Science.gov

Sample records for actomyosin atpase activity

  1. ATP, uncomplexed by divalent cations, and the LC2 light chain are interdependent modifiers of the skeletal actomyosin MgATPase activity.

    PubMed Central

    Pemrick, S M; Martinez, P A

    1991-01-01

    In the absence of troponin and tropomyosin, skeletal actomyosin MgATPase activity can be altered by 2-3-fold by divalent cations. The 'sign' of this effect (i.e. inhibition or activation) varies with ionic strength. To investigate the mechanism, P(i) liberation was analysed at both low and high ionic strength with three concentrations of MgATP and over a wide range of Mg2+ concentrations. This procedure separated the effects of two dependent variables, Mg2+ and ATP4-/3- (ATPfree), to provide the following observations. (1) ATPfree, not Mg2+ (nor Ca2+), was the modifier. (2) ATPfree was an activator at low ionic strength and an inhibitor at high ionic strength, with half-maximal activation/inhibition occurring between 0.75 and 0.8 mM-ATPfree. (3) The rate constants controlling Vmax. with respect to actin were increased up to 3-fold by ATPfree at low ionic strength, and decreased up to 3-fold by ATPfree at high ionic strength. (4) The effect of ATPfree required near-native levels of the LC2 light chain bound to myosin (i.e. 2 mol of LC2/mol of myosin). (5) Sensitivity of P(i) liberation to a 50% decrease in the LC2 content of myosin required high ATPfree concentrations. It is concluded that LC2 and ATPfree are interdependent, non-additive, modifiers of MgATPase. These results are consistent with thin filament regulation of skeletal muscle contraction, and begin to explain why both positive and negative effects on MgATPase have been attributed to LC2. PMID:1835841

  2. Localization and Characterization of a 7.3-kDa Region of Caldesmon Which Reversibly Inhibits Actomyosin ATPase Activity*

    PubMed Central

    Chalovich, Joseph M.; Bryan, Joseph; Benson, Caryl E.; Velaz, Laly

    2005-01-01

    Cleavage of caldesmon with chymotrypsin yields a series of fragments which bind both calmodulin and actin and inhibit the binding of myosin subfragments to actin and the subsequent stimulation of ATPase activity. Several of these fragments have been purified by cation exchange chromatography and their amino-terminal sequences determined. The smallest fragment has a molecular mass of about 7.3 kDa and extends from Leu597 to Phe665. This polypeptide inhibits the actin-activated ATPase of myosin S-1; this inhibition is augmented by smooth muscle tropomyosin and relieved by Ca2+-calmodulin. The binding of the 7.3-kDa fragment to actin is competitive with the binding of S - 1 to actin. Thus, this polypeptide has several of the important features characteristic of intact caldesmon. However, although an intact caldesmon molecule covers between six and nine actin monomers, the 7.3-kDa fragment binds to actin in a 1:1 complex. Comparison of this fragment with others suggests that a small region of caldesmon is responsible for at least part of the interaction with both calmodulin and actin. PMID:1386604

  3. Kinetics of the actomyosin ATPase in muscle fibers.

    PubMed

    Goldman, Y E

    1987-01-01

    Many characteristics expected from the cyclic ATPase mechanism of Scheme 1 are apparent in reactions measured directly in muscle fibers. ATP detaches rigor cross-bridges rapidly. Reattachment and force generation are also rapid compared to the overall cycling rate, but reversibility of many of the reactions allows significant population of detached states during contraction. ATP hydrolysis shows rapid, "burst" kinetics and is also readily reversible. Pi is released before ADP in the cycle. Pi release is slow in relaxed fibers but is promoted by the interaction between myosin and actin during contraction. Actomyosin kinetics differ in fibers from the ATPase reaction in solution in that Pi binds more readily to AM' X ADP in fibers, and complex, Ca2+-dependent kinetics are evident for ADP release. These properties suggest that the mechanical driving stroke of the cross-bridge cycle and events during physiological relaxation are closely linked to the product release steps. All of the reactions, except step 7a, in the main pathway for ATP hydrolysis, indicated in Scheme 1 by heavy arrows, are fast compared to the overall cycling rate in isometric contractions. Based on this finding, we expect step 7a (or isomerizations of the flanking states) to be relatively slow (approximately 3 s-1). But neither the rate-limiting reaction, nor the expected major dependence on mechanical load or shortening that would explain the Fenn effect, have actually been detected. Use of the pulse photolysis and oxygen exchange methods with structural and spectroscopic techniques and with perturbations of mechanical strain promise to reveal these aspects of the mechanism. PMID:2952053

  4. Millisecond time resolution electron cryo-microscopy of the M-ATP transient kinetic state of the acto-myosin ATPase.

    PubMed Central

    Walker, M; Trinick, J; White, H

    1995-01-01

    The structure of the AM-ATP transient kinetic state of the acto-myosin ATPase cycle has been examined by electron microscopy using frozen-hydrated specimens prepared in low ionic strength. By spraying grids layered with the acto-S1 complex with ATP immediately before freezing, it was possible to examine the structure of the ternary complex with a time resolution of 10 ms. Disordered binding of the S1 was observed, suggesting more than one attachment geometry. This could be due to the presence of more than one biochemical intermediate, or to a single intermediate binding in more than one conformation. Images FIGURE 2 PMID:7787114

  5. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer.

    PubMed

    Köster, Darius Vasco; Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R Dyche; Rao, Madan; Mayor, Satyajit

    2016-03-22

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  6. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-02-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.

  7. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    PubMed Central

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-01-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics. PMID:26877263

  8. Macromolecular Crowding Modulates Actomyosin Kinetics.

    PubMed

    Ge, Jinghua; Bouriyaphone, Sherry D; Serebrennikova, Tamara A; Astashkin, Andrei V; Nesmelov, Yuri E

    2016-07-12

    Actomyosin kinetics is usually studied in dilute solutions, which do not reflect conditions in the cytoplasm. In cells, myosin and actin work in a dense macromolecular environment. High concentrations of macromolecules dramatically reduce the amount of free space available for all solutes, which results in an effective increase of the solutes' chemical potential and protein stabilization. Moreover, in a crowded solution, the chemical potential depends on the size of the solute, with larger molecules experiencing a larger excluded volume than smaller ones. Therefore, since myosin interacts with two ligands of different sizes (actin and ATP), macromolecular crowding can modulate the kinetics of individual steps of the actomyosin ATPase cycle. To emulate the effect of crowding in cells, we studied actomyosin cycle reactions in the presence of a high-molecular-weight polymer, Ficoll70. We observed an increase in the maximum velocity of the actomyosin ATPase cycle, and our transient-kinetics experiments showed that virtually all individual steps of the actomyosin cycle were affected by the addition of Ficoll70. The observed effects of macromolecular crowding on the myosin-ligand interaction cannot be explained by the increase of a solute's chemical potential. A time-resolved Förster resonance energy transfer experiment confirmed that the myosin head assumes a more compact conformation in the presence of Ficoll70 than in a dilute solution. We conclude that the crowding-induced myosin conformational change plays a major role in the changed kinetics of actomyosin ATPase. PMID:27410745

  9. [ATPase and phosphatase activity of drone brood].

    PubMed

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae. PMID:16350755

  10. Effect of alpha-actinin on actin structure. Actin ATPase activity.

    PubMed

    Singh, I; Goll, D E; Robson, R M

    1981-08-28

    Alpha-Actinin increases the ATPase activity of actin by up to 84%, depending un pH, divalent cations present and the added Mg2+: ATP ratio. Dithiothreitol decreases actin ATPase activity approx. 20% but does not reduce the ability of alpha-actinin to increase actin ATP activity. Increasing amounts of added alpha-actinin up to 1 mos alpha-actinin to 49 mol actin cause in increasing increment in actin ATPase activity, but adding alpha-actinin beyond 1 mol alpha-actinin to 49 mol actin elicits only small additional increments in activity. Actin ATPase activity ranges from approx 100 nmol Pi/mg actin per h (4.3 mol Pi/mol actin per h) at high levels (10 mM) of ATP in the presence of lower amounts (1 mM) of added mg2+ to approx. 12.5 nmol Pi/mg actin per h (0.52 mol Pi/mol actin per h) at high pH (8.5) or at low levels (0.5-1.0 mM) of ATP in the presence of higher amounts (10 mM) of added Mg2+ ATp uncomplexed with Mg2+ inhibits the ability of alpha-actinin to increase F-actin ATPase activity. Activities with different divalent cations showed that the actin ATPase in these studies, which was 1/100 as great as Mg2+-modified actomyosin ATPase activity, was not due to trace amounts of myosin contaminating the actin preparations. The results are consistent with the concept that alpha-actinin can alter the structure of actin monomers. PMID:6456018

  11. Active mechanical coupling between the nucleus, cytoskeleton and the extracellular matrix, and the implications for perinuclear actomyosin organization.

    PubMed

    Zemel, Assaf

    2015-03-28

    Experimental and theoretical studies have demonstrated that the polarization of actomyosin forces in the cytoskeleton of adherent cells is governed by local elastic stresses. Based on this phenomenon, and the established observation that the nucleus is mechanically connected to the extracellular matrix (ECM) via the cytoskeleton, we theoretically analyze here the active mechanical coupling between the nucleus, cytoskeleton and the ECM. The cell is modeled as an active spherical inclusion, containing a round nucleus at its center, and embedded in a 3D elastic matrix. We investigate three sources of cellular stress: spreading-induced stress, actomyosin contractility and chromatin entropic forces. Formulating the coupling of actomyosin contractility to the local stress we predict the consequences that the nucleus, cytoskeleton and ECM mechanical properties may have on the overall force-balance in the cell and the perinuclear acto-myosin polarization. We demonstrate that the presence of the nucleus induces symmetry breaking of the elastic stress that, we predict, elastically tends to orient actomyosin alignment tangentially around the nucleus; the softer the nucleus or the matrix, the stronger is the preference for tangential alignment. Spreading induced stresses may induce radial actomyosin alignment near stiff nuclei. In addition, we show that in regions of high actomyosin density myosin motors have an elastic tendency to orient tangentially as often occurs near the cell periphery. These conclusions highlight the role of the nucleus in the regulation of cytoskeleton organization and may provide new insight into the mechanics of stem cell differentiation involving few fold increase in nucleus stiffness. PMID:25652010

  12. Time-resolved microrheology of actively remodeling actomyosin networks

    NASA Astrophysics Data System (ADS)

    Silva, Marina Soares e.; Stuhrmann, Björn; Betz, Timo; Koenderink, Gijsje H.

    2014-07-01

    Living cells constitute an extraordinary state of matter since they are inherently out of thermal equilibrium due to internal metabolic processes. Indeed, measurements of particle motion in the cytoplasm of animal cells have revealed clear signatures of nonthermal fluctuations superposed on passive thermal motion. However, it has been difficult to pinpoint the exact molecular origin of this activity. Here, we employ time-resolved microrheology based on particle tracking to measure nonequilibrium fluctuations produced by myosin motor proteins in a minimal model system composed of purified actin filaments and myosin motors. We show that the motors generate spatially heterogeneous contractile fluctuations, which become less frequent with time as a consequence of motor-driven network remodeling. We analyze the particle tracking data on different length scales, combining particle image velocimetry, an ensemble analysis of the particle trajectories, and finally a kymograph analysis of individual particle trajectories to quantify the length and time scales associated with active particle displacements. All analyses show clear signatures of nonequilibrium activity: the particles exhibit random motion with an enhanced amplitude compared to passive samples, and they exhibit sporadic contractile fluctuations with ballistic motion over large (up to 30 μm) distances. This nonequilibrium activity diminishes with sample age, even though the adenosine triphosphate level is held constant. We propose that network coarsening concentrates motors in large clusters and depletes them from the network, thus reducing the occurrence of contractile fluctuations. Our data provide valuable insight into the physical processes underlying stress generation within motor-driven actin networks and the analysis framework may prove useful for future microrheology studies in cells and model organisms.

  13. Postmortem changes in actomyosin dissociation, myofibril fragmentation and endogenous enzyme activities of grass carp (Ctenopharyngodon idellus) muscle.

    PubMed

    Wang, Daoying; Zhang, Muhan; Deng, Shaoying; Xu, Weimin; Liu, Yuan; Geng, Zhiming; Sun, Chong; Bian, Huan; Liu, Fang

    2016-04-15

    The changes of actomyosin, proteolytic activities and myofibril fragmentation during the postmortem aging of grass carp were studied. The study revealed dramatically increased actomyosin dissociation within 6 h of storage postmortem in grass carp, and it was associated with the drop of pH from 6.9 to 6.7, while liberated actin remained almost unchanged after 6 h postmortem. The myofibril fragmentation also increased significantly with the storage time in 6 h, and a highly positive correlation (P<0.01) existed between MFI and cathepsin B, D, H activities. The study indicated both actomyosin dissociation and cathepsin B, D, H played a role in postmortem tenderization and textural changes in grass carp. PMID:26616958

  14. Direct inhibition of the actomyosin motility by local anesthetics in vitro.

    PubMed Central

    Tsuda, Y; Mashimo, T; Yoshiya, I; Kaseda, K; Harada, Y; Yanagida, T

    1996-01-01

    Using a recently developed in vitro motility assay, we have demonstrated that local anesthetics directly inhibit myosin-based movement of single actin filaments in a reversible dose-dependent manner. This is the first reported account of the actions of local anesthetics on purified proteins at the molecular level. In this study, two tertiary amine local anesthetics, lidocaine and tetracaine, were used. The inhibitory action of the local anesthetics on actomyosin sliding movement was pH dependent; the anesthetics were more potent at higher pH values, and this reaction was accompanied by an increased proportion of the uncharged form of the anesthetics. QX-314, a permanently charged derivative of lidocaine, had no effect on actomyosin sliding movement. These results indicate that the uncharged form of local anesthetics is predominantly responsible for the inhibition of actomyosin sliding movement. The local anesthetics inhibited sliding movement but hardly interfered with the binding of actin filaments to myosin on the surface or with actomyosin ATPase activity at low ionic strength. To characterize the actomyosin interaction in the presence of anesthetics, we measured the binding and breaking force of the actomyosin complex. The binding of actin filaments to myosin on the surface was not affected by lidocaine at low ionic strength. The breaking force, measured using optical tweezers, was approximately 1.5 pN per micron of an actin filament, which was much smaller than in rigor and isometric force. The binding and breaking force greatly decreased with increasing ionic strength, indicating that the remaining interaction is ionic in nature. The result suggests that the binding and ATPase of actomyosin are governed predominantly by ionic interaction, which is hardly affected by anesthetics; whereas the force generation requires hydrophobic interaction, which plays a major part of the strong binding and is blocked by anesthetics, in addition to the ionic interaction

  15. Influence of decavanadate on rat synaptic plasma membrane ATPases activity.

    PubMed

    Krstić, Danijela; Colović, Mirjana; Bosnjaković-Pavlović, Nada; Spasojević-De Bire, Anne; Vasić, Vesna

    2009-09-01

    The in vitro influence of decameric vanadate species on Na+/K+-ATPase, plasma membrane Ca2+-ATPase (PMCA)-calcium pump and ecto-ATPase activity, using rat synaptic plasma membrane (SPM) as model system was investigated, whereas the commercial porcine cerebral cortex Na+/K+-ATPase served as a reference. The thermal behaviour of the synthesized decavanadate (V10) has been studied by differential scanning calorimetry and thermogravimetric analysis, while the type of polyvanadate anion was identified using the IR spectroscopy. The concentration-dependent responses to V10 of all enzymes were obtained. The half-maximum inhibitory concentration (IC50) of the enzyme activity was achieved at (4.74 +/- 1.15) x 10(-7) mol/l for SPM Na+/K+-ATPase, (1.30 +/- 0.10) x 10(-6) mol/l for commercial Na+/K+-ATPase and (3.13 +/- 1.70) x 10(-8) mol/l for Ca2+-ATPase, while ecto-ATPase is significantly less sensitive toward V10 (IC50 = (1.05 +/- 0.10) x 10(-4) mol/l) than investigated P-type ATPases. Kinetic analysis showed that V10 inhibited Na+/K+-ATPase by reducing the maximum enzymatic velocity and apparent affinity for ATP (increasing K(m) value), implying a mixed mode of interaction between V10 and P-type ATPases. PMID:20037196

  16. Aurora kinase A activates the vacuolar H+-ATPase (V-ATPase) in kidney carcinoma cells.

    PubMed

    Al-Bataineh, Mohammad M; Alzamora, Rodrigo; Ohmi, Kazuhiro; Ho, Pei-Yin; Marciszyn, Allison L; Gong, Fan; Li, Hui; Hallows, Kenneth R; Pastor-Soler, Núria M

    2016-06-01

    Extracellular proton-secreting transport systems that contribute to extracellular pH include the vacuolar H(+)-ATPase (V-ATPase). This pump, which mediates ATP-driven transport of H(+) across membranes, is involved in metastasis. We previously showed (Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM. J Biol Chem 285: 24676-24685, 2010) that V-ATPase A subunit phosphorylation at Ser-175 is important for PKA-induced V-ATPase activity at the membrane of kidney intercalated cells. However, Ser-175 is also located within a larger phosphorylation consensus sequence for Aurora kinases, which are known to phosphorylate proteins that contribute to the pathogenesis of metastatic carcinomas. We thus hypothesized that Aurora kinase A (AURKA), overexpressed in aggressive carcinomas, regulates the V-ATPase in human kidney carcinoma cells (Caki-2) via Ser-175 phosphorylation. We found that AURKA is abnormally expressed in Caki-2 cells, where it binds the V-ATPase A subunit in an AURKA phosphorylation-dependent manner. Treatment with the AURKA activator anacardic acid increased V-ATPase expression and activity at the plasma membrane of Caki-2 cells. In addition, AURKA phosphorylates the V-ATPase A subunit at Ser-175 in vitro and in Caki-2 cells. Immunolabeling revealed that anacardic acid induced marked membrane accumulation of the V-ATPase A subunit in transfected Caki-2 cells. However, anacardic acid failed to induce membrane accumulation of a phosphorylation-deficient Ser-175-to-Ala (S175A) A subunit mutant. Finally, S175A-expressing cells had decreased migration in a wound-healing assay compared with cells expressing wild-type or a phospho-mimetic Ser-175-to-Asp (S175D) mutant A subunit. We conclude that AURKA activates the V-ATPase in kidney carcinoma cells via phosphorylation of Ser-175 in the V-ATPase A subunit. This regulation contributes to kidney carcinoma V-ATPase-mediated extracellular

  17. Amyloid β peptide stimulates platelet activation through RhoA-dependent modulation of actomyosin organization.

    PubMed

    Sonkar, Vijay K; Kulkarni, Paresh P; Dash, Debabrata

    2014-04-01

    Platelets contribute to 95% of circulating amyloid precursor protein in the body and have widely been employed as a "peripheral" model of neurons in Alzheimer's disease. We sought to analyze the effects of amyloid β (Aβ) on platelets and to understand the underlying molecular mechanism. The Aβ active fragment containing amino acid sequence 25-35 (Aβ(25-35); 10-20 μM) was found to induce strong aggregation of human platelets, granule release, and integrin activation, similar to that elicited by physiological agonists. Platelets exposed to Aβ(25-35) retracted fibrin clot and displayed augmented adhesion to collagen under arterial shear, reflective of a switch to prothrombotic phenotype. Exposure of platelets to Aβ peptide (20 μM) resulted in a 4.2- and 2.3-fold increase in phosphorylation of myosin light chain (MLC) and MLC phosphatase, respectively, which was reversed by Y27632, an inhibitor of Rho-associated coiled-coil protein kinase (ROCK). Aβ(25-35)-induced platelet aggregation and clot retraction were also significantly attenuated by Y27632. Consistent with these findings, Aβ(25-35) elicited a significant rise in the level of RhoA-GTP in platelets. Platelets pretreated with reverse-sequenced Aβ fragment (Aβ(35-25)) and untreated resting platelets served as controls. We conclude that Aβ induces cellular activation through RhoA-dependent modulation of actomyosin, and hence, RhoA could be a potential therapeutic target in Alzheimer's disease and cerebral amyloid angiopathy. PMID:24421399

  18. Effect of low frequency ultrasonication on biochemical and structural properties of chicken actomyosin.

    PubMed

    Saleem, Rashid; Ahmad, Riaz

    2016-08-15

    Ultrasonication has been introduced as a promising technique to modify the properties of meat and meat products. This study was carried out to investigate the structural and biochemical properties of actomyosin under the influence of ultrasonication at low frequency (20 kHz). CD spectroscopy and second-derivative UV spectra indicated that ultrasonic exposure of 30 min causes significant loss of α-helical fraction and marked change in tertiary structure of actomyosin. R-SH content showed maximum amount after 30 min of ultrasonic treatment. Additionally, Ca(2+)-, Mg(2+)- and K(+)(EDTA)-ATPase activities were markedly decreased. No fragmentation was observed in SDS-PAGE while transmission electron micrographs showed complete dispersion of aggregates and arrowhead structure of actomyosin. Given that structural properties are closely associated with functional properties, ultrasonication significantly improves the gelling properties of actomyosin. Scanning electron micrographs showed marked improvement in regular three-dimensional networks of actomyosin gels. Concurrently, significant increase in water-holding capacity was also observed. PMID:27006212

  19. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  20. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    PubMed

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  1. Hybrid and non-hybrid actomyosins reconstituted with actin, myosin and tropomyosin from skeletal and catch muscles.

    PubMed

    Shelud'ko, Nikolay S; Vyatchin, Ilya G; Lazarev, Stanislav S; Shevchenko, Ulyana V

    2015-08-21

    In this study, we investigated hybrid and non-hybrid actomyosin models including key contractile proteins: actin, myosin, and tropomyosin. These proteins were isolated from the rabbit skeletal muscle and the catch muscle of the mussel Crenomytilus grayanus. Our results confirmed literature data on an unusual ability of bivalve's tropomyosin to inhibit Mg-ATPase activity of skeletal muscle actomyosin. We have shown that the degree of inhibition depends on the environmental conditions and may vary within a wide range. The inhibitory effect of mussel tropomyosin was not detected in non-hybrid model (mussel myosin + mussel actin + mussel tropomyosin). This effect was revealed only in hybrid models containing mussel tropomyosin + rabbit (or mussel) actin + rabbit myosin. We assume that mussel and rabbit myosins have mismatched binding sites for actin. In addition, mussel tropomyosin interacting with actin is able to close the binding sites of rabbit myosin with actin, which leads to inhibition of Mg-ATPase activity. PMID:26166820

  2. Measuring In Vitro ATPase Activity for Enzymatic Characterization.

    PubMed

    Rule, Chelsea S; Patrick, Marcella; Sandkvist, Maria

    2016-01-01

    Adenosine triphosphate-hydrolyzing enzymes, or ATPases, play a critical role in a diverse array of cellular functions. These dynamic proteins can generate energy for mechanical work, such as protein trafficking and degradation, solute transport, and cellular movements. The protocol described here is a basic assay for measuring the in vitro activity of purified ATPases for functional characterization. Proteins hydrolyze ATP in a reaction that results in inorganic phosphate release, and the amount of phosphate liberated is then quantitated using a colorimetric assay. This highly adaptable protocol can be adjusted to measure ATPase activity in kinetic or endpoint assays. A representative protocol is provided here based on the activity and requirements of EpsE, the AAA+ ATPase involved in Type II Secretion in the bacterium Vibrio cholerae. The amount of purified protein needed to measure activity, length of the assay and the timing and number of sampling intervals, buffer and salt composition, temperature, co-factors, stimulants (if any), etc. may vary from those described here, and thus some optimization may be necessary. This protocol provides a basic framework for characterizing ATPases and can be performed quickly and easily adjusted as necessary. PMID:27584824

  3. A Method to Measure Hydrolytic Activity of Adenosinetriphosphatases (ATPases)

    PubMed Central

    Bartolommei, Gianluca; Moncelli, Maria Rosa; Tadini-Buoninsegni, Francesco

    2013-01-01

    The detection of small amounts (nanomoles) of inorganic phosphate has a great interest in biochemistry. In particular, phosphate detection is useful to evaluate the rate of hydrolysis of phosphatases, that are enzymes able to remove phosphate from their substrate by hydrolytic cleavage. The hydrolysis rate is correlated to enzyme activity, an extremely important functional parameter. Among phosphatases there are the cation transporting adenosinetriphosphatases (ATPases), that produce inorganic phosphate by cleavage of the γ-phosphate of ATP. These membrane transporters have many fundamental physiological roles and are emerging as potential drug targets. ATPase hydrolytic activity is measured to test enzyme functionality, but it also provides useful information on possible inhibitory effects of molecules that interfere with the hydrolytic process. We have optimized a molybdenum-based protocol that makes use of potassium antimony (III) oxide tartrate (originally employed for phosphate detection in environmental analysis) to allow its use with phosphatase enzymes. In particular, the method was successfully applied to native and recombinant ATPases to demonstrate its reliability, validity, sensitivity and versatility. Our method introduces significant improvements to well-established experimental assays, which are currently employed for ATPase activity measurements. Therefore, it may be valuable in biochemical and biomedical investigations of ATPase enzymes, in combination with more specific tests, as well as in high throughput drug screening. PMID:23472215

  4. An acto-myosin II constricting ring initiates the fission of activity-dependent bulk endosomes in neurosecretory cells.

    PubMed

    Gormal, Rachel S; Nguyen, Tam H; Martin, Sally; Papadopulos, Andreas; Meunier, Frederic A

    2015-01-28

    Activity-dependent bulk endocytosis allows neurons to internalize large portions of the plasma membrane in response to stimulation. However, whether this critical type of compensatory endocytosis is unique to neurons or also occurs in other excitable cells is currently unknown. Here we used fluorescent 70 kDa dextran to demonstrate that secretagogue-induced bulk endocytosis also occurs in bovine chromaffin cells. The relatively large size of the bulk endosomes found in this model allowed us to investigate how the neck of the budding endosomes constricts to allow efficient recruitment of the fission machinery. Using time-lapse imaging of Lifeact-GFP-transfected chromaffin cells in combination with fluorescent 70 kDa dextran, we detected acto-myosin II rings surrounding dextran-positive budding endosomes. Importantly, these rings were transient and contracted before disappearing, suggesting that they might be involved in restricting the size of the budding endosome neck. Based on the complete recovery of dextran fluorescence after photobleaching, we demonstrated that the actin ring-associated budding endosomes were still connected with the extracellular fluid. In contrast, no such recovery was observed following the constriction and disappearance of the actin rings, suggesting that these structures were pinched-off endosomes. Finally, we showed that the rings were initiated by a circular array of phosphatidylinositol(4,5)bisphosphate microdomains, and that their constriction was sensitive to both myosin II and dynamin inhibition. The acto-myosin II rings therefore play a key role in constricting the neck of budding bulk endosomes before dynamin-dependent fission from the plasma membrane of neurosecretory cells. PMID:25632116

  5. A structural pathway for activation of the kinesin motor ATPase

    PubMed Central

    Yun, Mikyung; Zhang, Xiaohua; Park, Cheon-Gil; Park, Hee-Won; Endow, Sharyn A.

    2001-01-01

    Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPase. The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules. PMID:11387196

  6. Influence of activating hormones on human platelet membrane Ca/sup 2 +/-ATPase activity

    SciTech Connect

    Resink, T.J.; Dimitrov, D.; Stucki, S.; Buehler, F.R.

    1986-07-16

    Intact platelets were pretreated with hormones and thereafter membranes were prepared and Ca/sup 2 +/-ATPase activity determined. Thrombin decreased the V/sub max/ of Ca/sup 2 +/-ATPase after pretreatment of intact platelets. Platelet activating factor, vasopressin and ADP also decreased Ca/sup 2 +/-ATPase activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) or A23187 or ionomycin alone had no effect, while the simultaneous pretreatment with TPA and Ca/sup 2 +/-ionophore decreased Ca/sup 2 +/-ATPase activity. cAMP elevating agents prostaglandin E/sub 1/ (PGE/sub 1/) and forskolin had no influence per se on Ca/sup 2 +/-ATPase, but antagonized the inhibitory effect of thrombin. The data suggest a close connection between phosphoinositide metabolism and the Ca/sup 2 +/-ATPase system.

  7. Bovine brain kinesin is a microtubule-activated ATPase.

    PubMed Central

    Kuznetsov, S A; Gelfand, V I

    1986-01-01

    Recently, a protein called kinesin was described, which is capable of inducing movement of inert particles along microtubules. To purify this protein from bovine brain, we used the ability of kinesin to bind to taxol-stabilized microtubules in the presence of inorganic tripolyphosphate. The brain kinesin preparation contained one major polypeptide of 135 kDa and four minor polypeptides of 45-70 kDa. The minor polypeptides were eluted from a gel-permeation chromatography column at the same position as the major component. All the polypeptides of the preparation were capable of binding to the microtubules under identical conditions. The kinesin molecule is most probably a complex of these polypeptides. Brain kinesin had a very low ATPase activity (0.06-0.08 mumol X min-1 X mg-1 in 3 mM Mg2+ at pH 6.7). ATPase activity was strongly stimulated by microtubules (Vmax = 4.6 mumol per min per mg of kinesin). Microtubule-activated kinesin ATPase had a Km for ATP between 10 and 12 X 10(-6) M and a Kapp for microtubules (i.e., polymerized tubulin concentration required for a half-maximal activation) of 12-14 X 10(-6) M. Kinesin had a significant ATPase activity even without microtubules if 2 mM Ca2+ was substituted for Mg2+ (Vmax = 1.6 mumol X min-1 X mg-1; Km = 800 X 10(-6) M). Kinesin is therefore a mechanochemical ATPase that is activated by microtubules. Images PMID:2946042

  8. Cadmium inhibits motility, activities of plasma membrane Ca(2+)-ATPase and axonemal dynein-ATPase of human spermatozoa.

    PubMed

    Da Costa, R; Botana, D; Piñero, S; Proverbio, F; Marín, R

    2016-05-01

    Cd(2+) has been associated with decreased sperm motility in individuals exposed to this element, such as smokers. Among other factors, this lowered motility could be the result of inhibition exerted by Cd(2+) on the activity of the sperm ATPases associated with sperm motility. In this study, we evaluated the plasma membrane Ca(2+)-ATPase and the axonemal dynein-ATPase activities as well as sperm motility, in the presence of different free Cd(2+) concentrations in the assay media. It was found that spermatozoa incubated for 5 h in a medium containing 25 nm free Cd(2+) showed a significant inhibition of progressive motility, reaching values even lower at higher Cd(2+) concentrations. In addition, it was found that the activity of the plasma membrane Ca(2+)-ATPase reached maximal inhibition at 50 nm free Cd(2+), with a K50% inhibition of 18.3 nm free Cd(2+). The dynein-ATPase activity was maximally inhibited by 25 nm free Cd(2+) in the assay medium, with a K50% inhibition of 11.3 nm Cd(2+). Our results indicate that the decreased activity of the sperm ATPases might have a critical importance in the biochemical mechanisms underlying the decreased sperm motility of individuals exposed to Cd(2+). PMID:26259968

  9. Activity-driven relaxation of the cortical actomyosin II network synchronizes Munc18-1-dependent neurosecretory vesicle docking.

    PubMed

    Papadopulos, Andreas; Gomez, Guillermo A; Martin, Sally; Jackson, Jade; Gormal, Rachel S; Keating, Damien J; Yap, Alpha S; Meunier, Frederic A

    2015-01-01

    In neurosecretory cells, secretory vesicles (SVs) undergo Ca(2+)-dependent fusion with the plasma membrane to release neurotransmitters. How SVs cross the dense mesh of the cortical actin network to reach the plasma membrane remains unclear. Here we reveal that, in bovine chromaffin cells, SVs embedded in the cortical actin network undergo a highly synchronized transition towards the plasma membrane and Munc18-1-dependent docking in response to secretagogues. This movement coincides with a translocation of the cortical actin network in the same direction. Both effects are abolished by the knockdown or the pharmacological inhibition of myosin II, suggesting changes in actomyosin-generated forces across the cell cortex. Indeed, we report a reduction in cortical actin network tension elicited on secretagogue stimulation that is sensitive to myosin II inhibition. We reveal that the cortical actin network acts as a 'casting net' that undergoes activity-dependent relaxation, thereby driving tethered SVs towards the plasma membrane where they undergo Munc18-1-dependent docking. PMID:25708831

  10. ALKYTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM NEONATAL AND ADULT RATS

    EPA Science Inventory

    The effects of triethyltin (TET) on ATPase activities in brain and liver homogenates and subcellular fractions were compared in neonatal and adult rats. n 5 day old rats, relative sensitivities to TET inhibition were: brain and liver mitochondrial ATPase >> rain Na+/K+ ATPase > b...

  11. Brain Na(+), K(+)-ATPase Activity In Aging and Disease.

    PubMed

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-06-01

    Na(+)/K(+) pump or sodium- and potassium-activated adenosine 5'-triphosphatase (Na(+), K(+)-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K(+) with the exit of Na(+) from cells, being the responsible for Na(+)/K(+) equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na(+), K(+)-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na(+), K(+)-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca(2+) mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na(+), K(+)-ATPase involvement

  12. Brain Na+, K+-ATPase Activity In Aging and Disease

    PubMed Central

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways

  13. An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters.

    PubMed Central

    Conaway, R C; Conaway, J W

    1989-01-01

    A transcription factor required for synthesis of accurately initiated run-off transcripts by RNA polymerase II has been purified and shown to have an associated DNA-dependent ATPase (dATPase) activity that is strongly stimulated by the TATA region of promoters. This transcription factor, designated delta, was purified more than 3000-fold from extracts of crude rat liver nuclei and has a native molecular mass of approximately 230 kDa. DNA-dependent ATPase (dATPase) and transcription activities copurify when delta is analyzed by hydrophobic interaction and ion-exchange HPLC, arguing that transcription factor delta possesses an ATPase (dATPase) activity. ATPase (dATPase) is specific for adenine nucleotides; ATP and dATP, but not CTP, UTP, or GTP, are hydrolyzed. ATPase (dATPase) is stimulated by both double-stranded and single-stranded DNAs, including pUC18, ssM13, and poly(dT); however, DNA fragments containing the TATA region of either the adenovirus 2 major late or mouse interleukin 3 promoters stimulate ATPase as much as 10-fold more effectively than DNA fragments containing nonpromoter sequences. These data suggest the intriguing possibility that delta plays a critical role in the ATP (dATP)-dependent activation of run-off transcription through a direct interaction with the TATA region of promoters. Images PMID:2552440

  14. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry.

    PubMed

    Cao, Changyu; Zhao, Xia; Fan, Ruifeng; Zhao, Jinxin; Luan, Yilin; Zhang, Ziwei; Xu, Shiwen

    2016-07-01

    Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na(+)K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and Ca(++)Mg(++)-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na(+)K(+)-ATPase activity, Ca(++)-ATPase activity, and Ca(++)Mg(++)-ATPase activity. There were strong correlations between antioxidant indexes and Ca(++)-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency. PMID:26637493

  15. Regulation of proximal tubule vacuolar H+-ATPase by PKA and AMP-activated protein kinase

    PubMed Central

    Al-bataineh, Mohammad M.; Gong, Fan; Marciszyn, Allison L.; Myerburg, Michael M.

    2014-01-01

    The vacuolar H+-ATPase (V-ATPase) mediates ATP-driven H+ transport across membranes. This pump is present at the apical membrane of kidney proximal tubule cells and intercalated cells. Defects in the V-ATPase and in proximal tubule function can cause renal tubular acidosis. We examined the role of protein kinase A (PKA) and AMP-activated protein kinase (AMPK) in the regulation of the V-ATPase in the proximal tubule as these two kinases coregulate the V-ATPase in the collecting duct. As the proximal tubule V-ATPases have different subunit compositions from other nephron segments, we postulated that V-ATPase regulation in the proximal tubule could differ from other kidney tubule segments. Immunofluorescence labeling of rat ex vivo kidney slices revealed that the V-ATPase was present in the proximal tubule both at the apical pole, colocalizing with the brush-border marker wheat germ agglutinin, and in the cytosol when slices were incubated in buffer alone. When slices were incubated with a cAMP analog and a phosphodiesterase inhibitor, the V-ATPase accumulated at the apical pole of S3 segment cells. These PKA activators also increased V-ATPase apical membrane expression as well as the rate of V-ATPase-dependent extracellular acidification in S3 cell monolayers relative to untreated cells. However, the AMPK activator AICAR decreased PKA-induced V-ATPase apical accumulation in proximal tubules of kidney slices and decreased V-ATPase activity in S3 cell monolayers. Our results suggest that in proximal tubule the V-ATPase subcellular localization and activity are acutely coregulated via PKA downstream of hormonal signals and via AMPK downstream of metabolic stress. PMID:24553431

  16. Substrate independent ATPase activity may complicate high throughput screening.

    PubMed

    Tuntland, Micheal L; Fung, L W-M

    2016-10-01

    Inorganic phosphate release, [Pi], is often measured in an enzymatic reaction in a high throughput setting. Based on the published mechanism, we designed a protocol for our screening for inhibitors of SAICAR synthetase (PurC), and we found a gradual increase in [Pi] in positive control samples over the course of the day. Further investigation indicated that hydrolysis of ATP catalyzed by PurC, rather than substrate-related phosphate release, was responsible for a partial contribution to the signals in the control samples. Thus substrate-independent ATPase activity may complicate high throughput screening. PMID:27430931

  17. Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots.

    PubMed

    Yang, Jian Li; Zhu, Xiao Fang; Peng, You Xiang; Zheng, Cheng; Ming, Feng; Zheng, Shao Jian

    2011-08-01

    We demonstrated that aluminum (Al)-induced oxalate secretion and plasma membrane (PM) H(+)-ATPase activity in tomato (Lycopersicon esculentum 'Hezuo903') roots were poorly correlated. In addition, vanadate, an inhibitor of PM H(+)-ATPase, had no effect on Al-induced oxalate secretion, but significantly inhibited enzyme activity. An anion channel inhibitor phenylglyoxal inhibited oxalate secretion, but not PM H(+)-ATPase activity. Exposure of tomato roots to 10 μM LaCl(3) also stimulated PM H(+)-ATPase activity; however, La failed to induce oxalate secretion. Furthermore, Al-induced changes of PM H(+)-ATPase activity were not associated with oxalate secretion in two tomato cultivars differing in the ability to secrete oxalate under Al stress. These results indicate that Al independently regulates oxalate secretion and PM H(+)-ATPase activity in tomato roots. Analysis of expression levels of PM H(+)-ATPase genes by real-time reverse transcription-PCR and protein by Western blot and immunodetection revealed that the regulation of PM H(+)-ATPase in response to Al was subjected to transcriptional and posttranscriptional control. However, since neither transcriptional level of genes nor translational level of proteins directly relate to the enzyme activity, posttranslational modification of PM H(+)-ATPase under Al stress likely contributes to changes in activity of this protein. PMID:21424534

  18. Thyroid hormone stimulation in vitro of red blood cell Ca2+-ATPase activity: interspecies variation.

    PubMed

    Davis, F B; Kite, J H; Davis, P J; Blas, S D

    1982-01-01

    In vitro susceptibility to thyroid hormone stimulation of membrane-associated Ca2+-ATPase activity has been examined in red blood cells from rat, rabbit, dog, monkey, and man. Monkey and human red cell Ca2+-ATPase activities responded comparably to 10(-10)M T4 or T3. Basal and thyroid hormone-stimulated Ca2+-ATPase activity in rabbit erythrocytes was four-fold higher than in primate red cells. Rat and dog red cell Ca2+-ATPase did not respond to iodothyronines in vitro. PMID:6459228

  19. Plasma Membrane ATPase Activity following Reversible and Irreversible Freezing Injury 1

    PubMed Central

    Iswari, S.; Palta, Jiwan P.

    1989-01-01

    Plasma membrane ATPase has been proposed as a site of functional alteration during early stages of freezing injury. To test this, plasma membrane was purified from Solanum leaflets by a single step partitioning of microsomes in a dextran-polyethylene glycol two phase system. Addition of lysolecithin in the ATPase assay produced up to 10-fold increase in ATPase activity. ATPase activity was specific for ATP with a Km around 0.4 millimolar. Presence of the ATPase enzyme was identified by immunoblotting with oat ATPase antibodies. Using the phase partitioning method, plasma membrane was isolated from Solanum commersonii leaflets which had four different degrees of freezing damage, namely, slight (reversible), partial (partially reversible), substantial and total (irreversible). With slight (reversible) damage the plasma membrane ATPase specific activity increased 1.5- to 2-fold and its Km was decreased by about 3-fold, whereas the specific activity of cytochrome c reductase and cytochrome c oxidase in the microsomes were not different from the control. However, with substantial (lethal, irreversible) damage, there was a loss of membrane protein, decrease in plasma membrane ATPase specific activity and decrease in Km, while cytochrome c oxidase and cytochrome c reductase were unaffected. These results support the hypothesis that plasma membrane ATPase is altered by slight freeze-thaw stress. Images Figure 1 Figure 2 PMID:16666856

  20. Rapid activation of gill Na+,K+-ATPase in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    2000-01-01

    The rapid activation of gill Na+,K+-ATPase was analyzed in the mummichog (Fundulus heteroclitus) and Atlantic salmon (Salmo salar) transferred from low salinity (0.1 ppt) to high salinity (25-35 ppt). In parr and presmolt, Salmo salar gill Na+,K+-ATPase activity started to increase 3 days after transfer. Exposure of Fundulus heteroclitus to 35 ppt seawater (SW) induced a rise in gill Na+,K+-ATPase activity 3 hr after transfer. After 12 hr, the values dropped to initial levels but showed a second significant increase 3 days after transfer. The absence of detergent in the enzyme assay resulted in lower values of gill Na+,K+-ATPase, and the rapid increase after transfer to SW was not observed. Na+,K+-ATPase activity of gill filaments in vitro for 3 hr increased proportionally to the osmolality of the culture medium (600 mosm/kg > 500 mosm/kg > 300 mosm/kg). Osmolality of 800 mosm/kg resulted in lower gill Na+,K+-ATPase activity relative to 600 mosm/kg. Increasing medium osmolality to 600 mosm/kg with mannitol also increased gill Na+,K+-ATPase. Cycloheximide inhibited the increase in gill Na+,K+-ATPase activity observed in hyperosmotic medium in a dose-dependent manner (10-4 M > 10-5 M > 10-6 M). Actinomycin D or bumetanide in the culture (doses of 10-4 M, 10-5 M, and 10-6 M) did not affect gill Na+,K+-ATPase. Injection of fish with actinomycin D prior to gill organ culture, however, prevented the increase in gill Na+,K+-ATPase activity in hyperosmotic media. The results show a very rapid and transitory increase in gill Na+,K+-ATPase activity in the first hours after the transfer of Fundulus heteroclitus to SW that is dependent on translational and transcriptional processes. (C) 2000 Wiley-Liss, Inc.

  1. Neomycin inhibits the phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate stimulation of plasma membrane ATPase activity

    SciTech Connect

    Chen, Qiuyun; Boss, W.F. )

    1991-05-01

    The inositol phospholipids, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP{sub 2}), have been shown to increase the vanadate-sensitive ATPase activity of plant plasma membranes. In this paper, the authors show the effect of various concentrations of phosphatidyinositol, PIP, and PIP{sub 2} on the plasma membrane vanadate-sensitive ATPase activity. PIP and PIP{sub 2} at concentrations at 10 nanomoles per 30 microgram membrane protein per milliliter of reaction mixture caused a twofold and 1.8-fold increase in the ATPase activity, respectively. The effect of these negatively charged phospholipids on the ATPase activity was inhibited by adding the positively charged aminoglycoside, neomycin. Neomycin did not affect the endogenous plasma membrane ATPase activity in the absence of exogenous lipids.

  2. Modulation of P-glycoprotein ATPase activity by some phytoconstituents.

    PubMed

    Najar, I A; Sachin, B S; Sharma, S C; Satti, N K; Suri, K A; Johri, R K

    2010-03-01

    In the present investigation 16 phytoconstituents, which are active moieties found in several medicinal herbs, have been evaluated for their P-glycoprotein (P-gp) stimulation/inhibition profiles using a P-gp-dependent ATPase assay in rat jejunal membrane (in vitro). Acteoside, agnuside, catechin, chlorogenic acid, picroside -II and santonin showed an inhibitory effect. Negundoside, picroside -I and oleanolic acid caused a stimulatory effect. Andrographolide, apocyanin, berberine, glycyrrhizin, magniferin and piperine produced a biphasic response (stimulation at low concentration and inhibition at high concentration). The results suggested that a possible interaction of these phytoconstituents at the level of P-gp, could be an important parameter in determining their role in several key pharmacodynamic events. PMID:19653312

  3. Contrasting effects of Na+, K+-ATPase activation on seizure activity in acute versus chronic models.

    PubMed

    Funck, V R; Ribeiro, L R; Pereira, L M; de Oliveira, C V; Grigoletto, J; Della-Pace, I D; Fighera, M R; Royes, L F F; Furian, A F; Larrick, J W; Oliveira, M S

    2015-07-01

    Epilepsy is a life-shortening brain disorder affecting approximately 1% of the worldwide population. Most epilepsy patients are refractory to currently available antiepileptic drugs (AEDs). Knowledge about the mechanisms underlying seizure activity and probing for new AEDs is fundamental to the discovery of new therapeutic strategies. Brain Na(+), K(+)-ATPase activity contributes to the maintenance of the electrochemical gradients underlying neuronal resting and action potentials as well as the uptake and release of neurotransmitters. Accordingly, a decrease of Na(+), K(+)-ATPase increases neuronal excitability and may predispose to appearing of seizure activity. In the present study, we tested the hypothesis that activation of Na(+), K(+)-ATPase activity with a specific antibody (DRRSAb) raised against a regulatory site in the α subunit would decrease seizure susceptibility. We found that incubation of hippocampal homogenates with DRRSAb (1 μM) increased total and α1 Na(+), K(+)-ATPase activities. A higher concentration (3 μM) increased total, α1 and α2/α3 Na(+), K(+)-ATPase activities. Intrahippocampal injection of DRRSAb decreased the susceptibility of post status epilepticus animals to pentylenetetrazol (PTZ)-induced myoclonic seizures. In contrast, administration of DRRSAb into the hippocampus of naïve animals facilitated the appearance of PTZ-induced seizures. Quantitative analysis of hippocampal electroencephalography (EEG) recordings revealed that DRRSAb increased the percentage of total power contributed by the delta frequency band (0-3 Hz) to a large irregular amplitude pattern of hippocampal EEG. On the other hand, we found no DRRSAb-induced changes regarding the theta functional state. Further studies are necessary to define the potential of Na(+), K(+)-ATPase activation as a new therapeutic approach for seizure disorders. PMID:25907445

  4. Adaptive Changes in ATPase Activity in the Cells of Winter Wheat Seedlings during Cold Hardening

    PubMed Central

    Jian, Ling-Cheng; Sun, Long-Hua; Dong, He-Zhu

    1982-01-01

    A cytochemical study of ATPase activity in the cells of cold hardened and nonhardened winter wheat (Triticum aestivum L. cv. Nongke No. 1) seedlings was carried out by electron microscopic observation of lead phosphate precipitation. ATPase activity associated with various cellular organelles was altered during cold hardening. (a) At 22°C, high plasmalemma ATPase activity was observed in both cold hardened and nonhardened tissues; at 5°C, high activity of plasmalemma ATPase was observed in hardened tissues, but not in unhardened tissues. (b) In nonhardened tissues, tonoplast and vacuoles did not exhibit high ATPase activity at either 22 or 5°C, while in hardened tissues high activity was observed at both temperatures. (c) At 5°C, ATPase activity of nucleoli and chromatin was decreased in hardened tissues, but not in nonhardened tissues. It is suggested that adaptive changes in ATPase activity associated with a particular cellular organelle or membrane may be associated with the development of frost resistance of winter wheat seedlings. Images Fig. 1 Fig. 2 Fig. 3 PMID:16662432

  5. Rho-kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure

    PubMed Central

    Escuin, Sarah; Vernay, Bertrand; Savery, Dawn; Gurniak, Christine B.; Witke, Walter; Greene, Nicholas D. E.; Copp, Andrew J.

    2015-01-01

    ABSTRACT The cytoskeleton is widely considered essential for neurulation, yet the mouse spinal neural tube can close despite genetic and non-genetic disruption of the cytoskeleton. To investigate this apparent contradiction, we applied cytoskeletal inhibitors to mouse embryos in culture. Preventing actomyosin cross-linking, F-actin assembly or myosin II contractile activity did not disrupt spinal closure. In contrast, inhibiting Rho kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) or blocking F-actin disassembly prevented closure, with apical F-actin accumulation and adherens junction disturbance in the neuroepithelium. Cofilin-1-null embryos yielded a similar phenotype, supporting the hypothesis that there is a key role for actin turnover. Co-exposure to Blebbistatin rescued the neurulation defects caused by RhoA inhibition, whereas an inhibitor of myosin light chain kinase, ML-7, had no such effect. We conclude that regulation of RhoA, Rho kinase, LIM kinase and cofilin signalling is necessary for spinal neural tube closure through precise control of neuroepithelial actin turnover and actomyosin disassembly. In contrast, actomyosin assembly and myosin ATPase activity are not limiting for closure. PMID:26040287

  6. Effect of hindlimb unweighting on single soleus fiber maximal shortening velocity and ATPase activity

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Fitts, R. H.

    1993-01-01

    The effect of hindlimb unweighting (HU) for 1 to 3 wks on the shortening velocity of a soleus fiber, its ATPase content, and the relative contents of the slow and fast myosin was investigated by measuring fiber force, V(0), ATPase activity, and myosin content in SDS protein profiles of a single rat soleus fiber suspended between a motor arm and a transducer. It was found that HU induces a progressive increase in fiber V(0) that is likely caused, at least in part, by an increase in the fiber's myofibrillar ATPase activity. The HU-induced increases in V(0) and ATPase were associated with the presence of a greater percentage of fast type IIa fibers. However, a large population of fibers after 1, 2, and 3 wks of HU showed increases in V(0) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers.

  7. A monoclonal antibody to the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle inhibits plasmalemmal (Ca2+ + Mg2+)-dependent ATPase activity.

    PubMed Central

    Verbist, J; Wuytack, F; Raeymaekers, L; Van Leuven, F; Cassiman, J J; Casteels, R

    1986-01-01

    A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum. Images Fig. 4. Fig. 5. PMID:2950852

  8. Comparison of developmental gradients for growth, ATPase, and fusicoccin-binding activity in mung bean hypocotyls

    NASA Technical Reports Server (NTRS)

    Basel, L. E.; Cleland, R. E.

    1992-01-01

    A comparison has been made of the developmental gradients along a mung bean (Vigna radiata L.) hypocotyl of the growth rate, plasma membrane ATPase, and fusicoccin-binding protein (FCBP) activity to determine whether they are interrelated. The hook and four sequential 7.5 millimeter segments of the hypocotyl below the hook were cut. A plasma membrane-enriched fraction was isolated from each section by aqueous two-phase partitioning and assayed for vanadate-sensitive ATPase and FCBP activity. Each gradient had a distinctive and different pattern. Endogenous growth rate was maximal in the second section and much lower in the others. Vanadate-sensitive ATPase activity was maximal in the third section, but remained high in the older sections. Amounts of ATPase protein, shown by specific antibody binding, did not correlate with the amount of vanadate-sensitive ATPase activity in the three youngest sections. FCBP activity was almost absent in the first section, then increased to a maximum in the oldest sections. These data show that the growth rate is not determined by the ATPase activity, and that there are no fixed ratios between the ATPase and FCBP.

  9. Abscisic Acid Induction of Vacuolar H+-ATPase Activity in Mesembryanthemum crystallinum Is Developmentally Regulated1

    PubMed Central

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Maldonado-Gama, Minerva; Pantoja, Omar

    1999-01-01

    Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways. PMID:10398716

  10. Drak Is Required for Actomyosin Organization During Drosophila Cellularization

    PubMed Central

    Chougule, Ashish B.; Hastert, Mary C.; Thomas, Jeffrey H.

    2016-01-01

    The generation of force by actomyosin contraction is critical for a variety of cellular and developmental processes. Nonmuscle myosin II is the motor that drives actomyosin contraction, and its activity is largely regulated by phosphorylation of the myosin regulatory light chain. During the formation of the Drosophila cellular blastoderm, actomyosin contraction drives constriction of microfilament rings, modified cytokinesis rings. Here, we find that Drak is necessary for most of the phosphorylation of the myosin regulatory light chain during cellularization. We show that Drak is required for organization of myosin II within the microfilament rings. Proper actomyosin contraction of the microfilament rings during cellularization also requires Drak activity. Constitutive activation of myosin regulatory light chain bypasses the requirement for Drak, suggesting that actomyosin organization and contraction are mediated through Drak’s regulation of myosin activity. Drak is also involved in the maintenance of furrow canal structure and lateral plasma membrane integrity during cellularization. Together, our observations suggest that Drak is the primary regulator of actomyosin dynamics during cellularization. PMID:26818071

  11. Poliovirus protein 2C has ATPase and GTPase activities.

    PubMed

    Rodríguez, P L; Carrasco, L

    1993-04-15

    Poliovirus protein 2C belongs to an expanding group of proteins containing a nucleotide binding motif in their sequence. We present evidence that poliovirus 2C has nucleoside triphosphatase (NTPase) activity and binds to RNA. Poliovirus 2C was expressed in Escherichia coli cells as a fusion protein with the maltose binding protein (MBP). The fusion protein MBP-2C is efficiently cut by protease Xa within the 2C region. Thus, the fusion protein as such was used to assay for the putative activities of poliovirus 2C. Deletion mutants were constructed which lacked different portions of the 2C carboxyl terminus: mutant 2C delta 1 lacked the last 169 amino acids, whereas mutant 2C delta 2 had the last 74 amino acids deleted. The fusion proteins MBP-2C, MBP-2BC, and the mutant MBP-2C delta 2 that contained the first 255 amino acids of 2C had NTPase activity. Both ATPase and GTPase activities are inhibited by antibodies directed against the MBP-2C protein. Analysis of the ability of the different proteins to bind to labeled RNA indicates that MBP-2C and MBP-2BC form a complex, whereas none of the mutants interacted with RNA, indicating that the RNA binding domain lies beyond amino acid 255. None of the fusion proteins had detectable helicase activity. We suggest that poliovirus protein 2C shows similarities to the GTPases group involved in vesicular traffic and transports the viral RNA replication complexes. These results provide the first experimental evidence that poliovirus protein 2C is an NTPase and that this protein has affinity for nucleic acids. PMID:8385138

  12. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities.

    PubMed

    Hsieh, Ying-Hsin; Huang, Ying-Ju; Jin, Jin-Shan; Yu, Liyan; Yang, Hsiuchin; Jiang, Chun; Wang, Binghe; Tai, Phang C

    2014-11-14

    SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes. PMID:25450394

  13. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    PubMed

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  14. Power-stroke-driven actomyosin contractility

    NASA Astrophysics Data System (ADS)

    Sheshka, R.; Truskinovsky, L.

    2014-01-01

    In ratchet-based models describing actomyosin contraction the activity is usually associated with actin binding potential while the power-stroke mechanism, residing inside myosin heads, is viewed as passive. To show that contraction can be propelled directly through a conformational change, we propose an alternative model where the power stroke is the only active mechanism. The asymmetry, ensuring directional motion, resides in steric interaction between the externally driven power-stroke element and the passive nonpolar actin filament. The proposed model can reproduce all four discrete states of the minimal actomyosin catalytic cycle even though it is formulated in terms of continuous Langevin dynamics. We build a conceptual bridge between processive and nonprocessive molecular motors by demonstrating that not only the former but also the latter can use structural transformation as the main driving force.

  15. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation1[OPEN

    PubMed Central

    Okumura, Masaki; Inoue, Shin-ichiro; Kuwata, Keiko

    2016-01-01

    Plant plasma membrane H+-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H+-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha. However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H+-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H+-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H+-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H+-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H+-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H+-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H+-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  16. Leishmania amazonensis: effects of heat shock on ecto-ATPase activity.

    PubMed

    Peres-Sampaio, Carlos Eduardo; de Almeida-Amaral, Elmo Eduardo; Giarola, Naira Ligia Lima; Meyer-Fernandes, José Roberto

    2008-05-01

    In this work we demonstrated that promastigotes of Leishmania amazonensis exhibit an Mg-dependent ecto-ATPase activity, which is stimulated by heat shock. The Mg-dependent ATPase activity of cells grown at 22 and 28 degrees C was 41.0+/-5.2 nmol Pi/h x 10(7)cells and 184.2+/-21.0 nmol Pi/h x 10(7)cells, respectively. When both promastigotes were pre-incubated at 37 degrees C for 2h, the ATPase activity of cells grown at 22 degrees C was increased to 136.4+/-10.6 nmol Pi/h x 10(7) whereas that the ATPase activity of cells grown at 28 degrees C was not modified by the heat shock (189.8+/-10.3 nmol Pi/h x 10(7)cells). It was observed that Km of the enzyme from cells grown at 22 degrees C (Km=980.2+/-88.6 microM) was the same to the enzyme from cells grown at 28 degrees C (Km=901.4+/-91.9 microM). In addition, DIDS (4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid) and suramin, two inhibitors of ecto-ATPases, also inhibited similarly the ATPase activities from promastigotes grown at 22 and 28 degrees C. We also observed that cells grown at 22 degrees C exhibit the same ecto-phosphatase and ecto 3'- and 5'-nucleotidase activities than cells grown at 28 degrees C. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat-shock effect on ecto-ATPase activity of cells grown at 22 degrees C were exposed at 37 degrees C for 2h. A comparison between the stimulation of the Mg-dependent ecto-ATPase activity of virulent and avirulent promastigotes by the heat shock showed that avirulent promastigotes had a higher stimulation than virulent promastigotes after heat stress. PMID:18295760

  17. Inhibition of gastric H+, K(+)-ATPase activity by compounds from medicinal plants.

    PubMed

    Freitas, Cristina Setim; Baggio, Cristiane Hatsuko; Mayer, Bárbara; dos Santos, Ana Cristina; Twardowschy, André; Santos, Cid Aimbiré de Moraes; Marques, Maria Consuelo Andrade

    2011-09-01

    H+, K(+)-ATPase enzyme is a therapeutic target for the treatment of gastric disturbances. Several medicinal plants and isolated compounds inhibit the acid gastric secretion through interaction with the proton pump. In order to add new properties to some natural constituents, five compounds, a benzylated derivative of vincoside, a diterpene (abietic acid) and three alkaloids (cephaeline, vinblastine and vindoline), were tested for their activities on gastric H+, K(+)-ATPase isolated from rabbit stomach. All the compounds inhibited H+, K(+)-ATPase activity with varied potency. The IC50 value for benzylvincoside was 121 (50-293) microM, and for abietic acid 177 (148-211) microM. The alkaloids cephaeline, vinblastine and vindoline inhibited the H+, K(+)-ATPase activity with IC50 values of 194, 761 and 846 microM, respectively. The results suggest that benzylvincoside, abietic acid and cephaeline can be important sources for the development of anti-secretor agents. PMID:21941891

  18. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase.

    PubMed

    Bredeston, Luis M; González Flecha, F Luis

    2016-07-01

    Membrane transport P-type ATPases display two characteristic enzymatic activities: a principal ATPase activity provides the driving force for ion transport across biological membranes, whereas a promiscuous secondary activity catalyzes the hydrolysis of phosphate monoesters. This last activity is usually denoted as the phosphatase activity of P-ATPases. In the present study, we characterize the phosphatase activity of the Cu(+)-transport ATPase from Archaeglobus fulgidus (Af-CopA) and compare it with the principal ATPase activity. Our results show that the phosphatase turnover number was 20 times higher than that corresponding to the ATPase activity, but it is compensated by a high value of Km, producing a less efficient catalysis for pNPP. This secondary activity is enhanced by Mg(2+) (essential activator) and phospholipids (non-essential activator), and inhibited by salts and Cu(+). Transition state analysis of the catalyzed and noncatalyzed hydrolysis of pNPP indicates that Af-CopA enhances the reaction rates by a factor of 10(5) (ΔΔG(‡)=38 kJ/mol) mainly by reducing the enthalpy of activation (ΔΔH(‡)=30 kJ/mol), whereas the entropy of activation is less negative on the enzyme than in solution. For the ATPase activity, the decrease in the enthalpic component of the barrier is higher (ΔΔH(‡)=39 kJ/mol) and the entropic component is small on both the enzyme and in solution. These results suggest that different mechanisms are involved in the transference of the phosphoryl group of p-nitrophenyl phosphate and ATP. PMID:27086711

  19. Protein Kinase C-α Interaction with F0F1-ATPase Promotes F0F1-ATPase Activity and Reduces Energy Deficits in Injured Renal Cells*

    PubMed Central

    Nowak, Grażyna; Bakajsova, Diana

    2015-01-01

    We showed previously that active PKC-α maintains F0F1-ATPase activity, whereas inactive PKC-α mutant (dnPKC-α) blocks recovery of F0F1-ATPase activity after injury in renal proximal tubules (RPTC). This study tested whether mitochondrial PKC-α interacts with and phosphorylates F0F1-ATPase. Wild-type PKC-α (wtPKC-α) and dnPKC-α were overexpressed in RPTC to increase their mitochondrial levels, and RPTC were exposed to oxidant or hypoxia. Mitochondrial levels of the γ-subunit, but not the α- and β-subunits, were decreased by injury, an event associated with 54% inhibition of F0F1-ATPase activity. Overexpressing wtPKC-α blocked decreases in γ-subunit levels, maintained F0F1-ATPase activity, and improved ATP levels after injury. Deletion of PKC-α decreased levels of α-, β-, and γ-subunits, decreased F0F1-ATPase activity, and hindered the recovery of ATP content after RPTC injury. Mitochondrial PKC-α co-immunoprecipitated with α-, β-, and γ-subunits of F0F1-ATPase. The association of PKC-α with these subunits decreased in injured RPTC overexpressing dnPKC-α. Immunocapture of F0F1-ATPase and immunoblotting with phospho(Ser) PKC substrate antibody identified phosphorylation of serine in the PKC consensus site on the α- or β- and γ-subunits. Overexpressing wtPKC-α increased phosphorylation and protein levels, whereas deletion of PKC-α decreased protein levels of α-, β-, and γ-subunits of F0F1-ATPase in RPTC. Phosphoproteomics revealed phosphorylation of Ser146 on the γ subunit in response to wtPKC-α overexpression. We concluded that active PKC-α 1) prevents injury-induced decreases in levels of γ subunit of F0F1-ATPase, 2) interacts with α-, β-, and γ-subunits leading to increases in their phosphorylation, and 3) promotes the recovery of F0F1-ATPase activity and ATP content after injury in RPTC. PMID:25627689

  20. ATPase activity and its temperature compensation of the cyanobacterial clock protein KaiC.

    PubMed

    Murakami, Reiko; Miyake, Ayumi; Iwase, Ryo; Hayashi, Fumio; Uzumaki, Tatsuya; Ishiura, Masahiro

    2008-04-01

    KaiA, KaiB and KaiC constitute the circadian clock machinery in cyanobacteria. KaiC is a homohexamer; its subunit contains duplicated halves, each with a set of ATPase motifs. Here, using highly purified KaiC preparations of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 produced in Escherichia coli, we found that the N- and C-terminal domains of KaiC had extremely weak ATPase activity. ATPase activity showed temperature compensation in wild-type KaiC, but not in KaiC(S431A/T432A), a mutant that lacks two phosphorylation sites. We concluded that KaiC phosphorylation is involved in the ATPase temperature-compensation mechanism-which is probably critical to the stability of the circadian clock in cyanobacteria-and we hypothesized the following temperature-compensation mechanism: (i) The C-terminal phosphorylation sites of a KaiC hexamer subunit are phosphorylated by the C-terminal domain of an adjacent KaiC subunit; (ii) the phosphorylation suppresses the ATPase activity of the C-terminal domain; and (iii) the phosphorylated KaiC spontaneously dephosphorylates, resulting in the recover of ATPase activity. PMID:18363969

  1. Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex.

    PubMed

    Banerjee, Sreeparna; Flores-Rozas, Hernan

    2005-01-01

    Cadmium (Cd2+) is a known carcinogen that inactivates the DNA mismatch repair (MMR) pathway. In this study, we have tested the effect of Cd2+ exposure on the enzymatic activity of the mismatch binding complex MSH2-MSH6. Our results indicate that Cd2+ is highly inhibitory to the ATP binding and hydrolysis activities of MSH2-MSH6, and less inhibitory to its DNA mismatch binding activity. The inhibition of the ATPase activity appears to be dose and exposure time dependent. However, the inhibition of the ATPase activity by Cd2+ is prevented by cysteine and histidine, suggesting that these residues are essential for the ATPase activity and are targeted by Cd2+. A comparison of the mechanism of inhibition with N-ethyl maleimide, a sulfhydryl group inhibitor, indicates that this inhibition does not occur through direct inactivation of sulfhydryl groups. Zinc (Zn2+) does not overcome the direct inhibitory effect of Cd2+ on the MSH2-MSH6 ATPase activity in vitro. However, the increase in the mutator phenotype of yeast cells exposed to Cd2+ was prevented by excess Zn2+, probably by blocking the entry of Cd2+ into the cell. We conclude that the inhibition of MMR by Cd2+ is through the inactivation of the ATPase activity of the MSH2-MSH6 heterodimer, resulting in a dominant negative effect and causing a mutator phenotype. PMID:15746000

  2. Influence of a protein hydrolysate from green algae on the activity of some ATPase systems in frog skeletal muscle.

    PubMed

    Ivanov, R; Georgieva, B; Naumova, P; Mileva, K; Radicheva, N

    1999-06-01

    The present study investigated the effect of a protein hydrolysate from green algae cultured in the Bulgarian region of Rupy, on the enzyme activity of frog skeletal muscle. The activity of pure Mg(2+)-ATPase, Mg2+,Ca(2+)-ATPase, NaHCO3-stimulated Mg(2+)-ATPase and the latter in the presence of the inhibitors NaSCN and NaN3 in mitochondrial (B-3) and membrane (B-12) fractions were determined before and after treatment with the protein hydrolysate from green algae (30 and 300 micrograms/ml). The differences between ATPase activity of mitochondrial and membrane fractions were described and it was established that in the B-3 fraction, the activity of the NaHCO3-stimulated Mg(2+)-ATPase and Ca(2+)-dependent Mg(2+)-ATPase were accelerated by increasing concentrations of the algae protein hydrolysate. Irrespective of the different (equal or inverse) dose-dependent effects, the protein hydrolysate stimulated Mg(2+)-ATPase and that inhibited by NaSCN an NaN3 bicarbonate-stimulated Mg(2+)-ATPase activity. In most of the probes, the protein hydrolysate produced some increase in enzyme activity of NaHCO3-stimulated Mg(2+)-ATPase and Ca(2+)-dependent Mg(2+)-ATPase in B-12 fractions. The observed properties of the algae protein hydrolysate suggest that it is capable of stimulating enzyme processes in addition to having some antitoxic effect in skeletal muscle. PMID:10420389

  3. Stimulation of Na(+),K(+)-ATPase Activity as a Possible Driving Force in Cholesterol Evolution.

    PubMed

    Lambropoulos, Nicholas; Garcia, Alvaro; Clarke, Ronald J

    2016-06-01

    Cholesterol is exclusively produced by animals and is present in the plasma membrane of all animal cells. In contrast, the membranes of fungi and plants contain other sterols. To explain the exclusive preference of animal cells for cholesterol, we propose that cholesterol may have evolved to optimize the activity of a crucial protein found in the plasma membrane of all multicellular animals, namely the Na(+),K(+)-ATPase. To test this hypothesis, mirror tree and phylogenetic distribution analyses have been conducted of the Na(+),K(+)-ATPase and 3β-hydroxysterol Δ(24)-reductase (DHCR24), the last enzyme in the Bloch cholesterol biosynthetic pathway. The results obtained support the hypothesis of a co-evolution of the Na(+),K(+)-ATPase and DHCR24. The evolutionary correlation between DHCR24 and the Na(+),K(+)-ATPase was found to be stronger than between DHCR24 and any other membrane protein investigated. The results obtained, thus, also support the hypothesis that cholesterol evolved together with the Na(+),K(+)-ATPase in multicellular animals to support Na(+),K(+)-ATPase activity. PMID:26715509

  4. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    SciTech Connect

    Kohio, Hinissan P.; Adamson, Amy L.

