion Acceleration in a Solitary Wave by Laser Pulse with Ramping-up Amplitude

    NASA Astrophysics Data System (ADS)

    He, Min-Qing; Tripathi, Vipin; Liu, Chuan-Sheng; Shao, Xi; Liu, Tung-Chang; Su, Jao-Jang; Sheng, Zheng-Ming

    2012-10-01

    Recent work by Jung et al. demonstrated experimentally the acceleration of mono-energetic ion beam by solitary waves generated and maintained by laser light with ramping-up amplitude.footnotetextD. Jung, L. Yin, B.J. Albright, D.C. Gautier, R. H"orlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X.Q. Yan, K.J. Bowers, T. Tajima, J.C. Fern'andez, D. Habs, and B.M. Hegelich, Phys. Rev. Lett. 107,115002(2011). Theoretical model is developed in this work to study the formation of the solitary wave and effects of the radiation pressure force on a soliton in the accelerating plasma. 2D Particle-In-Cell (PIC) simulations are performed to compare and validate the theory. Differences in generating and maintaining solitary wave for laser with and without ramping-up amplitude are also investigated. We will also investigate effects of radiation pressure acceleration of plasma with near critical density.

  16. Vertical deformation of lacustrine shorelines along breached relay ramps, Catlow Valley fault, southeastern Oregon, USA

    NASA Astrophysics Data System (ADS)

    Hopkins, Michael C.; Dawers, Nancye H.

    2016-04-01

    Vertical deformation of pluvial lacustrine shorelines is attributed to slip along the Catlow Valley fault, a segmented Basin and Range style normal fault in southeastern Oregon, USA. The inner edges of shorelines are mapped along three breached relay ramps along the fault to examine the effect of fault linkage on the distribution of slip. Shoreline inner edges act as paleohorizontal datums so deviations in elevation from horizontal, outside of a 2 m error window, are taken to be indications of fault slip. The sites chosen represent a spectrum of linkage scenarios in that the throw on the linking fault compared to that on the main fault adjacent to the linking fault varies from site to site. Results show that the maturity of the linkage between segments (i.e. larger throw on the linking fault with respect to the main fault) does not control the spatial distribution of shoreline deformation. Patterns of shoreline deformation indicate that the outboard, linking, and/or smaller ramp faults have slipped since the shorelines formed. Observations indicate that displacement has not fully localized on the linking faults following complete linkage between segments.

  17. Analysis of the Effects of a Flexible Ramping Ancillary Service Product on Power System Operations: Preprint

    SciTech Connect

    Krad, Ibrahim; Ibanez, Eduardo; Ela, Erik

    2015-10-19

    The recent increased interest in utilizing variable generation (VG) resources such as wind and solar in power systems has motivated investigations into new operating procedures. Although these resources provide desirable value to a system (e.g., no fuel costs or emissions), interconnecting them provides unique challenges. Their variable, non-controllable nature in particular requires significant attention, because it directly results in increased power system variability and uncertainty. One way to handle this is via new operating reserve schemes. Operating reserves provide upward and downward generation and ramping capacity to counteract uncertainty and variability prior to their realization. For instance, uncertainty and variability in real-time dispatch can be accounted for in the hour-ahead unit commitment. New operating reserve methodologies that specifically account for the increased variability and uncertainty caused by VG are currently being investigated and developed by academia and industry. This paper examines one method inspired by the new operating reserve product being proposed by the California Independent System Operator. The method is based on examining the potential ramping requirements at any given time and enforcing those requirements via a reserve demand curve in the market-clearing optimization as an additional ancillary service product.

  18. Integrated electrical and SEM-based defect characterization for rapid yield ramp

    NASA Astrophysics Data System (ADS)

    Orbon, Jacob; Levin, Lior; Bokobza, Ofer; Shimshi, Rinat; Dutta, Manjari; Zhang, Brian; Ciplickas, Dennis; Pham, Teri; Jensen, Jim

    2004-04-01

    Challenges of the new nanometer processes have complicated the yield enhancement process. The systematic yield loss component is increasing, due to the complexity and density of the new processes and the designs that are developed for them. High product yields can now only be achieved when process failure rates are on the order of a few parts per billion structures. Traditional yield ramping techniques cannot ramp yields to these levels and new methods are required. This paper presents a new systematic approach to yield loss pareto generation. The approach uses a sophisticated Design-of-Experiments (DOE) approach to characterize systematic and random yield loss mechanisms in the Back End Of the Line (BEOL). Sophisticated Characterization Vehicle (CV)TM test chips, fast electrical test and Automatic Defect Localization (ADL) are critical components of the method. Advanced statistical analysis and visualization of the detected and localized electrical defects provides a comprehensive view of the yield loss mechanisms. In situations where the defects are not visible in a SEM of the structure surface, automated FIB and imaging is used to characterize the defect. The combined approach provides the required resolution to appropriately characterize parts per billion failure rates.

  19. ILES for mechanism of ramp-type MVG reducing shock induced flow separation

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Yan, YongHua; Liu, ChaoQun

    2016-12-01

    A high order implicit large eddy simulation (ILES) is carried out to study the mechanism of shock induced flow separation reduction under ramp-type MVG control. The mechanism was originally considered as that MVG can generate streamwise vortices which strongly mix boundary layer and the boundary layer becomes more capable to resist strong adverse pressure gradient caused by shock and to keep the boundary layer attached. However, according to our ILES, a chain of ring-like vortices is generated behind the ramp-type MVG and goes further to interact with the shock. When the ring-like vortices pass through the shock, the shock wave is weakened and altered while the vortex structures are quite stable. The instantaneous simulation shows that the spanwise ring-like vortex, not the streamwise vortex, plays a key role to weaken the shock and reduce the shock-induced separation. Detailed investigation on ring-like vortices and shock interaction will be given in this paper.

  20. Evaluation of the rapid analyte measurement platform (RAMP) for the detection of Bacillus anthracis at a crime scene.

    PubMed

    Hoile, Rebecca; Yuen, Marion; James, Gregory; Gilbert, Gwendolyn L

    2007-08-24

    The aim of this study was to evaluate the accuracy and reliability of the rapid analyte measurement platform (RAMP) for presumptive identification of Bacillus anthracis spores. Test samples consisted of serial dilutions of spore preparations of several Bacillus species, including B. anthracis, which were tested, using the RAMP Anthrax test cartridge, according to the manufacturer's instructions. The fluorescence labelled antibody-antigen complexes were detected in the portable reader after 15 min following sample addition. Dilutions of common environmental and household powders were also tested to identify possible false positive results. B. anthracis spores were identified reliably in test samples containing more than 6000 spores. The test kits were highly specific, showing no cross reactivity with other Bacillus species or any environmental powders tested. The RAMP system for detection of B. anthracis spores, from environmental samples, showed consistent results under a variety of analytical conditions, enabling the trained user to provide a rapid, accurate preliminary risk assessment of a suspected bioterrorism incident.

  1. Exploring the effect of stimulus characteristics on location-based inhibition of return using abrupt and ramped stimulus presentation.

    PubMed

    Guenther, Benjamin A; Brown, James M

    2012-05-01

    A recent study illustrating the importance of sensory influences on inhibition of return (IOR) found stimuli biased towards the parvocellular (P) pathway produced greater IOR while stimuli biased towards the magnocellular (M) pathway produced less IOR (Brown, 2009; Guenther & Brown, 2007). The present study used a different sensory manipulation (temporal onset/offset) to further explore this relationship. Greater M activity was expected when stimuli were presented abruptly (M-biased) compared to when stimuli were ramped on and off (P-biased). Consistent with our recent findings, greater location-based IOR was found under ramped vs. abrupt conditions. The results showed location-based IOR is influenced by the nature of stimulus presentation (ramped vs. abrupt) providing convergent evidence of an IOR mechanism sensitive to M- and P-biased stimuli.

  2. Response of humpback whales (Megaptera novaeangliae) to ramp-up of a small experimental air gun array.

    PubMed

    Dunlop, Rebecca A; Noad, Michael J; McCauley, Robert D; Kniest, Eric; Slade, Robert; Paton, David; Cato, Douglas H

    2016-02-15

    'Ramp-up', or 'soft start', is a mitigation measure used in seismic surveys and involves increasing the radiated sound level over 20-40 min. This study compared the behavioural response in migrating humpback whales to the first stages of ramp-up with the response to a 'constant' source, 'controls' (in which the array was towed but not operated) with groups in the absence of the source vessel used as the 'baseline'. Although the behavioural response, in most groups, resulted in an increase in distance from the source (potential avoidance), there was no evidence that either 'ramp-up' or the constant source at a higher level was superior for triggering whales to move away from the source vessel. 'Control' groups also responded suggesting the presence of the source vessel had some effect. However, the majority of groups appeared to avoid the source vessel at distances greater than the radius of most mitigation zones.

  3. Investigation of non-stationary self-focusing of intense laser pulse in cold quantum plasma using ramp density profile

    SciTech Connect

    Habibi, M.; Ghamari, F.

    2012-11-15

    The authors have investigated the non-stationary self-focusing of Gaussian laser pulse in cold quantum plasma. In case of high dense plasma, the nonlinearity in the dielectric constant is mainly due to relativistic high intense interactions and quantum effects. In this paper, we have introduced a ramp density profile for plasma and presented graphically the behavior of spot size oscillations of pulse at rear and front portions of the pulse. It is observed that the ramp density profile and quantum effects play a vital role in stronger and better focusing at the rear of the pulse than at the front in cold quantum plasmas.

  4. Unsteady magnetohydrodynamic free convection flow of a second grade fluid in a porous medium with ramped wall temperature.

    PubMed

    Samiulhaq; Ahmad, Sohail; Vieru, Dumitru; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown.

  5. Reply to ``Comment on `Cellular automata model simulating traffic interactions between on-ramp and main road' ''

    NASA Astrophysics Data System (ADS)

    Jiang, Rui; Wu, Qing-Song; Wang, Bing-Hong

    2003-06-01

    We agree with the argument presented in the previous Comment in which the characteristics of a phase diagram are dictated by the prescribed asymmetric rules of on-ramp. We further point out that the existence of the four regions for vmax>1 is due to the rule in the case of ta=tb and the rule that two cars can occupy the same site successively in one time step. We argue that the existence of the stable limit cycles in region IV is the property of the deterministic on-ramp system, and it is not the cause of the formation of region IV.

  6. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data With and Without PAL Ramp

    NASA Technical Reports Server (NTRS)

    Walker, Bruce E.; Panda, Jayanta; Sutliff, Daniel L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first 2 min of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  7. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data with and without PAL Ramp

    NASA Technical Reports Server (NTRS)

    Walker, B. E.; Panda, B. E.; Sutliff, D. L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first two minutes of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  8. Unsteady Magnetohydrodynamic Free Convection Flow of a Second Grade Fluid in a Porous Medium with Ramped Wall Temperature

    PubMed Central

    Samiulhaq; Ahmad, Sohail; Vieru, Dumitru; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown. PMID:24785147

  9. Advanced Study of Unsteady Heat and Chemical Reaction with Ramped Wall and Slip Effect on a Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Sohail, Ayesha; Maqbool, K.; Sher Akbar, Noreen; Younas, Muhammad

    2017-03-01

    This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number, chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a viscous fluid past through a vertical plate embedded in a porous media. Numerical results are obtained for solving the nonlinear governing momentum, energy and concentration equations with slip boundary condition, ramped wall temperature and ramped wall concentration on the surface of the vertical plate. The influence of emerging parameters on velocity, temperature and concentration fields are shown graphically.

  10. Separation between cytosolic calcium and secretion in chromaffin cells superfused with calcium ramps.

    PubMed Central

    Michelena, P; García-Pérez, L E; Artalejo, A R; García, A G

    1993-01-01

    This paper describes experiments in which cytosolic Ca2+ concentrations ([Ca2+]i) and catecholamine release were measured in two populations of chromaffin cells stimulated with a solution enriched in K+ (100 mM). Once depolarized, external Ca2+ or Ba2+ ions were offered to cells either as a single 2.5 mM step or as a ramp that linearly increased the concentration from 0 to 2.5 mM over a 10-min period. A clear separation between the changes of the [Ca2+]i and the time course of secretion was observed. Specifically, secretion and [Ca2+]i rose in parallel when a Ca2+ step was used to reach a peak in a few seconds; however, while secretion declined to the basal level, [Ca2+]i remained elevated at a plateau of 400 nM. With a Ca2+ ramp, only a transient small peak of secretion was observed, yet the [Ca2+]i remained elevated throughout the 10-min stimulation period. The separation between secretion and [Ca2+]i was observed even when voltage-dependent Ca2+ channels were expected to remain open (mild depolarization in the presence of 1 microM Bay K 8644). By using Ba2+ steps or ramps, sustained noninactivating secretory responses were obtained. The results suggest that the rate and extent of secretion are not a simple function of the [Ca2+]i at a given time; they are compatible with the following conclusions: (i) A steep extracellular-to-cytosolic Ca2+ gradient is required to produce a sharp increase in the [Ca2+]i at exocytotic sites capable of evoking a fast but transient secretory response. (ii) As a result of Cai(2+)-dependent inactivation of Ca2+ channels, those high [Ca2+]i are possible only at early times after cell depolarization. (iii) The Cai(2+)-dependent supply of storage granules to the secretory machinery cooperates with the supply of Ca2+ through Ca2+ channels to regulate the rate and extent of secretion. PMID:8475070

  11. Improving short-term forecasting during ramp events by means of Regime-Switching Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Gallego, C.; Costa, A.; Cuerva, A.

    2010-09-01

    Since nowadays wind energy can't be neither scheduled nor large-scale storaged, wind power forecasting has been useful to minimize the impact of wind fluctuations. In particular, short-term forecasting (characterised by prediction horizons from minutes to a few days) is currently required by energy producers (in a daily electricity market context) and the TSO's (in order to keep the stability/balance of an electrical system). Within the short-term background, time-series based models (i.e., statistical models) have shown a better performance than NWP models for horizons up to few hours. These models try to learn and replicate the dynamic shown by the time series of a certain variable. When considering the power output of wind farms, ramp events are usually observed, being characterized by a large positive gradient in the time series (ramp-up) or negative (ramp-down) during relatively short time periods (few hours). Ramp events may be motivated by many different causes, involving generally several spatial scales, since the large scale (fronts, low pressure systems) up to the local scale (wind turbine shut-down due to high wind speed, yaw misalignment due to fast changes of wind direction). Hence, the output power may show unexpected dynamics during ramp events depending on the underlying processes; consequently, traditional statistical models considering only one dynamic for the hole power time series may be inappropriate. This work proposes a Regime Switching (RS) model based on Artificial Neural Nets (ANN). The RS-ANN model gathers as many ANN's as different dynamics considered (called regimes); a certain ANN is selected so as to predict the output power, depending on the current regime. The current regime is on-line updated based on a gradient criteria, regarding the past two values of the output power. 3 Regimes are established, concerning ramp events: ramp-up, ramp-down and no-ramp regime. In order to assess the skillness of the proposed RS-ANN model, a single

  12. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for...

  13. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for...

  14. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for...

  15. Evaluation of WRF-Predicted Near-Hub-Height Winds and Ramp Events over a Pacific Northwest Site with Complex Terrain

    SciTech Connect

    Yang, Qing; Berg, Larry K.; Pekour, Mikhail; Fast, Jerome D.; Newsom, Rob K.; Stoelinga, Mark; Finley, Catherine

    2013-08-01

    The WRF model version 3.3 is used to simulate near hub-height winds and power ramps utilizing three commonly used planetary boundary-layer (PBL) schemes: Mellor-Yamada-Janjic (MYJ), University of Washington (UW), and Yonsei University (YSU). The predicted winds have small mean biases compared with observations. Power ramps and step changes (changes within an hour) consistently show that the UW scheme performed better in predicting up ramps under stable conditions with higher prediction accuracy and capture rates. Both YSU and UW scheme show good performance predicting up- and down- ramps under unstable conditions with YSU being slightly better for ramp durations longer than an hour. MYJ is the most successful simulating down-ramps under stable conditions. The high wind speed and large shear associated with low-level jets are frequently associated with power ramps, and the biases in predicted low-level jet explain some of the shown differences in ramp predictions among different PBL schemes. Low-level jets were observed as low as ~200 m in altitude over the Columbia Basin Wind Energy Study (CBWES) site, located in an area of complex terrain. The shear, low-level peak wind speeds, as well as the height of maximum wind speed are not well predicted. Model simulations with 3 PBL schemes show the largest variability among them under stable conditions.

  16. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    PubMed

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples.

  17. Cardiac-Activity Measures for Assessing Airport Ramp-Tower Controller's Workload

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Dulchinos, Victoria

    2016-01-01

    Heart rate (HR) and heart rate variability (HRV) potentially offer objective, continuous, and non-intrusive measures of human-operators mental workload. Such measurement capability is attractive for workload assessment in complex laboratory simulations or safety-critical field testing. The present study compares mean HR and HRV data with self-reported subjective workload ratings collected during a high-fidelity human-in-the-loop simulation of airport ramp traffic control operations, which involve complex cognitive and coordination tasks. Mean HR was found to be weakly sensitive to the workload ratings, while HRV was not sensitive or even contradictory to the assumptions. Until more knowledge on stress response mechanisms of the autonomic nervous system is obtained, it is recommended that these cardiac-activity measures be used with other workload assessment tools, such as subjective measures.

  18. Thermal and seismic impacts on the North Ramp at Yucca Mountain

    SciTech Connect

    Lin, M.; Hardy, M.P.; Jung, J.

    1994-05-01

    The impacts of thermal and seismic loads on the stability of the Exploratory Studies Facility North Ramp at Yucca Mountain were assessed using both empirical and analytical approaches. This paper presents the methods and results of the analyses. Thermal loads were first calculated using the computer code STRES3D. This code calculates the conductive heat transfer through a semi-infinite elastic, isotropic, homogeneous solid and the rafts thermally-induced stresses. The calculated thermal loads, combined with simulated earthquake motion, were then modeled using UDEC and DYNA3D, numerical codes with dynamic simulation capabilities. The thermal- and seismic-induced yield zones were post-processed and presented for assessment of damage. Uncoupled bolt stress analysis was also conducted to evaluate the seismic impact on the ground support components.