    2013-09-15

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells.

  5. Active Detergent-solubilized H+,K+-ATPase Is a Monomer*

    PubMed Central

    Dach, Ingrid; Olesen, Claus; Signor, Luca; Nissen, Poul; le Maire, Marc; Møller, Jesper V.; Ebel, Christine

    2012-01-01

    The H+,K+-ATPase pumps protons or hydronium ions and is responsible for the acidification of the gastric fluid. It is made up of an α-catalytic and a β-glycosylated subunit. The relation between cation translocation and the organization of the protein in the membrane are not well understood. We describe here how pure and functionally active pig gastric H+,K+-ATPase with an apparent Stokes radius of 6.3 nm can be obtained after solubilization with the non-ionic detergent C12E8, followed by exchange of C12E8 with Tween 20 on a Superose 6 column. Mass spectroscopy indicates that the β-subunit bears an excess mass of 9 kDa attributable to glycosylation. From chemical analysis, there are 0.25 g of phospholipids and around 0.024 g of cholesterol bound per g of protein. Analytical ultracentrifugation shows one main complex, sedimenting at s20,w = 7.2 ± 0.1 S, together with minor amounts of irreversibly aggregated material. From these data, a buoyant molecular mass is calculated, corresponding to an H+,K+-ATPase α,β-protomer of 147.3 kDa. Complementary sedimentation velocity with deuterated water gives a picture of an α,β-protomer with 0.9–1.4 g/g of bound detergent and lipids and a reasonable frictional ratio of 1.5, corresponding to a Stokes radius of 7.1 nm. An α2,β2 dimer is rejected by the data. Light scattering coupled to gel filtration confirms the monomeric state of solubilized H+,K+-ATPase. Thus, α,β H+,K+-ATPase is active at least in detergent and may plausibly function as a monomer, as has been established for other P-type ATPases, Ca2+-ATPase and Na+,K+-ATPase. PMID:23055529

  6. ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria.

    PubMed

    Terauchi, Kazuki; Kitayama, Yohko; Nishiwaki, Taeko; Miwa, Kumiko; Murayama, Yoriko; Oyama, Tokitaka; Kondo, Takao

    2007-10-01

    Self-sustainable oscillation of KaiC phosphorylation has been reconstituted in vitro, demonstrating that this cycle is the basic time generator of the circadian clock of cyanobacteria. Here we show that the ATPase activity of KaiC satisfies the characteristics of the circadian oscillation, the period length, and the temperature compensation. KaiC possesses extremely weak but stable ATPase activity (15 molecules of ATP per day), and the addition of KaiA and KaiB makes the activity oscillate with a circadian period in vitro. The ATPase activity of KaiC is inherently temperature-invariant, suggesting that temperature compensation of the circadian period could be driven by this simple biochemical reaction. Moreover, the activities of wild-type KaiC and five period-mutant proteins are directly proportional to their in vivo circadian frequencies, indicating that the ATPase activity defines the circadian period. Thus, we propose that KaiC ATPase activity constitutes the most fundamental reaction underlying circadian periodicity in cyanobacteria. PMID:17901204

  7. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells.

    PubMed

    Okeyo, Kennedy Omondi; Adachi, Taiji; Sunaga, Junko; Hojo, Masaki

    2009-11-13

    Coupling interactions among mechanical and biochemical factors are important for the realization of various cellular processes that determine cell migration. Although F-actin network dynamics has been the focus of many studies, it is not yet clear how mechanical forces generated by actomyosin contractility spatiotemporally regulate this fundamental aspect of cell migration. In this study, using a combination of fluorescent speckle microscopy and particle imaging velocimetry techniques, we perturbed the actomyosin system and examined quantitatively the consequence of actomyosin contractility on F-actin network flow and deformation in the lamellipodia of actively migrating fish keratocytes. F-actin flow fields were characterized by retrograde flow at the front and anterograde flow at the back of the lamellipodia, and the two flows merged to form a convergence zone of reduced flow intensity. Interestingly, activating or inhibiting actomyosin contractility altered network flow intensity and convergence, suggesting that network dynamics is directly regulated by actomyosin contractility. Moreover, quantitative analysis of F-actin network deformation revealed that the deformation was significantly negative and predominant in the direction of cell migration. Furthermore, perturbation experiments revealed that the deformation was a function of actomyosin contractility. Based on these results, we suggest that the actin cytoskeletal structure is a mechanically self-regulating system, and we propose an elaborate pathway for the spatiotemporal self-regulation of the actin cytoskeletal structure during cell migration. In the proposed pathway, mechanical forces generated by actomyosin interactions are considered central to the realization of the various mechanochemical processes that determine cell motility. PMID:19665125

  8. The reactive nitrogen species peroxynitrite is a potent inhibitor of renal Na-K-ATPase activity

    PubMed Central

    Reifenberger, Matthew S.; Arnett, Krista L.; Gatto, Craig; Milanick, Mark A.

    2008-01-01

    Peroxynitrite is a reactive nitrogen species produced when nitric oxide and superoxide react. In vivo studies suggest that reactive oxygen species and, perhaps, peroxynitrite can influence Na-K-ATPase function. However, the direct effects of peroxynitrite on Na-K-ATPase function remain unknown. We show that a single bolus addition of peroxynitrite inhibited purified renal Na-K-ATPase activity, with IC50 of 107 ± 9 μM. To mimic cellular/physiological production of peroxynitrite, a syringe pump was used to slowly release (∼0.85 μM/s) peroxynitrite. The inhibition of Na-K-ATPase activity induced by this treatment was similar to that induced by a single bolus addition of equal cumulative concentration. Peroxynitrite produced 3-nitrotyrosine residues on the α, β, and FXYD subunits of the Na pump. Interestingly, the flavonoid epicatechin, which prevented tyrosine nitration, was unable to blunt peroxynitrite-induced ATPase inhibition, suggesting that tyrosine nitration is not required for inhibition. Peroxynitrite led to a decrease in iodoacetamidofluorescein labeling, implying that cysteine modifications were induced. Glutathione was unable to reverse ATPase inhibition. The presence of Na+ and low MgATP during peroxynitrite treatment increased the IC50 to 145 ± 10 μM, while the presence of K+ and low MgATP increased the IC50 to 255 ± 13 μM. This result suggests that the EPNa conformation of the pump is slightly more sensitive to peroxynitrite than the E(K) conformation. Taken together, these results show that peroxynitrite is a potent inhibitor of Na-K-ATPase activity and that peroxynitrite can induce amino acid modifications to the pump. PMID:18701626

  9. The Apparent Rates of Crossbridge Attachment and Detachment Estimated from Atpase Activity in Insect Flight Muscle

    PubMed Central

    Güth, K.; Poole, K. J. V.; Maughan, D.; Kuhn, H. J.

    1987-01-01

    The ATPase activity of single fibers of small fiber bundles (one to three fibers) of insect flight muscle was measured when fibers were repetitively released and restretched by 1.5% of their initial length. The ATPase activity increased with increasing duration of release-restretch pulses applied at a constant repetition frequency, reaching a maximum at a duration of ∼20 ms. For a given duration, the average ATPase activity also increased with increasing frequency of applied length changes and reached a maximum (200% of the isometric ATPase) at a frequency of ∼50 Hz. The data could be fitted to a two-state model in which the apparent rate of crossbridge detachment is enhanced when the crossbridges are mechanically released. Estimates of the apparent rates of attachment and detachment in the isometrically contracting state and of the enhanced detachment rate of unloaded crossbridges were derived from fits to the two-state model. After short pulses of releasing and restretching the fiber the force was low and increased after the restretch in a roughly exponential manner to the initial level. The rate at which force increased after a release-restretch pulse was similar to the sum of the apparent attachment and detachment rates for the isometrically contracting muscle derived from the ATPase activity measurements. PMID:19431712

  10. Organophosphate inhibition of avian salt gland Na, K-ATPase activity

    USGS Publications Warehouse

    Eastin, W.C., Jr.; Fleming, W.J.; Murray, H.C.

    1982-01-01

    1. Adult black ducks (Anas rubripes) were given freshwater or saltwater (1.5% NaCl) for 11 days and half of each group was also given an organophosphate (17 p.p.m. fenthion) in the diet on days 6-11. 2. After 11 days, ducks drinking saltwater had lost more weight and had higher plasma Na and uric acid concentrations and osmolalities than birds drinking freshwater. 3. Saltwater treatment stimulated the salt gland to increased weight and Na, K-ATPase activity. 4. Fenthion generally reduced plasma and brain cholinesterase activity and depressed cholinesterase and Na, K-ATPase activities in salt glands of birds drinking saltwater.

  11. Active ingredients in Chinese medicines promoting blood circulation as Na+/K+-ATPase inhibitors

    PubMed Central

    Chen, Ronald JY; Jinn, Tzyy-rong; Chen, Yi-ching; Chung, Tse-yu; Yang, Wei-hung; Tzen, Jason TC

    2011-01-01

    The positive inotropic effect of cardiac glycosides lies in their reversible inhibition on the membrane-bound Na+/K+-ATPase in human myocardium. Steroid-like compounds containing a core structure similar to cardiac glycosides are found in many Chinese medicines conventionally used for promoting blood circulation. Some of them are demonstrated to be Na+/K+-ATPase inhibitors and thus putatively responsible for their therapeutic effects via the same molecular mechanism as cardiac glycosides. On the other hand, magnesium lithospermate B of danshen is also proposed to exert its cardiac therapeutic effect by effectively inhibiting Na+/K+-ATPase. Theoretical modeling suggests that the number of hydrogen bonds and the strength of hydrophobic interaction between the effective ingredients of various medicines and residues around the binding pocket of Na+/K+-ATPase are crucial for the inhibitory potency of these active ingredients. Ginsenosides, the active ingredients in ginseng and sanqi, substantially inhibit Na+/K+-ATPase when sugar moieties are attached only to the C-3 position of their steroid-like structure, equivalent to the sugar position in cardiac glycosides. Their inhibitory potency is abolished, however, when sugar moieties are linked to C-6 or C-20 position of the steroid nucleus; presumably, these sugar attachments lead to steric hindrance for the entrance of ginsenosides into the binding pocket of Na+/K+-ATPase. Neuroprotective effects of cardiac glycosides, several steroid-like compounds, and magnesium lithospermate B against ischemic stroke have been accordingly observed in a cortical brain slice-based assay model, and cumulative data support that effective inhibitors of Na+/K+-ATPase in the brain could be potential drugs for the treatment of ischemic stroke. PMID:21293466

  12. Modulation of oat mitochondrial ATPase activity by CA2+ and phytochrome.

    PubMed Central

    Serlin, B S; Sopory, S K; Roux, S J

    1984-01-01

    The activity of a Mg(2+)-dependent ATPase present in highly purified preparations of Avena mitochondria was photoreversibly modulated by red/far-red light treatments. These results were obtained either with mitochondria isolated from plants irradiated with white light prior to the extraction or with mitochondria isolated from unirradiated plants only when purified phytochrome was exogenously added to the reaction mixture. Red light, which converts phytochrome to the far red-absorbing form (Pfr) depressed the ATPase activity, and far-red light reversed this effect. Addition of exogenous CaCl2 also depressed the ATPase activity, and the kinetics of inhibition were similar to the kinetics of the Pfr effects on the ATPase. The calcium chelator, ethyleneglycol-bis(beta-amino-ethyl ether)-N,N' -tetraacetic acid, blocked the effects of both CaCl2 and Pfr on the ATPase. These results are consistent with the interpretation that Pfr promotes a release of Ca2+ from the mitochondrial matrix, thereby inducing an increase in the concentration of intermembranal and extramitochondrial Ca2+. Images Fig. 7 PMID:11541960

  13. Contraction of cross-linked actomyosin bundles

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  14. Wrinkling of a spherical lipid interface induced by actomyosin cortex.

    PubMed

    Ito, Hiroaki; Nishigami, Yukinori; Sonobe, Seiji; Ichikawa, Masatoshi

    2015-12-01

    Actomyosin actively generates contractile forces that provide the plasma membrane with the deformation stresses essential to carry out biological processes. Although the contractile property of purified actomyosin has been extensively studied, to understand the physical contribution of the actomyosin contractile force on a deformable membrane is still a challenging problem and of great interest in the field of biophysics. Here, we reconstitute a model system with a cell-sized deformable interface that exhibits anomalous curvature-dependent wrinkling caused by the actomyosin cortex underneath the spherical closed interface. Through a shape analysis of the wrinkling deformation, we find that the dominant contributor to the wrinkled shape changes from bending elasticity to stretching elasticity of the reconstituted cortex upon increasing the droplet curvature radius of the order of the cell size, i.e., tens of micrometers. The observed curvature dependence is explained by the theoretical description of the cortex elasticity and contractility. Our present results provide a fundamental insight into the deformation of a curved membrane induced by the actomyosin cortex. PMID:26764731

  15. ATPase activity measurement of DNA replicative helicase from Bacillus stearothermophilus by malachite green method.

    PubMed

    Yang, Mu; Wang, Ganggang

    2016-09-15

    The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors. PMID:27372608

  16. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface.

    PubMed

    Loo, Tip W; Clarke, David M

    2016-04-01

    P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump. A common feature of ABC proteins is that they are organized into two wings. Each wing contains a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates and ATP bind at the interface between the TMDs and NBDs, respectively. Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. P-gps crystallized in the presence of detergent show an open structure. Human P-gp is inactive in detergent but basal ATPase activity is restored upon addition of lipids. The lipids might cause closure of the wings to bring the NBDs close together to allow ATP hydrolysis. We show however, that cross-linking the wings together did not activate ATPase activity when lipids were absent suggesting that lipids may induce other structural changes required for ATPase activity. We then tested the effect of lipids on disulfide cross-linking of mutants at the first transmission interface between intracellular loop 4 (TMD2) and NBD1. Mutants L443C/S909C and L443C/R905C but not G471C/S909C and V472C/S909C were cross-linked with oxidant when in membranes. The mutants were then purified and cross-linked with or without lipids. Mutants G471C/S909C and V472C/S909C cross-linked only in the absence of lipids whereas mutants L443C/S909C and L443C/R905C were cross-linked only in the presence of lipids. The results suggest that lipids activate a switch at the first transmission interface and that the structure of P-gp is different in detergents and lipids. PMID:26944019

  17. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring

    NASA Astrophysics Data System (ADS)

    Ciobanasu, Corina; Faivre, Bruno; Le Clainche, Christophe

    2014-01-01

    The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin-vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin-talin-vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton.

  18. ALKYLTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM ADULT AND NEONATAL RATS (JOURNAL VERSION)

    EPA Science Inventory

    Inhibition of ATPase activities by triethyltin (TET), diethyltin (DET), monoethyltin (MET) and trimethyltin (TMT) was studied in homogenates of brain and liver from adult rats. MET did not produce significant inhibition. ATPase activities in brain and liver homogenates from TET-t...

  19. Characterization of ATPase activity of the AAA ARC from Bifidobacterium longum subsp. infantis.

    PubMed

    Guzmán-Rodríguez, Mabel; de la Rosa, Ana Paulina Barba; Santos, Leticia

    2015-01-01

    Bifidobacteria are considered to be probiotics that exist in the large intestine and are helpful to maintain human health. Oral administration of bifidobacteria may be effective in improving the intestinal flora and environment, stimulating the immune response and possibly preventing cancer. However, for consistent and positive results, further well-controlled studies are urgently needed to describe the basic mechanisms of this microorganism. Analysis of the proteasome-lacking Bifidobacterium longum genome reveals that it possesses a gene, IPR003593 AAA ATPase core, which codes a 56 kDa protein containing one AAA ATPase domain. Phylogenetic classification made by CLANS, positioned this sequence into the ARC divergent branch of the AAA ATPase family of proteins. N-terminal analysis of the sequence indicates this protein is closely related to other ATPases such as the Rhodococcus erythropolis ARC, Archaeoglobus fulgidus PAN, Mycobacterium tuberculosis Mpa and the human proteasomal Rpt1 subunit. This gene was cloned, the full-length recombinant protein was overexpressed in Escherichia coli, purified as a high-molecular size complex and named Bl-ARC. Enzymatic characterization showed that Bl-ARC ATPase is active, Mg(+2)-dependent and sensitive to N-ethylmaleimide. Gene organization positions bl-arc in a region flanked by a cluster of genes that includes pup, dop and pafA genes. These findings point to a possible function as a chaperone in the degradation pathway via pupylation. PMID:26015994

  20. Effect of TGFβ on Na{sup +}/K{sup +} ATPase activity in megakaryocytes

    SciTech Connect

    Hosseinzadeh, Zohreh; Schmid, Evi; Shumilina, Ekaterina; Laufer, Stefan; Borst, Oliver; Gawaz, Meinrad; Lang, Florian

    2014-09-26

    Highlights: • TGFß1 markedly up-regulates Na{sup +}/K{sup +} ATPase in megakaryocytes. • The effect is abrogated by p38-MAP kinase inhibitor skepinone. • The effect is abrogated by SGK inhibitor EMD638683. • The effect is abrogated by NF-κB inhibitor wogonin. - Abstract: The Na{sup +}/K{sup +} ATPase generates the Na{sup +} and K{sup +} concentration gradients across the plasma membrane and is thus essential for cellular electrolyte homeostasis, cell membrane potential and cell volume maintenance. A powerful regulator of Na{sup +}/K{sup +} ATPase is the serum- and glucocorticoid-inducible kinase 1 (SGK1). The most powerful known regulator of SGK1 expression is TGFß1, which is pivotal in the regulation of megakaryocyte maturation and platelet formation. Signaling involved in the upregulation of SGK1 by TGFß1 includes p38 mitogen activated protein (MAP) kinase. SGK1 in turn phosphorylates the IκB kinase (IKKα/β), which phosphorylates the inhibitor protein IκBα thus triggering nuclear translocation of nuclear factor kappa B (NF-κB). The present study explored whether TGFβ influences Na{sup +}/K{sup +} ATPase activity in megakaryocytes, and if so, whether the effect of TGß1 requires p38 MAP kinase, SGK1 and/or NF-κB. To this end, murine megakaryocytes were treated with TGFß1 and Na{sup +}/K{sup +} ATPase activity determined from K{sup +} induced current utilizing whole cell patch clamp. The pump current (I{sub pump}) was determined in the absence and presence of Na{sup +}/K{sup +} ATPase inhibitor ouabain (100 μM). TGFß1 (60 ng/ml) was added in the absence or presence of p38 MAP kinase inhibitor skepinone-L (1 μM), SGK1 inhibitor EMD638683 (50 μM) or NF-κB inhibitor wogonin (50 nM). As a result, the I{sub pump} was significantly increased by pretreatment of the megakaryocytes with TGFß1, an effect reaching statistical significance within 16 and 24 h and virtually abrogated in the presence of skepinone-L, EMD638683 or wogonin. In conclusion

  1. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    PubMed

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators. PMID:27226582

  2. Molecular Simulations of Actomyosin Network Self-Assembly and Remodeling

    NASA Astrophysics Data System (ADS)

    Komianos, James; Popov, Konstantin; Papoian, Garegin; Papoian Lab Team

    Actomyosin networks are an integral part of the cytoskeleton of eukaryotic cells and play an essential role in determining cellular shape and movement. Actomyosin network growth and remodeling in vivo is based on a large number of chemical and mechanical processes, which are mutually coupled and spatially and temporally resolved. To investigate the fundamental principles behind the self-organization of these networks, we have developed a detailed mechanochemical, stochastic model of actin filament growth dynamics, at a single-molecule resolution, where the nonlinear mechanical rigidity of filaments and their corresponding deformations under internally and externally generated forces are taken into account. Our work sheds light on the interplay between the chemical and mechanical processes governing the cytoskeletal dynamics, and also highlights the importance of diffusional and active transport phenomena. Our simulations reveal how different actomyosin micro-architectures emerge in response to varying the network composition. Support from NSF Grant CHE-1363081.

  3. ATPase activity associated with isolated vacuoles of the crassulacean acid metabolism plant Kalanchoë daigremontiana.

    PubMed

    Smith, J A; Uribe, E G; Ball, E; Lüttge, U

    1984-10-01

    A technique is described that allows a relatively rapid and controlled isolation of vacuoles from leaves of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana. The method involves polybase-induced lysis of mesophyllcell protoplasts and isolation of vacuoles on a discontinuous density gradient. ATPase activity is associated with the isolated vacuoles and is not attributable to contamination by cytoplasmic constituents. It is suggested that this ATPase is responsible for the energization of malic-acid accumulation in the vacuole in CAM plants. PMID:24253162

  4. Increased oxidative stress and decreased activities of Ca2+/Mg2+-ATPase and Na+/K+-ATPase in the red blood cells of the hibernating black bear

    USGS Publications Warehouse

    Chauhan, V.P.S.; Tsiouris, J.A.; Chauhan, A.; Sheikh, A.M.; Brown, W. Ted; Vaughan, M.

    2002-01-01

    During hibernation, animals undergo metabolic changes that result in reduced utilization of glucose and oxygen. Fat is known to be the preferential source of energy for hibernating animals. Malonyldialdehyde (MDA) is an end product of fatty acid oxidation, and is generally used as an index of lipid peroxidation. We report here that peroxidation of lipids is increased in the plasma and in the membranes of red blood cells in black bears during hibernation. The plasma MDA content was about four fold higher during hibernation as compared to that during the active, non-hibernating state (P < 0.0001). Similarly, MDA content of erythrocyte membranes was significantly increased during hibernation (P < 0.025). The activity of Ca2+/Mg2+-ATPase in the erythrocyte membrane was significantly decreased in the hibernating state as compared to the active state. Na+/K+-ATPase activity was also decreased, though not significant, during hibernation. These results suggest that during hibernation, the bears are under increased oxidative stress, and have reduced activities of membrane-bound enzymes such as Ca2+/Mg2+-ATPase and Na+/K+-ATPase. These changes can be considered part of the adaptive for survival process of metabolic depression. ?? 2002 Elsevier Science Inc. All rights reserved.

  5. Substrates Control Multimerization and Activation of the Multi-Domain ATPase Motor of Type VII Secretion

    DOE PAGESBeta

    Rosenberg, Oren S.; Dovala, Dustin; Li, Xueming; Connolly, Lynn; Bendebury, Anastasia; Finer-Moore, Janet; Holton, James; Cheng, Yifan; Stroud, Robert M.; Cox, Jeffery S.

    2015-04-09

    We report that Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increasemore » in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically but, rather, by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps to explain interdependence of substrates, and suggests a model in which binding of substrates modulates their coordinate release from the bacterium.« less

  6. Substrates Control Multimerization and Activation of the Multi-Domain ATPase Motor of Type VII Secretion

    SciTech Connect

    Rosenberg, Oren S.; Dovala, Dustin; Li, Xueming; Connolly, Lynn; Bendebury, Anastasia; Finer-Moore, Janet; Holton, James; Cheng, Yifan; Stroud, Robert M.; Cox, Jeffery S.

    2015-04-09

    We report that Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increase in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically but, rather, by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps to explain interdependence of substrates, and suggests a model in which binding of substrates modulates their coordinate release from the bacterium.

  7. Activation of a Mitochondrial ATPase Gene Induces Abnormal Seed Development in Arabidopsis

    PubMed Central

    Baek, Kon; Seo, Pil Joon; Park, Chung-Mo

    2011-01-01

    The ATPases associated with various cellular activities (AAA) proteins are widespread in living organisms. Some of the AAA-type ATPases possess metalloprotease activities. Other members constitute the 26S proteasome complexes. In recent years, a few AAA members have been implicated in vesicle-mediated secretion, membrane fusion, cellular organelle biogenesis, and hypersensitive responses (HR) in plants. However, the physiological roles and biochemical activities of plant AAA proteins have not yet been defined at the molecular level, and regulatory mechanisms underlying their functions are largely unknown. In this study, we showed that overexpression of an Arabidopsis gene encoding a mitochondrial AAA protein, ATPase-in-Seed-Development (ASD), induces morphological and anatomical defects in seed maturation. The ASD gene is expressed at a high level during the seed maturation process and in mature seeds but is repressed rapidly in germinating seeds. Transgenic plants overexpressing the ASD gene are morphologically normal. However, seed formation is severely disrupted in the transgenic plants. The ASD gene is induced by abiotic stresses, such as low temperatures and high salinity, in an abscisic acid (ABA)- dependent manner. The ASD protein possesses ATPase activity and is localized into the mitochondria. Our observations suggest that ASD may play a role in seed maturation by influencing mitochondrial function under abiotic stress. PMID:21359673

  8. Substrates Control Multimerization and Activation of the Multi-domain ATPase Motor of Type VII Secretion

    PubMed Central

    Rosenberg, Oren S.; Dovala, Dustin; Li, Xueming; Connolly, Lynn; Bendebury, Anastasia; Finer-Moore, Janet; Holton, James; Cheng, Yifan; Stroud, Robert M.; Cox, Jeffery S.

    2015-01-01

    Summary Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via Type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increase in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically, but rather by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps explain interdependence of substrates and suggests a model in which binding of substrates modulates their coordinate release from the bacterium. PMID:25865481

  9. Hexamers of the Type II Secretion ATPase GspE from Vibrio cholerae with Increased ATPase Activity

    PubMed Central

    Lu, Connie; Turley, Stewart; Marionni, Samuel T.; Park, Young-Jun; Lee, Kelly K.; Patrick, Marcella; Shah, Ripal; Sandkvist, Maria; Bush, Matthew F.; Hol, Wim G. J.

    2013-01-01

    SUMMARY The Type II Secretion System (T2SS), a multi-protein machinery spanning two membranes in Gram-negative bacteria, is responsible for the secretion of folded proteins from the periplasm across the outer membrane. The critical multi-domain T2SS assembly ATPase GspEEpsE had so far not been structurally characterized as a hexamer. Here, four hexamers of Vibrio cholerae GspEEpsE are obtained when fused to Hcp1 as an assistant hexamer, as shown by native mass spectrometry. The enzymatic activity of the GspEEpsE-Hcp1 fusions is ~20 times higher than that of a GspEEpsE monomer indicating that increasing the local concentration of GspEEpsE by the fusion strategy was successful. Crystal structures of GspEEpsE-Hcp1 fusions with different linker lengths reveal regular and elongated hexamers of GspEEpsE with major differences in domain orientation within subunits, and in subunit assembly. SAXS studies on GspEEpsE-Hcp1 fusions suggest that even further variability in GspEEpsE hexamer architecture is likely. PMID:23954505

  10. V-ATPase Proton Pumping Activity Is Required for Adult Zebrafish Appendage Regeneration

    PubMed Central

    Monteiro, Joana; Aires, Rita; Becker, Jörg D.; Jacinto, António; Certal, Ana C.; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration. PMID:24671205

  11. Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs.

    PubMed

    Peth, Andreas; Kukushkin, Nikolay; Bossé, Marc; Goldberg, Alfred L

    2013-03-15

    Degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis, but it is unclear how the proteasomal ATPases are regulated and how proteolysis, substrate deubiquitination, degradation, and ATP hydrolysis are coordinated. Polyubiquitinated proteins were shown to stimulate ATP hydrolysis by purified proteasomes, but only if the proteins contain a loosely folded domain. If they were not ubiquitinated, such proteins did not increase ATPase activity. However, they did so upon addition of ubiquitin aldehyde, which mimics the ubiquitin chain and binds to 26 S-associated deubiquitinating enzymes (DUBs): in yeast to Ubp6, which is essential for the ATPase activation, and in mammalian 26 S to the Ubp6 homolog, Usp14, and Uch37. Occupancy of either DUB by a ubiquitin conjugate leads to ATPase stimulation, thereby coupling deubiquitination and ATP hydrolysis. Thus, ubiquitinated loosely folded proteins, after becoming bound to the 26 S, interact with Ubp6/Usp14 or Uch37 to activate ATP hydrolysis and enhance their own destruction. PMID:23341450

  12. Leishmania amazonensis: characterization of an ouabain-insensitive Na+-ATPase activity.

    PubMed

    de Almeida-Amaral, Elmo Eduardo; Caruso-Neves, Celso; Pires, Vanessa Maria Pereira; Meyer-Fernandes, José Roberto

    2008-02-01

    We characterized ouabain-insensitive Na+-ATPase activity present in the plasma membrane of Leishmania amazonensis and investigated its possible role in the growth of the parasite. An increase in Na+ concentration in the presence of 1mM ouabain, increased the ATPase activity with a V(max) of 154.1+/-13.5nmol Pi x h(-1) x mg(-1) and a K0.5 of 28.9+/-7.7mM. Furosemide and sodium orthovanadate inhibited the Na+-stimulated ATPase activity with an IC(50) of 270microM and 0.10microM, respectively. Furosemide inhibited the growth of L. amazonensis after 48h incubation, with maximal effect after 96h. The IC50 for furosemide was 840. On the other hand, ouabain (1mM) did not change the growth of the parasite. Taken together, these results show that L. amazonensis expresses a P-type, ouabain-insensitive Na+-ATPase that could be involved with the growth of the parasite. PMID:17825292

  13. Quantitation of Na+, K+-atpase Enzymatic Activity in Tissues of the Mammalian Vestibular System

    NASA Technical Reports Server (NTRS)

    Kerr, T. P.

    1985-01-01

    In order to quantify vestibular Na(+), K(+)-ATPase, a microassay technique was developed which is sufficiently sensitive to measure the enzymatic activity in tissue from a single animal. The assay was used to characterize ATPase in he vestibular apparatus of the Mongolian gerbil. The quantitative procedure employs NPP (5 mM) as synthetic enzyme substrate. The assay relies upon spectrophotometric measurement (410 nm) of nitrophenol (NP) released by enzymatic hydrolysis of the substrate. Product formation in the absence of ouabain reflects both specific (Na(+), K(+)-ATPase) and non-specific (Mg(++)-ATPase) enzymatic activity. By measuring the accumulation of reaction product (NP) at three-minute intervals during the course of incubation, it is found that the overall enzymatic reaction proceeds linearly for at least 45 minutes. It is therefore possible to determine two separate reaction rates from a single set of tissues. Initial results indicate that total activity amounts to 53.3 + or - 11.2 (S.E.M.) nmol/hr/mg dry tissue, of which approximately 20% is ouabain-sensitive.

  14. Do cardiac actin mutations lead to altered actomyosin interactions?

    PubMed

    Dahari, Marissa; Dawson, John F

    2015-08-01

    It is currently hypothesized that increased heart muscle contractility leads to hypertrophic cardiomyopathy (HCM), and reduced contractility leads to dilated cardiomyopathy (DCM). To determine if changes in the core interaction between actin and myosin occur due to mutations in the cardiac actin gene (ACTC), we measured the interactions between myosin and 8 ACTC mutant proteins found in patients with HCM or DCM. R312H showed a decreased actin-activated myosin S1 ATPase rate (13.1 ± 0.63 μmol/L/min) compared to WT (15.3 ± 1.6 μmol/L/min), whereas the rate with E99K was significantly higher (20.1 ± 1.5 μmol/L/min). In vitro motility assays with varying ATP concentrations showed that the KM for E99K remains unchanged with a significantly decreased Vmax (1.90 ± 0.37 μm/sec) compared to WT (3.33 ± 0.46 μm/sec). Based on a 5 nm myosin step size, we calculated a duty ratio of approximately 0.04 for WT and the majority of mutant actins; however, the duty ratio for E99K was twice as high. Based on our analysis of 8 ACTC mutants, we infer that mutations in ACTC lead to disease through various molecular mechanisms. While changes in actomyosin interactions with the E99K mutation might cause increased ATP usage and tension leading to HCM, measurable changes in the basic interaction between actin and myosin do not appear to be involved in the mechanisms of disease development for the other ACTC mutants tested. PMID:26194323

  15. Decreased Erythrocyte NA+,K+-ATPase Activity and Increased Plasma TBARS in Prehypertensive Patients

    PubMed Central

    Malfatti, Carlos Ricardo Maneck; Burgos, Leandro Tibiriçá; Rieger, Alexandre; Rüdger, Cássio Luiz; Túrmina, Janaína Angela; Pereira, Ricardo Aparecido; Pavlak, João Lang; Silva, Luiz Augusto; Osiecki, Raul

    2012-01-01

    The essential hypertension has been associated with membrane cell damage. The aim of the present study is investigate the relationship between erythrocyte Na+,K+-ATPase and lipoperoxidation in prehypertensive patients compared to normotensive status. The present study involved the prehypertensive patients (systolic: 136 ± 7 mmHg; diastolic: 86.8 ± 6.3 mmHg; n = 8) and healthy men with normal blood pressure (systolic: 110 ± 6.4 mmHg; diastolic: 76.1 ± 4.2 mmHg; n = 8) who were matched for age (35 ± 4 years old). The venous blood samples of antecubital vein (5 mL) were collected into a tube containing sodium heparin as anticoagulant (1000 UI), and erythrocyte ghosts were prepared for quantifying Na+,K+-ATPase activity. The extent of the thiobarbituric acid reactive substances (TBARS) was determined in plasma. The statistical analysis was carried out by Student's t-test and Pearson's correlation coefficient. A P < 0.05 was considered significant. The Na+,K+-ATPase activity was lower in prehypertensive patients compared with normotensive subjects (4.9 versus 8.0 nmol Pi/mg protein/min; P < 0.05). The Na+,K+-ATPase activity correlated negatively with TBARS content (r = −0.6; P < 0.05) and diastolic blood pressure (r = −0.84; P < 0.05). The present study suggests that Na+,K+-ATPase activity reduction and elevation of the TBARS content may underlie the pathophysiological aspects linked to the prehypertensive status. PMID:22919304

  16. FXYD1 negatively regulates Na(+)/K(+)-ATPase activity in lung alveolar epithelial cells.

    PubMed

    Wujak, Łukasz A; Blume, Anna; Baloğlu, Emel; Wygrecka, Małgorzata; Wygowski, Jegor; Herold, Susanne; Mayer, Konstantin; Vadász, István; Besuch, Petra; Mairbäurl, Heimo; Seeger, Werner; Morty, Rory E

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is clinical syndrome characterized by decreased lung fluid reabsorption, causing alveolar edema. Defective alveolar ion transport undertaken in part by the Na(+)/K(+)-ATPase underlies this compromised fluid balance, although the molecular mechanisms at play are not understood. We describe here increased expression of FXYD1, FXYD3 and FXYD5, three regulatory subunits of the Na(+)/K(+)-ATPase, in the lungs of ARDS patients. Transforming growth factor (TGF)-β, a pathogenic mediator of ARDS, drove increased FXYD1 expression in A549 human lung alveolar epithelial cells, suggesting that pathogenic TGF-β signaling altered Na(+)/K(+)-ATPase activity in affected lungs. Lentivirus-mediated delivery of FXYD1 and FXYD3 allowed for overexpression of both regulatory subunits in polarized H441 cell monolayers on an air/liquid interface. FXYD1 but not FXYD3 overexpression inhibited amphotericin B-sensitive equivalent short-circuit current in Ussing chamber studies. Thus, we speculate that FXYD1 overexpression in ARDS patient lungs may limit Na(+)/K(+)-ATPase activity, and contribute to edema persistence. PMID:26410457

  17. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    PubMed

    Rocco-Machado, Nathália; Cosentino-Gomes, Daniela; Meyer-Fernandes, José Roberto

    2015-01-01

    Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite. PMID:26070143

  18. Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity

    PubMed Central

    Chen, Ronald JY; Chung, Tse-yu; Li, Feng-yin; Lin, Nan-hei; Tzen, Jason TC

    2009-01-01

    Aim: To determine whether ginsenosides with various sugar attachments may act as active components responsible for the cardiac therapeutic effects of ginseng and sanqi (the roots of Panax ginseng and Panax notoginseng) via the same molecular mechanism triggered by cardiac glycosides, such as ouabain and digoxin. Methods: The structural similarity between ginsenosides and ouabain was analyzed. The inhibitory potency of ginsenosides and ouabain on Na+/K+-ATPase activity was examined and compared. Molecular modeling was exhibited for the docking of ginsenosides to Na+/K+-ATPase. Results: Ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure, equivalent to the sugar position in cardiac glycosides, and possessed inhibitory potency on Na+/K+-ATPase activity. However, their inhibitory potency was significantly reduced or completely abolished when a monosaccharide was linked to the C-6 or C-20 position of the steroid-like structure; replacement of the monosaccharide with a disaccharide molecule at either of these positions caused the disappearance of the inhibitory potency. Molecular modeling and docking confirmed that the difference in Na+/K+-ATPase inhibitory potency among ginsenosides was due to the steric hindrance of sugar attachment at the C-6 and C-20 positions of the steroid-like structure. Conclusion: The cardiac therapeutic effects of ginseng and sanqi should be at least partly attributed to the effective inhibition of Na+/K+-ATPase by their metabolized ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure. PMID:19060914

  19. Goatpoxvirus ATPase activity is increased by dsDNA and decreased by zinc ion.

    PubMed

    Lee, Ming-Liang; Hsu, Wei-Li; Wang, Chi-Young; Chen, Hui-Yu; Lin, Fong-Yuan; Chang, Ming-Huang; Chang, Hong-You; Wong, Min-Liang; Chan, Kun-Wei

    2016-10-01

    Viral-encoded ATPase can act as a part of molecular motor in genome packaging of DNA viruses, such as vaccinia virus and adenovirus, by ATP hydrolysis and interaction with DNA. Poxviral ATPase (also called A32) is involved in genomic double-stranded DNA (dsDNA) encapsidation, and inhibition of the expression of A32 causes formation of immature virions lacking viral DNA. However, the role of A32 in goatpoxvirus genome packaging and its dsDNA binding property are not known. In this study, purified recombinant goatpoxvirus A32 protein (rA32) was examined for its dsDNA binding property as well as the effect of dsDNA on ATP hydrolysis. We found that rA32 could bind dsDNA, and its ATPase activity was significant increased with dsDNA binding. Effects of magnesium and calcium ions on ATP hydrolysis were investigated also. The ATPase activity was dramatically enhanced by dsDNA in the presence of Mg(2+); in contrast, ATPase function was not altered by Ca(2+). Furthermore, the enzyme activity of rA32 was completely blocked by Zn(2+). Regarding DNA-protein interaction, the rA32-ATP-Mg(2+) showed lower dsDNA binding affinity than that of rA32-ATP-Ca(2+). The DNA-protein binding was stronger in the presence of zinc ion. Our results implied that A32 may play a role in viral genome encapsidation and DNA condensation. PMID:27146321

  20. Different sensitivity of Zajdela hepatoma mitochondrial ATPase activity to uncouplers in digitonin-treated cells and isolated mitochondria.

    PubMed

    Luciaková, K; Kuzela, S

    1983-01-01

    Digitonin-treated Zajdela hepatoma cells and rat hepatocytes devoid of almost all cytosol but retaining intact mitochondria were found to represent a suitable system for direct measurement of mitochondrial ATPase activity. The enzyme activity in digitonin-treated Zajdela hepatoma cells in contrast to that of isolated coupled mitochondria was stimulated by uncouplers. No difference in response of mitochondrial ATPase activity to uncouplers in digitonin-treated hepatocytes and isolated liver mitochondria was found. It is concluded that uncoupler-insensitive mitochondrial ATPase activity does not occur in intact in situ tumor mitochondria but is acquired during the isolation of the organelles. PMID:6310422

  1. Effect of Hindlimb Unweighting on Single Soleus Fiber Maximal Shortening Velocity and ATPase Activity

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Fitts, R. H.

    1993-01-01

    This study characterizes the time course of change in single soleus muscle fiber size and function elicited by hindlimb un weighting (HU) and analyzes the extent to which varying durations of HU altered maximal velocity of shortening (V(sub o)), myofibrillar adenosinetriphosphatase (ATPase), and relative content of slow and fast myosin in individual soleus fibers. After 1, 2, or 3 weeks of HU, soleus muscle bundles were prepared and stored in skinning solution at -20 C. Single fibers were isolated and mounted between a motor arm and a transducer, and fiber force, V(sub o), and ATPase activity were measured. Fiber myosin content was determined by one-dimensional sodium dodecyl sulfate- (SDS) polyacrylamide gel electrophoresis. After 1, 2, and 3 weeks of HU, soleus fibers exhibited a progressive reduction in fiber diameter (16, 22, and 42%, respectively) and peak force (42, 48, and 7%, respectively). Peak specific tension was significantly reduced after 1 week of HU (18%) and showed no further change in 2-3 weeks of HU. During 1 and 3 wk of HU, fiber V(sub o) and ATPase showed a significant increase. By 3 week, V(sub o) had increased from 1.32 +/- 0.04 to 2.94 +/- 0.17 fiber lengths/s and fiber ATPase from 291 +/- 16 to 1064 +/- 128 micro-M min(sub -1) mm(sub -3). The percent fibers expressing fast myosin heavy chain increased from 4% to 29% by 3 week of HU, and V(sub o) and ATPase activity within a fiber were highly correlated. However, a large population of fibers after 1, 2, and 3 weeks of HU showed increases in V(sub o) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers. The mechanism eliciting increased fiber V(sub o) and ATPase activity was not obvious but may have been due to increases in fast myosin that went undetected on SDS gels and/or other factors unrelated to the myosin filament.

  2. Auxin Activates the Plasma Membrane H+-ATPase by Phosphorylation during Hypocotyl Elongation in Arabidopsis1[W][OA

    PubMed Central

    Takahashi, Koji; Hayashi, Ken-ichiro; Kinoshita, Toshinori

    2012-01-01

    The phytohormone auxin is a major regulator of diverse aspects of plant growth and development. The ubiquitin-ligase complex SCFTIR1/AFB (for Skp1-Cul1-F-box protein), which includes the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) auxin receptor family, has recently been demonstrated to be critical for auxin-mediated transcriptional regulation. Early-phase auxin-induced hypocotyl elongation, on the other hand, has long been explained by the acid-growth theory, for which proton extrusion by the plasma membrane H+-ATPase is a functional prerequisite. However, the mechanism by which auxin mediates H+-ATPase activation has yet to be elucidated. Here, we present direct evidence for H+-ATPase activation in etiolated hypocotyls of Arabidopsis (Arabidopsis thaliana) by auxin through phosphorylation of the penultimate threonine during early-phase hypocotyl elongation. Application of the natural auxin indole-3-acetic acid (IAA) to endogenous auxin-depleted hypocotyl sections induced phosphorylation of the penultimate threonine of the H+-ATPase and increased H+-ATPase activity without altering the amount of the enzyme. Changes in both the phosphorylation level of H+-ATPase and IAA-induced elongation were similarly concentration dependent. Furthermore, IAA-induced H+-ATPase phosphorylation occurred in a tir1-1 afb2-3 double mutant, which is severely defective in auxin-mediated transcriptional regulation. In addition, α-(phenylethyl-2-one)-IAA, the auxin antagonist specific for the nuclear auxin receptor TIR1/AFBs, had no effect on IAA-induced H+-ATPase phosphorylation. These results suggest that the TIR1/AFB auxin receptor family is not involved in auxin-induced H+-ATPase phosphorylation. Our results define the activation mechanism of H+-ATPase by auxin during early-phase hypocotyl elongation; this is the long-sought-after mechanism that is central to the acid-growth theory. PMID:22492846

  3. In vitro antioxidant and H+, K+-ATPase inhibition activities of Acalypha wilkesiana foliage extract

    PubMed Central

    Prakash Gupta, Rajesh Kashi; Pradeepa; Hanumanthappa, Manjunatha

    2013-01-01

    Aims: The aim of this study was to evaluate the antioxidant activty and anti-acid property of Acalypha wilkesiana foliage extract. Materials and Methods: Hot and cold aqueous extracts were prepared from healthy leaves of A. wilkesiana. Free radical scavenging activity and H+, K+-ATPase inhibition activities of aqueous foliage extracts was screened by in vitro models. Statistical Analysis Used: All experiments were performed in triplicate and results are expressed as mean ± SEM. Results: A. wilkesiana hot aqueous extract (AWHE) showed significant antioxidants and free radical scavenging activity. Further, AWHE has shown a potent H+, K+-ATPase inhibitory activity (IC50: 51.5 ± 0.28 μg/ml) when compare to standard proton pump inhibitor omeprazole (56.2 ± 0.64 μg/ml); however, latter activity is equal to A. wilkesiana cold aqueous extract (AWCE). Quantitative analysis of AWHE has revealed more content of phenols and flavonoids; this is found to be the reason for good antioxidant activity over AWCE. Molecular docking was carried out against H+, K+-ATPase enzyme crystal structure to validate the anti-acid activity of A. wilkesiana major phytochemicals. Conclusions: The present study indicates that the constituents of AWHE and AWCE have good antacid and free radical scavenging activity. PMID:24082698

  4. Gill ATPase activity in Procambarus clarkii as an indicator of heavy metal pollution

    SciTech Connect

    Torreblanca, A.; Del Ramo, J.; Diaz-Mayans, J. )

    1989-06-01

    Lake Albufera and the surrounding rice field waters are subjected to very heavy loads of sewage and toxic industrial residues, including heavy metals, from the many urban and waste waters of this area. The American red crayfish, Procambarus clarkii have a high resistance to toxic effects of heavy metals. The sublethal effects of heavy metals on gills of fish and aquatic invertebrates have been extensively studied. Some metabolic disturbances and histologic damages have been reported, as well as osmoregulation alterations. However, little work has been done about the effect of heavy metals on Na,K and Mg-ATPases of freshwater invertebrate gills. Na,K-ATPase is the prime mediator of ion transport across cellular membranes and plays a central role in whole body ion regulation in marine and estuarine animals. Na,K-ATPase has been reviewed and assessed as a potentially useful indicator of pollution stress in aquatic animals. The purpose of this study is look for the relation, if any, between crayfish gill ATP-ase activity changes and metal exposure in laboratory. This find would allow the authors to assay this potential indicator in the field.

  5. Effect of Vanadate, Molybdate, and Azide on Membrane-Associated ATPase and Soluble Phosphatase Activities of Corn Roots 1

    PubMed Central

    Gallagher, Sean R.; Leonard, Robert T.

    1982-01-01

    The effects of vanadate, molybdate, and azide on ATP phosphohydrolase (ATPase) and acid phosphatase activities of plasma membrane, mitochondrial, and soluble supernatant fractions from corn (Zea mays L. WF9 × MO17) roots were investigated. Azide (0.1-10 millimolar) was a selective inhibitor of pH 9.0-ATPase activity of the mitochondrial fraction, while molybdate (0.01-1.0 millimolar) was a relatively selective inhibitor of acid phosphatase activity in the supernatant fraction. The pH 6.4-ATPase activity of the plasma membrane fraction was inhibited by vanadate (10-500 micromolar), but vanadate, at similar concentrations, also inhibited acid phosphatase activity. This result was confirmed for oat (Avena sativa L.) root and coleoptile tissues. While vanadate does not appear to be a selective inhibitor, it can be used in combination with molybdate and azide to distinguish the plasma membrane ATPase from mitochondrial ATPase or supernatant acid phosphatase. Vanadate appeared to be a noncompetitive inhibitor of the plasma membrane ATPase, and its effectiveness was increased by K+. K+-stimulated ATPase activity was inhibited by 50% at about 21 micromolar vanadate. The rate of K+ transport in excised corn root segments was inhibited by 66% by 500 micromolar vanadate. PMID:16662676

  6. Cell-sized liposome doublets reveal active tension build-up driven by acto-myosin dynamics.

    PubMed

    Caorsi, V; Lemière, J; Campillo, C; Bussonnier, M; Manzi, J; Betz, T; Plastino, J; Carvalho, K; Sykes, C

    2016-07-20

    Cells modulate their shape to fulfill specific functions, mediated by the cell cortex, a thin actin shell bound to the plasma membrane. Myosin motor activity, together with actin dynamics, contributes to cortical tension. Here, we examine the individual contributions of actin polymerization and myosin activity to tension increase with a non-invasive method. Cell-sized liposome doublets are covered with either a stabilized actin cortex of preformed actin filaments, or a dynamic branched actin network polymerizing at the membrane. The addition of myosin II minifilaments in both cases triggers a change in doublet shape that is unambiguously related to a tension increase. Preformed actin filaments allow us to evaluate the effect of myosin alone while, with dynamic actin cortices, we examine the synergy of actin polymerization and myosin motors in driving shape changes. Our assay paves the way for a quantification of tension changes triggered by various actin-associated proteins in a cell-sized system. PMID:27378156

  7. Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility

    PubMed Central

    Ivanov, Andrei I; Samarin, Stanislav N; Bachar, Moshe; Parkos, Charles A; Nusrat, Asma

    2009-01-01

    Background Disruption of epithelial cell-cell adhesions represents an early and important stage in tumor metastasis. This process can be modeled in vitro by exposing cells to chemical tumor promoters, phorbol esters and octylindolactam-V (OI-V), known to activate protein kinase C (PKC). However, molecular events mediating PKC-dependent disruption of epithelial cell-cell contact remain poorly understood. In the present study we investigate mechanisms by which PKC activation induces disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium. Results Exposure of HPAF-II human pancreatic adenocarcinoma cell monolayers to either OI-V or 12-O-tetradecanoylphorbol-13-acetate caused rapid disruption and internalization of AJs and TJs. Activity of classical PKC isoenzymes was responsible for the loss of cell-cell contacts which was accompanied by cell rounding, phosphorylation and relocalization of the F-actin motor nonmuscle myosin (NM) II. The OI-V-induced disruption of AJs and TJs was prevented by either pharmacological inhibition of NM II with blebbistatin or by siRNA-mediated downregulation of NM IIA. Furthermore, AJ/TJ disassembly was attenuated by inhibition of Rho-associated kinase (ROCK) II, but was insensitive to blockage of MLCK, calmodulin, ERK1/2, caspases and RhoA GTPase. Conclusion Our data suggest that stimulation of PKC disrupts epithelial apical junctions via ROCK-II dependent activation of NM II, which increases contractility of perijunctional actin filaments. This mechanism is likely to be important for cancer cell dissociation and tumor metastasis. PMID:19422706

  8. Amplification of AngII-dependent cell contraction by glyoxal: implication of cell mechanical properties and actomyosin activity.

    PubMed

    Boucher, Julie; Simard, Elie; Froehlich, Ulrike; Grandbois, Michel

    2014-04-01

    Glyoxal (GO), a highly reactive metabolite of glucose, is associated with diabetic vascular complications via the formation of advanced glycation end-products. Considering its ability to react with proteins' amino acids and its crosslinking potential, we suggest that GO affects cellular mechanical functions such as contractility. Therefore, we tested the effects of GO on cellular contractile response following AngII stimulation of human embryonic kidney cells over-expressing the AT1 receptor (HEK 293 AT1aR). Prior to cell stimulation with AngII, cells exposed to GO exhibited carboxymethyllysine-adduct formation and an increase in cellular stiffness, which could be prevented by pre-treatment with aminoguanidine. The time-dependent cellular contractile response to AngII was measured by monitoring cell membrane displacement by atomic force atomic force microscopy (AFM) and by quantifying myosin light chain phosphorylation (p-MLC) via immunoblotting. Interestingly, short-term GO exposure increased by 2.6 times the amplitude of cell contraction induced by AngII and this was also associated with a sustained rise in p-MLC. This increased response to AngII induced by GO appears to be linked to its glycation potential, as aminoguanidine pre-treatment prevented this increased cellular mechanical response. Our results also suggest that GO could have an impact on ROCK activity, as ROCK inhibition with Y-27632 blocked the enhanced contractile response (p = 0.011) measured under GO conditions. Together, these results indicate that GO enhances the cellular response to AngII and modifies cellular mechanical properties via a mechanism that relies on its glycation potential and on the activation of the ROCK-dependent pathway. PMID:24503653

  9. The ATPase activity of saponin-treated rat erythrocytes: regulation by monovalent cations, calcium, ouabain, and furosemide.

    PubMed

    Petrunyaka, V V; Panyushkina, E A; Severina, E P; Orlov, S N

    1990-12-14

    The ATPase activities were studied in rat erythrocytes permeabilized with saponin. The concentrations of calcium and magnesium ions were varied within the range of 0.1-60 microM and 50-370 microM, respectively, by using EGTA-citrate buffer. The maximal activity of Ca2(+)-ATPase of permeabilized erythrocytes was by one order of magnitude higher, whereas the Ca2(+)-binding affinity was 1.5-2 times higher than that in erythrocyte ghosts washed an isotonic solution containing EGTA. Addition of the hemolysate restored the kinetic parameters of ghost Ca2(+)-ATPase practically completely, whereas in the presence of exogenous calmodulin only part of Ca2(+)-ATPase activity was recovered. Neither calmodulin nor R24571, a highly potent specific inhibitor of calmodulin-dependent reactions, influenced the Ca2(+)-ATPase activity of permeabilized erythrocytes. At Ca2+ concentrations below 0.7 microM, ouabain (0.5-1 mM) activated whereas at higher Ca2+ concentrations it inhibited the Ca2(+)-ATPase activity. Taking this observation into account the Na+/K(+)-ATPase was determined as the difference of between the ATPase activities in the presence of Na+ and K+ and in the presence of K+ alone. At physiological concentration of Mg2+ (370 microM), the addition of 0.3-1 microM Ca2+ increased Na+/K(+)-ATPase activity by 1.5-3-fold. Higher concentrations of this cation inhibited the enzyme. At low Mg2+ concentration (e.g., 50 microM) only Na+/K(+)-ATPase inhibition by Ca2+ was seen. It was found that at [NaCl] less than 20 mM furosemide was increased ouabain-inhibited component of ATPase in Ca2(+)-free media. This activating effect of furosemide was enhanced with a diminution of [Na+] upto 2 mM and did not reach the saturation level unless the 2 mM of drug was used. The activating effect of furosemide on Na+/K(+)-ATPase activity confirmed by experiments in which the ouabain-inhibited component was measured by the 86Rb+ influx into intact erythrocytes. PMID:2175654

  10. Regulation of membrane-type 1 matrix metalloproteinase activity by vacuolar H+-ATPases.

    PubMed Central

    Maquoi, Erik; Peyrollier, Karine; Noël, Agnès; Foidart, Jean-Michel; Frankenne, Francis

    2003-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a key enzyme in normal development and malignant processes. The regulation of MT1-MMP activity on the cell surface is a complex process involving autocatalytic processing, tissue inhibitor of MMPs (TIMP) binding and constitutive internalization. However, the fate of internalized MT1-MMP is not known. Acidification of intracellular vacuolar compartments is essential for membrane trafficking, protein sorting and degradation. This acidification is controlled by vacuolar H(+)-ATPases, which can be selectively inhibited by bafilomycin-A(1). Here, we treated human tumour cell lines expressing MT1-MMP with bafilomycin-A(1), and analysed its effects on MT1-MMP activity, internalization and processing. We show that the activity of MT1-MMP on the cell surface is constitutively down-regulated through a vacuolar H(+)-ATPase-dependent degradation process. Blockade of this degradation caused the accumulation of TIMP-free active MT1-MMP molecules on the cell surface, although internalization was not affected. As a consequence of this impaired degradation, pro-MMP-2 activation was strongly enhanced. This study demonstrates that the catalytic activity of MT1-MMP on the cell surface is regulated through a vacuolar H(+)-ATPase-dependent degradation process. PMID:12667140

  11. Cooperativity of thiol-modified myosin filaments. ATPase and motility assays of myosin function.

    PubMed Central

    Root, D D; Reisler, E

    1992-01-01

    The effects of chemical modifications of myosin's reactive cysteines on actomyosin adenosine triphosphatase (ATPase) activities and sliding velocities in the in vitro motility assays were examined in this work. The three types of modifications studied were 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3- diazole labeling of SH2 (based on Ajtai and Burghart. 1989. Biochemistry. 28:2204-2210.), phenylmaleimide labeling of SH1, and phenylmaleimide labeling of myosin in myofibrils under rigor conditions. Each type of modified myosin inhibited the sliding of actin in motility assays. The sliding velocities of actin over copolymers of modified and unmodified myosins in the motility assay were slowest with rigor-modified myosin and most rapid with SH2-labeled myosin. The actin-activated ATPase activities of similarly copolymerized myosins were lowest with SH2-labeled myosin and highest with rigor-modified myosin. The actin-activated ATPase activities of myosin subfragment-1 obtained from these modified myosins decreased in the same linear manner with the fraction of modified heads. These results are interpreted using a model in which the sliding of actin filaments over myosin filaments decreases the probability of myosin activation by actin. The sliding velocity of actin over monomeric rigor-modified myosin exceeded that over the filamentous form, which suggests for this myosin that filament structure is important for the inhibition of actin sliding in motility assays. The fact that all cysteine modifications examined inhibited the actomyosin ATPase activities and sliding velocities of actin over myosin poses questions concerning the information about the activated crossbridge obtained from probes attached to SH1 or SH2 on myosin. PMID:1420910

  12. Conformational studies on activation of the E. coli uvrB cryptic ATPase

    SciTech Connect

    Hildebrand, E.L.; Grossman, L.

    1994-12-31

    Expression of a DNA-dependent ATPase activity by the uvrB protein is essential for early steps (preceding incision) in nucleotide excision repair (NER) in E. coli. Yet, in isolation, uvrB lacks any known catalytic ability. Its cryptic ATPase is elicited in NER by association with uvrA, but it can also be turned on by a specific, omp T-mediated proteolytic elimination of the C-terminal 43 amino acids. The truncated protein uvrB{sup *} may serve as a model for the activated structure induced by complex formation with uvrA. To probe the mechanism of activation, which may be expected to require a series of conformational changes, we have introduced the intrinsic fluorophore tryptophan (Trp) into the ATP binding site of uvrB via site-specific mutagenesis.

  13. Effect of the Electrochemical Proton Gradient and Anions on the ATPase Activity of Soybean Submitochondrial Particles 1

    PubMed Central

    Martins, Ione S.; Martins, Orlando B.; de Gómez-Puyou, Marietta Tuena; Gómez-Puyou, Armando

    1988-01-01

    Submitochondrial particles from soybean (Glycine max L. cv Jupiter) hypocotyls with an ATPase activity of 0.3 to 1.0 micromole per minute per milligram were prepared by sonication with Mg-ATP. The particles catalyzed ATP synthesis with NADH and succinate; the ratios of ATP/O with these substrates were 1.0 and 0.1, respectively. As monitored by oxonol-VI, the particles built up and maintained a membrane potential that was higher with NADH than with succinate or Mg-ATP. The ATPase activity of the particles increased two to threefold by preincubation with 50 millimolar phosphate at a temperature of 38°C. The increase in ATPase activity became higher (five to sixfold) when particles were preincubated with Mg-ATP plus phosphate. Under the latter conditions, collapse of Δ̄μH by carbonyl cyanide p-trifluoromethoxyphenylhydrazone prevented the activation. An increase in ATPase activity of the particles was also observed with NADH and succinate, although activation was lower with succinate. With these substrates, phosphate did not increase ATPase activation. When particles were preincubated with Mg-ATP, anions that stimulate ATP hydrolysis (malate, malonate, and bicarbonate) had an activating effect similar to that of phosphate. The data suggest that the soybean mitochondrial ATPase can be activated by Δ̄μH but that this activation is increased by the binding of certain anions to a conformation of the enzyme that appears during hydrolytic cycles. PMID:16666151

  14. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity.

    PubMed

    Ledoux, Sarah; Guthrie, Christine

    2016-06-01

    Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices. PMID:27072132

  15. Inhibition of ATPase activity of the recA protein by ATP ribose-modified analogs.

    PubMed

    Karasaki, Y; Higashi, K

    1984-09-01

    The single-stranded, DNA-dependent ATPase activity of purified recA protein was found to be inhibited competitively by ribose-modified analogs of ATP, 3'-O-anthraniloyl-ATP (Ant-ATP), and 3'-O-(N-methylanthraniloyl)-ATP (Mant-ATP). The Ki values for Ant-ATP and Mant-ATP were around 7 and 3 microM at pH 7.5, respectively. The inhibitions by these analogs were much stronger than that by ADP, which is also a competitive inhibitor for the ATPase activity of the recA protein. The Ki value for ADP is 76 microM. Ant-ATP and Mant-ATP reduced the Hill coefficient for ATP hydrolysis and thus contributed to the cooperative effect of ATP. PMID:6237610

  16. Rotational motion and evidence for oligomeric structures of sarcoplasmic reticulum Ca2+-activated ATPase.

    PubMed Central

    Hoffmann, W; Sarzala, M G; Chapman, D

    1979-01-01

    The rotational motion of the sarcoplasmic reticulum Ca2+-activated ATPase (ATP phosphohydrolase, EC 3.6.1.3) has been investigated by measuring the decay of laser flash-induced dichroism with the covalently attached triplet probe eosin isothiocyanate. The Arrhenius plot for rotational mobility indicates two discontinuities at approximately 15 degrees C and approximately 35 degrees C. The experimental data are rationalized in terms of a sudden conformeric change in the ATPase at 15 degrees C and a temperature-dependent equilibrium existing between the conformationally altered ATPase and oligomeric forms of it in the temperature range 15-35 degrees C. The enzymatic activity, as indicated by a discontinuity in the Arrhenius plot for the rate of ATP hydrolysis, appears to be sensitive only to the change at 15 degrees C. There is a strong correlation between the activation energy below 15 degrees C for rotational motion (33.6 +/- 2.2 kcal/mol) and enzymatic activity (34 +/- 4 kcal/mol). PMID:158763

  17. An increase in the Na+/K+-ATPase activity of erythrocyte membranes in workers employed in a lead refining factory.

    PubMed Central

    Karai, I; Fukumoto, K; Horiguchi, S

    1982-01-01

    To clarify the relationship between erythrocyte Na+/K+-ATPase activity and haematological findings, several clinical laboratory examinations were performed on 31 male workers employed in a scrap lead refining factory and, as controls, 50 male workers employed in railway construction. The results were: (1) Values for erythrocyte Na+/K+-ATPase activity, blood and urine lead, urine delta-aminolaevulinic acid, and urine coproporphyrin of lead workers were significantly higher than those of the controls (p less than 0.01). (2) A strongly positive relationship between blood lead and erythrocyte Na/K-ATPase activity was observed in lead workers (r = 0.473, p less than 0.01). (3) A strongly negative relationship between Na+/K+-ATPase activity and intracellular sodium was observed in both groups (lead workers; r = -0.601, p less than 0.01: controls; r = 0.595, p less than 0.01). PMID:6284196

  18. Molecular determinants of ATP-sensitive potassium channel MgATPase activity: diabetes risk variants and diazoxide sensitivity.

    PubMed

    Fatehi, Mohammad; Carter, Chris R J; Youssef, Nermeen; Hunter, Beth E; Holt, Andrew; Light, Peter E

    2015-01-01

    ATP-sensitive K(+) (KATP) channels play an important role in insulin secretion. KATP channels possess intrinsic MgATPase activity that is important in regulating channel activity in response to metabolic changes, although the precise structural determinants are not clearly understood. Furthermore, the sulfonylurea receptor 1 (SUR1) S1369A diabetes risk variant increases MgATPase activity, but the molecular mechanisms remain to be determined. Therefore, we hypothesized that residue-residue interactions between 1369 and 1372, predicted from in silico modelling, influence MgATPase activity, as well as sensitivity to the clinically used drug diazoxide that is known to increase MgATPase activity. We employed a point mutagenic approach with patch-clamp and direct biochemical assays to determine interaction between residues 1369 and 1372. Mutations in residues 1369 and 1372 predicted to decrease the residue interaction elicited a significant increase in MgATPase activity, whereas mutations predicted to possess similar residue interactions to wild-type (WT) channels elicited no alterations in MgATPase activity. In contrast, mutations that were predicted to increase residue interactions resulted in significant decreases in MgATPase activity. We also determined that a single S1369K substitution in SUR1 caused MgATPase activity and diazoxide pharmacological profiles to resemble those of channels containing the SUR2A subunit isoform. Our results provide evidence, at the single residue level, for a molecular mechanism that may underlie the association of the S1369A variant with type 2 diabetes. We also show a single amino acid difference can account for the markedly different diazoxide sensitivities between channels containing either the SUR1 or SUR2A subunit isoforms. PMID:26181369

  19. Molecular determinants of ATP-sensitive potassium channel MgATPase activity: diabetes risk variants and diazoxide sensitivity

    PubMed Central

    Fatehi, Mohammad; Carter, Chris R.J.; Youssef, Nermeen; Hunter, Beth E.; Holt, Andrew; Light, Peter E.

    2015-01-01

    ATP-sensitive K+ (KATP) channels play an important role in insulin secretion. KATP channels possess intrinsic MgATPase activity that is important in regulating channel activity in response to metabolic changes, although the precise structural determinants are not clearly understood. Furthermore, the sulfonylurea receptor 1 (SUR1) S1369A diabetes risk variant increases MgATPase activity, but the molecular mechanisms remain to be determined. Therefore, we hypothesized that residue–residue interactions between 1369 and 1372, predicted from in silico modelling, influence MgATPase activity, as well as sensitivity to the clinically used drug diazoxide that is known to increase MgATPase activity. We employed a point mutagenic approach with patch-clamp and direct biochemical assays to determine interaction between residues 1369 and 1372. Mutations in residues 1369 and 1372 predicted to decrease the residue interaction elicited a significant increase in MgATPase activity, whereas mutations predicted to possess similar residue interactions to wild-type (WT) channels elicited no alterations in MgATPase activity. In contrast, mutations that were predicted to increase residue interactions resulted in significant decreases in MgATPase activity. We also determined that a single S1369K substitution in SUR1 caused MgATPase activity and diazoxide pharmacological profiles to resemble those of channels containing the SUR2A subunit isoform. Our results provide evidence, at the single residue level, for a molecular mechanism that may underlie the association of the S1369A variant with type 2 diabetes. We also show a single amino acid difference can account for the markedly different diazoxide sensitivities between channels containing either the SUR1 or SUR2A subunit isoforms. PMID:26181369

  20. Review: The ATPase mechanism of myosin and actomyosin.

    PubMed

    Geeves, Michael A

    2016-08-01

    Myosins are a large family of molecular motors that use the common P-loop, Switch 1 and Switch 2 nucleotide binding motifs to recognize ATP, to create a catalytic site than can efficiently hydrolyze ATP and to communicate the state of the nucleotide pocket to other allosteric binding sites on myosin. The energy of ATP hydrolysis is used to do work against an external load. In this short review I will outline current thinking on the mechanism of ATP hydrolysis and how the energy of ATP hydrolysis is coupled to a series of protein conformational changes that allow a myosin, with the cytoskeleton track actin, to operate as a molecular motor of distinct types; fast movers, processive motors or strain sensors. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 483-491, 2016. PMID:27061920

  1. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants.

    PubMed Central

    Schaller, A; Oecking, C

    1999-01-01

    Systemin is an important mediator of wound-induced defense gene activation in tomato plants, and it elicits a rapid alkalinization of the growth medium of cultured Lycopersicon peruvianum cells. A possible mechanistic link between proton fluxes across the plasma membrane and the induction of defense genes was investigated by modulating plasma membrane H+-ATPase activity. Inhibitors of H+-ATPase (erythrosin B, diethyl stilbestrol, and vanadate) were found to alkalinize the growth medium of L. peruvianum cell cultures and to induce wound response genes in whole tomato plants. Conversely, an activator of the H+-ATPase (fusicoccin) acidified the growth medium of L. peruvianum cell cultures and suppressed systemin-induced medium alkalinization. Likewise, in fusicoccin-treated tomato plants, the wound- and systemin-triggered accumulation of wound-responsive mRNAs was found to be suppressed. However, fusicoccin treatment of tomato plants led to the accumulation of salicylic acid and the expression of pathogenesis-related genes. Apparently, the wound and pathogen defense signaling pathways are differentially regulated by changes in the proton electrochemical gradient across the plasma membrane. In addition, alkalinization of the L. peruvianum cell culture medium was found to depend on the influx of Ca2+ and the activity of a protein kinase. Reversible protein phosphorylation was also shown to be involved in the induction of wound response genes. The plasma membrane H+-ATPase as a possible target of a Ca2+-activated protein kinase and its role in defense signaling are discussed. PMID:9927643

  2. Determinants of contractile forces generated in disorganized actomyosin bundles.

    PubMed

    Kim, Taeyoon

    2015-04-01

    Actomyosin machinery is a fundamental engine consisting mostly of actin filaments, molecular motors, and passive cross-linkers, generating mechanical forces required for biological processes of non-muscle cells such as cell migration, cytokinesis, and morphogenesis. Although the molecular and physical properties of key elements in the actomyosin machinery have been characterized well, it still remains unclear how macroscopic force buildup and dissipation in actomyosin networks and bundles depend on the microscopic properties of individual cytoskeletal components and their local interactions. To bridge such a gap between macroscopic and microscopic scales, we have developed a three-dimensional computational model of actomyosin bundles clamped to an elastic substrate with minimal components: actin filaments, passive cross-linkers, and active motors. Our model accounts for several key features neglected by previous studies despite their significance for force generation, such as realistic structure and kinetics of the motors. Using the model, we systematically investigated how net tension in actomyosin bundles is governed via interplay between motors and cross-linkers. We demonstrated motors can generate large tension on a bundle in the absence of cross-linkers in a very inefficient, unstable manner. Cross-linkers help motors to generate their maximum potential forces as well as enhance overall connectivity, leading to much higher efficiency and stability. We showed further that the cross-linkers behave as a molecular clutch with tunable friction which has quite distinct effects on net tension depending on their cross-linking angles. We also examined the source of symmetry breaking between tensile and compressive forces during tension generation process and discussed how the length and dynamics of actin filaments and the stiffness of the elastic substrate can affect the generated tension. PMID:25103419

  3. Activating Na+-K+ ATPase: a potential cardioprotective therapy during early hemorrhagic shock.

    PubMed

    Li, Weijing; Wang, Xuanlin; He, Min; Wang, Chunyan; Qiao, Zhixin; Wang, Qingjun; Ren, Suping; Yu, Qun

    2014-12-01

    Cell volume and resting potential are heavily affected by the activity of Na+-K+ ATPase (NKA, Na+-K+ pump), an essential membrane protein that regulates plasma K+ and Na+ levels. It is generally accepted that the ineffective perfusion of body tissues inhibits NKA activity and that NKA activity and heart failure are closely related. Recently, research has proven that the activation of NKA provides significant cardioprotection against ischemic injury. Based on these data, we propose that NKA stimulation could attenuate the development of heart arrhythmia during the early phase of hemorrhagic shock. PMID:25459134

  4. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis

    SciTech Connect

    Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B. Tracy

    2013-12-10

    It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with σ54–RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase and the complex of σ54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.

  5. Subcellular localization of calcium and Ca-ATPase activity during nuclear maturation in Bufo arenarum oocytes.

    PubMed

    Ramos, Inés; Cisint, Susana B; Crespo, Claudia A; Medina, Marcela F; Fernández, Silvia N

    2009-08-01

    The localization of calcium and Ca-ATPase activity in Bufo arenarum oocytes was investigated by ultracytochemical techniques during progesterone-induced nuclear maturation, under in vitro conditions. No Ca2+ deposits were detected in either control oocytes or progesterone-treated ones for 1-2 h. At the time when nuclear migration started, electron dense deposits of Ca2+ were visible in vesicles, endoplasmic reticulum cisternae and in the space between the annulate lamellae membranes. Furthermore, Ca-ATPase activity was also detected in these membrane structures. As maturation progressed, the cation deposits were observed in the cytomembrane structures, which underwent an important reorganization and redistribution. Thus, they moved from the subcortex and became located predominantly in the oocyte cortex area when nuclear maturation ended. Ca2+ stores were observed in vesicles surrounding or between the cortical granules, which are aligned close to the plasma membrane. The positive Ca-ATPase reaction in these membrane structures could indicate that the calcium deposit is an ATP-dependent process. Our results suggest that during oocyte maturation calcium would be stored in membrane structures where it remains available for release at the time of fertilization. Data obtained under our experimental conditions indicate that calcium from the extracellular medium would be important for the oocyte maturation process. PMID:19397840

  6. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1

    PubMed Central

    Hannemann, Liya; Suppanz, Ida; Ba, Qiaorui; MacInnes, Katherine; Drepper, Friedel; Warscheid, Bettina

    2016-01-01

    Abstract Aims: YchF/Ola1 are unconventional members of the universally conserved GTPase family because they preferentially hydrolyze ATP rather than GTP. These ATPases have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis. In particular, a possible role in regulating the oxidative stress response has been suggested for both bacterial and human YchF/Ola1. In this study, we analyzed how YchF responds to oxidative stress and how it potentially regulates the antioxidant response. Results: Our data identify a redox-regulated monomer–dimer equilibrium of YchF as a key event in the functional cycle of YchF. Upon oxidative stress, the oxidation of a conserved and surface-exposed cysteine residue promotes YchF dimerization, which is accompanied by inhibition of the ATPase activity. No dimers were observed in a YchF mutant lacking this cysteine. In vitro, the YchF dimer is dissociated by thioredoxin 1 (TrxA) and this stimulates the ATPase activity. The physiological significance of the YchF-thioredoxin 1 interaction was demonstrated by in vivo cross-linking, which validated this interaction in living cells. This approach also revealed that both the ATPase domain and the helical domain of YchF are in contact with TrxA. Innovation: YchF/Ola1 are the first redox-regulated members of the universally conserved GTPase family and are inactivated by oxidation of a conserved cysteine residue within the nucleotide-binding motif. Conclusion: Our data provide novel insights into the regulation of the so far ill-defined YchF/Ola1 family of proteins and stipulate their role as negative regulators of the oxidative stress response. Antioxid. Redox Signal. 24, 141–156. PMID:26160547

  7. Leishmania amazonensis: Increase in ecto-ATPase activity and parasite burden of vinblastine-resistant protozoa.

    PubMed

    Giarola, Naira Lígia Lima; Silveira, Thaís Souza; Inacio, Job Domingos Filho; Vieira, Lisvane Paes; Almeida-Amaral, Elmo Eduardo; Meyer-Fernandes, José Roberto

    2014-11-01

    Leishmania amazonensis is a protozoan parasite that induces mucocutaneous and diffuse cutaneous lesions upon infection. An important component in treatment failure is the emergence of drug-resistant parasites. It is necessary to clarify the mechanism of resistance that occurs in these parasites to develop effective drugs for leishmaniasis treatment. Promastigote forms of L. amazonensis were selected by gradually increasing concentrations of vinblastine and were maintained under continuous drug pressure (resistant cells). Vinblastine-resistant L. amazonensis proliferated similarly to control parasites. However, resistant cells showed changes in the cell shape, irregular flagella and a decrease in rhodamine 123 accumulation, which are factors associated with the development of resistance, suggesting the MDR phenotype. The Mg-dependent-ecto-ATPase, an enzyme located on cell surface of Leishmania parasites, is involved in the acquisition of purine and participates in the adhesion and infectivity process. We compared control and resistant L. amazonensis ecto-enzymatic activities. The control and resistant Leishmania ecto-ATPase activities were 16.0 ± 1.5 nmol Pi × h(-1) × 10(-7) cells and 40.0 ± 4.4 nmol Pi × h(-1) × 10(-7)cells, respectively. Interestingly, the activity of other ecto-enzymes present on the L. amazonensis cell surface, the ecto-5' and 3'-nucleotidases and ecto-phosphatase, did not increase. The level of ecto-ATPase modulation is related to the degree of resistance of the cell. Cells resistant to 10 μM and 60 μM of vinblastine have ecto-ATPase activities of 22.7 ± 0.4 nmol Pi × h(-1) × 10(-7) cells and 33.8 ± 0.8 nmol Pi × h(-1) × 10(-7)cells, respectively. In vivo experiments showed that both lesion size and parasite burden in mice infected with resistant parasites are greater than those of L. amazonensis control cells. Furthermore, our data established a relationship between the increase in ecto-ATPase activity and greater infectivity and

  8. Erythrocyte sodium/potassium ATPase activity in severe preeclampsia

    PubMed Central

    Adair, CD; Haupert, GT; Koh, HP; Wang, Y; Veille, J-C; Buckalew, V

    2011-01-01

    Objective Elevated blood levels of endogenous digitalis-like factors (EDLF) may decrease erythrocyte sodium pump activity in preeclampsia. As the highest EDLF levels might be expected in severe preeclampsia, we investigated sodium pump activity in that group of patients. Study Design Erythrocyte sodium pump activity was determined by 86Rubidium uptake (in nM per hour per 106 cells) in women with severe preeclampsia and those with normal pregnancies, matched for gestational age, and in healthy nonpregnant women (n = 12 in each group). Differences between groups were analyzed by a two-sided Student t-test. Result Sodium pump activity was significantly increased in normotensive pregnancies as compared with normotensive non-pregnant women (81.4 ± 8.4 vs 61.1 ± 7.4, mean ± s.d., p<0.05), and was decreased 43% in severe preeclamptic pregnancies as compared with normotensive pregnancies (46.4 ± 14.1 vs 81.4 ± 8.4, p<0.05). Conclusion Severe preeclampsia is associated with significantly lower erythrocyte sodim pump activity than normotensive pregnancy. These data suggest that plasma levels of a biologically active EDLF are elevated in patients with severe preeclampsia. PMID:19158804

  9. Thyroid hormone stimulates Na-K-ATPase activity and its plasma membrane insertion in rat alveolar epithelial cells.

    PubMed

    Lei, Jianxun; Nowbar, Sogol; Mariash, Cary N; Ingbar, David H

    2003-09-01

    Na-K-ATPase protein is critical for maintaining cellular ion gradients and volume and for transepithelial ion transport in kidney and lung. Thyroid hormone, 3,3',5-triiodo-l-thyronine (T3), given for 2 days to adult rats, increases alveolar fluid resorption by 65%, but the mechanism is undefined. We tested the hypothesis that T3 stimulates Na-K-ATPase in adult rat alveolar epithelial cells (AEC), including primary rat alveolar type II (ATII) cells, and determined mechanisms of the T3 effect on the Na-KATPase enzyme using two adult rat AEC cell lines (MP48 and RLE-6TN). T3 at 10-8 and 10-5 M increased significantly hydrolytic activity of Na-K-ATPase in primary ATII cells and both AEC cell lines. The increased activity was dose dependent in the cell lines (10-9-10-4 M) and was detected within 30 min and peaked at 6 h. Maximal increases in Na-K-ATPase activity were twofold in MP48 and RLE-6TN cells at pharmacological T3 of 10-5 and 10-4 M, respectively, but increases were statistically significant at physiological T3 as low as 10-9 M. This effect was T3 specific, because reverse T3 (3,3',5'-triiodo-l-thyronine) at 10-9-10-4 M had no effect. The T3-induced increase in Na-K-ATPase hydrolytic activity was not blocked by actinomycin D. No significant change in mRNA and total cell protein levels of Na-K-ATPase were detected with 10-9-10-5 M T3 at 6 h. However, T3 increased cell surface expression of Na-K-ATPase alpha1- or beta1-subunit proteins by 1.7- and 2-fold, respectively, and increases in Na-K-ATPase activity and cell surface expression were abolished by brefeldin A. These data indicate that T3 specifically stimulates Na-K-ATPase activity in adult rat AEC. The upregulation involves translocation of Na-K-ATPase to plasma membrane, not increased gene transcription. These results suggest a novel nontranscriptional mechanism for regulation of Na-K-ATPase by thyroid hormone. PMID:12740220

  10. Increased Vacuolar ATPase Activity Correlated With CAM Induction in Mesembryanthemum crystallinum and Kalanchoë blossfeldiana cv. Tom Thumb.

    PubMed

    Struve, I; Weber, A; Lüttge, U; Ball, E; Smith, J A

    1985-01-01

    Vacuolar ATPase activities were determined by differential inhibition of homogenates of isolated protoplasts (using the inhibitors molybdate for acid phosphatases, vanadate for plasmalemma ATPase, azide for mitochondrial ATPase, and phlorizin for chloroplast ATPase) and in preparations of isolated vacuoles of Mesembryanthemum crystallinum and Kalanchoë blossfeldiana cv. Tom Thumb. Crassulacean acid metabolism (CAM) was induced in M. crystallinum by NaCl-salinity and in K. blossfeldiana by short-day treatments. Vacuolar ATPase activities increased several-fold during the transition from C(3) photosynthesis to CAM. The increase was quantitatively related to the rates of nocturnal maliacid accumulation in CAM assuming a stoichiometry of 2 H(+) pumped into the vacuole for 1 ATP hydrolyzed and 1 malate(2-) anion transported by secondary flux coupling. In M. crystallinum increased vacuolar ATPase activities were truly correlated with the degree of CAM expressed and not with NaCl accumulation due to the salinity treatment. Some properties of the vacuolar A TPase of M. crystallinum characterized in vacuole preparations were a pH-optimum near 8.0, an apparent K(m) (MgATP(2-)) of 0.20 to 0.29 mM, and an approximately 70 % inhibition by 50 mM nitrate. PMID:23195866

  11. γ-Benzylidene digoxin derivatives synthesis and molecular modeling: Evaluation of anticancer and the Na,K-ATPase activity effect.

    PubMed

    Alves, Silmara L G; Paixão, Natasha; Ferreira, Letícia G R; Santos, Felipe R S; Neves, Luiza D R; Oliveira, Gisele C; Cortes, Vanessa F; Salomé, Kahlil S; Barison, Andersson; Santos, Fabio V; Cenzi, Gisele; Varotti, Fernando P; Oliveira, Soraya M F; Taranto, Alex G; Comar, Moacyr; Silva, Luciana M; Noël, François; Quintas, Luis Eduardo M; Barbosa, Leandro A; Villar, José A F P

    2015-08-01

    Cardiotonic steroids (CS), natural compounds with traditional use in cardiology, have been recently suggested to exert potent anticancer effects. However, the repertoire of molecules with Na,K-ATPase activity and anticancer properties is limited. This paper describes the synthesis of 6 new digoxin derivatives substituted (on the C17-butenolide) with γ-benzylidene group and their cytotoxic effect on human fibroblast (WI-26 VA4) and cancer (HeLa and RKO) cell lines as well as their effect on Na,K-ATPase activity and expression. As digoxin, compound BD-4 was almost 100-fold more potent than the other derivatives for cytotoxicity with the three types of cells used and was also the only one able to fully inhibit the Na,K-ATPase of HeLa cells after 24h treatment. No change in the Na,K-ATPase α1 isoform protein expression was detected. On the other hand it was 30-40 fold less potent for direct Na,K-ATPase inhibition, when compared to the most potent derivatives, BD-1 and BD-3, and digoxin. The data presented here demonstrated that the anticancer effect of digoxin derivatives substituted with γ-benzylidene were not related with their inhibition of Na,K-ATPase activity or alteration of its expression, suggesting that this classical molecular mechanism of CS is not involved in the cytotoxic effect of our derivatives. PMID:26122772

  12. Calcium release-activated calcium (CRAC) channels mediate the β(2)-adrenergic regulation of Na,K-ATPase.

    PubMed

    Keller, Michael J; Lecuona, Emilia; Prakriya, Murali; Cheng, Yuan; Soberanes, Saul; Budinger, G R Scott; Sznajder, Jacob I

    2014-12-20

    β2-Adrenergic agonists have been shown to regulate Na,K-ATPase in the alveolar epithelium by recruiting Na,K-ATPase-containing vesicles to the plasma membrane of alveolar epithelial cells (AEC). Here, we provide evidence that β2-agonists induce store-operated calcium entry (SOCE) in AECs. This calcium entry is necessary for β2-agonist-induced recruitment of Na,K-ATPase to the plasma membrane of AECs. Specifically, we show that β2-agonists induce SOCE via stromal interaction molecule 1 (STIM1)-associated calcium release-activated calcium (CRAC) channels. We also demonstrate that the magnitude of SOCE affects the abundance of Na,K-ATPase at the plasma membrane of AECs. PMID:25447523

  13. Calcium Release-Activated Calcium (CRAC) Channels Mediate the β2-Adrenergic Regulation of Na,K-ATPase

    PubMed Central

    Keller, Michael J.; Lecuona, Emilia; Prakriya, Murali; Cheng, Yuan; Soberanes, Saul; Scott Budinger, G.R.; Sznajder, Jacob I.

    2014-01-01

    β2-adrenergic agonists have been shown to regulate Na,K-ATPase in the alveolar epithelium by recruiting Na,K-ATPase-containing vesicles to the plasma membrane of alveolar epithelial cells (AEC). Here, we provide evidence that β2-agonists induce store-operated calcium entry (SOCE) in AECs. This calcium entry is necessary for β2-agonist-induced recruitment of Na,K-ATPase to the plasma membrane of AECs. Specifically, we show that β2-agonists induce SOCE via stromal interaction molecule 1 (STIM1)-associated calcium release-activated calcium (CRAC) channels. We also demonstrate that the magnitude of SOCE affects the abundance of Na,K-ATPase at the plasma membrane of AECs. PMID:25447523

  14. Effects of diene valepotriates from Valeriana glechomifolia on Na+/K+-ATPase activity in the cortex and hippocampus of mice.

    PubMed

    Müller, Liz G; Salles, Luisa; Lins, Helena A; Feijó, Priscilla R O; Cassel, Eduardo; Vargas, Rubem; von Poser, Gilsane L; Noël, François; Quintas, Luis E M; Rates, Stela M K

    2015-02-01

    Diene valepotriates obtained from Valeriana glechomifolia present antidepressant-like activity, mediated by dopaminergic and noradrenergic neurotransmissions. Also, previous studies have shown inhibitory activity of diene valepotriates towards Na(+)/K(+)-ATPase from the rat brain in vitro. Nevertheless, in vivo studies regarding the action of diene valepotriates on this enzyme are still lacking. Considering that Na(+)/K(+)-ATPase cerebral activity is involved in depressive disorders, the aim of this study was to investigate the effects of acute (5 mg/kg, p. o.) and repeated (5 mg/kg, p. o., once a day for three days) diene valepotriate administration on Na(+)/K(+)-ATPase activity in the cortex and hippocampus of mice submitted or not submitted to the forced swimming test. In addition, the protein expression of Na(+)/K(+)-ATPase α1, α2, and α3 isoforms in the cortex of mice repeatedly treated with diene valepotriates (and submitted or not submitted to the forced swimming test) was investigated. Diene valepotriates significantly decreased mice immobility time in the forced swimming test when compared to the control group. Only the animals repeatedly treated with diene valepotriates presented increased Na(+)/K(+)-ATPase activity in the cerebral cortex, and the exposure to the forced swimming test counteracted the effects of the diene valepotriates. No alterations in the hippocampal Na(+)/K(+)-ATPase activity were observed. Repeated diene valepotriate administration increased the cortical content of the α2 isoform, but the α3 isoform protein expression was augmented only in mice repeatedly treated with diene valepotriates and forced to swim. Mice treated with the vehicle and submitted to the forced swimming test also presented an increase in the content of the α2 isoform, but no alterations in Na(+)/K(+)-ATPase activity. These results suggest that cortical Na(+)/K(+)-ATPase may represent a molecular target of the diene valepotriates in vivo and long

  15. Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2–MSH6 complex

    PubMed Central

    Banerjee, Sreeparna; Flores-Rozas, Hernan

    2005-01-01

    Cadmium (Cd2+) is a known carcinogen that inactivates the DNA mismatch repair (MMR) pathway. In this study, we have tested the effect of Cd2+ exposure on the enzymatic activity of the mismatch binding complex MSH2–MSH6. Our results indicate that Cd2+ is highly inhibitory to the ATP binding and hydrolysis activities of MSH2–MSH6, and less inhibitory to its DNA mismatch binding activity. The inhibition of the ATPase activity appears to be dose and exposure time dependent. However, the inhibition of the ATPase activity by Cd2+ is prevented by cysteine and histidine, suggesting that these residues are essential for the ATPase activity and are targeted by Cd2+. A comparison of the mechanism of inhibition with N-ethyl maleimide, a sulfhydryl group inhibitor, indicates that this inhibition does not occur through direct inactivation of sulfhydryl groups. Zinc (Zn2+) does not overcome the direct inhibitory effect of Cd2+ on the MSH2–MSH6 ATPase activity in vitro. However, the increase in the mutator phenotype of yeast cells exposed to Cd2+ was prevented by excess Zn2+, probably by blocking the entry of Cd2+ into the cell. We conclude that the inhibition of MMR by Cd2+ is through the inactivation of the ATPase activity of the MSH2–MSH6 heterodimer, resulting in a dominant negative effect and causing a mutator phenotype. PMID:15746000

  16. Na(+)-, ouabain-, Ca(2+)-, and thapsigargin-sensitive ATPase activity expressed in chimeras between the calcium and the sodium pump alpha subunits.

    PubMed Central

    Ishii, T; Lemas, M V; Takeyasu, K

    1994-01-01

    Using the chicken sarcoplasmic/endoplasmic reticulum Ca2+ (SERCA)-ATPase as a parental molecule and replacing various portions with the corresponding portions of the chicken Na+,K(+)-ATPase alpha 1 subunit, Ca2+/thapsigargin- and Na+/ouabain-sensitive domains critical for these P-type ATPase activities were identified. In the chimera, [n/c]CC, the amino-terminal amino acids Met-1 to Asp-162 of the SERCA (isoform 1) (SERCA1) ATPase were replaced with the corresponding portion (Met-1-Asp-200) of the Na+,K(+)-ATPase alpha 1 subunit. In the chimera CC[c/n], the carboxyl-terminal amino acids (Ser-830 to COOH) of the SERCA1 ATPase were replaced with the corresponding segment (Leu-861 to COOH) of the Na+,K(+)-ATPase alpha 1 subunit, and in the chimera CNC, the middle part (Gly-354-Lys-712) of the SERCA1 ATPase was exchanged with the Na+,K(+)-ATPase alpha 1 subunit (Gly-378-Lys-724). None of the chimeric molecules exhibited any detectable ouabain-sensitive Na+,K(+)-ATPase activity, but they did exhibit thapsigargin-sensitive Ca(2+)-ATPase activity. Therefore, the segments Ile-163-Gly-354 and Lys-712-Ser-830 of the SERCA1 ATPase are sufficient for Ca2+ and thapsigargin sensitivity. The SERCA1-ATPase activity of [n/c]CC, but not of CCC, CNC, or CC[c/n], was further stimulated by addition of Na+ in the assay medium containing Ca2+. This additional stimulation of SERCA1-ATPase activity by Na+ was abolished when the amino-terminal region (Met-1-Leu-69) of [n/c]CC was deleted ([delta n/c]CC). In the absence of Na+, the SERCA1-ATPase activity of [n/c]CC was inhibited by ouabain, and, in the presence of Na+, its activity was stimulated by this drug. On the other hand, the ATPase activity of [delta n/c]CC was not affected by ouabain, although [delta n/c]CC can still bind [3H]ouabain. These results suggest that a distinct Na(+)-sensitive domain (Na+ sensor) located within the restricted amino-terminal region (Met-1-Leu-69) of the Na+,K(+)-ATPase alpha 1 subunit regulates ATPase

  17. Tropomyosin and Myosin-II Cellular Levels Promote Actomyosin Ring Assembly in Fission Yeast

    PubMed Central

    Stark, Benjamin C.; Sladewski, Thomas E.; Pollard, Luther W.

    2010-01-01

    Myosin-II (Myo2p) and tropomyosin are essential for contractile ring formation and cytokinesis in fission yeast. Here we used a combination of in vivo and in vitro approaches to understand how these proteins function at contractile rings. We find that ring assembly is delayed in Myo2p motor and tropomyosin mutants, but occurs prematurely in cells engineered to express two copies of myo2. Thus, the timing of ring assembly responds to changes in Myo2p cellular levels and motor activity, and the emergence of tropomyosin-bound actin filaments. Doubling Myo2p levels suppresses defects in ring assembly associated with a tropomyosin mutant, suggesting a role for tropomyosin in maximizing Myo2p function. Correspondingly, tropomyosin increases Myo2p actin affinity and ATPase activity and promotes Myo2p-driven actin filament gliding in motility assays. Tropomyosin achieves this by favoring the strong actin-bound state of Myo2p. This mode of regulation reflects a role for tropomyosin in specifying and stabilizing actomyosin interactions, which facilitates contractile ring assembly in the fission yeast system. PMID:20110347

  18. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development.

    PubMed

    Zhou, Yuchan; Pan, Xiaoping; Qu, Hongxia; Underhill, Steven J R

    2014-02-01

    Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit. PMID:24390546

  19. Plasma Membrane Calcium ATPase Activity Is Regulated by Actin Oligomers through Direct Interaction*

    PubMed Central

    Dalghi, Marianela G.; Fernández, Marisa M.; Ferreira-Gomes, Mariela; Mangialavori, Irene C.; Malchiodi, Emilio L.; Strehler, Emanuel E.; Rossi, Juan Pablo F. C.

    2013-01-01

    As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca2+ with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca2+-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca2+-ATPase activity was related to an increase in the apparent affinity for Ca2+ and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca2+ homeostasis. PMID:23803603

  20. Mutant LV(476-7)AA of A-subunit of Enterococcus hirae V1-ATPase: High affinity of A3B3 complex to DF axis and low ATPase activity.

    PubMed

    Alam, Jahangir; Yamato, Ichiro; Arai, Satoshi; Saijo, Shinya; Mizutani, Kenji; Ishizuka-Katsura, Yoshiko; Ohsawa, Noboru; Terada, Takaho; Shirouzu, Mikako; Yokoyama, Shigeyuki; Iwata, So; Kakinuma, Yoshimi; Murata, Takeshi

    2013-01-01

    Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble functional domain V1 (A3B3DF) and an integral membrane domain Vo (ac), where V1 and Vo domains are connected by a central stalk, composed of D-, F-, and d-subunits; and two peripheral stalks (E- and G-subunits). We identified 120 interacting residues of A3B3 heterohexamer with D-subunit in DF heterodimer in the crystal structures of A3B3 and A3B3DF. In our previous study, we reported 10 mutants of E. hirae V1-ATPase, which showed lower binding affinities of DF with A3B3 complex leading to higher initial specific ATPase activities compared to the wild-type. In this study, we identified a mutation of A-subunit (LV(476-7)AA) at its C-terminal domain resulting in the A3B3 complex with higher binding affinities for wild-type or mutant DF heterodimers and lower initial ATPase activities compared to the wild-type A3B3 complex, consistent with our previous proposal of reciprocal relationship between the ATPase activity and the protein-protein binding affinity of DF axis to the A3B3 catalytic domain of E. hirae V-ATPase. These observations suggest that the binding of DF axis at the contact region of A3B3 rotary ring is relevant to its rotation activity. PMID:24404436

  1. Metals (Ag(+) , Cd(2+) , Cr(6+) ) affect ATPase activity in the gill, kidney, and muscle of freshwater fish Oreochromis niloticus following acute and chronic exposures.

    PubMed

    Atli, Gülüzar; Canli, Mustdafa

    2013-12-01

    Freshwater fish Oreochromis niloticus were individually acutely exposed to different concentrations (0, 0.1, 0.5, 1.0, and 1.5 μg/mL) of Cd(2+) , Cr(6+) , and Ag(+) for 96 h and 0.05 μg/mL concentration of the same metals for different periods (0, 5, 10, 20, and 30 days) chronically. Following each experimental protocol, Na(+) /K(+) -ATPase, Mg(2+) -ATPase, and Ca(2+) -ATPase activities were measured in the gill, kidney, and muscle of O. niloticus. In vitro experiments were also performed to determine the direct effects of metal ions (0, 0.1, 0.5, 1.0, and 1.5 μg/mL) on ATPases. Except Ag(+) , none of the metals caused fish mortality within 30 days. Silver killed all the fishes within 16 days. Metal exposures generally decreased Na(+) /K(+) -ATPase and Ca(2+) -ATPase activities in the tissues of O. niloticus, although there were some fluctuations in Mg(2+) -ATPase activity. Ag(+) and Cd(2+) were found to be more toxic to ATPase activities than Cr(6+) . It was also observed that metal efficiency was higher in the gill than in the other tissues. Results indicated that the response of ATPases varied depending on metals, exposure types, and tissues. Because ATPases are sensitive to metal toxicity, their activity can give valuable data about fish physiology. Therefore, they may be used as a sensitive biomarker in environmental monitoring in contaminated waters. PMID:21901811

  2. Ouabain triggers preconditioning through activation of the Na+,K+-ATPase signaling cascade in rat hearts

    PubMed Central

    Pierre, Sandrine V.; Yang, Changjun; Yuan, Zhaokan; Seminerio, Jennifer; Mouas, Christian; Garlid, Keith D.; Dos-Santos, Pierre; Xie, Zijian

    2007-01-01

    Objective Because ouabain activates several pathways that are critical to cardioprotective mechanisms such as ischemic preconditioning, we tested if this digitalis compound could protect the heart against ischemia-reperfusion injury through activation of the Na+,K+-ATPase/c-Src receptor complex. Methods and Results In Langendorff-perfused rat hearts, a short (4 min) administration of ouabain 10 μM followed by an 8-minute washout before 30 minutes of global ischemia and reperfusion improved cardiac function, decreased lactate dehydrogenase release and reduced infarct size by 40%. Western blot analysis revealed that ouabain activated the cardioprotective phospholipase Cγ1/protein kinase Cε (PLC-γ1/PKCε) pathway. Pre-treatment of the hearts with the Src kinase family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2) blocked not only ouabain-induced activation of PLC-γ1/PKCε pathway, but also cardiac protection. This protection was also blocked by a PKCε translocation inhibitor peptide (PKCε TIP). Conclusion Short exposure to a low concentration of ouabain protects the heart against ischemia/reperfusion injury. This effect of ouabain on the heart is most likely due to the activation of the Na+,K+-ATPase/c-Src receptor complex and subsequent stimulation of key mediators of preconditioning, namely PLC-γ1 and PKCε. PMID:17157283

  3. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs

    SciTech Connect

    Cheng, P.-W.; Liu, S.-H.; Young, Y.-H.; Lin-Shiau, Shoei-Yn . E-mail: syl@ha.mc.ntu.edu.tw

    2006-09-01

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na{sup +}, K{sup +}-ATPase and Ca{sup 2+}-ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na{sup +}, K{sup +}-ATPase and Ca{sup 2+}-ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property.

  4. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains

    PubMed Central

    Lee, Seok-Yong; De La Torre, Armando; Yan, Dalai; Kustu, Sydney; Nixon, B. Tracy; Wemmer, David E.

    2003-01-01

    Transcription by σ54 RNA polymerase depends on activators that contain ATPase domains of the AAA+ class. These activators, which are often response regulators of two-component signal transduction systems, remodel the polymerase so that it can form open complexes at promoters. Here, we report the first crystal structures of the ATPase domain of an activator, the NtrC1 protein from the extreme thermophile Aquifex aeolicus. This domain alone, which is active, crystallized as a ring-shaped heptamer. The protein carrying both the ATPase and adjacent receiver domains, which is inactive, crystallized as a dimer. In the inactive dimer, one residue needed for catalysis is far from the active site, and extensive contacts among the domains prevent oligomerization of the ATPase domain. Oligomerization, which completes the active site, depends on surfaces that are buried in the dimer, and hence, on a rearrangement of the receiver domains upon phosphorylation. A motif in the ATPase domain known to be critical for coupling energy to remodeling of polymerase forms a novel loop that projects from the middle of an α helix. The extended, structured loops from the subunits of the heptamer localize to a pore in the center of the ring and form a surface that could contact σ54. PMID:14561776

  5. [Changes of sarcolemma Na+/K+ ATPase and sarcoplasmic reticulum membrane Ca2+ ATPase activity after stem cell transplantation in chronic heart failure].

    PubMed

    Fan, Zhongcai; Chen, Mao; Deng, Juelin; Liu, Xiaojing; Zhang, Li; Rao, Li; Yang, Qing; Huang, Dejia

    2007-02-01

    To assess the changes of sarcolemma Na+/K+ ATPase (CMNKA) and sarcoplasmic reticulum membrane Ca2+ ATPase (SERCA) activities after stem cells transplantation in heart failure. Rabbit was used as heart failure model by intravenously injecting adriamycin. Autologous bone marrow mononuclear cells (BMCs), bone marrow mesenchymal stem cells (MSCs) or skeletal myoblasts (SMs) were introduced into coronary arteies through the root of aorta when two balloons occluding just above sinus of Valsalva. After 4 weeks, left ventricular ejection fraction (LVEF)was evaluated by echocardiography, and the activities of CMNKA and SERCA were measured by colorimeter. In BMCs (n=8)and MSCs (n=8) group, LVEF were significantly improved (P < 0.05). No significant improvement were seen in SMs group (n=6) compared to sham group (n=8). The CMNKA activity in all stem cells groups was significantly increased compared to sham group (P < 0.05). Meanwhile, in comparison with sham group, the incremental tendencies of SERCA activity were seen in stem cells groups. In conclusion, stem cells transplantation could increase the activities of CMNKA and SERCA in heart failure, a possible mechanism to improve heart function. PMID:17333908

  6. Theoretical models for cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin.

    PubMed Central

    Hill, T L; Eisenberg, E; Chalovich, J M

    1981-01-01

    Recent theoretical work on the cooperative equilibrium binding of myosin subfragment-1-ADP to regulated actin, as influenced by Ca2+, is extended here to the cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin. Exact solution of the general steady-state problem will require Monte Carlo calculations. Three interrelated special cases are discussed in some detail and sample computer (not Monte Carlo) solutions are given. The eventual objective is to apply these considerations to in vitro experimental data and to in vivo muscle models. PMID:6455170

  7. Characterization of the vacuolar ATPase activity of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana. Receptor modulating.

    PubMed

    Smith, J A; Uribe, E G; Ball, E; Heuer, S; Lüttge, U

    1984-06-01

    Plants performing crassulacean acid metabolism show a large nocturnal accumulation of malic acid in the vacuole of the photosynthetic cells. It has been postulated that an H+-translocating ATPase energizes the transport of malic acid across the tonoplast into the vacuole. In the present work we have characterized the ATPase activity associated with vacuoles of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana and compare it with other phosphohydrolases. Vacuoles were isolated by polybase-induced lysis of mesophyll-cell protoplasts. The vacuoles had a high activity of unspecific acid phosphatase (pH optimum 5.3). The acid phosphatase was strongly inhibited by ammonium molybdate (with 50% inhibition at about 0.5 mmol m-3), but was not completely inhibited even at much higher ammonium-molybdate concentrations. In contrast, the vacuolar ATPase activity, assayed in the presence of 100 mmol m-3 ammonium molybdate, had a pH optimum of 8.0. ATP was the preferred substrate, but GTP, ITP and ADP were hydrolyzed at appreciable rates. The mean ATPase activity at pH 8.0 was 14.5 nmol h-1 (10(3) vacuoles)-1, an average 13% of which was attributable to residual acid-phosphatase activity. Inorganic-pyrophosphatase activity could not be demonstrated unambiguously. The vacuolar ATPase activity was Mg2+-dependent, had an apparent Km for MgATP2- of 0.31 mol m-3, and was 32% stimulated by 50 mol m-3 KCl. Of the inhibitors tested, oligomycin slightly inhibited the vacuolar ATPase activity and diethylstilbestrol and NO-3 were both markedly inhibitory. Dicyclohexylcarbodiimide and tributyltin were also strongly inhibitory. Tributyltin caused a 50% inhibition at about 0.3 mmol m-3. This is taken as evidence that the vacuolar ATPase might function as an H+-translocating ATPase. It is shown that the measured activity of the vacuolar ATPase would be of the right order to account for the observed rates of nocturnal malic-acid accumulation in K. daigremontiana. PMID:6234166

  8. Temperature Dependence of the Rotation and Hydrolysis Activities of F1-ATPase

    PubMed Central

    Furuike, Shou; Adachi, Kengo; Sakaki, Naoyoshi; Shimo-Kon, Rieko; Itoh, Hiroyasu; Muneyuki, Eiro; Yoshida, Masasuke; Kinosita, Kazuhiko

    2008-01-01

    F1-ATPase, a water-soluble portion of the enzyme ATP synthase, is a rotary molecular motor driven by ATP hydrolysis. To learn how the kinetics of rotation are regulated, we have investigated the rotational characteristics of a thermophilic F1-ATPase over the temperature range 4–50°C by attaching a polystyrene bead (or bead duplex) to the rotor subunit and observing its rotation under a microscope. The apparent rate of ATP binding estimated at low ATP concentrations increased from 1.2 × 106 M−1 s−1 at 4°C to 4.3 × 107 M−1 s−1 at 40°C, whereas the torque estimated at 2 mM ATP remained around 40 pN·nm over 4–50°C. The rotation was stepwise at 4°C, even at the saturating ATP concentration of 2 mM, indicating the presence of a hitherto unresolved rate-limiting reaction that occurs at ATP-waiting angles. We also measured the ATP hydrolysis activity in bulk solution at 4–65°C. F1-ATPase tends to be inactivated by binding ADP tightly. Both the inactivation and reactivation rates were found to rise sharply with temperature, and above 30°C, equilibrium between the active and inactive forms was reached within 2 s, the majority being inactive. Rapid inactivation at high temperatures is consistent with the physiological role of this enzyme, ATP synthesis, in the thermophile. PMID:18375515

  9. Bi-site activation occurs with the native and nucleotide-depleted mitochondrial F1-ATPase.

    PubMed Central

    Milgrom, Y M; Murataliev, M B; Boyer, P D

    1998-01-01

    Experiments are reported on the uni-site catalysis and the transition from uni-site to multi-site catalysis with bovine heart mitochondrial F1-ATPase. The very slow uni-site ATP hydrolysis is shown to occur without tightly bound nucleotides present and with or without Pi in the buffer. Measurements of the transition to higher rates and the amount of bound ATP committed to hydrolysis as the ATP concentration is increased at different fixed enzyme concentrations give evidence that the filling of a second site can initiate near maximal turnover rates. They provide rate constant information, and show that an apparent Km for a second site of about 2 microM and Vmax of 10 s-1, as suggested by others, is not operative. Careful initial velocity measurements also eliminate other suggested Km values and are consistent with bi-site activation to near maximal hydrolysis rates, with a Km of about 130 microM and Vmax of about 700 s-1. However, the results do not eliminate the possibility of additional 'hidden' Km values with similar Vmax:Km ratios. Recent data on competition between TNP-ATP and ATP revealed a third catalytic site for ATP in the millimolar concentration range. This result, and those reported in the present paper, allow the conclusion that the mitochondrial F1-ATPase can attain near maximal activity in bi-site catalysis. Our data also add to the evidence that a recent claim, that the mitochondrial F1-ATPase does not show catalytic site cooperativity, is invalid. PMID:9480927

  10. Effect of palmitate on carbohydrate utilization and Na/K-ATPase activity in aortic vascular smooth muscle from diabetic rats.

    PubMed

    Smith, J M; Solar, S M; Paulson, D J; Hill, N M; Broderick, T L

    1999-04-01

    Several investigators have reported that carbohydrate metabolism is suppressed in blood vessels from diabetic (Db) rats. However, it is not known if metabolites from the reciprocal increase in oxidation of long-chain fatty acids that accompanies insulin-deficiency exacerbates the suppression of this pathway in the Db blood vessels. Such inhibition may have particularly deleterious consequences in vascular smooth muscle since aerobic glycolysis is believed to preferentially fuel the sarcolemmal Na/K ATPase in this tissue. Therefore, this study evaluated the effect of physiological (0.4 mM) and elevated (1.2 mM) concentrations of the long-chain fatty acid palmitate on both carbohydrate utilization and Na/K-ATPase activity in aorta from insulin-deficient Db rat. Thoracic aorta were removed from 10 week Db (streptozotocin 60 mg/Kg , i.v.) or control (C) rats and intima-media aortic preparations were incubated in the absence or presence of palmitate. Glycolysis (microM/g dry wt/h) and glucose oxidation (microM/g dry wt/h) were quantified using 3H-glucose and 14C-glucose, respectively. Na/K-ATPase activity was estimated by the measurement of 86rubidium uptake in the absence and presence of 2 mM ouabain. In the absence of exogenous palmitate, glycolysis (p < 0.05), glucose oxidation (p < 0.01) and the estimated ATP production from exogenous glucose were decreased in aorta from Db rat. However, despite this diminished rate of glycolysis, Na/K ATPase activity was similar in Db and C aorta. Palmitate (0.4 mM) inhibited Na/K ATPase activity and glucose oxidation to a similar extent in both Db and C but had no effect on glycolysis in either group. Elevation of palmitate to 1.2 mM had no additional inhibitory effect on glucose oxidation, Na/K ATPase activity or glycolysis in either the Db or C aorta. The metabolism of exogenous palmitate restored the ATP production in Db to control values. These data demonstrate that, despite the diminished glycolysis and glucose oxidation

  11. Structural Model of Weak Binding Actomyosin in the Prepowerstroke State*

    PubMed Central

    Várkuti, Boglárka H.; Yang, Zhenhui; Malnasi-Csizmadia, Andras

    2015-01-01

    We present the first in silico model of the weak binding actomyosin in the initial powerstroke state, representing the actin binding-induced major structural changes in myosin. First, we docked an actin trimer to prepowerstroke myosin then relaxed the complex by a 100-ns long unrestrained molecular dynamics. In the first few nanoseconds, actin binding induced an extra primed myosin state, i.e. the further priming of the myosin lever by 18° coupled to a further closure of switch 2 loop. We demonstrated that actin induces the extra primed state of myosin specifically through the actin N terminus-activation loop interaction. The applied in silico methodology was validated by forming rigor structures that perfectly fitted into an experimentally determined EM map of the rigor actomyosin. Our results unveiled the role of actin in the powerstroke by presenting that actin moves the myosin lever to the extra primed state that leads to the effective lever swing. PMID:25416786

  12. PII signal transduction proteins are ATPases whose activity is regulated by 2-oxoglutarate

    PubMed Central

    Radchenko, Martha V.; Thornton, Jeremy; Merrick, Mike

    2013-01-01

    PII proteins are one of the most widespread families of signal transduction proteins in nature, being ubiquitous throughout bacteria, archaea, and plants. In all these organisms, PII proteins coordinate many facets of nitrogen metabolism by interacting with and regulating the activities of enzymes, transcription factors, and membrane transport proteins. The primary mode of signal perception by PII proteins derives from their ability to bind the effector molecules 2-oxoglutarate (2-OG) and ATP or ADP. The role of 2-OG as an indicator of cellular nitrogen status is well understood, but the function of ATP/ADP binding has remained unresolved. We have now shown that the Escherichia coli PII protein, GlnK, has an ATPase activity that is inhibited by 2-OG. Hence, when a drop in the cellular 2-OG pool signals nitrogen sufficiency, 2-OG depletion of GlnK causes bound ATP to be hydrolyzed to ADP, leading to a conformational change in the protein. We propose that the role of ATP/ADP binding in E. coli GlnK is to effect a 2-OG-dependent molecular switch that drives a conformational change in the T loops of the PII protein. We have further shown that two other PII proteins, Azospirillum brasilense GlnZ and Arabidopsis thaliana PII, have a similar ATPase activity, and we therefore suggest that this switch mechanism is likely to be a general property of most members of the PII protein family. PMID:23818625

  13. Proton pumping ATPase mediated fungicidal activity of two essential oil components.

    PubMed

    Bhatia, Rimple; Shreaz, Sheikh; Khan, Neelofar; Muralidhar, Sumathi; Basir, Seemi F; Manzoor, Nikhat; Khan, Luqman A

    2012-10-01

    This work evaluates the antifungal activity of two essential oil components against 28 clinical isolates (17 sensitive, 11 resistant) and 3 standard laboratory strains of Candida. Growth of the organisms was significantly effected in both solid and liquid media at different test compound concentrations. The minimum inhibitory concentrations (MICs) of Isoeugenol (compound 1) against 31 strains of Candida ranged 100-250 μg/ml and those of o -methoxy cinnamaldehyde (compound 2) ranged 200-500 μg/ml, respectively. Insight studies to mechanism suggested that these compounds exert antifungal activity by targeting H(+)-ATPase located in the membranes of pathogenic Candida species. At their respective MIC(90) average inhibition of H(+)-efflux for standard, clinical and resistant isolates caused by compound 1 and compound 2 was 70%, 74%, 82% and 42%, 42% and 43%. Respective inhibition of H(+)-efflux by fluconazole (5 μg/ml) was 94%, 92% and 10%. Inhibition of H(+)-ATPase leads to intracellular acidification and cell death. SEM analysis of Candida cells showed cell membrane breakage and alterations in morphology. Haemolytic activity on human erythrocytes was studied to exclude the possibility of further associated cytotoxicity. PMID:22143929

  14. Activity of the plasma membrane H(+)-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae.

    PubMed

    Coote, P J; Jones, M V; Seymour, I J; Rowe, D L; Ferdinando, D P; McArthur, A J; Cole, M B

    1994-08-01

    The role of membrane integrity and the membrane ATPase in the mechanism of thermotolerance in Saccharomyces cerevisiae was investigated. The resistance to lethal heat of a mutant strain with reduced expression of the membrane ATPase was significantly less than that of the wild-type parent. However, prior exposure to sub-lethal temperatures resulted in the induction of similar levels of thermotolerance in the mutant compared to the parent strain, suggesting that the mechanism of sub-lethal heat-induced thermotolerance is independent of ATPase activity. Supporting this, exposure to sub-lethal heat stress did not result in increased levels of glucose-induced acid efflux at lethal temperatures and there was little correlation between levels of acid efflux and levels of heat resistance. ATPase activity in crude membrane preparations from sub-lethally heat-stressed cells was similar to that in preparations from unstressed cells. Study of net acid flux during heating revealed that pre-stressed cells were able to protect the proton gradient for longer. This may confer an 'advantage' to these cells that results in increased thermotolerance. This was supported by the observation that prior exposure to sub-lethal heat resulted in a transient protection against the large increase in membrane permeability that occurs at lethal temperatures. However, no protection against the large drop in intracellular pH was detected. Sub-lethal heat-induced protection of membrane integrity also occurred to the same extent in the reduced-expression membrane ATPase mutant, further implying that the mechanism of induced thermotolerance is independent of ATPase activity. To conclude, although the membrane ATPase is essential for basal heat resistance, thermotolerance induced by prior exposure to stress is largely conferred by a mechanism that is independent of the enzyme. PMID:7921241

  15. [Effect of psychotropic preparations on the activity of transport ATPase of rabbit skeletal muscle sarcoplasmic reticulum].

    PubMed

    Lavretskaia, E F; Tat'ianenko, L V; Lebedeva, O I

    1977-01-01

    The effect exerted by 5 groups of psychotropic agents on b activity of Ca, Mg-dependent ATP-ase of the sarcoplasmatic reticulum in the skeletal muscles of the rabbit and the transport of Ca2+ were looked into. The most profound inhibitory effect was found to be displayed by neuroleptics--phenothiazine derivatives with the piperazine ring in the side chain. Neuroleptics-butyrophenones produced a much less marked inhibitory action. Tricyclic antidepressants noticeably reduced the activity of the enzyme, while MAO inhibitors proved little effective in this respect. Tranquilizers--benzodiazepine derivatives--displayed a moderate inhibitory influence, while trioxazine turned out to be little active. The stimulants caffein, pentylene tetrazol (corazol), as well as high concentrations of lithium salts raised, whereas their low concentrations suppressed the activity of the enzyme. The inhibitory effect of psychotropic agents increased by as much s 11/2--2 times with regard to the enzyme preliminarily activated through incubation with ATP. PMID:140062

  16. Colocalization of the (Pro)renin Receptor/Atp6ap2 with H+-ATPases in Mouse Kidney but Prorenin Does Not Acutely Regulate Intercalated Cell H+-ATPase Activity

    PubMed Central

    Daryadel, Arezoo; Bourgeois, Soline; Figueiredo, Marta F. L.; Gomes Moreira, Ana; Kampik, Nicole B.; Oberli, Lisa; Mohebbi, Nilufar; Lu, Xifeng; Meima, Marcel E.; Danser, A. H. Jan; Wagner, Carsten A.

    2016-01-01

    The (Pro)renin receptor (P)RR/Atp6ap2 is a cell surface protein capable of binding and non-proteolytically activate prorenin. Additionally, (P)RR is associated with H+-ATPases and alternative functions in H+-ATPase regulation as well as in Wnt signalling have been reported. Kidneys express very high levels of H+-ATPases which are involved in multiple functions such as endocytosis, membrane protein recycling as well as urinary acidification, bicarbonate reabsorption, and salt absorption. Here, we wanted to localize the (P)RR/Atp6ap2 along the murine nephron, exmaine whether the (P)RR/Atp6ap2 is coregulated with other H+-ATPase subunits, and whether acute stimulation of the (P)RR/Atp6ap2 with prorenin regulates H+-ATPase activity in intercalated cells in freshly isolated collecting ducts. We localized (P)PR/Atp6ap2 along the murine nephron by qPCR and immunohistochemistry. (P)RR/Atp6ap2 mRNA was detected in all nephron segments with highest levels in the collecting system coinciding with H+-ATPases. Further experiments demonstrated expression at the brush border membrane of proximal tubules and in all types of intercalated cells colocalizing with H+-ATPases. In mice treated with NH4Cl, NaHCO3, KHCO3, NaCl, or the mineralocorticoid DOCA for 7 days, (P)RR/Atp6ap2 and H+-ATPase subunits were regulated but not co-regulated at protein and mRNA levels. Immunolocalization in kidneys from control, NH4Cl or NaHCO3 treated mice demonstrated always colocalization of PRR/Atp6ap2 with H+-ATPase subunits at the brush border membrane of proximal tubules, the apical pole of type A intercalated cells, and at basolateral and/or apical membranes of non-type A intercalated cells. Microperfusion of isolated cortical collecting ducts and luminal application of prorenin did not acutely stimulate H+-ATPase activity. However, incubation of isolated collecting ducts with prorenin non-significantly increased ERK1/2 phosphorylation. Our results suggest that the PRR/Atp6ap2 may form a complex

  17. Job Sharing in the Endomembrane System: Vacuolar Acidification Requires the Combined Activity of V-ATPase and V-PPase.

    PubMed

    Kriegel, Anne; Andrés, Zaida; Medzihradszky, Anna; Krüger, Falco; Scholl, Stefan; Delang, Simon; Patir-Nebioglu, M Görkem; Gute, Gezahegn; Yang, Haibing; Murphy, Angus S; Peer, Wendy Ann; Pfeiffer, Anne; Krebs, Melanie; Lohmann, Jan U; Schumacher, Karin

    2015-12-01

    The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH. PMID:26589552

  18. Characterization of ATPase Activity of P2RX2 Cation Channel

    PubMed Central

    Mittal, Rahul; Grati, M'hamed; Sedlacek, Miloslav; Yuan, Fenghua; Chang, Qing; Yan, Denise; Lin, Xi; Kachar, Bechara; Farooq, Amjad; Chapagain, Prem; Zhang, Yanbin; Liu, Xue Z.

    2016-01-01

    P2X purinergic receptors are plasma membrane ATP-dependent cation channels that are broadly distributed in the mammalian tissues. P2RX2 is a modulator of auditory sensory hair cell mechanotransduction and plays an important role in hair cell tolerance to noise. In this study, we demonstrate for the first time in vitro and in cochlear neuroepithelium, that P2RX2 possesses the ATPase activity. We observed that the P2RX2 V60L human deafness mutation alters its ability to bind ATP, while the G353R has no effect on ATP binding or hydrolysis. A non-hydrolysable ATP assay using HEK293 cells suggests that ATP hydrolysis plays a significant role in the opening and gating of the P2RX2 ion channel. Moreover, the results of structural modeling of the molecule was in agreement with our experimental observations. These novel findings suggest the intrinsic ATPase activity of P2RX2 and provide molecular insights into the channel opening. PMID:27252659

  19. V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation.

    PubMed

    Florey, Oliver; Gammoh, Noor; Kim, Sung Eun; Jiang, Xuejun; Overholtzer, Michael

    2015-01-01

    Recently a noncanonical activity of autophagy proteins has been discovered that targets lipidation of microtubule-associated protein 1 light chain 3 (LC3) onto macroendocytic vacuoles, including macropinosomes, phagosomes, and entotic vacuoles. While this pathway is distinct from canonical autophagy, the mechanism of how these nonautophagic membranes are targeted for LC3 lipidation remains unclear. Here we present evidence that this pathway requires activity of the vacuolar-type H(+)-ATPase (V-ATPase) and is induced by osmotic imbalances within endolysosomal compartments. LC3 lipidation by this mechanism is induced by treatment of cells with the lysosomotropic agent chloroquine, and through exposure to the Heliobacter pylori pore-forming toxin VacA. These data add novel mechanistic insights into the regulation of noncanonical LC3 lipidation and its associated processes, including LC3-associated phagocytosis (LAP), and demonstrate that the widely and therapeutically used drug chloroquine, which is conventionally used to inhibit autophagy flux, is an inducer of LC3 lipidation. PMID:25484071

  20. Characterization of ATPase Activity of P2RX2 Cation Channel.

    PubMed

    Mittal, Rahul; Grati, M'hamed; Sedlacek, Miloslav; Yuan, Fenghua; Chang, Qing; Yan, Denise; Lin, Xi; Kachar, Bechara; Farooq, Amjad; Chapagain, Prem; Zhang, Yanbin; Liu, Xue Z

    2016-01-01

    P2X purinergic receptors are plasma membrane ATP-dependent cation channels that are broadly distributed in the mammalian tissues. P2RX2 is a modulator of auditory sensory hair cell mechanotransduction and plays an important role in hair cell tolerance to noise. In this study, we demonstrate for the first time in vitro and in cochlear neuroepithelium, that P2RX2 possesses the ATPase activity. We observed that the P2RX2 V60L human deafness mutation alters its ability to bind ATP, while the G353R has no effect on ATP binding or hydrolysis. A non-hydrolysable ATP assay using HEK293 cells suggests that ATP hydrolysis plays a significant role in the opening and gating of the P2RX2 ion channel. Moreover, the results of structural modeling of the molecule was in agreement with our experimental observations. These novel findings suggest the intrinsic ATPase activity of P2RX2 and provide molecular insights into the channel opening. PMID:27252659

  1. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence.

    PubMed Central

    Stienen, G J; Kiers, J L; Bottinelli, R; Reggiani, C

    1996-01-01

    1. Myofibrillar ATP consumption and isometric tension (P0) were determined in chemically skinned skeletal muscle fibres from human rectus abdominis and vastus lateralis muscle. Fibres were classified in four groups (I, IIA, IIB, IIA/B or mixed) based on myosin heavy chain composition. 2. ATP consumption (+/- S.E.M.) at 20 degrees C varied from 0.41 +/- 0.06 mmol l-1 s-1 in type IIB fibres (n = 5) to 0.10 +/- 0.01 mmol l-1 s-1 in type I fibres (n = 13). 3. The ratio between ATPase activity and P0 (tension cost) differed significantly between fast type II and slow type I fibres. At 12 degrees C tension cost was lower than the values found previously in corresponding fibre types in the rat. 4. The relative increase in ATPase activity for a 10 degrees C temperature change (Q10), determined in the range from 12 to 30 degrees C, was temperature independent and amounted to 2.60 +/- 0.06. The increase in P0 with temperature was smaller and declined when the temperature increased. 5. From these measurements, estimates were obtained for the maximum rate of isometric ATP consumption and force development at muscle temperature in vivo (35 degrees C). Images Figure 1 PMID:8782097

  2. Alterations in some lipid components and Ca2+ ATPase activity in brain of rats fed an atherogenic diet.

    PubMed

    Oner, P; Bekpinar, S; Oz, B

    1991-06-01

    Male Wistar rats were fed an atherogenic diet for four months to investigate possible diet-induced lipid alterations and brain Ca2+ ATPase activity. Total cholesterol and triglyceride levels were found to be increased significantly in both serum and brain while the phospholipid level was decreased in both. The distribution of serum cholesterol between high-density and low-density lipoproteins was altered when compared to control rats with a decrement in HDL-cholesterol and a pronounced increment in LDL-cholesterol. The atherogenic diet resulted in about 50% depression in brain Ca2+ ATPase activity. It is concluded that alterations in ion transport and neurotransmitter release may be expected due to pronounced inhibition of brain Ca2+ ATPase activity in rats fed an atherogenic diet. PMID:1835114

  3. Septum Development in Neurospora crassa: The Septal Actomyosin Tangle

    PubMed Central

    Delgado-Álvarez, Diego Luis; Bartnicki-García, Salomón; Seiler, Stephan; Mouriño-Pérez, Rosa Reyna

    2014-01-01

    Septum formation in Neurospora crassa was studied by fluorescent tagging of actin, myosin, tropomyosin, formin, fimbrin, BUD-4, and CHS-1. In chronological order, we recognized three septum development stages: 1) septal actomyosin tangle (SAT) assembly, 2) contractile actomyosin ring (CAR) formation, 3) CAR constriction together with plasma membrane ingrowth and cell wall construction. Septation began with the assembly of a conspicuous tangle of cortical actin cables (SAT) in the septation site >5 min before plasma membrane ingrowth. Tropomyosin and myosin were detected as components of the SAT from the outset. The SAT gradually condensed to form a proto-CAR that preceded CAR formation. During septum development, the contractile actomyosin ring remained associated with the advancing edge of the septum. Formin and BUD-4 were recruited during the transition from SAT to CAR and CHS-1 appeared two min before CAR constriction. Actin patches containing fimbrin were observed surrounding the ingrowing septum, an indication of endocytic activity. Although the trigger of SAT assembly remains unclear, the regularity of septation both in space and time gives us reason to believe that the initiation of the septation process is integrated with the mechanisms that control both the cell cycle and the overall growth of hyphae, despite the asynchronous nature of mitosis in N. crassa. PMID:24800890

  4. [Effect of Cu2+ and Zn2+ ions in Ca-ATPase activity isolated from Pachymerus nucleorum (Fabricius) (Coleoptera: Chrysomelidae, Bruchinae) larvae].

    PubMed

    Dias, Decivaldo S; Coelho, Milton V

    2007-01-01

    ATPases, an important target of insecticides, are enzymes that hydrolyze ATP and use the energy released in that process to accomplish some type of cellular work. Pachymerus nucleorum (Fabricius) larvae possess an ATPase, that presents high Ca-ATPase activity, but no Mg-ATPase activity. In the present study, the effect of zinc and copper ions in the activity Ca-ATPase of that enzyme was tested. More than 90% of the Ca-ATPase activity was inhibited in 0.5 mM of copper ions or 0.25 mM of zinc ions. In the presence of EDTA, but not in the absence, the inhibition by zinc was reverted with the increase of calcium concentration. The inhibition by copper ions was not reverted in the presence or absence of EDTA. The Ca-ATPase was not inhibited by treatment of the ATPase fraction with copper, suggesting that the copper ion does not bind directly to the enzyme. The results suggest that zinc and copper ions form a complex with ATP and bind to the enzyme inhibiting its Ca-ATPase activity. PMID:17420863

  5. Down-regulated Na+/K+-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing

    2015-01-01

    This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460

  6. V-ATPase-activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis

    PubMed Central

    Zhang, Yi; Irani, Niloufer G.; Rubbo, Simone Di; Neumetzler, Lutz; Krishnamoorthy, Praveen; Van Houtte, Isabelle; Mylle, Evelien; Bischoff, Volker; Vernhettes, Samantha; Winne, Johan; Friml, Jiří; Stierhof, York-Dieter

    2016-01-01

    In plants, vacuolar H+-ATPase (V-ATPase) activity acidifies both the trans-Golgi network/early endosome (TGN/EE) and the vacuole. This dual V-ATPase function has impeded our understanding in how the pH homeostasis within the plant TGN/EE controls exo- and endocytosis. Here, we show that the weak V-ATPase mutant deetiolated3 (det3) displayed a pH increase in the TGN/EE, but not in the vacuole, strongly impairing secretion and recycling of the brassinosteroid receptor and the cellulose synthase complexes to the plasma membrane, in contrast to mutants lacking tonoplast-localized V-ATPase activity only. The brassinosteroid insensitivity and the cellulose deficiency defects in det3 were tightly correlated with reduced Golgi and TGN/EE motility. Thus, our results provide strong evidence that acidification of the TGN/EE, but not of the vacuole, is indispensable for functional secretion and recycling in plants. PMID:27250258

  7. Spatial distribution and activity of Na(+)/K(+)-ATPase in lipid bilayer membranes with phase boundaries.

    PubMed

    Bhatia, Tripta; Cornelius, Flemming; Brewer, Jonathan; Bagatolli, Luis A; Simonsen, Adam C; Ipsen, John H; Mouritsen, Ole G

    2016-06-01

    We have reconstituted functional Na(+)/K(+)-ATPase (NKA) into giant unilamellar vesicles (GUVs) of well-defined binary and ternary lipid composition including cholesterol. The activity of the membrane system can be turned on and off by ATP. The hydrolytic activity of NKA is found to depend on membrane phase, and the water relaxation in the membrane on the presence of NKA. By collapsing and fixating the GUVs onto a solid support and using high-resolution atomic-force microscopy (AFM) imaging we determine the protein orientation and spatial distribution at the single-molecule level and find that NKA is preferentially located at lo/ld interfaces in two-phase GUVs and homogeneously distributed in single-phase GUVs. When turned active, the membrane is found to unbind from the support suggesting that the protein function leads to softening of the membrane. PMID:26994932

  8. Alterations in erythrocyte plasma membrane ATPase activity and adenine nucleotide content in a spontaneously diabetic subline of the Chinese hamster.

    PubMed

    Bettin, D; Klöting, I; Kohnert, K D

    1996-01-01

    The CHIG/Han subline of the Chinese hamster develops noninsulin-dependent diabetes mellitus characterized by hyperinsulinemia and different degrees of glucose intolerance. To study whether these abnormalities could affect transmembrane cation transport activity, we determined membrane ATPase activity and ATP concentrations in red blood cells of diabetes-resistant CHIA and diabetes-susceptible CHIG sublines of the Chinese hamster. Mg(2+)-ATPase activity was increased in red blood cell membranes of diabetic hamsters compared with that of nondiabetic CHIG and the diabetes-resistant CHIA animals and correlated with plasma triglyceride and cholesterol levels. Ca(2+)-ATPase and Na+/K+ATPase activity were not significantly different between diabetic and nondiabetic hamsters, but for the Na+/K(+)-ATPase, Km was decreased and the Vmax value increased in membrane preparations from severely diabetic hamsters. Both ATP and ADP content were lower in erythrocytes from diabetic than nondiabetic hamsters. Independently of the levels of glycemia, AMP concentrations were higher in CHIG than in CHIA hamsters. While ATP/AMP ratios were found to be decreased in erythrocytes from diabetes-susceptible CHIG hamsters compared to the diabetes-resistant CHIA animals, they were significantly correlated with the levels of glycemia. Furthermore, the relationship between blood glucose levels and kidney weight in hamsters of the diabetes-susceptible CHIG subline was such, that severely hyperglycemic animals displayed the greatest increase in kidney wet weight. These results indicate that the progressive metabolic deterioration in the development of noninsulin-dependent diabetes is associated with significant changes in the activity and kinetic parameters of cellular ATPases which could probably indicate early membrane alterations which may eventually result in the late microangiopathic complications of diabetes. PMID:8820985

  9. Rhodamine Inhibitors of P-glycoprotein: An Amide/Thioamide “Switch” for ATPase Activity

    PubMed Central

    Gannon, Michael K.; Holt, Jason J.; Bennett, Stephanie M.; Wetzel, Bryan R.; Loo, Tip W.; Bartlett, M. Claire; Clarke, David M.; Sawada, Geri A.; Higgins, J. William; Tombline, Gregory; Raub, Thomas J.; Detty, Michael R.

    2012-01-01

    We have examined 46 tetramethylrosamine/rhodamine derivatives with structural diversity in the heteroatom of the xanthylium core, the amino substituents of the 3- and 6-positions, and the alkyl, aryl, or heteroaryl group at the 9-substituent. These compounds were examined for affinity and ATPase stimulation in isolated MDR3 CL P-gp and human P-gp-His10, for their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant MDCKII-MDR1 cells, and for transport in monolayers of MDCKII-MDR1 cells. Thioamide 31-S gave KM of 0.087 μM in human P-gp. Small changes in structure among this set of compounds affected affinity as well as transport rate (or flux) even though all derivatives examined were substrates for P-gp. With isolated protein, tertiary amide groups dictate high affinity and high stimulation while tertiary thioamide groups give high affinity and inhibition of ATPase activity. In MDCKII-MDR1 cells, the tertiary thioamide-containing derivatives promote uptake of calcein AM and have very slow passive, absorptive, and secretory rates of transport relative to transport rates for tertiary amide-containing derivatives. Thioamide 31-S promoted uptake of calcein AM and inhibited efflux of vinblastine with IC50’s of ~2 μM in MDCKII-MDR1 cells. PMID:19402665

  10. The biochemical properties of the ATPase activity of a 70-kDa heat shock protein (Hsp70) are governed by the C-terminal domains

    PubMed Central

    Lopez-Buesa, Pascual; Pfund, Christine; Craig, Elizabeth A.

    1998-01-01

    The cytosolic 70-kDa heat shock proteins (Hsp70s), Ssa and Ssb, of Saccharomyces cerevisiae are functionally distinct. Here we report that the ATPase activities of these two classes of Hsp70s exhibit different kinetic properties. The Ssa ATPase has properties similar to those of other Hsp70s studied, such as DnaK and Hsc70. Ssb, however, has an unusually low steady-state affinity for ATP but a higher maximal velocity. In addition, the ATPase activity of Hsp70s, like that of Ssa1, depends on the addition of K+ whereas Ssb activity does not. Suprisingly, the isolated 44-kDa ATPase domain of Ssb has a Km and Vmax for ATP hydrolysis similar to those of Ssa, rather than those of full length Ssb. Analysis of Ssa/Ssb fusion proteins demonstrates that the Ssb peptide-binding domain fused to the Ssa ATPase domain generates an ATPase of relatively high activity and low steady-state affinity for ATP similar to that of native Ssb. Therefore, at least some of the biochemical differences between the ATPases of these two classes of Hsp70s are not intrinsic to the ATPase domain itself. The differential influence of the peptide-binding domain on the ATPase domain may, in part, explain the functional uniqueness of these two classes of Hsp70s. PMID:9860955

  11. Tracking Actomyosin at Fluorescence Check Points

    NASA Astrophysics Data System (ADS)

    Lard, Mercy; Siethoff, Lasse Ten; Månsson, Alf; Linke, Heiner

    2013-01-01

    Emerging concepts for on-chip biotechnologies aim to replace microfluidic flow by active, molecular-motor driven transport of cytoskeletal filaments, including applications in bio-simulation, biocomputation, diagnostics, and drug screening. Many of these applications require reliable detection, with minimal data acquisition, of filaments at many, local checkpoints in a device consisting of a potentially complex network of channels that guide filament motion. Here we develop such a detection system using actomyosin motility. Detection points consist of pairs of gold lines running perpendicular to nanochannels that guide motion of fluorescent actin filaments. Fluorescence interference contrast (FLIC) is used to locally enhance the signal at the gold lines. A cross-correlation method is used to suppress errors, allowing reliable detection of single or multiple filaments. Optimal device design parameters are discussed. The results open for automatic read-out of filament count and velocity in high-throughput motility assays, helping establish the viability of active, motor-driven on-chip applications.