  19. A new traffic model on compulsive lane-changing caused by off-ramp

    NASA Astrophysics Data System (ADS)

    Xiao-He, Liu; Hung-Tang, Ko; Ming-Min, Guo; Zheng, Wu

    2016-04-01

    In the field of traffic flow studies, compulsive lane-changing refers to lane-changing (LC) behaviors due to traffic rules or bad road conditions, while free LC happens when drivers change lanes to drive on a faster or less crowded lane. LC studies based on differential equation models accurately reveal LC influence on traffic environment. This paper presents a second-order partial differential equation (PDE) model that simulates both compulsive LC behavior and free LC behavior, with lane-changing source terms in the continuity equation and a lane-changing viscosity term in the momentum equation. A specific form of this model focusing on a typical compulsive LC behavior, the ‘off-ramp problem’, is derived. Numerical simulations are given in several cases, which are consistent with real traffic phenomenon. Project supported by the National Natural Science Foundation of China (Grant Nos. 11002035 and 11372147).

  20. Cardiac-Activity Measures for Assessing Airport Ramp-Tower Controller's Workload

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Dulchinos, Victoria L.

    2016-01-01

    Heart rate (HR) and heart rate variability (HRV) potentially offer objective, continuous, and non-intrusive measures of human-operator's mental workload. Such measurement capability is attractive for workload assessment in complex laboratory simulations or safety-critical field testing. The present study compares mean HR and HRV data with self-reported subjective workload ratings collected during a high-fidelity human-in-the-loop simulation of airport ramp traffic control operations, which involve complex cognitive and coordination tasks. Mean HR was found to be weakly sensitive to the workload ratings, while HRV was not sensitive or even contradictory to the assumptions. Until more knowledge on stress response mechanisms of the autonomic nervous system is obtained, it is recommended that these cardiac-activity measures be used with other workload assessment tools, such as subjective measures.

  1. High temperature penetrator assembly with bayonet plug and ramp-activated lock

    NASA Technical Reports Server (NTRS)

    Wood, K. E. (Inventor)

    1982-01-01

    A penetration apparatus, for very high temperature applications in which a base plug is inserted into an opening through a bulkhead is described. The base plug has a head shape and is seated against the highest temperature surface of the bulkhead, which may be the skin of the nose cone or other part of a space vehicle intended for nondestructive atmospheric reentry. From the second side of the bulkhead at which the less severe environment is extant, a bayonet plug is inserted into the base plug and engages an internal shoulder at about 90 deg rotation. The bayonet plug has an integral flanged portion and a pair of ramping washers which are located between the flange and the second bulkhead surface with a spacing washer as necessary.

  2. Tune Determination of Strongly Coupled Betatron Oscillations in a Fast-Ramping Synchrotron

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, E.; Marsh, W; Triplett, K.; /Fermilab

    2012-05-01

    Tune identification -- i.e. attribution of the spectral peak to a particular normal de of oscillations -- can present a significant difficulty in the presence of strong transverse coupling when the normal mode with a lower damping rate dominates spectra of Turn-by-Turn oscillations in both planes. The introduced earlier phased sum algorithm helped to recover the weaker normal mode signal from the noise, but by itself proved to be insufficient for automatic peak identification in the case of close phase advance distribution in both planes. To resolve this difficulty we modified the algorithm by taking and analyzing Turn-by-Turn data for two different ramps with the beam oscillation excited in each plane in turn. Comparison of relative amplitudes of Fourier components allows for correct automatic tune identification. The proposed algorithm was implemented in the Fermilab Booster B38 console application and successfully used for tune, coupling and chromaticity measurements.

  3. Ramping and Uncertainty Prediction Tool - Analysis and Visualization of Wind Generation Impact on Electrical Grid

    SciTech Connect

    Etingov, Pavel; Makarov, PNNL Yuri; Subbarao, PNNL Kris; PNNL,

    2014-03-03

    RUT software is designed for use by the Balancing Authorities to predict and display additional requirements caused by the variability and uncertainty in load and generation. The prediction is made for the next operating hours as well as for the next day. The tool predicts possible deficiencies in generation capability and ramping capability. This deficiency of balancing resources can cause serious risks to power system stability and also impact real-time market energy prices. The tool dynamically and adaptively correlates changing system conditions with the additional balancing needs triggered by the interplay between forecasted and actual load and output of variable resources. The assessment is performed using a specially developed probabilistic algorithm incorporating multiple sources of uncertainty including wind, solar and load forecast errors. The tool evaluates required generation for a worst case scenario, with a user-specified confidence level.

  4. Experimental Study of Boundary Layer Flow Control Using an Array of Ramp-Shaped Vortex Generators

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Zaman, Khairul B.M.Q.; Bencic, Tomothy J.

    2012-01-01

    The objective of this study was to obtain a database on the flowfield past an array of vortex generators (VGs) in a turbulent boundary layer. All testing was carried out in a low speed wind tunnel with a flow velocity of 29 ft/sec, giving a Reynolds number of 17,500 based on the width of the VG. The flowfield generated by an array of five ramp-shaped vortex generators was examined with hot wire anemometry and smoke flow visualization. The magnitude and extent of the velocity increase near the wall, the penetration of the velocity deficit into the core flow, and the peak streamwise vorticity are examined. Influence of various parameters on the effectiveness of the array is considered on the basis of the ability to pull high momentum fluid into the near wall region.

  5. Effect of walking speed on lower extremity joint loading in graded ramp walking.

    PubMed

    Schwameder, Hermann; Lindenhofer, Elke; Müller, Erich

    2005-07-01

    Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.

  6. Fabrication of interface-modified ramp-edge junction on YBCO ground plane with multilayer structure

    NASA Astrophysics Data System (ADS)

    Wakana, H.; Adachi, S.; Kamitani, A.; Sugiyama, H.; Sugano, T.; Horibe, M.; Ishimaru, Y.; Tarutani, Y.; Tanabe, K.

    2003-10-01

    We examined the fabrication conditions to obtain high-quality ramp-edge Josephson junctions on a liquid-phase-epitaxy YBa 2Cu 3O y (LPE-YBCO) ground plane, in particular, focusing on the fabrication of a suitable insulating layer on the ground plane and the post-annealing conditions to load oxygen to the ground plane. A (LaAlO 3) 0.3-(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) insulating film on the ground planes exhibited a conductance ranging from 10 -4 to 10 -8 S after deposition of an upper superconducting film, suggesting existence of some leak paths through the LSAT insulating layer. By introducing approximately 30 nm thick SrTiO 3 (STO) buffer layers on both side of the LSAT insulating layer. We reproducibly obtained a conductance lower than 10 -8 S. The dielectric constant of the STO/LSAT/STO layer was 32, which was slightly larger than that of the single LSAT layer. It was found that a very slow cooling rate of 1.0 °C/h in oxygen was needed to fully oxidize the ground plane through the STO/LSAT/STO insulating layers, while the oxidation time could be effectively reduced by introducing via holes in the insulating layer at an interval of 200 μm. Ramp-edge junctions on LPE-YBCO ground planes with STO/LSAT/STO insulating layers exhibited a 1 σ-spread in Ic of 8% for 100-junction series-arrays and a sheet inductance of 0.7 pH/□ at 4.2 K.

  7. Preparation of multilayer films for integrated high- Tc SQUIDs with ramp-edge Josephson junctions

    NASA Astrophysics Data System (ADS)

    Adachi, S.; Hata, K.; Sugano, T.; Wakana, H.; Hato, T.; Tarutani, Y.; Tanabe, K.

    2008-09-01

    We proposed a novel multilayer structure having a new combination of oxides for integrated high- Tc SQUID with ramp-edge Josephson junctions. La 0.1Er 0.95Ba 1.95Cu 3O y (L1ErBCO) and SmBa 2Cu 3O y (SmBCO) were used as counter- and base-electrodes, respectively. An SrSnO 3 (SSO) layer was deposited as an insulating layer. Prior to deposition of SmBCO, Pr 1.4Ba 1.6Cu 2.6Ga 0.4O y (P4G4) and SSO were deposited on MgO (100) substrate in order to improve film quality of L1ErBCO/SSO/SmBCO layers. The black-colored P4G4 layer was expected to work as a temperature homogenizer over a whole substrate area during deposition of the upper layers. All the layers except L1ErBCO were deposited by an off-axis magnetron sputtering. An L1ErBCO layer was deposited by a pulsed laser deposition method. A thin Cu-poor L1ErBCO layer was initially deposited to form an adequate barrier on the ramp-edge of SmBCO. Gradiometer arrays having multilayered feedback coils and pickup loops were made in a chip and their proper operation at 77 K was confirmed. The present multilayer structure is promising for application to SQUIDs with more complicated designs.

  8. Recreating planetary interiors in the laboratory by laser-driven ramp-compression

    NASA Astrophysics Data System (ADS)

    Coppari, Federica

    2015-06-01

    Recent advances in laser-driven compression now allow to reproduce conditions existing deep inside large planets in the laboratory. Ramp-compression allows to compress matter along a thermodynamic path not accessible through standard shock compression techniques, and opens the way to the exploration of new pressure, density and temperature conditions. By carefully tuning the laser pulse shape we can compress the material to extremely high pressure and keep the temperature relatively low (i.e. below the melting temperature). In this way, we can probe solid states of matter at unprecedented high pressures. This loading technique has been combined with diagnostics generally used in condensed matter physics, such as x-ray diffraction and x-ray absorption spectroscopy (EXAFS, Extended X-ray Absorption Fine Structure, in particular), to provide a complete picture of the behavior of matter in-situ during compression. X-ray diffraction provides a snapshot of the structure and density of the material, while EXAFS has been used to infer the temperature. Simultaneous optical velocimetry measurements using VISAR (Velocity Interferometer for Any Reflector) yield an accurate determination of the pressure history during compression. In this talk I will present some of the results obtained in ramp-compression experiments performed at the Omega Laser Facility (University of Rochester) where the phase maps of planetary relevant materials, such as Fe, FeO and MgO, have been studied to unprecedented high pressures. Our data provide experimental constraints on the equations of state, strength and structure of these materials expected to dominate the interiors of massive rocky extra-solar planets and a benchmark for theoretical simulations. Combination of these new experimental data with models for planetary formation and evolutions is expected to improve our understanding of complex dynamics occurring in the Universe. This work was performed under the auspices of the US Department of

  9. Multiphysics modelling of the separation of suspended particles via frequency ramping of ultrasonic standing waves.

    PubMed

    Trujillo, Francisco J; Eberhardt, Sebastian; Möller, Dirk; Dual, Jurg; Knoerzer, Kai

    2013-03-01

    A model was developed to determine the local changes of concentration of particles and the formations of bands induced by a standing acoustic wave field subjected to a sawtooth frequency ramping pattern. The mass transport equation was modified to incorporate the effect of acoustic forces on the concentration of particles. This was achieved by balancing the forces acting on particles. The frequency ramping was implemented as a parametric sweep for the time harmonic frequency response in time steps of 0.1s. The physics phenomena of piezoelectricity, acoustic fields and diffusion of particles were coupled and solved in COMSOL Multiphysics™ (COMSOL AB, Stockholm, Sweden) following a three step approach. The first step solves the governing partial differential equations describing the acoustic field by assuming that the pressure field achieves a pseudo steady state. In the second step, the acoustic radiation force is calculated from the pressure field. The final step allows calculating the locally changing concentration of particles as a function of time by solving the modified equation of particle transport. The diffusivity was calculated as function of concentration following the Garg and Ruthven equation which describes the steep increase of diffusivity when the concentration approaches saturation. However, it was found that this steep increase creates numerical instabilities at high voltages (in the piezoelectricity equations) and high initial particle concentration. The model was simplified to a pseudo one-dimensional case due to computation power limitations. The predicted particle distribution calculated with the model is in good agreement with the experimental data as it follows accurately the movement of the bands in the centre of the chamber.

  10. Development of abnormal fluid pressures beneath a ramping thrust sheet: Where's the evidence

    SciTech Connect

    Wiltschko, D.V.; Smith, R.E. . Dept. of Geology and Center for Tectonophysics)

    1992-01-01

    Many models for the mechanics of fold and thrust belts hold that fluid pressure is locally, or even everywhere, abnormal, thus aiding both internal deformation and motion along the base. Recent support comes from studies of accretionary prisms where drill-stem measurements of both fluid flow in fault zones and formation pressure are pointed to as evidence for a hydrodynamic system characterized by wide-spread excess fluid pressure. However, despite the general acceptance of high fluid pressure (Pf) as a potentially important controlling mechanism for thrust motion, and despite nearly 30 years of looking, direct evidence for abnormal fluid pressure in ancient continental thrust belts is either rare or ambiguous. The authors have developed a two-dimensional model for the evolution of fluid pressure within and beneath a ramping thrust sheet. In the model, the fluid and heat flow equations are solved and applied at each time step. The model accounts for porosity compaction, thermal pressuring, and fluid flow. Results of this model show, first, that high fluid pressure can be developed during deposition, before thrust motion. The authors used typical rates of deposition, duration of deposition, and a simplified three-layer stratigraphy for North American thrust belts. Second, the models show that high Pf can be maintained and/or further enhanced during thrusting depending upon the permeabilities assigned to the model hydrostratigraphic section. Of the rock properties studied in detail, modes are most sensitive to permeability. Nevertheless, the models show that for best guesses of the relevant rock properties it should be possible to find evidence for high fluid pressure in, (1) the crests of ramp anticlines and, (2) the toe region, especially in the lower plate.

  11. The myocardial response to adrenomedullin involves increased cAMP generation as well as augmented Akt phosphorylation.

    PubMed

    Pan, Chun Shui; Jin, Shao Ju; Cao, Chang Qi; Zhao, Jing; Zhang, Jing; Wang, Xian; Tang, Chao Shu; Qi, Yong Fen

    2007-04-01

    In this work we aimed to observe (1) the changes in adrenomedullin (AM) and its receptor system - calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) - in myocardial ischemic injury and (2) the response of injuried myocardia to AM and the phosphorylation of Akt to illustrate the protective mechanism of AM in ischemic myocardia. Male SD rats were subcutaneously injected with isoproterenol (ISO) to induce myocardial ischemia. The mRNA levels of AM, CRLR, RAMP1, RAMP2 and RAMP3 were determined by RT-PCR. Protein levels of Akt, phosphor-Akt, CRLR, RAMP1, RAMP2 and RAMP3 were assayed by Western blot. Results showed that, compared with that of the controls, ISO-treated rats showed lower cardiac function and myocardial injury. The mRNA relative amount of AM, CRLR, RAMP1, RAMP2 and RAMP3 in the myocardia of ISO-treated rats was increased. The elevated mRNA levels of CRLR, RAMP1, RAMP2 and RAMP3 were positively correlated with AM content in injured myocardia. The protein levels of CRLR, RAMP1, RAMP2 and RAMP3 in injured myocardia were increased compared with that of control myocardia. AM-stimulated cAMP generation in myocardia was elevated in the ISO group, and was antagonized by AM(22-52) and CGRP(8-37). Western blot analyses revealed that AM significantly enhanced Akt phosphorylation in injured myocardia, which was blocked by pretreatment with AM(22-52) or CGRP(8-37). Ischemia-injured myocardia hyper-expressed AM and its receptors - CRLR, RAMP1, RAMP2 and RAMP3 - and the response of ischemic myocardia to AM was potentiated, and the level of Akt phosphorylation was also increased, which suggests that changes in cardiac AM/AM receptor might play an important role in the pathogenesis of myocardial ischemic injury.

  12. Design, fabrication, installation and flight service evaluation of a composite cargo ramp skin on a model CH-53 helicopter

    NASA Technical Reports Server (NTRS)

    Lowry, D. W.; Rich, M. J.

    1983-01-01

    The installation of a composite skin panel on the cargo ramp of a CH-530 marine helicopter is discussed. The composite material is of Kevlar/Epoxy (K/E) which replaces aluminum outer skins on the aft two bays of the ramp. The cargo ramp aft region was selected as being a helicopter airframe surface subjected to possible significant field damage and would permit an evaluation of the long term durability of the composite skin panel. A structural analysis was performed and the skin shears determined. Single lap joints of K/E riveted to aluminum were statically tested. The joint tests were used to determine bearing allowables and the required K/E skin gage. The K/E skin panels riveted to aluminum edge members were tested in a shear fixture to confirm the allowable shear and bearing strengths. Impact tests were conducted on aluminum skin panels to determine energy level and damage relationship. The K/E skin panels of various ply orientations and laminate thicknesses were then impacted at similar energy levels. The results of the analysis and tests were used to determine the required K/E skin gages in each of the end two bays of the ramp.

  13. The influence of familiarization sessions on the stability of ramp and ballistic isometric torque in older adults.

    PubMed

    Wallerstein, Lilian F; Barroso, Renato; Tricoli, Valmor; Mello, Marco T; Ugrinowitsch, Carlos

    2010-10-01

    Ramp isometric contractions determine peak torque (PT) and neuromuscular activation (NA), and ballistic contractions can be used to evaluate rate of torque development (RTD) and electrical mechanical delay (EMD). The purposes of this study were to assess the number of sessions required to stabilize ramp and ballistic PT and to compare PT and NA between contractions in older adults. Thirty-five older men and women (age 63.7 ± 3.7 yr, body mass 64.3 ± 10.7 kg, height 159.2 ± 6.6 cm) performed 4 sessions of unilateral ramp and ballistic isometric knee extension, 48 hr apart. PT significantly increased (main time effect p < .05) from the first to the third session, with no further improvements thereafter. There was a trend toward higher PT in ballistic than in ramp contractions. No difference between contraction types on EMG values was observed. Therefore, the authors suggest that 3 familiarization sessions be performed to correctly assess PT. In addition, PT, NA, RTD, and EMD can be assessed with ballistic contraction in older adults.