  12. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay.

    PubMed Central

    He, Z H; Chillingworth, R K; Brune, M; Corrie, J E; Trentham, D R; Webb, M R; Ferenczi, M A

    1997-01-01

    1. The rate of appearance of inorganic phosphate (Pi) and hence the ATPase activity of rabbit psoas muscle in single permeabilized muscle fibres initially in rigor was measured following laser flash photolysis of the P3-1-(2-nitrophenyl)ethyl ester of ATP (NPE-caged ATP) in the presence and absence of Ca2+. Pi appearance was monitored from the fluorescence signal of a Pi-sensitive probe, MDCC-PBP, a coumarin-labelled A197C mutant of the phosphate-binding protein from Escherichia coli. Fibres were immersed in oil to optimize the fluorescence signal and to obviate diffusion problems. The ATPase activity was also measured under similar conditions from the rate of NADH disappearance using an NADH-linked coupled enzyme assay. 2. On photolysis of NPE-caged ATP in the presence of Ca2+ at 20 degrees C, the fluorescence increase of MDCC-PBP was non-linear with time. ATPase activity was 41 s-1 in the first turnover based on a myosin subfragment 1 concentration of 150 microM. This was calculated from a linear regression of the fluorescence signal reporting 20-150 microM of Pi release. Tension was at 67% of its isometric level by the time 150 microM Pi was released. ATPase activities were 36 and 31 s-1 for Pi released in the ranges of 150-300 microM and 300-450 microM, respectively. The ATPase activity had a Q10 value of 2.9 based on measurements at 5, 12 and 20 degrees C. 3. An NADH-linked assay showed the ATPase activity had a lower limit of 12.7 s-1 at 20 degrees C. The response to photolytic release of ADP showed that the rate of NADH disappearance was partially limited by the flux through the coupled reactions. Simulations indicated that the linked assay data were consistent with an initial ATPase activity of 40 s-1. 4. On photolysis of NPE-caged ATP in the absence of Ca2+ the ATPase activity was 0.11 s-1 at 20 degrees C with no discernible rapid transient phase of Pi release during the first turnover of the ATPase. 5. To avoid the rigor state, the ATPase rate in the

  13. Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity.

    PubMed

    Schmidt, Bryan H; Osheroff, Neil; Berger, James M

    2012-11-01

    Type IIA topoisomerases control DNA supercoiling and disentangle chromosomes through a complex ATP-dependent strand-passage mechanism. Although a general framework exists for type IIA topoisomerase function, the architecture of the full-length enzyme has remained undefined. Here we present the structure of a fully catalytic Saccharomyces cerevisiae topoisomerase II homodimer complexed with DNA and a nonhydrolyzable ATP analog. The enzyme adopts a domain-swapped configuration wherein the ATPase domain of one protomer sits atop the nucleolytic region of its partner subunit. This organization produces an unexpected interaction between bound DNA and a conformational transducing element in the ATPase domain, which we show is critical for both DNA-stimulated ATP hydrolysis and global topoisomerase activity. Our data indicate that the ATPase domains pivot about each other to ensure unidirectional strand passage and that this state senses bound DNA to promote ATP turnover and enzyme reset. PMID:23022727

  14. Calcium and sodium transport processes in patients with cystic fibrosis 2. Mg2+- dependent, Ca2+ ATPase activity in fibroblast membrane preparations from cystic fibrosis patients and controls.

    PubMed

    Katz, S

    1978-03-01

    Mg2+-dependent Ca2+-ATPase activity was determined in membrane preparations of fibroblasts grown from skin biopsies of cystic fibrosis patients and age-matched controls. This enzyme was stimulated by increasing free calcium concentrations with an apparent Kdiss for calcium of approximately 45 micron. Although there was a great deal of variation in Ca2+-ATPase activity observed between individual strains, there was a significant decrease in the maximal activation of the Ca2+-ATPase in membrane preparations of fibroblasts obtained from cystic fibrosis patients compared to the controls (P less than 0.05). This observation indicates that decreased Ca2+-ATPase activity is a generalized phenomenon in cystic fibrosis found in more than one cell-type. This decrease in Ca2+-ATPase activity may have a number of implications that may explain some of the manifestations of the disease. PMID:148720

  15. An RNA Aptamer Specific to Hsp70-ATP Conformation Inhibits its ATPase Activity Independent of Hsp40

    PubMed Central

    Thirunavukarasu, Deepak

    2015-01-01

    The highly conserved and ubiquitous molecular chaperone heat shock protein 70 (Hsp70) plays a critical role in protein homeostasis (proteostasis). Controlled by its ATPase activity, Hsp70 cycles between two conformations, Hsp70-ATP and Hsp70-ADP, to bind and release its substrate. Chemical tools with distinct modes of action, especially those capable of modulating the ATPase activity of Hsp70, are being actively sought after in the mechanistic dissection of this system. Here, we report a conformation-specific RNA aptamer that binds only to Hsp70-ATP but not to Hsp70-ADP. We have refined this aptamer and demonstrated its inhibitory effect on Hsp70's ATPase activity. We have also shown that this inhibitory effect on Hsp70 is independent of its interaction with the Hsp40 co-chaperone. As Hsp70 is increasingly being recognized as a drug target in a number of age related diseases such as neurodegenerative, protein misfolding diseases and cancer, this aptamer is potentially useful in therapeutic applications. Moreover, this work also demonstrates the feasibility of using aptamers to target ATPase activity as a general therapeutic strategy. PMID:25654640

  16. A 133Cs nuclear magnetic resonance study of endothelial Na(+)-K(+)-ATPase activity: can actin regulate its activity?

    PubMed Central

    Gruwel, M L; Culíc, O; Schrader, J

    1997-01-01

    Using (133)Cs+ NMR, we developed a technique to repetitively measure, in vivo, Na(+)-K(+)-ATPase activity in endothelial cells. The measurements were made without the use of an exogenous shift reagent, because of the large chemical shift of 1.36 +/- 0.13 ppm between intra- and extracellular Cs+. Intracellularly we obtained a spin lattice relaxation time (T1) of 2.0 +/- 0.3 s, and extracellular T1 was 7.9 +/- 0.4 s. Na(+)-K+ pump activity in endothelial cells was determined at 12 +/- 3 nmol Cs+ x min(-1) x (mg Prot)[-1] under control conditions. When intracellular ATP was depleted by the addition of 5 mM 2-deoxy-D-glucose (DOG) and NaCN to about 5% of control, the pump rate decreased by 33%. After 80 min of perfusion with 5 mM DOG and NaCN, reperfusion with control medium rapidly reestablished the endothelial membrane Cs+ gradient. Using (133)Cs+ NMR as a convenient tool, we further addressed the proposed role of actin as a regulator of Na(+)-K+ pump activity in intact cells. Two models of actin rearrangement were tested. DOG caused a rearrangement of F-actin and an increase in G-actin, with a simultaneous decrease in ATP concentration. Cytochalasin D, however, caused an F-actin rearrangement different from that observed for DOG and an increase in G-actin, and cellular ATP levels remained unchanged. In both models, the Na(+)-K(+)-pump activity remained unchanged, as measured with (133)Cs NMR. Our results demonstrate that (133)Cs NMR can be used to repetitively measure Na(+)-K(+)-ATPase activity in endothelial cells. No evidence for a regulatory role of actin on Na(+)-K(+)-ATPase was found. Images FIGURE 6 PMID:9168052

  17. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility.

    PubMed

    Linsmeier, Ian; Banerjee, Shiladitya; Oakes, Patrick W; Jung, Wonyeong; Kim, Taeyoon; Murrell, Michael P

    2016-01-01

    While the molecular interactions between individual myosin motors and F-actin are well established, the relationship between F-actin organization and actomyosin forces remains poorly understood. Here we explore the accumulation of myosin-induced stresses within a two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin activity is controlled spatiotemporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actin networks is highly cooperative, telescopic with the activation size, and capable of generating non-uniform patterns of mechanical stress. We quantitatively reproduce these collective biomimetic properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. PMID:27558758

  18. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility

    PubMed Central

    Linsmeier, Ian; Banerjee, Shiladitya; Oakes, Patrick W.; Jung, Wonyeong; Kim, Taeyoon; Murrell, Michael P.

    2016-01-01

    While the molecular interactions between individual myosin motors and F-actin are well established, the relationship between F-actin organization and actomyosin forces remains poorly understood. Here we explore the accumulation of myosin-induced stresses within a two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin activity is controlled spatiotemporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actin networks is highly cooperative, telescopic with the activation size, and capable of generating non-uniform patterns of mechanical stress. We quantitatively reproduce these collective biomimetic properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. PMID:27558758

  19. Invited review: Microtubule severing enzymes couple atpase activity with tubulin GTPase spring loading.

    PubMed

    Bailey, Megan E; Jiang, Nan; Dima, Ruxandra I; Ross, Jennifer L

    2016-08-01

    Microtubules are amazing filaments made of GTPase enzymes that store energy used for their own self-destruction to cause a stochastically driven dynamics called dynamic instability. Dynamic instability can be reproduced in vitro with purified tubulin, but the dynamics do not mimic that observed in cells. This is because stabilizers and destabilizers act to alter microtubule dynamics. One interesting and understudied class of destabilizers consists of the microtubule-severing enzymes from the ATPases Associated with various cellular Activities (AAA+) family of ATP-enzymes. Here we review current knowledge about GTP-driven microtubule dynamics and how that couples to ATP-driven destabilization by severing enzymes. We present a list of challenges regarding the mechanism of severing, which require development of experimental and modeling approaches to shed light as to how severing enzymes can act to regulate microtubule dynamics in cells. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 547-556, 2016. PMID:27037673

  20. Sphingosine inhibits the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity.

    PubMed

    Benaim, Gustavo; Pimentel, Adriana A; Felibertt, Pimali; Mayora, Adriana; Colman, Laura; Sojo, Felipe; Rojas, Héctor; De Sanctis, Juan B

    2016-04-29

    The increase in the intracellular Ca(2+) concentration ([Ca(2+)]i) is the key variable for many different processes, ranging from regulation of cell proliferation to apoptosis. In this work we demonstrated that the sphingolipid sphingosine (Sph) increases the [Ca(2+)]i by inhibiting the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), in a similar manner to thapsigargin (Tg), a specific inhibitor of this Ca(2+) pump. The results showed that addition of sphingosine produced a release of Ca(2+) from the endoplasmic reticulum followed by a Ca(2+) entrance from the outside mileu. The results presented in this work support that this sphingolipid could control the activity of the SERCA, and hence sphingosine may participate in the regulation of [Ca(2+)]I in mammalian cells. PMID:27033604

  1. Inhibition of Simian Virus 40 replication by targeting the molecular chaperone function and ATPase activity of T antigen

    PubMed Central

    Wright, Christine M.; Seguin, Sandlin P.; Fewell, Sheara W.; Zhang, Haijiang; Ishwad, Chandra; Vats, Abhay; Lingwood, Cifford A.; Wipf, Peter; Fanning, Ellen; Pipas, James M.; Brodsky, Jeffrey L.

    2009-01-01

    Polyomaviruses such as BK virus and JC virus have been linked to several diseases, but treatments that thwart their propagation are limited in part because of slow growth and cumbersome culturing conditions. In contrast, the replication of one member of this family, Simian Virus 40 (SV40), is robust and has been well-characterized. SV40 replication requires two domains within the viral-encoded large tumor antigen (TAg): The ATPase domain and the N-terminal J domain, which stimulates the ATPase activity of the Hsp70 chaperone. To assess whether inhibitors of polyomavirus replication could be identified, we examined a recently described library of small molecules, some of which inhibit chaperone function. One compound, MAL2-11B, inhibited both TAg’s endogenous ATPase activity and the TAg-mediated activation of Hsp70. MAL2-11B also reduced SV40 propagation in plaque assays and compromised DNA replication in cell culture and in vitro. Furthermore, the compound significantly reduced the growth of BK virus in a human kidney cell line. These data indicate that pharmacological inhibition of TAg’s chaperone and ATPase activities may provide a route to combat polyomavirus-mediated disease. PMID:19200446

  2. Spa47 is an oligomerization-activated type three secretion system (T3SS) ATPase from Shigella flexneri.

    PubMed

    Burgess, Jamie L; Jones, Heather B; Kumar, Prashant; Toth, Ronald T; Middaugh, C Russell; Antony, Edwin; Dickenson, Nicholas E

    2016-05-01

    Gram-negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti-infective agents. PMID:26947936

  3. Influence of phosphate and pH on myofibrillar ATPase activity and force in skinned cardiac trabeculae from rat.

    PubMed Central

    Ebus, J P; Stienen, G J; Elzinga, G

    1994-01-01

    1. The effects of inorganic phosphate (Pi) and pH on maximal calcium-activated isometric force and MgATPase activity were studied in chemically skinned cardiac trabeculae from rat. ATP hydrolysis was coupled enzymatically to the breakdown of NADH, and its concentration was determined photometrically. Measurements were performed at 2.1 microns sarcomere length and 20 degrees C. ATPase activity and force were also determined when square-wave-shaped length changes were applied, with a frequency of 23 Hz and an amplitude of 2.5%. 2. At pH 7.0 without added Pi, the average isometric force (+/- S.E.M.) was 51 +/- 3 kN m-2 (n = 23). The average isometric ATPase activity was 0.43 +/- 0.02 mM s-1 (n = 23). During the changes in length ATPase activity increased to 152 +/- 3% of the isometric value, while the average force level decreased to 48 +/- 2%. 3. Isometric force gradually decreased to 31 +/- 2% of the control value when the Pi concentration was increased to 30 mM. Isometric ATPase activity, however, remained constant for Pi concentrations up to 5 mM and decreased to 87 +/- 3% at 30 mM Pi. When Pi accumulation inside the preparation due to ATP hydrolysis was taken into account, a linear relationship was found between isometric force and log [Pi]. The decrease in relative force was found to be 44 +/- 4% per decade. 4. During the length changes, ATPase activity and average force showed, apart from the increase in ATPase activity and decrease in average force, the same dependence on Pi as the isometric values. Stiffness, estimated from the amplitude of the force responses during the length changes, decreased in proportion to isometric force when the Pi concentration was increased. The changes in the shape of the force responses due to the repetitive changes in length as a function of the Pi concentration were relatively small. These results suggest that the effect of Pi on the transitions which influence ATP turnover is rather insensitive to changes in cross

  4. Oxidation of Met(144) and Met(145) in Calmodulin Blocks Calmodulin Dependent Activation of the Plasma Membrane Ca-ATPase.

    SciTech Connect

    Bartlett, Ryan K.; Urbauer, Ramona J.; Anbanandam, A; Smallwood, Heather S.; Urbauer, Jeffrey L.; Squier, Thomas C.

    2003-04-15

    Methionine oxidation in calmodulin (CaM) isolated from senescent brain results in an inability to fully activate the plasma membrane (PM) Ca-ATPase which may contribute to observed increases in cytosolic calcium levels under conditions of oxidative stress and biological aging. To identify the functional importance of the oxidation of Met-144 and Met-145 near the carboxyl-terminus of CaM, we have used site-directed mutagenesis to substitute leucines for methionines at other positions in CaM, permitting the site-specific oxidation of Met-144 and Met-145. Prior to the oxidation, the CaM-dependent activation of the PM-CA-ATPase by these CaM mutants is similar to that of wild-type CaM. Likewise, oxidation of individual methionines has a minimal effect on the CaM concentration necessary for half-maximal activation of the PM-Ca-ATPase. These results are consistent with previous suggestions that no single methionine within CaM is essential for activation of the PM-CA-ATPase. Oxidation of either Met-144 or Met-145 or all nine methionines in CaM results in an equivalent inhibition of the PM-Ca-ATPase, resulting in a 50-60% reduction in the level of enzyme activation. Oxidation of Met-144 is largely responsible for the decreased extent of enzyme activation, suggesting that this site is critical in modulating the sensitivity of CaM to oxidant-induced loss-of-function. These results are discussed in terms of a possible functional role for Met-144 and Met-145 in CaM as redox sensors that function to modulate calcium homeostasis and energy metabolism in response to conditions of oxidative stress.

  5. Spliceosomal DEAH-Box ATPases Remodel Pre-mRNA to Activate Alternative Splice Sites.

    PubMed

    Semlow, Daniel R; Blanco, Mario R; Walter, Nils G; Staley, Jonathan P

    2016-02-25

    During pre-mRNA splicing, a central step in the expression and regulation of eukaryotic genes, the spliceosome selects splice sites for intron excision and exon ligation. In doing so, the spliceosome must distinguish optimal from suboptimal splice sites. At the catalytic stage of splicing, suboptimal splice sites are repressed by the DEAH-box ATPases Prp16 and Prp22. Here, using budding yeast, we show that these ATPases function further by enabling the spliceosome to search for and utilize alternative branch sites and 3' splice sites. The ATPases facilitate this search by remodeling the splicing substrate to disengage candidate splice sites. Our data support a mechanism involving 3' to 5' translocation of the ATPases along substrate RNA and toward a candidate site, but, surprisingly, not across the site. Thus, our data implicate DEAH-box ATPases in acting at a distance by pulling substrate RNA from the catalytic core of the spliceosome. PMID:26919433

  6. A flipped ion pair at the dynein–microtubule interface is critical for dynein motility and ATPase activation

    PubMed Central

    Uchimura, Seiichi; Fujii, Takashi; Takazaki, Hiroko; Ayukawa, Rie; Nishikawa, Yosuke; Minoura, Itsushi; Hachikubo, You; Kurisu, Genji; Sutoh, Kazuo; Kon, Takahide; Namba, Keiichi

    2015-01-01

    Dynein is a motor protein that moves on microtubules (MTs) using the energy of adenosine triphosphate (ATP) hydrolysis. To understand its motility mechanism, it is crucial to know how the signal of MT binding is transmitted to the ATPase domain to enhance ATP hydrolysis. However, the molecular basis of signal transmission at the dynein–MT interface remains unclear. Scanning mutagenesis of tubulin identified two residues in α-tubulin, R403 and E416, that are critical for ATPase activation and directional movement of dynein. Electron cryomicroscopy and biochemical analyses revealed that these residues form salt bridges with the residues in the dynein MT-binding domain (MTBD) that work in concert to induce registry change in the stalk coiled coil and activate the ATPase. The R403-E3390 salt bridge functions as a switch for this mechanism because of its reversed charge relative to other residues at the interface. This study unveils the structural basis for coupling between MT binding and ATPase activation and implicates the MTBD in the control of directional movement. PMID:25583999

  7. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane

    PubMed Central

    Sousa, Leilismara; Garcia, Israel J. P.; Costa, Tamara G. F.; Silva, Lilian N. D.; Renó, Cristiane O.; Oliveira, Eneida S.; Tilelli, Cristiane Q.; Santos, Luciana L.; Cortes, Vanessa F.; Santos, Herica L.; Barbosa, Leandro A.

    2015-01-01

    Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1), iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5%) than in women and was associated with an increase (446%) in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS) and an increase (327%) in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132%) in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels. PMID:26197432

  8. SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+-ATPases to Promote Cell Expansion in Arabidopsis[C][W

    PubMed Central

    Spartz, Angela K.; Ren, Hong; Park, Mee Yeon; Grandt, Kristin N.; Lee, Sang Ho; Murphy, Angus S.; Sussman, Michael R.; Overvoorde, Paul J.; Gray, William M.

    2014-01-01

    The plant hormone auxin promotes cell expansion. Forty years ago, the acid growth theory was proposed, whereby auxin promotes proton efflux to acidify the apoplast and facilitate the uptake of solutes and water to drive plant cell expansion. However, the underlying molecular and genetic bases of this process remain unclear. We have previously shown that the SAUR19-24 subfamily of auxin-induced SMALL AUXIN UP-RNA (SAUR) genes promotes cell expansion. Here, we demonstrate that SAUR proteins provide a mechanistic link between auxin and plasma membrane H+-ATPases (PM H+-ATPases) in Arabidopsis thaliana. Plants overexpressing stabilized SAUR19 fusion proteins exhibit increased PM H+-ATPase activity, and the increased growth phenotypes conferred by SAUR19 overexpression are dependent upon normal PM H+-ATPase function. We find that SAUR19 stimulates PM H+-ATPase activity by promoting phosphorylation of the C-terminal autoinhibitory domain. Additionally, we identify a regulatory mechanism by which SAUR19 modulates PM H+-ATPase phosphorylation status. SAUR19 as well as additional SAUR proteins interact with the PP2C-D subfamily of type 2C protein phosphatases. We demonstrate that these phosphatases are inhibited upon SAUR binding, act antagonistically to SAURs in vivo, can physically interact with PM H+-ATPases, and negatively regulate PM H+-ATPase activity. Our findings provide a molecular framework for elucidating auxin-mediated control of plant cell expansion. PMID:24858935

  9. Managing Brain Extracellular K+ during Neuronal Activity: The Physiological Role of the Na+/K+-ATPase Subunit Isoforms

    PubMed Central

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    During neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease. PMID:27148079

  10. Managing Brain Extracellular K(+) during Neuronal Activity: The Physiological Role of the Na(+)/K(+)-ATPase Subunit Isoforms.

    PubMed

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    During neuronal activity in the brain, extracellular K(+) rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K(+) is the Na(+)/K(+)-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na(+)/K(+)-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K(+) from neurons, whereas the neurons themselves become the primary K(+) absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na(+)/K(+)-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K(+) from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na(+)/K(+)-ATPase isoform combinations in K(+) management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na(+)/K(+)-ATPase in the regulation of extracellular K(+) in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease. PMID:27148079

  11. Uroguanylin inhibits H-ATPase activity and surface expression in renal distal tubules by a PKG-dependent pathway

    PubMed Central

    da Silva Lima, Vanessa; Crajoinas, Renato O.; Carraro-Lacroix, Luciene R.; Godinho, Alana N.; Dias, João L. G.; Dariolli, Rafael; Girardi, Adriana C. C.; Fonteles, Manassés C.; Malnic, Gerhard

    2014-01-01

    Cumulative evidence suggests that guanylin peptides play an important role on electrolyte homeostasis. We have previously reported that uroguanylin (UGN) inhibits bicarbonate reabsorption in a renal distal tubule. In the present study, we tested the hypothesis that the bicarbonaturic effect of UGN is at least in part attributable to inhibition of H+-ATPase-mediated hydrogen secretion in the distal nephron. By in vivo stationary microperfusion experiments, we were able to show that UGN inhibits H+-ATPase activity by a PKG-dependent pathway because KT5823 (PKG inhibitor) abolished the UGN effect on distal bicarbonate reabsorption and H89 (PKA inhibitor) was unable to prevent it. The in vivo results were confirmed by the in vitro experiments, where we used fluorescence microscopy to measure intracellular pH (pHi) recovery after an acid pulse with NH4Cl. By this technique, we observed that UGN and 8 bromoguanosine-cGMP (8Br-cGMP) inhibited H+-ATPase-dependent pHi recovery and that the UGN inhibitory effect was abolished in the presence of the PKG inhibitor. In addition, by using RT-PCR technique, we verified that Madin-Darby canine kidney (MDCK)-C11 cells express guanylate cyclase-C. Besides, UGN stimulated an increase of both cGMP content and PKG activity but was unable to increase the production of cellular cAMP content and PKA activity. Furthermore, we found that UGN reduced cell surface abundance of H+-ATPase B1 subunit in MDCK-C11 and that this effect was abolished by the PKG inhibitor. Taken together, our data suggest that UGN inhibits H+-ATPase activity and surface expression in renal distal cells by a cGMP/PKG-dependent pathway. PMID:25031022

  12. The linker region plays a regulatory role in assembly and activity of the Vps4 AAA ATPase.

    PubMed

    Shestakova, Anna; Curtiss, Matt; Davies, Brian A; Katzmann, David J; Babst, Markus

    2013-09-13

    The AAA-type ATPase Vps4 functions with components of the ESCRT (endosomal sorting complex required for transport) machinery in membrane fission events that are essential for endosomal maturation, cytokinesis, and the formation of retroviruses. A key step in these events is the assembly of monomeric Vps4 into the active ATPase complex, which is aided in part by binding of Vps4 via its N-terminal MIT (microtubule interacting and trafficking) domain to its substrate ESCRT-III. We found that the 40-amino acid linker region between the MIT and the ATPase domain of Vps4 is not required for proper function but plays a role in regulating Vps4 assembly and ATPase activity. Deletion of the linker is expected to bring the MIT domains into close proximity to the central pore of the Vps4 complex. We propose that this localization of the MIT domain in linker-deleted Vps4 mimics a repositioning of the MIT domain normally caused by binding of Vps4 to ESCRT-III. This structure would allow the Vps4 complex to engage ESCRT-III subunits with both the pore and the MIT domain simultaneously, which might be essential for the ATP-driven disassembly of ESCRT-III. PMID:23913684

  13. The contractome--a systems view of actomyosin contractility in non-muscle cells.

    PubMed

    Zaidel-Bar, Ronen; Zhenhuan, Guo; Luxenburg, Chen

    2015-06-15

    Actomyosin contractility is a highly regulated process that affects many fundamental biological processes in each and every cell in our body. In this Cell Science at a Glance article and the accompanying poster, we mined the literature and databases to map the contractome of non-muscle cells. Actomyosin contractility is involved in at least 49 distinct cellular functions that range from providing cell architecture to signal transduction and nuclear activity. Containing over 100 scaffolding and regulatory proteins, the contractome forms a highly complex network with more than 230 direct interactions between its components, 86 of them involving phosphorylation. Mapping these interactions, we identify the key regulatory pathways involved in the assembly of actomyosin structures and in activating myosin to produce contractile forces within non-muscle cells at the exact time and place necessary for cellular function. PMID:26021351

  14. Retrograde Flow and Myosin II Activity within the Leading Cell Edge Deliver F-Actin to the Lamella to Seed the Formation of Graded Polarity Actomyosin II Filament Bundles in Migrating Fibroblasts

    PubMed Central

    Anderson, Tom W.; Vaughan, Andrew N.

    2008-01-01

    In migrating fibroblasts actomyosin II bundles are graded polarity (GP) bundles, a distinct organization to stress fibers. GP bundles are important for powering cell migration, yet have an unknown mechanism of formation. Electron microscopy and the fate of photobleached marks show actin filaments undergoing retrograde flow in filopodia, and the lamellipodium are structurally and dynamically linked with stationary GP bundles within the lamella. An individual filopodium initially protrudes, but then becomes separated from the tip of the lamellipodium and seeds the formation of a new GP bundle within the lamella. In individual live cells expressing both GFP-myosin II and RFP-actin, myosin II puncta localize to the base of an individual filopodium an average 28 s before the filopodium seeds the formation of a new GP bundle. Associated myosin II is stationary with respect to the substratum in new GP bundles. Inhibition of myosin II motor activity in live cells blocks appearance of new GP bundles in the lamella, without inhibition of cell protrusion in the same timescale. We conclude retrograde F-actin flow and myosin II activity within the leading cell edge delivers F-actin to the lamella to seed the formation of new GP bundles. PMID:18799629

  15. Using fluorescence to study actomyosin in yeasts.

    PubMed

    Mulvihill, Daniel P

    2014-01-01

    This year marks the 30th anniversary of the first description of the cellular distribution of actin within a yeast cell. Since then advances in both molecular genetics and imaging technologies have ensured research within these simple model organisms has blazed a trail in the field of actomyosin research. Many yeast proteins and their functions are functionally conserved in human cells. This, combined with experimental speed, minimal cost and ease of use make the yeasts extremely attractive model organisms for researching diverse cellular processes, including those involving actomyosin. In this chapter, current state-of-the-art fluorescence methodologies being applied to yeast actomyosin research, together with an honest appraisal of their limitations, such as the pitfalls that should be considered when fluorescently labelling proteins interacting within a dynamic cytoskeleton, will be discussed. Papers describing the established techniques developed for yeast localisation studies will be highlighted. This will provide the reader with an informed overview of the arsenal of imaging techniques available to the yeast actomyosin researcher and encourage them to consider novel ways these simple unicellular eukaryotes could be used to address their own research questions. PMID:25096000

  16. A novel inhibitor of vacuolar ATPase, FR167356, which can discriminate between osteoclast vacuolar ATPase and lysosomal vacuolar ATPase

    PubMed Central

    Niikura, Kazuaki; Takano, Mikiko; Sawada, Masae

    2004-01-01

    Vacuolar ATPase (V-ATPase) has been proposed as a drug target in lytic bone diseases. Studies of bafilomycin derivatives suggest that the key issue regarding the therapeutic usefulness of V-ATPase inhibitors is selective inhibition of osteoclast V-ATPase. Previous efforts to develop therapeutic inhibitors of osteoclast V-ATPase have been frustrated by a lack of synthetically tractable and biologically selective leads. Therefore, we tried to find novel potent and specific V-ATPase inhibitors, which have new structural features and inhibition selectivity, from random screening using osteoclast microsomes. Finally, a novel V-ATPase inhibitor, FR167356, was obtained through chemical modification of a parental hit compound. FR167356 inhibited not only H+ transport activity of osteoclast V-ATPase but also H+ extrusion from cytoplasm of osteoclasts, which depends on the V-ATPase activity. As expected, FR167356 remarkably inhibited bone resorption in vitro. FR167356 also showed inhibitory effects on other V-ATPases, renal brush border V-ATPase, macrophage microsome V-ATPase and lysosomal V-ATPase. However, FR167356 was approximately seven-fold less potent in inhibiting lysosomal V-ATPase compared to osteoclast V-ATPase. Moreover, LDL metabolism in cells, which depends on acidification of lysosome, was blocked merely at higher concentration than bone resorption, suggesting that FR167356 inhibits V-ATPase of osteoclast ruffled border membrane still more selectively than lysosome at the cellular level. These results from the experiments seem to indicate that osteoclast V-ATPase may be different from lysosomal V-ATPase in respect of their structure. FR167356 had a novel chemical structural feature as well as inhibitory characteristics distinctly different from any previously known V-ATPase inhibitor family. Therefore, FR167356 is thought to be a useful tool for estimating the essential characteristics of V-ATPase inhibitors for drug development. PMID:15148249

  17. Effects of detergents on Na+ + K+-dependent ATPase activity in plasma-membrane fractions prepared from frog muscles. Studies of insulin action on Na+ and K+ transport.

    PubMed Central

    Omatsu-Kanbe, M; Kitasato, H

    1987-01-01

    The increase in Na+/K+ transport activity in skeletal muscles exposed to insulin was analysed. Plasma-membrane fractions were prepared from frog (Rana catesbeiana) skeletal muscles, and examination of the Na,K-ATPase (Na+ + K+-dependent ATPase) activity showed that it was insensitive to ouabain. In contrast, plasma-membrane fractions prepared from ouabain-pretreated muscles, by the same procedures, showed extremely low Na,K-ATPase activity. On adding saponin to the membrane suspension, the Na,K-ATPase activity increased, according to the detergent concentration. The maximum activity was about twice the control value, at 0.33 mg of saponin/mg of protein. Thus saponin makes vesicle membranes leaky, allowing ouabain in assay solutions to reach receptors on the inner surface of vesicles. Addition of insulin to saponin-treated membrane suspensions had no effect on the Na,K-ATPase activity, whereas the maximum activity of Na,K-ATPase in whole muscles was stimulated by exposure to insulin. The results show that the stimulation of Na+/K+ transport by insulin is not directly due to insulin binding to receptors on the cell surface, but rather support the view that the increase in the Na,K-ATPase induced by insulin requires an alteration of intracellular events. PMID:2825643

  18. Dialdehyde derivatives of purine mononucleotides: substrate properties and affinity modification of myosin ATPase

    SciTech Connect

    Grishin, M.N.; Kodentsova, V.M.; Abdraimova, U.A.; Nikolaeva, O.P.; Petushkova, E.V.

    1986-03-20

    It was established that the dialdehyde derivative of ATP (oxo-ATP) is a good substrate of the Ca-ATPase of heavy meromyosin: (1.2-1.4) x 10/sup -4/ M; V = V/sub ATP/. At the same time, it is capable of inducing irreversible inhibition of the enzyme. Since oxo-ATP is rapidly digested by myosin, forming oxo-ADP, this inhibition is a consequence of the interaction of the enzyme with oxo-ADP. It was shown that the inhibition of heavy meromyosin (HMM), by oxo-ADP occurs according to the kinetics characteristic of affinity modification; moreover, ATP entirely protects HMM from the loss of activity. Similar data on the irreversible inhibition of ATPase activity under the action of oxo-ADP were obtained in the case of myosin, heavy meromyosin, subfragment-1, and natural actomyosin, as well as in the absence of divalent cations, which is evidence of modification of the active site of myosin ATPase.

  19. Follistatin-like 1 suppresses sensory afferent transmission by activating Na+,K+-ATPase.

    PubMed

    Li, Kai-Cheng; Zhang, Fang-Xiong; Li, Chang-Lin; Wang, Feng; Yu, Ming-Yan; Zhong, Yan-Qing; Zhang, Kai-Hua; Lu, Ying-Jin; Wang, Qiong; Ma, Xiao-Li; Yao, Jun-Ru; Wang, Jin-Yuan; Lin, Li-Bo; Han, Mei; Zhang, Yu-Qiu; Kuner, Rohini; Xiao, Hua-Sheng; Bao, Lan; Gao, Xiang; Zhang, Xu

    2011-03-10

    Excitatory synaptic transmission is modulated by inhibitory neurotransmitters and neuromodulators. We found that the synaptic transmission of somatic sensory afferents can be rapidly regulated by a presynaptically secreted protein, follistatin-like 1 (FSTL1), which serves as a direct activator of Na(+),K(+)-ATPase (NKA). The FSTL1 protein is highly expressed in small-diameter neurons of the dorsal root ganglion (DRG). It is transported to axon terminals via small translucent vesicles and secreted in both spontaneous and depolarization-induced manners. Biochemical assays showed that FSTL1 binds to the α1 subunit of NKA and elevates NKA activity. Extracellular FSTL1 induced membrane hyperpolarization in cultured cells and inhibited afferent synaptic transmission in spinal cord slices by activating NKA. Genetic deletion of FSTL1 in small DRG neurons of mice resulted in enhanced afferent synaptic transmission and sensory hypersensitivity, which could be reduced by intrathecally applied FSTL1 protein. Thus, FSTL1-dependent activation of NKA regulates the threshold of somatic sensation. PMID:21382556

  20. Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone, corticosterone and verapamil are mutually non-exclusive modulators.

    PubMed Central

    Orlowski, S; Mir, L M; Belehradek, J; Garrigos, M

    1996-01-01

    P-glycoprotein (P-gp) is a membranous ATPase responsible for the multidrug resistance (MDR) phenotype. Using membrane vesicles prepared from the highly resistant cell line DC-3F/ADX we studied the influence of P-gp ATPase activity of four progesterone derivatives which specifically bind to P-gp and reverse MDR. Progesterone and desoxycorticosterone stimulate P-gp ATPase activity with, respectively, apparent concentrations giving half-maximal activation of 20-25 microM and 40-50 microM, and activation factors of 2.3 (at 100 microM progesterone) and 1.8 (at 170 microM desoxycorticosterone). Hydrocortisone above 100 microM stimulates P-gp ATPase activity while corticosterone has no apparent stimulating effect. Our data are consistent with the location of the binding sites for the progesterone derivatives on the P-gp membranous domain. The effects of these steroids on verapamil-stimulated P-gp ATPase activity support a non-competitive mechanism, i.e. the binding sites for verapamil and steroids are mutually non-exclusive for P-gp ATPase modulation. A similar non-competitive inhibition of progesterone-stimulated P-gp ATPase activity by desoxycorticosterone or by corticosterone leads to the conclusion that these steroids, although sharing related structures, have distinct modulating sites on P-gp. As expected from their mutually non-exclusive interactions on P-gp, progesterone and verapamil when mixed induce a synergistic modulation of P-gp ATPase activity. Since drug transport by P-gp is believed to be coupled to its ATPase activity, a corresponding synergistic effect of these two modulators for the inhibition of P-gp-mediated drug resistance can be expected. PMID:8713080

  1. Sterol Modulation of the Plasma Membrane H+-ATPase Activity from Corn Roots Reconstituted into Soybean Lipids.

    PubMed Central

    Grandmougin-Ferjani, A.; Schuler-Muller, I.; Hartmann, M. A.

    1997-01-01

    A partially purified H+-ATPase from the plasma membrane (PM) of corn (Zea mays L.) roots was inserted into vesicles prepared with soybean (Glycine max L.) phospholipids and various concentrations of individual sterols using either a freeze-thaw sonication or an octylglucoside dilution procedure. Both methods yielded a functional enzyme that retained its native characteristics. We have investigated the effects of typical plant sterols (i.e. sitosterol, stigmasterol, and 24-methylcholesterol) on both ATP hydrolysis and H+ pumping by the reconstituted corn root PM ATPase. We have also checked the influence of cholesterol and of two unusual sterols, 24-methylpollinastanol and 14[alpha],24-dimethylcholest-8-en-3[beta]-ol. Here we present evidence for a sterol modulation of the plant PM H+-ATPase activity. In particular, cholesterol and stigmasterol were found to stimulate the pump, especially when present at 5 mol%, whereas all of the other sterols tested behaved as inhibitors at any concentration in proteoliposomes. In all situations H+ pumping was shown to be more sensitive to a sterol environment than was ATP hydrolysis. Our results suggest the occurrence of binding sites for sterols on the plant PM H+-ATPase. PMID:12223599

  2. [Mechanism of eosin Y action of activity of solubilized Ca2+, Mg2+- ATPase from smooth muscle sarcolemma].

    PubMed

    Chernysh, I H

    1999-01-01

    The eosin Y inhibitory effect on the activity of smooth muscle plasma membrane Ca(2+)-transporting ATPase was studied: effect of this inhibitor on the maximal initial rate of ATP-hydrolase reaction, catalyzed by Ca2+, Mg(2+)-ATPase, on the affinity of enzyme for the reaction reagents (Ca2+, Mg2+, ATP). Dependence of eosin Y inhibitory effect on some physicochemical factors of incubation medium was studied too. It was determined that eosin Y inhibited reversibly and with high specificity purified Ca2+, Mg(2+)-ATPase solubilized from myometrial cell plasma membrane (Ki--0.8 microM), decreased the turnover rate of this enzyme determined both by Mg2+, ATP and Ca2+. This inhibitor had no effect on the enzyme affinity for Ca2+, increased affinity for Mg2+ and decreased affinity for ATP. It was determined that inhibition of Ca2+, Mg(2+)-ATPase by eosin Y depended on pH and dielectric permeability of the incubation medium: increasing of pH from 6.5 to 8.0 reduced the apparent Ki, decreasing of dielectric permeability from 74.07 to 71.19 increased the apparent Ki. PMID:10726322

  3. A Loss in the Plasma Membrane ATPase Activity and Its Recovery Coincides with Incipient Freeze-Thaw Injury and Postthaw Recovery in Onion Bulb Scale Tissue 1

    PubMed Central

    Arora, Rajeev; Palta, Jiwan P.

    1991-01-01

    Plasma membrane ATPase has been proposed to be functionally altered during early stages of injury caused by a freeze-thaw stress. Complete recovery from freezing injury in onion cells during the postthaw period provided evidence in support of this proposal. During recovery, a simultaneous decrease in ion leakage and disappearance of water soaking (symptoms of freeze-thaw injury) has been noted. Since reabsorption of ions during recovery must be an active process, recovery of plasma membrane ATPase (active transport system) functions has been implicated. In the present study, onion (Allium cepa L. cv Downing Yellow Globe) bulbs were subjected to a freeze-thaw stress which resulted in a reversible (recoverable) injury. Plasma membrane ATPase activity in the microsomes (isolated from the bulb scales) and ion leakage rate (efflux/hour) from the same scale tissue were measured immediately following thawing and after complete recovery. In injured tissue (30-40% water soaking), plasma membrane ATPase activity was reduced by about 30% and this was paralleled by about 25% higher ion leakage rate. As water soaking disappeared during recovery, the plasma membrane ATPase activity and the ion leakage rate returned to about the same level as the respective controls. Treatment of freeze-thaw injured tissue with vanadate, a specific inhibitor of plasma membrane ATPase, during postthaw prevented the recovery process. These results indicate that recovery of freeze-injured tissue depends on the functional activity of plasma membrane ATPase. PMID:16668063

  4. Non-periodic oscillatory deformation of an actomyosin microdroplet encapsulated within a lipid interface

    PubMed Central

    Nishigami, Yukinori; Ito, Hiroaki; Sonobe, Seiji; Ichikawa, Masatoshi

    2016-01-01

    Active force generation in living organisms, which is mainly involved in actin cytoskeleton and myosin molecular motors, plays a crucial role in various biological processes. Although the contractile properties of actomyosin have been extensively investigated, their dynamic contribution to a deformable membrane remains unclear because of the cellular complexities and the difficulties associated with in vitro reconstitution. Here, by overcoming these experimental difficulties, we demonstrate the dynamic deformation of a reconstituted lipid interface coupled with self-organized structure of contractile actomyosin. Therein, the lipid interface repeatedly oscillates without any remarkable periods. The oscillatory deformation of the interface is caused by the aster-like three-dimensional hierarchical structure of actomyosin inside the droplet, which is revealed that the oscillation occurs stochastically as a Poisson process. PMID:26754862

  5. Non-periodic oscillatory deformation of an actomyosin microdroplet encapsulated within a lipid interface

    NASA Astrophysics Data System (ADS)

    Nishigami, Yukinori; Ito, Hiroaki; Sonobe, Seiji; Ichikawa, Masatoshi

    2016-01-01

    Active force generation in living organisms, which is mainly involved in actin cytoskeleton and myosin molecular motors, plays a crucial role in various biological processes. Although the contractile properties of actomyosin have been extensively investigated, their dynamic contribution to a deformable membrane remains unclear because of the cellular complexities and the difficulties associated with in vitro reconstitution. Here, by overcoming these experimental difficulties, we demonstrate the dynamic deformation of a reconstituted lipid interface coupled with self-organized structure of contractile actomyosin. Therein, the lipid interface repeatedly oscillates without any remarkable periods. The oscillatory deformation of the interface is caused by the aster-like three-dimensional hierarchical structure of actomyosin inside the droplet, which is revealed that the oscillation occurs stochastically as a Poisson process.

  6. Oxidative stress and damage to erythrocytes in patients with chronic obstructive pulmonary disease--changes in ATPase and acetylcholinesterase activity.

    PubMed

    Bukowska, Bożena; Sicińska, Paulina; Pająk, Aneta; Koceva-Chyla, Aneta; Pietras, Tadeusz; Pszczółkowska, Anna; Górski, Paweł; Koter-Michalak, Maria

    2015-12-01

    The study indicates, for the first time, the changes in both ATPase and AChE activities in the membrane of red blood cells of patients diagnosed with COPD. Chronic obstructive pulmonary disease (COPD) is one of the most common and severe lung disorders. We examined the impact of COPD on redox balance and properties of the membrane of red blood cells. The study involved 30 patients with COPD and 18 healthy subjects. An increase in lipid peroxidation products and a decrease in the content of -SH groups in the membrane of red blood cells in patients with COPD were observed. Moreover, an increase in the activity of glutathione peroxidase and a decrease in superoxide dismutase, but not in catalase activity, were found as well. Significant changes in activities of erythrocyte membrane enzymes in COPD patients were also evident demonstrated by a considerably lowered ATPase activity and elevated AChE activity. Changes in the structure and function of red blood cells observed in COPD patients, together with changes in the activity of the key membrane enzymes (ATPases and AChE), can result from the imbalance of redox status of these cells due to extensive oxidative stress induced by COPD disease. PMID:26369587

  7. AMP-activated protein kinase regulates the vacuolar H+-ATPase via direct phosphorylation of the A subunit (ATP6V1A) in the kidney

    PubMed Central

    Alzamora, Rodrigo; Al-Bataineh, Mohammad M.; Liu, Wen; Gong, Fan; Li, Hui; Thali, Ramon F.; Joho-Auchli, Yolanda; Brunisholz, René A.; Satlin, Lisa M.; Neumann, Dietbert; Pastor-Soler, Núria M.

    2013-01-01

    The vacuolar H+-ATPase (V-ATPase) in intercalated cells contributes to luminal acidification in the kidney collecting duct and nonvolatile acid excretion. We previously showed that the A subunit in the cytoplasmic V1 sector of the V-ATPase (ATP6V1A) is phosphorylated by the metabolic sensor AMP-activated protein kinase (AMPK) in vitro and in kidney cells. Here, we demonstrate that treatment of rabbit isolated, perfused collecting ducts with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) inhibited V-ATPase-dependent H+ secretion from intercalated cells after an acid load. We have identified by mass spectrometry that Ser-384 is a major AMPK phosphorylation site in the V-ATPase A subunit, a result confirmed by comparing AMPK-dependent phosphate labeling of wild-type A-subunit (WT-A) with that of a Ser-384-to-Ala A subunit mutant (S384A-A) in vitro and in intact HEK-293 cells. Compared with WT-A-expressing HEK-293 cells, S384A-A-expressing cells exhibited greater steady-state acidification of HCO3−-containing media. Moreover, AICAR treatment of clone C rabbit intercalated cells expressing the WT-A subunit reduced V-ATPase-dependent extracellular acidification, an effect that was blocked in cells expressing the phosphorylation-deficient S384A-A mutant. Finally, expression of the S384A-A mutant prevented cytoplasmic redistribution of the V-ATPase by AICAR in clone C cells. In summary, direct phosphorylation of the A subunit at Ser-384 by AMPK represents a novel regulatory mechanism of the V-ATPase in kidney intercalated cells. Regulation of the V-ATPase by AMPK may couple V-ATPase activity to cellular metabolic status with potential relevance to ischemic injury in the kidney and other tissues. PMID:23863464

  8. Effects of Gangliosides on the Activity of the Plasma Membrane Ca2+-ATPase

    PubMed Central

    Jiang, Lei; Bechtel, Misty D.; Bean, Jennifer L.; Winefield, Robert; Williams, Todd D.; Zaidi, Asma; Michaelis, Elias K.; Michaelis, Mary L.

    2014-01-01

    Control of intracellular calcium concentrations ([Ca2+]i) is essential for neuronal function, and the plasma membrane Ca2+-ATPase (PMCA) is crucial for the maintenance of low [Ca2+]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca2+ homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by D-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca2+ transporter. PMID:24434060

  9. V-ATPase: a master effector of E2F1-mediated lysosomal trafficking, mTORC1 activation and autophagy

    PubMed Central

    Meo-Evoli, Nathalie; Almacellas, Eugènia; Massucci, Francesco Alessandro; Gentilella, Antonio; Ambrosio, Santiago; Kozma, Sara C.; Thomas, George; Tauler, Albert

    2015-01-01

    In addition to being a master regulator of cell cycle progression, E2F1 regulates other associated biological processes, including growth and malignancy. Here, we uncover a regulatory network linking E2F1 to lysosomal trafficking and mTORC1 signaling that involves v-ATPase regulation. By immunofluorescence and time-lapse microscopy we found that E2F1 induces the movement of lysosomes to the cell periphery, and that this process is essential for E2F1-induced mTORC1 activation and repression of autophagy. Gain- and loss-of-function experiments reveal that E2F1 regulates v-ATPase activity and inhibition of v-ATPase activity repressed E2F1-induced lysosomal trafficking and mTORC1 activation. Immunoprecipitation experiments demonstrate that E2F1 induces the recruitment of v-ATPase to lysosomal RagB GTPase, suggesting that E2F1 regulates v-ATPase activity by enhancing the association of V0 and V1 v-ATPase complex. Analysis of v-ATPase subunit expression identified B subunit of V0 complex, ATP6V0B, as a transcriptional target of E2F1. Importantly, ATP6V0B ectopic-expression increased v-ATPase and mTORC1 activity, consistent with ATP6V0B being responsible for mediating the effects of E2F1 on both responses. Our findings on lysosomal trafficking, mTORC1 activation and autophagy suppression suggest that pharmacological intervention at the level of v-ATPase may be an efficacious avenue for the treatment of metastatic processes in tumors overexpressing E2F1. PMID:26356814

  10. Molecular Modulation of Actomyosin Function by Cardiac Myosin-Binding Protein C

    PubMed Central

    Previs, Michael J.; Michalek, Arthur J.; Warshaw, David M.

    2014-01-01

    Cardiac myosin-binding protein C is a key regulator of cardiac contractility and is capable of both activating the thin filament to initiate actomyosin motion generation and governing maximal sliding velocities. While MyBP-C’s C-terminus localizes the molecule within the sarcomere the N-terminus appears to confer regulatory function by binding to the myosin motor domain and/or actin. Literature pertaining to how MyBP-C binding to the myosin motor domain and or actin leads to MyBP-C’s dual modulatory roles that can impact actomyosin interactions are discussed. PMID:24407948

  11. ALUMINUM CHLORIDE EFFECT ON Ca2+,Mg(2+)-ATPase ACTIVITY AND DYNAMIC PARAMETERS OF SKELETAL MUSCLE CONTRACTION.

    PubMed

    Nozdrenko, D M; Abramchuk, O M; Soroca, V M; Miroshnichenko, N S

    2015-01-01

    We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10(-4) M Increasing the concentration of AlCl3 to 10(-2) M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg(2+)-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg(2+)-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction. PMID:26717594

  12. Proteomic analysis of V-ATPase-rich cells harvested from the kidney and epididymis by fluorescence-activated cell sorting

    PubMed Central

    Da Silva, Nicolas; Pisitkun, Trairak; Belleannée, Clémence; Miller, Lance R.; Nelson, Raoul; Knepper, Mark A.; Brown, Dennis

    2010-01-01

    Proton-transporting cells are located in several tissues where they acidify the extracellular environment. These cells express the vacuolar H+-ATPase (V-ATPase) B1 subunit (ATP6V1B1) in their plasma membrane. We provide here a comprehensive catalog of the proteins that are expressed in these cells, after their isolation by enzymatic digestion and fluorescence-activated cell sorting (FACS) from transgenic B1-enhanced green fluorescent protein (EGFP) mice. In these mice, type A and B intercalated cells and connecting segment cells of the kidney, and narrow and clear cells of the epididymis, which all express ATP6V1B1, also express EGFP, while all other cell types are negative. The proteome of renal and epididymal EGFP-positive (EGFP+) cells was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and compared with their respective EGFP-negative (EGFP−) cell populations. A total of 2,297 and 1,564 proteins were detected in EGFP+ cells from the kidney and epididymis, respectively. Out of these proteins, 202 and 178 were enriched by a factor greater than 1.5 in EGFP+ cells compared with EGFP− cells, in the kidney and epididymis respectively, and included subunits of the V-ATPase (B1, a4, and A). In addition, several proteins involved in intracellular trafficking, signaling, and cytoskeletal dynamics were identified. A novel common protein that was enriched in renal and epididymal EGFP+ cells is the progesterone receptor, which might be a potential candidate for the regulation of V-ATPase-dependent proton transport. These proteomic databases provide a framework for comprehensive future analysis of the common and distinct functions of V-ATPase-B1-expressing cells in the kidney and epididymis. PMID:20181927

  13. Effect of reducing agents and uncouplers on the electrical potential generated by mitochondrial ATPase activity.

    PubMed

    Encío, I; de Miguel, C; López-Moratalla, N; Santiago, E

    1989-12-01

    Beef heart submitochondrial particles bound to phospholipids impregnated filters generated an electrical potential upon the addition of ATP. The magnitude of the electrical potential reached depended on the phospholipid mixture composition used for filter impregnation, phosphatidylethanolamine being the active component for the electrical potential generation. Uncoupler FCCP (p-trifluoromethoxy carbonyl cyanide phenylhydrazone) inhibited the transmembrane electrical potential generation by diminishing the electrical resistance of the system as a result of its protonophoric action. However, uncouplers 2, 4-dinitrophenol and dicoumarol did not provoke large modifications of the electrical resistance under the conditions of pH and concentration used, and their action varied with the time elapsed after the submitochondrial particles purification, favouring the idea of the uncoupler interaction with a specific site on the membrane. Addition of sodium dithionite resulted in a higher plateau value for the electrical potential consistent with the promoted increase in ATPase activity. The effect of this agent was reversed by the 2,6-dichlorophenol-indophenol added at equivalent concentrations. PMID:2561021

  14. H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos.

    PubMed

    Schatzberg, Daphne; Lawton, Matthew; Hadyniak, Sarah E; Ross, Erik J; Carney, Tamara; Beane, Wendy S; Levin, Michael; Bradham, Cynthia A

    2015-10-15

    The bioelectrical signatures associated with regeneration, wound healing, development, and cancer are changes in the polarization state of the cell that persist over long durations, and are mediated by ion channel activity. To identify physiologically relevant bioelectrical changes that occur during normal development of the sea urchin Lytechinus variegatus, we tested a range of ion channel inhibitors, and thereby identified SCH28080, a chemical inhibitor of the H(+)/K(+) ATPase (HKA), as an inhibitor of skeletogenesis. In sea urchin embryos, the primary mesodermal lineage, the PMCs, produce biomineral in response to signals from the ectoderm. However, in SCH28080-treated embryos, aside from randomization of the left-right axis, the ectoderm is normally specified and differentiated, indicating that the block to skeletogenesis observed in SCH28080-treated embryos is PMC-specific. HKA inhibition did not interfere with PMC specification, and was sufficient to block continuing biomineralization when embryos were treated with SCH28080 after the initiation of skeletogenesis, indicating that HKA activity is continuously required during biomineralization. Ion concentrations and voltage potential were abnormal in the PMCs in SCH28080-treated embryos, suggesting that these bioelectrical abnormalities prevent biomineralization. Our results indicate that this effect is due to the inhibition of amorphous calcium carbonate precipitation within PMC vesicles. PMID:26282894

  15. Osmoregulation and salt gland Na, K-ATPase activity following exposure to the anticholinesterase fenthion

    USGS Publications Warehouse

    Rattner, B.A.; Fleming, W.J.; Murray, H.C.

    1982-01-01

    Salt gland function and osmoregulation in aquatic birds drinking hyperosmotic water has been suggested to be impaired by organophosphorus insecticides. To test this hypothesis, adult ducks (Anas rubripes) were provided various regimens of fresh or salt (1.5% NaCl) water (FW, SW) and mash containing vehicle or 21 ppm fenthion (Fn) on days 1-7 and 7-12 of this study. The 8 treatments (day 1-7:day 7-12) included :FW:FW, FW:FW+Fn, FW:SW, FW+Fn:SW, FW:SW+Fn, FW+Fn:SW+FN, SW;SW, and SW:5W+Fn. Ducks were bled by jugular venipuncture on days 1,7 and 12, and then sacrificed. Brain and salt gland acetylcholinesterase activities were substantially inhibited (44-52% and 14-26%) by Fn. However, plasma Na, Cl and osmolality, as indirect but cumulative indices of salt gland function, were uniformly elevated in all SW groups including those receiving Fn. In a second experiment, salt gland Na,K-ATPase activity was reduced after in vitro incubation with DDE (40 and 400 ?M; positive control), but was unaffected by Fn and its oxygen analog (0.04-400 ?M). The present findings suggest that environmentally realistic concentrations of organophosphorus insecticides do not affect osmoregulatory function in adult ducks.

  16. Effects of Celangulin IV and V From Celastrus angulatus Maxim on Na+/K+-ATPase Activities of the Oriental Armyworm (Lepidoptera: Noctuidae)

    PubMed Central

    Cheng, Dan; Feng, Mingxing; Ji, Yufei; Wu, Wenjun; Hu, Zhaonong

    2016-01-01

    Na+/K+-ATPase (sodium pump) is an important target for the development of botanical pesticide as it is responsible for transforming chemical energy in ATP to osmotic work and maintaining electrochemical Na+ and K+ gradients across the cell membrane of most animal cells. Celangulin IV (C-IV) and V (C-V), which are isolated from the root bark of Celastrus angulatus, are the major active ingredients of this insecticidal plant. The activities of C-IV and C-V on Na+/K+-ATPase were investigated by ultramicro measuring method to evaluate the effects of C-IV and C-V on Na+/K+-ATPase activities of the brain from the fifth Mythimna separata larvae and to discuss the insecticidal mechanism of C-IV and C-V. Results indicate that inhibitory activities of Na+/K+-ATPase by C-IV and C-V possess an obvious concentration-dependent in vitro. Compared with C-IV, the inhibition of C-V on Na+/K+-ATPase was not striking. In vivo, at a concentration of 25 mg/liter, the inhibition ratio of C-IV on Na+/K+-ATPase activity from the brain in narcosis and recovery period was more remarkable than that of C-V. Furthermore, the insects were fed with different mixture ratios of C-IV and C-V. The inhibition extent of Na+/K+-ATPase activity was corresponded with the dose of C-IV. However, C-V had no notable effects. This finding may mean that the mechanism of action of C-IV and C-V on Na+/K+-ATPase were different. Na+/K -ATPase may be an action target of C-IV and C-V. PMID:27324586

  17. Effects of Celangulin IV and V From Celastrus angulatus Maxim on Na+/K+-ATPase Activities of the Oriental Armyworm (Lepidoptera: Noctuidae).

    PubMed

    Cheng, Dan; Feng, Mingxing; Ji, Yufei; Wu, Wenjun; Hu, Zhaonong

    2016-01-01

    Na(+)/K(+)-ATPase (sodium pump) is an important target for the development of botanical pesticide as it is responsible for transforming chemical energy in ATP to osmotic work and maintaining electrochemical Na(+ )and K(+ )gradients across the cell membrane of most animal cells. Celangulin IV (C-IV) and V (C-V), which are isolated from the root bark of Celastrus angulatus, are the major active ingredients of this insecticidal plant. The activities of C-IV and C-V on Na(+)/K(+)-ATPase were investigated by ultramicro measuring method to evaluate the effects of C-IV and C-V on Na(+)/K(+)-ATPase activities of the brain from the fifth Mythimna separata larvae and to discuss the insecticidal mechanism of C-IV and C-V. Results indicate that inhibitory activities of Na(+)/K(+)-ATPase by C-IV and C-V possess an obvious concentration-dependent in vitro. Compared with C-IV, the inhibition of C-V on Na(+)/K(+)-ATPase was not striking. In vivo, at a concentration of 25 mg/liter, the inhibition ratio of C-IV on Na(+)/K(+)-ATPase activity from the brain in narcosis and recovery period was more remarkable than that of C-V. Furthermore, the insects were fed with different mixture ratios of C-IV and C-V. The inhibition extent of Na(+)/K(+)-ATPase activity was corresponded with the dose of C-IV. However, C-V had no notable effects. This finding may mean that the mechanism of action of C-IV and C-V on Na(+)/K(+)-ATPase were different. Na(+)/K -ATPase may be an action target of C-IV and C-V. PMID:27324586

  18. H/sup +/-ATPase activity from storage tissue of Beta vulgaris. IV. N,N'-dicyclohexylcarbodiimide binding and inhibition of the plasma membrane H/sup +/-ATPase

    SciTech Connect

    Oleski, N.A.; Bennett, A.B.

    1987-03-01

    The molecular weight and isoelectric point of the plasma membrane H/sup +/-ATPase from red beet storage tissue were determined using N,N'-dicyclohexylcarbodiimide (DCCD) and a H/sup +/-ATPase antibody. When plasma membrane vesicles were incubated with 20 micromolar (/sup 14/C)-DCCD at 0/sup 0/C, a single 97,000 dalton protein was visualized on a fluorography of a sodium dodecyl sulfate polyacrylamide gel. A close correlation between (/sup 14/C)DCCD labeling of the 97,000 dalton protein and the extent of ATPase inhibition over a range of DCCD concentration suggests that this 97,000 dalton protein is a component of the plasma membrane H/sup +/-ATPase. An antibody raised against the plasma membrane H/sup +/-ATPase of Neurospora crassa cross-reacted with the 97,000 dalton DCCD-binding protein, further supporting the identity of this protein. Immunoblots of two-dimensional gels of red beet plasma membrane vesicles indicated the isoelectric point of the H/sup +/-ATPase to be 6.5.

  19. Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus.

    PubMed

    Dong, Guogang; Yang, Qiong; Wang, Qiang; Kim, Yong-Ick; Wood, Thammajun L; Osteryoung, Katherine W; van Oudenaarden, Alexander; Golden, Susan S

    2010-02-19

    A circadian clock coordinates physiology and behavior in diverse groups of living organisms. Another major cyclic cellular event, the cell cycle, is regulated by the circadian clock in the few cases where linkage of these cycles has been studied. In the cyanobacterium Synechococcus elongatus, the circadian clock gates cell division by an unknown mechanism. Using timelapse microscopy, we confirm the gating of cell division in the wild-type and demonstrate the regulation of cytokinesis by key clock components. Specifically, a state of the oscillator protein KaiC that is associated with elevated ATPase activity closes the gate by acting through a known clock output pathway to inhibit FtsZ ring formation at the division site. An activity that stimulates KaiC phosphorylation independently of the KaiA protein was also uncovered. We propose a model that separates the functions of KaiC ATPase and phosphorylation in cell division gating and other circadian behaviors. PMID:20178745

  20. Influence of eicosapentaenoic acid and vitamin E on brain cortex Ca2+ ATPase activity in cholesterol-fed rabbits.

    PubMed

    Bekpinar, S; Oner, P; Altug, T; Eryürek, F; Sürmen, E; Deniz, G

    1989-01-01

    The influence of eicosapentaenoic acid (EPA) and vitamin E on brain cortex Ca2+ ATPase activity was examined in rabbits receiving cholesterol-rich diets for a period of 45 days. Rabbits were divided as control (A) and cholesterol-fed groups (B, C, and D). Group C received 80 mg of EPA and group D received 100 IU of vitamin E every day in addition to the cholesterol-rich (2%, w/w) diet which was solely given to Group B. Rabbits receiving cholesterol alone had a significant reduction in brain microsomal phospholipid level. Microsomal free cholesterol and polyunsaturated fatty acids (PUFA) were significantly increased in all experimental groups. Cortex microsomal Ca2+ ATPase activity was found to be inhibited in all cholesterol-fed rabbits as compared to controls, but the highest inhibition was seen in rabbits fed cholesterol alone. Additions of EPA or Vitamin E to the cholesterol-rich diets resulted in a recovery of the enzymatic activity. It is concluded that cholesterol feeding without any addition of PUFA or antioxidant agent might cause an inhibition of brain Ca2+ ATPase activity in rabbits, thereby leading to the dysfunction in ion transport and neurotransmitter release. PMID:2550382

  1. Painful nerve injury increases plasma membrane Ca2+-ATPase activity in axotomized sensory neurons

    PubMed Central

    2012-01-01

    Background The plasma membrane Ca2+-ATPase (PMCA) is the principal means by which sensory neurons expel Ca2+ and thereby regulate the concentration of cytoplasmic Ca2+ and the processes controlled by this critical second messenger. We have previously found that painful nerve injury decreases resting cytoplasmic Ca2+ levels and activity-induced cytoplasmic Ca2+ accumulation in axotomized sensory neurons. Here we examine the contribution of PMCA after nerve injury in a rat model of neuropathic pain. Results PMCA function was isolated in dissociated sensory neurons by blocking intracellular Ca2+ sequestration with thapsigargin, and cytoplasmic Ca2+ concentration was recorded with Fura-2 fluorometry. Compared to control neurons, the rate at which depolarization-induced Ca2+ transients resolved was increased in axotomized neurons after spinal nerve ligation, indicating accelerated PMCA function. Electrophysiological recordings showed that blockade of PMCA by vanadate prolonged the action potential afterhyperpolarization, and also decreased the rate at which neurons could fire repetitively. Conclusion We found that PMCA function is elevated in axotomized sensory neurons, which contributes to neuronal hyperexcitability. Accelerated PMCA function in the primary sensory neuron may contribute to the generation of neuropathic pain, and thus its modulation could provide a new pathway for peripheral treatment of post-traumatic neuropathic pain. PMID:22713297

  2. The structural coupling between ATPase activation and recovery stroke in the myosin II motor

    SciTech Connect

    Koppole, Sampath; Smith, Jeremy C; Fischer, S.

    2007-07-01

    Before the myosin motor head can perform the next power stroke, it undergoes a large conformational transition in which the converter domain, bearing the lever arm, rotates {approx} 65{sup o}. Simultaneous with this 'recovery stroke', myosin activates its ATPase function by closing the Switch-2 loop over the bound ATP. This coupling between the motions of the converter domain and of the 40 {angstrom}-distant Switch-2 loop is essential to avoid unproductive ATP hydrolysis. The coupling mechanism is determined here by finding a series of optimized intermediates between crystallographic end structures of the recovery stroke (Dictyostelium discoideum), yielding movies of the transition at atomic detail. The successive formation of two hydrogen bonds by the Switch-2 loop is correlated with the successive see-saw motions of the relay and SH1 helices that hold the converter domain. SH1 helix and Switch-2 loop communicate via a highly conserved loop that wedges against the SH1-helix upon Switch-2 closing.

  3. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit.

    PubMed Central

    Potma, E J; van Graas, I A; Stienen, G J

    1994-01-01

    In permeabilized single fibers of fast (psoas) and slow (soleus) muscle from the rabbit, the effect of pH on isometric myofibrillar ATPase activity and force was studied at 15 degrees C, in the pH range 6.4-7.9. ATPase activity was measured photometrically by enzymatic coupling of the regeneration of ATP to the oxidation of NADH, present in the bathing solution. NADH absorbance at 340 nm was determined inside a measuring chamber. To measure ATP turnover in single soleus fibers accurately, a new measuring chamber (volume 4 microliters) was developed that produced a sensitivity approximately 8 times higher than the system previously used. Under control conditions (pH 7.3), the isometric force was 136 and 115 kN/m2 and the ATP turnover was 0.43 and 0.056 mmol per liter fiber volume per second in psoas and soleus fibers, respectively. Over the pH range studied, isometric force increased monotonically by a factor 1.7 for psoas and 1.2 for soleus fibers. In psoas the isometric ATPase activity remained constant, whereas in soleus it slightly decreased with increasing pH. The pH dependency of relative tension cost (isometric ATPase activity divided by force) was practically identical for psoas and soleus fibers. In both cases it decreased by about a factor 0.57 as pH increased from 6.4 to 7.9. The implications of these findings are discussed in terms of cross-bridge kinetics. For both fiber types, estimates of the reaction rates and the distribution of cross-bridges and of their pH dependencies were obtained. A remarkable similarity was found between fast- and slow-twitch fibers in the effects of pH on the reaction rate constants. PMID:7696480

  4. Positive regulation of the enzymatic activity of gastric H(+),K(+)-ATPase by sialylation of its β-subunit.

    PubMed

    Fujii, Takuto; Watanabe, Midori; Shimizu, Takahiro; Takeshima, Hiroshi; Kushiro, Keiichiro; Takai, Madoka; Sakai, Hideki

    2016-06-01

    The gastric proton pump (H(+),K(+)-ATPase) consists of a catalytic α-subunit (αHK) and a glycosylated β-subunit (βHK). βHK glycosylation is essential for the apical trafficking and stability of αHK in gastric parietal cells. Here, we report the properties of sialic acids at the termini of the oligosaccharide chains of βHK. Sialylation of βHK was found in LLC-PK1 cells stably expressing αHK and βHK by staining of the cells with lectin-tagged fluorescent polymeric nanoparticles. This sialylation was also confirmed by biochemical studies using sialic acid-binding lectin beads and an anti-βHK antibody. The sialic acids of βHK are cleaved enzymatically by neuraminidase (sialidase) and nonenzymatically by an acidic solution (pH5). Interestingly, the enzymatic activity of H(+),K(+)-ATPase was significantly decreased by cleavage of the sialic acids of βHK. In contrast, βHK was not sialylated in the gastric tubulovesicles prepared from the stomach of fed hogs. The H(+),K(+)-ATPase activity in these tubulovesicles was not significantly altered by neuraminidase. Importantly, the sialylation of βHK was observed in the gastric samples prepared from the stomach of famotidine (a histamine H2 receptor antagonist)-treated rats, but not histamine (an acid secretagogue)-treated rats. The enzymatic activity of H(+),K(+)-ATPase in the samples of the famotidine-treated rats was significantly higher than in the histamine-treated rats. The effects of famotidine were weakened by neuraminidase. These results indicate that βHK is sialylated at neutral or weakly acidic pH, but not at acidic pH, suggesting that the sialic acids of βHK positively regulate the enzymatic activity of αHK. PMID:26922883

  5. ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase

    PubMed Central

    Kim, Dorothy M.; Zheng, Haiyan; Huang, Yuanpeng J.; Montelione, Gaetano T.; Hunt, John F.