  14. Refining the Search for Suitable KBOs: Calibration of the HST/ACS Wide Field Camera Ramp Filters.

    NASA Astrophysics Data System (ADS)

    Trafton, Laurence M.

    2014-11-01

    After the New Horizons flyby of Pluto, the spacecraft will travel on to fly by one or more KBO objects. These are yet to be determined; searches are currently underway to locate suitable candidates. Once some candidates are identified, further observations are likely in order to decide on the actual targets; e.g., spectra or narrow-band observations vs. rotational phase to determine the presence of frozen volatiles. With its wide field, clear and broad band B and I filters, and its suite of medium band filters (9% FWHM), the ACS WFC camera on board HST is useful for searches over the CCD wavelength range. Moreover, its suite of narrow band (2%) ramp filters, which are also distributed over this wavelength range, are potentially useful for identifying the signature of spectral features, such as solid methane bands, for KBOs as dim as V = +25. However, the transmission of these ramp filters is uncertain since it was never calibrated. We report the calibration of 9 ACS/WFC ramp filters at 15 selected central wavelengths. A comparison of the calibrated transmissions to the existing uncalibrated ramp filters is presented. Corrective flats have been submitted for insertion into the ACS data reduction pipeline.This program was supported through HST-AR-10981.01-A.

  15. NASA Aircraft on ramp (Aerial view) Sides: (L) QSRA (R) C-8A AWJSRA - Back to Front: CV-990 (711)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    NASA Aircraft on ramp (Aerial view) Sides: (L) QSRA (R) C-8A AWJSRA - Back to Front: CV-990 (711) C-141 KAO, CV-990 (712) Galileo, T-38, YO-3A, Lear Jet, X-14, U-2, OH-6, CH-47, SH-3G, RSRA, AH-1G, XV-15, UH-1H

  16. Performance of pancake coils of parallel co-wound Ag/BSCCO tape conductors in static and ramped magnetic fields

    SciTech Connect

    Schwenterly, S.W.; Lue, J.W.; Lubell, M.S.; Walker, M.S.; Hazelton, D.W.; Haldar, P.; Rice, J.A.; Hoehn, J.G. Jr.; Motowidlo, L.R.

    1994-12-31

    Critical Currents are reported for several Ag/BSCCO single-pancake coils in static magnetic fields ranging from 0 to 5 T and temperatures from 4.2 K to 105 K. The sample coils were co-wound of one to six tape conductors in parallel. Since the closed loops formed in such an arrangement could lead to eddy current heating or instability in changing fields, one of the coils was also tested in helium gas, in fields ramped at rates of up to 1.5 T/s. For these quasi-adiabatic tests, at each temperature the transport current was set just below the critical value for a preset static field of 3.3 or 4.9 T. The field was then rapidly ramped down to zero, held for 20 sec, and then ramped back up to the original value. The maximum observed temperature transient of about 1.7 K occurred at 9 K, for a field change of 4.75 T. The temperature transients became negligible when the sample was immersed in liquid helium. Above 30 K, the transients were below 1 K. These results give confidence that parallel co-wound HTSC coils are stable in a rapidly-ramped magnetic field, without undue eddy current heating.

  17. Integrated geology and preliminary cross section along the north ramp of the Exploratory Studies Facility, Yucca Mountain

    USGS Publications Warehouse

    Buesch, D.C.; Dickerson, R.P.; Drake, R.M.; Spengler, R.W.

    1994-01-01

    The Exploratory Studies Facility is a major part of the site characterization activities at Yucca Mountain, Nevada, and the north ramp is the first phase of construction. The N61W trending north ramp will transect the Bow Ridge and Drill Hole Wash faults and numerous minor faults, and traverses two thick welded tuffs and several nonwelded tuff units. A preliminary cross section along the north ramp was created by integration of geologic map relations, lithostratigraphic data from core collected from boreholes, and surface and borehole geophysical data. The Bow Ridge fault is a west-dipping normal fault with about 410 feet of dip-slip separation. East-dipping strata in the hanging wall adjacent to the fault is contrary to early structural interpretations. West of the Bow Ridge fault the ramp might traverse about 220??65 feet of nonlithified tuffaceous material. Geometry of the Drill Hole Wash fault is not known, but is modeled in part as two strands that juxtapose different thicknesses and facies of formations with a complex sense of movement.

  18. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test engines using discrete-mode or ramped-modal duty cycles? 1045.505 Section 1045.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  19. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test engines using discrete-mode or ramped-modal duty cycles? 1045.505 Section 1045.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  20. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test engines using discrete-mode or ramped-modal duty cycles? 1045.505 Section 1045.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  1. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test engines using discrete-mode or ramped-modal duty cycles? 1045.505 Section 1045.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  2. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test engines using discrete-mode or ramped-modal duty cycles? 1045.505 Section 1045.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  3. Response of cardiac myocytes to a ramp increase of diacylglycerol generated by photolysis of a novel caged diacylglycerol.

    PubMed Central

    Huang, X P; Sreekumar, R; Patel, J R; Walker, J W

    1996-01-01

    To test the responsiveness of living cells to the intracellular messenger diacylglycerol, we developed a prototype caged diacylglycerol compound, 3-O-(alpha-carboxyl-2,4-dinitrobenzyl)-1 ,2-dioctanoyl-rac-glycerol (designated alpha-carboxyl caged diC(8)), that produces dioctanoylglycerol (diC(8)) on photolysis. Alpha-Carboxyl caged diC(8) is biologically inert toward diacylglycerol kinase and protein kinase C in vitro and is readily incorporated into cardiac myocyte membranes, where it has no effect before irradiation. Exposure to near-UV light releases biologically active diC8 in good yield (quantum efficiency = 0.2). Here we examine a cellular response to controlled elevation of diC8 within single cardiac myocytes. Twitch amplitude was monitored in electrically stimulated myocytes, and a ramp increase in the concentration of diC(8) was generated by continuous irradiation of cells loaded with the caged compound. The myocyte response was biphasic with a positive inotropic phase (39% increase in twitch amplitude), followed by a large negative inotropic phase (>80% decrease). The time to peak inotropy for both phases depended on the light intensity, decreasing from 376 +/- 51 S to 44 +/- 5 s (positive phase) and 422 +/- 118 S to 51 +/- 9 S (negative phase) as the light intensity was increased eightfold. Both phases were inhibited by the protein kinase C inhibitor chelethyrine chloride. An increase in extracellular K+ from 5 mM to 20 mM to partially depolarize the cell membrane eliminated the positive inotropic phase, but the negative inotropic response was largely unaltered. The results reveal new features in the response of cardiac muscle to diacylglycerol, including a positive inotropic phase and a complex responsiveness to a simple linear increase in diacylglycerol. The effects of photoreleased diC(8) were similar to the effects of opiate agonists selective for kappa receptors, consistent with a major role for diacylglycerol in these responses. Images FIGURE 2

  4. Controls on facies and sequence stratigraphy of an upper Miocene carbonate ramp and platform, Melilla basin, NE Morocco

    USGS Publications Warehouse

    Cunningham, K.J.; Collins, Luke S.

    2002-01-01

    Upwelling of cool seawater, paleoceanographic circulation, paleoclimate, local tectonics and relative sea-level change controlled the lithofacies and sequence stratigraphy of a carbonate ramp and overlying platform that are part of a temporally well constrained carbonate complex in the Melilla basin, northeastern Morocco. At Melilla, from oldest to youngest, a third-order depositional sequence within the carbonate complex contains (1) a retrogradational, transgressive, warm temperate-type rhodalgal ramp; (2) an early highstand, progradational, bioclastic platform composed mainly of a temperate-type, bivalve-rich molechfor facies; and (3) late highstand, progradational to downstepping, subtropical/tropical-type chlorozoan fringing Porites reefs. The change from rhodalgal ramp to molechfor platform occurred at 7.0??0.14 Ma near the Tortonian/Messinian boundary. During a late stage in the development of the bioclastic platform a transition from temperate-type molechfor facies to subtropical/tropical-type chlorozoan facies occurred and is bracketed by chron 3An.2n (??? 6.3-6.6 Ma). Comparison to a well-dated carbonate complex in southeastern Spain at Cabo de Gata suggests that upwelling of cool seawater influenced production of temperate-type limestone within the ramp and platform at Melilla during postulated late Tortonian-early Messinian subtropical/tropical paleoclimatic conditions in the western Paleo-Mediterranean region. The upwelling of cool seawater across the bioclastic platform at Melilla could be related to the beginning of 'siphoning' of deep, cold Atlantic waters into the Paleo-Mediterranean Sea at 7.17 Ma. The facies change within the bioclastic platform from molechfor to chlorozoan facies may be coincident with a reduction of the siphoning of Atlantic waters and the end of upwelling at Melilla during chron 3An.2n. The ramp contains one retrogradational parasequence and the bioclastic platform three progradational parasequences. Minor erosional surfaces

  5. Early Callovian ingression in southwestern Gondwana. Palaeoenvironmental evolution of the carbonate ramp (Calabozo Formation) in southwestern Mendoza, Neuquen basin, Argentina

    NASA Astrophysics Data System (ADS)

    Armella, Claudia; Cabaleri, Nora G.; Cagnoni, Mariana C.; Panarello, Héctor O.

    2013-08-01

    The carbonatic sequence of the Calabozo Formation (Lower Callovian) developed in southwestern Gondwana, within the northern area of the Neuquén basin, and is widespread in thin isolated outcrops in southwestern Mendoza province, Argentina. This paper describes the facies, microfacies and geochemical-isotopic analysis carried out in five studied localities, which allowed to define the paleoenvironmental conditions of a homoclinal shallow ramp model, highly influenced by sea level fluctuations, where outer, mid and inner ramp subenvironments were identified. The outer ramp subenvironment was only recognized in the south of the depocenter and is characterized by proximal outer ramp facies with shale levels and interbedded mudstone and packstone layers. The mid ramp subenvironment is formed by low energy facies (wackestone) affected by storms (packstones, grainstones and floatstones). The inner ramp subenvironment is the most predominant and is characterized by tidal flat facies (wackestones, packstones and grainstones) over which a complex of shoals (grainstones and packstones) dissected by tidal channels (packstone, grainstones and floatstones) developed. In the north area, protected environment facies were recorded (bioturbated wackestones and packstones). The vertical distribution of facies indicates that the paleoenvironmental evolution of the Calabozo Formation results from a highstand stage in the depocenter, culminating in a supratidal environment, with stromatolitic levels interbedded with anhydrite originated under restricted water circulation conditions due to a progressive isolation of the basin. δ13C and δ18O values of the carbonates of the Calabozo Formation suggest an isotopic signature influenced by local palaeoenvironmental parameters and diagenetic overprints. The δ13C and δ18O oscillations between the carbonates of the different studied sections are related with lateral facies variations within the carbonate ramp accompanied with dissimilar

  6. Changing the Chevreul illusion by a background luminance ramp: lateral inhibition fails at its traditional stronghold--a psychophysical refutation.

    PubMed

    Geier, János; Hudák, Mariann

    2011-01-01

    The Chevreul illusion is a well-known 19(th) century brightness illusion, comprising adjacent homogeneous grey bands of different luminance, which are perceived as inhomogeneous. It is generally explained by lateral inhibition, according to which brighter areas projected to the retina inhibit the sensitivity of neighbouring retinal areas. Lateral inhibition has been considered the foundation-stone of early vision for a century, upon which several computational models of brightness perception are built. One of the last strongholds of lateral inhibition is the Chevreul illusion, which is often illustrated even in current textbooks. Here we prove that lateral inhibition is insufficient to explain the Chevreul illusion. For this aim, we placed the Chevreul staircase in a luminance ramp background, which noticeably changed the illusion. In our psychophysical experiments, all 23 observers reported a strong illusion, when the direction of the ramp was identical to that of the staircase, and all reported homogeneous steps (no illusion) when its direction was the opposite. When the background of the staircase was uniform, 14 saw the illusion, and 9 saw no illusion. To see whether the change of the entire background area or that of the staircase boundary edges were more important, we placed another ramp around the staircase, whose direction was opposite to that of the original, larger ramp. The result is that though the inner ramp is rather narrow (mean = 0.51 deg, SD = 0.48 deg, N = 23), it still dominates perception. Since all conditions of the lateral inhibition account were untouched within the staircase, lateral inhibition fails to model these perceptual changes. Area ratios seem insignificant; the role of boundary edges seems crucial. We suggest that long range interactions between boundary edges and areas enclosed by them, such that diffusion-based models describe, provide a much more plausible account for these brightness phenomena, and local models are

  7. Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits.

    PubMed

    Morita, Kenji; Kato, Ayaka

    2014-01-01

    It has been suggested that the midbrain dopamine (DA) neurons, receiving inputs from the cortico-basal ganglia (CBG) circuits and the brainstem, compute reward prediction error (RPE), the difference between reward obtained or expected to be obtained and reward that had been expected to be obtained. These reward expectations are suggested to be stored in the CBG synapses and updated according to RPE through synaptic plasticity, which is induced by released DA. These together constitute the "DA=RPE" hypothesis, which describes the mutual interaction between DA and the CBG circuits and serves as the primary working hypothesis in studying reward learning and value-based decision-making. However, recent work has revealed a new type of DA signal that appears not to represent RPE. Specifically, it has been found in a reward-associated maze task that striatal DA concentration primarily shows a gradual increase toward the goal. We explored whether such ramping DA could be explained by extending the "DA=RPE" hypothesis by taking into account biological properties of the CBG circuits. In particular, we examined effects of possible time-dependent decay of DA-dependent plastic changes of synaptic strengths by incorporating decay of learned values into the RPE-based reinforcement learning model and simulating reward learning tasks. We then found that incorporation of such a decay dramatically changes the model's behavior, causing gradual ramping of RPE. Moreover, we further incorporated magnitude-dependence of the rate of decay, which could potentially be in accord with some past observations, and found that near-sigmoidal ramping of RPE, resembling the observed DA ramping, could then occur. Given that synaptic decay can be useful for flexibly reversing and updating the learned reward associations, especially in case the baseline DA is low and encoding of negative RPE by DA is limited, the observed DA ramping would be indicative of the operation of such flexible reward learning.

  8. Numerical modelling of syntectonic subaqueous sedimentation: The effect of normal faulting and a relay ramp on sediment dispersal

    NASA Astrophysics Data System (ADS)

    Carmona, Ana; Gratacós, Oscar; Clavera-Gispert, Roger; Muñoz, Josep Anton; Hardy, Stuart

    2016-08-01

    Relay ramps are common in extensional settings and play a significant role in sediment dispersal as they control sedimentary pathways. Unlike for subaerial settings, the impact of subaqueous relay ramps on sediment dispersal and clastic sedimentation is less studied. In these subaqueous cases, numerical approximations could be a good approach to understand syntectonic sedimentation. Considering this, a numerical model is used to study the sedimentary infill in an extensional basin, specifically related to a relay ramp system. The study is carried out using a novel program that merges a discrete element code for tectonic deformation, and a stratigraphic modelling code for sedimentation. To perform a test study two configurations are designed: with one normal fault, and with two overlapping normal faults linked by a relay ramp. To these initial configurations, three different deformation velocities, 10, 5 and 2 cm/y, are applied in dip-slip direction. These scenarios are considered as initially submerged. The same incoming amount of three different terrigenous sediments is considered in all the experiments. These sediments are transported basinward in suspension, by processes of advection, dispersion and diffusion. Finally, these examples also include four different boundary conditions for the sedimentary model, which define the source area location for the incoming water and sediment. Results show that the source area location in relation to the available accommodation space plays the major role in the distribution of different sediment types into the basin. Nonetheless, when the source area for water and sediment is defined as regional and parallel to the fault, the grain size distribution obtained by the two overlapping faults configuration has clear asymmetries when compared with the ones obtained by one-fault configurations. Therefore, the different extensional experiments allow concluding that the relay ramp configuration can play an important role in the

  9. Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits

    PubMed Central

    Morita, Kenji; Kato, Ayaka

    2014-01-01

    It has been suggested that the midbrain dopamine (DA) neurons, receiving inputs from the cortico-basal ganglia (CBG) circuits and the brainstem, compute reward prediction error (RPE), the difference between reward obtained or expected to be obtained and reward that had been expected to be obtained. These reward expectations are suggested to be stored in the CBG synapses and updated according to RPE through synaptic plasticity, which is induced by released DA. These together constitute the “DA=RPE” hypothesis, which describes the mutual interaction between DA and the CBG circuits and serves as the primary working hypothesis in studying reward learning and value-based decision-making. However, recent work has revealed a new type of DA signal that appears not to represent RPE. Specifically, it has been found in a reward-associated maze task that striatal DA concentration primarily shows a gradual increase toward the goal. We explored whether such ramping DA could be explained by extending the “DA=RPE” hypothesis by taking into account biological properties of the CBG circuits. In particular, we examined effects of possible time-dependent decay of DA-dependent plastic changes of synaptic strengths by incorporating decay of learned values into the RPE-based reinforcement learning model and simulating reward learning tasks. We then found that incorporation of such a decay dramatically changes the model's behavior, causing gradual ramping of RPE. Moreover, we further incorporated magnitude-dependence of the rate of decay, which could potentially be in accord with some past observations, and found that near-sigmoidal ramping of RPE, resembling the observed DA ramping, could then occur. Given that synaptic decay can be useful for flexibly reversing and updating the learned reward associations, especially in case the baseline DA is low and encoding of negative RPE by DA is limited, the observed DA ramping would be indicative of the operation of such flexible reward

  10. The Front of the Aar Massif: A Crustal-Scale Ramp Anticline?

    NASA Astrophysics Data System (ADS)

    Herwegh, Marco; Mock, Samuel; Wehrens, Philip; Baumberger, Roland; Berger, Alfons; Wangenheim, Cornelia; Glotzbach, Christoph; Kissling, Edi

    2015-04-01

    passively deforms the sedimentary cover rocks into an embryonic recumbent fold-type structure of several kilometers size. In this sense, the frontal part of the Aar massif represents a thick-skinned ramp anticline structure formed by out of sequence thrusting during a very late stage of Alpine orogeny. The latter point is corroborated by the offset of zircon fission track ages, which yield about 12 Ma suggesting latest activity along the crustal ramp surely later than that time under preferentially brittle to semi-brittle deformation conditions (< 220°C).

  11. Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.

    2012-01-01

    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. (See CASI ID 20120009374 for Supplemental CD-ROM.)

  12. Observation of Solid-Solid Phase Transitions in Ramp-Compressed Aluminum

    NASA Astrophysics Data System (ADS)

    Polsin, D. N.; Boehly, T. R.; Delettrez, J. A.; Gregor, M. C.; McCoy, C. A.; Henderson, B.; Fratanduono, D. E.; Smith, R.; Kraus, R.; Eggert, J. H.; Collins, R.; Coppari, F.; Celliers, P. M.

    2016-10-01

    We present results of experiments using x-ray diffraction to study the crystalline structure of solid aluminum compressed up to 500 GPa. Aluminum is of interest because it is frequently used as a standard material in high-pressure compression experiments. At ambient pressure and temperature, Al is a face-centered cubic close-packed crystal and has been observed to transform to hexagonal close-packed (hcp) when compressed to 200GPa in a diamond anvil cell. It is predicted to transform from hcp to body-centered cubic when compressed to 315GPa. Laser-driven ramp waves will be used to compress Al to various constant-pressure states. The goal is to investigate the Al phase diagram along its isentrope, i.e., at temperatures 1000K and pressures ranging from 200 to 500 GPa. X-ray diffraction will be used to measure the crystalline structure of the compressed Al and observe the transformations that occur at various pressures. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. Computational study of single-expansion-ramp nozzles with external burning

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Trefny, Charles J.

    1992-01-01

    A computational investigation of the effects of external burning on the performance of single expansion ramp nozzles (SERN) operating at transonic speeds is presented. The study focuses on the effects of external heat addition and introduces a simplified injection and mixing model based on a control volume analysis. This simplified model permits parametric and scaling studies that would have been impossible to conduct with a detailed CFD analysis. The CFD model is validated by comparing the computed pressure distribution and thrust forces, for several nozzle configurations, with experimental data. Specific impulse calculations are also presented which indicate that external burning performance can be superior to other methods of thrust augmentation at transonic speeds. The effects of injection fuel pressure and nozzle pressure ratio on the performance of SERN nozzles with external burning are described. The results show trends similar to those reported in the experimental study, and provide additional information that complements the experimental data, improving our understanding of external burning flowfields. A study of the effect of scale is also presented. The results indicate that combustion kinetics do not make the flowfield sensitive to scale.

  14. Aging affects spatial distribution of leg muscle oxygen saturation during ramp cycling exercise.

    PubMed

    Takagi, Shun; Kime, Ryotaro; Murase, Norio; Watanabe, Tsubasa; Osada, Takuya; Niwayama, Masatsugu; Katsumura, Toshihito

    2013-01-01

    We compared muscle oxygen saturation (SmO2) responses in several leg muscles and within a single muscle during ramp cycling exercise between elderly men (n = 8; age, 65 ± 3 years; ELD) and young men (n = 10; age, 23 ± 3 years; YNG). SmO2 was monitored at the distal site of the vastus lateralis (VLd), proximal site of the vastus lateralis (VLp), rectus femoris (RF), vastus medialis (VM), biceps femoris (BF), gastrocnemius lateralis (GL), gastrocnemius medialis (GM), and tibialis anterior (TA) by near-infrared spatial resolved spectroscopy. During submaximal exercise, significantly lower SmO2 at a given absolute work rate was observed in VLd, RF, BF, GL, and TA but not in VLp, VM, and GM in ELD than in YNG. In contrast, at all measurement sites, SmO2 at peak exercise was not significantly different between groups. These results indicate that the effects of aging on SmO2 responses are heterogeneous between leg muscles and also within a single muscle. The lower SmO2 in older men may have been caused by reduced muscle blood flow or altered blood flow distribution.

  15. Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Buldyrev, Sergey V.; Angell, C. Austen; Stanley, H. Eugene

    2006-09-01

    Using molecular dynamics simulations, we study the Jagla model of a liquid which consists of particles interacting via a spherically symmetric two-scale potential with both repulsive and attractive ramps. This potential displays anomalies similar to those found in liquid water, namely expansion upon cooling and an increase of diffusivity upon compression, as well as a liquid-liquid (LL) phase transition in the region of the phase diagram accessible to simulations. The LL coexistence line, unlike in tetrahedrally coordinated liquids, has a positive slope, because of the Clapeyron relation, corresponding to the fact that the high density phase (HDL) is more ordered than low density phase (LDL). When we cool the system at constant pressure above the critical pressure, the thermodynamic properties rapidly change from those of LDL-like to those of HDL-like upon crossing the Widom line. The temperature dependence of the diffusivity also changes rapidly in the vicinity of the Widom line, namely the slope of the Arrhenius plot sharply increases upon entering the HDL domain. The properties of the glass transition are different in the two phases, suggesting that the less ordered phase is fragile, while the more ordered phase is strong, which is consistent with the behavior of tetrahedrally coordinated liquids such as water silica, silicon, and BeF2 .

  16. CD uniformity optimization at volume ramp up stage for new product introduction

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Ma, Won-Kwang; Kim, Young-Sik; Kim, Myoung-Soo; Kwon, Won-Taik; Park, Sung-Ki; Nikolsky, Peter; Otter, Marian; Marun, Maryana Escalante; Anunciado, Roy; Sun, Kyu-Tae; Storms, Greet; van West, Ewould

    2014-04-01

    In this paper we describe the joint development and optimization of the critical dimension uniformity (CDU) at an advanced 300 mm ArFi semiconductor facility of SK Hynix in the high volume device. As the ITRS CDU specification shrinks, semiconductor companies still need to maintain high wafer yield and high performance (hence market value) even during the introduction phase of a new product. This cannot be achieved without continuous improvement of the on-product CDU as one of the main drivers for yield improvement. ASML Imaging Optimizer is one of the most efficient tools to reach this goal. This paper presents experimental results of post-etch CDU improvement by ASML imaging optimizer for immature photolithography and etch processes on critical features of 20nm node. We will show that CDU improvement potential and measured CDU strongly depend on CD fingerprint stability through wafers, lots and time. However, significant CDU optimization can still be achieved, even for variable CD fingerprints. In this paper we will review point-to-point correlation of CD fingerprints as one of the main indicators for CDU improvement potential. We will demonstrate the value of this indicator by comparing CD correlation between wafers used for Imaging Optimizer dose recipe development, predicted and measured CDU for wafers and lots exposed with various delays ranging from a few days to a month. This approach to CDU optimization helps to achieve higher yield earlier in the new product introduction cycle, enables faster technology ramps and thereby improves product time to market.

  17. Utility of a Non-Exercise VO2max Prediction Model for Designing Ramp Test Protocols.

    PubMed

    Cunha, F A; Midgley, A; Montenegro, R; Vasconcellos, F; Farinatti, P

    2015-10-01

    This study investigated the validity of determining the final work rates of cycling and walking ramp-incremented maximal cardiopulmonary exercise tests (CPETs) using a non-exercise model to predict maximal oxygen uptake VO2max and the American College of Sports Medicine ACSM's metabolic equations. The validity of using this methodology to elicit the recommended test duration of between 8 and 12 min was then evaluated. First, 83 subjects visited the laboratory once to perform a cycling (n=49) or walking (n=34) CPET to investigate the validity of the methodology. Second, 25 subjects (cycling group: n=13; walking group: n=12) performed a CPET on 2 separate days to test the reliability of CPET outcomes. Observed VO2max was 1.0 ml·kg(-1)·min(-1) lower than predicted in the cycling CPET (P=0.001) and 1.4 ml·kg(-1)·min(-1) lower in the walking CPET (P=0.001). Only one of the 133 conducted CPETs was outside the test duration range of 8-12 min. Test-retest reliability was high for all CPET outcomes, with intraclass correlation coefficients of 0.90 to 0.99. In conclusion, the non-exercise model is a valid and reliable method for establishing the final work rate of cycling and walking CPETs for eliciting test durations of between 8 and 12 min.

  18. Simple Model of a Rolling Water-Filled Bottle on an Inclined Ramp

    NASA Astrophysics Data System (ADS)

    Lin, Shihao; Hu, Naiwen; Yao, Tianchen; Chu, Charles; Babb, Simona; Cohen, Jenna; Sangiovanni, Giana; Watt, Summer; Weisman, Danielle; Klep, James; Walecki, Wojciech J.; Walecki, Eve S.; Walecki, Peter S.

    2015-12-01

    We investigate a water-filled bottle rolling down an incline and ask the following question: is a rolling bottle better described by a model ignoring all internal motion where the bottle is approximated by a material point sliding down an incline, or is it better described by a rigid solid cylinder rolling down the incline without skidding? The measurements presented here represent a special case of similar experiments described by K.A. Jackson et al. (see Ref. 1 and references within). There exists also a report by Kagan describing the motion of soda cans rolling on an incline. In our case we investigate motion of the fully filled bottle. We demonstrate that within accuracy of our experiment the motion of the bottle can be described by a simple "frictionless water" model. The analysis of the dynamics of the bodies sliding and rolling on a ramp is a standard component of introductory physics classes, and a required component of the Advanced Placement (AP) Physics curriculum.

  19. Biomechanics of the ski cross start indoors on a customised training ramp and outdoors on snow.

    PubMed

    Nedergaard, Niels Jensby; Heinen, Frederik; Sloth, Simon; Holmberg, Hans-Christer; Kersting, Uwe Gustav

    2015-09-01

    An effective start enhances an athlete's chances of success in ski cross competitions. Accordingly, this study was designed to investigate the biomechanics of start techniques used by elite athletes and assess the influence of different start environments. Seven elite ski cross athletes performed starts indoors on a custom-built ramp; six of these also performed starts on an outdoor slope. Horizontal and vertical forces were measured by force transducers located in the handles of the start gate and a 12-camera motion capture system allowed monitoring of the sagittal knee, hip, shoulder, and elbow kinematics. The starting movement involved Pre, Pull, and Push phases. Significant differences between body sides were observed for peak vertical and resultant forces, resultant impulse, and peak angular velocity of the shoulder joint. Significantly lower peak vertical forces (44 N), higher resultant impulse (0.114 Ns/kg), and knee joint range of motion (12°) were observed indoors. Although movement in the ski cross start is generally symmetrical, asymmetric patterns of force were observed among the athletes. Two different movement strategies, i.e. pronounced hip extension or more accentuated elbow flexion, were utilised in the Pull phase. The patterns of force and movement during the indoor and outdoor starts were similar.

  20. Statistics of reversible transitions in two-state trajectories in force-ramp spectroscopy

    SciTech Connect

    Diezemann, Gregor

    2014-05-14

    A possible way to extract information about the reversible dissociation of a molecular adhesion bond from force fluctuations observed in force ramp experiments is discussed. For small loading rates the system undergoes a limited number of unbinding and rebinding transitions observable in the so-called force versus extension (FE) curves. The statistics of these transient fluctuations can be utilized to estimate the parameters for the rebinding rate. This is relevant in the experimentally important situation where the direct observation of the reversed FE-curves is hampered, e.g., due to the presence of soft linkers. I generalize the stochastic theory of the kinetics in two-state models to the case of time-dependent kinetic rates and compute the relevant distributions of characteristic forces. While for irreversible systems there is an intrinsic relation between the rupture force distribution and the population of the free-energy well of the bound state, the situation is slightly more complex if reversible systems are considered. For a two-state model, a “stationary” rupture force distribution that is proportional to the population can be defined and allows to consistently discuss quantities averaged over the transient fluctuations. While irreversible systems are best analyzed in the soft spring limit of small pulling device stiffness and large loading rates, here I argue to use the stiffness of the pulling device as a control parameter in addition to the loading rate.

  1. Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig

    2016-05-01

    We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.

  2. Ramp-wave compression experiment with direct laser illumination on Shen Guang III prototype Laser facility

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Xu, Tao; Optical Team Collaboration

    2016-10-01

    Ramp-wave compression (RWC) experiment to balance the high compression pressure generation in aluminum and x-ray blanking effect in transparent window was demonstrated on Shen Guang-III prototype laser facility. A new target concept was proposed to develop a laser-driven shocks-RWC technique for studying material behavior under dynamic, high pressure conditions. As the ``little shocks'' in our experiment cannot be avoided, the effort to diminish the shock under a special level has been demonstrated with Al/Au/Al/LiF target. The highest pressure is about 500GPa after using the multilayer target design Al/Au/Al/LiF and about 1013W/cm2 laser pulse incident on the planer Al target, instantaneously affecting ablation layer located 500 μm away. As the x-ray generated by Al layer had been prevented by the Au layer, the width abrupt onset of strong absorption of an optical probe beam (λ = 532 nm) in LiF window may be the limitation for this kind if RWC experiment during the experiment time scale for 30 μm thick step. With the design laser shape and target structure of Al/Au/Al/LiF, 500GPa may be the highest pressure after balance the preheat effect and ablation efficiency for laser direct-drive experiment.

  3. Ramping ensemble activity in dorsal anterior cingulate neurons during persistent commitment to a decision

    PubMed Central

    Hayden, Benjamin Y.

    2015-01-01

    We frequently need to commit to a choice to achieve our goals; however, the neural processes that keep us motivated in pursuit of delayed goals remain obscure. We examined ensemble responses of neurons in macaque dorsal anterior cingulate cortex (dACC), an area previously implicated in self-control and persistence, in a task that requires commitment to a choice to obtain a reward. After reward receipt, dACC neurons signaled reward amount with characteristic ensemble firing rate patterns; during the delay in anticipation of the reward, ensemble activity smoothly and gradually came to resemble the postreward pattern. On the subset of risky trials, in which a reward was anticipated with 50% certainty, ramping ensemble activity evolved to the pattern associated with the anticipated reward (and not with the anticipated loss) and then, on loss trials, took on an inverted form anticorrelated with the form associated with a win. These findings enrich our knowledge of reward processing in dACC and may have broader implications for our understanding of persistence and self-control. PMID:26334016

  4. Simulation of Supersonic Reactive Flow in Ramped Cavity Combustor with Fuel Injector

    NASA Astrophysics Data System (ADS)

    Ghiasi, Zia; Komperda, Jonathan; Li, Dongru; Mashayek, Farzad; Computational Multiphase Transport Laboratory Team

    2014-11-01

    Numerical simulation of supersonic reactive flows is emerging as an essential stage toward efficient design and development of scramjets. The flow inside the combustion chamber of scramjet is a prime example of multi-scale and multi-physics flow and is often accompanied by concurrent presence of shock waves and turbulence. Developing a robust numerical method for such simulations leads to numerous challenges due to the presence of complex geometries, shocks, turbulence and chemical reaction, which require massively parallel computation. In the present work we use the Discontinuous Spectral Element Method (DSEM) for high-fidelity simulation of reactive, supersonic and turbulent flows. The code features an entropy-based artificial viscosity method for capturing shock waves and uses implicit Large Eddy Simulation (LES) method for turbulence modeling. The turbulence-combustion interaction is captured using the Filtered Mass Density Function (FMDF) method. A supersonic reactive flow within a ramped cavity flame holder with round fuel injectors is simulated for hydrogen/air reaction, and the physics of the flow is studied.

  5. Direct numerical simulation of the flow around an aerofoil in ramp-up motion

    NASA Astrophysics Data System (ADS)

    Rosti, Marco E.; Omidyeganeh, Mohammad; Pinelli, Alfredo

    2016-02-01

    A detailed analysis of the flow around a NACA0020 aerofoil at Rec = 2 × 104 undergoing a ramp up motion has been carried out by means of direct numerical simulations. During the manoeuvre, the angle of attack is linearly varied in time between 0° and 20° with a constant rate of change of α ˙ rad = 0 . 12 U ∞ / c . When the angle of incidence has reached the final value, the lift experiences a first overshoot and then suddenly decreases towards the static stall asymptotic value. The transient instantaneous flow is dominated by the generation and detachment of the dynamic stall vortex, a large scale structure formed by the merging of smaller scales vortices generated by an instability originating at the trailing edge. New insights on the vorticity dynamics leading to the lift overshoot, lift crisis, and the damped oscillatory cycle that gradually matches the steady condition are discussed using a number of post-processing techniques. These include a detailed analysis of the flow ensemble average statistics and coherent structures identification carried out using the Q -criterion and the finite-time Lyapunov exponent technique. The results are compared with the one obtained in a companion simulation considering a static stall condition at the final angle of incidence α = 20°.

  6. Fuel-disruption experiments under high-ramp-rate heating conditions. [LMFBR

    SciTech Connect

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident.

  7. Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.

    2012-01-01

    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. The data files can be found on a supplemental CD.

  8. Experimental Study of Reversed Shear Alfven Eigenmodes During The Current Ramp In The Alcator C-Mod Tokamak

    SciTech Connect

    Edlund, E. M.; Porkolab, M.; Kramer, G. J.; Lin, L.; Lin, Y.; Tsuji, N.; Wukitch, S. J.

    2010-08-27

    Experiments conducted in the Alcator C-Mod tokamak at MIT have explored the physics of reversed shear Alfven eigenmodes (RSAEs) during the current ramp. The frequency evolution of the RSAEs throughout the current ramp provides a constraint on the evolution of qmin, a result which is important in transport modeling and for comparison with other diagnostics which directly measure the magnetic field line structure. Additionally, a scaling of the RSAE minimum frequency with the sound speed is used to derive a measure of the adiabatic index, a measure of the plasma compressibility. This scaling bounds the adiabatic index at 1.40 ± 0:15 used in MHD models and supports the kinetic calculation of separate electron and ion compressibilities with an ion adiabatic index close to 7~4.

  9. Experimental investigation of tangential blowing for control of the strong shock boundary layer interaction on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.