    2013-01-01

    SecA is an intensively studied mechanoenzyme that uses ATP hydrolysis to drive processive extrusion of secreted proteins through a protein-conducting channel in the cytoplasmic membrane of eubacteria. The ATPase motor of SecA is strongly homologous to that in DEAD-box RNA helicases. It remains unclear how local chemical events in its ATPase active site control the overall conformation of an ~100 kDa multidomain enzyme and drive protein transport. In this paper, we use biophysical methods to establish that a single electrostatic charge in the ATPase active site controls the global conformation of SecA. The enzyme undergoes an ATP-modulated endothermic conformational transition (ECT) believed to involve similar structural mechanics to the protein transport reaction. We have characterized the effects of an isosteric glutamate-to-glutamine mutation in the catalytic base, which mimics the immediate electrostatic consequences of ATP hydrolysis in the active site. Calorimetric studies demonstrate that this mutation facilitates the ECT in E. coli SecA and triggers it completely in B. subtilis SecA. Consistent with the substantial increase in entropy observed in the course of the ECT, hydrogen-deuterium exchange mass spectrometry demonstrates that it increases protein backbone dynamics in domain-domain interfaces at remote locations from the ATPase active site. The catalytic glutamate is one of ~250 charged amino acids in SecA, and yet neutralization of its sidechain charge is sufficient to trigger a global order-disorder transition in this 100 kDa enzyme. The intricate network of structural interactions mediating this effect couples local electrostatic changes during ATP hydrolysis to global conformational and dynamic changes in SecA. This network forms the foundation of the allosteric mechanochemistry that efficiently harnesses the chemical energy stored in ATP to drive complex mechanical processes. PMID:23167435

  6. Odorous chemical perturbations of (Na+ + K+)-dependent ATPase activities. Effects on native and lipid-substituted preparations from individual turbinals from dog olfactory tissue.

    PubMed Central

    Dreesen, T D; Koch, R B

    1982-01-01

    Individual turbinals from the right and left sides of dog olfactory tissue were removed and nerve-ending-particle preparations were prepared. (Na+ + K+)-dependent ATPase activities of the individual preparations, and the effect of several odorous compounds [including (+)- and (-)-carvone] on the (Na+ + K+)-dependent ATPase activities, were determined. The maximally stimulatory odorant concentration in the reaction mixture for the majority of odorants was found to be 1.0 mM. Matched pairs of left/right turbinals showed a lack of bilateral symmetry of response. (Na+ + K+)-dependent ATPase activities of various dog brain nerve-ending particle preparations responded only slightly to 1.0 mM odorants. The role of phospholipids in the (Na+ + K+)-dependent ATPase activity was found to be critical. Partial replacement of endogenous lipid with either synthetic phospholipids or extracted lipids resulted in changes in stimulation obtained with endogenous lipids alone. PMID:6285897

  7. Age-Dependent Changes in Na(+),K(+)-ATPase Activity and Lipid Peroxidation in Membranes of Erythrocytes during Cardiosclerosis Development in Rats.

    PubMed

    Rebrova, T Yu; Afanasiev, S A; Popov, S V

    2016-06-01

    Activity of Na(+),K(+)-ATPase was measured in erythrocyte ghosts of 4- and 12-month-old rats, intact and with postinfarction cardiosclerosis. Enhanced accumulation of secondary LPO products and reduced activity of Na(+),K(+)-ATPase were observed in erythrocyte ghosts of 12-month-old rats. The development of postinfarction cardiosclerosis in 4-month-old rats was accompanied by enhanced accumulation of LPO products and decreased activity of Na(+),K(+)-ATPase. In comparison with young rats with postinfarction cardiosclerosis, 12-month-old rats with this pathology were characterized by less pronounced decrease in Na(+),K(+)-ATPase activity and increase in accumulation of LPO products in comparison with intact control. PMID:27388633

  8. Interdomain regulation of the ATPase activity of the ABC transporter haemolysin B from Escherichia coli.

    PubMed

    Reimann, Sven; Poschmann, Gereon; Kanonenberg, Kerstin; Stühler, Kai; Smits, Sander H J; Schmitt, Lutz

    2016-08-15

    Type 1 secretion systems (T1SS) transport a wide range of substrates across both membranes of Gram-negative bacteria and are composed of an outer membrane protein, a membrane fusion protein and an ABC (ATP-binding cassette) transporter. The ABC transporter HlyB (haemolysin B) is part of a T1SS catalysing the export of the toxin HlyA in E. coli HlyB consists of the canonical transmembrane and nucleotide-binding domains. Additionally, HlyB contains an N-terminal CLD (C39-peptidase-like domain) that interacts with the transport substrate, but its functional relevance is still not precisely defined. In the present paper, we describe the purification and biochemical characterization of detergent-solubilized HlyB in the presence of its transport substrate. Our results exhibit a positive co-operativity in ATP hydrolysis. We characterized further the influence of the CLD on kinetic parameters by using an HlyB variant lacking the CLD (HlyB∆CLD). The biochemical parameters of HlyB∆CLD revealed an increased basal maximum velocity but no change in substrate-binding affinity in comparison with full-length HlyB. We also assigned a distinct interaction of the CLD and a transport substrate (HlyA1), leading to an inhibition of HlyB hydrolytic activity at low HlyA1 concentrations. At higher HlyA1 concentrations, we observed a stimulation of the hydrolytic activities of both HlyB and HlyB∆CLD, which was completely independent of the interaction of HlyA1 with the CLD. Notably, all observed effects on ATPase activity, which were also analysed in detail by mass spectrometry, were independent of the HlyA1 secretion signal. These results assign an interdomain regulatory role for the CLD modulating the hydrolytic activity of HlyB. PMID:27279651

  9. Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth

    PubMed Central

    Roland, Alexandre B; Ricobaraza, Ana; Carrel, Damien; Jordan, Benjamin M; Rico, Felix; Simon, Anne; Humbert-Claude, Marie; Ferrier, Jeremy; McFadden, Maureen H; Scheuring, Simon; Lenkei, Zsolt

    2014-01-01

    Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆9-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid and reversible non-muscle myosin II (NM II) dependent contraction of the actomyosin cytoskeleton, through a Rho-GTPase and Rho-associated kinase (ROCK). This induces rapid neuronal remodeling, such as retraction of neurites and axonal growth cones, elevated neuronal rigidity, and reshaping of somatodendritic morphology. Chronic pharmacological inhibition of NM II prevents cannabinoid-induced reduction of dendritic development in vitro and leads, similarly to blockade of endocannabinoid action, to excessive growth of corticofugal axons into the sub-ventricular zone in vivo. Our results suggest that CB1R can rapidly transform the neuronal cytoskeleton through actomyosin contractility, resulting in cellular remodeling events ultimately able to affect the brain architecture and wiring. DOI: http://dx.doi.org/10.7554/eLife.03159.001 PMID:25225054

  10. Characterization of the ATPase activity of topoisomerase II from Leishmania donovani and identification of residues conferring resistance to etoposide

    PubMed Central

    2005-01-01

    We have cloned and expressed the 43 kDa N-terminal domain of Leishmania donovani topoisomerase II. This protein has an intrinsic ATPase activity and obeys Michaelis–Menten kinetics. Cross-linking studies indicate that the N-terminal domain exists as a dimer both in the presence and absence of nucleotides. Etoposide, an effective antitumour drug, traps eukaryotic DNA topoisomerase II in a covalent complex with DNA. In the present study, we report for the first time that etoposide inhibits the ATPase activity of the recombinant N-terminal domain of L. donovani topoisomerase II. We have modelled the structure of this 43 kDa protein and performed molecular docking analysis with the drug. Mutagenesis of critical amino acids in the vicinity of the ligand-binding pocket reveals less efficient inhibition of the ATPase activity of the enzyme by etoposide. Taken together, these results provide an insight for the development of newer therapeutic agents with specific selectivity. PMID:15901238

  11. Fusicoccin Binding to Its Plasma Membrane Receptor and the Activation of the Plasma Membrane H+-ATPase

    PubMed Central

    De Michelis, Maria Ida; Pugliarello, Maria Chiara; Rasi-Caldogno, Franca

    1989-01-01

    The characteristics of fusicoccin binding were investigated in microsomes from 24-h-old radish (Raphanus sativus L.) seedlings. The time course of fusicoccin binding depended on fusicoccin concentration: equilibrium was reached much faster at 10 nanomolar fusicoccin than at 0.3 nanomolar fusicoccin. Scatchard analysis of equilibrium binding as a function of fusicoccin concentration indicated a single class of receptor sites with a Kd of 1.8 nanomolar and a site density of 6.3 picomoles per milligram protein. Similar values (Kd 1.7 nanomolar and site density 7 picomoles per milligram protein) were obtained from the analysis of the dependence of equilibrium binding on membrane concentration at fixed fusicoccin concentrations. Fusicoccin binding comigrated with the plasma membrane H+-ATPase in an equilibrium sucrose density gradient: both activities formed a sharp peak (1.18 grams per milliliter) clearly distinct from that of markers of other membranes which all peaked at lower densities. The saturation profiles of fusicoccin binding and of fusicoccin-induced activation of the plasma membrane H+-ATPase, measured under identical conditions, were similar, supporting the view that fusicoccin-induced activation of the plasma membrane H+-ATPase is mediated by fusicoccin binding to its plasma membrane receptor. PMID:16666723

  12. Iron nanoparticle-induced activation of plasma membrane H(+)-ATPase promotes stomatal opening in Arabidopsis thaliana.

    PubMed

    Kim, Jae-Hwan; Oh, Youngjun; Yoon, Hakwon; Hwang, Inhwan; Chang, Yoon-Seok

    2015-01-20

    Engineered nanomaterials (ENMs) enable the control and exploration of intermolecular interactions inside microscopic systems, but the potential environmental impacts of their inevitable release remain largely unknown. Plants exposed to ENMs display effects, such as increase in biomass and chlorophyll, distinct from those induced by exposure to their bulk counterparts, but few studies have addressed the mechanisms underlying such physiological results. The current investigation found that exposure of Arabidopsis thaliana to nano zerovalent iron (nZVI) triggered high plasma membrane H(+)-ATPase activity. The increase in activity caused a decrease in apoplastic pH, an increase in leaf area, and also wider stomatal aperture. Analysis of gene expression indicated that the levels of the H(+)-ATPase isoform responsible for stomatal opening, AHA2, were 5-fold higher in plants exposed to nZVI than in unexposed control plants. This is the first study to show that nZVI enhances stomatal opening by inducing the activation of plasma membrane H(+)-ATPase, leading to the possibility of increased CO2 uptake. PMID:25496563

  13. Copper and zinc affect the activity of plasma membrane H+-ATPase and thiol content in aquatic fungi.

    PubMed

    Azevedo, M M; Guimarães-Soares, L; Pascoal, C; Cássio, F

    2016-05-01

    Aquatic hyphomycetes are the major microbial decomposers of plant litter in streams. We selected three aquatic hyphomycete species with different abilities to tolerate, adsorb and accumulate copper and zinc, and we investigated the effects of these metals on H+-ATPase activity as well as on the levels of thiol (SH)-containing compounds. Before metal exposure, the species isolated from a metal-polluted stream (Heliscus submersus and Flagellospora curta) had higher levels of thiol compounds than the species isolated from a clean stream (Varicosporium elodeae). However, V. elodeae rapidly increased the levels of thiols after metal exposure, emphasizing the importance of these compounds in fungal survival under metal stress. The highest amounts of metals adsorbed to fungal mycelia were found in the most tolerant species to each metal, i.e. in H. submersus exposed to copper and in V. elodeae exposed to zinc. Short-term (10 min) exposure to copper completely inhibited the activity of H+-ATPase of H. submersus and V. elodeae, whilst zinc only led to a similar effect on H. submersus. However, at longer exposure times (8 days) the most metal-tolerant species exhibited increased H+-ATPase activities, suggesting that the plasma membrane proton pump may be involved in the acclimation of aquatic hyphomycetes to metals. PMID:26916755

  14. Effects of vanadium on population growth and Na-K-ATPase activity of the brackish water hydroid Cordylophora caspia

    SciTech Connect

    Ringelband, U.; Karbe, L.

    1996-07-01

    Vanadium, a relatively abundant heavy metal, enters the environment naturally through rock weathering. A large fraction of vanadium input is of human origin. The combustion of petroleum- and coal-products, which contain relatively high concentrations of vanadium, is one of the most important sources of the enrichment of vanadium in the environment. As it is used as an alloy, and vanadium rich iron-ores of various origin are used in steel production, the residual slag-stones of the steel industry can contain considerable vanadium concentrations. Wherever slag-stones serve as a cheap and convenient material in riverbank reinforcement, vanadium can leach into the aquatic environment. Vanadium is regarded as an essential trace element for higher animals. Cantley et al. indicated a regulatory function of vanadate in vivo. Although considerable information is available on the toxic effects of vanadium on humans, very little is known about the toxicity of vanadium towards aquatic organisms, especially invertebrates. Bell and Sargent have shown an inhibition of Na-K-ATPase activity in gills of the eel Anguilla anguilla. Holleland and Towle have demonstrated the inhibition of Na-K-ATPase activity in the gills of the shore crab Carcinus maenas. The aim of this study was to determine the toxicity of vanadium towards the brackish water hydroid Cordylophora caspia. Hydroids are known to be particularly sensitive to heavy metals and their asexual reproduction can be used in a well-established population growth test. Furthermore, the effects of vanadium on Na-K-ATPase activity in hydroids were studied in in vivo experiments, wherein the animals were exposed to sublethal concentrations of vanadium. In addition, the inhibition of Na-K-ATPase was measured in vitro, by adding vanadium to a microsomal preparation. 16 refs., 4 figs.

  15. Thermogenic activity of the Ca2+-ATPase from blue marlin heater organ: regulation by KCl and temperature.

    PubMed

    da Costa, Danielly Cristiny Ferraz; Landeira-Fernandez, Ana Maria

    2009-11-01

    This work shows that vesicles derived from the blue marlin heater organ retain a sarcoplasmic reticulum (SR) Ca(2+)-ATPase that can interconvert different forms of energy. During the hydrolysis of ATP part of the energy is always converted into heat, and the other part can be converted into work (Ca(2+) transport) or heat, depending on the temperature and the presence of KCl in the reaction medium. At 15 degrees C, where KCl stimulates the activity approximately threefold, measurements of the amount of heat released per mole of ATP hydrolyzed (DeltaH(cal)) show similar values (approximately -11 kcal/mol) in the presence or absence of a Ca(2+) gradient. At 25 degrees C, KCl activates the enzyme to the same extent as at 15 degrees C, but inhibits the production of extra heat by SR Ca(2+)-ATPase when a Ca(2+) gradient is built up across the membrane. The DeltaH(cal) values found in the presence of a Ca(2+)-gradient were -26.2 +/- 2.9 kcal/mol (n = 7) in control experiments and -16.1 +/- 1.5 (n = 14) in the presence of 100 mM KCl. At 35 degrees C, KCl has a smaller effect ( approximately 1.5-fold) on activating the enzyme. Similar to SR Ca(2+)-ATPase from mammals, at this temperature the enzyme produces almost twice the amount of heat per mole of ATP hydrolyzed in the presence of a Ca(2+) gradient and KCl has no effect at all on this increment. These data suggest that the marlin SR Ca(2+)-ATPase may play an important role in heater organ thermogenesis and that KCl has the potential for regulating the heat production catalyzed by the enzyme. PMID:19710387

  16. Sp1 trans-activates the murine H(+)-K(+)-ATPase alpha(2)-subunit gene.

    PubMed

    Yu, Zhiyuan; Li, Mei; Zhang, Dongyu; Xu, William; Kone, Bruce C

    2009-07-01

    The H(+)-K(+)-ATPase alpha(2) (HKalpha2) gene of the renal collecting duct and distal colon plays a central role in potassium and acid-base homeostasis, yet its transcriptional control remains poorly characterized. We previously demonstrated that the proximal 177 bp of its 5'-flanking region confers basal transcriptional activity in murine inner medullary collecting duct (mIMCD3) cells and that NF-kappaB and CREB-1 bind this region to alter transcription. In the present study, we sought to determine whether the -144/-135 Sp element influences basal HKalpha2 gene transcription in these cells. Electrophoretic mobility shift and supershift assays using probes for -154/-127 revealed Sp1-containing DNA-protein complexes in nuclear extracts of mIMCD3 cells. Chromatin immunoprecipitation (ChIP) assays demonstrated that Sp1, but not Sp3, binds to this promoter region of the HKalpha2 gene in mIMCD3 cells in vivo. HKalpha2 minimal promoter-luciferase constructs with point mutations in the -144/-135 Sp element exhibited much lower activity than the wild-type promoter in transient transfection assays. Overexpression of Sp1, but not Sp3, trans-activated an HKalpha2 proximal promoter-luciferase construct in mIMCD3 cells as well as in SL2 insect cells, which lack Sp factors. Conversely, small interfering RNA knockdown of Sp1 inhibited endogenous HKalpha2 mRNA expression, and binding of Sp1 to chromatin associated with the proximal HKalpha2 promoter without altering the binding or regulatory influence of NF-kappaB p65 or CREB-1 on the proximal HKalpha2 promoter. We conclude that Sp1 plays an important and positive role in controlling basal HKalpha2 gene expression in mIMCD3 cells in vivo and in vitro. PMID:19420113

  17. Regulation of tissue morphodynamics: an important role for actomyosin contractility

    PubMed Central

    Siedlik, Michael J.; Nelson, Celeste M.

    2015-01-01

    Forces arising from contractile actomyosin filaments help shape tissue form during morphogenesis. Developmental events that result from actomyosin contractility include tissue elongation, bending, budding, and collective migration. Here, we highlight recent insights into these morphogenetic processes from the perspective of actomyosin contractility as a key regulator. Emphasis is placed on a range of results obtained through live imaging, culture, and computational methods. Combining these approaches in the future has the potential to generate a robust, quantitative understanding of tissue morphodynamics. PMID:25748251

  18. The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase.

    PubMed

    Ko, Y H; Pedersen, P L

    1995-09-22

    Cystic fibrosis is caused by mutations in the cell membrane protein called CFTR (cystic fibrosis transmembrane conductance regulator) which functions as a regulated Cl- channel. Although it is known that CFTR contains two nucleotide domains, both of which exhibit the capacity to bind ATP, it has not been demonstrated directly whether one or both domains can function as an active ATPase. To address this question, we have studied the first CFTR nucleotide binding fold (NBF1) in fusion with the maltose-binding protein (MBP), which both stabilizes NBF1 and enhances its solubility. Three different ATPase assays conducted on MBP-NBF1 clearly demonstrate its capacity to catalyze the hydrolysis of ATP. Significantly, the mutations K464H and K464L in the Walker A consensus motif of NBF1 markedly impair its catalytic capacity. MBP alone exhibits no ATPase activity and MBP-NBF1 fails to catalyze the release of phosphate from AMP or ADP. The Vmax of ATP hydrolysis (approximately 30 nmol/min/mg of protein) is significant and is markedly inhibited by azide and by the ATP analogs 2'-(3')-O-(2,4,6-trinitrophenyl)-adenosine-5'-triphosphate and adenosine 5'-(beta, gamma-imido)triphosphate. As inherited mutations within NBF1 account for most cases of cystic fibrosis, results reported here are fundamental to our understanding of the molecular basis of the disease. PMID:7545672

  19. Effect of sibutramine on Na+, K+ ATPase activity and tryptophan levels on male and female rat brain.

    PubMed

    Guzmán, D C; Ruíz, N L; García, E H; Mejía, G B; Téllez, P P; Jimenez, G E; De la Rosa Apreza, M; Olguín, H J

    2009-05-01

    Some drugs that are clinically used in weight control, like sibutramine, act on the serotonergic metabolism, but its relation with free radical (FR) production in the CNS is still unknown. The aim of the work was to evaluate the effect of sibutramine on FR production. Female and male Wistar rats (250 g weight) were used; the animals received sibutramine (10 mg/kg each 36 hours) intraperitoneally during 15 days. At the end of the study, the rats were sacrificed and their brains used to measure lipid peroxidation (TBARS), Na+, K+ ATPase activity, reduced glutathione (GSH), and tryptophan (TRP) levels, by means of validated methods. The activity of Na+, K+ATPase and total ATPase was increased in males and decreased in females. GSH concentration was increased and the levels of TBARS decreased by an effect related to sibutramine in the female group. Sibutramine decreased TRP concentration in the female group, but increased it in the male one, with respect to the control group. Our results suggest that sibutramine produce an antioxidant effect stimulated by the endogenously produced tryptophan and it protects the fluidity of plasma membrane in rat brain. PMID:19194834

  20. Deficiency in Na,K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice.

    PubMed

    Moseley, Amy E; Williams, Michael T; Schaefer, Tori L; Bohanan, Cynthia S; Neumann, Jon C; Behbehani, Michael M; Vorhees, Charles V; Lingrel, Jerry B

    2007-01-17

    Several disorders have been associated with mutations in Na,K-ATPase alpha isoforms (rapid-onset dystonia parkinsonism, familial hemiplegic migraine type-2), as well as reduction in Na,K-ATPase content (depression and Alzheimer's disease), thereby raising the issue of whether haploinsufficiency or altered enzymatic function contribute to disease etiology. Three isoforms are expressed in the brain: the alpha1 isoform is found in many cell types, the alpha2 isoform is predominantly expressed in astrocytes, and the alpha3 isoform is exclusively expressed in neurons. Here we show that mice heterozygous for the alpha2 isoform display increased anxiety-related behavior, reduced locomotor activity, and impaired spatial learning in the Morris water maze. Mice heterozygous for the alpha3 isoform displayed spatial learning and memory deficits unrelated to differences in cued learning in the Morris maze, increased locomotor activity, an increased locomotor response to methamphetamine, and a 40% reduction in hippocampal NMDA receptor expression. In contrast, heterozygous alpha1 isoform mice showed increased locomotor response to methamphetamine and increased basal and stimulated corticosterone in plasma. The learning and memory deficits observed in the alpha2 and alpha3 heterozygous mice reveal the Na,K-ATPase to be an important factor in the functioning of pathways associated with spatial learning. The neurobehavioral changes seen in heterozygous mice suggest that these mouse models may be useful in future investigations of the associated human CNS disorders. PMID:17234593

  1. Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly.

    PubMed

    Wu, Guowei; Adachi, Hironori; Ge, Junhui; Stephenson, David; Query, Charles C; Yu, Yi-Tao

    2016-03-15

    Pseudouridine (Ψ) is the most abundant internal modification identified in RNA, and yet little is understood of its effects on downstream reactions. Yeast U2 snRNA contains three conserved Ψs (Ψ35, Ψ42, and Ψ44) in the branch site recognition region (BSRR), which base pairs with the pre-mRNA branch site during splicing. Here, we show that blocks to pseudouridylation at these positions reduce the efficiency of pre-mRNA splicing, leading to growth-deficient phenotypes. Restoration of pseudouridylation at these positions using designer snoRNAs results in near complete rescue of splicing and cell growth. These Ψs interact genetically with Prp5, an RNA-dependent ATPase involved in monitoring the U2 BSRR-branch site base-pairing interaction. Biochemical analysis indicates that Prp5 has reduced affinity for U2 snRNA that lacks Ψ42 and Ψ44 and that Prp5 ATPase activity is reduced when stimulated by U2 lacking Ψ42 or Ψ44 relative to wild type, resulting in inefficient spliceosome assembly. Furthermore, in vivo DMS probing analysis reveals that pseudouridylated U2, compared to U2 lacking Ψ42 and Ψ44, adopts a slightly different structure in the branch site recognition region. Taken together, our results indicate that the Ψs in U2 snRNA contribute to pre-mRNA splicing by directly altering the binding/ATPase activity of Prp5. PMID:26873591

  2. Bufadienolides from parotoid gland secretions of Cuban toad Peltophryne fustiger (Bufonidae): Inhibition of human kidney Na(+)/K(+)-ATPase activity.

    PubMed

    Perera Córdova, Wilmer H; Leitão, Suzana Guimarães; Cunha-Filho, Geraldino; Bosch, Roberto Alonso; Alonso, Isel Pascual; Pereda-Miranda, Rogelio; Gervou, Rodrigo; Touza, Natália Araújo; Quintas, Luis Eduardo M; Noël, François

    2016-02-01

    Parotoid gland secretions of toad species are a vast reservoir of bioactive molecules with a wide range of biological properties. Herein, for the first time, it is described the isolation by preparative reversed-phase HPLC and the structure elucidation by NMR spectroscopy and/or mass spectrometry of nine major bufadienolides from parotoid gland secretions of the Cuban endemic toad Peltophryne fustiger: ψ-bufarenogin, gamabufotalin, bufarenogin, arenobufagin, 3-(N-suberoylargininyl) marinobufagin, bufotalinin, telocinobufagin, marinobufagin and bufalin. In addition, the secretion was analyzed by UPLC-MS/MS which also allowed the identification of azelayl arginine. The effect of arenobufagin, bufalin and ψ-bufarenogin on Na(+)/K(+)-ATPase activity in a human kidney preparation was evaluated. These bufadienolides fully inhibited the Na(+)/K(+)-ATPase in a concentration-dependent manner, although arenobufagin (IC50 = 28.3 nM) and bufalin (IC50 = 28.7 nM) were 100 times more potent than ψ-bufarenogin (IC50 = 3020 nM). These results provided evidence about the importance of the hydroxylation at position C-14 in the bufadienolide skeleton for the inhibitory activity on the Na(+)/K(+)-ATPase. PMID:26615828

  3. Preliminary study of gill NA+,K+-ATPase activity in juvenile spring chinook salmon following electroshock or handling stress

    USGS Publications Warehouse

    VanderKooi, S.P.; Gale, William L.; Maule, A.G.

    2000-01-01

    We compared gill Na+,K+-ATPase in subyearling and yearling spring chinook salmon Oncorhynchus tshawytscha 3 h, 24 h, and 7 d after exposure to either a short pulsed DC electroshock (300 V, 50 Hz, 8-ms pulse duration) or an acute handling stress. Mean gill Na+,K+-ATPase values ranged from 7.5 to 11.8 ??mol inorganic phosphate (Pi) ?? (mg protein)-1 ?? h-1. No significant differences were detected, with the exception of electroshocked subyearlings 7 d after treatment. Increased activity was attributed to the presence of two influential values. No significant differences were detected after removal of these observations, so the increase was not considered biologically significant. Inclusion of the outliers did not alter our interpretation of the results given that the observed increase was slight compared with the magnitude of changes reported under experimental conditions and in migrating juvenile salmonids. The treatment groups underwent a typical stress response and had significantly elevated cortisol and glucose levels 3 h after treatment. Recovery to control levels occurred within 24 h for cortisol and from 24 h to 7 d for glucose. Our results lead to the conclusion that neither acute electroshock nor acute handling stress alters Na+,K+-ATPase activity in juvenile spring chinook salmon.

  4. A pure chloride channel mutant of CLC-5 causes Dent's disease via insufficient V-ATPase activation.

    PubMed

    Satoh, Nobuhiko; Yamada, Hideomi; Yamazaki, Osamu; Suzuki, Masashi; Nakamura, Motonobu; Suzuki, Atsushi; Ashida, Akira; Yamamoto, Daisuke; Kaku, Yoshitsugu; Sekine, Takashi; Seki, George; Horita, Shoko

    2016-07-01

    Dent's disease is characterized by defective endocytosis in renal proximal tubules (PTs) and caused by mutations in the 2Cl(-)/H(+) exchanger, CLC-5. However, the pathological role of endosomal acidification in endocytosis has recently come into question. To clarify the mechanism of pathogenesis for Dent's disease, we examined the effects of a novel gating glutamate mutation, E211Q, on CLC-5 functions and endosomal acidification. In Xenopus oocytes, wild-type (WT) CLC-5 showed outward-rectifying currents that were inhibited by extracellular acidosis, but E211Q and an artificial pure Cl(-) channel mutant, E211A, showed linear currents that were insensitive to extracellular acidosis. Moreover, depolarizing pulse trains induced a robust reduction in the surface pH of oocytes expressing WT CLC-5 but not E211Q or E211A, indicating that the E211Q mutant functions as a pure Cl(-) channel similar to E211A. In HEK293 cells, E211A and E211Q stimulated endosomal acidification and hypotonicity-inducible vacuolar-type H(+)-ATPase (V-ATPase) activation at the plasma membrane. However, the stimulatory effects of these mutants were reduced compared with WT CLC-5. Furthermore, gene silencing experiments confirmed the functional coupling between V-ATPase and CLC-5 at the plasma membrane of isolated mouse PTs. These results reveal for the first time that the conversion of CLC-5 from a 2Cl(-)/H(+) exchanger into a Cl(-) channel induces Dent's disease in humans. In addition, defective endosomal acidification as a result of insufficient V-ATPase activation may still be important in the pathogenesis of Dent's disease. PMID:27044412

  5. Thiourea modulates the expression and activity profile of mtATPase under salinity stress in seeds of Brassica juncea

    PubMed Central

    Srivastava, A. K.; Ramaswamy, N. K.; Mukopadhyaya, R.; Jincy, M. G. Chiramal; D'Souza, S. F.

    2009-01-01

    Background and Aims Large areas of the globe are becoming saline due to evapotranspiration and poor irrigation practices, and sustainability of agriculture is being seriously affected. Thiourea (TU) has been identified as an effective bioregulator imparting stress tolerance to crops. The molecular mechanisms involved in the TU-mediated response are considered in this study. Methods Differential display was performed in order to identify TU-modulated transcripts in Brassica juncea seeds exposed to various treatments (distilled water; 1 m NaCl; 1 m NaCl + 500 p.p.m. TU). The differential regulation of these transcripts was validated by quantitative real-time PCR. Key Results Thiourea treatment maintained the viability of seeds exposed to NaCl for 6 h. Expression analysis showed that the transcript level of alpha, beta, gamma, delta and epsilon subunits of mitochondrial ATPase (mtATPase) varied in seeds subjected to the different treatments for 1 h: expression level was significantly altered by 1 m NaCl relative to controls; however, in the NaCl + TU treatment it reverted back in an integrated manner. Similar results were obtained from time-kinetics studies of beta and delta subunits in roots of 8-d-old seedlings. These observations were also confirmed by the mtATPase activity from isolated mitochondria. The reversal in the expression and activity profile of mtATPase through the application of a bioregulator such as TU is a novel finding for any plant system. Conclusions The results suggest that TU treatment maintains the integrity and functioning of mitochondria in seeds as well as seedlings exposed to salinity. Thus, TU has the potential to be used as an effective bioregulator to impart salinity tolerance under field conditions, and might prove to be of high economic importance by opening new avenues for both basic and applied research. PMID:19033283

  6. Coordinated waves of actomyosin flow and apical cell constriction immediately after wounding

    PubMed Central

    Antunes, Marco; Pereira, Telmo; Cordeiro, João V.; Almeida, Luis

    2013-01-01

    Epithelial wound healing relies on tissue movements and cell shape changes. Our work shows that, immediately after wounding, there was a dramatic cytoskeleton remodeling consisting of a pulse of actomyosin filaments that assembled in cells around the wound edge and flowed from cell to cell toward the margin of the wound. We show that this actomyosin flow was regulated by Diaphanous and ROCK and that it elicited a wave of apical cell constriction that culminated in the formation of the leading edge actomyosin cable, a structure that is essential for wound closure. Calcium signaling played an important role in this process, as its intracellular concentration increased dramatically immediately after wounding, and down-regulation of transient receptor potential channel M, a stress-activated calcium channel, also impaired the actomyosin flow. Lowering the activity of Gelsolin, a known calcium-activated actin filament–severing protein, also impaired the wound response, indicating that cleaving the existing actin filament network is an important part of the cytoskeleton remodeling process. PMID:23878279

  7. Coordinated waves of actomyosin flow and apical cell constriction immediately after wounding.

    PubMed

    Antunes, Marco; Pereira, Telmo; Cordeiro, João V; Almeida, Luis; Jacinto, Antonio

    2013-07-22

    Epithelial wound healing relies on tissue movements and cell shape changes. Our work shows that, immediately after wounding, there was a dramatic cytoskeleton remodeling consisting of a pulse of actomyosin filaments that assembled in cells around the wound edge and flowed from cell to cell toward the margin of the wound. We show that this actomyosin flow was regulated by Diaphanous and ROCK and that it elicited a wave of apical cell constriction that culminated in the formation of the leading edge actomyosin cable, a structure that is essential for wound closure. Calcium signaling played an important role in this process, as its intracellular concentration increased dramatically immediately after wounding, and down-regulation of transient receptor potential channel M, a stress-activated calcium channel, also impaired the actomyosin flow. Lowering the activity of Gelsolin, a known calcium-activated actin filament-severing protein, also impaired the wound response, indicating that cleaving the existing actin filament network is an important part of the cytoskeleton remodeling process. PMID:23878279

  8. Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+

    PubMed Central

    Hakimjavadi, Hesamedin; Lingrel, Jerry B.

    2015-01-01

    The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na,K-ATPase in most other cells. However, α2 activity is stimulated immediately upon the start of contraction and, in working muscles, its contribution is crucial to maintaining excitation and resisting fatigue. Here, we show that α2 activity is determined in part by the K+ concentration in the T-tubules, through its K+ substrate affinity. Apparent K+ affinity was determined from measurements of the K1/2 for K+ activation of pump current in intact, voltage-clamped mouse flexor digitorum brevis muscle fibers. Pump current generated by the α2 Na,K-ATPase, Ip, was identified as the outward current activated by K+ and inhibited by micromolar ouabain. Ip was outward at all potentials studied (−90 to −30 mV) and increased with depolarization in the subthreshold range, −90 to −50 mV. The Q10 was 2.1 over the range of 22–37°C. The K1/2,K of Ip was 4.3 ± 0.3 mM at −90 mV and was relatively voltage independent. This K+ affinity is lower than that reported for other cell types but closely matches the dynamic range of extracellular K+ concentrations in the T-tubules. During muscle contraction, T-tubule luminal K+ increases in proportion to the frequency and duration of action potential firing. This K1/2,K predicts a low fractional occupancy of K+ substrate sites at the resting extracellular K+ concentration, with occupancy increasing in proportion to the frequency of membrane excitation. The stimulation of preexisting pumps by greater K+ site occupancy thus provides a rapid mechanism for increasing α2 activity in working muscles. PMID:26371210

  9. Two ATPases

    PubMed Central

    Senior, Alan E.

    2012-01-01

    In this article, I reflect on research on two ATPases. The first is F1F0-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization. PMID:22822068

  10. DIDS inhibits Na-K-ATPase activity in porcine nonpigmented ciliary epithelial cells by a Src family kinase-dependent mechanism.

    PubMed

    Shahidullah, Mohammad; Wei, Guojun; Delamere, Nicholas A

    2013-09-01

    The anion transport inhibitor DIDS is known to reduce aqueous humor secretion but questions remain about anion dependence of the effect. In some tissues, DIDS is reported to cause Na-K-ATPase inhibition. Here, we report on the ability of DIDS to inhibit Na-K-ATPase activity in nonpigmented ciliary epithelium (NPE) and investigate the underlying mechanism. Porcine NPE cells were cultured to confluence on permeable supports, treated with drugs added to both sides of the membrane, and then used for (86)Rb uptake measurements or homogenized to measure Na-K-ATPase activity or to detect protein phosphorylation. DIDS inhibited ouabain-sensitive (86)Rb uptake, activated Src family kinase (SFK), and caused a reduction of Na-K-ATPase activity. PP2, an SFK inhibitor, prevented the DIDS responses. In BCECF-loaded NPE, DIDS was found to reduce cytoplasmic pH (pHi). PP2-sensitive Na-K-ATPase activity inhibition, (86)Rb uptake suppression, and SFK activation were observed when a similar reduction of pHi was imposed by low-pH medium or an ammonium chloride withdrawal maneuver. PP2 and the ERK inhibitor U0126 prevented robust ERK1/2 activation in cells exposed to DIDS or subjected to pHi reduction, but U0126 did not prevent SFK activation or the Na-K-ATPase activity response. The evidence points to an inhibitory influence of DIDS on NPE Na-K-ATPase activity by a mechanism that hinges on SFK activation associated with a reduction of cytoplasmic pH. PMID:23677800

  11. A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity.

    PubMed

    Boesler, Carsten; Rigo, Norbert; Anokhina, Maria M; Tauchert, Marcel J; Agafonov, Dmitry E; Kastner, Berthold; Urlaub, Henning; Ficner, Ralf; Will, Cindy L; Lührmann, Reinhard

    2016-01-01

    The precise role of the spliceosomal DEAD-box protein Prp28 in higher eukaryotes remains unclear. We show that stable tri-snRNP association during pre-catalytic spliceosomal B complex formation is blocked by a dominant-negative hPrp28 mutant lacking ATPase activity. Complexes formed in the presence of ATPase-deficient hPrp28 represent a novel assembly intermediate, the pre-B complex, that contains U1, U2 and loosely associated tri-snRNP and is stalled before disruption of the U1/5'ss base pairing interaction, consistent with a role for hPrp28 in the latter. Pre-B and B complexes differ structurally, indicating that stable tri-snRNP integration is accompanied by substantial rearrangements in the spliceosome. Disruption of the U1/5'ss interaction alone is not sufficient to bypass the block by ATPase-deficient hPrp28, suggesting hPrp28 has an additional function at this stage of splicing. Our data provide new insights into the function of Prp28 in higher eukaryotes, and the requirements for stable tri-snRNP binding during B complex formation. PMID:27377154

  12. A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity

    PubMed Central

    Boesler, Carsten; Rigo, Norbert; Anokhina, Maria M.; Tauchert, Marcel J.; Agafonov, Dmitry E.; Kastner, Berthold; Urlaub, Henning; Ficner, Ralf; Will, Cindy L.; Lührmann, Reinhard

    2016-01-01

    The precise role of the spliceosomal DEAD-box protein Prp28 in higher eukaryotes remains unclear. We show that stable tri-snRNP association during pre-catalytic spliceosomal B complex formation is blocked by a dominant-negative hPrp28 mutant lacking ATPase activity. Complexes formed in the presence of ATPase-deficient hPrp28 represent a novel assembly intermediate, the pre-B complex, that contains U1, U2 and loosely associated tri-snRNP and is stalled before disruption of the U1/5′ss base pairing interaction, consistent with a role for hPrp28 in the latter. Pre-B and B complexes differ structurally, indicating that stable tri-snRNP integration is accompanied by substantial rearrangements in the spliceosome. Disruption of the U1/5′ss interaction alone is not sufficient to bypass the block by ATPase-deficient hPrp28, suggesting hPrp28 has an additional function at this stage of splicing. Our data provide new insights into the function of Prp28 in higher eukaryotes, and the requirements for stable tri-snRNP binding during B complex formation. PMID:27377154

  13. Pentylenetetrazol-induced seizures are associated with Na⁺,K⁺-ATPase activity decrease and alpha subunit phosphorylation state in the mice cerebral cortex.

    PubMed

    Marquezan, Bárbara P; Funck, Vinícius R; Oliveira, Clarissa V; Pereira, Letícia M; Araújo, Stífani M; Zarzecki, Micheli S; Royes, Luiz Fernando F; Furian, Ana Flávia; Oliveira, Mauro S

    2013-08-01

    The present study aimed to investigate whether Na(+),K(+)-ATPase activity and phosphorylation state of the catalytic α subunit are altered by pentylenetetrazol (PTZ)-induced seizures. PTZ (30, 45 or 60 g/kg, i.p.) was administered to adult male Swiss mice, and Na(+),K(+)-ATPase activity and phosphorylation state were measured in the cerebral cortex 15 min after PTZ administration. Na(+),K(+)-ATPase activity significantly decreased after PTZ-induced seizures (60 mg/kg). Immunoreactivity of phosphorylated Ser943 at α subunit was increased after PTZ-induced seizures. A significant positive correlation between Na(+),K(+)-ATPase activity and latency to myoclonic jerks and generalized seizures was found. Conversely, a strong negative correlation between Ser943 phosphorylation and latency to generalized seizures was detected. Given the role of Na(+),K(+)-ATPase as a major regulator of brain excitability, Ser943 at Na(+),K(+)-ATPase α subunit may represent a potentially valuable new target for drug development for seizure disorders. PMID:23602551

  14. An optimized micro-assay of myosin II ATPase activity based on the molybdenum blue method and its application in screening natural product inhibitors.

    PubMed

    Chen, Hong-Lin; Zhao, Jing; Zhang, Guan-Jun; Kou, Jun-Ping; Yu, Bo-Yang

    2016-06-01

    Myosin II plays multiple roles in physiological and pathological functions through its ATPase activity. The present study was designed to optimize a micro-assay of myosin II ATPase activity based on molybdenum blue method, using a known myosin II ATPase inhibitor, blebbistatin. Several parameters were observed in the enzymatic reaction procedure, including the concentrations of the substrate (ATP) and calcium chloride, pH, and the reaction and incubation times. The proportion of coloration agent was also investigated. The sensitivity of this assay was compared with the malachite green method and bioluminescence method. Additionally, 20 natural compounds were studied for myosin II ATPase inhibitory activity using the optimized method. Our results showed that ATP at the concentration of 5 mmol·L(-1) and ammonium molybdate : stannous chloride at the ratio of 15 : 1 could greatly improve the sensitivity of this method. The IC50 of blebbistatin obtained by this method was consistent with literature. Compound 8 was screened with inhibitory activity on myosin II ATPase. The optimized method showed similar accuracy, lower detecting limit, and wider linear range, which could be a promising approach to screening myosin II ATPase inhibitors in vitro. PMID:27473959

  15. On archaebacterial ATPase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, H.; Ponnamperuma, C.; Hochstein, L.; Altekar, W.

    1984-01-01

    The energy transducing ATPase from Halobacterium saccharovorum was studied in order to define the origin of energy transducing systems. The ATPase required high salt concentration (4M NaCl) for activity; activity was rapidly lost when NaCl was below 1 Molar. At low salt concentration, the membrane bound ATPase activity could be stabilized in presence of spermine. However, following solubilization spermine was ineffective. Furthermore, F1 ATPase activity was stabilized by ammonium sulfate even when the NaCl concentration was less than 1 Molar. These studies suggest that stabilization by hydrophobic interactions preceded ionic ones in the evolution of the energy transducing ATPases.

  16. Monoclonal antibodies to Escherichia coli F1-ATPase. Correlation of binding site location with interspecies cross-reactivity and effects on enzyme activity.

    PubMed

    Dunn, S D; Tozer, R G; Antczak, D F; Heppel, L A

    1985-09-01

    Twenty-one hybridoma cell lines which secret antibodies to the subunits of the Escherichia coli F1-ATPase were produced. Included within the set are four antibodies which are specific for alpha, six for beta, three for gamma, four for delta and four for epsilon. The antibodies were divided into binding competition subgroups. Two such competition subgroups are represented for the alpha, beta, and epsilon subunits, one for delta and three for gamma. The ability to bind intact F1-ATPase was demonstrated for some of the antibodies to alpha and beta, and for all of those to delta, while the antibodies to gamma and epsilon gave unclear results. All of the antibodies to alpha and beta which bound ATPase were found to have effects on the ATPase activity of purified E. coli F1-ATPase. One of those to alpha inhibited activity by about 30%. Another anti-alpha was mildly stimulatory. The four antibodies to beta which bound ATPase inhibited activity by 90%. In contrast, membrane-bound ATPase was hardly affected by the antibodies to alpha, but was inhibited by 40-60% by the antibodies to beta. The other antibodies to alpha and beta bound only free subunits, or partially dissociated ATPase, suggesting that their epitopes are buried between subunits in ATPase. These antibodies had no effects on activity. The ability of the antibodies to recognize ATPase subunits present in crude extracts from mitochondria, chloroplasts, and a variety of bacteria was tested using nitrocellulose blots of sodium dodecyl sulfate-polyacrylamide gels. One anti-beta specifically recognized proteins in the range of 50,000-60,000 daltons in each of the extracts, although the reaction with mitochondrial beta was weak. Some of the other antibodies had limited cross-reaction, but most were specific for the E. coli protein. In some species, those proteins which were recognized by the anti-beta ran with a higher apparent molecular weight than proteins which were recognized by an anti-alpha. All antibodies which

  17. The role of catch-bonds in acto-myosin mechanics and cell mechano-sensitivity

    NASA Astrophysics Data System (ADS)

    Akalp, Umut; Vernerey, Franck J.

    Contraction and spreading of adherent cells are important phenomena in range of cellular processes such as differentiation, morphogenesis, and healing. In this presentation, we propose a novel mechanism of adherent cell mechano-sensing, based on the idea that the contractile acto-myosin machinery behaves as a catch-bond. For this, we construct a simplified model of the acto-myosin structure that constitute the building block of stress fibers and express the stability of cross-bridges in terms of the force-dependent bonding energy of the acto-myosin bond. Consistent with experimental measurements, we then consider that the energy barrier of the acto-myosin bond increases for tension and show that this response is enough to explain the force-induced stabilization of an SF. The resulting model eventually takes the form of a force-sensitive, active visco-elastic material, powered by ATP hydrolysis. The model is used to investigate the organization and contraction of the actin cytoskeleton of cells laying on arrays of microposts. Upon comparison with experimental observations and measurements, simulations show that the catch-bond hypothesis is satisfactory to predict the sensitivity of adherent cells to substrate stiffness as well as the complex organization of the actin cytoskeleton.

  18. Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death.

    PubMed

    Mark, R J; Hensley, K; Butterfield, D A; Mattson, M P

    1995-09-01

    The amyloid beta-peptide (A beta) that accumulates as insoluble plaques in the brain in Alzheimer's disease can be directly neurotoxic and can increase neuronal vulnerability to excitotoxic insults. The mechanism of A beta toxicity is unclear but is believed to involve generation of reactive oxygen species (ROS) and loss of calcium homeostasis. We now report that exposure of cultured rat hippocampal neurons to A beta 1-40 or A beta 25-35 causes a selective reduction in Na+/K(+)-ATPase activity which precedes loss of calcium homeostasis and cell degeneration. Na+/K(+)-ATPase activity was reduced within 30 min of exposure to A beta 25-35 and declined to less than 40% of basal level by 3 hr. A beta did not impair other Mg(2+)-dependent ATPase activities or Na+/Ca2+ exchange. Experiments with ouabain, a specific inhibitor of the Na+/K(+)-ATPase, demonstrated that impairment of this enzyme was sufficient to induce an elevation of [Ca2+]i and neuronal injury. Impairment of Na+/K(+)-ATPase activity appeared to be causally involved in the elevation of [Ca2+]i and neurotoxicity since suppression of Na+ influx significantly reduced A beta- and ouabain-induced [Ca2+]i elevation and neuronal death. Neuronal degeneration induced by ouabain appeared to be of an apoptotic form as indicated by nuclear condensation and DNA fragmentation. The antioxidant free radical scavengers vitamin E and propylgallate significantly attenuated A beta-induced impairment of Na+/K(+)-ATPase activity, elevation of [Ca2+]i and neurotoxicity, suggesting a role for ROS. Finally, exposure of synaptosomes from postmortem human hippocampus to A beta resulted in a significant and specific reduction in Na+/K(+)-ATPase and Ca(2+)-ATPase activities, without affecting other Mg(2+)-dependent ATPase activities or Na+/Ca2+ exchange. These data suggest that impairment of ion-motive ATPases may play a role in the pathogenesis of neuronal injury in Alzheimer's disease. PMID:7666206

  19. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis

    PubMed Central

    Tang, Ren-Jie; Liu, Hua; Yang, Yang; Yang, Lei; Gao, Xiao-Shu; Garcia, Veder J; Luan, Sheng; Zhang, Hong-Xia

    2012-01-01

    Plant responses to developmental and environmental cues are often mediated by calcium (Ca2+) signals that are transmitted by diverse calcium sensors. The calcineurin B-like (CBL) protein family represents calcium sensors that decode calcium signals through specific interactions with a group of CBL-interacting protein kinases. We report functional analysis of Arabidopsis CBL2 and CBL3, two closely related CBL members that are localized to the vacuolar membrane through the N-terminal tonoplast-targeting sequence. While cbl2 or cbl3 single mutant did not show any phenotypic difference from the wild type, the cbl2 cbl3 double mutant was stunted with leaf tip necrosis, underdeveloped roots, shorter siliques and fewer seeds. These defects were reminiscent of those in the vha-a2 vha-a3 double mutant deficient in vacuolar H+-ATPase (V-ATPase). Indeed, the V-ATPase activity was reduced in the cbl2 cbl3 double mutant, connecting tonoplast CBL-type calcium sensors to the regulation of V-ATPase. Furthermore, cbl2 cbl3 double mutant was compromised in ionic tolerance and micronutrient accumulation, consistent with the defect in V-ATPase activity that has been shown to function in ion compartmentalization. Our results suggest that calcium sensors CBL2 and CBL3 serve as molecular links between calcium signaling and V-ATPase, a central regulator of intracellular ion homeostasis. PMID:23184060

  20. THE ATPase ACTIVITY OF BfpD IS GREATLY ENHANCED BY ZINC AND ALLOSTERIC INTERACTIONS WITH OTHER Bfp PROTEINS

    PubMed Central

    Crowther, Lynette J.; Yamagata, Atsushi; Craig, Lisa; Tainer, John A.; Donnenberg, Michael S.

    2005-01-01

    Type IV pilus biogenesis, protein secretion, DNA transfer and filamentous phage morphogenesis systems are thought to possess similar architectures and mechanisms. These multiprotein complexes include members of the PulE superfamily of putative NTPases that have extensive sequence similarity and probably similar functions as the energizers of macromolecular transport. We purified the PulE homologue BfpD of the enteropathogenic Escherichia coli bundle-forming pilus (BFP) biogenesis machine and characterized its ATPase activity, providing new insights into its mode of action. Numerous techniques revealed that BfpD forms hexamers in the presence of nucleotide. Hexameric BfpD displayed weak ATPase activity. We previously demonstrated that the N-termini of membrane proteins BfpC and BfpE recruit BfpD to the cytoplasmic membrane. Here, we identified two BfpD-binding sites, BfpE39-76 and BfpE77-114, in the N-terminus of BfpE using a yeast two-hybrid system. Isothermal titration calorimetry and protease sensitivity assays showed that hexameric BfpD-ATP?S binds to BfpE77-114, while hexameric BfpD-ADP binds to BfpE39-76. Interestingly, the N-terminus of BfpC and BfpE77-114 together increased the ATPase activity of hexameric BfpD over 1200-fold to a Vmax of 75.3 μmol Pi min−1 mg−1, which exceeds by over 1200-fold the activity of other PulE family members. This augmented activity occurred only in the presence of Zn2+. We conclude that allosteric interactions between BfpD and BfpC and BfpE dramatically stimulate its ATPase activity. The differential nucleotide-dependent binding of hexameric BfpD to BfpE39-76 and BfpE77-114 suggests a model for the mechanism by which BfpD transduces mechanical energy to the biogenesis machine. PMID:15866879

  1. Membrane lipid physical state and modulation of the Na+,Mg2+-ATPase activity in Acholeplasma laidlawii B.

    PubMed Central

    Silvius, J R; McElhaney, R N

    1980-01-01

    Careful analysis of the Arrhenius plot of the Na+,Mg2+-ATPase (ATP pyrophosphohydrolase, EC 3.6.1.8) activity in Acholeplasma laidlawii B membranes of varying fatty acid composition has been combined with differential thermal analysis of the membrane lipid phase transitions to evaluate the effects of membrane lipid properties on the enzyme activity. Our results indicate that the enzyme is active only in association with liquid-crystalline lipids, exhibiting a significant heat capacity of activation, delta Cp++, for the ATP hydrolytic reaction in this case. Quantitative analyses of Arrhenius plots for the enzyme activity in membranes whose lipids exhibit a gel-to-liquid-crystalline phase transition in the physiological temperature range suggest that the ATPase is inactivated when its boundary lipids undergo a phase transition that is driven by the bulk lipid phase transition but is less cooperative than the latter. Our results suggest that the familiar "biphasic linear" Arrhenius plots obtained for many membrane enzymes may in fact have a more complex shape, analysis of which can furnish useful information regarding the behavior of the enzyme molecule. Images PMID:6445554

  2. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus.

    PubMed

    Arnaldo, Francis B; Villar, Van Anthony M; Konkalmatt, Prasad R; Owens, Shaun A; Asico, Laureano D; Jones, John E; Yang, Jian; Lovett, Donald L; Armando, Ines; Jose, Pedro A; Concepcion, Gisela P

    2014-09-15

    Dopamine-mediated regulation of Na(+)-K(+)-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na(+)-K(+)-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na(+)-K(+)-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na(+)-K(+)-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na(+)-K(+)-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na(+)-K(+)-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na(+)-K(+)-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. PMID:25080496

  3. Early-time dynamics of actomyosin polarization in cells of confined shape in elastic matrices.

    PubMed

    Nisenholz, Noam; Botton, Mordechai; Zemel, Assaf

    2014-04-14

    The cell shape and the rigidity of the extracellular matrix have been shown to play an important role in the regulation of cytoskeleton structure and force generation. Elastic stresses that develop by actomyosin contraction feedback on myosin activity and govern the anisotropic polarization of stress fibers in the cell. We theoretically study the consequences that the cell shape and matrix rigidity may have on the dynamics and steady state polarization of actomyosin forces in the cell. Actomyosin forces are assumed to polarize in accordance with the stresses that develop in the cytoskeleton. The theory examines this self-polarization process as a relaxation response determined by two distinct susceptibility factors and two characteristic times. These reveal two canonical polarization responses to local variations in the elastic stress: an isotropic response, in which actomyosin dipolar stress isotropically changes in magnitude, and an orientational response, in which actomyosin forces orient with no net change in magnitude. Actual polarization may show up as a superimposition of the two mechanisms yielding different phases in the polarization response as observed experimentally. The cell shape and elastic moduli of the surroundings are shown to govern both the dynamics of the process as well as the steady-state. We predict that in the steady-state, beyond a critical matrix rigidity, spherical cells exert maximal force, and below that rigidity, elongated or flattened cells exert more force. Similar behaviors are reflected in the rate of the polarization process. The theory is also applicable to study the elastic response of whole cell aggregates in a gel. PMID:24623163

  4. Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis.

    PubMed

    Barnard, R J; Morgan, A; Burgoyne, R D

    1997-11-17

    N-ethylmaleimide-sensitive fusion protein (NSF) and alpha-SNAP play key roles in vesicular traffic through the secretory pathway. In this study, NH2- and COOH-terminal truncation mutants of alpha-SNAP were assayed for ability to bind NSF and stimulate its ATPase activity. Deletion of up to 160 NH2-terminal amino acids had little effect on the ability of alpha-SNAP to stimulate the ATPase activity of NSF. However, deletion of as few as 10 COOH-terminal amino acids resulted in a marked decrease. Both NH2-terminal (1-160) and COOH-terminal (160-295) fragments of alpha-SNAP were able to bind to NSF, suggesting that alpha-SNAP contains distinct NH2- and COOH-terminal binding sites for NSF. Sequence alignment of known SNAPs revealed only leucine 294 to be conserved in the final 10 amino acids of alpha-SNAP. Mutation of leucine 294 to alanine (alpha-SNAP(L294A)) resulted in a decrease in the ability to stimulate NSF ATPase activity but had no effect on the ability of this mutant to bind NSF. alpha-SNAP (1-285) and alpha-SNAP (L294A) were unable to stimulate Ca2+-dependent exocytosis in permeabilized chromaffin cells. In addition, alpha-SNAP (1-285), and alpha-SNAP (L294A) were able to inhibit the stimulation of exocytosis by exogenous alpha-SNAP. alpha-SNAP, alpha-SNAP (1-285), and alpha-SNAP (L294A) were all able to become incorporated into a 20S complex and recruit NSF. In the presence of MgATP, alpha-SNAP (1-285) and alpha-SNAP (L294A) were unable to fully disassemble the 20S complex and did not allow vesicle-associated membrane protein dissociation to any greater level than seen in control incubations. These findings imply that alpha-SNAP stimulation of NSF ATPase activity may be required for 20S complex disassembly and for the alpha-SNAP stimulation of exocytosis. PMID:9362506

  5. The Effect of Ionic Strength and Specific Anions on Substrate Binding and Hydrolytic Activities of Na,K-ATPase

    PubMed Central

    Nørby, Jens G.; Esmann, Mikael

    1997-01-01

    The physiological ligands for Na,K-ATPase (the Na,K-pump) are ions, and electrostatic forces, that could be revealed by their ionic strength dependence, are therefore expected to be important for their reaction with the enzyme. We found that the affinities for ADP3−, eosin2−, p-nitrophenylphosphate, and Vmax for Na,K-ATPase and K+-activated p-nitrophenylphosphatase activity, were all decreased by increasing salt concentration and by specific anions. Equilibrium binding of ADP was measured at 0–0.5 M of NaCl, Na2SO4, and NaNO3 and in 0.1 M Na-acetate, NaSCN, and NaClO4. The apparent affinity for ADP decreased up to 30 times. At equal ionic strength, I, the ranking of the salt effect was NaCl ≈ Na2SO4 ≈ Na-acetate < NaNO3 < NaSCN < NaClO4. We treated the influence of NaCl and Na2SO4 on Kdiss for E·ADP as a “pure” ionic strength effect. It is quantitatively simulated by a model where the binding site and ADP are point charges, and where their activity coefficients are related to I by the limiting law of Debye and Hückel. The estimated net charge at the binding site of the enzyme was about +1. Eosin binding followed the same model. The NO3− effect was compatible with competitive binding of NO3− and ADP in addition to the general I-effect. Kdiss for E·NO3 was ∼32 mM. Analysis of Vmax/Km for Na,K-ATPase and K+-p-nitrophenylphosphatase activity shows that electrostatic forces are important for the binding of p-nitrophenylphosphate but not for the catalytic effect of ATP on the low affinity site. The net charge at the p-nitrophenylphosphate-binding site was also about +1. The results reported here indicate that the reversible interactions between ions and Na,K-ATPase can be grouped according to either simple Debye-Hückel behavior or to specific anion or cation interactions with the enzyme. PMID:9154904

  6. The Nonstructural Protein 2C of a Picorna-Like Virus Displays Nucleic Acid Helix Destabilizing Activity That Can Be Functionally Separated from Its ATPase Activity

    PubMed Central

    Cheng, Zhenyun; Yang, Jie; Xia, Hongjie; Qiu, Yang; Wang, Zhaowei; Han, Yajuan; Xia, Xiaoling; Qin, Cheng-Feng

    2013-01-01

    Picorna-like viruses in the Picornavirales order are a large group of positive-strand RNA viruses that include numerous important pathogens for plants, insects, and humans. In these viruses, nonstructural protein 2C is one of the most conserved proteins and contains ATPase activity and putative RNA helicase activity. Here we expressed 2C protein of Ectropis obliqua picorna-like virus (EoV; genus Iflavirus, family Iflaviridae, order Picornavirales) in a eukaryotic expression system and determined that EoV 2C displays ATP-independent nucleic acid helix destabilizing and strand annealing acceleration activity in a concentration-dependent manner, indicating that this picornaviral 2C is more like an RNA chaperone than like the previously predicted RNA helicase. Our further characterization of EoV 2C revealed that divalent metal ions, such as Mg2+ and Zn2+, inhibit 2C-mediated helix destabilization to different extents. Moreover, we determined that EoV 2C also contains ATPase activity like that of other picornaviral 2C proteins and further assessed the functional relevance between its RNA chaperone-like and ATPase activities using mutational analysis as well as their responses to Mg2+. Our data show that, when one of the two 2C activities was dramatically inhibited or almost abolished, the other activity could remain intact, showing that the RNA chaperone-like and ATPase activities of EoV 2C can be functionally separated. This report reveals that a picorna-like virus 2C protein displays RNA helix destabilizing and strand annealing acceleration activity, which may be critical for picornaviral replication and pathogenesis, and should foster our understanding of picorna-like viruses and viral RNA chaperones. PMID:23449794

  7. Effect of hypoxia on the calcium and magnesium content, lipid peroxidation level, and Ca²⁺-ATPase activity of syncytiotrophoblast plasma membranes from placental explants.

    PubMed

    Chiarello, Delia I; Marín, Reinaldo; Proverbio, Fulgencio; Benzo, Zully; Piñero, Sandy; Botana, Desirée; Abad, Cilia

    2014-01-01

    In the current study the possible relationship between the Ca(2+)/Mg(2+) ratio of human syncytiotrophoblast plasma membranes and their lipid peroxidation and Ca(2+)-ATPase activity was determined. Syncytiotrophoblast plasma membranes of placental explants cultured under hypoxia increased their lipid peroxidation and Ca(2+) content, diminished their Ca(2+)-ATPase activity, and kept their Mg(2+) content unchanged. Membranes preincubated with different concentrations of Ca(2+) increased their Ca(2+) content without changes in their Mg(2+) content. There is a direct relationship between Ca(2+) content and lipid peroxidation of the membranes, as well as an inverse relationship between their Ca(2+) content and Ca(2+)-ATPase activity. On the contrary, preincubation of membranes with different concentrations of Mg(2+) showed a higher Mg(2+) content without changing their lipid peroxidation and Ca(2+)-ATPase activity. Explants cultured under hypoxia in the presence of 4 mM MgSO4 showed similar values of lipid peroxidation and Ca(2+)-ATPase activity of their membranes compared to those of explants cultured under normoxia. Increased Ca(2+) content of the membranes by interacting with negatively charged phospholipids could result in destabilizing effects of the membrane structure, exposing hydrocarbon chains of fatty acids to the action of free radicals. Mg(2+) might exert a stabilizing effect of the membranes, avoiding their exposure to free radicals. PMID:25180187

  8. Effect of Hypoxia on the Calcium and Magnesium Content, Lipid Peroxidation Level, and Ca2+-ATPase Activity of Syncytiotrophoblast Plasma Membranes from Placental Explants

    PubMed Central

    Chiarello, Delia I.; Benzo, Zully; Piñero, Sandy; Botana, Desirée; Abad, Cilia

    2014-01-01

    In the current study the possible relationship between the Ca2+/Mg2+ ratio of human syncytiotrophoblast plasma membranes and their lipid peroxidation and Ca2+-ATPase activity was determined. Syncytiotrophoblast plasma membranes of placental explants cultured under hypoxia increased their lipid peroxidation and Ca2+ content, diminished their Ca2+-ATPase activity, and kept their Mg2+ content unchanged. Membranes preincubated with different concentrations of Ca2+ increased their Ca2+ content without changes in their Mg2+ content. There is a direct relationship between Ca2+ content and lipid peroxidation of the membranes, as well as an inverse relationship between their Ca2+ content and Ca2+-ATPase activity. On the contrary, preincubation of membranes with different concentrations of Mg2+ showed a higher Mg2+ content without changing their lipid peroxidation and Ca2+-ATPase activity. Explants cultured under hypoxia in the presence of 4 mM MgSO4 showed similar values of lipid peroxidation and Ca2+-ATPase activity of their membranes compared to those of explants cultured under normoxia. Increased Ca2+ content of the membranes by interacting with negatively charged phospholipids could result in destabilizing effects of the membrane structure, exposing hydrocarbon chains of fatty acids to the action of free radicals. Mg2+ might exert a stabilizing effect of the membranes, avoiding their exposure to free radicals. PMID:25180187

  9. Effect of organic solvents on nervous cell membrane as measured by changes in the (Ca2+/Mg2+) ATPase activity and fluidity of synaptosomal membrane.

    PubMed

    Edelfors, S; Ravn-Jonsen, A

    1992-03-01

    The effect of various solvents on the central nervous system was studied by using rat brain synaptosomal membranes as an in vitro model. The activity of (Ca2+/Mg2+) ATPase and the membrane fluidity was determined. The alteration of the ATPase activity depended on the physio-chemical characteristics of the solvent in question. Incubation with aliphatic alkanes caused a stimulation of the ATPase activity whereas mixed hydrocarbons as kerosene, white spirit and gasoline inhibited the enzyme. Incubation with chlorinated hydrocarbons caused a biphasic response dependent on the concentration. Oxygen-containing hydrocarbons exhibited various effects as found after incubation with hydrocarbons. The different effects of the solvents on the ATPase activity suggest that the lipophilicity of the solvents is one of more parameters affecting the membrane. Furthermore, the biphasic response following the incubation with chlorinated hydrocarbons indicates that more mechanisms are involved in the enzyme effect. The membrane fluidity is increased with higher concentrations of the solvents. From the results it is concluded that the ATPase activity depends not only on the membrane fluidity and volume, but also on the hydrophilic vicinity of the enzyme molecule. PMID:1533717

  10. Long-term decrease in Na+,K+-ATPase activity after pilocarpine-induced status epilepticus is associated with nitration of its alpha subunit.

    PubMed

    Funck, Vinícius Rafael; Ribeiro, Leandro Rodrigo; Pereira, Letícia Meier; de Oliveira, Clarissa Vasconcelos; Grigoletto, Jéssica; Fighera, Michele Rechia; Royes, Luiz Fernando Freire; Furian, Ana Flávia; Oliveira, Mauro Schneider

    2014-12-01

    Temporal lobe epilepsy (TLE) is the most common type of epilepsy with about one third of TLE patients being refractory to antiepileptic drugs. Knowledge about the mechanisms underlying seizure activity is fundamental to the discovery of new drug targets. Brain Na(+),K(+)-ATPase activity contributes to the maintenance of the electrochemical gradients underlying neuronal resting and action potentials as well as the uptake and release of neurotransmitters. In the present study we tested the hypothesis that decreased Na(+),K(+)-ATPase activity is associated with changes in the alpha subunit phosphorylation and/or redox state. Activity of Na(+),K(+)-ATPase decreased in the hippocampus of C57BL/6 mice 60 days after pilocarpine-induced status epilepticus (SE). In addition, the Michaelis-Menten constant for ATP of α2/3 isoforms increased at the same time point. Nitration of the α subunit may underlie decreased Na(+),K(+)-ATPase activity, however no changes in expression or phosphorylation state at Ser(943) were found. Further studies are necessary define the potential of nitrated Na(+),K(+)-ATPase as a new therapeutic target for seizure disorders. PMID:25311690

  11. Modulation By K+ Plus NH4+ of Microsomal (Na+, K+)-ATPase Activity in Selected Ontogenetic Stages of the Diadromous River Shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae)

    PubMed Central

    Leone, Francisco A.; Bezerra, Thais M. S.; Garçon, Daniela P.; Lucena, Malson N.; Pinto, Marcelo R.; Fontes, Carlos F. L.; McNamara, John C.