    1981-01-01

    A 0.165-scale isolated inlet model was tested in the NASA Lewis Research Center 8-ft by 6-ft Supersonic Wind Tunnel. Ramp boundary layer control was provided by tangential blowing from a row of holes in an aft-facing step set into the ramp surface. Testing was performed at Mach numbers from 1.36 to 1.96 using both cold and heated air in the blowing system. Stable inlet flow was achieved at all Mach numbers. Blowing hole geometry was found to be significant at 1.96M. Blowing air temperature was found to have only a small effect on system performance. High blowing levels were required at the most severe test conditions.

  10. Linear ramps of the mass in the O (N ) model: Dynamical transition and quantum noise of excitations

    NASA Astrophysics Data System (ADS)

    Maraga, Anna; Smacchia, Pietro; Silva, Alessandro

    2016-12-01

    Nonthermal dynamical critical behavior can arise in isolated quantum systems brought out of equilibrium by a change in time of their parameters. While this phenomenon has been studied in a variety of systems in the case of a sudden quench, we consider here its sensitivity to a change of protocol by considering the experimentally relevant case of a linear ramp in time. Focusing on the O (N ) model in the large-N limit, we will show that a dynamical phase transition is always present for all durations of the ramp, and we discuss the crossover between the sudden quench transition and one dominated by the equilibrium quantum critical point. We show that the critical behavior of the statistics of the excitations, signaling the nonthermal nature of the transition, is also robust. An intriguing crossover in the equal-time correlation function, related to an anomalous coarsening, is also discussed.

  11. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    NASA Technical Reports Server (NTRS)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  12. Atomic Force Microscopy Thermally-Assisted Microsampling with Atmospheric Pressure Temperature Ramped Thermal Desorption/Ionization-Mass Spectrometry Analysis

    DOE PAGES

    Hoffmann, William D.; Kertesz, Vilmos; Srijanto, Bernadeta R.; ...

    2017-02-20

    The use of atomic force microscopy controlled nano-thermal analysis probes for reproducible spatially resolved thermally-assisted sampling of micrometer-sized areas (ca. 11 m 17 m wide 2.4 m deep) from relatively low number average molecular weight (Mn < 3000) polydisperse thin films of poly(2-vinylpyridine) (P2VP) is presented. Following sampling, the nano-thermal analysis probes were moved up from the surface and the probe temperature ramped to liberate the sampled materials into the gas phase for atmospheric pressure chemical ionization and mass spectrometric analysis. Furthermore, the procedure and mechanism for material pickup, the sampling reproducibility and sampling size are discussed and the oligomermore » distribution information available from slow temperature ramps versus ballistic temperature jumps is presented. For the Mn = 970 P2VP, the Mn and polydispersity index determined from the mass spectrometric data were in line with both the label values from the sample supplier and the value calculated from the simple infusion of a solution of polymer into the commercial atmospheric pressure chemical ionization source on this mass spectrometer. With a P2VP sample of higher Mn (Mn = 2070 and 2970), intact oligomers were still observed (as high as m/z 2793 corresponding to the 26-mer), but a significant abundance of thermolysis products were also observed. In addition, the capability for confident identification of the individual oligomers by slowly ramping the probe temperature and collecting data dependent tandem mass spectra was also demonstrated. We also discuss the material type limits to the current sampling and analysis approach as well as possible improvements in nano-thermal analysis probe design to enable smaller area sampling and to enable controlled temperature ramps beyond the present upper limit of about 415°C.« less

  13. Continuous monitoring of electromyography (EMG), mechanomyography (MMG), sonomyography (SMG) and torque output during ramp and step isometric contractions.

    PubMed

    Guo, Jing-Yi; Zheng, Yong-Ping; Xie, Hong-Bo; Chen, Xin

    2010-11-01

    In this study we simultaneously collected ultrasound images, EMG, MMG from the rectus femoris (RF) muscle and torque signal from the leg extensor muscle group of nine male subjects (mean±SD, age=30.7±.4.9 years; body weight=67.0±8.4kg; height=170.4±6.9cm) during step, ramp increasing, and decreasing at three different rates (50%, 25% and 17% MVC/s). The muscle architectural parameters extracted from ultrasound imaging, which reflect muscle contractions, were defined as sonomyography (SMG) in this study. The cross-sectional area (CSA) and aspect ratio between muscle width and thickness (width/thickness) were extracted from ultrasound images. The results showed that the CSA of RF muscles decreased by 7.25±4.07% when muscle torque output changed from 0% to 90% MVC, and the aspect ratio decreased by 41.66±7.96%. The muscle contraction level and SMG data were strongly correlated (R(2)=0.961, P=0.003, for CSA and R(2)=0.999, P<0.001, for width/thickness ratio). The data indicated a significant difference (P<0.05) in percentage changes for CSA and aspect ratio among step, ramp increasing, and decreasing contractions. The normalized EMG RMS in ramp increasing was 8.25±4.00% higher than step (P=0.002). The normalized MMG RMS of step contraction was significantly lower than ramp increasing and decreasing, with averaged differences of 12.22±3.37% (P=0.001) and 12.06±3.37% (P=0.001), respectively. The results of this study demonstrated that the CSA and aspect ratio, i.e., SMG signals, can provide useful information about muscle contractions. They may therefore complement EMG and MMG for studying muscle activation strategies under different conditions.

  14. Atomic Force Microscopy Thermally-Assisted Microsampling with Atmospheric Pressure Temperature Ramped Thermal Desorption/Ionization-Mass Spectrometry Analysis

    SciTech Connect

    Hoffmann, William D; Kertesz, Vilmos; Srijanto, Bernadeta R; Van Berkel, Gary J

    2017-01-01

    The use of atomic force microscopy controlled nano-thermal analysis probes for reproducible spatially resolved thermally-assisted sampling of micrometer-sized areas (ca. 11 m 17 m wide 2.4 m deep) from relatively low number average molecular weight (Mn < 3000) polydisperse thin films of poly(2-vinylpyridine) (P2VP) is presented. Following sampling, the nano-thermal analysis probes were moved up from the surface and the probe temperature ramped to liberate the sampled materials into the gas phase for atmospheric pressure chemical ionization and mass spectrometric analysis. The procedure and mechanism for material pickup, the sampling reproducibility and sampling size are discussed and the oligomer distribution information available from slow temperature ramps versus ballistic temperature jumps is presented. For the Mn = 970 P2VP, the Mn and polydispersity index determined from the mass spectrometric data were in line with both the label values from the sample supplier and the value calculated from the simple infusion of a solution of polymer into the commercial atmospheric pressure chemical ionization source on this mass spectrometer. With a P2VP sample of higher Mn (Mn = 2070 and 2970), intact oligomers were still observed (as high as m/z 2793 corresponding to the 26-mer), but a significant abundance of thermolysis products were also observed. In addition, the capability for confident identification of the individual oligomers by slowly ramping the probe temperature and collecting data dependent tandem mass spectra was also demonstrated. The material type limits to the current sampling and analysis approach as well as possible improvements in nano-thermal analysis probe design to enable smaller area sampling and to enable controlled temperature ramps beyond the present upper limit of about 415 oC are also discussed.

  15. Tectonism and an Upper Silurian ramp-prodelta-rimmed shelf succession from Arctic Canada: an intracratonic product of Caledonian Compression

    SciTech Connect

    Packard, J.J.; Dixon, O.A.

    1987-05-01

    Late Silurian and Early Devonian shelf architecture in the vicinity of Cornwallis Island in the central Arctic Archipelago was largely determined by a series of diastrophic events that are collectively termed the Cornwallis disturbance. The disturbance affected a fault-bounded, basement-cored, intracratonic crustal segment, the Boothia Uplift, which forms a northerly trending feature some 1000 km long and 80 to 150 km wide oriented normal to the tectonodepositional strike of both the Franklinian and younger Sverdrup basins. Marine deposition within the vicinity of the uplift can be divided into five phases corresponding to changes in the relative intensity of penecontemporaneous regional tectonism. Phase 1 (late Ludlovian) is a quiescent stage, typified by carbonate ramp sedimentation. The Douro Ramp was a homoclinal ramp that bordered a low-energy, turbid, meromict sea. Phase 2 represents the termination of the stable carbonate ramp and the onset of syntectonic sedimentation. Phase 2 (late Ludlovian) is represented in the rock record by the precipitous and near-simultaneous occurrence of stacked hardgrounds, slope failure phenomena, ox-redox banding, tempestites with significant siliciclastic content, and abrupt shallowing of biofacies. Phase 3 (latest Ludlovian) corresponds to a period of continental wasting and deltaic sedimentation as the newly emergent terrane of the Boothia Uplift shed its detritus northward to form the Hotham clinoform. Phase 4 (latest Ludlovian to earliest Lochkovian) is represented by the Barlow Inlet Platform, an attached rimmed shelf with an accretionary shelf margin. The platform sequence is punctuated by a number (7 minimum) of major forestepping and backstepping events that are attributed to episodic movement of the Boothia Uplift. Phase 5 is the denouement of carbonate sedimentation in the study area.

  16. Tomographic PIV Study of the Low Re Number Flow Around a Pitching Plate with a Ramp Time History

    DTIC Science & Technology

    2010-10-14

    2010 Bali , Indonesia. Interactions: The research conducted with the support of this grant has been presented at the following international...international conferences: • International Conference on Intelligent Unmanned Systems, Nov 3 - 5, 2010 Bali , Indonesia, • 17th Australasian Fluid Mechanics...Flow around a Flat Plate Undergoing Transient Pitch-Ramp Motion. International Conference on Intelligent Unmanned Systems, Nov 3 - 5, 2010 Bali

  17. Parametric investigation of single-expansion-ramp nozzles at Mach numbers from 0.60 to 1.20

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Re, Richard J.; Bare, E. Ann

    1992-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of varying six nozzle geometric parameters on the internal and aeropropulsive performance characteristics of single-expansion-ramp nozzles. This investigation was conducted at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.5 to 12, and angles of attack of 0 deg +/- 6 deg. Maximum aeropropulsive performance at a particular Mach number was highly dependent on the operating nozzle pressure ratio. For example, as the nozzle upper ramp length or angle increased, some nozzles had higher performance at a Mach number of 0.90 because of the nozzle design pressure was the same as the operating pressure ratio. Thus, selection of the various nozzle geometric parameters should be based on the mission requirements of the aircraft. A combination of large upper ramp and large lower flap boattail angles produced greater nozzle drag coefficients at Mach number greater than 0.80, primarily from shock-induced separation on the lower flap of the nozzle. A static conditions, the convergent nozzle had high and nearly constant values of resultant thrust ratio over the entire range of nozzle pressure ratios tested. However, these nozzles had much lower aeropropulsive performance than the convergent-divergent nozzle at Mach number greater than 0.60.

  18. The Effect of Off-Ramp on the One-Dimensional Cellular Automaton Traffic Flow with Open Boundaries

    NASA Astrophysics Data System (ADS)

    Ez-Zahraouy, Hamid; Benrihane, Zoubir; Benyoussef, Abdelilah

    The effect of the position of the off-ramp (way out), on the traffic flow phase transition is investigated using numerical simulations in the one-dimensional cellular automaton traffic flow model with open boundaries using parallel dynamics. When the off-ramp is located between two critical positions ic1 and ic2 the current increases with the extracting rate β0, for β0<β0c1, and exhibits a plateau (constant current) for β0c1<β0<β0c2 and decreases with β0 for β0>β0c2. However, the density undergoes two successive first order transitions: from high density to plateau current phase at β0=β0c1 and from average density to the low one at β0=β0c2. In the case of two off-ramps located respectively at i1 and i2, these transitions occur only when i2-i1 is smaller than a critical value. Phase diagrams in the (α,β0), (β,β0) and (i1,β0) planes are established. It is found that the transitions between free traffic (FT), congested traffic (CT) and plateau current (PC) phases are of first order. The first order line transition in (i1,β0)-phase diagram terminates by an end point above which the transition disappears.

  19. Amylose Phase Composition As Analyzed By FTIR In A Temperature Ramp: Influence Of Short Range Order On The Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Bernazzani, Paul; Delmas, Genevieve

    1998-03-01

    Amylose, a major component of starch, is one of the most important biopolymers, being mainly associated with the pharmacological and food industries. Although widely studied, a complete control and understanding of the physical properties of amylose is still lacking. It is well known that structure and phase transition are important aspects of the functionality of biopolymers since they influence physical attributes such as appearance, digestibility, water holding capacity, etc. In the past, we have studied polyethylene phase composition by DSC in a very slow temperature (T) ramp (1K/h) and have demonstrated the presence and importance of short-range order on the polymer and its characteristics. In this study, we evaluated the phase composition of potato amylose and associated the thermodynamic properties with the presence of short-range order. Two methods were correlated, DSC (in a 1K/h T-ramp) and FTIR as a function of temperature, also in a 1K/h T-ramp. The effects of the various phases on thermodynamic properties such as gelation and enzyme or chemical resistance are discussed.

  20. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    SciTech Connect

    Nanda, Vikas; Kant, Niti

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  1. Effect of initial voltage ramp on separation efficiency in non-aqueous capillary electrophoresis with ethanol as background electrolyte solvent.

    PubMed

    Palonen, Sami; Jussila, Matti; Riekkola, Marja-Liisa

    2005-03-11

    Band broadening at high electric field strengths in capillary electrophoresis (CE), especially in wide capillaries, is often attributed to radial temperature gradients in the interior of the capillary caused by Joule heating. In some cases, however, a major cause of the lower separation efficiency could be the abrupt application of high electric field strength. We show that, with ethanol as background electrolyte solvent, initial abrupt voltage application introduces band broadening, which is especially pronounced in wider capillaries at high electric field and ionic strengths. With an appropriate initial voltage ramp this effect can be avoided. The effect of different voltage ramp up times on the separation efficiency of some anionic analytes was investigated with 50, 75 and 100 microm I.D. capillaries at field strengths of 1000-2000 V cm(-1). The results suggest that the band broadening associated with abrupt voltage application is of thermal origin and probably related to thermal volume expansion of the sample and background electrolyte solutions. The plate numbers calculated with a plate height model were in good agreement with the experimental values when a sufficiently long voltage ramp was employed. The dispersion due to axial temperature gradients was found to be very small under the experimental conditions used.

  2. The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales

    DOE PAGES

    Wang, Qin; Wu, Hongyu; Florita, Anthony R.; ...

    2016-11-11

    The value of improving wind power forecasting accuracy at different electricity market operation timescales was analyzed by simulating the IEEE 118-bus test system as modified to emulate the generation mixes of the Midcontinent, California, and New England independent system operator balancing authority areas. The wind power forecasting improvement methodology and error analysis for the data set were elaborated. Production cost simulation was conducted on the three emulated systems with a total of 480 scenarios, considering the impacts of different generation technologies, wind penetration levels, and wind power forecasting improvement timescales. The static operational flexibility of the three systems was comparedmore » through the diversity of generation mix, the percentage of must-run baseload generators, as well as the available ramp rate and the minimum generation levels. The dynamic operational flexibility was evaluated by the real-time upward and downward ramp capacity. Simulation results show that the generation resource mix plays a crucial role in evaluating the value of improved wind power forecasting at different timescales. In addition, the changes in annual operational electricity generation costs were mostly influenced by the dominant resource in the system. Lastly, the impacts of pumped-storage resources, generation ramp rates, and system minimum generation level requirements on the value of improved wind power forecasting were also analyzed.« less

  3. The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales

    SciTech Connect

    Wang, Qin; Wu, Hongyu; Florita, Anthony R.; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias

    2016-11-11

    The value of improving wind power forecasting accuracy at different electricity market operation timescales was analyzed by simulating the IEEE 118-bus test system as modified to emulate the generation mixes of the Midcontinent, California, and New England independent system operator balancing authority areas. The wind power forecasting improvement methodology and error analysis for the data set were elaborated. Production cost simulation was conducted on the three emulated systems with a total of 480 scenarios, considering the impacts of different generation technologies, wind penetration levels, and wind power forecasting improvement timescales. The static operational flexibility of the three systems was compared through the diversity of generation mix, the percentage of must-run baseload generators, as well as the available ramp rate and the minimum generation levels. The dynamic operational flexibility was evaluated by the real-time upward and downward ramp capacity. Simulation results show that the generation resource mix plays a crucial role in evaluating the value of improved wind power forecasting at different timescales. In addition, the changes in annual operational electricity generation costs were mostly influenced by the dominant resource in the system. Lastly, the impacts of pumped-storage resources, generation ramp rates, and system minimum generation level requirements on the value of improved wind power forecasting were also analyzed.

  4. High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin

    SciTech Connect

    Goldhammer, R.K.

    1996-12-31

    The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

  5. High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin

    SciTech Connect

    Goldhammer, R.K. )

    1996-01-01

    The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

  6. Presentation from 2016 STAR Tribal Research Meeting: ANTHC Rural Alaska Monitoring Program (RAMP): Assessing, Monitoring, and Adapting to Emerging Environmental Human and Wildlife Health Threats

    EPA Pesticide Factsheets

    This presentation, ANTHC Rural Alaska Monitoring Program (RAMP): Assessing, Monitoring, and Adapting to Emerging Environmental Human and Wildlife Health Threats, was given at the 2016 STAR Tribal Research Meeting held on Sept. 20-21, 2016.

  7. Symmetrical dynamics of peak current-mode and valley current-mode controlled switching dc-dc converters with ramp compensation

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-Hua; Xu, Jian-Ping; Bao, Bo-Cheng; Jin, Yan-Yan

    2010-06-01

    The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D > 0.5 and that of the VCM controlled switching dc-dc converter to D < 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.

  8. Ramping turn-to-turn loss and magnetization loss of a No-Insulation (RE)Ba2Cu3Ox high temperature superconductor pancake coil

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Song, H.; Yuan, W.; Jin, Z.; Hong, Z.

    2017-03-01

    This paper is to study ramping turn-to-turn loss and magnetization loss of a no-insulation (NI) high temperature superconductor (HTS) pancake coil wound with (RE)Ba2Cu3Ox (REBCO) conductors. For insulated (INS) HTS coils, a magnetization loss occurs on superconducting layers during a ramping operation. For the NI HTS coil, additional loss is generated by the "bypassing" current on the turn-to-turn metallic contacts, which is called "turn-to-turn loss" in this study. Therefore, the NI coil's ramping loss is much different from that of the INS coil, but few studies have been reported on this aspect. To analyze the ramping losses of NI coils, a numerical method is developed by coupling an equivalent circuit network model and a H-formulation finite element method model. The former model is to calculate NI coil's current distribution and turn-to-turn loss, and the latter model is to calculate the magnetization loss. A test NI pancake coil is wound with REBCO tapes and the reliability of this model is validated by experiments. Then the characteristics of the NI coil's ramping losses are studied using this coupling model. Results show that the turn-to-turn loss is much higher than the magnetization loss. The NI coil's total ramping loss is much higher than that of its insulated counterpart, which has to be considered carefully in the design and operation of NI applications. This paper also discusses the possibility to reduce NI coil's ramping loss by decreasing the ramping rate of power supply or increasing the coil's turn-to-turn resistivity.

  9. A facies model for internalites (internal wave deposits) on a gently sloping carbonate ramp (Upper Jurassic, Ricla, NE Spain)

    NASA Astrophysics Data System (ADS)

    Bádenas, Beatriz; Pomar, Luis; Aurell, Marc; Morsilli, Michele

    2012-10-01

    Internal waves are waves that propagate along the pycnocline, the interface between two density-stratified fluids. Even though internal waves are ubiquitous in oceans and lakes, their impact in the sedimentary record has remained largely unrecognized. Internal waves can remobilize the sediment from the depth at which the internal waves break onto the sea floor. In shelf, or ramp settings, internal wave deposits (internalites) have to be distinguished from tempestites while in slope and deeper settings internalites require distinction from turbidites. The Upper Kimmeridgian carbonate ramp succession cropping out near Ricla (NE Spain) provides some key evidence to differentiate the depositional processes induced by breaking internal waves from those related to surface storm waves. Sandy-oolitic grainstone eventites, previously interpreted as tempestites, contain evidence of reworking by turbulent events related to breaking internal waves. Underlying rationale are: 1) they occur in distal mid-ramp position, detached from the coeval shallow-water successions; 2) they do not have the characteristic coarsening- and thickening upward trend of storm deposits; 3) they gradually thin-out to disappear both up dip and down dip, interbedded with mid-ramp lime mudstones; and 4) they show little or no erosion towards the shallower areas. A facies model for internalites produced by two sediment populations, sand and mud, on a gently sloping carbonate ramp is proposed. The individual internalites occurring at Ricla include several architectural elements, sequentially organized in dip direction, which can be related to the flows associated with breaking internal waves: erosion in the breaker zone, swash run-up and tractive backwash flow. Individual internalites stack, with down- and up-slope shingling configuration, in dm-thick packages thought to reflect the up-slope and down-slope migration of the breaker zone, in turn related to depth variations of the palaeo-pycnocline. Packages

  10. Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading

    NASA Astrophysics Data System (ADS)

    Berezvai, Szabolcs; Kossa, Attila

    2016-09-01

    This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software uc(Abaqus). The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in uc(Abaqus) using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.

  11. Blank corrections for ramped pyrolysis radiocarbon dating of sedimentary and soil organic carbon.

    PubMed

    Fernandez, Alvaro; Santos, Guaciara M; Williams, Elizabeth K; Pendergraft, Matthew A; Vetter, Lael; Rosenheim, Brad E

    2014-12-16

    Ramped pyrolysis (RP) targets distinct components of soil and sedimentary organic carbon based on their thermochemical stabilities and allows the determination of the full spectrum of radiocarbon ((14)C) ages present in a soil or sediment sample. Extending the method into realms where more precise ages are needed or where smaller samples need to be measured involves better understanding of the blank contamination associated with the method. Here, we use a compiled data set of RP measurements of samples of known age to evaluate the mass of the carbon blank and its associated (14)C signature, and to assess the performance of the RP system. We estimate blank contamination during RP using two methods, the modern-dead and the isotope dilution method. Our results indicate that during one complete RP run samples are contaminated by 8.8 ± 4.4 μg (time-dependent) of modern carbon (MC, fM ∼ 1) and 4.1 ± 5.5 μg (time-independent) of dead carbon (DC, fM ∼ 0). We find that the modern-dead method provides more accurate estimates of uncertainties in blank contamination; therefore, the isotope dilution method should be used with caution when the variability of the blank is high. Additionally, we show that RP can routinely produce accurate (14)C dates with precisions ∼100 (14)C years for materials deposited in the last 10,000 years and ∼300 (14)C years for carbon with (14)C ages of up to 20,000 years.

  12. Enhanced IGCC regulatory control and coordinated plant-wide control strategies for improving power ramp rates

    SciTech Connect

    Mahapatra, P.; Zitney, S.

    2012-01-01

    As part of ongoing R&D activities at the National Energy Technology Laboratory’s (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

  13. Episodic sedimentation on a lower Silurian storm-dominated carbonate ramp, Anticosti Island, Quebec, Canada

    SciTech Connect

    Sami, T.; Desrochers, A.

    1989-03-01

    The 130-170-m thick Becscie Formation represents continuous deposition on a shallow, open-marine carbonate ramp across the Ordovician-Silurian boundary. The sequence reflects a generally quiet, shallow marine environment punctuated by episodic, storm-generated, high-energy events. These events deposited individual storm units, or tempestites, which occur as fining-upward sequences ranging from 0.5 to 80 cm thick. A complete ideal storm deposit consists of a sharp erosional base overlain by intraclastic to bioclastic rudstone fining upward into calcarenite and then into finely laminated calcisiltite grading upward into shale. Tempestites exhibit a variety of storm-generated structures which are today exposed on extensive bedding planes. Gutters and gutter casts occur throughout the sequence and show a range of morphologies and fill/substrate combinations. Hummocky cross-stratification is widespread and restricted exclusively to the calcisiltite-rich tempestites. Flat-pebble conglomerates (intraclastic rudstone) occur through most of the sequence and contain clasts of mudstone, packstone, and grainstone, indicating extensive early sea floor lithification. Tempestite sequences display lateral and vertical variations controlled by water depth and distance from shore. Construction of proximality trends permits recognition of lower order sea level changes within the overall regressive sequence. Sea level changes are believed to be eustatic, yet diastrophic-tectonic influences should not be dismissed due to regional tectonic activity. Paleocurrent data suggest sediment transport by predominantly southwest-oriented geostrophic currents. Together with sedimentologic evidence, this supports a combined-flow model for storm sediment transport in the Anticosti basin.

  14. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.; Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.

    1999-01-01

    Yucca Mountain, in southern Nevada, is being investigated by the U.S. Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the U.S. Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Multiple lines of evidence indicate that gas flow and liquid flow within the welded tuffs of the unsaturated zone occur primarily through fractures. Fracture densities are highest in the Tiva Canyon welded (TCw) and Topopah Spring welded (TSw) hydrogeologic units. Although fracture density is much lower in the intervening nonwelded and bedded tuffs of the Paintbrush nonwelded hydrogeologic unit (PTn), pneumatic and aqueous-phase isotopic evidence indicates that substantial secondary permeability is present locally in the PTn, especially in the vicinity of faults. Borehole air-injection tests indicate that bulk air-permeability ranges from 3.5x10-14 to 5.4x10-11 square meters for the welded tuffs and from 1.2x10-13 to 3.0x10-12 square meters for the non welded and bedded tuffs of the PTn. Analyses of in-situ pneumatic-pressure data from monitored boreholes produced estimates of bulk permeability that were comparable to those determined from the air-injection tests. In many cases, both sets of estimates are two to three orders of magnitude larger than estimates based on laboratory analyses of unfractured core samples. The in-situ pneumatic-pressure records also indicate that the unsaturated-zone pneumatic system consists of four subsystems that coincide with the four major hydrogeologic units of the unsaturated zone at Yucca Mountain. In

  15. Driver choice compared to controlled diversion for a freeway double on-ramp in the framework of three-phase traffic theory

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2008-11-01

    Two diversion schemes that apportion demand between two on-ramps to reduce congestion and improve throughput on a freeway are analyzed. In the first scheme, drivers choose to merge or to divert to a downstream on-ramp based on information about average travel times for the two routes: (1) merge and travel on the freeway or (2) divert and travel on a surface street with merging downstream. The flow, rate of merging at the ramps, and the travel times oscillate strongly, but irregularly, due to delayed feedback. In the second scheme, diversion is controlled by the average mainline velocities just upstream of the on-ramps. Driver choice is not involved. If the average upstream velocity on the mainline drops below a predetermined value (20 m/s) vehicles are diverted to the downstream ramp. When the average mainline velocity downstream becomes too low, diversion is no longer permitted. The resultant oscillations in this scheme are nearly periodic. The period is dominated by the response time of the mainline to interruption of merging rather than delayed feedback, which contributes only a minor component linear in the distance separating the on-ramps. In general the second scheme produces more effective congestion reduction and greater throughput. Also the travel times for on-ramp drivers are less than that obtained by drivers who attempt to minimize their own travel times (first scheme). The simulations are done using the Kerner-Klenov stochastic three-phase theory of traffic [B.S. Kerner, S.L. Klenov, Phys. Rev. E 68 (2003) 036130].

  16. Systematic data mining using a pattern database to accelerate yield ramp

    NASA Astrophysics Data System (ADS)

    Teoh, Edward; Dai, Vito; Capodieci, Luigi; Lai, Ya-Chieh; Gennari, Frank

    2014-03-01

    Pattern-based approaches to physical verification, such as DRC Plus, which use a library of patterns to identify problematic 2D configurations, have been proven to be effective in capturing the concept of manufacturability where traditional DRC fails. As the industry moves to advanced technology nodes, the manufacturing process window tightens and the number of patterns continues to rapidly increase. This increase in patterns brings about challenges in identifying, organizing, and carrying forward the learning of each pattern from test chip designs to first product and then to multiple product variants. This learning includes results from printability simulation, defect scans and physical failure analysis, which are important for accelerating yield ramp. Using pattern classification technology and a relational database, GLOBALFOUNDRIES has constructed a pattern database (PDB) of more than one million potential yield detractor patterns. In PDB, 2D geometries are clustered based on similarity criteria, such as radius and edge tolerance. Each cluster is assigned a representative pattern and a unique identifier (ID). This ID is then used as a persistent reference for linking together information such as the failure mechanism of the patterns, the process condition where the pattern is likely to fail and the number of occurrences of the pattern in a design. Patterns and their associated information are used to populate DRC Plus pattern matching libraries for design-for-manufacturing (DFM) insertion into the design flow for auto-fixing and physical verification. Patterns are used in a production-ready yield learning methodology to identify and score critical hotspot patterns. Patterns are also used to select sites for process monitoring in the fab. In this paper, we describe the design of PDB, the methodology for identifying and analyzing patterns across multiple design and technology cycles, and the use of PDB to accelerate manufacturing process learning. One such

  17. Numerical investigation of improving the performance of a single expansion ramp nozzle at off-design conditions by secondary injection

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Xu, Jinglei; Mo, Jianwei

    2017-04-01

    The performance of a single expansion ramp nozzle (SERN) is poor due to over-expansion at off-design conditions. The present study focuses on improving the SERN performance by secondary injection on the cowl and is carried out by using the k - ε RNG turbulence model. The incidence shock wave resulting from the secondary injection impinges on the expansion ramp, resulting in separation and the increase of the pressure distribution along the ramp. The performance of the SERN can be improved significantly, and the augmentation of the thrust coefficient, lift and pitch moment can be as high as 3.16%, 29.43% and 41.67%, respectively, when the nozzle pressure ratio (NPR) is 10. The location of the injection has a considerable effect on the lift and pitching moment, and the direction of the pitch moment can be changed from nose-up to nose-down when the injection is on the tail of the cowl. The effect of the injection on the axial thrust coefficient is much more apparent, if the operation NPR is far from the design point, and however, the results for the lift and pitching moment are opposite. The increases of injection total pressure and injection width have positive impacts on the SERN performance. And if the parameter φ maintains constant, the axial thrust coefficient would increase when the injection total pressure decreases, so low energy flow can also be used as the secondary injection without decreasing the lift and pitching moment. The mass flow rate of the injection can be decreased by applying the higher total temperature flow without reducing the performance of the SERN.

  18. Effect of station-specific alerting and ramp-up tones on firefighters' alarm time heart rates.

    PubMed

    MacNeal, James J; Cone, David C; Wistrom, Christopher L

    2016-11-01

    A number of long-term health effects are suffered by emergency responders, some influenced by psychological stress and fatigue. This study explored if stress and fatigue can be reduced by changing the method by which firefighters are alerted to emergency responses. Over several months, the method by which responders at a fire department were alerted was altered. Firefighter heart rates were measured first with standard alerting as a control (phase 1: all stations alerted simultaneously, with high-volume tones). The department then implemented station-specific (phase 2) and gradual volume ramp-up (phase 3) tone alerting, and heart rate increases were compared. The Fatigue Severity Score was used to examine firefighter fatigue, and the department administered a follow-up survey on personnel preferences. Individual heart rate increases (Δbpm) ranged from 2-48 bpm. Median increases were 7 bpm (IQR 4-11 bpm) during phase 1 (72.2% of alarms Δbpm<10), 7 bpm (IQR 5-12 bpm) during phase 2 (60.7% of alarms Δbpm<10), and 5 bpm (IQR 3-8 bpm) during phase 3 (82.7% of alarms Δbpm<10). The difference in medians was lower for phases 1 and 2 than for phase 3 (p = 0.0069), and more alarms in phase 3 resulted in increases of <10 bpm than in phase 2 (p = 0.0089). The Fatigue Severity Scale showed little variability: median scores 7 in phase 1, 8 in phase 2, and 7 in phase 3. Firefighters reported a strong preference for the "ramp-up" tones, and were roughly evenly divided between preferring alerting all stations simultaneously 24/7 (40% rating this 4 or 5 on a five-point Likert scale), station-specific alerting 24/7 (47.5%), or all stations during the day but station-specific at night (40%). Ramp-up tones were perceived as the best method to reduce stress during the day and overnight. Small but significant decreases in the amount of tachycardic response to station alerting are associated with simple alterations in alerting methods. Station-specific and ramp-up tones improve

  19. Hybrid Fast-Ramping Accelerator to 750 GeV/c: Refinement and Parameters over Full Energy Range

    SciTech Connect

    Berg J. S.; Garren, A. A.

    2012-03-02

    Starting with the lattice design specified in [Garren and Berg, MAP-doc-4307, 2011], we refine parameters to get precise dispersion suppression in the straight sections and eliminate beta beating in the arcs. We then compute ramped magnet fields over the entire momentum range of 375 GeV/c to 750 GeV/c, and fit them to a polynomial in the momentum. We compute the time of flight and frequency slip factor over the entire momentum range, and discuss the consequences for longitudinal dynamics.

  20. No reserve in isokinetic cycling power at intolerance during ramp incremental exercise in endurance-trained men.

    PubMed

    Ferguson, Carrie; Wylde, Lindsey A; Benson, Alan P; Cannon, Daniel T; Rossiter, Harry B

    2016-01-01

    During whole body exercise in health, maximal oxygen uptake (V̇o2max) is typically attained at or immediately before the limit of tolerance (LoT). At the V̇o2max and LoT of incremental exercise, a fundamental, but unresolved, question is whether maximal evocable power can be increased above the task requirement, i.e., whether there is a "power reserve" at the LoT. Using an instantaneous switch from cadence-independent (hyperbolic) to isokinetic cycle ergometry, we determined maximal evocable power at the limit of ramp-incremental exercise. We hypothesized that in endurance-trained men at LoT, maximal (4 s) isokinetic power would not differ from the power required by the task. Baseline isokinetic power at 80 rpm (Piso; measured at the pedals) and summed integrated EMG from five leg muscles (ΣiEMG) were measured in 12 endurance-trained men (V̇o2max = 4.2 ± 1.0 l/min). Participants then completed a ramp incremental exercise test (20-25 W/min), with instantaneous measurement of Piso and ΣiEMG at the LoT. Piso decreased from 788 ± 103 W at baseline to 391 ± 72 W at LoT, which was not different from the required ramp-incremental flywheel power (352 ± 58 W; P > 0.05). At LoT, the relative reduction in Piso was greater than the relative reduction in the isokinetic ΣiEMG (50 ± 9 vs. 63 ± 10% of baseline; P < 0.05). During maximal ramp incremental exercise in endurance-trained men, maximum voluntary power is not different from the power required by the task and is consequent to both central and peripheral limitations in evocable power. The absence of a power reserve suggests both the perceptual and physiological limits of maximum voluntary power production are not widely dissociated at LoT in this population.

  1. Computational results for flows over 2-D ramp and 3-D obstacle with an upwind Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1990-01-01

    An implicit, finite-difference, upwind, full Navier-Stokes solver was applied to supersonic/hypersonic flows over two-dimensional ramps and three-dimensional obstacle. Some of the computed results are presented. The numerical scheme used in the study is an implicit, spacially second order accurate, upwind, LU-ADI scheme based on Roe's approximate Reimann solver with MUSCL differencing of Van Leer. An algebraic grid generation scheme based on generalized interpolation scheme was used in generating the grids for the various 2-D and 3-D problems.

  2. Computational results for 2-D and 3-D ramp flows with an upwind Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1991-01-01

    An implicit, finite-difference, upwind, full Navier-Stokes solver was applied to supersonic/hypersonic flows over two-dimensional ramps and three-dimensional obstacle. Some of the computed results are presented. The numerical scheme used in the study is an implicit, spatially second order accurate, upwind, LU-ADI scheme based on Roe's approximate Reimann solver with MUSCL differencing of Van Leer. An algebraic grid generation scheme based on generalized interpolation scheme was used in generating the grids for the various 2-D and 3-D problems.