    2014-01-01

    We investigate the synergistic stimulation by K+ plus NH4+ of (Na+, K+)-ATPase activity in microsomal preparations of whole zoea I and decapodid III, and in juvenile and adult river shrimp gills. Modulation of (Na+, K+)-ATPase activity is ontogenetic stage-specific, and particularly distinct between juveniles and adults. Although both gill enzymes exhibit two different sites for K+ and NH4+ binding, in the juvenile enzyme, these two sites are equivalent: binding by both ions results in slightly stimulated activity compared to that of a single ionic species. In the adult enzyme, the sites are not equivalent: when one ion occupies its specific binding site, (Na+, K+)-ATPase activity is stimulated synergistically by ≈50% on binding of the complementary ion. Immunolocalization reveals the enzyme to be distributed predominantly throughout the intralamellar septum in the gill lamellae of juveniles and adults. Western blot analyses demonstrate a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform that is distributed into different density membrane fractions, independently of ontogenetic stage. We propose a model for the modulation by K+ and NH4+ of gill (Na+, K+)-ATPase activity. These findings suggest that the gill enzyme may be regulated by NH4+ during ontogenetic development in M. amazonicum. PMID:24586919

  12. Structural Insights into the Unusually Strong ATPase Activity of the AAA Domain of the Caenorhabditis elegans Fidgetin-like 1 (FIGL-1) Protein*

    PubMed Central

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-01-01

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function. PMID:23979136

  13. AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells.

    PubMed

    Hallows, Kenneth R; Alzamora, Rodrigo; Li, Hui; Gong, Fan; Smolak, Christy; Neumann, Dietbert; Pastor-Soler, Núria M

    2009-04-01

    Acidic luminal pH and low [HCO(3)(-)] maintain sperm quiescent during maturation in the epididymis. The vacuolar H(+)-ATPase (V-ATPase) in clear cells is a major contributor to epididymal luminal acidification. We have shown previously that protein kinase A (PKA), acting downstream of soluble adenylyl cyclase stimulation by alkaline luminal pH or HCO(3)(-), induces V-ATPase apical membrane accumulation in clear cells. Here we examined whether the metabolic sensor AMP-activated protein kinase (AMPK) regulates this PKA-induced V-ATPase apical membrane accumulation. Immunofluorescence labeling of rat and non-human primate epididymides revealed specific AMPK expression in epithelial cells. Immunofluorescence labeling of rat epididymis showed that perfusion in vivo with the AMPK activators 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) or A-769662 induced a redistribution of the V-ATPase into subapical vesicles, even in the presence of a luminal alkaline (pH 7.8) buffer compared with that of controls perfused without drug. Moreover, preperfusion with AICAR blocked the PKA-mediated V-ATPase translocation to clear cell apical membranes induced by N(6)-monobutyryl-cAMP (6-MB-cAMP). Purified PKA and AMPK both phosphorylated V-ATPase A subunit in vitro. In HEK-293 cells [(32)P]orthophosphate in vivo labeling of the A subunit increased following PKA stimulation and decreased following RNA interference-mediated knockdown of AMPK. Finally, the extent of PKA-dependent in vivo phosphorylation of the A subunit increased with AMPK knockdown. In summary, our findings suggest that AMPK inhibits PKA-mediated V-ATPase apical accumulation in epididymal clear cells, that both kinases directly phosphorylate the V-ATPase A subunit in vitro and in vivo, and that AMPK inhibits PKA-dependent phosphorylation of this subunit. V-ATPase activity may be coupled to the sensing of acid-base status via PKA and to metabolic status via AMPK. PMID:19211918

  14. Rotary ATPases

    PubMed Central

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  15. The effects of rivastigmine plus selegiline on brain acetylcholinesterase, (Na+, K+)-, Mg2+-ATPase activities, antioxidant status, and learning performance of aged rats

    PubMed Central

    Carageorgiou, Haris; Sideris, Antonios C; Messari, Ioanna; Liakou, Chrissoula I; Tsakiris, Stylianos

    2008-01-01

    We investigated the effects of rivastigmine (a cholinesterase inhibitor) and selegiline ((-)deprenyl, an irreversible inhibitor of monoamineoxidase-B), alone and in combination, on brain acetylcholinesterase (AChE), (Na+, K+)-, Mg2+-ATPase activities, total antioxidant status (TAS), and learning performance, after long-term drug administration in aged male rats. The possible relationship between the biochemical and behavioral parameters was evaluated. Methods Aged rats were treated (for 36 days) with rivastigmine (0.3 mg/kg rat/day ip), selegiline (0.25 mg/kg rat/day im), rivastigmine plus selegiline in the same doses and way of administration as separately. Aged and adult control groups received NaCl 0.9% 0.5 ml ip. Results TAS was lower in aged than in adult rats, rivastigmine alone does not affect TAS, decreases AChE activity, increases (Na+, K+)-ATPase and Mg2+-ATPase activity of aged rat brain and improves cognitive performance. Selegiline alone decreases free radical production and increases AChE activity and (Na+, K+)-ATPase activity, improving cognitive performance as well. In the combination: rivastigmine seems to cancel selegiline action on TAS and AChE activity, while it has additive effect on (Na+, K+)-ATPase activity. In the case of Mg2+-ATPase selegiline appears to attenuate rivastigmine activity. No statistically significant difference was observed in the cognitive performance. Conclusion Reduced TAS, AChE activity and learning performance was observed in old rats. Both rivastigmine and selesiline alone improved performance, although they influenced the biochemical parameters in a different way. The combination of the two drugs did not affect learning performance. PMID:19043511

  16. (/sup 3/H)-ouabain binding sites and (Na/sup +/ + K/sup +/)ATPase activity in heart of rats fed cholesterol

    SciTech Connect

    Ren, Y.F.; Alam, B.S.; Alam, S.Q.

    1986-03-05

    The purpose of this investigation was to determine the effects of cholesterol on the characteristics of ouabain binding sites and (Na/sup +/ + K/sup +/)ATPase activity in heart. Three groups of male, weanling, Sprague-Dawley rats were fed for 5 weeks diets containing 0, 1 or 2% cholesterol. Membranes were prepared from deoxycholate-treated heart homogenates by differential centrifugation and assayed for ouabain binding and (Na/sup +/ + K/sup +/)ATPase activity. Membranes were incubated with (/sup 3/H)-ouabain in the presence of 10 mM Tris-HCl buffer (pH 7.4) and rapidly filtered on glass fiber filters, GF/A. Non-specific binding was measured in the presence of 6 mM non-labeled ouabain. Concentration of (/sup 3/H)-ouabain binding sites (B/sub max/) was decreased and the binding affinity was increased in the membranes of rats fed 2% cholesterol. The ouabain-sensitive (Na/sup +/ + K/sup +/)ATPase activity was 50-75% lower in membranes prepared from heart of rats fed cholesterol. The Mg/sup 2 +/-ATPase activity was not changed by dietary cholesterol. The results suggest that cholesterol feeding decreases the number of (Na/sup +/ + K/sup +/)ATPase units and allosterically modifies the enzyme.

  17. The effect of juvenile hormone III, methyl farnesoate, and methoprene on Na/K-ATPase activity in larvae of the brine shrimp, Artemia.

    PubMed

    Ahl, J S; Brown, J J

    1991-01-01

    1. Ion transport enzyme (Na/K-ATPase) activity in stage III larvae of the brine shrimp, Artemia, remains elevated throughout the stadium when populations are exposed to methoprene in artificial seawater. 2. Infusion of methoprene, juvenile hormone, or methyl farnesoate causes increased Na/K-ATPase activity in homogenates of mid-stadium larvae that would otherwise exhibit low activity. 3. The sensitivity of the enzyme system to extremely low concentrations of the juvenoids suggests that this may be a common mode of action of these compounds. Additionally it suggests that the enzyme may be under the influence of a similar compound present in the larvae. PMID:1682091

  18. Requirement of translocated lysosomal V1 H+-ATPase for activation of membrane acid sphingomyelinase and raft clustering in coronary endothelial cells

    PubMed Central

    Xu, Ming; Xia, Min; Li, Xiao-Xue; Han, Wei-Qing; Boini, Krishna M.; Zhang, Fan; Zhang, Yang; Ritter, Joseph K; Li, Pin-Lan

    2012-01-01

    Acid sphingomyelinase (ASM) mediates the formation of membrane raft (MR) redox signalosomes in a process that depends on a local acid microenvironment in coronary arterial endothelial cells (CAECs). However, it is not known how this local acid microenvironment is formed and maintained. The present study hypothesized that lysosomal V1 H+-ATPase provides a hospitable acid microenvironment for activation of ASM when lysosomes traffic and fuse into the cell membrane. Confocal microscopy showed that local pH change significantly affected MRs, with more fluorescent patches under low pH. Correspondingly, the ASM product, ceramide, increased locally in the cell membrane. Electron spin resonance assay showed that local pH increase significantly inhibited NADPH oxidase–mediated production of O2−. in CAECs. Direct confocal microscopy demonstrated that Fas ligand resulted in localized areas of decreased pH around CAEC membranes. The inhibitors of both lysosomal fusion and H+-ATPase apparently attenuated FasL-caused pH decrease. V1 H+-ATPase accumulation and activity on cell membranes were substantially suppressed by the inhibitors of lysosomal fusion or H+-ATPase. These results provide the first direct evidence that translocated lysosomal V1 H+-ATPase critically contributes to the formation of local acid microenvironment to facilitate activation of ASM and consequent MR aggregation, forming MR redox signalosomes and mediating redox signaling in CAECs. PMID:22357614

  19. Scopadulciol, an inhibitor of gastric H+, K(+)-ATPase from Scoparia dulcis, and its structure-activity relationships.

    PubMed

    Hayashi, T; Asano, S; Mizutani, M; Takeguchi, N; Kojima, T; Okamura, K; Morita, N

    1991-01-01

    A new tetracyclic diterpenoid, scopadulciol [3], together with 6-methoxybenzoxazolinone, glutinol, and acacetin, was isolated from the 70% EtOH extract of Scoparia dulcis collected in Taiwan. Its structure was elucidated to be 6 beta-benzoyl-12-methyl-13-oxo-9(12)a,9(12)b-dihomo-18-podocarpanol on the basis of spectral data. It mildly inhibited hog gastric H+, K(+)-ATPase. Examination of the inhibitory activities of derivatives of scopadulcic acid B [2], including 3, revealed that methylation of the carboxyl group and introduction of an acetyl group or oxime at C-13 or C-18 markedly enhanced the inhibitory activity, while debenzoylation reduced the activity. Among the 30 compounds tested, compound 12, a methyl ester of scopadulcic acid B [2], showed the most potent activity. PMID:1659612

  20. The actomyosin machinery is required for Drosophila retinal lumen formation.

    PubMed

    Nie, Jing; Mahato, Simpla; Zelhof, Andrew C

    2014-09-01

    Multicellular tubes consist of polarized cells wrapped around a central lumen and are essential structures underlying many developmental and physiological functions. In Drosophila compound eyes, each ommatidium forms a luminal matrix, the inter-rhabdomeral space, to shape and separate the key phototransduction organelles, the rhabdomeres, for proper visual perception. In an enhancer screen to define mechanisms of retina lumen formation, we identified Actin5C as a key molecule. Our results demonstrate that the disruption of lumen formation upon the reduction of Actin5C is not linked to any discernible defect in microvillus formation, the rhabdomere terminal web (RTW), or the overall morphogenesis and basal extension of the rhabdomere. Second, the failure of proper lumen formation is not the result of previously identified processes of retinal lumen formation: Prominin localization, expansion of the apical membrane, or secretion of the luminal matrix. Rather, the phenotype observed with Actin5C is phenocopied upon the decrease of the individual components of non-muscle myosin II (MyoII) and its upstream activators. In photoreceptor cells MyoII localizes to the base of the rhabdomeres, overlapping with the actin filaments of the RTW. Consistent with the well-established roll of actomyosin-mediated cellular contraction, reduction of MyoII results in reduced distance between apical membranes as measured by a decrease in lumen diameter. Together, our results indicate the actomyosin machinery coordinates with the localization of apical membrane components and the secretion of an extracellular matrix to overcome apical membrane adhesion to initiate and expand the retinal lumen. PMID:25233220

  1. Myosin motor isoforms direct specification of actomyosin function by tropomyosins

    PubMed Central

    Clayton, Joseph E.; Pollard, Luther W.; Murray, George G.; Lord, Matthew

    2015-01-01

    Myosins and tropomyosins represent two cytoskeletal proteins that often work together with actin filaments in contractile and motile cellular processes. While the specialized role of tropomyosin in striated muscle myosin-II regulation is well characterized, its role in non-muscle myosin regulation is poorly understood. We previously showed that fission yeast tropomyosin (Cdc8p) positively regulates myosin-II (Myo2p) and myosin-V (Myo52p) motors. To understand the broader implications of this regulation we examined the role of two mammalian tropomyosins (Tpm3.1cy/Tm5NM1 and Tpm4.2cy/Tm4) recently implicated in cancer cell proliferation and metastasis. Like Cdc8p, the Tpm3.1cy and Tpm4.2cy isoforms significantly enhance Myo2p and Myo52p motor activity, converting non-processive Myo52p molecules into processive motors that can walk along actin tracks as single molecules. In contrast to the positive regulation of Myo2p and Myo52p, Cdc8p and the mammalian tropomyosins potently inhibited skeletal muscle myosin-II, while having negligible effects on the highly processive mammalian myosin-Va. In support of a conserved role for certain tropomyosins in regulating non-muscle actomyosin structures, Tpm3.1cy supported normal contractile ring function in fission yeast. Our work reveals that actomyosin regulation by tropomyosin is dependent on the myosin isoform, highlighting a general role for specific isoforms of tropomyosin in sorting myosin motor outputs. PMID:25712463

  2. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots.

    PubMed

    Pottosin, Igor; Velarde-Buendía, Ana María; Bose, Jayakumar; Fuglsang, Anja T; Shabala, Sergey

    2014-06-01

    Polyamines regulate a variety of cation and K(+) channels, but their potential effects on cation-transporting ATPases are underexplored. In this work, noninvasive microelectrode ion flux estimation and conventional microelectrode techniques were applied to study the effects of polyamines on Ca(2+) and H(+) transport and membrane potential in pea roots. Externally applied spermine or putrescine (1mM) equally activated eosin yellow (EY)-sensitive Ca(2+) pumping across the root epidermis and caused net H(+) influx or efflux. Proton influx induced by spermine was suppressed by EY, supporting the mechanism in which Ca(2+) pump imports 2 H(+) per each exported Ca(2+). Suppression of the Ca(2+) pump by EY diminished putrescine-induced net H(+) efflux instead of increasing it. Thus, activities of Ca(2+) and H(+) pumps were coupled, likely due to the H(+)-pump inhibition by intracellular Ca(2+). Additionally, spermine but not putrescine caused a direct inhibition of H(+) pumping in isolated plasma membrane vesicles. Spermine, spermidine, and putrescine (1mM) induced membrane depolarization by 70, 50, and 35 mV, respectively. Spermine-induced depolarization was abolished by cation transport blocker Gd(3+), was insensitive to anion channels' blocker niflumate, and was dependent on external Ca(2+). Further analysis showed that uptake of polyamines but not polyamine-induced cationic (K(+)+Ca(2+)+H(+)) fluxes were a main cause of membrane depolarization. Polyamine increase is a common component of plant stress responses. Activation of Ca(2+) efflux by polyamines and contrasting effects of polyamines on net H(+) fluxes and membrane potential can contribute to Ca(2+) signalling and modulate a variety of transport processes across the plasma membrane under stress. PMID:24723394

  3. Extracellular Na+ levels regulate formation and activity of the NaX/alpha1-Na+/K+-ATPase complex in neuronal cells

    PubMed Central

    Berret, Emmanuelle; Smith, Pascal Y.; Henry, Mélaine; Soulet, Denis; Hébert, Sébastien S.; Toth, Katalin; Mouginot, Didier; Drolet, Guy

    2014-01-01

    MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na+]out). The mechanism underlying Na+-sensing involves Na+-flow through the NaX channel, directly regulated by the Na+/K+-ATPase α1-isoform which controls Na+-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na+]in). Here we aim to determine whether environmental changes in Na+ could actively modulate the NaX/Na+/K+-ATPase complex activity. We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na+] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na+] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na+/K+-ATPase remained unaltered. This unbalance between NaX and Na+/K+-ATPase pump proportion would induce a bigger portion of Na+/K+-ATPase-control-free NaX channel. Thus, we suggest that hypernatremic environment increases NaX/Na+/K+-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump. PMID:25538563

  4. The Influence of Fatty Acid Methyl Esters (FAMEs) in the Biochemistry and the Na(+)/K(+)-ATPase Activity of Culex quinquefasciatus Larvae.

    PubMed

    Silva, Lilian N D; Ribeiro-Neto, José A; Valadares, Jéssica M M; Costa, Mariana M; Lima, Luciana A R S; Grillo, Luciano A M; Cortes, Vanessa F; Santos, Herica L; Alves, Stênio N; Barbosa, Leandro A

    2016-08-01

    Culex quinquefasciatus is the main vector of lymphatic filariasis and combating this insect is of great importance to public health. There are reports of insects that are resistant to the products currently used to control this vector, and therefore, the search for new products has increased. In the present study, we have evaluated the effects of fatty acid methyl esters (FAMEs) that showed larvicidal activity against C. quinquefasciatus, on glucose, total protein, and triacylglycerol contents and Na(+)/K(+)-ATPase activity in mosquito larvae. The exposure of the fourth instar larvae to the compounds caused a decrease in the total protein content and an increase in the activity of the Na(+)/K(+)-ATPase. Furthermore, the direct effect of FAMEs on cell membrane was assessed on purified pig kidney Na(+)/K(+)-ATPase membranes, erythrocyte ghost membranes, and larvae membrane preparation. No modifications on total phospholipids and cholesterol content were found after FAMEs 20 min treatment on larvae membrane preparation, but only 360 µg/mL FAME 2 was able to decrease total phospholipid of erythrocyte ghost membrane. Moreover, only 60 and 360 µg/mL FAME 3 caused an activation of purified Na(+)/K(+)-ATPase, that was an opposite effect of FAMEs treatment in larvae membrane preparation, and caused an inhibition of the pump activity. These data together suggest that maybe FAMEs can modulate the Na(+)/K(+)-ATPase on intact larvae for such mechanisms and not for a direct effect, one time that the direct effect of FAMEs in membrane preparation decreased the activity of Na(+)/K(+)-ATPase. The biochemical changes caused by the compounds were significant and may negatively influence the development and survival of C. quinquefasciatus larvae. PMID:26993642

  5. Δ²,³-ivermectin ethyl secoester, a conjugated ivermectin derivative with leishmanicidal activity but without inhibitory effect on mammalian P-type ATPases.

    PubMed

    Noël, François; Pimenta, Paulo Henrique Cotrim; Dos Santos, Anderson Rouge; Tomaz, Erick Carlos Loureiro; Quintas, Luis Eduardo Menezes; Kaiser, Carlos Roland; Silva, Claudia Lucia Martins; Férézou, Jean-Pierre

    2011-01-01

    Looking at a new putative target for the large spectrum antiparasitic drug ivermectin, we recently showed that avermectin-derived drugs are active against promastigote and amastigote forms of Leishmania amazonensis at low micromolar concentrations. However, we then reported that at this concentration range ivermectin is also able to inhibit three important mammalian P-type ATPases so that unacceptable adverse effects could occur if this drug were used at such high doses therapeutically. The present work aimed to test the activity of ten ivermectin analogs on these rat ATPases in search of a compound with similar leishmanicidal activity but with no effect on the mammalian (host) ATPases at effective concentrations. We synthesized three new ivermectin analogs for testing on rat SERCA (1a and 1b), Na+, K+-ATPase (α₁ and α₂/α₃ isoforms) and H+/K+-ATPase activity, along with seven analogs already characterized for their leishmanicidal activity. Our main finding is that one of the prepared derivatives, Δ²,³-ivermectin ethyl secoester 8, is equipotent to ivermectin 1 for the in vitro leishmanicidal effects but is nearly without effect on the rat ATPases, indicating that it could have a better therapeutic index in vivo and could serve as a candidate for hit-to-lead progression. This conclusion is further supported by the fact that compound 8 produced only 6% (vs 77% for ivermectin) inhibition of the human kidney enzyme at 5 μM, a concentration corresponding to the IC₅₀ for the activity against L. amazonensis amastigotes. PMID:21088826

  6. An unexpected effect of an ouabain-sensitive ATPase activity on the amount of antigen-antibody complexes formed in situ.

    PubMed

    Mentré, P; Debey, P

    1999-09-01

    A classical method of indirect immunofluorescence was applied on various kinds of lightly fixed and permeabilized cells to analyze the formation of the complexes between a nuclear antigen and its antibody (AAC). The amount of AAC decreased dramatically when the incubation with the first antibody was realized in the presence of ATP in a sodium-rich medium with 0.5 mM KCl. Addition of sodium vanadate, a general inhibitor of ATPases, ouabain or tetrabutylammonium ion, specific inhibitors of the Na+,K+-ATPase, prevented this effect. The established role of this enzyme is to increase free-K+ concentration and decrease free Na+ concentration in the cell. It is not surprising to find an ATPase still active since light fixation and permeabilization do not destroy phosphatases. But it is rather surprising to find something looking like Na+,K+-ATPase activity in permeabilized cells. The importance of potassium in this puzzling result is suggested by the fact that appearance of ACC was equally suppressed if the incubation was made in the absence of ATP in a potassium-rich medium without sodium. Results are discussed, taking into account the properties of cell-associated water and recently found interrelation between Na+,K+-ATPase and tubulin. In any case, the results seem interesting in the field of immunocytochemistry. PMID:10541475

  7. Ionic regulation and Na(+)-K(+)-ATPase activity in gills and kidney of the freshwater stingray Paratrygon aiereba living in white and blackwaters in the Amazon Basin.

    PubMed

    Duncan, W P; Costa, O T F; Araújo, M L G; Fernandes, M N

    2009-03-01

    During low-water period, freshwater stingray Paratrygon aiereba collected in the whitewater (WW) of the River Amazon showed higher urea content, osmolality, Na(+) and Cl(-) concentrations in plasma and perivisceral fluid than those caught in blackwater (BW) of the River Negro. Gills and kidney Na(+)-K(+)-ATPase activities were significantly lower in WW than in BW fish. The high level of kidney Na(+)-K(+)-ATPase activity in P. aiereba may minimize ion loss and generate diluted solute-free urine in ion-poor BW environment. PMID:20735610

  8. The ATP-sensitive K(+) channel ABCC8 S1369A type 2 diabetes risk variant increases MgATPase activity.

    PubMed

    Fatehi, Mohammad; Raja, Mobeen; Carter, Christian; Soliman, Daniel; Holt, Andrew; Light, Peter E

    2012-01-01

    Pancreatic β-cell ATP-sensitive K(+) (K(ATP)) channels are composed of Kir6.2 and SUR1 subunits encoded by the KCNJ11 and ABCC8 genes, respectively. Although rare monogenic activating mutations in these genes cause overt neonatal diabetes, the common variants E23K (KCNJ11) and S1369A (ABCC8) form a tightly heritable haplotype that is associated with an increased susceptibility to type 2 diabetes (T2D) risk. However, the molecular mechanism(s) underlying this risk remain to be elucidated. A homology model of the SUR1 nucleotide-binding domains (NBDs) indicates that residue 1369 is in close proximity to the major MgATPase site. Therefore, we investigated the intrinsic MgATPase activity of K(ATP) channels containing these variants. Electrophysiological and biochemical techniques were used to study the MgATPase activity of recombinant human K(ATP) channels or glutathione S-transferase and NBD2 fusion proteins containing the E23/S1369 (nonrisk) or K23/A1369 (risk) variant haplotypes. K(ATP) channels containing the K23/A1369 haplotype displayed a significantly increased stimulation by guanosine triphosphate compared with the E23/S1369 haplotype (3.2- vs. 1.8-fold). This effect was dependent on the presence of the A1369 variant and was lost in the absence of Mg(2+) ions or in the presence of the MgATPase inhibitor beryllium fluoride. Direct biochemical assays also confirmed an increase in MgATPase activity in NBD2 fusion proteins containing the A1369 variant. Our findings demonstrate that the A1369 variant increases K(ATP) channel MgATPase activity, providing a plausible molecular mechanism by which the K23/A1369 haplotype increases susceptibility to T2D in humans homozygous for these variants. PMID:22187380

  9. The ATP-Sensitive K+ Channel ABCC8 S1369A Type 2 Diabetes Risk Variant Increases MgATPase Activity

    PubMed Central

    Fatehi, Mohammad; Raja, Mobeen; Carter, Christian; Soliman, Daniel; Holt, Andrew; Light, Peter E.

    2012-01-01

    Pancreatic β-cell ATP-sensitive K+ (KATP) channels are composed of Kir6.2 and SUR1 subunits encoded by the KCNJ11 and ABCC8 genes, respectively. Although rare monogenic activating mutations in these genes cause overt neonatal diabetes, the common variants E23K (KCNJ11) and S1369A (ABCC8) form a tightly heritable haplotype that is associated with an increased susceptibility to type 2 diabetes (T2D) risk. However, the molecular mechanism(s) underlying this risk remain to be elucidated. A homology model of the SUR1 nucleotide-binding domains (NBDs) indicates that residue 1369 is in close proximity to the major MgATPase site. Therefore, we investigated the intrinsic MgATPase activity of KATP channels containing these variants. Electrophysiological and biochemical techniques were used to study the MgATPase activity of recombinant human KATP channels or glutathione S-transferase and NBD2 fusion proteins containing the E23/S1369 (nonrisk) or K23/A1369 (risk) variant haplotypes. KATP channels containing the K23/A1369 haplotype displayed a significantly increased stimulation by guanosine triphosphate compared with the E23/S1369 haplotype (3.2- vs. 1.8-fold). This effect was dependent on the presence of the A1369 variant and was lost in the absence of Mg2+ ions or in the presence of the MgATPase inhibitor beryllium fluoride. Direct biochemical assays also confirmed an increase in MgATPase activity in NBD2 fusion proteins containing the A1369 variant. Our findings demonstrate that the A1369 variant increases KATP channel MgATPase activity, providing a plausible molecular mechanism by which the K23/A1369 haplotype increases susceptibility to T2D in humans homozygous for these variants. PMID:22187380

  10. Actomyosin ring driven cytokinesis in budding yeast.

    PubMed

    Meitinger, Franz; Palani, Saravanan

    2016-05-01

    Cytokinesis is the final process in the cell cycle that physically divides one cell into two. In budding yeast, cytokinesis is driven by a contractile actomyosin ring (AMR) and the simultaneous formation of a primary septum, which serves as template for cell wall deposition. AMR assembly, constriction, primary septum formation and cell wall deposition are successive processes and tightly coupled to cell cycle progression to ensure the correct distribution of genetic material and cell organelles among the two rising cells prior to cell division. The role of the AMR in cytokinesis and the molecular mechanisms that drive AMR constriction and septation are the focus of current research. This review summarizes the recent progresses in our understanding of how budding yeast cells orchestrate the multitude of molecular mechanisms that control AMR driven cytokinesis in a spatio-temporal manner to achieve an error free cell division. PMID:26845196

  11. Structures, chemotaxonomic significance, cytotoxic and Na(+),K(+)-ATPase inhibitory activities of new cardenolides from Asclepias curassavica.

    PubMed

    Zhang, Rong-Rong; Tian, Hai-Yan; Tan, Ya-Fang; Chung, Tse-Yu; Sun, Xiao-Hui; Xia, Xue; Ye, Wen-Cai; Middleton, David A; Fedosova, Natalya; Esmann, Mikael; Tzen, Jason T C; Jiang, Ren-Wang

    2014-11-28

    Five new cardenolide lactates (1–5) and one new dioxane double linked cardenolide glycoside (17) along with 15 known compounds (6–16 and 18–21) were isolated from the ornamental milkweed Asclepias curassavica. Their structures were elucidated by extensive spectroscopic methods (IR, UV, MS, 1D- and 2D-NMR). The molecular structures and absolute configurations of 1–3 and 17 were further confirmed by single-crystal X-ray diffraction analysis. Simultaneous isolation of dioxane double linked cardenolide glycosides (17–21) and cardenolide lactates (1–5) provided unique chemotaxonomic markers for this genus. Compounds 1–21 were evaluated for the inhibitory activities against DU145 prostate cancer cells. The dioxane double linked cardenolide glycosides showed the most potent cytotoxic effect followed by normal cardenolides and cardenolide lactates, while the C21 steroids were non-cytotoxic. Enzymatic assay established a correlation between the cytotoxic effects in DU145 cancer cells and the Ki for the inhibition of Na(+),K(+)-ATPase. Molecular docking analysis revealed relatively strong H-bond interactions between the bottom of the binding cavity and compounds 18 or 20, and explained why the dioxane double linked cardenolide glycosides possessed higher inhibitory potency on Na(+),K(+)-ATPase than the cardenolide lactate. PMID:25270760

  12. Effects of salinity on chloride cells and Na+, K(+)-ATPase activity in the teleost Gillichthys mirabilis.

    PubMed

    Yoshikawa, J S; McCormick, S D; Young, G; Bern, H A

    1993-06-01

    1. Longjawed mudsuckers, Gillichthys mirabilis, in 30 ppt seawater (SW) were transferred to 1.5, 30 and 60 ppt SW. 2. In the first 1-3 days after transfer, plasma chloride level and plasma osmolarity rose in the 60 ppt SW fish, and decreased in the 1.5 ppt SW fish. 3. By day 21, however, plasma chloride and osmolarity were at or near the levels seen in the controls (30 ppt). 4. Branchial and jawskin Na+, K(+)-ATPase activities were high in all salinities, and did not differ significantly among treatments. 5. The vital fluorescent stains DASPEI and anthroylouabain were used to detect mitochondria and Na+, K(+)-ATPase, respectively, in chloride cells. 6. Both stains indicated that jawskin chloride cell density did not differ among treatment groups. 7. In contrast, chloride cell size increased significantly with increasing salinity. 8. The chloride cells of fish in 60 ppt SW were noticeably angular in outline, whereas those of both the 1.5 and 30 ppt SW fish were circular. 9. The results are discussed in relation to the ion transport requirements encountered in the intertidal habitat of the mudsucker. PMID:8101158

  13. Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange

    PubMed Central

    Silva, Paulo

    2009-01-01

    Over the last decades several efforts have been carried out to determine the mechanisms of salt homeostasis in plants and, more recently, to identify genes implicated in salt tolerance, with some plants being successfully genetically engineered to improve resistance to salt. It is well established that the efficient exclusion of Na+ excess from the cytoplasm and vacuolar Na+ accumulation are the most important steps towards the maintenance of ion homeostasis inside the cell. Therefore, the vacuole of plant cells plays a pivotal role in the storage of salt. After the identification of the vacuolar Na+/H+ antiporter Nhx1 in Saccharomyces cerevisiae, the first plant Na+/H+ antiporter, AtNHX1, was isolated from Arabidopsis and its overexpression resulted in plants exhibiting increased salt tolerance. Also, the identification of the plasma membrane Na+/H+ exchanger SOS1 and how it is regulated by a protein kinase SOS2 and a calcium binding protein SOS3 were great achievements in the understanding of plant salt resistance. Both tonoplast and plasma membrane antiporters exclude Na+ from the cytosol driven by the proton-motive force generated by the plasma membrane H+-ATPase and by the vacuolar membrane H+-ATPase and H+-pyrophosphatase and it has been shown that the activity of these proteins responds to salinity. In this review we focus on the transcriptional and post-transcriptional regulation by salt of tonoplast proton pumps and Na+/H+ exchangers and on the signalling pathways involved in salt sensing. PMID:19820346

  14. Mutagenesis Reveals the Complex Relationships between ATPase Rate and the Chaperone Activities of Escherichia coli Heat Shock Protein 70 (Hsp70/DnaK)*

    PubMed Central

    Chang, Lyra; Thompson, Andrea D.; Ung, Peter; Carlson, Heather A.; Gestwicki, Jason E.

    2010-01-01

    The Escherichia coli 70-kDa heat shock protein, DnaK, is a molecular chaperone that engages in a variety of cellular activities, including the folding of proteins. During this process, DnaK binds its substrates in coordination with a catalytic ATPase cycle. Both the ATPase and protein folding activities of DnaK are stimulated by its co-chaperones, DnaJ and GrpE. However, it is not yet clear how changes in the stimulated ATPase rate of DnaK impact the folding process. In this study, we performed mutagenesis throughout the nucleotide-binding domain of DnaK to generate a collection of mutants in which the stimulated ATPase rates varied from 0.7 to 13.6 pmol/μg/min−1. We found that this range was largely established by differences in the ability of the mutants to be stimulated by one or both of the co-chaperones. Next, we explored how changes in ATPase rate might impact refolding of denatured luciferase in vitro and found that the two activities were poorly correlated. Unexpectedly, we found several mutants that refold luciferase normally in the absence of significant ATP turnover, presumably by increasing the flexibility of DnaK. Finally, we tested whether DnaK mutants could complement growth of ΔdnaK E. coli cells under heat shock and found that the ability to refold luciferase was more predictive of in vivo activity than ATPase rate. This study provides insights into how flexibility and co-chaperone interactions affect DnaK-mediated ATP turnover and protein folding. PMID:20439464

  15. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  16. Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension.

    PubMed

    Simões, Sérgio de Matos; Mainieri, Avantika; Zallen, Jennifer A

    2014-02-17

    Actomyosin contraction generates mechanical forces that influence cell and tissue structure. During convergent extension in Drosophila melanogaster, the spatially regulated activity of the myosin activator Rho-kinase promotes actomyosin contraction at specific planar cell boundaries to produce polarized cell rearrangement. The mechanisms that direct localized Rho-kinase activity are not well understood. We show that Rho GTPase recruits Rho-kinase to adherens junctions and is required for Rho-kinase planar polarity. Shroom, an asymmetrically localized actin- and Rho-kinase-binding protein, amplifies Rho-kinase and myosin II planar polarity and junctional localization downstream of Rho signaling. In Shroom mutants, Rho-kinase and myosin II achieve reduced levels of planar polarity, resulting in decreased junctional tension, a disruption of multicellular rosette formation, and defective convergent extension. These results indicate that Rho GTPase activity is required to establish a planar polarized actomyosin network, and the Shroom actin-binding protein enhances myosin contractility locally to generate robust mechanical forces during axis elongation. PMID:24535826

  17. F{sub o}F{sub 1}-ATPase activity regulated by external links on {beta} subunits

    SciTech Connect

    Cheng, Jie; Zhang, Xiao-ai; Shu, Yao-Gen; Yue, Jia-Chang

    2010-01-01

    F{sub o}F{sub 1}-ATPase activity is regulated by external links on {beta} subunits with different molecular weight. It is inhibited when anti-{beta} subunit antibody, streptavidin and H9 antibody link on the {beta} subunits successively, but is activated when virus was binded. Western blotting indicated that the employed anti-{beta} antibody target was on the non-catalytic site of the {beta} subunit. Furthermore, an ESR study of spin-labeled ATP (SL-ATP) showed that the affinity of ATP to the holoenzyme increases with increasing external links on the {beta} subunits. This simple regulation method may have great potential in the design of rapid, free labeled, sensitive and selective biosensors.

  18. ATPase Activity and ATP-dependent Conformational Change in the Co-chaperone HSP70/HSP90-organizing Protein (HOP)*

    PubMed Central

    Yamamoto, Soh; Subedi, Ganesh Prasad; Hanashima, Shinya; Satoh, Tadashi; Otaka, Michiro; Wakui, Hideki; Sawada, Ken-ichi; Yokota, Shin-ichi; Yamaguchi, Yoshiki; Kubota, Hiroshi; Itoh, Hideaki

    2014-01-01

    Co-chaperones help to maintain cellular homeostasis by modulating the activities of molecular chaperones involved in protein quality control. The HSP70/HSP90-organizing protein (HOP) is a co-chaperone that cooperates with HSP70 and HSP90 in catalysis of protein folding and maturation in the cytosol. We show here that HOP has ATP-binding activity comparable to that of HSP70/HSP90, and that HOP slowly hydrolyzes ATP. Analysis of deletion mutants revealed that the ATPase domain of HOP is in the N-terminal TPR1-DP1-TPR2A segment. In addition, HOP changes its conformation in the presence of ATP. These results indicate that HOP is a unique co-chaperone that undergoes an ATP-dependent conformational change. PMID:24535459

  19. Role of catch bonds in actomyosin mechanics and cell mechanosensitivity

    NASA Astrophysics Data System (ADS)

    Vernerey, Franck J.; Akalp, Umut

    2016-07-01

    We propose a mechanism of adherent cell mechanosensing, based on the idea that the contractile actomyosin machinery behaves as a catch bond. For this, we construct a simplified model of the actomyosin structure that constitutes the building block of stress fibers and express the stability of cross bridges in terms of the force-dependent bonding energy of the actomyosin bond. Consistent with experimental measurements, we then consider that the energy barrier of the actomyosin bond increases for tension and show that this response is enough to explain the force-induced stabilization of a stress fiber. Further numerical simulations at the cellular level show that the catch-bond hypothesis can help in understanding and predict the sensitivity of adherent cells to substrate stiffness.

  20. Role of catch bonds in actomyosin mechanics and cell mechanosensitivity.

    PubMed

    Vernerey, Franck J; Akalp, Umut

    2016-07-01

    We propose a mechanism of adherent cell mechanosensing, based on the idea that the contractile actomyosin machinery behaves as a catch bond. For this, we construct a simplified model of the actomyosin structure that constitutes the building block of stress fibers and express the stability of cross bridges in terms of the force-dependent bonding energy of the actomyosin bond. Consistent with experimental measurements, we then consider that the energy barrier of the actomyosin bond increases for tension and show that this response is enough to explain the force-induced stabilization of a stress fiber. Further numerical simulations at the cellular level show that the catch-bond hypothesis can help in understanding and predict the sensitivity of adherent cells to substrate stiffness. PMID:27575160

  1. Calorie restriction does not restore brain mitochondrial function in P301L tau mice, but it does decrease mitochondrial F0F1-ATPase activity.

    PubMed

    Delic, Vedad; Brownlow, Milene; Joly-Amado, Aurelie; Zivkovic, Sandra; Noble, Kenyaria; Phan, Tam-Anh; Ta, Yen; Zhang, Yumeng; Bell, Stephen D; Kurien, Crupa; Reynes, Christian; Morgan, Dave; Bradshaw, Patrick C

    2015-07-01

    Calorie restriction (CR) has been shown to increase lifespan and delay aging phenotypes in many diverse eukaryotic species. In mouse models of Alzheimer's disease (AD), CR has been shown to decrease amyloid-beta and hyperphosphorylated tau levels and preserve cognitive function. Overexpression of human mutant tau protein has been shown to induce deficits in mitochondrial electron transport chain complex I activity. Therefore, experiments were performed to determine the effects of 4-month CR on brain mitochondrial function in Tg4510 mice, which express human P301L tau. Expression of mutant tau led to decreased ADP-stimulated respiratory rates, but not uncoupler-stimulated respiratory rates. The membrane potential was also slightly higher in mitochondria from the P301L tau mice. As shown previously, tau expression decreased mitochondrial complex I activity. The decreased complex I activity, decreased ADP-stimulated respiratory rate, and increased mitochondrial membrane potential occurring in mitochondria from Tg4510 mice were not restored by CR. However, the CR diet did result in a genotype independent decrease in mitochondrial F0F1-ATPase activity. This decrease in F0F1-ATPase activity was not due to lowered levels of the alpha or beta subunits of F0F1-ATPase. The possible mechanisms through which CR reduces the F0F1-ATPase activity in brain mitochondria are discussed. PMID:26048366

  2. Role of the D1-D2 Linker of Human VCP/p97 in the Asymmetry and ATPase Activity of the D1-domain

    PubMed Central

    Tang, Wai Kwan; Xia, Di

    2016-01-01

    Human AAA+ protein p97 consists of an N-domain and two tandem ATPase domains D1 and D2, which are connected by the N-D1 and the D1-D2 linkers. Inclusion of the D1-D2 linker, a 22-amino acid peptide, at the end of p97 N-D1 truncate has been shown to activate ATP hydrolysis of its D1-domain, although the mechanism of activation remains unclear. Here, we identify the N-terminal half of this linker, highly conserved from human to fungi, is essential for the ATPase activation. By analyzing available crystal structures, we observed that the D1-D2 linker is capable of inducing asymmetry in subunit association into a p97 hexamer. This observation is reinforced by two new crystal structures, determined in the present work. The effect of D1-D2 linker on the ATPase activity of the D1-domain is correlated to the side-chain conformation of residue R359, a trans-acting arginine-finger residue essential for ATP hydrolysis of the D1-domain. The activation in D1-domain ATPase activity by breaking perfect six-fold symmetry implies functional importance of asymmetric association of p97 subunits, the extent of which can be determined quantitatively by the metric Asymmetric Index. PMID:26818443

  3. Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy.

    PubMed

    Cartagena-Rivera, Alexander X; Logue, Jeremy S; Waterman, Clare M; Chadwick, Richard S

    2016-06-01

    The organization of filamentous actin and myosin II molecular motor contractility is known to modify the mechanical properties of the cell cortical actomyosin cytoskeleton. Here we describe a novel method, to our knowledge, for using force spectroscopy approach curves with tipless cantilevers to determine the actomyosin cortical tension, elastic modulus, and intracellular pressure of nonadherent cells. We validated the method by measuring the surface tension of water in oil microdrops deposited on a glass surface. We extracted an average tension of T ∼ 20.25 nN/μm, which agrees with macroscopic experimental methods. We then measured cortical mechanical properties in nonadherent human foreskin fibroblasts and THP-1 human monocytes before and after pharmacological perturbations of actomyosin activity. Our results show that myosin II activity and actin polymerization increase cortex tension and intracellular pressure, whereas branched actin networks decreased them. Interestingly, myosin II activity stiffens the cortex and branched actin networks soften it, but actin polymerization has no effect on cortex stiffness. Our method is capable of detecting changes in cell mechanical properties in response to perturbations of the cytoskeleton, allowing characterization with physically relevant parameters. Altogether, this simple method should be of broad application for deciphering the molecular regulation of cell cortical mechanical properties. PMID:27276270

  4. A kinetic characterization of (Na+, K+)-ATPase activity in the gills of the pelagic seabob shrimp Xiphopenaeus kroyeri (Decapoda, Penaeidae).

    PubMed

    Leone, Francisco Assis; Lucena, Malson Neilson; Rezende, Luciana Augusto; Garçon, Daniela Pereira; Pinto, Marcelo Rodrigues; Mantelatto, Fernando Luis; McNamara, John Campbell

    2015-04-01

    We characterize the kinetic properties of a gill (Na(+), K(+))-ATPase from the pelagic marine seabob Xiphopenaeus kroyeri. Sucrose density gradient centrifugation revealed membrane fractions distributed mainly into a heavy fraction showing considerable (Na(+), K(+))-ATPase activity, but also containing mitochondrial F0F1- and Na(+)- and V-ATPases. Western blot analysis identified a single immunoreactive band against the (Na(+), K(+))-ATPase α-subunit with an Mr of ≈ 110 kDa. The α-subunit was immunolocalized to the intralamellar septum of the gill lamellae. The (Na(+), K(+))-ATPase hydrolyzed ATP obeying Michaelis-Menten kinetics with VM = 109.5 ± 3.2 nmol Pi min(-1) mg(-1) and KM = 0.03 ± 0.003 mmol L(-1). Mg(2+) (VM = 109.8 ± 2.1 nmol Pi min(-1 )mg(-1), K0.5 = 0.60 ± 0.03 mmol L(-1)), Na(+) (VM = 117.6 ± 3.5 nmol Pi min(-1 ) mg(-1), K0.5 = 5.36 ± 0.14 mmol L(-1)), K(+) (VM = 112.9 ± 1.4 nmol Pi min(-1 )mg(-1), K0.5 = 1.32 ± 0.08 mmol L(-1)), and NH4 (+) (VM = 200.8 ± 7.1 nmol Pi min(-1 )mg(-1), K0.5 = 2.70 ± 0.04 mmol L(-1)) stimulated (Na(+), K(+))-ATPase activity following site-site interactions. K(+) plus NH4 (+) does not synergistically stimulate (Na(+), K(+))-ATPase activity, although each ion modulates affinity of the other. The enzyme exhibits a single site for K(+) binding that can be occupied by NH4 (+), stimulating the enzyme. Ouabain (KI = 84.0 ± 2.1 µmol L(-1)) and orthovanadate (KI = 0.157 ± 0.001 µmol L(-1)) inhibited total ATPase activity by ≈ 50 and ≈ 44 %, respectively. Ouabain inhibition increases ≈ 80 % in the presence of NH4 (+) with a threefold lower KI, suggesting that NH4 (+) is likely transported as a K(+) congener. PMID:25534346

  5. Novel ATPase activity of the polyprotein intermediate, Viral Protein genome-linked-Nuclear Inclusion-a protease, of Pepper vein banding potyvirus

    SciTech Connect

    Mathur, Chhavi; Savithri, Handanahal S.

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Pepper vein banding potyvirus VPg harbors Walker motifs. Black-Right-Pointing-Pointer VPg exhibits ATPase activity in the presence of NIa-Pro. Black-Right-Pointing-Pointer Plausible structural and functional interplay between VPg and NIa-Pro. Black-Right-Pointing-Pointer Functional relevance of prolonged presence of VPg-Pro during infection. -- Abstract: Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity.

  6. Parallel effects of freezing and osmotic stress on the ATPase activity and protein composition of the plasma membrane of winter rye seedlings

    SciTech Connect

    Uemura, Matsuo; Steponkus, P.L. )

    1989-11-01

    The objective of this study was to determine the influence of freezing versus hypertonic stress on the ATPase activity and polypeptide profile of the plasma membrane of nonacclimated winter rye leaves (Secale cereale L. cv Puma). Exposure of leaves to hypertonic sorbitol solutions resulted in a similar extent of injury as did freezing to subzero temperatures that resulted in equivalent osmotic stresses. When isolated with a two-phase partition system of aqueous polymers, the plasma membrane fractions of control, frozen, or hypertonically stressed leaves were of similar purity as judged by the distribution of marker enzyme activities. When assayed in the presence of Triton X-100 (0.05% w/w), ATPase activity was decreased only slightly in plasma membrane fractions isolated from either frozen or hypertonically stressed leaves. In contrast, the specific ATPase activity of the plasma membrane fractions assayed in the absence of Triton X-100 increased following freezing or hypertonic stress. As a result, the Triton X-100 stimulation of the ATPase activity decreased significantly from sixfold in control leaves to threefold in lethally stressed leaves and reflects an increase in the permeability of the plasma membrane vesicles. The increased permeability was also manifested as a decrease in H{sup +}-transport following exposure to freezing or hypertonic stress. Both freezing and hypertonic exposure at subzero temperatures altered the polypeptide profile of the plasma membrane, but with the exception of one polypeptide, there was no difference between the two treatments.

  7. Parallel Effects of Freezing and Osmotic Stress on the ATPase Activity and Protein Composition of the Plasma Membrane of Winter Rye Seedlings 1

    PubMed Central

    Uemura, Matsuo; Steponkus, Peter L.

    1989-01-01

    The objective of this study was to determine the influence of freezing versus hypertonic stress on the ATPase activity and polypeptide profile of the plasma membrane of nonacclimated winter rye leaves (Secale cereale L. cv Puma). Exposure of leaves to hypertonic sorbitol solutions resulted in a similar extent of injury as did freezing to subzero temperatures that resulted in equivalent osmotic stresses. When isolated with a two-phase partition system of aqueous polymers, the plasma membrane fractions of control, frozen, or hypertonically stressed leaves were of similar purity as judged by the distribution of marker enzyme activities. When assayed in the presence of Triton X-100 (0.05% w/w), ATPase activity was decreased only slightly in plasma membrane fractions isolated from either frozen or hypertonically stressed leaves. In contrast, the specific ATPase activity of the plasma membrane fractions assayed in the absence of Triton X-100 increased following freezing or hypertonic stress. As a result, the Triton X-100 stimulation of the ATPase activity decreased significantly from sixfold in control leaves to threefold in lethally stressed leaves and reflects an increase in the permeability of the plasma membrane vesicles. The increased permeability was also manifested as a decrease in H+-transport following exposure to freezing or hypertonic stress. Both freezing and hypertonic exposure at subzero temperatures altered the polypeptide profile of the plasma membrane, but with the exception of one polypeptide, there was no difference between the two treatments. PMID:16667162

  8. Leishmania amazonensis: heme stimulates (Na(+)+K(+))ATPase activity via phosphatidylinositol-specific phospholipase C/protein kinase C-like (PI-PLC/PKC) signaling pathways.

    PubMed

    Almeida-Amaral, Elmo Eduardo; Cardoso, Viviane Carrozino; Francioli, Fernanda Gomes; Meyer-Fernandes, José Roberto

    2010-04-01

    In the present paper we studied the involvement of the phosphatidylinositol-specific PLC (PI-PLC)/protein kinase C (PKC) pathway in (Na(+)+K(+))ATPase stimulation by heme in Leishmania amazonensis promastigotes. Heme stimulated the PKC-like activity with a concentration of 50nM. Interestingly, the maximal stimulation of the PKC-like activity promoted by phorbol ester was of the same magnitude promoted by heme. However, the stimulatory effect of heme is completely abolished by ET-18-OCH(3) and U73122, specific inhibitors of PI-PLC. (Na(+)+K(+))ATPase activity is increased in the presence of increased concentrations of heme, being maximally affected at 50nM. This effect was completely reversed by 10nM calphostin C, an inhibitor of PKC. Thus, the effect of 50nM heme on (Na(+)+K(+))ATPase activity is completely abolished by ET-18-OCH(3) and U73122. Taken together, these results demonstrate that the heme receptor mediates the stimulatory effect of heme on the (Na(+)+K(+))ATPase activity through a PI-PLC/PKC signaling pathway. PMID:20045694

  9. Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB.

    PubMed

    Tikhonova, Elena B; Devroy, Vishakha K; Lau, Sze Yi; Zgurskaya, Helen I

    2007-02-01

    Periplasmic membrane fusion proteins (MFPs) are essential components of the type I protein secretion systems and drug efflux pumps in Gram-negative bacteria. Previous studies suggested that MFPs connect the inner and outer membrane components of the transport systems and by this means co-ordinate the transfer of substrates across the two membranes. In this study, we purified and reconstituted the macrolide transporter MacAB from Escherichia coli. Here, MacA is a periplasmic MFP and MacB is an ABC-type transporter. Similar to other MFP-dependent transporters from E. coli, the in vivo function of MacAB requires the outer membrane channel TolC. The purified MacB displayed a basal ATPase activity in detergent micelles. This activity conformed to Michaelis-Menten kinetics but was unresponsive to substrates or accessory proteins. Upon reconstitution into proteoliposomes, the ATPase activity of MacB was strictly dependent on MacA. The catalytic efficiency of MacAB ATPase was more than 45-fold higher than the activity of MacB alone. Both the N- and C-terminal regions of MacA were essential for this activity. MacA stimulated MacB ATPase only in phospholipid bilayers and did not need the presence of macrolides. Our results suggest that MacA is a functional subunit of the MacB transporter. PMID:17214741

  10. Characterization of the Effects of Divalent Cations on the Coupled Activities of the H+-ATPase in Tonoplast Vesicles

    PubMed Central

    Tu, Shu-I; Nungesser, Edwin; Brauer, David

    1989-01-01

    The substrate requirement of the H+-ATPase in purified corn root tonoplast vesicles was investigated. The coupled activities, ATP hydrolysis and proton pumping, were simultaneously supported only by Mg2+ or Mn2+. The presence of Ca2+ or Ba2+ did not significantly affect the coupled activities. The addition of Cd2+, Co2+, Cu2+, and Zn2+ inhibited both the hydrolysis of Mg-ATP and the proton transport. However, the inhibition of proton pumping was more pronounced. Based on equilibrium analysis, both ATP-complexed and free forms of these cations were inhibitory. Inhibition of the hydrolysis of Mg-ATP could be correlated to the concentrations of the ATP-complex of Zn. On the other hand, the free Cu2+ and Co2+ were effective in inhibiting hydrolysis. For proton pumping, the ATP complexes of Co2+, Cu2+, and Zn2+ were effective inhibitors. However, this inhibition could be further modulated by free Co2+, Cu2+, and Zn2+. While the equilibrium concentrations of Cd-ATP and free Cd2+ were not estimated, the total concentration of this cation needed to inhibit the coupled activities of the H+-ATPase was found to be in the range of 10 to 100 micromolars. The presence of free divalent cations also affected the structure of the lipid phase in tonoplast membrane as demonstrated by the changes of emission intensity and polarization of incorporated 1,6-diphenyl-1,3,5-hexatriene. The differential inhibition caused by these cations could be interpreted by interactions with the protogenic domain of the membrane as previously proposed in “indirect-link” mechanism. PMID:16666975

  11. XRCC3 ATPase activity is required for normal XRCC3-Rad51C complex dynamics and homologous recombination

    SciTech Connect

    Yamada, N; Hinz, J; Kopf, V L; Segalle, K; Thompson, L

    2004-02-25

    Homologous recombinational repair is a major DNA repair pathway that preserves chromosomal integrity by removing double-strand breaks, crosslinks, and other DNA damage. In eukaryotic cells, the Rad51 paralogs (XRCC2, XRCC3, Rad51B, Rad51C, and Rad51D) are involved in this process, although their exact functions are largely undetermined. All five paralogs contain ATPase motifs, and XRCC3 appears to exist in a single complex with Rad51C. To begin to examine the function of this Rad51C-XRCC3 complex, we generated mammalian expression vectors that produce human wild-type XRCC3 or mutant XRCC3 with either a non-conservative mutation (K113A) or a conservative mutation (K113R) in the GKT Walker A box of the ATPase motif. The three vectors were independently transfected into Xrcc3-deficient irs1SF CHO cells. Wild-type XRCC3 complemented irs1SF cells, albeit to varying degrees, while ATPase mutants had no complementing activity, even when the mutant protein was expressed at comparable levels to that in wild-type-complemented clones. Because of the mutants' dysfunction, we propose that ATP binding and hydrolyzing activities of XRCC3 are essential. We tested in vitro complex formation by wild-type and mutant XRCC3 with His6-tagged Rad51C upon coexpression in bacteria, nickel affinity purification, and western blotting. Wild-type and K113A mutant XRCC3 formed stable complexes with Rad51C and co-purified with Rad51C, while the K113R mutant did not and was predominantly insoluble. Addition of 5 mM ATP, but not ADP, also abolished complex formation by the wild-type proteins. These results suggest that XRCC3 is likely to regulate the dissociation and formation of Rad51C-XRCC3 complex through ATP binding and hydrolysis, with both processes being essential for the complex's ability to participate in HRR.

  12. MAgnetic stimulation of the brain increase Na+, K+-ATPase activity decreased by injection of AlCl3 into nucleus basalis magnocellularis of rats.

    PubMed

    Jovanova-Nesic, Katica; Eric-Jovicic, Milena; Spector, Novera Herbert

    2006-06-01

    This article reports here on the influence of the static magnetic fields (MFs), locally applied to the brain area, on Na, K-ATPase activity in the rat with lesioned nucleus basalis magnocellularis (NBM) by intracerebral injection of 5 microl, 1% AlCl3 into the nucleus. Two AKMA micromagnets (M) flux density of 60 miliTesla, 5 mm in diameter, were bilaterally implanted with "N" polarity facing down to the cranial bones in the vicinity of the pineal gland (PG), immediately after the lesioning of NBM, during the same operation procedure. Ten days after the lesions of NBM, Na, K-ATPase activity on the erythrocyte membranes in the peripheral blood, measured spectrophotometrically, was completely inhibited. Magnetic stimulation (60 mT) of the brain during the 10 days significantly increased Na, K-ATPase activity on the erythrocyte membranes of rats with lesioned NBM. This results suggests that altered by lesions Na, K-ATPase activity in an experimental model of Alzheimer's disease might be ameliorated by magnetic stimulation of the brain. PMID:16753895

  13. Effect of salinity on hemolymph osmotic pressure, sodium concentration and Na+-K+-ATPase activity of gill of Chinese crab, Eriocheir sinensis

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Pan, Luqing; Fu, Lü

    2008-02-01

    The effects of salinity on hemolymph osmotic pressure, Na+ concentration and Na+-K+-ATPase activity of gill of Chinese crab Eriocheir sinensis were studied. The results showed that hemolymph osmotic pressure and Na+ concentration increased significantly ( P<0.05), and the Na+-K+-ATPase activity of gills decreased significantly ( P<0.05) when salinity increased from 0 to 16. The hemolymph osmotic pressure and Na+ concentration in each treatment group rose remarkably at 0.125 d or 0.25 d, while the Na+-K+-ATPase activity of gill reduced gradually with increased experiment time in 3 d. Then the three parameters remained at a constant level after 0.25 d, 0.125 d and 3 d, respectively, and higher hemolymph osmotic pressure, higher Na+ concentration and lower Na+-K+-ATPase activity of gill occurred at higher salinity. The effect of salinity change on protein concentration of hemolymph was indistinct ( P>0.05); However, the protein concentration decreased gradually with the increase of salinity from 0.25 d to 1 d, and then tended to be stable from day 1 to day 15.

  14. Effects of intermittent fasting on age-related changes on Na,K-ATPase activity and oxidative status induced by lipopolysaccharide in rat hippocampus.

    PubMed

    Vasconcelos, Andrea Rodrigues; Kinoshita, Paula Fernanda; Yshii, Lidia Mitiko; Marques Orellana, Ana Maria; Böhmer, Ana Elisa; de Sá Lima, Larissa; Alves, Rosana; Andreotti, Diana Zukas; Marcourakis, Tania; Scavone, Cristoforo; Kawamoto, Elisa Mitiko

    2015-05-01

    Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS. PMID:25818175

  15. Reduced activity of SKC a and Na-K ATPase underlies the accelerated impairment of EDH-type relaxations in mesenteric arteries of aging spontaneously hypertensive rats.

    PubMed

    Kong, Billy W C; Man, Ricky Y K; Gao, Yuansheng; Vanhoutte, Paul M; Leung, Susan W S

    2015-06-01

    Aging is accompanied by endothelial dysfunction due to reduced bioavailability of nitric oxide (NO) and/or reduced endothelium-dependent hyperpolarizations (EDH). This study examines the hypothesis that hypertension aggravates the impairment of EDH-type relaxation due to aging. EDH-type relaxations were studied in superior mesenteric arteries isolated from Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats of 12, 36, 60, and 72 weeks of age. EDH-type relaxations in WKY were reduced with aging, and this was associated with an impairment of the function of small-conductance calcium-activated potassium channels (SKC a) and sodium-potassium ATPase (Na-K ATPase). EDH-type relaxation in SHR was smaller than that in WKY arteries, and further reduction occurred with aging. Pharmacological experiments suggested a reduced involvement of SKC a and Na-K ATPase and activation of adenosine monophosphate-activated protein kinase and silent information regulator T1 (sirtuin-1; SIRT1) in mesenteric arteries of 12-week-old SHR. These pharmacological findings suggest that in superior mesenteric arteries of the rat, the reduction in EDH-type relaxation occurs with aging and that such a reduction is exacerbated in hypertension. The latter exacerbation appears to involve proteins associated with the process of cellular senescence and is related to impaired function of SKC a and Na-K ATPase, a phenomenon that is also observed in mesenteric arteries of older normotensive rats. PMID:26171229

  16. Revisiting the mechanisms of copper toxicity to rainbow trout: Time course, influence of calcium, unidirectional Na(+) fluxes, and branchial Na(+), K(+) ATPase and V-type H(+) ATPase activities.

    PubMed

    Chowdhury, M Jasim; Girgis, Mina; Wood, Chris M

    2016-08-01

    In order to resolve uncertainties as to the mechanisms of toxic action of Cu and the protective effects of water [Ca], juvenile rainbow trout were acclimated to baseline soft water (SW, [Na(+)]=0.07, [Ca(2+)]=0.15, [Mg(2+)]=0.05mmolL(-1)) and then exposed to Cu with or without elevated [Ca] but at constant titratable alkalinity (0.27mmolL(-1)). The 96-h LC50 was 7-fold higher (63.8 versus 9.2μgCuL(-1); 1.00 versus 0.14μmolCuL(-1)) at [Ca]=3.0 versus 0.15mmolL(-1). Gill Cu burden increased with exposure concentration, and higher [Ca] attenuated this accumulation. At 24h, the gill Cu load (LA50≈0.58μgCug(-1); 9.13nmolCug(-1)) predictive of 50% mortality by 96h was independent of [Ca], in accord with Biotic Ligand Model (BLM) theory. Cu exposure induced net Na(+) losses (J(Na)net) by increasing unidirectional Na(+) efflux rates (J(Na)out) and inhibiting unidirectional Na(+) uptake rates (J(Na)in). The effect on J(Na)out was virtually immediate, whereas the effect on J(Na)in developed progressively over 24h and was associated with an inhibition of branchial Na(+), K(+) ATPase activity. The J(Na)in inhibition was eventually significant at a lower Cu threshold concentration (15μgCuL(-1)) than the J(Na)out stimulation (100μg Cu L(-1)). Elevated Ca protected against both effects, as well as against the inhibition of Na(+), K(+) ATPase activity. Branchial V-type H(+) ATPase activity was also inhibited by Cu exposure (100μgCuL(-1)), but only after 24h at high [Ca] (3.0mmolL(-1)). These novel results therefore reinforce the applicability of BLM theory to Cu, clarify that whether Na(+) influx or efflux is more sensitive depends on the duration of Cu exposure, show that elevated water [Ca], independent of alkalinity, is protective against both mechanisms of Cu toxicity, and identify V-type H(+)ATPase as a new Cu target for future investigation. PMID:27262060

  17. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility

    PubMed Central

    García Ponce, Alexander; Citalán Madrid, Alí F.; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-01-01

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity. PMID:27357373

  18. Self-Organizing Actomyosin Patterns on the Cell Cortex at Epithelial Cell-Cell Junctions

    PubMed Central

    Moore, Thomas; Wu, Selwin K.; Michael, Magdalene; Yap, Alpha S.; Gomez, Guillermo A.; Neufeld, Zoltan

    2014-01-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  19. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos.

    PubMed

    Monier, Bruno; Pélissier-Monier, Anne; Brand, Andrea H; Sanson, Bénédicte

    2010-01-01

    Partitioning tissues into compartments that do not intermix is essential for the correct morphogenesis of animal embryos and organs. Several hypotheses have been proposed to explain compartmental cell sorting, mainly differential adhesion, but also regulation of the cytoskeleton or of cell proliferation. Nevertheless, the molecular and cellular mechanisms that keep cells apart at boundaries remain unclear. Here we demonstrate, in early Drosophila melanogaster embryos, that actomyosin-based barriers stop cells from invading neighbouring compartments. Our analysis shows that cells can transiently invade neighbouring compartments, especially when they divide, but are then pushed back into their compartment of origin. Actomyosin cytoskeletal components are enriched at compartmental boundaries, forming cable-like structures when the epidermis is mitotically active. When MyoII (non-muscle myosin II) function is inhibited, including locally at the cable by chromophore-assisted laser inactivation (CALI), in live embryos, dividing cells are no longer pushed back, leading to compartmental cell mixing. We propose that local regulation of actomyosin contractibility, rather than differential adhesion, is the primary mechanism sorting cells at compartmental boundaries. PMID:19966783

  20. Self-organizing actomyosin patterns on the cell cortex at epithelial cell-cell junctions.

    PubMed

    Moore, Thomas; Wu, Selwin K; Michael, Magdalene; Yap, Alpha S; Gomez, Guillermo A; Neufeld, Zoltan

    2014-12-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  1. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility.

    PubMed

    García Ponce, Alexander; Citalán Madrid, Alí F; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-01-01

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity. PMID:27357373

  2. Concerted but Noncooperative Activation of Nucleotide and Actuator Domains of the Ca-ATPase Upon Calcium Binding

    SciTech Connect

    Chen, Baowei; Mahaney, James E.; Mayer, M. Uljana; Bigelow, Diana J.; Squier, Thomas C.

    2008-11-25

    Calcium-dependent domain movements of the nucleotide (N) and actuator (A) domains of the SERCA2a isoform of the Ca-ATPase were assessed using constructs containing engineered tetracysteine binding motifs, which were expressed in insect High-Five cells and subsequently labeled with the biarsenical fluorophore 4’,5’-bis(1,3,2-dithoarsolan-2-yl)fluorescein (FlAsH-EDT2). Maximum catalytic function is retained in microsomes isolated from High-Five cells and labeled with FlAsH-EDT2. Distance measurements using the nucleotide analog TNP-ATP, which acts as a fluorescence resonance energy transfer (FRET) acceptor from FlAsH, identify a 2.4 Å increase in the spatial separation between the N- and A-domains induced by high-affinity calcium binding; this structural change is comparable to that observed in crystal structures. No significant distance changes occur across the N-domain between FlAsH and TNP-ATP, indicating that calcium activation induces rigid body domain movements rather than intradomain conformational changes. Calcium-dependent decreases in the fluorescence of FlAsH bound respectively to either the N- or A-domains indicate coordinated and noncooperative domain movements, where both N- and A-domains domains display virtually identical calcium dependencies (i.e., Kd = 4.8 ± 0.4 μM). We suggest that occupancy of a single high-affinity calcium binding site induces the rearrangement of the A- and N-domains of the Ca-ATPase to form an intermediate state, which facilitates ATP utilization upon occupancy of the second high-affinity calcium site to enhance transport efficiency.

  3. Genome segment 6 of Antheraea mylitta cypovirus encodes a structural protein with ATPase activity

    SciTech Connect

    Chavali, Venkata R.M.; Madhurantakam, Chaithanya; Ghorai, Suvankar; Roy, Sobhan; Das, Amit K.; Ghosh, Ananta K.

    2008-07-20

    The genome segment 6 (S6) of the 11 double stranded RNA genomes from Antheraea mylitta cypovirus was converted into cDNA, cloned and sequenced. S6 consisted of 1944 nucleotides with an ORF of 607 amino acids and could encode a protein of 68 kDa, termed P68. Motif scan and molecular docking analysis of P68 showed the presence of two cystathionine beta synthase (CBS) domains and ATP binding sites. The ORF of AmCPV S6 was expressed in E. coli as His-tag fusion protein and polyclonal antibody was raised. Immunoblot analysis of virus infected gut cells and purified polyhedra using raised anti-p68 polyclonal antibody showed that S6 encodes a viral structural protein. Fluorescence and ATPase assay of soluble P68 produced in Sf-9 cells via baculovirus expression system showed its ability to bind and cleave ATP. These results suggest that P68 may bind viral RNA through CBS domains and help in replication and transcription through ATP binding and hydrolysis.

  4. Light induces changes in activities of Na+/K+-ATPase, H+/K+-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam, Tridacna squamosa

    PubMed Central

    Ip, Yuen K.; Ching, Biyun; Hiong, Kum C.; Choo, Celine Y. L.; Boo, Mel V.; Wong, Wai P.; Chew, Shit F.

    2015-01-01

    The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control), on enzymatic activities of transporters involved in the transport of NH+4 or H+, and activities of enzymes involved in converting NH+4 to glutamate/glutamine in inner mantle, outer mantle, and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH+4 in substitution for K+ to activate Na+/K+-ATPase (NKA), manifested as a significant increase in the Na+/NH+4-activated-NKA activity in the inner mantle. However, similar phenomena were not observed in the extensible outer mantle, which contained abundant symbiotic zooxanthellae. Hence, during light-enhanced calcification, H+ released from CaCO3 deposition could react with NH3 to form NH+4 in the extrapallial fluid, and NH+4 could probably be transported into the shell-facing inner mantle epithelium through NKA. Light also induced an increase in the activity of glutamine synthetase, which converts NH+4 and glutamate to glutamine, in the inner mantle. Taken together, these results explained observations reported elsewhere that light induced a significant increase in pH and a significant decrease in ammonia concentration in the extrapallial fluid, as well as a significant increase in the glutamine concentration in the inner mantle, of T. squamosa. Exposure of T. squamosa to light also led to a significant decrease in the N-ethylmaleimide (NEM)-sensitive-V-H+-ATPase (VATPase) in the inner mantle, and significant increases in the Na+/K+-activated-NKA, H+/NH+4-activated-H+/K+-ATPase, and NEM-sensitive-VATPase activities in ctenidia, indicating that light-enhanced calcification might perturb Na+ homeostasis and acid/base balance in the hemolymph, and might involve the active uptake of NH+4 from the environment. This is the first report on light having direct enhancing effects on activities of certain transporters

  5. Light induces changes in activities of Na(+)/K(+)-ATPase, H(+)/K(+)-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam, Tridacna squamosa.

    PubMed

    Ip, Yuen K; Ching, Biyun; Hiong, Kum C; Choo, Celine Y L; Boo, Mel V; Wong, Wai P; Chew, Shit F

    2015-01-01

    The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control), on enzymatic activities of transporters involved in the transport of NH(+) 4 or H(+), and activities of enzymes involved in converting NH(+) 4 to glutamate/glutamine in inner mantle, outer mantle, and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH(+) 4 in substitution for K(+) to activate Na(+)/K(+)-ATPase (NKA), manifested as a significant increase in the Na(+)/NH(+) 4-activated-NKA activity in the inner mantle. However, similar phenomena were not observed in the extensible outer mantle, which contained abundant symbiotic zooxanthellae. Hence, during light-enhanced calcification, H(+) released from CaCO3 deposition could react with NH3 to form NH(+) 4 in the extrapallial fluid, and NH(+) 4 could probably be transported into the shell-facing inner mantle epithelium through NKA. Light also induced an increase in the activity of glutamine synthetase, which converts NH(+) 4 and glutamate to glutamine, in the inner mantle. Taken together, these results explained observations reported elsewhere that light induced a significant increase in pH and a significant decrease in ammonia concentration in the extrapallial fluid, as well as a significant increase in the glutamine concentration in the inner mantle, of T. squamosa. Exposure of T. squamosa to light also led to a significant decrease in the N-ethylmaleimide (NEM)-sensitive-V-H(+)-ATPase (VATPase) in the inner mantle, and significant increases in the Na(+)/K(+)-activated-NKA, H(+)/NH(+) 4-activated-H(+)/K(+)-ATPase, and NEM-sensitive-VATPase activities in ctenidia, indicating that light-enhanced calcification might perturb Na(+) homeostasis and acid/base balance in the hemolymph, and might involve the active uptake of NH(+) 4 from the environment. This is the first report on light having direct

  6. Small Molecular Allosteric Activator of the Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA) Attenuates Diabetes and Metabolic Disorders.

    PubMed

    Kang, Soojeong; Dahl, Russell; Hsieh, Wilson; Shin, Andrew; Zsebo, Krisztina M; Buettner, Christoph; Hajjar, Roger J; Lebeche, Djamel

    2016-03-01

    Dysregulation of endoplasmic reticulum (ER) Ca(2+) homeostasis triggers ER stress leading to the development of insulin resistance in obesity and diabetes. Impaired function of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) has emerged as a major contributor to ER stress. We pharmacologically activated SERCA2b in a genetic model of insulin resistance and type 2 diabetes (ob/ob mice) with a novel allosteric activator, CDN1163, which markedly lowered fasting blood glucose, improved glucose tolerance, and ameliorated hepatosteatosis but did not alter glucose levels or body weight in lean controls. Importantly, CDN1163-treated ob/ob mice maintained euglycemia comparable with that of lean mice for >6 weeks after cessation of CDN1163 administration. CDN1163-treated ob/ob mice showed a significant reduction in adipose tissue weight with no change in lean mass, assessed by magnetic resonance imaging. They also showed an increase in energy expenditure using indirect calorimetry, which was accompanied by increased expression of uncoupling protein 1 (UCP1) and UCP3 in brown adipose tissue. CDN1163 treatment significantly reduced the hepatic expression of genes involved in gluconeogenesis and lipogenesis, attenuated ER stress response and ER stress-induced apoptosis, and improved mitochondrial biogenesis, possibly through SERCA2-mediated activation of AMP-activated protein kinase pathway. The findings suggest that SERCA2b activation may hold promise as an effective therapy for type-2 diabetes and metabolic dysfunction. PMID:26702054

  7. The uncoupled ATPase activity of the ABC transporter BtuC2D2 leads to a hysteretic conformational change, conformational memory, and improved activity.

    PubMed

    Livnat-Levanon, Nurit; I Gilson, Amy; Ben-Tal, Nir; Lewinson, Oded

    2016-01-01

    ABC transporters comprise a large and ubiquitous family of proteins. From bacteria to man they translocate solutes at the expense of ATP hydrolysis. Unlike other enzymes that use ATP as an energy source, ABC transporters are notorious for having high levels of basal ATPase activity: they hydrolyze ATP also in the absence of their substrate. It is unknown what are the effects of such prolonged and constant activity on the stability and function of ABC transporters or any other enzyme. Here we report that prolonged ATP hydrolysis is beneficial to the ABC transporter BtuC2D2. Using ATPase assays, surface plasmon resonance interaction experiments, and transport assays we observe that the constantly active transporter remains stable and functional for much longer than the idle one. Remarkably, during extended activity the transporter undergoes a slow conformational change (hysteresis) and gradually attains a hyperactive state in which it is more active than it was to begin with. This phenomenon is different from stabilization of enzymes by ligand binding: the hyperactive state is only reached through ATP hydrolysis, and not ATP binding. BtuC2D2 displays a strong conformational memory for this excited state, and takes hours to return to its basal state after catalysis terminates. PMID:26905293

  8. The uncoupled ATPase activity of the ABC transporter BtuC2D2 leads to a hysteretic conformational change, conformational memory, and improved activity

    PubMed Central

    Livnat-Levanon, Nurit; I. Gilson, Amy; Ben-Tal, Nir; Lewinson, Oded

    2016-01-01

    ABC transporters comprise a large and ubiquitous family of proteins. From bacteria to man they translocate solutes at the expense of ATP hydrolysis. Unlike other enzymes that use ATP as an energy source, ABC transporters are notorious for having high levels of basal ATPase activity: they hydrolyze ATP also in the absence of their substrate. It is unknown what are the effects of such prolonged and constant activity on the stability and function of ABC transporters or any other enzyme. Here we report that prolonged ATP hydrolysis is beneficial to the ABC transporter BtuC2D2. Using ATPase assays, surface plasmon resonance interaction experiments, and transport assays we observe that the constantly active transporter remains stable and functional for much longer than the idle one. Remarkably, during extended activity the transporter undergoes a slow conformational change (hysteresis) and gradually attains a hyperactive state in which it is more active than it was to begin with. This phenomenon is different from stabilization of enzymes by ligand binding: the hyperactive state is only reached through ATP hydrolysis, and not ATP binding. BtuC2D2 displays a strong conformational memory for this excited state, and takes hours to return to its basal state after catalysis terminates. PMID:26905293

  9. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Velasquez, Daniela; Da Rocha, Juliana T; Neto, José S S; Nogueira, Cristina W

    2016-03-15

    Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats. PMID:26738966

  10. The Δ14 Mutation of Human Cardiac Troponin T Enhances ATPase Activity and Alters the Cooperative Binding of S1-ADP to Regulated Actin†

    PubMed Central

    Gafurov, Boris; Fredricksen, Scott; Cai, Anmei; Brenner, Bernhard; Chase, P. Bryant; Chalovich, Joseph M.

    2005-01-01

    The complex of tropomyosin and troponin binds to actin and inhibits activation of myosin ATPase activity and force production of striated muscles at low free Ca2+ concentrations. Ca2+ stimulates ATP activity, and at subsaturating actin concentrations, the binding of NEM-modified S1 to actin–tropomyosin–troponin increases the rate of ATP hydrolysis even further. We show here that the Δ14 mutation of troponin T, associated with familial hypertrophic cardiomyopathy, results in an increase in ATPase rate like that seen with wild-type troponin in the presence of NEM-S1. The enhanced ATPase activity was not due to a decreased incorporation of mutant troponin T with troponin I and troponin C to form an active troponin complex. The activating effect was more prominent with a hybrid troponin (skeletal TnI, TnC, and cardiac TnT) than with all cardiac troponin. Thus it appears that changes in the troponin–troponin contacts that result from mutations or from forming hybrids stabilize a more active state of regulated actin. An analysis of the effect of the Δ14 mutation on the equilibrium binding of S1-ADP to actin was consistent with stabilization of an active state of actin. This change in activation may be important in the development of cardiac disease. PMID:15568820

  11. Discovery of Tricyclic Clerodane Diterpenes as Sarco/Endoplasmic Reticulum Ca(2+)-ATPase Inhibitors and Structure-Activity Relationships.

    PubMed

    De Ford, Christian; Calderón, Carlos; Sehgal, Pankaj; Fedosova, Natalya U; Murillo, Renato; Olesen, Claus; Nissen, Poul; Møller, Jesper V; Merfort, Irmgard

    2015-06-26

    Tricyclic clerodane diterpenes (TCDs) are natural compounds that often show potent cytotoxicity for cancer cells, but their mode of action remains elusive. A computationally based similarity search (CDRUG), combined with principal component analysis (ChemGPS-NP) and docking calculations (GOLD 5.2), suggested TCDs to be inhibitors of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump, which is also the target of the sesquiterpene lactone thapsigargin. Biochemical studies were performed with 11 TCDs on purified rabbit skeletal muscle sarcoplasmic reticulum membranes, which are highly enriched with the SERCA1a isoform. Casearborin D (2) exhibited the highest affinity, with a KD value of 2 μM and giving rise to complete inhibition of SERCA1a activity. Structure-activity relationships revealed that functionalization of two acyl side chains (R1 and R4) and the hydrophobicity imparted by the aliphatic chain at C-9, as well as a C-3,C-4 double bond, play crucial roles for inhibitory activity. Docking studies also suggested that hydrophobic interactions in the binding site, especially with Phe256 and Phe834, may be important for a strong inhibitory activity of the TCDs. In conclusion, a novel class of SERCA inhibitory compounds is presented. PMID:25993619

  12. Predominant expression and activity of vacuolar H(+)-ATPases in the mixed segment of the wood-feeding termite Nasutitermes takasagoensis.

    PubMed

    Kumara, Rohitha P; Saitoh, Seikoh; Aoyama, Hiroaki; Shinzato, Naoya; Tokuda, Gaku

    2015-07-01

    The mixed segment is a unique part of the gut present only in the most apical lineage of termites and consists of a complex of overlapping mesenteric and proctodeal epithelia. In spite of its unique structure, the physiological functions of the mixed segment have been poorly studied. We performed transcriptome analysis to identify functional enzymes acting in the mixed segment of the wood-feeding higher termite Nasutitermes takasagoensis. We sequenced the transcripts (4563 isotigs) of the mixed segment and compared them with those of the midgut (4813 isotigs) and the first proctodeal segment (3629 isotigs). We found that vacuolar H(+)-ATPase (V-ATPase) subunits were predominant in the mixed segment, which was confirmed by RT-qPCR analysis. The V-ATPase activity in these three tissues was in a good agreement with the expression patterns, suggesting that V-ATPase is a prevalent enzyme in the mixed segment of the termites. The results confirmed the proposed role of the mixed segment as a transporting epithelium. PMID:25937057

  13. Is the Paracoccus halodenitrificans ATPase a chimeric enzyme?

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.

    1996-01-01

    Membranes from Paracoccus halodenitrificans contain an ATPase that is most active in the absence of NaCl. The most unusual characteristic of the enzyme is its pattern of sensitivity to various inhibitors. Azide and rhodamine 6G, inhibitors of F1F0-ATPases, inhibit ATP hydrolysis as do bafilomycin A1, concanamycin A (folimycin), N-ethylmaleimide, and p-chloromercuriphenylsulfonate which are inhibitors of vacuolar ATPases. This indiscriminate sensitivity suggests that this ATPase may be a hybrid and that caution should be exercised when using inhibition as a diagnostic for distinguishing between F1F0-ATPases and vacuolar ATPases.

  14. Modulation of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase activity and oxidative modification during the development of adjuvant arthritis.

    PubMed

    Strosova, Miriam K; Karlovska, Janka; Zizkova, Petronela; Kwolek-Mirek, Magdalena; Ponist, Silvester; Spickett, Corinne M; Horakova, Lubica

    2011-07-01

    Adjuvant arthritis (AA) was induced by intradermal administration of Mycobacterium butyricum to the tail of Lewis rats. In sarcoplasmic reticulum (SR) of skeletal muscles, we investigated the development of AA. SR Ca(2+)-ATPase (SERCA) activity decreased on day 21, suggesting possible conformational changes in the transmembrane part of the enzyme, especially at the site of the calcium binding transmembrane part. These events were associated with an increased level of protein carbonyls, a decrease in cysteine SH groups, and alterations in SR membrane fluidity. There was no alteration in the nucleotide binding site at any time point of AA, as detected by a FITC fluorescence marker. Some changes observed on day 21 appeared to be reversible, as indicated by SERCA activity, cysteine SH groups, SR membrane fluidity, protein carbonyl content and fluorescence of an NCD-4 marker specific for the calcium binding site. The reversibility may represent adaptive mechanisms of AA, induced by higher relative expression of SERCA, oxidation of cysteine, nitration of tyrosine and presence of acidic phospholipids such as phosphatidic acid. Nitric oxide may regulate cytoplasmic Ca(2+) level through conformational alterations of SERCA, and decreasing levels of calsequestrin in SR may also play regulatory role in SERCA activity and expression. PMID:21531199

  15. A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens

    NASA Astrophysics Data System (ADS)

    Baek, Kyung-Hwa; Zhang, Haiying; Lee, Bo Ryeong; Kwon, Young-Guen; Ha, Sang-Jun; Shin, Injae

    2015-12-01

    The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.

  16. Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells.

    PubMed

    Seo, Jeong-Ah; Kim, Boyun; Dhanasekaran, Danny N; Tsang, Benjamin K; Song, Yong Sang

    2016-02-01

    Aberrant increase in the expression levels of sarco/endoplasmic reticulum calcium ATPase (SERCA), which regulates Ca(2+) homeostasis, has been observed in ovarian cancers. In this study, we demonstrated that curcumin increases cytosolic Ca(2+) concentration through inhibition of SERCA activity, causing apoptosis in ovarian cancer cells but not in normal cells, including peripheral blood mononuclear cells (PBMCs) and ovarian surface epithelial cells (OSE). Curcumin induced apoptosis in ovarian cancer cells in a concentration- and time-dependent manner. Cytosolic Ca(2+) flux was evident after the curcumin treatment (15 µM). Treatment with Ca(2+) chelator reduced curcumin-induced apoptosis, confirming the possible involvement of increased cytosolic Ca(2+) concentration in this response. Basal mRNA and protein levels of SERCA2 were significantly higher in ovarian cancer cells than in OSE. SERCA activity was suppressed by curcumin, with no effect on protein expression. Forced expression of the SERCA2b gene in ovarian cancer cells prevented curcumin-induced cytosolic Ca(2+) elevation and subsequent apoptosis, supporting an important role of SERCA in curcumin-induced apoptosis of ovarian cancer cells. Taken together, inhibition of SERCA activity by curcumin disrupts the Ca(2+) homeostasis and thereby promotes apoptosis in ovarian cancer cells. PMID:26607901

  17. Active compounds in Chinese herbs and medicinal animal products which promote blood circulation via inhibition of Na+, K+-ATPase.

    PubMed

    Tzen, Jason Tc; Chen, Ronald Jy; Chung, Tse-Yu; Chen, Yi-Ching; Lin, Nan-Hei

    2010-01-01

    The therapeutic effect of cardiac glycosides for congestive heart failure lies in their reversible inhibition on Na+, K+-ATPase located in human myocardium. Several steroid-like compounds containing a core structure similar to cardiac glycosides have been found in many Chinese herbs and medicinal animal products conventionally used to promote blood circulation. They are putatively responsible for the therapeutic effect of those medicinal products via the same mechanism of inhibiting Na+, K+-ATPase. Inhibitory potency on Na+, K+-ATPase by ginsenosides, one of the identified steroid-like compounds, is significantly affected by sugar attachment that might cause steric hindrance of their binding to Na+, K+-ATPase. Ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure, equivalent to the sugar position in cardiac glycosides, substantially inhibit Na+, K+-ATPase. However, their inhibitory potency is abolished when sugar moieties are linked to the C-6 or C-20 position of the steroid-like structure. In contrast, no appreciable contents of steroid-like compounds are found in danshen, a well-known Chinese herb traditionally regarded as an effective medicine promoting blood circulation. Instead, magnesium lithospermate B (MLB), the major soluble ingredient in danshen, is assumed to be responsible for the therapeutic effect by inhibiting Na+, K+-ATPase in a manner comparable to cardiac glycosides. Neuroprotective effects of cardiac glycosides, ginsenosides and MLB against ischemic stroke were accordingly observed in a cortical brain slice-based assay model. Whether the neuroprotection is also triggered by inhibition of Na+, K+-ATPase remains to be investigated. Molecular modeling suggests that cardiac glycosides, ginsenosides and MLB presumably bind to the same extracellular pocket of the Na+, K+-ATPase alpha subunit. PMID:20438664

  18. Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane H+-ATPase Activity in Maize Roots1

    PubMed Central

    Canellas, Luciano Pasqualoto; Olivares, Fabio Lopes; Okorokova-Façanha, Anna L.; Façanha, Arnoldo Rocha

    2002-01-01

    Earthworms (Eisenia foetida) produce humic substances that can influence plant growth by mechanisms that are not yet clear. In this work, we investigated the effects of humic acids (HAs) isolated from cattle manure earthworm compost on the earliest stages of lateral root development and on the plasma membrane H+-ATPase activity. These HAs enhance the root growth of maize (Zea mays) seedlings in conjunction with a marked proliferation of sites of lateral root emergence. They also stimulate the plasma membrane H+-ATPase activity, apparently associated with an ability to promote expression of this enzyme. In addition, structural analysis reveals the presence of exchangeable auxin groups in the macrostructure of the earthworm compost HA. These results may shed light on the hormonal activity that has been postulated for these humic substances. PMID:12481077

  19. Angiotensin II AT1 receptor stimulates Na+–K+ ATPase activity through a pathway involving PKC-ζ in rat thyroid cells

    PubMed Central

    Marsigliante, S; Muscella, A; Elia, M G; Greco, S; Storelli, C

    2003-01-01

    Angiotensin II (Ang II) receptor subtype 1, AT1, is expressed by the rat thyroid. A relationship between thyroid function and several components of the renin-angiotensin system has also been established, but the Ang II cellular effects in thyrocytes and its transduction signalling remain undefined. The aim of the present paper was to investigate the modulation of the activity of the Na+-K+ ATPase by Ang II and its intracellular transduction pathway in PC-Cl3 cells, an established epithelial cell line derived from rat thyroid. Here we have demonstrated, by RT-PCR analysis, the expression of mRNA for the Ang II AT1 receptor in PC-Cl3 cells; mRNA for the Ang II AT2 receptor was not detected. Ang II was not able to affect the intracellular Ca2+ concentration in fura-2-loaded cells, but it stimulated the translocation from the cytosol to the plasma membrane of atypical protein kinase C-zeta (PKC-ζ) and -iota (PKC-ι) isoforms with subsequent phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1 and 2). Translocated atypical PKCs displayed temporally different activations, the activation of PKC-ζ being the fastest. PC-Cl3 cells stimulated with increasing Ang II concentrations showed dose- and time-dependent activation of the Na+-K+ ATPase activity, which paralleled the PKC-ζ translocation time course. Na+-K+ ATPase activity modulation was dependent on PKC activation since the PKC antagonist staurosporine abolished the stimulatory effect of Ang II. The inhibition of the ERK kinases 1 and 2 (MEK1 and 2) by PD098059 (2′-amino-3′-methoxyflavone) failed to block the effect of Ang II on the Na+-K+ ATPase activity. In conclusion, our results suggest that Ang II modulates Na+-K+ ATPase activity in PC-Cl3 cells through the AT1 receptor via activation of atypical PKC-ζ while the Ang II-activated PKC-ζ appears to have other as yet unknown functions. PMID:12527732

  20. Crystallization and preliminary X-ray analysis of the ATPase domain of the σ(54)-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP-BeFx.

    PubMed

    Sysoeva, Tatyana A; Yennawar, Neela; Allaire, Marc; Nixon, B Tracy

    2013-12-01

    One way that bacteria regulate the transcription of specific genes to adapt to environmental challenges is to use different σ factors that direct the RNA polymerase holoenzyme to distinct promoters. Unlike σ(70) RNA polymerase (RNAP), σ(54) RNAP is unable to initiate transcription without an activator: enhancer-binding protein (EBP). All EBPs contain one ATPase domain that belongs to the family of ATPases associated with various cellular activities (AAA+ ATPases). AAA+ ATPases use the energy of ATP hydrolysis to remodel different target macromolecules to perform distinct functions. These mechanochemical enzymes are known to form ring-shaped oligomers whose conformations strongly depend upon nucleotide status. Here, the crystallization of the AAA+ ATPase domain of an EBP from Aquifex aeolicus, NtrC1, in the presence of the non-hydrolyzable ATP analog ADP-BeFx is reported. X-ray diffraction data were collected from two crystals from two different protein fractions of the NtrC1 ATPase domain. Previously, this domain was co-crystallized with ADP and ATP, but the latter crystals were grown from the Walker B substitution variant E239A. Therefore, the new data sets are the first for a wild-type EBP ATPase domain co-crystallized with an ATP analog and they reveal a new crystal form. The resulting structure(s) will shed light on the mechanism of EBP-type transcription activators. PMID:24316836

  1. On the mechanism of sulfite activation of chloroplast thylakoid ATPase and the relation of ADP tightly bound at a catalytic site to the binding change mechanism

    SciTech Connect

    Du, Z.; Boyer, P.D. )

    1990-01-16

    Washed chloroplast thylakoid membranes upon exposure to ({sup 3}H)ADP retain in tightly bound ({sup 3}H)ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg{sup 2+} results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound ({sup 3}H)ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme. The authors present evidence that this is not the case. The Mg{sup 2+}- and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22{degree}C and of about 15 s at 37{degree}C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg{sup 2+} and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound ({sup 3}H)ADP parallels the onset of ATPase activity, although some ({sup 3}H)ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound ({sup 3}H)ADP being at a catalytic site and being replaced as this Mg{sup 2+}- and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme. The sulfite activation can be explained by sulfite combination at a P{sub i} binding site of the enzyme-ADP-Mg{sup 2+} complex to give a form more readily activated by ATP binding at an alternative site.

  2. Effects of synthetic and naturally occurring flavonoids on Na sup + , K sup + -ATPase: Aspects of the structure-activity relationship and action mechanism

    SciTech Connect

    Hirano, T.; Oka, K.; Akiba, M. )

    1989-01-01

    A comparative study was made of the effects of 15 synthetic and naturally occurring flavonoids on the hydrolytic activity of Na{sup +}, K{sup +} -adenosine triphosphatase (ATPase). Twelve of the flavonoids examined were mono-hydroxy or mono-methoxy derivatives. All inhibited Na{sup +}, K{sup +} -ATPase from dog kidney cortex when present at concentrations from 40-1000 {mu}M. Flavones possessing cyclohexyl instead of the phenyl group were the most potent with IC{sub 50} at 257-320 {mu}M. Structure-activity relationships were observed among the following mono-substituted flavones as: (i) 2-cyclohexyl-benzopyran-4-one {much gt} 2-phenyl-benzopyran-4-one; (ii) 2-cyclohexyl-7-hydroxybenzopyran-4-one {gt} 2-cyclohexyl-6-hydroxy-benzopyran-4-one {gt} 2-cyclohexyl-5-hydroxybenzopyran-4-one. Some flavonoids showing potent inhibitory activity were also examined for ouabain-displacement activity on human erythrocytes. Hardly and of the flavonoids were able to block ({sup 3}H) ouabain binding to erythrocytes. These results suggest that the mechanism by which flavonoid block Na{sup +}, K{sup +} -ATPase is not related to the cardiac glycoside-specific binding site(s) of this enzyme.

  3. Kinetics of muscle contraction and actomyosin NTP hydrolysis from rabbit using a series of metal–nucleotide substrates

    PubMed Central

    Burton, Kevin; White, Howard; Sleep, John

    2005-01-01

    Mechanical properties of skinned single fibres from rabbit psoas muscle have been correlated with biochemical steps in the cross-bridge cycle using a series of metal–nucleotide (Me·NTP) substrates (Mn2+ or Ni2+ substituted for Mg2+; CTP or ITP for ATP) and inorganic phosphate. Measurements were made of the rate of force redevelopment following (1) slack tests in which force recovery followed a period of unloaded shortening, or (2) ramp shortening at low load terminated by a rapid restretch. The form and rate of force recovery were described as the sum of two exponential functions. Actomyosin-Subfragment 1 (acto-S1) Me·NTPase activity and Me·NDP release were monitored under the same conditions as the fibre experiments. Mn·ATP and Mg·CTP both supported contraction well and maintained good striation order. Relative to Mg·ATP, they increased the rates and Me·NTPase activity of cross-linked acto-S1 and the fast component of a double-exponential fit to force recovery by ∼50% and 10–35%, respectively, while shortening velocity was moderately reduced (by 20–30%). Phosphate also increased the rate of the fast component of force recovery. In contrast to Mn2+ and CTP, Ni·ATP and Mg·ITP did not support contraction well and caused striations to become disordered. The rates of force recovery and Me·NTPase activity were less than for Mg·ATP (by 40–80% and 50–85%, respectively), while shortening velocity was greatly reduced (by ∼80%). Dissociation of ADP from acto-S1 was little affected by Ni2+, suggesting that Ni·ADP dissociation does not account for the large reduction in shortening velocity. The different effects of Ni2+ and Mn2+ were also observed during brief activations elicited by photolytic release of ATP. These results confirm that at least one rate-limiting step is shared by acto-S1 ATPase activity and force development. Our results are consistent with a dual rate-limitation model in which the rate of force recovery is limited by both NTP

  4. The Variable Subdomain of Escherichia coli SecA Functions To Regulate SecA ATPase Activity and ADP Release

    PubMed Central

    Das, Sanchaita; Grady, Lorry M.; Michtavy, Jennifer; Zhou, Yayan; Cohan, Frederick M.; Hingorani, Manju M.

    2012-01-01

    Bacterial SecA proteins can be categorized by the presence or absence of a variable subdomain (VAR) located within nucleotide-binding domain II of the SecA DEAD motor. Here we show that VAR is dispensable for SecA function, since the VAR deletion mutant secAΔ519–547 displayed a wild-type rate of cellular growth and protein export. Loss or gain of VAR is extremely rare in the history of bacterial evolution, indicating that it appears to contribute to secA function within the relevant species in their natural environments. VAR removal also results in additional secA phenotypes: azide resistance (Azir) and suppression of signal sequence defects (PrlD). The SecAΔ(519–547) protein was found to be modestly hyperactive for SecA ATPase activities and displayed an accelerated rate of ADP release, consistent with the biochemical basis of azide resistance. Based on our findings, we discuss models whereby VAR allosterically regulates SecA DEAD motor function at SecYEG. PMID:22389482

  5. The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity

    PubMed Central

    Tameling, Wladimir I. L.; Elzinga, Sandra D. J.; Darmin, Patricia S.; Vossen, Jack H.; Takken, Frank L. W.; Haring, Michel A.; Cornelissen, Ben J. C.

    2002-01-01

    Most plant disease resistance (R) genes known today encode proteins with a central nucleotide binding site (NBS) and a C-terminal Leu-rich repeat (LRR) domain. The NBS contains three ATP/GTP binding motifs known as the kinase-1a or P-loop, kinase-2, and kinase-3a motifs. In this article, we show that the NBS of R proteins forms a functional nucleotide binding pocket. The N-terminal halves of two tomato R proteins, I-2 conferring resistance to Fusarium oxysporum and Mi-1 conferring resistance to root-knot nematodes and potato aphids, were produced as glutathione S-transferase fusions in Escherichia coli. In a filter binding assay, purified I-2 was found to bind ATP rather than other nucleoside triphosphates. ATP binding appeared to be fully dependent on the presence of a divalent cation. A mutant I-2 protein containing a mutation in the P-loop showed a strongly reduced ATP binding capacity. Thin layer chromatography revealed that both I-2 and Mi-1 exerted ATPase activity. Based on the strong conservation of NBS domains in R proteins of the NBS-LRR class, we propose that they all are capable of binding and hydrolyzing ATP. PMID:12417711

  6. Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity.

    PubMed

    Selvam, Ramasamy; Ganesan, Kalaivani; Narayana Raju, K V S; Gangadharan, Akkalayi Chandrapuram; Manohar, Bhakthavatchalam Murali; Puvanakrishnan, Rengarajulu

    2007-06-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting 1% of the population worldwide. Pulsed electromagnetic field (PEMF) has a number of well-documented physiological effects on cells and tissues including antiinflammatory effect. This study aims to explore the antiinflammatory effect of PEMF and its possible mechanism of action in amelioration of adjuvant induced arthritis (AIA). Arthritis was induced by a single intradermal injection of heat killed Mycobacterium tuberculosis at a concentration of 500 microg in 0.1 ml of paraffin oil into the right hind paw of rats. The arthritic animals showed a biphasic response regarding changes in the paw edema volume. During the chronic phase of the disease, arthritic animals showed an elevated level of lipid peroxides and depletion of antioxidant enzymes with significant radiological and histological changes. Besides, plasma membrane Ca(2+) ATPase (PMCA) activity was inhibited while intracellular Ca(2+) level as well as prostaglandin E(2) levels was noticed to be elevated in blood lymphocytes of arthritic rats. Exposure of arthritic rats to PEMF at 5 Hzx4 microT x 90 min, produced significant antiexudative effect resulting in the restoration of the altered parameters. The antiinflammatory effect could be partially mediated through the stabilizing action of PEMF on membranes as reflected by the restoration of PMCA and intracellular Ca(2+) levels in blood lymphocytes subsequently inhibiting PGE(2) biosynthesis. The results of this study indicated that PEMF could be developed as a potential therapy for RA in human beings. PMID:17537462

  7. The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity.

    PubMed

    Gu, Dishui; Jin, Haojie; Jin, Guangzhi; Wang, Cun; Wang, Ning; Hu, Fangyuan; Luo, Qin; Chu, Wei; Yao, Ming; Qin, Wenxin

    2016-08-28

    The asialoglycoprotein receptor (ASGR), which is expressed mainly in hepatocytes, is downregulated in poorly differentiated hepatocellular carcinoma (HCC). Here we investigated the role of ASGR1 in HCC metastasis as well as the possible underlying molecular mechanisms. We found that ASGR1 was downregulated in HCC tissue compared with adjacent non-tumorous liver tissue and that lower ASGR1 expression was associated with higher TNM stage and poorer prognosis in HCC patients. ASGR1 overexpression inhibited hepatoma cell migration and invasion in vitro and in vivo, while ASGR1 knockdown had the opposite effects. Furthermore, ASGR1 interacted directly with human longevity assurance homolog 2 of yeast LAG1 (LASS2). Knockdown of LASS2 attenuated the inhibitory effects of ASGR1 on hepatoma cell migration and invasion in vitro. ASGR1 decreased V-ATPase activity in hepatoma cells, and this was reversed by LASS2 knockdown. Finally, HCC patients with low LASS2 levels had poor prognosis, while those with high ASGR1 and LASS2 levels had better prognosis. Thus, ASGR1 may act as a potential metastasis suppressor in HCC, and the combination of ASGR1 and LASS2 may help predict the prognosis of HCC patients. PMID:27241665

  8. Disturbance of energy and redox homeostasis and reduction of Na+,K+-ATPase activity provoked by in vivo intracerebral administration of ethylmalonic acid to young rats.

    PubMed

    Ritter, Luciana; Kleemann, Daniele; Hickmann, Fernanda Hermes; Amaral, Alexandre Umpierrez; Sitta, Ângela; Wajner, Moacir; Ribeiro, César Augusto João

    2015-05-01

    Ethylmalonic acid (EMA) accumulation occurs in various metabolic diseases with neurological manifestation, including short acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy (EE). Since pathophysiological mechanisms responsible for brain damage in these disorders are still poorly understood, we investigated the ex vivo effects of acute intrastriatal administration of EMA on important parameters of energy and redox homeostasis in striatum from young rats. We evaluated CO(2) production from glucose, glucose utilization and lactate production, as well as the activities of the citric acid cycle (CAC) enzymes, the electron transfer chain (ETC) complexes II-IV (oxidative phosphorylation, OXPHOS) and synaptic Na(+),K(+)-ATPase. We also tested the effect of EMA on malondialdehyde (MDA) levels (marker of lipid oxidation) and reduced glutathione (GSH) levels. EMA significantly reduced CO(2) production, increased glucose utilization and lactate production, and reduced the activities of citrate synthase and of complexes II and II-III of the ETC, suggesting an impairment of CAC and OXPHOS. EMA injection also reduced Na(+),K(+)-ATPase activity and GSH concentrations, whereas MDA levels were increased. Furthermore, EMA-induced diminution of Na(+),K(+)-ATPase activity and reduction of GSH levels were prevented, respectively, by the antioxidants melatonin and N-acetylcysteine, indicating that reactive species were involved in these effects. Considering the importance of CAC and ETC for energy production and Na(+),K(+)-ATPase for the maintenance of the cell membrane potential, the present data indicate that EMA compromises mitochondrial homeostasis and neurotransmission in striatum. We presume that these pathomechanisms may be involved to a certain extent in the neurological damage found in patients affected by SCADD and EE. PMID:25583115

  9. Uncoupling of attenuated myo-(3H)inositol uptake and dysfunction in Na(+)-K(+)-ATPase pumping activity in hypergalactosemic cultured bovine lens epithelial cells

    SciTech Connect

    Cammarata, P.R.; Tse, D.; Yorio, T. )

    1991-06-01

    Attenuation of both the active transport of myo-inositol and Na(+)-K(+)-ATPase pumping activity has been implicated in the onset of sugar cataract and other diabetic complications in cell culture and animal models of the disease. Cultured bovine lens epithelial cells (BLECs) maintained in galactose-free Eagle's minimal essential medium (MEM) or 40 mM galactose with and without sorbinil for up to 5 days were examined to determine the temporal effects of hypergalactosemia on Na(+)-K(+)-ATPase and myo-inositol uptake. The Na(+)-K(+)-ATPase pumping activity after 5 days of continuous exposure to galactose did not change, as demonstrated by 86Rb uptake. The uptake of myo-(3H)inositol was lowered after 20 h of incubation in galactose and remained below that of the control throughout the 5-day exposure period. The coadministration of sorbinil to the galactose medium normalized the myo-(3H)inositol uptake. No significant difference in the rates of passive efflux of myo-(3H)inositol or 86Rb from preloaded galactose-treated and control cultures was observed. Culture-media reversal studies were also carried out to determine whether the galactose-induced dysfunction in myo-inositol uptake could be corrected. BLECs were incubated in galactose for 5 days, then changed to galactose-free physiological medium with and without sorbinil for a 1-day recovery period. myo-Inositol uptake was reduced to 34% of control after 6 days of continuous exposure to galactose. Within 24 h of media reversal, myo-inositol uptake returned to or exceeded control values in BLECs switched to either MEM or MEM with sorbinil.2+ reversible and occurred independently of changes in Na(+)-K(+)-ATPase pumping activity in cultured lens epithelium, indicating that the two parameters are not strictly associated and that the deficit in myo-inositol uptake occurs rapidly during hypergalactosemia.

  10. Stalk segment 5 of the yeast plasma membrane H(+)-ATPase. Labeling with a fluorescent maleimide reveals a conformational change during glucose activation.

    PubMed

    Miranda, Manuel; Pardo, Juan Pablo; Allen, Kenneth E; Slayman, Carolyn W

    2002-10-25

    Glucose is well known to cause a rapid, reversible activation of the yeast plasma membrane H(+)-ATPase, very likely mediated by phosphorylation of two or more Ser/Thr residues near the C terminus. Recent mutagenesis studies have shown that glucose-dependent activation can be mimicked constitutively by amino acid substitutions in stalk segment 5 (S5), an alpha-helical stretch connecting the catalytic part of the ATPase with transmembrane segment 5 (Miranda, M., Allen, K. E., Pardo, J. P., and Slayman, C. W. (2001) J. Biol. Chem. 276, 22485-22490). In the present work, the fluorescent maleimide Alexa-488 has served as a probe for glucose-dependent changes in the conformation of S5. Experiments were carried out in a "3C" version of the ATPase, from which six of nine native cysteines had been removed by site-directed mutagenesis to eliminate background labeling by Alexa-488. In this construct, three of twelve cysteines introduced at various positions along S5 (A668C, S672C, and D676C) reacted with the Alexa dye in a glucose-independent manner, as shown by fluorescent labeling of the 100 kDa Pma1 polypeptide and by isolation and identification of the corresponding tryptic peptides. Especially significant was the fact that three additional cysteines reacted with Alexa-488 more rapidly (Y689C) or only (V665C and L678C) in plasma membranes from glucose-metabolizing cells. The results support a model in which the S5 alpha-helix undergoes a significant change in conformation to expose positions 665, 678, and 689 during glucose-dependent activation of the ATPase. PMID:12169695

  11. Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons.

    PubMed

    Mark, R J; Keller, J N; Kruman, I; Mattson, M P

    1997-05-01

    Basic fibroblast growth factor (bFGF) exhibits trophic activity for many populations of neurons in the brain, and can protect those neurons against excitotoxic, metabolic and oxidative insults. In Alzheimer's disease (AD), amyloid beta-peptide (A beta) fibrils accumulate in plaques which are associated with degenerating neurons. A beta can be neurotoxic by a mechanism that appears to involve induction of oxidative stress and disruption of calcium homeostasis. Plaques in AD brain contain high levels of bFGF suggesting a possible modulatory role for bFGF in the neurodegenerative process. We now report that bFGF can protect cultured hippocampal neurons against A beta25-35 toxicity by a mechanism that involves suppression of reactive oxygen species (ROS) accumulation and maintenance of Na+/K+-ATPase activity. A beta25-35 induced lipid peroxidation, accumulation of H2O2, mitochondrial ROS accumulation, and a decrease in mitochondrial transmembrane potential; each of these effects of A beta25-35 was abrogated in cultures pre-treated with bFGF. Na+/K+-ATPase activity was significantly reduced following exposure to A beta25-35 in control cultures, but not in cultures pre-treated with bFGF. bFGF did not protect neurons from death induced by ouabain (a specific inhibitor of the Na+/K+-ATPase) or 4-hydroxynonenal (an aldehydic product of lipid peroxidation) consistent with a site of action of bFGF prior to induction of oxidative stress and impairment of ion-motive ATPases. By suppressing accumulation of oxyradicals, bFGF may slow A beta-induced neurodegenerative cascades. PMID:9187334

  12. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes

    PubMed Central

    Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K.; Bindics, János; Ślusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L.; Tamaru, Hisashi

    2014-01-01

    Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48ANPL4 complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531

  13. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes.

    PubMed

    Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K; Bindics, János; Slusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L; Tamaru, Hisashi

    2014-11-11

    Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48A(NPL4) complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531

  14. Glucostatic regulation of (+)-(/sup 3/H)amphetamine binding in the hypothalamus: correlation with Na/sup +/, K/sup +/-ATPase activity

    SciTech Connect

    Angel, I.; Hauger, R.L.; Luu, M.D.; Giblin, B.; Skolnick, P.; Paul, S.M.

    1985-09-01

    Preincubation of rat hypothalamic slices in glucose-free Krebs-Ringer buffer (37/sup 0/C) resulted in a time-dependent decrease in specific (+)-(/sup 3/H)amphetamine binding in the crude synaptosomal fraction prepared from these slices. The addition of D-glucose resulted in a dose- and time-dependent stimulation of (+)-(/sup 3/H)amphetamine binding, whereas incubations with L-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose failed to increase the number of (+)-(/sup 3/H)amphetamine binding sites. Ouabain potently inhibited the glucose-induced stimulation of (+)-(/sup 3/H)amphetamine binding, suggesting the involvement of Na/sup +/, K/sup +/-ATPase. Preincubation of hypothalamic slices with glucose also resulted in an increase in Na/sup +/,K/sup +/-ATPase activity and the number of specific high-affinity binding sites for (/sup 3/H)ouabain, and a good correlation was observed between the glucose-stimulated increase in (+)-(/sup 3/H)amphetamine and (/sup 3/H)ouabain binding. These data suggest that the (+)-(/sup 3/H)amphetamine binding site in hypothalamus, previously linked to the anorectic actions of various phenylethylamines, is regulated both in vitro and in vivo by physiological concentrations of glucose. Glucose and amphetamine appear to interact at common sites in the hypothalamus to stimulate Na/sup +/,K/sup +/-ATPase activity, and the latter may be involved in the glucostatic regulation of appetite.

  15. Full activation of mouse platelets requires ADP secretion regulated by SERCA3 ATPase-dependent calcium stores.

    PubMed

    Elaïb, Ziane; Adam, Frédéric; Berrou, Eliane; Bordet, Jean-Claude; Prévost, Nicolas; Bobe, Régis; Bryckaert, Marijke; Rosa, Jean-Philippe

    2016-08-25

    The role of the sarco-endoplasmic reticulum calcium (Ca(2+)) adenosine triphosphatase (ATPase) 3 (SERCA3) in platelet physiology remains poorly understood. Here, we show that SERCA3 knockout (SERCA3(-/-)) mice exhibit prolonged tail bleeding time and rebleeding. Thrombus formation was delayed both in arteries and venules in an in vivo ferric chloride-induced thrombosis model. Defective platelet adhesion and thrombus growth over collagen was confirmed in vitro. Adenosine 5'-diphosphate (ADP) removal by apyrase diminished adhesion and thrombus growth of control platelets to the level of SERCA3(-/-) platelets. Aggregation, dense granule secretion, and Ca(2+) mobilization of SERCA3(-/-) platelets induced by low collagen or low thrombin concentration were weaker than controls. Accordingly, SERCA3(-/-) platelets exhibited a partial defect in total stored Ca(2+) and in Ca(2+) store reuptake following thrombin stimulation. Importantly ADP, but not serotonin, rescued aggregation, secretion, and Ca(2+) mobilization in SERCA3(-/-) platelets, suggesting specificity. Dense granules appeared normal upon electron microscopy, mepacrine staining, and total serotonin content, ruling out a dense granule defect. ADP induced normal platelet aggregation, excluding a defect in ADP activation pathways. The SERCA3-specific inhibitor 2,5-di-(tert-butyl)-1,4-benzohydroquinone diminished both Ca(2+) mobilization and secretion of control platelets, as opposed to the SERCA2b inhibitor thapsigargin. This confirmed the specific role of catalytically active SERCA3 in ADP secretion. Accordingly, SERCA3-dependent Ca(2+) stores appeared depleted in SERCA3(-/-) platelets. Finally, αIIbβ3 integrin blockade did not affect SERCA3-dependent secretion, therefore proving independent of αIIbβ3 engagement. Altogether, these results show that SERCA3-dependent Ca(2+) stores control a specific ADP secretion pathway required for full platelet secretion induced by agonists at low concentration and independent

  16. Non-equilibrium phase transition in reconstituted acto-myosin cortices

    NASA Astrophysics Data System (ADS)

    Fakhri, Nikta; Abu Shah, Enas; Malik-Garbi, Maya; Mackintosh, Fred C.; Keren, Kinneret; Schmidt, Christoph F.

    2015-03-01

    The cortical actin cytoskeleton is a quasi 2-D active material in which dynamics are dominated by rapid actin turnover and myosin-driven contractility. Here we present a reconstituted model system that emulates these processes in artificial cell-like compartments. By tuning physical and chemical parameters, we induce a non-equilibrium phase transition. We characterize the local dynamics of these reconstituted cortices by tracking embedded single-walled carbon nanotubes (SWNTs). We create high-resolution maps of the contractile actomyosin flows in a homogenous and during transition to an inhomogeneous steady state. We find evidence that connectivity percolation drives the non-equilibrium phase transition.

  17. Dephosphorylation activates the purified plant plasma membrane H+-ATPase--possible function of phosphothreonine residues in a mechanism not involving the regulatory C-terminal domain of the enzyme.

    PubMed

    Desbrosses, G; Stelling, J; Renaudin, J P

    1998-01-15

    The plasma membrane H+-ATPase was purified from tobacco cells (line BY-2). After solubilization by lysophosphatidylcholine followed by separation on a glycerol gradient, a fraction with a high specific activity of 9 micromol ATP x min(-1) x mg protein(-1) was obtained, in which the H+-ATPase polypeptide represented at least 80% of the protein. The incubation of this fraction in the presence of alkaline phosphatase increased H+-ATPase activity by 40%, in a manner consistent with dephosphorylation of the enzyme itself. The hydrolytic activity of the solubilized enzyme and its proton translocating activity, after reconstitution into proteoliposomes, were stimulated to the same extent. Alkaline phosphatase treatment was also accompanied by a 92% decrease in the H+-ATPase phosphothreonine content, whereas the phosphoserine residues were almost unaffected. The dephosphorylation induced a slight decrease of the affinity of the enzyme towards ATP. The purified enzyme was not activated by lysophosphatidylcholine addition nor by trypsin-mediated proteolysis, two treatments reported to release the inhibitory control by the C-terminal domain of the H+-ATPase and to increase the affinity of the enzyme towards ATP. Based on these results, the regulatory phosphorylation evoked by alkaline phosphatase most likely differs from the autoinhibitory control of the H+-ATPase by its C-terminal domain. PMID:9492323

  18. Gill-specific (Na(+), K(+))-ATPase activity and α-subunit mRNA expression during low-salinity acclimation of the ornate blue crab Callinectes ornatus (Decapoda, Brachyura).

    PubMed

    Leone, Francisco A; Garçon, Daniela P; Lucena, Malson N; Faleiros, Rogério O; Azevedo, Sergio V; Pinto, Marcelo R; McNamara, John C

    2015-08-01

    We evaluate (Na(+), K(+))-ATPase activity, and protein and gene expression of the α-subunit in posterior gills 6 and 7 of Callinectes ornatus, a euryhaline crab, during a 10-day acclimation period from seawater (33‰ S) to low salinity (21‰ S). (Na(+), K(+))-ATPase activity decreased within 1h after transfer to 21‰ S, values recovering by 24h and attaining a maximum of ≈180 nmol Pi min(-1) mg(-1) after 10 days (≈2.5-fold increase). (Na(+), K(+))-ATPase activity is ≈1.5-fold greater in gill 6 than in gill 7, independently of salinity. Relative expression of (Na(+), K(+))-ATPase α-subunit mRNA increased in both gills within 1- to 2-h exposure to low salinity, reaching an ≈8-fold maximum after 24-h exposure, decreasing slightly by 10 days acclimation to low salinity. This increase in α-subunit mRNA expression may underpin the increased (Na(+), K(+))-ATPase activity seen after 10 days acclimation to low salinity. Enzyme affinity for ATP was greater in gill 6 than in gill 7, in contrast to ouabain affinity that was greater in gill 7. Western blotting analysis identified a single immunoreactive band against the (Na(+), K(+))-ATPase α-subunit with an Mr of ≈105 kDa, independently of gill number and low salinity acclimation. Despite these differences, gills 6 and 7 appear to perform similar functions in salt uptake from the dilute medium. The partial cDNA sequence obtained for the gill (Na(+), K(+))-ATPase of C. ornatus (GenBank deposit KF056804) showed 97 to 91% identities with similar sequences from other portunid crab gills. The regulation of gill (Na(+), K(+))-ATPase activity during acclimation to low salinity is discussed. PMID:25934083

  19. Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA

    PubMed Central

    Slocum, Stephen L.; Buss, Jackson A.; Kimura, Yuji; Bianco, Piero R.

    2007-01-01

    RecG is a member of the Superfamily 2 helicase family. Its possible role in vivo is ATP hydrolysis driven regression of stalled replication forks. To gain mechanistic insight into how this is achieved, a coupled spectrophotometric assay was utilized to characterize the ATPase activity of RecG in vitro. The results demonstrate an overwhelming preference for negatively supercoiled DNA as cofactor for the hydrolysis of ATP. In the presence of (−)scDNA, the catalytic efficiency of RecG and the processivity (as revealed through heparin trapping), were higher than on any other cofactor examined. The activity of RecG on (−)scDNA was not due to the presence of single-stranded regions functioning as loading sites for the enzyme as relaxed circular DNA treated with DNA gyrase, resulted in the highest levels of ATPase activity. Relaxation of (−)scDNA by a topoisomerase resulted in a 12-fold decrease in ATPase activity, comparable to that observed on both linear dsDNA and (+)scDNA. In addition to the elevated activity in the presence of (−)scDNA, RecG also has high activity on model 4Y-substrates (i.e., chickenfoot structures). This is due largely to the high apparent affinity of the enzyme for this DNA substrate which is 46-fold higher than a 2Y-substrate (i.e., a 3-way with two ssDNA arms). Finally, the enzyme exhibited significant, but lower activity on ssDNA. This activity was enhanced by the E. coli SSB protein, which occurs through stabilizing of the binding of RecG to ssDNA. Stabilization is not afforded by the bacteriophage gene 32 protein, indicating a species specific, protein-protein interaction is involved. These results combine to provide significant insight into the manner and timing of the interaction of RecG with DNA at stalled replication forks. PMID:17292398

  20. Structural lipid changes and Na(+)/K(+)-ATPase activity of gill cells' basolateral membranes during saltwater acclimation in sea lamprey (Petromyzon marinus, L.) juveniles.

    PubMed

    Lança, Maria João; Machado, Maria; Ferreira, Ana Filipa; Quintella, Bernardo Ruivo; de Almeida, Pedro Raposo

    2015-11-01

    Seawater acclimation is a critical period for anadromous species and a process yet to be understood in lampreys. Considering that changes in lipid composition of the gill cells' basolateral membranes may disrupt the major transporter Na(+)K(+)-ATPase, the goal of this study was to detect changes at this level during juvenile sea lamprey seawater acclimation. The results showed that saltwater acclimation has a direct effect on the fatty acid composition of gill cells basolateral membrane's phospholipids. When held in full-strength seawater, the fatty acid profile of basolateral membrane's phospholipids suffered a restructure by increasing either saturation or the ratio between oleic acid and eicosapentaenoic acid. Simultaneously, the activity of Na(+)K(+)-ATPase revealed a significant and positive correlation with basolateral membrane's cholesterol content in the presence of highest salinity. Our results pointed out for lipid adjustments involving the functional transporter present on the gill cell basolateral membranes to ensure the role played by branchial Na(+)K(+)-ATPase in ion transport during saltwater acclimation process. The responses observed contributed to the strategy adopted by gill cell's basolateral membranes to compensate for osmotic and ionic stressors, to ensure the success of the process of seawater acclimation associated with the downstream trophic migration of juvenile sea lamprey. PMID:26244517

  1. Stimulation of Na{sup +}/K{sup +} ATPase activity and Na{sup +} coupled glucose transport by {beta}-catenin

    SciTech Connect

    Sopjani, Mentor; Alesutan, Ioana; Wilmes, Jan; Dermaku-Sopjani, Miribane; Lam, Rebecca S.; Jakupi, Muharrem; Foeller, Michael; Lang, Florian

    2010-11-19

    Research highlights: {yields} The oncogenic transcription factor {beta}-catenin stimulates the Na{sup +}/K{sup +}-ATPase. {yields} {beta}-Catenin stimulates SGLT1 dependent Na{sup +}, glucose cotransport. {yields} The effects are independent of transcription. {yields} {beta}-Catenin sensitive transport may contribute to properties of proliferating cells. -- Abstract: {beta}-Catenin is a multifunctional protein stimulating as oncogenic transcription factor several genes important for cell proliferation. {beta}-Catenin-regulated genes include the serum- and glucocorticoid-inducible kinase SGK1, which is known to stimulate a variety of transport systems. The present study explored the possibility that {beta}-catenin influences membrane transport. To this end, {beta}-catenin was expressed in Xenopus oocytes with or without SGLT1 and electrogenic transport determined by dual electrode voltage clamp. As a result, expression of {beta}-catenin significantly enhanced the ouabain-sensitive current of the endogeneous Na{sup +}/K{sup +}-ATPase. Inhibition of vesicle trafficking by brefeldin A revealed that the stimulatory effect of {beta}-catenin on the endogenous Na{sup +}/K{sup +}-ATPase was not due to enhanced stability of the pump protein in the cell membrane. Expression of {beta}-catenin further enhanced glucose-induced current (Ig) in SGLT1-expressing oocytes. In the absence of SGLT1 Ig was negligible irrespective of {beta}-catenin expression. The stimulating effect of {beta}-catenin on both Na{sup +}/K{sup +} ATPase and SGLT1 activity was observed even in the presence of actinomycin D, an inhibitor of transcription. The experiments disclose a completely novel function of {beta}-catenin, i.e. the regulation of transport.

  2. Functional roles of Na+/K+-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon schlosseri

    PubMed Central

    Chew, Shit F.; Hiong, Kum C.; Lam, Sock P.; Ong, Seow W.; Wee, Wei L.; Wong, Wai P.; Ip, Yuen K.

    2014-01-01

    The giant mudskipper, Periophthalmodon schlosseri, is an amphibious fish that builds burrows in the mudflats. It can actively excrete ammonia through its gills, and tolerate high environmental ammonia. This study aimed to examine the effects of seawater (salinity 30; SW) acclimation and/or environmental ammonia exposure on the kinetic properties of Na+/K+-ATPase (Nka) from, and mRNA expression and protein abundance of nka/Nka α–subunit isoforms in, the gills of P. schlosseri pre-acclimated to slightly brackish water (salinity 3; SBW). Our results revealed that the Nka from the gills of P. schlosseri pre-acclimated to SBW for 2 weeks had substantially higher affinity to (or lower Km for) K+ than NH+4, and its affinity to NH+4 decreased significantly after 6-days exposure to 75 mmol l−1 NH4Cl in SBW. Hence, Nka transported K+ selectively to maintain intracellular K+ homeostasis, instead of transporting NH+4 from the blood into ionocytes during active NH+4 excretion as previously suggested. Two nkaα isoforms, nkaα1 and nkaα3, were cloned and sequenced from the gills of P. schlosseri. Their deduced amino acid sequences had K+ binding sites identical to that of Nkaα1c from Anabas testudineus, indicating that they could effectively differentiate K+ from NH+4. Six days of exposure to 75 mmol l−1 NH4Cl in SBW, or to SW with or without 50 mmol l−1 NH4Cl led to significant increases in Nka activities in the gills of P. schlosseri. However, a significant increase in the comprehensive Nkaα protein abundance was observed only in the gills of fish exposed to 50 mmol l−1 NH4Cl in SW. Hence, post-translational modification could be an important activity modulator of branchial Nka in P. schlosseri. The fast modulation of Nka activity and concurrent expressions of two branchial nkaα isoforms could in part contribute to the ability of P. schlosseri to survive abrupt transfer between SBW and SW or abrupt exposure to ammonia. PMID:24795653

  3. Evidence against essential roles for subdomain 1 of actin in actomyosin sliding movements

    SciTech Connect

    Siddique, Md. Shahjahan P.; Miyazaki, Takashi; Katayama, Eisaku; Uyeda, Taro Q.P.; Suzuki, Makoto . E-mail: msuzuki@material.tohoku.ac.jp

    2005-07-01

    We have engineered acto-S1chimera proteins carrying the entire actin inserted in loop 2 of the motor domain of Dictyostelium myosin II with 24 or 18 residue-linkers (CP24 and CP18, respectively). These proteins were capable of self-polymerization as well as copolymerization with skeletal actin and exhibited rigor-like structures. The MgATPase rate of CP24-skeletal actin copolymer was 1.06 s{sup -1}, which is slightly less than the V {sub max} of Dictyostelium S1. Homopolymer filaments of skeletal actin, CP24, and CP18 moved at 4.7 {+-} 0.6, 2.9 {+-} 0.6, and 4.1 {+-} 0.8 {mu}m/s (mean {+-} SD), respectively, on coverslips coated with skeletal myosin at 27 deg C. Statistically thermodynamic considerations suggest that the S1 portion of chimera protein mostly resides on subdomain 1 (SD-1) of the actin portion even in the presence of ATP. This and the fact that filaments of CP18 with shorter linkers moved faster than CP24 filaments suggest that SD-1 might not be as essential as conventionally presumed for actomyosin sliding interactions.

  4. The effects of actomyosin disruptors on the mechanical integrity of the avian crystalline lens

    PubMed Central

    Won, Gah-Jone; Fudge, Douglas S.

    2015-01-01

    Purpose: Actin and myosin within the crystalline lens maintain the structural integrity of lens fiber cells and form a hexagonal lattice cradling the posterior surface of the lens. The actomyosin network was pharmacologically disrupted to examine the effects on lenticular biomechanics and optical quality. Methods: One lens of 7-day-old White Leghorn chickens was treated with 10 µM of a disruptor and the other with 0.01% dimethyl sulfoxide (vehicle). Actin, myosin, and myosin light chain kinase (MLCK) disruptors were used. The stiffness and the optical quality of the control and treated lenses were measured. Western blotting and confocal imaging were used to confirm that treatment led to a disruption of the actomyosin network. The times for the lenses to recover stiffness to match the control values were also measured. Results: Disruptor-treated lenses were significantly less stiff than their controls (p≤0.0274 for all disruptors). The disruptors led to changes in the relative protein amounts as well as the distributions of proteins within the lattice. However, the disruptors did not affect the clarity of the lenses (p≥0.4696 for all disruptors), nor did they affect spherical aberration (p = 0.02245). The effects of all three disruptors were reversible, with lenses recovering from treatment with actin, myosin, and MLCK disruptors after 4 h, 1 h, and 8 min, respectively. Conclusions: Cytoskeletal protein disruptors led to a decreased stiffness of the lens, and the effects were reversible. Optical quality was mostly unaffected, but the long-term consequences remain unclear. Our results raise the possibility that the mechanical properties of the avian lens may be actively regulated in vivo via adjustments to the actomyosin lattice. PMID:25684975

  5. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Seminotti, Bianca; Zanatta, Ângela; Fernandes, Carolina Gonçalves; Busanello, Estela Natacha Brandt; Braga, Luisa Macedo; Ribeiro, César Augusto João; de Souza, Diogo Onofre Gomes; Woontner, Michael; Koeller, David M; Goodman, Stephen; Wajner, Moacir

    2012-09-01

    Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric (GA) and 3-hydroxyglutaric (3HGA) acids in the brain and other tissues. Affected patients usually present with hypotonia and brain damage and acute encephalopathic episodes whose pathophysiology is not yet fully established. In this study we investigated important parameters of cellular bioenergetics in brain, heart and skeletal muscle from 15-day-old glutaryl-CoA dehydrogenase deficient mice (Gcdh(-/-)) submitted to a single intra-peritoneal injection of saline (Sal) or lysine (Lys - 8 μmol/g) as compared to wild type (WT) mice. We evaluated the activities of the respiratory chain complexes II, II-III and IV, α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and synaptic Na(+), K(+)-ATPase. No differences of all evaluated parameters were detected in the Gcdh(-/-) relatively to the WT mice injected at baseline (Sal). Furthermore, mild increases of the activities of some respiratory chain complexes (II-III and IV) were observed in heart and skeletal muscle of Gcdh(-/-) and WT mice after Lys administration. However, the most marked effects provoked by Lys administration were marked decreases of the activities of Na(+), K(+)-ATPase in brain and CK in brain and skeletal muscle of Gcdh(-/-) mice. In contrast, brain α-KGDH activity was not altered in WT and Gcdh(-/-) injected with Sal or Lys. Our results demonstrate that reduction of Na(+), K(+)-ATPase and CK activities may play an important role in the pathogenesis of the neurodegenerative changes in GA I. PMID:22578804

  6. Assessment of D-methionine protecting cisplatin-induced otolith toxicity by vestibular-evoked myogenic potential tests, ATPase activities and oxidative state in guinea pigs.

    PubMed

    Lo, Wu-Chia; Chang, Chih-Ming; Liao, Li-Jen; Wang, Chi-Te; Young, Yi-Ho; Chang, Yih-Leong; Cheng, Po-Wen

    2015-01-01

    To date, inadequate study has been devoted to the toxic vestibular effects caused by cisplatin. In addition, no electrophysiological examination has been conducted to assess cisplatin-induced otolith toxicity. The purposes of this study are thus two-fold: 1) to determine whether cervical vestibular-evoked myogenic potentials (VEMPs) and ocular VEMPs are practical electrophysiological methods of testing for cisplatin-induced otolith toxicity and 2) to examine if D-methionine (D-met) pre-injection would protect the otolith organs against cisplatin-induced changes in enzyme activities and/or oxidative status. Guinea pigs were intraperitoneally treated once daily with the following injections for seven consecutive days: sterile 0.9% saline control, cisplatin (5 mg/kg) only, D-met (300 mg/kg) only, or a combination of d-met (300 mg/kg) and cisplatin (5 mg/kg), respectively, with a 30 minute window in between. Each animal underwent the oVEMP and cVEMP tests before and after treatment. The changes in the biochemistry of the otolith organs, including membranous Na(+), K(+)-ATPase and Ca(2+)-ATPase, lipid peroxidation (LPO) levels and nitric oxide (NO) levels, were also evaluated. In the cisplatin-only treated guinea pigs, the mean amplitudes of the oVEMP tests were significantly (p<0.05) decreased when compared to the other three groups. In guinea pigs receiving both D-met and cisplatin, the amplitudes of their oVEMP tests were significantly larger (p<0.05) than those of the cisplatin-only group, but smaller (p<0.05) than those of the saline control or D-met-only group. However, no significant difference of the amplitudes of cVEMP tests was noted among the four groups. In comparison with the other three groups, the cisplatin-only group had the lowest (ps<0.05) mean Na(+), K(+)-ATPase and Ca(2+)-ATPase, and the highest (ps<0.05) LPO and NO levels. The oVEMP tests were feasible for the evaluation of cisplatin-related otolith dysfunction. D-Met attenuated the reduced ATPase

  7. Plasmalemma- and tonoplast-ATPase activity in mesophyll protoplasts, vacuoles and microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana.

    PubMed

    Balsamo, R A; Uribe, E G

    1988-02-01

    Adenosine-triphosphatase activity on the plasmalemma and tonoplast of isolated mesophyll protoplasts, isolated vacuoles and tonoplast-derived microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr., was localized by a cytochemical procedure using lead citrate. Enzyme activity was detected on the cytoplasmic surfaces of the plasmalemma and tonoplast. The identity of the enzymes was confirmed by various treatments differentiating the enzymes by their sensitivity to inhibitors of plasmalemma and tonoplast H(+)-ATPase. Isolated vacuoles and microsomes prepared from isolated vacuoles clearly exhibited single-sided deposition on membrane surfaces. PMID:24226399

  8. Molecularly distinct routes of mitochondrial Ca2+ uptake are activated depending on the activity of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA).

    PubMed

    Waldeck-Weiermair, Markus; Deak, András T; Groschner, Lukas N; Alam, Muhammad Rizwan; Jean-Quartier, Claire; Malli, Roland; Graier, Wolfgang F

    2013-05-24

    The transfer of Ca(2+) across the inner mitochondrial membrane is an important physiological process linked to the regulation of metabolism, signal transduction, and cell death. While the definite molecular composition of mitochondrial Ca(2+) uptake sites remains unknown, several proteins of the inner mitochondrial membrane, that are likely to accomplish mitochondrial Ca(2+) fluxes, have been described: the novel uncoupling proteins 2 and 3, the leucine zipper-EF-hand containing transmembrane protein 1 and the mitochondrial calcium uniporter. It is unclear whether these proteins contribute to one unique mitochondrial Ca(2+) uptake pathway or establish distinct routes for mitochondrial Ca(2+) sequestration. In this study, we show that a modulation of Ca(2+) release from the endoplasmic reticulum by inhibition of the sarco/endoplasmatic reticulum ATPase modifies cytosolic Ca(2+) signals and consequently switches mitochondrial Ca(2+) uptake from an uncoupling protein 3- and mitochondrial calcium uniporter-dependent, but leucine zipper-EF-hand containing transmembrane protein 1-independent to a leucine zipper-EF-hand containing transmembrane protein 1- and mitochondrial calcium uniporter-mediated, but uncoupling protein 3-independent pathway. Thus, the activity of sarco/endoplasmatic reticulum ATPase is significant for the mode of mitochondrial Ca(2+) sequestration and determines which mitochondrial proteins might actually accomplish the transfer of Ca(2+) across the inner mitochondrial membrane. Moreover, our findings herein support the existence of distinct mitochondrial Ca(2+) uptake routes that might be essential to ensure an efficient ion transfer into mitochondria despite heterogeneous cytosolic Ca(2+) rises. PMID:23592775

  9. Activation of α7 Nicotinic Acetylcholine Receptor Decreases On-site Mortality in Crush Syndrome through Insulin Signaling-Na/K-ATPase Pathway

    PubMed Central

    Fan, Bo-Shi; Zhang, En-Hui; Wu, Miao; Guo, Jin-Min; Su, Ding-Feng; Liu, Xia; Yu, Jian-Guang

    2016-01-01

    On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine (Ani) is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR) mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with Ani decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with Ani (20 mg/kg and 28 mg/kg respectively, i.p.) 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist) and PNU282987 (selective α7nAChR agonist), or in α7nAChR knockout mice. Effect of Ani was also appraised in C2C12 myotubes. Ani reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by Ani. Phosphorylation of Na/K-ATPase was enhanced by Ani in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of Ani on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway. PMID:27065867

  10. Combining SERCA2a activation and Na-K ATPase inhibition: a promising new approach to managing acute heart failure syndromes with low cardiac output.

    PubMed

    Gheorghiade, Mihai; Ambrosy, Andrew P; Ferrandi, Mara; Ferrari, Patrizia

    2011-08-01

    Heart failure (HF) patients are a medically complex and heterogeneous population with multiple cardiac and non-cardiac comorbidities. Although there are a multitude of etiologic substrates and initiating and amplifying mechanisms contributing to disease progression, these pathophysiologic processes ultimately all lead to impaired myocardial function. The myocardium must both pump oxygenated, nutrient-rich blood throughout the body (systolic function) and receive deoxygenated, nutrient-poor blood returning from the periphery (diastolic function). At the molecular level, it is well-established that Ca2+ plays a central role in excitation-contracting coupling with action potentials stimulating the opening of L-type Ca2+ in the plasma membrane and ryanodine receptor 2 (RyR2) in the sarcoplasmic reticulum (SR) membrane during systole and the Na-Ca2+ exchanger and SERCA2a returning Ca2+ to the extracellular space and SR, respectively, during diastole. However, there is increasing recognition that impaired Ca2+ cycling may contribute to myocardial dysfunction. Preclinical studies and clinical trials indicate that combining SERCA2a activation and Na-K ATPase inhibition may increase contractility (inotropy) and facilitate active relaxation (lusitropy), improving both systolic and diastolic functions. Istaroxime, a novel luso-inotrope that activates SERCA2a and inhibits the Na-K ATPase, is currently in phase II clinical development and has been shown to improve systolic and diastolic functions and central hemodynamics, increase systolic but not diastolic blood pressure, and decrease substantially heart rate. Irrespective of its clinical utility, the development of istaroxime has evolved our understanding of the clinical importance of inhibiting the Na-K ATPase in order to obtain a clinically significant effect from SERCA2a activation in the setting of myocardial failure. PMID:21878191

  11. Geometrical Origins of Contractility in Disordered Actomyosin Networks

    NASA Astrophysics Data System (ADS)

    Lenz, Martin

    2014-10-01

    Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical understanding of contractility in the myriad of disordered actomyosin systems found in vivo.