  3. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli

    PubMed Central

    2012-01-01

    Background The next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object. Methods This systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance. Results Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent

  4. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; Luo, Binqiang; Zhang, Xuping; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Chong, Tao; Mo, Jianjun; Wu, Gang; Tao, Yanhui

    2013-01-01

    A pulsed power generator CQ-4 was developed to characterize dynamic behaviors of materials under ramp wave loading, and to launch high velocity flyer plates for shock compression and hypervelocity impact experiments of materials and structures at Institute of Fluid Physics, China Academy of Engineering Physics. CQ-4 is composed of twenty capacitor and primary discharge switch modules with total capacitance of 32μF and rated charging voltage of 100 kV, and the storage energy is transmitted by two top and bottom parallel aluminum plates insulated by twelve layers of polyester film with total thickness of 1.2 mm. Between capacitor bank and chamber, there are 72 peaking capacitors with total capacitance of 7.2 μF and rated voltage of 120 kV in parallel, which are connected with the capacitor bank in parallel. Before the load, there is a group of seven secondary self-breaking down switches connected with the total circuit in series. The peaking capacitors and secondary switches are used to shape the discharging current waveforms. For short-circuit, the peak current of discharging can be up to 3 ˜ 4 MA and rise time varies from 470 ns to 600 ns when the charging voltages of the generator are from 75 kV to 85 kV. With CQ-4 generator, some quasi-isentropic compression experiments under ramp wave loadings are done to demonstrate the ability of CQ-4 generator. And some experiments of launching high velocity flyer plates are also done on CQ-4. The experimental results show that ramp wave loading pressure of several tens of GPa on copper and aluminum samples can be realized and the velocity of aluminum flyer plate with size of 10 mm × 6 mm × 0.35 mm can be accelerated to about 11 km/s and the velocity of aluminum flyer plate with size of 10 mm × 6 mm × 0.6 mm can be up to about 9 km/s, which show that CQ-4 is a good and versatile tool to realize ramp wave loading and shock compression for shock physics.

  5. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading.

    PubMed

    Wang, Guiji; Luo, Binqiang; Zhang, Xuping; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Chong, Tao; Mo, Jianjun; Wu, Gang; Tao, Yanhui

    2013-01-01

    A pulsed power generator CQ-4 was developed to characterize dynamic behaviors of materials under ramp wave loading, and to launch high velocity flyer plates for shock compression and hypervelocity impact experiments of materials and structures at Institute of Fluid Physics, China Academy of Engineering Physics. CQ-4 is composed of twenty capacitor and primary discharge switch modules with total capacitance of 32 μF and rated charging voltage of 100 kV, and the storage energy is transmitted by two top and bottom parallel aluminum plates insulated by twelve layers of polyester film with total thickness of 1.2 mm. Between capacitor bank and chamber, there are 72 peaking capacitors with total capacitance of 7.2 μF and rated voltage of 120 kV in parallel, which are connected with the capacitor bank in parallel. Before the load, there is a group of seven secondary self-breaking down switches connected with the total circuit in series. The peaking capacitors and secondary switches are used to shape the discharging current waveforms. For short-circuit, the peak current of discharging can be up to 3 ~ 4 MA and rise time varies from 470 ns to 600 ns when the charging voltages of the generator are from 75 kV to 85 kV. With CQ-4 generator, some quasi-isentropic compression experiments under ramp wave loadings are done to demonstrate the ability of CQ-4 generator. And some experiments of launching high velocity flyer plates are also done on CQ-4. The experimental results show that ramp wave loading pressure of several tens of GPa on copper and aluminum samples can be realized and the velocity of aluminum flyer plate with size of 10 mm × 6 mm × 0.35 mm can be accelerated to about 11 km/s and the velocity of aluminum flyer plate with size of 10 mm × 6 mm × 0.6 mm can be up to about 9 km/s, which show that CQ-4 is a good and versatile tool to realize ramp wave loading and shock compression for shock physics.

  6. Mixed Linear/Square-Root Encoded Single-Slope Ramp Provides Low-Noise ADC with High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.

    2013-01-01

    Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of

  7. Cyclic sedimentation of carbonate and siliciclastic deposits on a Late Precambrian ramp: The Elisabeth Bjerg Formation (Eleonore Bay supergroup), East Greenland

    SciTech Connect

    Tirsgaard, H.

    1996-07-01

    The 300 m thick upper Precambrian Elisabeth Bjerg Formation in East Greenland represents a period of intermittent siliciclastic-dominated marine deposition on a carbonate ramp. Four depositional systems are identified within the exposed formation: (1) a siliciclastic ramp system formed by prograding shoreface or delta complexes; (2) a carbonate outer-ramp system comprising rhythmically interbedded carbonate mudstone, subtidal stromatolitic biostromes, calcarenite deposits, and siliciclastic mudstone; (3) a transitional siliciclastic-carbonate system consisting of 0.3--0.6 m thick subtidal rhythmites, created by carbonate mudstone and conglomerates alternating with siliciclastic mudstone; and (4) a carbonate inner-ramp system consisting of intertidal and subtidal channel deposits. On the basis of stacking patterns within the depositional systems, lowstand, transgressive, and highstand systems tracts can be inferred, which are traceable across the entire outcrop area, more than 200 km along and 100 km perpendicular to basin strike. The systems tracts combine to form five 30--100 m thick sequences within the Elisabeth Bjerg Formation and two that extend into the surrounding formations. All of the sequences show the same basic internal architecture, most likely developed in response to third-order glacio-eustatic changes in sea level. The paleogeographic evolution, and the response of the four depositional systems to cyclic changes in sea level, are interpreted using a ramp-to-basin model.

  8. Sound exposure changes European seabass behaviour in a large outdoor floating pen: Effects of temporal structure and a ramp-up procedure.

    PubMed

    Neo, Y Y; Hubert, J; Bolle, L; Winter, H V; Ten Cate, C; Slabbekoorn, H

    2016-07-01

    Underwater sound from human activities may affect fish behaviour negatively and threaten the stability of fish stocks. However, some fundamental understanding is still lacking for adequate impact assessments and potential mitigation strategies. For example, little is known about the potential contribution of the temporal features of sound, the efficacy of ramp-up procedures, and the generalisability of results from indoor studies to the outdoors. Using a semi-natural set-up, we exposed European seabass in an outdoor pen to four treatments: 1) continuous sound, 2) intermittent sound with a regular repetition interval, 3) irregular repetition intervals and 4) a regular repetition interval with amplitude 'ramp-up'. Upon sound exposure, the fish increased swimming speed and depth, and swam away from the sound source. The behavioural readouts were generally consistent with earlier indoor experiments, but the changes and recovery were more variable and were not significantly influenced by sound intermittency and interval regularity. In addition, the 'ramp-up' procedure elicited immediate diving response, similar to the onset of treatment without a 'ramp-up', but the fish did not swim away from the sound source as expected. Our findings suggest that while sound impact studies outdoors increase ecological and behavioural validity, the inherently higher variability also reduces resolution that may be counteracted by increasing sample size or looking into different individual coping styles. Our results also question the efficacy of 'ramp-up' in deterring marine animals, which warrants more investigation.

  9. Definition study for temperature control in advanced protein crystal growth

    NASA Astrophysics Data System (ADS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-09-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  10. Definition study for temperature control in advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  11. Immediate video feedback on ramp, wheelie, and curb wheelchair skill training for persons with spinal cord injury.

    PubMed

    Wang, Yong Tai; Limroongreungrat, Weerawat; Chang, Li-Shan; Ke, Xiang; Tsai, Liang-Ching; Chen, Yu-Ping; Lewis, James

    2015-01-01

    We hypothesized that the effects of immediate video feedback (IVF) on training ramp, wheelie, and curb wheelchair skills for persons with spinal cord injury (SCI) would be equivalent to or better than the traditional wheelchair skill training. Participants were manual wheelchair users with recent SCI (thoracic 1-lumbar 1) who were matched (9 pairs) on motor function level, age, and sex and randomly assigned to a control group (conventional training) or an experimental group (IVF training). Participants learned three wheelchair skills and then went through the wheelchair skill competency test, retention test, and transfer test. Paired t-tests were used to examine the differences in training time (minutes), spotter intervention needed (counts), and successful rate in performance between the two groups. A 2 (groups) x 3 (skills) x 3 (tests) repeated-measures analysis of variance and Bonferroni adjustment test were used to examine differences between groups on wheelchair skills and tests. No differences were found between two groups in training times (minutes) on three wheelchair skills (experimental vs control: ramp 14.92 +/- 5.80 vs 11.69 +/- 7.85; wheelie 17.79 +/- 6.03 vs 19.92 +/- 13.42; and curb 38.35 +/-23.01 vs 48.59 +/- 15.21). This study demonstrated that IVF for training manual wheelchair skills may produce similar results as the conventional training and may be an alternative training method for wheelchair skills.

  12. The temporal relationship of thresholds between muscle activity and ventilation during bicycle ramp exercise in community dwelling elderly males

    PubMed Central

    Sasaki, Kentaro; Kimura, Tsuyoshi; Kojima, Satoshi; Higuchi, Hiroyuki

    2016-01-01

    [Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus femoris, biceps femoris long head and gastrocnemius lateral head muscles during ramp cycling exercise in elderly males. [Subjects and Methods] Eleven community dwelling elderly males participated in this study. Subjects performed exercise testing with an expiratory gas analyzer and surface electromyography to evaluate the tested muscle activities during ramp exercise. [Results] The electromyographic threshold for rectus femoris was not valid because the slope after electromyographic threshold was not significant as compared to that before electromyographic threshold. The slope of the regression line for vastus lateralis was significantly decreased after electromyographic threshold while biceps femoris and gastrocnemius were increased. The electromyographic threshold appearance times for vastus lateralis and gastrocnemius were significantly earlier than ventilatory threshold point. There were no difference in electromyographic threshold appearance times among three muscles. [Conclusion] These results suggest that the increase in the slope of the regression line after electromyographic threshold for vastus lateralis was decreased, possibly indicating to postpone muscular fatigue resulting from the activation of biceps femoris and gastrocnemius as biarticular antagonists. This recruitment pattern might be an elderly-specific strategy. PMID:27942152

  13. Development from a homoclinal ramp to an isolated, tectonically unstable carbonate platform: Lower Cambrian of southwest Sardinia

    SciTech Connect

    Bechstadt, T.; Boni, M.; Schledding, T.; Selg, M.

    1987-05-01

    In the Lower Cambrian of southwest Sardinia, a carbonate platform developed, showing clearly different stages of evolution: (1) a homoclinal ramp containing algal-archaeocyathan mounds (consisting mainly of Epiphyton and Renalcis boundstone) in the west, clastic tidal flats in the east; (2) an ooid-pellet barrier ramp with ooid-shoals, prograding toward the west. The back-shoal area contains some algal (girvanella)-archaeocyathan biostromes, but mainly peloidal mudstones and increasingly tidal deposits (clastic and carbonates) toward the east as well as at the top of the sequence; (3) an isolated platform, aggraded to sea level and rimmed by local slope deposits; (4) a drowned isolated platform, consisting of peloidal mudstones to wackestones in inner parts, remnants of elevated margins with higher energy facies in outer parts, and (5) breakdown of the platform in the Middle Cambrian, marked by the onset of nodular limestones covered by clastics. Deposition of stratabound lead, zinc, and barium deposits was favored either by the platform facies itself (some barite deposits) or by showing a distinct relation with the prominent tensional tectonics, i.e., they occur within matrix and cemented breccias (debris flows, internal breccias) or as massive sulfides, deposited in restricted, small-scale basins. The strong effects of tensional tectonics (slumping, debris flows, internal breccias, neptunian dykes) indicate a thinning of the continental crust, either within a passive continental margin setting or, alternatively, within a backarc setting, the volcanic arc being much farther to the west (possibly in Spain or southern France).

  14. The use of regional advance mitigation planning (RAMP) to integrate transportation infrastructure impacts with sustainability; a perspective from the USA

    NASA Astrophysics Data System (ADS)

    Thorne, James H.; Huber, Patrick R.; O'Donoghue, Elizabeth; Santos, Maria J.

    2014-05-01

    Globally, urban areas are expanding, and their regional, spatially cumulative, environmental impacts from transportation projects are not typically assessed. However, incorporation of a Regional Advance Mitigation Planning (RAMP) framework can promote more effective, ecologically sound, and less expensive environmental mitigation. As a demonstration of the first phase of the RAMP framework, we assessed environmental impacts from 181 planned transportation projects in the 19 368 km2 San Francisco Bay Area. We found that 107 road and railroad projects will impact 2411-3490 ha of habitat supporting 30-43 threatened or endangered species. In addition, 1175 ha of impacts to agriculture and native vegetation are expected, as well as 125 crossings of waterways supporting anadromous fish species. The extent of these spatially cumulative impacts shows the need for a regional approach to associated environmental offsets. Many of the impacts were comprised of numerous small projects, where project-by-project mitigation would result in increased transaction costs, land costs, and lost project time. Ecological gains can be made if a regional approach is taken through the avoidance of small-sized reserves and the ability to target parcels for acquisition that fit within conservation planning designs. The methods are straightforward, and can be used in other metropolitan areas.

  15. Engineering and design of holding yards, loading ramps and handling facilities for land and sea transport of livestock.

    PubMed

    Grandin, Temple

    2008-01-01

    Facilities designed for intensively raised animals trained to lead are not appropriate for handling extensively raised animals unaccustomed to close contact with people. The author provides information on facility design for both intensively and extensively raised livestock. Non-slip flooring in handling facilities is essential for all livestock. Cleats must be spaced on loading ramps for trucks or ships so that the hooves of the animals fit easily between them. Cleats spaced too far apart cause slipping and falling. In developing countries, building stationary ramps for vehicles of differing heights using concrete, wood or steel is recommended. Highly mechanised systems, such as hydraulic tailgate lifts, are not recommended in developing countries due to maintenance difficulties. The holding capacity for livestock shipping and receiving terminals should be designed to hold the largest number of animals handled on the busiest days. To maintain high standards of animal welfare, it is important to train employees to handle animals using methods to reduce stress and to conduct weekly audits of handling using an objective, numerical scoring system to maintain high welfare standards.

  16. The use of biphasic linear ramped pulsed field gel electrophoresis to quantify DNA damage based on fragment size distribution

    SciTech Connect

    Lawrence, T.S.; Normolle, D.P.; Davis, M.A.; Maybaum, J.

    1993-10-20

    The development of biphasic linear pulse ramping gel electrophoresis has permitted resolution of DNA fragments from 200 Kbp to 6 Mbp in a single gel. We used this technique to measure radiation-induced DNA damage based on fragment size. Human colon cancer cells (HT29 and LS174T) and Chinese hamster ovary cells were embedded in agarose, deproteinized, irradiated with 5-80 Gy, and assessed for DNA double strand breakage using pulsed field gel electrophoresis. The frequency of DNA double strand breakage determined using a previously published method was compared to the breakage frequency calculated using the fragment size distribution. Both methods produced similar estimates for breakage frequency of approximately 5 {times} 10{sup {minus}9} breaks Gy{sup {minus}1} bp{sup {minus}1}. These findings suggest that biphasic linear pulse ramping gel electrophoresis can yield a quantitative estimate of DNA fragment distribution resulting from irradiation. The ability to quantify the distribution of DNA fragment sizes produced by irradiation should yield information concerning the mechanisms of both DNA double strand break induction and repair. 16 refs., 5 figs.

  17. Stratigraphic architecture and gamma ray logs of deeper ramp carbonates (Upper Jurassic, SW Germany)

    NASA Astrophysics Data System (ADS)

    Pawellek, T.; Aigner, T.

    2003-07-01

    The objective of this paper is to contribute to the development of sequence stratigraphic models for extensive epicontinental carbonate systems deposited over cratonic areas. Epicontinental carbonates of the SW German Upper Jurassic were analysed in terms of microfacies, sedimentology and sequence stratigraphy based on 2.5 km of core, 70 borehole gamma ray logs and 24 quarries. Facies analysis revealed six major facies belts across the deeper parts of the carbonate ramp, situated generally below fair-weather wave base, and mostly below average storm wave base but in the reach of occasional storm events. Observed stratigraphic patterns differ in some aspects from widely published sequence stratigraphic models: Elementary sedimentary cycles are mostly more or less symmetrical and are, thus, referred to as "genetic sequences" or "genetic units" [AAAPG Bull. 55 (1971) 1137; Frazier, D.E., 1974. Depositional episodes: their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf Basin. University of Texas, Austin, Bureau of Economic Geology Geologicalo Circular 71-1; AAPG Bull. 73 (1989) 125; Galloway, W.E., Hobday, D.K., 1996. Terrigenous Clastic Depositional Systems. 489 pp., Springer; Cross, T.A., Baker, M.R., Chapin, M.S., Clark, M.S., Gardner, M.H., Hanson, M.S., Lessenger, M.A., Little, L.D., McDonough, K.J., Sonnenfeld, M.D., Valasek, D.W., Williams, M.R., Witter, D.N., 1993. Applications of high-resolution sequence stratigraphy to reservoir analysis. Edition Technip 1993, 11-33; Bull. Cent. Rech. Explor. Prod. Elf-Aquitaine 16 (1992) 357; Homewood, P., Mauriaud, P., Lafont, F., 2000. Best practices in sequence stratigraphy. Elf EP Mem. 25, 81 pp.; Homewood, P., Eberli, G.P., 2000. Genetic stratigraphy on the exploration and production scales. Elf EP Mem. 24, 290 pp.], in contrast to the asymmetrical, shallowing-upward "parasequences" of the EXXON approach. Neither sequence boundaries nor maximum flooding surfaces could be

  18. GENERAL: Mode shift and stability control of a current mode controlled buck-boost converter operating in discontinuous conduction mode with ramp compensation

    NASA Astrophysics Data System (ADS)

    Bao, Bo-Cheng; Xu, Jian-Ping; Liu, Zhong

    2009-11-01

    By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagram, Lyapunov exponent spectrum, time-domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.

  19. Numerical study of friction-induced instability and acoustic radiation - Effect of ramp loading on the squeal propensity for a simplified brake model

    NASA Astrophysics Data System (ADS)

    Soobbarayen, K.; Sinou, J.-J.; Besset, S.

    2014-10-01

    This paper presents a numerical study of the influence of loading conditions on the vibrational and acoustic responses of a disc brake system subjected to squeal. A simplified model composed of a circular disc and a pad is proposed. Nonlinear effects of contact and friction over the frictional interface are modelled with a cubic law and a classical Coulomb's law with a constant friction coefficient. The stability analysis of this system shows the presence of two instabilities with one and two unstable modes that lead to friction-induced nonlinear vibrations and squeal noise. Nonlinear time analysis by temporal integration is conducted for two cases of loadings and initial conditions: a static load near the associated sliding equilibrium and a slow and a fast ramp loading. The analysis of the time responses shows that a sufficiently fast ramp loading can destabilize a stable configuration and generate nonlinear vibrations. Moreover, the fast ramp loading applied for the two unstable cases generates higher amplitudes of velocity than for the static load cases. The frequency analysis shows that the fast ramp loading generates a more complex spectrum than for the static load with the appearance of new resonance peaks. The acoustic responses for these cases are estimated by applying the multi-frequency acoustic calculation method based on the Fourier series decomposition of the velocity and the Boundary Element Method. Squeal noise emissions for the fast ramp loading present lower or higher levels than for the static load due to the different amplitudes of velocities. Moreover, the directivity is more complex for the fast ramp loading due to the appearance of new harmonic components in the velocity spectrum. Finally, the sound pressure convergence study shows that only the first harmonic components are sufficient to well describe the acoustic response.

  20. Changes of hydrodynamic parameters on mountain stream bed within the block ramp influence and possibility of their use for integrated river management

    NASA Astrophysics Data System (ADS)

    Radecki-Pawlik, Artur; Plesiński, Karol

    2016-04-01

    In modern river management practices and philosophy one can notice coming more into use ecological friendly hydraulic structures. Those, which are especially needed for river training works, as far as expectation of Water Framework Directive is concerned, are block ramps which are hydraulic structures working similar to riffles known very well from fluvial geomorphology studies and are natural features in streams and rivers. What is important well designed block ramps do not stop fish and invertebrates against migrating, provide natural and esthetical view being built within the river channel, still working as hydraulic engineering structures and might be used in river management in different river ecosystems. The main aim of the research was to describe changes of values of hydrodynamics parameters upstream and downstream of the block ramps and to find out their influence on hydrodynamics of the stream. The study was undertaken on the Porębianka River in the Gorce Mountains, Polish Carpathians. Observed hydrodynamic parameters within the reach of the block ramps depend on the location of measuring point and the influence of individual part of the structure. We concluded that: 1. Hydrodynamic parameters close to block ramps depend on the location of the measurement points in relation to particular elements of the structure; 2. The highest value of velocities don't cause the highest force values, which acting on the bed of the watercourse, because they are rather related to the water level of the channel; 3. The values of mean velocities, shear velocities and shear stresses were similar upstream and downstream the block ramps, which means that the structures stabilize the river bed. This study was performed within the scope of the Science Activity money from Ministry of High Education and Young Scientist's Activity Money of Department of Hydraulics Engineering and Geotechnique, University of Agriculture, Cracow, Poland

  1. Different thresholds of myocardial ischemia in ramp and standard bruce protocol exercise tests in patients with positive exercise stress tests and angiographically demonstrated coronary arterial narrowing.

    PubMed

    Noël, Martin; Jobin, Jean; Poirier, Paul; Dagenais, Gilles R; Bogaty, Peter

    2007-04-01

    Gradual instead of abrupt increases in workload favor a more physiologic response in terms of hemodynamic and gas exchange parameters. Therefore, we investigated whether myocardial ischemia is attenuated with a ramp compared with a standard Bruce exercise protocol in patients with coronary artery disease. We compared electrocardiographic ischemic parameters on the standard Bruce protocol treadmill and the individualized ergocycle ramp protocol in 18 men with coronary artery disease and a reproducible ischemic electrocardiographic exercise test. Oxygen consumption (VO2), ischemic threshold (rate-pressure product [RPP]=systolic blood pressure x heart rate at 1-mm ST-segment depression), and maximum ST-segment depression corresponding to the highest RPP common to the 2 tests were determined. Ischemic threshold was higher with the ramp than with the Bruce protocol (23,420+/-5,732 vs 20,018+/-3,542 beats.min/mm Hg, p=0.007). Peak RPP was higher during the ramp than during the Bruce protocol (28,492+/-6,450 vs 25,519+/-6,067 beats.min/mm Hg, respectively, p=0.02) despite similar peak VO2 (25.59+/-5.05 vs 26.39+/-4.65 mlO2.kg-1.min-1, respectively, p=0.6). Maximum ST-segment depression corresponding to the highest RPP common to the 2 tests was less with the ramp than with the Bruce protocol (-1.2+/-0.9 vs -1.9+/-0.7 mm, p=0.003). In conclusion, exercise-induced myocardial ischemia is markedly attenuated on the more gradually increasing workload of the individualized ramp ergocycle compared with the standard Bruce treadmill protocol. This effect is unexplained by energy expenditure (VO2) or myocardial work (RPP) and is consistent with a "warm-up" ischemic mechanism.

  2. Feature and duration of metre-scale sequences in a storm-dominated carbonate ramp setting (Kimmeridgian, northeastern Spain)

    NASA Astrophysics Data System (ADS)

    Colombié, C.; Bádenas, B.; Aurell, M.; Götz, A. E.; Bertholon, S.; Boussaha, M.

    2014-10-01

    Metre-scale sequences may result from the combined effects of allocyclic and autocyclic processes which are closely inter-related. The carbonate ramp that developed northwest of the Iberian Basin during the late Kimmeridgian was affected by northwestward migrating cyclones. Marl-limestone alternations that settled in mid-ramp environments contain abundant mm to cm thick coarse-grained accumulations that have been related to these events. The aim of this paper is to determine the impact of storm-induced processes on the metre-scale sequence features. Four sections (R3, R4, R6, and R7), which are 5 to 7 m in thickness, were studied bed-by-bed along a 4 km-long outcrop, which shows the transition between the shallow and the relatively deep realms of the middle ramp. Metre-scale sequences were defined and correlated along this outcrop according to the detailed microfacies analysis of host, fine-grained deposits, palynofacies and sequence-stratigraphic analyses, and carbon- and oxygen-isotope measurements. The evolution through time of sedimentary features such as the size of quartz grains and the relative abundance of grains other than quartz (i.e., muscovite, bivalve, ooid, and intraclast) does not correlate from one section to the other, suggesting that the finest as well as the coarsest sediment was reworked in these storm-dominated environments. Small- and medium-scale sequences are defined according to changes in alternation, marly interbed, and limestone bed thickness, and correlated from one section to the other. Because of the effects of storms on sediment distribution and preservation, sequence boundaries coincide with thin alternations and marly interbeds in the most proximal sections (i.e., R3, R4), while they correspond to thin alternations and limestone beds in the most distal sections (i.e., R6, R7). Field observations and palynofacies analyses confirm this sequence-stratigraphic analysis. The excursions in carbon- and oxygen-isotope values are consistent

  3. M2-F1 lifting body and Paresev 1B on ramp

    NASA Technical Reports Server (NTRS)

    1963-01-01

    In this photo of the M2-F1 lifting body and the Paresev 1B on the ramp, the viewer sees two vehicles representing different approaches to building a research craft to simulate a spacecraft able to land on the ground instead of splashing down in the ocean as the Mercury capsules did. The M2-F1 was a lifting body, a shape able to re-enter from orbit and land. The Paresev (Paraglider Research Vehicle) used a Rogallo wing that could be (but never was) used to replace a conventional parachute for landing a capsule-type spacecraft, allowing it to make a controlled landing on the ground. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop

  4. Perseus B Parked on Ramp - Close-up of Controllable-Pitch Pusher Propeller

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A large, controllable-pitch pusher propeller at the rear is a distinctive feature of the Perseus B remotely piloted research aircraft, seen here on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  5. Perseus B Parked on Ramp - Close-up of Controllable-Pitch Pusher Propeller

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A large, controllable-pitch pusher propeller at the rear is a distinctive feature of the Perseus B remotely piloted research aircraft, seen here on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  6. SR-71A on Ramp with Dual Max Afterburner Engines Firing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This night shot shows one of NASA's SR-71 Blackbird research aircraft on the ramp at the Dryden Flight Research Center, Edwards, California, with both engines running in max afterburner. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward

  7. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    DOE PAGES

    Piot, P.; Behrens, C.; Gerth, C.; ...

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less

  8. Tectonic forcing of shelf-ramp depositional architecture, Laguna Madre-Tuxpan Shelf, western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wawrzyniec, Tim F.; Ambrose, W.; Aranda-Garcia, M.; Romano, U. H.

    2004-07-01

    Analysis of seismic reflection data reveals the existence of a major listric fault that accommodates most of the Neogene extension of the Laguna Madre-Tuxpan shelf of the western Gulf of Mexico. The variation of related growth strata, the profile of the modern shelf-slope transition, the linear gradient of shelf extension (as well as basin accommodation) along the trace of the fault support a hypothesis that sediment loading along the northern part of the fault drives fault motion and influences sediment distribution along the southern end of the fault. In particular, where kinematic accommodation appears to outpace sediment supply, sedimentation is maximized along a shelf-ramp system and not the shelf-slope transition.

  9. Generation and characterization of electron bunches with ramped current profiles in a dual-frequency superconducting linear accelerator.

    PubMed

    Piot, P; Behrens, C; Gerth, C; Dohlus, M; Lemery, F; Mihalcea, D; Stoltz, P; Vogt, M

    2012-01-20

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radio frequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced ~700-MeV bunches have peak currents of the order of a kilo-Ampère. Data taken for various accelerator settings demonstrate the versatility of the method and, in particular, its ability to produce current profiles that have a quasilinear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.

  10. Robust conversion of singlet spin order in coupled spin-1/2 pairs by adiabatically ramped RF-fields.

    PubMed

    Pravdivtsev, Andrey N; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L

    2016-12-01

    We propose a robust and highly efficient NMR technique to create singlet spin order from longitudinal spin magnetization in coupled spin-½ pairs and to perform backward conversion (singlet order)→magnetization. In this method we exploit adiabatic ramping of an RF-field in order to drive transitions between the singlet state and the T± triplet states of a spin pair under study. We demonstrate that the method works perfectly for both strongly and weakly coupled spin pairs, providing a conversion efficiency between the singlet spin order and magnetization, which is equal to the theoretical maximum. We anticipate that the proposed technique is useful for generating long-lived singlet order, for preserving spin hyperpolarization and for analyzing singlet spin order in nearly equivalent spin pairs in specially designed molecules and in low-field NMR studies.

  11. Uncertainty assessment in the stratigraphic well correlation of a carbonate ramp: Method and application to the Beausset Basin, SE France

    NASA Astrophysics Data System (ADS)

    Lallier, Florent; Caumon, Guillaume; Borgomano, Jean; Viseur, Sophie; Royer, Jean-Jacques; Antoine, Christophe

    2016-09-01

    We assess stratigraphic correlation uncertainties by stochastically generating several possible correlations lines between a set of stratigraphic logs. We motivate the use of automatic correlation methods to sample this uncertainty and introduce a stochastic version of Dynamic Time Warping (DTW) that correlates two logs. This method is extended to a larger number of logs using a sequential application of DTW. When available, low-frequency stratigraphic events are correlated first, and then used to constrain the correlation of higher-order events. All DTW variants use elementary correlation costs corresponding to the likelihood of each possible horizon. The method is demonstrated on a carbonate ramp of the Cretaceous southern Provence Basin, SE France, using costs that measure the consistency between the computed platform slope angle and a theoretical depositional profile. We show that these correlation uncertainties significantly impact facies proportions in stratigraphic layers.

  12. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    SciTech Connect

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

  13. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    SciTech Connect

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.

  14. STUDY ON EFFECT OF CONSTRUCTION JOINT IN EARTHQUAKE-RESISTANT DESIGN OF LARGE RAMP TUNNEL STRUCTURE BY MASSIVE NUMERICAL COMPUTATION

    NASA Astrophysics Data System (ADS)

    Yamada, Takemine; Ichimura, Tsuyoshi; Hori, Muneo; Dobashi, Hiroshi; Ohbo, Naoto

    Large-scale and three-dimensional seismic structure response analysis is carried out in order to examine the improvement of seismic capacity of a ramp tunnel by implementing a construction joint. It is shown that the placement of the joint near geological interface, where the tunnel response is concentrated, is effective in reducing stress caused by ground motion which is given to the longitudinal or transverse direction of the input ground motion. It is also shown that water leakage may occur due to large displacement of the joint. The use of the three-dimensional seismic structure response analysis is inevitable for the sheer evaluation of the effects of the construction joint as well as for the determination of its design parameters.

  15. The influence of a voltage ramp on the measurement of I-V characteristics of a solar cell

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1980-01-01

    For efficiency and convenience the voltage applied to a Si solar cell is often fairly rapidly driven from zero to the open circuit value typically at a common rate of 1 V per millisecond. During this time the values of current are determined as a function of the instantaneous voltage thus producing an I-V characteristic. The present paper shows that the customary expressions for the current as a function of cell parameters still remain valid provided that the diffusion length in the expression for the dark current is changed from its steady state value L to the effective diffusion length L1 given by L1 = L(1 + qV/kT.tau) to the -1/2, where V is the ramp rate considered constant and tau is the lifetime of minority carriers. This result is true to a very good approximation provided that low level injection prevails.

  16. La Sierra Madre orientale (Mexique). Une rampe homoclinale mésocrétacée en bordure du golfe

    NASA Astrophysics Data System (ADS)

    Corona, Elizabeth Lara; Canerot, Joseph; Bilotte, Michel

    1998-05-01

    New data from the Sierra Madre Oriental, in thé Metztitlan, Xilitla and Sierra de El Abra areas, indicate a gradual, homoclinal ramp-type evolution from the Lower Cretaceous thin bedded outer-shelf Tamaulipas limestones to the Mid-Cretaceous massive innershelf Abra limestones. The common sedimentary model of an isolated Abra platform towering above the Tamaulipas basin through a reef barrier (Taninul fades) or through marine slope breccias (Tamabra Fm.) is rejected. The proposed interpretation can be extended to different platforms which developed in the western margin of the Gulf of Mexico and specially to the Golden Lane and Poza Rica areas where the Mid Cretaceous Abra carbonates provided important oil fields.

  17. Effect of Hall Current on Generalized Magneto-Thermoelasticity Micropolar Solid Subjected to Ramp-Type Heating

    NASA Astrophysics Data System (ADS)

    Zakaria, M.

    2014-01-01

    The problem of two-dimensional magnetic micropolar generalized thermoelastic medium in the presence of the combined effect of Hall currents subjected to ramp-type heating is investigated. The medium is permeated by a strong transverse magnetic field imposed perpendicularly on the displacement plane, the induced electric field being neglected. Ohm's law is modified by including two terms, one for the cross product of the current density and the initial magnetic field and the other for the cross product of the velocity and the initial magnetic field. The Laplace and exponential Fourier transform techniques are employed to transform the governing partial differential equations to ODE, which are solved exactly. Comparisons with the previously published work are conducted and the results are found to be in good agreement. The distributions of the temperature, displacement, stress, microrotation, and current density are obtained. The numerical values of these functions are represented graphically

  18. Development of novel SCAR markers for genetic characterization of Lonicera japonica from high GC-RAMP-PCR and DNA cloning.

    PubMed

    Cheng, J L; Li, J; Qiu, Y M; Wei, C L; Yang, L Q; Fu, J J

    2016-04-28

    Sequence-characterized amplified region (SCAR) markers were further developed from high-GC primer RAMP-PCR-amplified fragments from Lonicera japonica DNA by molecular cloning. The four DNA fragments from three high-GC primers (FY-27, FY-28, and FY-29) were successfully cloned into a pGM-T vector. The positive clones were sequenced; their names, sizes, and GenBank numbers were JYHGC1-1, 345 bp, KJ620024; YJHGC2-1, 388 bp, KJ620025; JYHGC7-2, 1036 bp, KJ620026; and JYHGC6-2, 715 bp, KJ620027, respectively. Four novel SCAR markers were developed by designing specific primers, optimizing conditions, and PCR validation. The developed SCAR markers were used for the genetic authentication of L. japonica from its substitutes. This technique provides another means of developing DNA markers for the characterization and authentication of various organisms including medicinal plants and their substitutes.

  19. Reduction of poloidal magnetic flux consumption during plasma current ramp-up in DEMO relevant plasma regimes

    NASA Astrophysics Data System (ADS)

    Wakatsuki, T.; Suzuki, T.; Hayashi, N.; Shiraishi, J.; Sakamoto, Y.; Ide, S.; Kubo, H.; Kamada, Y.

    2017-01-01

    The method for reducing a poloidal magnetic flux consumption of external coils is investigated to reduce the size of the central solenoid (CS) in the DEMO reactor. The reduction of the poloidal magnetic flux consumption during a plasma current ramp-up phase by electron cyclotron (EC) heating is investigated using an integrated modeling code suite, TOPICS. A strongly reversed shear q profile tends to be produced if intense off-axis EC heating is applied to obtain a large reduction of the flux consumption. In order to overcome this tendency, we find a method to obtain the optimum temperature profile which minimizes the poloidal flux consumption for a wide range of the q profile. We try to reproduce the optimum temperature profile for a weakly reversed shear q profile using six EC rays of 20 MW. As a result, the resistive flux consumption during the current ramp-up can be reduced by 63% from the estimation using the Ejima constant of 0.45 and the total flux consumption can be reduced by 20% from the conventional estimation. In addition, we find that the resistive flux consumption is closely related to the volume averaged electron temperature and not to the profile shape. Using this relation, the required heating power is estimated to be 31 MW based on a well established global confinement scaling, ITER L-89P. As a result, it is clarified that the poloidal magnetic flux consumption can be reduced by 20% using 20-31 MW of EC heating for a weakly reversed shear q profile. This reduction of the flux consumption accounts for 10% reduction of the CS radius.

  20. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading

    DOE PAGES

    Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell

    2016-03-09

    Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPSmore » experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material