  12. Turnover of the actomyosin complex in zebrafish embryos directs geometric remodelling and the recruitment of lipid droplets

    PubMed Central

    Dutta, Asmita; Kumar Sinha, Deepak

    2015-01-01

    Lipid droplets (LDs), reservoirs of cholesterols and fats, are organelles that hydrolyse lipids in the cell. In zebrafish embryos, the actomyosin complex and filamentous microtubules control the periodic regulation of the LD geometry. Contrary to the existing hypothesis that LD transport involves the kinesin-microtubule system, we find that their recruitment to the blastodisc depends on the actomyosin turnover and is independent of the microtubules. For the first time we report the existence of two distinct states of LDs, an inactive and an active state, that occur periodically, coupled weakly to the cleavage cycles. LDs are bigger, more circular and more stable in the inactive state in which the geometry of the LDs is maintained by actomyosin as well as microtubules. The active state has smaller and irregularly shaped LDs that show shape fluctuations that are linked to actin depolymerization. Because most functions of LDs employ surface interactions, our findings on the LD geometry and its regulation bring new insights to the mechanisms associated with specific functions of LDs, such as their storage capacity for fats or proteins, lipolysis etc. PMID:26355567

  13. Intramolecular cross-linking of domains at the active site links A1 and B subfragments of the Ca2+-ATPase of sarcoplasmic reticulum.

    PubMed

    Ross, D C; McIntosh, D B

    1987-02-15

    Glutaraldehyde treatment of sarcoplasmic reticulum vesicles results in formation of cross-linked Ca2+-ATPase oligomers. Under limiting reaction conditions, where minimal interpolypeptide cross-linking occurs, hydrodynamic properties of the monomer are altered, such that, on sodium dodecyl sulfate-polyacrylamide electrophoresis, the enzyme migrates with an apparent molecular weight of 125,000 (E(125], as compared to the native enzyme (E(110]. The E(125) species was also formed following reaction with other cross-linking bis-aldehydes, with formaldehyde and with a bissuccinimidyl ester. Derivitization resulted in inactivation of ATPase activity and of phosphoprotein formation from Pi. E(125) formation was inhibited by ATP, ADP, AMPPCP, and orthovanadate, and by specific modification of active site Lys-514 with fluorescein-5'-isothiocyanate. Tryptic cleavage patterns of the glutaraldehyde-modified enzyme were consistent with covalent linkage of A1 and B fragments that have been postulated to comprise the phosphorylation and nucleotide-binding domains (MacLennan, D. H., Brandt, C. J., Korczak, B., and Green, N. M. (1985) Nature 316, 696-700). The denaturing detergent, sodium dodecyl sulfate, prevented cross-link formation. Interdomain cross-linking was inhibited by prior modification with either 2,4,6-trinitrobenzene sulfonate, phenylglyoxal, or pyridoxal-5'-phosphate but was unaffected by thiol group modification with iodoacetate or N-ethylmaleimide, suggesting involvement of lysine residues. These findings indicate that intramolecular cross-linking at the active site of the Ca2+-ATPase involves phosphorylation- and ATP-binding domains that are widely separated in the linear sequence. PMID:2950084

  14. Actomyosin contractility controls cell surface area of oligodendrocytes

    PubMed Central

    Kippert, Angelika; Fitzner, Dirk; Helenius, Jonne; Simons, Mikael

    2009-01-01

    Background To form myelin oligodendrocytes expand and wrap their plasma membrane multiple times around an axon. How is this expansion controlled? Results Here we show that cell surface area depends on actomyosin contractility and is regulated by physical properties of the supporting matrix. Moreover, we find that chondroitin sulfate proteoglycans (CSPG), molecules associated with non-permissive growth properties within the central nervous system (CNS), block cell surface spreading. Most importantly, the inhibitory effects of CSPG on plasma membrane extension were completely prevented by treatment with inhibitors of actomyosin contractility and by RNAi mediated knockdown of myosin II. In addition, we found that reductions of plasma membrane area were accompanied by changes in the rate of fluid-phase endocytosis. Conclusion In summary, our results establish a novel connection between endocytosis, cell surface extension and actomyosin contractility. These findings open up new possibilities of how to promote the morphological differentiation of oligodendrocytes in a non-permissive growth environment. See related minireview by Bauer and ffrench-Constant: PMID:19781079

  15. The amino-terminal 200 amino acids of the plasma membrane Na+,K+-ATPase alpha subunit confer ouabain sensitivity on the sarcoplasmic reticulum Ca(2+)-ATPase.

    PubMed Central

    Ishii, T; Takeyasu, K

    1993-01-01

    Cardiac glycosides such as G-strophanthin (ouabain) bind to and inhibit the plasma membrane Na+,K(+)-ATPase but not the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, whereas thapsigargin specifically blocks the SR Ca(2+)-ATPase. The chimera [n/c]CC, in which the amino-terminal amino acids Met1 to Asp162 of the SR Ca(2+)-ATPase (SERCA1) were replaced with the corresponding portion of the Na+,K(+)-ATPase alpha 1 subunit (Met1 to Asp200), retained thapsigargin- and Ca(2+)-sensitive ATPase activity, although the activity was lower than that of the wild-type SR Ca(2+)-ATPase. Moreover, this Ca(2+)-sensitive ATPase activity was inhibited by ouabain. The chimera NCC, in which Met1-Gly354 of the SR Ca(2+)-ATPase were replaced with the corresponding portion of the Na+,K(+)-ATPase, lost the thapsigargin-sensitive Ca(2+)-ATPase activity seen in CCC and [n/c]CC. [3H]Ouabain binding to [n/c]CC and NCC demonstrated that the affinity for this inhibitor seen in the wild-type chicken Na+,K(+)-ATPase was restored in these chimeric molecules. Thus, the ouabain-binding domains are distinct from the thapsigargin sites; ouabain binds to the amino-terminal portion (Met1 to Asp200) of the Na+,K(+)-ATPase alpha 1 subunit, whereas thapsigargin interacts with the regions after Asp162 of the Ca(2+)-ATPase. Moreover, the amino-terminal 200 amino acids of the Na+,K(+)-ATPase alpha 1 subunit are sufficient to exert ouabain-dependent inhibition even after incorporation into the corresponding portion of the Ca(2+)-ATPase, and the segment Ile163 to Gly354 of the SR Ca(2+)-ATPase is critical for thapsigargin- and Ca(2+)-sensitive ATPase activity. Images Fig. 5 PMID:8415625

  16. Activity-dependent Regulation of Mitochondrial Motility by Calcium and Na/K-ATPase at Nodes of Ranvier of Myelinated Nerves

    PubMed Central

    Zhang, Chuan Li; Ho, Po Lai; Kintner, Douglas B.; Sun, Dandan; Chiu, Shing Yan

    2012-01-01

    The node of Ranvier is a tiny segment of a myelinated fiber with various types of specializations adapted for generation of high speed nerve impulses. It is ionically specialized with respect to ion channel segregation and ionic fluxes, and metabolically specialized in ionic pump expression and mitochondrial density augmentation. This report examines the interplay of three important parameters (calcium fluxes, Na pumps, mitochondrial motility) at nodes of Ranvier in frog during normal nerve activity. First, we used calcium dyes to resolve a highly localized elevation in axonal calcium at a node of Ranvier during action potentials, and showed that this calcium elevation retards mitochondrial motility during nerve impulses. Second, we found, surprisingly, that physiologic activation of the Na pumps retards mitochondrial motility. Blocking Na pumps alone greatly prevents action potentials from retarding mitochondrial motility, which reveals that mitochondrial motility is coupled to Na/K-ATPase. In conclusion, we suggest that during normal nerve activity, Ca elevation and activation of Na/K-ATPase act, possibly in a synergistic fashion, to recruit mitochondria to a node of Ranvier to match metabolic needs. PMID:20219989

  17. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  18. Cells as liquid motors: Mechanosensitivity emerges from collective dynamics of actomyosin cortex

    PubMed Central

    Étienne, Jocelyn; Fouchard, Jonathan; Mitrossilis, Démosthène; Bufi, Nathalie; Durand-Smet, Pauline; Asnacios, Atef

    2015-01-01

    Living cells adapt and respond actively to the mechanical properties of their environment. In addition to biochemical mechanotransduction, evidence exists for a myosin-dependent purely mechanical sensitivity to the stiffness of the surroundings at the scale of the whole cell. Using a minimal model of the dynamics of actomyosin cortex, we show that the interplay of myosin power strokes with the rapidly remodeling actin network results in a regulation of force and cell shape that adapts to the stiffness of the environment. Instantaneous changes of the environment stiffness are found to trigger an intrinsic mechanical response of the actomyosin cortex. Cortical retrograde flow resulting from actin polymerization at the edges is shown to be modulated by the stress resulting from myosin contractility, which in turn, regulates the cell length in a force-dependent manner. The model describes the maximum force that cells can exert and the maximum speed at which they can contract, which are measured experimentally. These limiting cases are found to be associated with energy dissipation phenomena, which are of the same nature as those taking place during the contraction of a whole muscle. This similarity explains the fact that single nonmuscle cell and whole-muscle contraction both follow a Hill-like force–velocity relationship. PMID:25730854

  19. Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells

    PubMed Central

    Klingner, Christoph; Cherian, Anoop V.; Fels, Johannes; Diesinger, Philipp M.; Aufschnaiter, Roland; Maghelli, Nicola; Keil, Thomas; Beck, Gisela; Tolić-Nørrelykke, Iva M.; Bathe, Mark

    2014-01-01

    Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin–Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization. PMID:25313407

  20. Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast

    PubMed Central

    Huang, Junqi; Huang, Yinyi; Yu, Haochen; Subramanian, Dhivya; Padmanabhan, Anup; Thadani, Rahul; Tao, Yaqiong; Tang, Xie; Wedlich-Soldner, Roland

    2012-01-01

    In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly. PMID:23185032

  1. Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa

    PubMed Central

    Bose, Jayakumar; Rodrigo-Moreno, Ana; Lai, Diwen; Xie, Yanjie; Shen, Wenbiao; Shabala, Sergey

    2015-01-01

    Background and Aims The activity of H+-ATPase is essential for energizing the plasma membrane. It provides the driving force for potassium retention and uptake through voltage-gated channels and for Na+ exclusion via Na+/H+ exchangers. Both of these traits are central to plant salinity tolerance; however, whether the increased activity of H+-ATPase is a constitutive trait in halophyte species and whether this activity is upregulated at either the transcriptional or post-translation level remain disputed. Methods The kinetics of salt-induced net H+, Na+ and K+ fluxes, membrane potential and AHA1/2/3 expression changes in the roots of two halophyte species, Atriplex lentiformis (saltbush) and Chenopodium quinoa (quinoa), were compared with data obtained from Arabidopsis thaliana roots. Key Results Intrinsic (steady-state) membrane potential values were more negative in A. lentiformis and C. quinoa compared with arabidopsis (−144 ± 3·3, −138 ± 5·4 and −128 ± 3·3 mV, respectively). Treatment with 100 mm NaCl depolarized the root plasma membrane, an effect that was much stronger in arabidopsis. The extent of plasma membrane depolarization positively correlated with NaCl-induced stimulation of vanadate-sensitive H+ efflux, Na+ efflux and K+ retention in roots (quinoa > saltbush > arabidopsis). NaCl-induced stimulation of H+ efflux was most pronounced in the root elongation zone. In contrast, H+-ATPase AHA transcript levels were much higher in arabidopsis compared with quinoa plants, and 100 mm NaCl treatment led to a further 3-fold increase in AHA1 and AHA2 transcripts in arabidopsis but not in quinoa. Conclusions Enhanced salinity tolerance in the halophyte species studied here is not related to the constitutively higher AHA transcript levels in the root epidermis, but to the plant’s ability to rapidly upregulate plasma membrane H+-ATPase upon salinity treatment. This is necessary for assisting plants to maintain highly negative

  2. Control of Gastric H,K-ATPase Activity by Cations, Voltage and Intracellular pH Analyzed by Voltage Clamp Fluorometry in Xenopus Oocytes

    PubMed Central

    Dürr, Katharina L.; Tavraz, Neslihan N.; Friedrich, Thomas

    2012-01-01

    Whereas electrogenic partial reactions of the Na,K-ATPase have been studied in depth, much less is known about the influence of the membrane potential on the electroneutrally operating gastric H,K-ATPase. In this work, we investigated site-specifically fluorescence-labeled H,K-ATPase expressed in Xenopus oocytes by voltage clamp fluorometry to monitor the voltage-dependent distribution between E1P and E2P states and measured Rb+ uptake under various ionic and pH conditions. The steady-state E1P/E2P distribution, as indicated by the voltage-dependent fluorescence amplitudes and the Rb+ uptake activity were highly sensitive to small changes in intracellular pH, whereas even large extracellular pH changes affected neither the E1P/E2P distribution nor transport activity. Notably, intracellular acidification by approximately 0.5 pH units shifted V0.5, the voltage, at which the E1P/E2P ratio is 50∶50, by −100 mV. This was paralleled by an approximately two-fold acceleration of the forward rate constant of the E1P→E2P transition and a similar increase in the rate of steady-state cation transport. The temperature dependence of Rb+ uptake yielded an activation energy of ∼90 kJ/mol, suggesting that ion transport is rate-limited by a major conformational transition. The pronounced sensitivity towards intracellular pH suggests that proton uptake from the cytoplasmic side controls the level of phosphoenzyme entering the E1P→E2P conformational transition, thus limiting ion transport of the gastric H,K-ATPase. These findings highlight the significance of cellular mechanisms contributing to increased proton availability in the cytoplasm of gastric parietal cells. Furthermore, we show that extracellular Na+ profoundly alters the voltage-dependent E1P/E2P distribution indicating that Na+ ions can act as surrogates for protons regarding the E2P→E1P transition. The complexity of the intra- and extracellular cation effects can be rationalized by a kinetic model suggesting

  3. Inactivation of mitochondrial ATPase by ultraviolet light

    SciTech Connect

    Chavez, E.; Cuellar, A.

    1984-05-01

    The present work describes experiments that show that far-ultraviolet irradiation induce the inhibition of ATPase activity in both membrane-bound and soluble F1. It was also found that ultraviolet light promotes the release of tightly bound adenine nucleotides from F1-ATPase. Experiments carried out with submitochondrial particles indicate that succinate partially protects against these effects of ultraviolet light. Titration of sulfhydryl groups in both irradiated submitochondrial particles and soluble F1-ATPase indicates that a conformational change induced by photochemical modifications of amino acid residues appears involved in the inactivation of the enzyme. Finally, experiments are described which show that the tyrosine residue located in the active site of F1-ATPase is modified by ultraviolet irradiation.

  4. Neurochemical evidence that 3-methylglutaric acid inhibits synaptic Na+,K+-ATPase activity probably through oxidative damage in brain cortex of young rats.

    PubMed

    Ribeiro, César Augusto João; Hickmann, Fernanda Hermes; Wajner, Moacir

    2011-02-01

    3-Methylglutaconic aciduria (MGTA) comprehends a group of disorders biochemically characterized by accumulation of 3-methylglutaric acid (MGA), 3-methylglutaconic acid (MGT) and occasionally 3-hydroxyisovaleric acid (OHIVA). Although neurological symptoms are common in the affected individuals, the mechanisms of brain damage are poorly known. In the present study we investigated the in vitro effect MGA, MGT and OHIVA, at concentrations ranging from 0.1 to 5.0mM, on bioenergetics and oxidative stress in synaptosomal preparations isolated from cerebral cortex of young rats. MGA significantly reduced mitochondrial redox potential (25%), as determined by resazurin reduction, and inhibited the activity of Na(+),K(+)-ATPase (30%), whereas MGT and OHIVA did not modify these parameters. Moreover, the inhibitory effect elicited by MGA on Na(+),K(+)-ATPase activity was totally prevented by co-incubation with the scavenging antioxidants creatine and melatonin, implying a role for reactive species in this effect. MGA also increased 2',7'-dichlorofluorescein (DCFH) oxidation (30%), reinforcing that this organic acid induces reactive species production. The present data indicate that MGA compromises mitochondrial function, elicits reactive species production and inhibits the activity of a crucial enzyme implicated in neurotransmission. It is therefore presumed that these deleterious effects may play a role in the pathophysiology of the brain damage observed in patients affected by disorders in which MGA accumulates. PMID:21050883

  5. Formation of a Trimeric Xpo1-Ran[GTP]-Ded1 Exportin Complex Modulates ATPase and Helicase Activities of Ded1.

    PubMed

    Hauk, Glenn; Bowman, Gregory D

    2015-01-01

    The DEAD-box RNA helicase Ded1, which is essential in yeast and known as DDX3 in humans, shuttles between the nucleus and cytoplasm and takes part in several basic processes including RNA processing and translation. A key interacting partner of Ded1 is the exportin Xpo1, which together with the GTP-bound state of the small GTPase Ran, facilitates unidirectional transport of Ded1 out of the nucleus. Here we demonstrate that Xpo1 and Ran[GTP] together reduce the RNA-stimulated ATPase and helicase activities of Ded1. Binding and inhibition of Ded1 by Xpo1 depend on the affinity of the Ded1 nuclear export sequence (NES) for Xpo1 and the presence of Ran[GTP]. Association with Xpo1/Ran[GTP] reduces RNA-stimulated ATPase activity of Ded1 by increasing the apparent KM for the RNA substrate. Despite the increased KM, the Ded1:Xpo1:Ran[GTP] ternary complex retains the ability to bind single stranded RNA, suggesting that Xpo1/Ran[GTP] may modulate the substrate specificity of Ded1. These results demonstrate that, in addition to transport, exportins such as Xpo1 also have the capability to alter enzymatic activities of their cargo. PMID:26120835

  6. Antioxidant status and Na(+), K (+)-ATPase activity in freshwater fish Carassius auratus exposed to different combustion products of Nafion 117 membrane: an integrated biomarker approach.

    PubMed

    Feng, Mingbao; Wang, Xinghao; Wang, Chao; Qin, Li; Wei, Zhongbo; Wang, Zunyao

    2015-03-01

    Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely applied in numerous chemical technologies. Its increasing production and utilization will inevitably lead to the problem of waste disposal, with incineration as an important method. However, toxicity data of its combustion products on aquatic organisms have been seldom reported. The present study was therefore conducted to investigate the antioxidant response and Na(+), K(+)-ATPase activity in liver of Carassius auratus exposed to different combustion products of N117 for 5, 15, and 30 days. The concentrations of fluorine ion (F(-)) in the aquaria among the exposure durations were analyzed using the ion chromatography system. The results showed that these treatments have the capability to induce oxidative stress and suppress Na(+), K(+)-ATPase activity, as indicated by some significant alterations on these measured toxicity end-points in fish liver. According to the integrated biomarker response (IBR) index, the toxicity intensity of these experimental treatments was tentatively ranked. Taken together, these observations provided some preliminary data on the potential toxicity of the combustion products of N117 on aquatic organisms and could fill the information gaps in the toxicity database of the current-use PEM. PMID:25398218

  7. The THERMOSENSITIVE MALE STERILE 1 Interacts with the BiPs via DnaJ Domain and Stimulates Their ATPase Enzyme Activities in Arabidopsis.

    PubMed

    Ma, Zhao-Xia; Leng, Ya-Jun; Chen, Guang-Xia; Zhou, Peng-Min; Ye, De; Chen, Li-Qun

    2015-01-01

    The Arabidopsis TMS1 encodes a heat shock protein identical to the Hsp40 protein AtERdj3A and plays important roles in the thermotolerance of pollen tubes and other plant tissues. Despite its importance to plant growth and reproduction, little has been known about its mechanisms underlying thermotolerance of plants. In this study, the relationship between TMS1 and the Hsp70 proteins, Binding Immunoglobulin Proteins (BiPs) was explored to understand the molecular mechanisms of TMS1 in thermotolerance of plants. The expression of TMS1 was induced not only by heat shock, but also by dithiothreitol (DTT) and L-azetidine-2-carboxylic acid (AZC), similarly to the three BiP genes, indicating that TMS1 may be involved in unfolded protein response (UPR). The firefly luciferase complementary imaging (LCI), GST pull-down and ATPase enzyme activity assays demonstrated that the DnaJ domain of TMS1 could interact with BiP1 and BiP3, and could stimulate their ATPase enzyme activities. In addition, the expression level of TMS1 was reduced in the bzip28 bzip60 double mutant. These results suggest that TMS1 may function at the downstream of bZIP28 and bZIP60 and be involved in termotolerance of plants, possibly by participating in refolding or degradation of unfolded and misfolded proteins through interaction with the BiPs. PMID:26186593

  8. The THERMOSENSITIVE MALE STERILE 1 Interacts with the BiPs via DnaJ Domain and Stimulates Their ATPase Enzyme Activities in Arabidopsis

    PubMed Central

    Ma, Zhao-Xia; Leng, Ya-Jun; Chen, Guang-Xia; Zhou, Peng-Min; Ye, De; Chen, Li-Qun

    2015-01-01

    The Arabidopsis TMS1 encodes a heat shock protein identical to the Hsp40 protein AtERdj3A and plays important roles in the thermotolerance of pollen tubes and other plant tissues. Despite its importance to plant growth and reproduction, little has been known about its mechanisms underlying thermotolerance of plants. In this study, the relationship between TMS1 and the Hsp70 proteins, Binding Immunoglobulin Proteins (BiPs) was explored to understand the molecular mechanisms of TMS1 in thermotolerance of plants. The expression of TMS1 was induced not only by heat shock, but also by dithiothreitol (DTT) and L-azetidine-2-carboxylic acid (AZC), similarly to the three BiP genes, indicating that TMS1 may be involved in unfolded protein response (UPR). The firefly luciferase complementary imaging (LCI), GST pull-down and ATPase enzyme activity assays demonstrated that the DnaJ domain of TMS1 could interact with BiP1 and BiP3, and could stimulate their ATPase enzyme activities. In addition, the expression level of TMS1 was reduced in the bzip28 bzip60 double mutant. These results suggest that TMS1 may function at the downstream of bZIP28 and bZIP60 and be involved in termotolerance of plants, possibly by participating in refolding or degradation of unfolded and misfolded proteins through interaction with the BiPs. PMID:26186593

  9. Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L.

    PubMed Central

    Barkla, B. J.; Zingarelli, L.; Blumwald, E.; Smith, JAC.

    1995-01-01

    Tonoplast vesicles were isolated from leaf mesophyll tissue of the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum to investigate the mechanism of vacuolar Na+ accumulation in this halophilic species. In 8-week-old plants exposed to 200 mM NaCl for 2 weeks, tonoplast H+-ATPase activity was approximately doubled compared with control plants of the same age, as determined by rates of both ATP hydrolysis and ATP-dependent H+ transport. Evidence was also obtained for the presence of an electroneutral Na+/H+ antiporter at the tonoplast that is constitutively expressed, since extravesicular Na+ was able to dissipate a pre-existing transmembrane pH gradient. Initial rates of H+ efflux showed saturation kinetics with respect to extravesicular Na+ concentration and were 2.1-fold higher from vesicles of salt-treated plants compared with the controls. Na+-dependent H+ efflux also showed a high selectivity for Na+ over K+, was insensitive to the transmembrane electrical potential difference, and was more than 50% inhibited by 200 [mu]M N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride. The close correlation between increased Na+/H+ antiport and H+-ATPase activities in response to salt treatment suggests that accumulation of the very high concentrations of vacuolar Na+ found in M. crystallinum is energized by the H+ electrochemical gradient across the tonoplast. PMID:12228611

  10. The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase.

    PubMed

    Singh, Dhirendra; Sielaff, Hendrik; Sundararaman, Lavanya; Bhushan, Shashi; Grüber, Gerhard

    2016-02-01

    A1AO ATP synthases couple ion-transport of the AO sector and ATP synthesis/hydrolysis of the A3B3-headpiece via their stalk subunits D and F. Here, we produced and purified stable A3B3D- and A3B3DF-complexes of the Methanosarcina mazei Gö1 A-ATP synthase as confirmed by electron microscopy. Enzymatic studies with these complexes showed that the M. mazei Gö1 A-ATP synthase subunit F is an ATPase activating subunit. The maximum ATP hydrolysis rates (Vmax) of A3B3D and A3B3DF were determined by substrate-dependent ATP hydrolysis experiments resulting in a Vmax of 7.9 s(-1) and 30.4 s(-1), respectively, while the KM is the same for both. Deletions of the N- or C-termini of subunit F abolished the effect of ATP hydrolysis activation. We generated subunit F mutant proteins with single amino acid substitutions and demonstrated that the subunit F residues S84 and R88 are important in stimulating ATP hydrolysis. Hybrid formation of the A3B3D-complex with subunit F of the related eukaryotic V-ATPase of Saccharomyces cerevisiae or subunit ε of the F-ATP synthase from Mycobacterium tuberculosis showed that subunit F of the archaea and eukaryotic enzymes are important in ATP hydrolysis. PMID:26682760

  11. The Mechanism of Cu+ Transport ATPases

    PubMed Central

    Padilla-Benavides, Teresita; McCann, Courtney J.; Argüello, José M.

    2013-01-01

    Cu+-ATPases are membrane proteins that couple the hydrolysis of ATP to the efflux of cytoplasmic Cu+. In cells, soluble chaperone proteins bind and distribute cytoplasmic Cu+, delivering the ion to the transmembrane metal-binding sites in the ATPase. The structure of Legionella pneumophila Cu+-ATPase (Gourdon, P., Liu, X. Y., Skjørringe, T., Morth, J. P., Møller, L. B., Pedersen, B. P., and Nissen, P. (2011) Nature 475, 59–64) shows that a kinked transmembrane segment forms a “platform” exposed to the cytoplasm. In addition, neighboring invariant Met, Asp, and Glu are located at the “entrance” of the ion path. Mutations of amino acids in these regions of the Archaeoglobus fulgidus Cu+-ATPase CopA do not affect ATPase activity in the presence of Cu+ free in solution. However, Cu+ bound to the corresponding chaperone (CopZ) could not activate the mutated ATPases, and in parallel experiments, CopZ was unable to transfer Cu+ to CopA. Furthermore, mutation of a specific electronegative patch on the CopZ surface abolishes the ATPase activation and Cu+ transference, indicating that the region is required for the CopZ-CopA interaction. Moreover, the data suggest that the interaction is driven by the complementation of the electropositive platform in the ATPase and the electronegative Cu+ chaperone. This docking likely places the Cu+ proximal to the conserved carboxyl and thiol groups in the entrance site that induce metal release from the chaperone via ligand exchange. The initial interaction of Cu+ with the pump is transient because Cu+ is transferred from the entrance site to transmembrane metal-binding sites involved in transmembrane translocation. PMID:23184962

  12. [The effect of tetrandrine on rat myocardial ATPases].

    PubMed

    Chen, N H; Wang, Y L; Ding, J H; Li, D X

    1991-01-01

    The effect of tetrandrine (Tet) on Na+,K(+)-ATPase and Mg(2+)-ATPase in rat myocardial microsomes was investigated in vitro. Under optimal condition, Tet did not influence Na+,K(+)-ATPase activity but concentration-dependently inhibited Mg(2+)-ATPase with an IC50 of 179 mumol/L. At 10 or 100 mumol/L, Tet caused the concentration-inhibition curves for ouabain a parallel shift to the right. Tet 100 mumol/L markedly increased the activity of Na+,K(+)-ATPase under suboptimal K+ or excessive Ca2+ condition. However, it did not significantly increase the enzyme activity when the Na+ concentration was lower. A kinetic analysis showed that Tet increased the affinity of Na+,K(+)-ATPase to ATP, but did not change the maximal velocity of the enzyme reaction. PMID:1668215

  13. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness.

    PubMed

    McGuire, Christina; Cotter, Kristina; Stransky, Laura; Forgac, Michael

    2016-08-01

    V-ATPases are ATP-driven proton pumps that function within both intracellular compartments and the plasma membrane in a wide array of normal physiological and pathophysiological processes. V-ATPases are composed of a peripheral V(1) domain that hydrolyzes ATP and an integral V(0) domain that transports protons. Regulated assembly of the V-ATPase represents an important mechanism of regulating V-ATPase activity in response to a number of environmental cues. Our laboratory has demonstrated that glucose-dependent assembly of the V-ATPase complex in yeast is controlled by the Ras/cAMP/PKA pathway. By contrast, increased assembly of the V-ATPase during dendritic cell maturation involves the PI-3 kinase and mTORC1 pathways. Recently, we have shown that amino acids regulate V-ATPase assembly in mammalian cells, possibly as a means to maintain adequate levels of amino acids upon nutrient starvation. V-ATPases have also been implicated in cancer cell survival and invasion. V-ATPases are targeted to different cellular membranes by isoforms of subunit a, with a3 targeting V-ATPases to the plasma membrane of osteoclasts. We have shown that highly invasive human breast cancer cell lines express higher levels of the a3 isoform than poorly invasive lines and that knockdown of a3 reduces both expression of V-ATPases at the plasma membrane and in vitro invasion of breast tumor cells. Moreover, overexpression of a3 in a non-invasive breast epithelial line increases both plasma membrane V-ATPases and in vitro invasion. Finally, specific ablation of plasma membrane V-ATPases in highly invasive human breast cancer cells using either an antibody or small molecule approach inhibits both in vitro invasion and migration. These results suggest that plasma membrane and a3-containing V-ATPases represent a novel and important target in the development of therapeutics to limit breast cancer metastasis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics

  14. P-type ATPases.

    PubMed

    Palmgren, Michael G; Nissen, Poul

    2011-01-01

    P-type ATPases form a large superfamily of cation and lipid pumps. They are remarkably simple with only a single catalytic subunit and carry out large domain motions during transport. The atomic structure of P-type ATPases in different conformations, together with ample mutagenesis evidence, has provided detailed insights into the pumping mechanism by these biological nanomachines. Phylogenetically, P-type ATPases are divided into five subfamilies, P1-P5. These subfamilies differ with respect to transported ligands and the way they are regulated. PMID:21351879

  15. Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases with antiviral activity against human respiratory syncytial virus.

    PubMed

    Cui, Rui; Wang, Yizhuo; Wang, Liu; Li, Guiming; Lan, Ke; Altmeyer, Ralf; Zou, Gang

    2016-08-01

    Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in infants and young children worldwide, yet no vaccine or effective antiviral treatment is available. To search for new anti-RSV agents, we developed a cell-based assay that measures inhibition of RSV-induced cytopathic effect (CPE) and identified cyclopiazonic acid (CPA), an intracellular calcium ATPase inhibitor as a RSV inhibitor (EC50 values 4.13 μM) by screening of natural product library. CPA inhibited the replication of RSV strains belonging to both A and B subgroups and human parainfluenza virus type 3, but not Enterovirus 71. Mechanism of action study by time-of-addition assay and minigenome assay revealed that CPA acts at the step of virus genome replication and/or transcription. Moreover, two other calcium ATPase inhibitors (Thapsigargin and BHQ) and calcium ionophores (A23187 and ionomycin), but not calcium channel blockers (nifedipine, nimodipine, and tetrandrine), also had similar effect. These results indicate that an increase in intracellular calcium concentration is detrimental to RSV replication. Thus, our findings provide a new strategy for anti-RSV therapy via increasing intracellular calcium concentration. PMID:27210812

  16. The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states.

    PubMed

    Ray, Tushar

    2013-01-01

    This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump) seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump) and/or Ca-ATPase (Ca-pump) depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM) fraction exhibits a (Ca or Mg)-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF), the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg)-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM) shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM) and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump. PMID:24555080

  17. The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states

    PubMed Central

    Ray, Tushar

    2013-01-01

    This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump) seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump) and/or Ca-ATPase (Ca-pump) depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM) fraction exhibits a (Ca or Mg)-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF), the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg)-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM) shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM) and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump. PMID:24555080

  18. The PriA Replication Restart Protein Blocks Replicase Access Prior to Helicase Assembly and Directs Template Specificity through Its ATPase Activity*

    PubMed Central

    Manhart, Carol M.; McHenry, Charles S.

    2013-01-01

    The PriA protein serves as an initiator for the restart of DNA replication on stalled replication forks and as a checkpoint protein that prevents the replicase from advancing in a strand displacement reaction on forks that do not contain a functional replicative helicase. We have developed a primosomal protein-dependent fluorescence resonance energy transfer (FRET) assay using a minimal fork substrate composed of synthetic oligonucleotides. We demonstrate that a self-loading reaction, which proceeds at high helicase concentrations, occurs by threading of a preassembled helicase over free 5′-ends, an event that can be blocked by attaching a steric block to the 5′-end or coating DNA with single-stranded DNA binding protein. The specificity of PriA for replication forks is regulated by its intrinsic ATPase. ATPase-defective PriA K230R shows a strong preference for substrates that contain no gap between the leading strand and the duplex portion of the fork, as demonstrated previously. Wild-type PriA prefers substrates with larger gaps, showing maximal activity on substrates on which PriA K230R is inactive. We demonstrate that PriA blocks replicase function on forks by blocking its binding. PMID:23264623

  19. Vfa1 binds to the N-terminal microtubule-interacting and trafficking (MIT) domain of Vps4 and stimulates its ATPase activity.

    PubMed

    Vild, Cody J; Xu, Zhaohui

    2014-04-11

    The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function. PMID:24567329

  20. Rho, ROCK and actomyosin contractility in metastasis as drug targets

    PubMed Central

    Bruce, Fanshawe; Sanz-Moreno, Victoria

    2016-01-01

    Metastasis is the spread of cancer cells around the body and the cause of the majority of cancer deaths. Metastasis is a very complex process in which cancer cells need to dramatically modify their cytoskeleton and cope with different environments to successfully colonize a secondary organ. In this review, we discuss recent findings pointing at Rho-ROCK or actomyosin force (or both) as major drivers of many of the steps required for metastatic success. We propose that these are important drug targets that need to be considered in the clinic to palliate metastatic disease. PMID:27158478

  1. Trypsin digestion for determining orientation of ATPase in Halobacterium saccharovorum membrane vesicles

    NASA Technical Reports Server (NTRS)

    Kristjansson, H.; Hochstein, L. I.

    1986-01-01

    Membranes prepared by low pressure disruption of cells exhibited no ATPase activity in the absence of Triton X-100, although 43% of the total menadione reductase activity was detected. Trypsin digestion reduced menadione reductase activity by 45% whereas ATPase activity was not affected. Disruption of the membrane fraction at higher pressure solubilized about 45% of the ATPase activity. The soluble activity was still enhanced by Triton X-100, suggesting that the detergent, besides disrupting membrane vesicles, also activated the ATPase. The discrepancy in localization of menadione reductase and ATPase activities raised questions regarding the reliability of using a single marker enzyme as an indicator of vesicle orientation.

  2. Actomyosin contractility rotates the cell nucleus

    PubMed Central

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  3. Mutant p97 exhibits species-specific changes of its ATPase activity and compromises the UBXD9-mediated monomerisation of p97 hexamers.

    PubMed

    Rijal, Ramesh; Arhzaouy, Khalid; Strucksberg, Karl-Heinz; Cross, Megan; Hofmann, Andreas; Schröder, Rolf; Clemen, Christoph S; Eichinger, Ludwig

    2016-01-01

    p97 (VCP) is a homo-hexameric triple-A ATPase that exerts a plethora of cellular processes. Heterozygous missense mutations of p97 cause at least five human neurodegenerative disorders. However, the specific molecular consequences of p97 mutations are hitherto widely unknown. Our in silico structural models of human and Dictyostelium p97 showed that the disease-causing human R93C, R155H, and R155C as well as Dictyostelium R154C, E219K, R154C/E219K p97 mutations constitute variations in surface-exposed locations. In-gel ATPase activity measurements of p97 monomers and hexamers revealed significant mutation- and species-specific differences. While all human p97 mutations led to an increase in ATPase activity, no changes could be detected for the Dictyostelium R154C mutant, which is orthologous to human R155C. The E219K mutation led to an almost complete loss of activity, which was partially recuperated in the R154C/E219K double-mutant indicating p97 inter-domain communication. By means of co-immunoprecipitation experiments we identified an UBX-domain containing Dictyostelium protein as a novel p97 interaction partner. We categorized all UBX-domain containing Dictyostelium proteins and named the interaction partner UBXD9. Pull-down assays and surface plasmon resonance analyses of Dictyostelium UBXD9 or the human orthologue TUG/ASPL/UBXD9 demonstrated direct interactions with p97 as well as species-, mutation- and ATP-dependent differences in the binding affinities. Sucrose density gradient assays revealed that both human and Dictyostelium UBXD9 proteins very efficiently disassembled wild-type, but to a lesser extent mutant p97 hexamers into monomers. Our results are consistent with a scenario in which p97 point mutations lead to differences in enzymatic activities and molecular interactions, which in the long-term result in a late-onset and progressive multisystem disease. PMID:27132113

  4. P2C-Type ATPases and Their Regulation.

    PubMed

    Retamales-Ortega, Rocío; Vio, Carlos P; Inestrosa, Nibaldo C

    2016-03-01

    P2C-type ATPases are a subfamily of P-type ATPases comprising Na(+)/K(+)-ATPase and H(+)/K(+)-ATPase. Na(+)/K(+)-ATPase is ubiquitously expressed and has been implicated in several neurological diseases, whereas H(+)/K(+)-ATPase is found principally in the colon, stomach, and kidney. Both ATPases have two subunits, α and β, but Na(+)/K(+)-ATPase also has a regulatory subunit called FXYD, which has an important role in cancer. The most important functions of these ATPases are homeostasis, potassium regulation, and maintaining a gradient in different cell types, like epithelial cells. Na(+)/K(+)-ATPase has become a center of attention ever since it was proposed that it might play a crucial role in neurological disorders such as bipolar disorder, mania, depression, familial hemiplegic migraine, rapid-onset dystonia parkinsonism, chronic stress, epileptogenesis, and Alzheimer's disease. On the other hand, it has been reported that lithium could have a neuroprotective effect against ouabain, which is the best known Na(+)/K(+)-ATPase inhibitor, but and high concentrations of lithium could affect negatively H(+)/K(+)-ATPase activity, that has a key role in regulating acidosis and potassium deficiencies. Finally, potassium homeostasis regulation is composed of two main mechanisms, extrarenal and renal. Extrarenal mechanism controls plasma levels, shifting potassium from the extracellular to the intracellular, whereas renal mechanism concerns with body balance and is influenced by potassium intake and its urinary excretion. In this article, we discuss the functions, isoforms, and localization of P2C-type ATPases, describe some of their modulators, and discuss their implications in some diseases. PMID:25631710

  5. Optimization of Pyrrolamides as Mycobacterial GyrB ATPase Inhibitors: Structure-Activity Relationship and In Vivo Efficacy in a Mouse Model of Tuberculosis

    PubMed Central

    P, Shahul Hameed; Mukherjee, Kakoli; Nandi, Vrinda; Waterson, David; Shandil, Radha; Balganesh, Meenakshi; Sambandamurthy, Vasan K.; Raichurkar, Anand Kumar; Deshpande, Abhijeet; Ghosh, Anirban; Awasthy, Disha; Shanbhag, Gajanan; Sheikh, Gulebahar; McMiken, Helen; Puttur, Jayashree; Reddy, Jitendar; Werngren, Jim; Read, Jon; Kumar, Mahesh; R, Manjunatha; Chinnapattu, Murugan; Madhavapeddi, Prashanti; Manjrekar, Praveena; Basu, Reetobrata; Gaonkar, Sheshagiri; Sharma, Sreevalli; Hoffner, Sven; Humnabadkar, Vaishali; Subbulakshmi, Venkita; Panduga, Vijender

    2014-01-01

    Moxifloxacin has shown excellent activity against drug-sensitive as well as drug-resistant tuberculosis (TB), thus confirming DNA gyrase as a clinically validated target for discovering novel anti-TB agents. We have identified novel inhibitors in the pyrrolamide class which kill Mycobacterium tuberculosis through inhibition of ATPase activity catalyzed by the GyrB domain of DNA gyrase. A homology model of the M. tuberculosis H37Rv GyrB domain was used for deciphering the structure-activity relationship and binding interactions of inhibitors with mycobacterial GyrB enzyme. Proposed binding interactions were later confirmed through cocrystal structure studies with the Mycobacterium smegmatis GyrB ATPase domain. The most potent compound in this series inhibited supercoiling activity of DNA gyrase with a 50% inhibitory concentration (IC50) of <5 nM, an MIC of 0.03 μg/ml against M. tuberculosis H37Rv, and an MIC90 of <0.25 μg/ml against 99 drug-resistant clinical isolates of M. tuberculosis. The frequency of isolating spontaneous resistant mutants was ∼10−6 to 10−8, and the point mutation mapped to the M. tuberculosis GyrB domain (Ser208 Ala), thus confirming its mode of action. The best compound tested for in vivo efficacy in the mouse model showed a 1.1-log reduction in lung CFU in the acute model and a 0.7-log reduction in the chronic model. This class of GyrB inhibitors could be developed as novel anti-TB agents. PMID:24126580

  6. Reduced expressions of calmodulin genes and protein and reduced ability of calmodulin to activate plasma membrane Ca(2+) -ATPase in the brain of protein undernourished rats: modulatory roles of selenium and zinc supplementation.

    PubMed

    Adebayo, Olusegun L; Khera, Alka; Sandhir, Rajat; Adenuga, Gbenga A

    2016-03-01

    The roles of protein undernutrition as well as selenium (Se) and zinc (Zn) supplementation on the ability of calmodulin (CaM) to activate erythrocyte ghost membrane (EGM) Ca(2+) -ATPase and the calmodulin genes and protein expressions in rat's cortex and cerebellum were investigated. Rats on adequate protein diet and protein-undernourished (PU) rats were fed with diet containing 16% and 5% casein, respectively, for a period of 10 weeks. The rats were then supplemented with Se and Zn at a concentration of 0.15 and 227 mg l(-1) , respectively, in drinking water for 3 weeks. The results obtained from the study showed significant reductions in synaptosomal plasma membrane Ca(2+) -ATPase (PMCA) activity, Ca(2+) /CaM activated EGM Ca(2+) ATPase activity and calmodulin genes and protein expressions in PU rats. Se or Zn supplementation improved the ability of Ca(2+) /CaM to activate EGM Ca(2+) -ATPase and protein expressions. Se or Zn supplementation improved gene expression in the cerebellum but not in the cortex. Also, the activity of PMCA was significantly improved by Zn. In conclusion, it is postulated that Se and Zn might be beneficial antioxidants in protecting against neuronal dysfunction resulting from reduced level of calmodulin such as present in protein undernutrition. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26879852

  7. Effects of divalent cations and La3+ on contractility and ecto-ATPase activity in the guinea-pig urinary bladder.

    PubMed Central

    Ziganshin, A U; Ziganshina, L E; Hoyle, C H; Burnstock, G

    1995-01-01

    1. Several cations (Ba2+, Cd2+, Co2+, Cu2+, Mn2+, Ni2+, Zn2+ and La3+, all as chloride salts, 1-1000 microM) were tested in the guinea-pig urinary bladder for their ability to: (i) modify contractile responses to electrical field stimulation (EFS), ATP, alpha,beta-methylene ATP (alpha,beta-meATP), carbachol (CCh), and KCl; (ii) affect ecto-ATPase activity. 2. Ba2+ (10-1000 microM) concentration-dependently potentiated contractile responses evoked by EFS (4-16 Hz), ATP (100 microM), alpha,beta-meATP (1 microM), CCh (0.5 microM), and KCl (30 mM). Ni2+ at concentrations of 1-100 microM also potentiated contractility of the urinary bladder, but at concentrations tested its effect was not concentration-dependent. Cu2+ at a concentration of 10 microM and Cd2+ at a concentration of 1 microM potentiated responses to all stimuli, except KCl. Ni2+ at a concentration of 1000 microM and Cd2+ at a concentration of 100 microM inhibited contractions evoked by all stimuli, and at a concentration of 1000 microM Cd2+ abolished any contractions. Responses to ATP and alpha,beta-meATP were selectively inhibited by Cu2+, Zn2+ or La3+, each at a concentration of 1 mM. 3. Cu2+, Ni2+, Zn2+ and La3+ (100-1000 microM) concentration-dependently inhibited ecto-ATPase activity in the urinary bladder smooth muscle preparations, while Ba2+ and Mn2+ were without effect, and Cd2+ and Co2+ caused significant inhibition only at a concentration of 1000 microM. 4. There was no correlation between the extent of ecto-ATPase inhibition and the effect on contractile activity of any of the cations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7735690

  8. Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis.

    PubMed

    Cheffings, Thomas H; Burroughs, Nigel J; Balasubramanian, Mohan K

    2016-08-01

    Cell division facilitated by a contractile ring is an almost universal feature across all branches of cellular life, with the notable exception of higher plants. In all organisms that use a contractile ring for cell division, the process of cytokinesis can be divided into four distinct stages. Firstly, the cell needs to specify a location at which to place the cell division ring to ensure proper separation of the cell contents into two daughter cells. Secondly, the cell needs to be able to transport all the necessary components to this region, and construct the cell division ring reliably and efficiently. Thirdly, the cell division ring needs to generate contractile stress in a regulated manner, to physically cleave the mother cell into two daughter cells. Finally, the ring must be disassembled to allow for the final abscission and separation of the daughter cells. In this review, we will discuss some of the proposed mechanisms by which eukaryotic cells are able to complete the first three of these stages. While there is a good understanding of the mechanisms of division site specification in most organisms, and the mechanisms of actomyosin ring formation are well studied in fission and budding yeast, there is relatively poor understanding of how actomyosin interactions are able to generate contractile stresses during ring constriction, although a number of models have been proposed. We also discuss a number of myosin motor-independent mechanisms that have been proposed to generate contractile stress in various organisms. PMID:27505246

  9. ER-PM Contacts Define Actomyosin Kinetics for Proper Contractile Ring Assembly.

    PubMed

    Zhang, Dan; Bidone, Tamara C; Vavylonis, Dimitrios

    2016-03-01

    The cortical endoplasmic reticulum (ER), an elaborate network of tubules and cisternae [1], establishes contact sites with the plasma membrane (PM) through tethering machinery involving a set of conserved integral ER proteins [2]. The physiological consequences of forming ER-PM contacts are not fully understood. Here, we reveal a kinetic restriction role of ER-PM contacts over ring compaction process for proper actomyosin ring assembly in Schizosaccharomyces pombe. We show that fission yeast cells deficient in ER-PM contacts exhibit aberrant equatorial clustering of actin cables during ring assembly and are particularly susceptible to compromised actin filament crosslinking activity. Using quantitative image analyses and computer simulation, we demonstrate that ER-PM contacts function to modulate the distribution of ring components and to constrain their compaction kinetics. We propose that ER-PM contacts have evolved as important physical modulators to ensure robust ring assembly. PMID:26877082

  10. ER-PM contacts define actomyosin kinetics for proper contractile ring assembly

    PubMed Central

    Zhang, Dan; Bidone, Tamara; Vavylonis, Dimitrios

    2015-01-01

    Summary The cortical endoplasmic reticulum (ER), an elaborate network of tubules and cisternae [1], establishes contact sites with the plasma membrane (PM) through tethering machinery involving a set of conserved integral ER proteins [2]. The physiological consequences of forming ER-PM contacts are not fully understood. Here, we reveal a kinetic restriction role of ER-PM contacts over ring compaction process for proper actomyosin ring assembly in Schizosaccharomyces pombe (S. pombe). We show that fission yeast cells deficient in ER-PM contacts exhibit aberrant equatorial clustering of actin cables during ring assembly and are particularly susceptible to compromised actin filament crosslinking activity. Using quantitative image analyses and computer simulation, we demonstrate that ER-PM contacts function to modulate the distribution of ring components and to constrain their compaction kinetics. We propose that ER-PM contacts have evolved as important physical modulators to ensure robust ring assembly. PMID:26877082

  11. Cdk1-dependent phosphorylation of Iqg1 governs actomyosin ring assembly prior to cytokinesis.

    PubMed

    Naylor, Stephen G; Morgan, David O

    2014-03-01

    Contraction of the actomyosin ring (AMR) provides the centripetal force that drives cytokinesis. In budding yeast (Saccharomyces cerevisiae), assembly and contraction of the AMR is coordinated with membrane deposition and septum formation at the bud neck. A central player in this process is Iqg1, which promotes recruitment of actin to the myosin ring and links AMR assembly with that of septum-forming components. We observed early actin recruitment in response to inhibition of cyclin-dependent kinase 1 (Cdk1) activity, and we find that the Cdk1-dependent phosphorylation state of Iqg1 is a determining factor in the timing of bud neck localization of both Iqg1 and actin, with both proteins accumulating prematurely in cells expressing nonphosphorylatable Iqg1 mutants. We also identified the primary septum regulator Hof1 as a binding partner of Iqg1, providing a regulatory link between the septation and contractile pathways that cooperate to complete cytokinesis. PMID:24413167

  12. Effect of Strain on Actomyosin Kinetics in Isometric Muscle Fibers

    PubMed Central

    Siththanandan, V. B.; Donnelly, J. L.; Ferenczi, M. A.

    2006-01-01

    Investigations were conducted into the biochemical and mechanical states of cross-bridges during isometric muscle contraction. Rapid length steps (3 or 6 nm hs−1) were applied to rabbit psoas fibers, permeabilized and isometric, at either 12°C or 20°C. Fibers were activated by photolysis of P3-1-(2-nitrophenyl)-ethyl ester of ATP infused into rigor fibers at saturating Ca2+. Sarcomere length, tension, and phosphate release were recorded—the latter using the MDCC-PBP fluorescent probe. A reduction in strain, induced by a rapid release step, produced a short-lived acceleration of phosphate release. Rates of the phosphate transient and that of phases 3 and 4 of tension recovery were unaffected by step size but were elevated at higher temperatures. In contrast the amplitude of the phosphate transient was smaller at 20°C than 12°C. The presence of 0.5 or 1.0 mM added ADP during a release step reduced both the rate of tension recovery and the poststep isometric tension. A kinetic scheme is presented to simulate the observed data and to precisely determine the rate constants for the elementary steps of the ATPase cycle. PMID:16513783

  13. Partial synthetic derivatization of canrenone and characterization of its impact on the inhibitory effect on Na+/K(+)-ATPase activity in human heart muscle.

    PubMed

    Weiland, J; Megges, R; Undeutsch, B; Schön, R; Büchting, H; Repke, R H

    1998-09-01

    To improve the weak inhibitory effect of 3-oxo-17 alpha-pregna-4,6-diene-21,17-carbolactone (canrenone, II) on Na+/K(+)-ATPase activity in human heart muscle, we have investigated the impact of hydrogenation, reduction, glycosidation, and the introduction of a 3-sulfonamido residue on the inhibitory potency of canrenone. The greatest increase in potency (> 20 times) was found for 3 beta-(alpha-L-rhamnopyranosyloxy)-5 beta, 17 alpha-pregnane-21, 17-carbolactone (IX). The 3-O-glycosides IX-XI are the first representatives of C/D-trans steroids with effector-receptor complex decay half-times longer than those of therapeutically used cardenolides. PMID:9727093

  14. Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity

    SciTech Connect

    Vardanyan, Zaruhi; Trchounian, Armen

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fe{sup 3+} stimulates but Fe{sup 2+} suppresses Enterococcus hirae wild-type and atpD mutant growth. Black-Right-Pointing-Pointer Fe ions change oxidation-reduction potential drop during cell growth. Black-Right-Pointing-Pointer Fe{sup 3+} and Fe{sup 2+} have opposite effects on a membrane-associated ATPase activity. Black-Right-Pointing-Pointer These effects are either in the presence of F{sub 0}F{sub 1} inhibitor or non-functional F{sub 0}F{sub 1}. Black-Right-Pointing-Pointer Fe ions decrease protons and coupled potassium ions fluxes across the membrane. -- Abstract: Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reduction potential (E{sub h}) from positive values to negative ones (down to {approx}-200 mV). In this study, iron (III) ions (Fe{sup 3+}) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe{sup 2+}) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E{sub h} values during bacterial growth. It was revealed that ATPase activity with and without N,N Prime -dicyclohexylcarbodiimide (DCCD), an inhibitor of the F{sub 0}F{sub 1}-ATPase, increased in the presence of even low Fe{sup 3+} concentration (0.05 mM) but decreased in the presence of Fe{sup 2+}. It was established that Fe{sup 3+} and Fe{sup 2+} both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe{sup 2+} with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F{sub 0}F{sub 1}) MS116 strains but they were different with Fe{sup 3+} and Fe{sup 2+}. It is suggested that the effects of Fe{sup 3+} might be due to

  15. Gastroprotective Activities of Sennoside A and Sennoside B via the Up-Regulation of Prostaglandin E2 and the Inhibition of H+/K+-ATPase

    PubMed Central

    Hwang, In Young; Jeong, Choon Sik

    2015-01-01

    Sennoside A (erythro) and sennoside B (threo) are dianthrone glycosides and diastereomers. We investigated their abilities to prevent the gastric lesions associated with diseases, such as, gastritis and gastric ulcer. To elucidate their gastroprotective effects, the inhibitions of HCl•EtOH-induced gastritis and indomethacin-induced gastric ulcers were assessed in rats. It was observed that both sennoside A and sennoside B increased prostaglandin E2 (PGE2) levels and inhibited H+/K+-ATPase (proton pump). In a rat model, both compounds reduced gastric juice, total acidity and increased pH, indicating that proton pump inhibition reduces gastric acid secretion. Furthermore, sennoside A and B increased PGE2 in a concentration-dependent manner. In a gastric emptying and intestinal transporting rate experiment, both sennoside A and sennoside B accelerated motility. Our results thus suggest that sennoside A and sennoside B possess significant gastroprotective activities and they might be useful for the treatment of gastric disease. PMID:26336586

  16. [Electrogenic activity of Na-K-ATPase and calcium ions in m. soleus fibers of rats and Mongolian gerbil during simulation of gravitational unloading].

    PubMed

    Kravtsova, V V; Ogneva, I V; Altaeva, E G; Razgovorova, I A; Tiapkina, O V; Nikol'skiĭ, E E; Shenkman, B S; Krivoĭ, I I

    2010-01-01

    Some of the electrophysiological parameters of m. soleus of rat and Mongolian gerbil, and Ca ions content in fiber myoplasm were compared in different periods of gravitational unloading simulated by tail-suspension. No difference was found between the control animals as for membrane potential at rest, electrogenic activities of Na-K-ATPase and its isoforms, and input resistance of m. soleus fibers. At the same time, unlike rats, gerbils exhibited a substantial Ca decrease in myoplasm. From day one to 14 of gravitational unloading the pace of electrophysiological changes in gerbil's m. soleus was noticeably slower than of rat's, whereas Ca ions depositing in myoplasm was observed in both species already at the beginning ofsuspension. Analysis of the results suggests that adaptive changes in m. soleus of Mongolian gerbil and rat during simulated gravitational unloading are fundamentally different due to, probably, peculiar water-electrolyte metabolism, type of locomotion, and other factors which are still unclear. PMID:20799658

  17. FXYD1, a modulator of Na+,K+-ATPase activity, facilitates female sexual development by maintaining GnRH neuronal excitability

    PubMed Central

    Garcia-Rudaz, Cecilia; Deng, Vivianne; Matagne, Valerie; Ronnekleiv, Oline; Bosch, Martha; Han, Victor; Percy, Alan K.; Ojeda, Sergio R.

    2009-01-01

    The excitatory tone to GnRH neurones is a critical component underlying the pubertal increase in GnRH secretion. However, the homeostatic mechanisms modulating the response of GnRH neurones to excitatory inputs remain poorly understood. A basic mechanism of neuronal homeostasis is the Na+, K+-ATPase-dependent restoration of Na+ and K+ transmembrane gradients after neuronal excitation. This activity is reduced in a mouse model of Rett syndrome (RTT), a neurodevelopmental disorder in which expression of FXYD1, a modulator of Na+, K+-ATPase activity, is increased. We now report that the initiation, but not the completion of puberty, is advanced in girls with RTT, and that in rodents FXYD1 may contribute to the neuroendocrine regulation of female puberty by modulating GnRH neuronal excitability. Fxyd1 mRNA abundance reaches maximal levels in the female rat hypothalamus by the fourth postnatal week of life, i.e., around the time when the mode of GnRH secretion acquires an adult pattern of release. Although Fxyd1 mRNA expression is low in the hypothalamus, about 50% of GnRH neurones contain Fxyd1 transcripts. Whole-cell patch recording of GnRH-EGFP neurones revealed that the neurones of Fxyd1-null female mice respond to somatic current injections with a lower number of action potentials than wild-type cells. Both the age at vaginal opening and at first oestrous were delayed in Fxyd1-/- mice, but adult reproductive capacity was normal. These results suggest that FXYD1 contributes to facilitating the advent of puberty by maintaining GnRH neuronal excitability to incoming transsynaptic stimulatory inputs. PMID:19187398

  18. Chemical modification of thiol groups of mitochondrial F1-ATPase from the yeast Schizosaccharomyces pombe. Involvement of alpha- and gamma-subunits in the enzyme activity

    SciTech Connect

    Falson, P.; Di Pietro, A.; Gautheron, D.C.

    1986-06-05

    Mitochondrial F1-ATPase from the yeast Schizosaccharomyces pombe has been prepared under a stable form and in relatively high amounts by an improved purification procedure. Specific chemical modification of the enzyme by the thiol reagent N-ethylmaleimide (NEM) at pH 6.8 leads to complete inactivation characterized by complex kinetics and pH dependence, indicating that several thiols are related to the enzyme activity. A complete protection against NEM effect is afforded by low concentrations of nucleotides in the presence of Mg/sup 2 +/, with ADP and ATP being more efficient than GTP. A total binding of 5 mol of (/sup 14/C)NEM/mol of F1-ATPase is obtained when the enzyme is 85% inactivated: 3 mol of the label are located on the alpha-subunits and 2 on the gamma-subunit. Two out of the 3 mol on the alpha-subunits bind very rapidly before any inactivation occurs. Complete protection by ATP against inactivation by NEM prevents the modification of three essential thiols out of the group of five thiols labeled in the absence of ATP: one is located on a alpha-subunit and two on the gamma-subunit. These two essential thiols of the gamma-subunit can be differentiated by modification with 6,6'-dithiodinicotinic acid (CPDS), another specific thiol reagent. A maximal binding of 4 mol of (/sup 14/C)CPDS/mol of enzyme is obtained, concomitant to a 25% inhibition. Sequential modification of the enzyme by CPDS and (/sup 14/C)NEM leads to the same final deep inactivation as that obtained with (/sup 14/C)NEM alone. One out of the two thiols of the gamma-subunit is no longer accessible to (/sup 14/C)NEM after CPDS treatment. When incubated at pH 6.8 with (/sup 3/H)ATP in the presence of Mg/sup 2 +/, F1-ATPase is able to bind 3, largely exchangeable, mol of nucleotide/mol of enzyme. Modification of the three essential thiols by NEM dramatically decreases the binding of /sup 3/H-nucleotide down to about 1 mol/mol of enzyme.

  19. Thermodynamics of nucleotide binding to actomyosin V and VI: a positive heat capacity change accompanies strong ADP binding.

    PubMed

    Robblee, James P; Cao, Wenxiang; Henn, Arnon; Hannemann, Diane E; De La Cruz, Enrique M

    2005-08-01

    We have measured the energetics of ATP and ADP binding to single-headed actomyosin V and VI from the temperature dependence of the rate and equilibrium binding constants. Nucleotide binding to actomyosin V and VI can be modeled as two-step binding mechanisms involving the formation of collision complexes followed by isomerization to states with high nucleotide affinity. Formation of the actomyosin VI-ATP collision complex is much weaker and slower than for actomyosin V. A three-step binding mechanism where actomyosin VI isomerizes between two conformations, one competent to bind ATP and one not, followed by rapid ATP binding best accounts for the data. ADP binds to actomyosin V more tightly than actomyosin VI. At 25 degrees C, the strong ADP-binding equilibria are comparable for actomyosin V and VI, and the different overall ADP affinities arise from differences in the ADP collision complex affinity. The actomyosin-ADP isomerization leading to strong ADP binding is entropy driven at >15 degrees C and occurs with a large, positive change in heat capacity (DeltaC(P) degrees ) for both actomyosin V and VI. Sucrose slows ADP binding and dissociation from actomyosin V and VI but not the overall equilibrium constants for strong ADP binding, indicating that solvent viscosity dampens ADP-dependent kinetic transitions, presumably a tail swing that occurs with ADP binding and release. We favor a mechanism where strong ADP binding increases the dynamics and flexibility of the actomyosin complex. The heat capacity (DeltaC(P) degrees ) and entropy (DeltaS degrees ) changes are greater for actomyosin VI than actomyosin V, suggesting different extents of ADP-induced structural rearrangement. PMID:16042401

  20. Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates mTOR signal pathways and protein translation in the rat frontal cortex.

    PubMed

    Kim, Se Hyun; Yu, Hyun-Sook; Park, Hong Geun; Ha, Kyooseob; Kim, Yong Sik; Shin, Soon Young; Ahn, Yong Min

    2013-08-01

    Intracerebroventricular (ICV) injection of ouabain, a specific Na/K-ATPase inhibitor, induces behavioral changes in rats in a putative animal model of mania. The binding of ouabain to Na/K-ATPase affects signaling molecules in vitro, including ERK1/2 and Akt, which promote protein translation. We have also reported that ERK1/2 and Akt in the brain are involved in the ouabain-induced hyperactivity of rats. In this study, rats were given an ICV injection of ouabain, and then their frontal cortices were examined to determine the effects of ouabain on the mTOR/p70S6K/S6 signaling pathway and protein translation, which are important in modifications of neural circuits and behavior. Rats showed ouabain-induced hyperactivity up to 8h following injection, and increased phosphorylation levels of mTOR, p70S6K, S6, eIF4B, and 4E-BP at 1, 2, 4, and 8h following ouabain injection. Immunohistochemical analyses revealed that increased p-S6 immunoreactivity in the cytoplasm of neurons by ouabain was evident in the prefrontal, cingulate, and orbital cortex. These findings suggested increased translation initiation in response to ouabain. The rate of protein synthesis was measured as the amount of [(3)H]-leucine incorporation in the cell-free extracts of frontal cortical tissues, and showed a significant increase at 8h after ouabain injection. These results suggest that ICV injection of ouabain induced activation of the protein translation initiation pathway regulated by ERK1/2 and Akt, and prolonged hyperactivity in rats. In conclusion, protein translation pathway could play an important role in ouabain-induced hyperactivity in a rodent model of mania. PMID:23643758

  1. Purification and Properties of an ATPase from Sulfolobus solfataricus

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    A sulfite-activated ATPase isolated from Sulfolobus solfataricus had a relative molecular mass of 370,000. It was composed of three subunits whose relative molecular masses were 63,000, 48,000, and 24,000. The enzyme was inhibited by the vacuolar ATPase inhibitors nitrate and N-ethylmaleimide; 4-chloro-7-nitrobenzo-furazan (NBD-Cl) was also inhibitory. N-Ethylmaleimide was predominately bound to the largest subunit while NBD-CL was bound to both subunits. ATPase activity was inhibited by low concentrations of p-chloromercuri-phenyl sulfonate and the inhibition was reversed by cysteine which suggested that thiol groups were essential for activity. While the ATPase from S. solfataricus shared several properties with the ATPase from S. acidocaldarius there were significant differences. The latter enzyme was activated by sulfate and chloride and was unaffected by N-ethylmaleimide, whereas the S. solfataricus ATPase was inhibited by these anions as well as N-ethyimaleimide. These differences as well as differences that occur in other vacuolar-like ATPases isolated from the methanogenic and the extremely halophilic bacteria suggest the existence of several types of archaeal ATPases, none of which have been demonstrated to synthesize ATP.

  2. Sans study of spinach CF 1-ATPase

    NASA Astrophysics Data System (ADS)

    Calmettes, P.; Girault, G.; Berger, G.; Galmiche, J. M.

    1989-01-01

    SANS experiments were performed on solutions of spinach chloroplast CF 1-ATPase in heavy water. Removal of the ɛ subunit partially activates the enzyme and further addition of dithiothreitol fully activates it. Molar masses and gyration radii values are given for these different conditions.

  3. ATPases, ion exchangers and human sperm motility.

    PubMed

    Peralta-Arias, Rubén D; Vívenes, Carmen Y; Camejo, María I; Piñero, Sandy; Proverbio, Teresa; Martínez, Elizabeth; Marín, Reinaldo; Proverbio, Fulgencio

    2015-05-01

    Human sperm has several mechanisms to control its ionic milieu, such as the Na,K-ATPase (NKA), the Ca-ATPase of the plasma membrane (PMCA), the Na(+)/Ca(2) (+)-exchanger (NCX) and the Na(+)/H(+)-exchanger (NHE). On the other hand, the dynein-ATPase is the intracellular motor for sperm motility. In this work, we evaluated NKA, PMCA, NHE, NCX and dynein-ATPase activities in human sperm and investigated their correlation with sperm motility. Sperm motility was measured by Computer Assisted Semen Analysis. It was found that the NKA activity is inhibited by ouabain with two Ki (7.9 × 10(-9) and 9.8 × 10(-5) M), which is consistent with the presence of two isoforms of α subunit of the NKA in the sperm plasma membranes (α1 and α4), being α4 more sensitive to ouabain. The decrease in NKA activity is associated with a reduction in sperm motility. In addition, sperm motility was evaluated in the presence of known inhibitors of NHE, PMCA and NCX, such as amiloride, eosin, and KB-R7943, respectively, as well as in the presence of nigericin after incubation with ouabain. Amiloride, eosin and KB-R7943 significantly reduced sperm motility. Nigericin reversed the effect of ouabain and amiloride on sperm motility. Dynein-ATPase activity was inhibited by acidic pH and micromolar concentrations of Ca(2) (+). We explain our results in terms of inhibition of the dynein-ATPase in the presence of higher cytosolic H(+) and Ca(2) (+), and therefore inhibition of sperm motility. PMID:25820902

  4. Vacuolar-type H+-ATPase-mediated proton transport in the rat parietal cell.

    PubMed

    Kopic, Sascha; Wagner, Maximilian E H; Griessenauer, Christoph; Socrates, Thenral; Ritter, Markus; Geibel, John P

    2012-03-01

    The vacuolar-type H-ATPase (V-ATPase) plays an important role in the active acidification of intracellular organelles. In certain specialized cells, such as the renal intercalated cell, apical V-ATPase can also function as a proton secretion pathway. In the parietal cells of the stomach, it has been thought that acid secretion is controlled solely via the H,K-ATPase. However, recent observations suggest that functional V-ATPase is necessary for acid secretion to take place. This study aimed to investigate and characterize the role of V-ATPase in parietal cell proton transport. Individual rat gastric glands were incubated with the pH-sensitive dye (BCECF) to monitor changes in intracellular pH in real time. Parietal cell V-ATPase activity was measured by quantifying the rate of intracellular alkalinization (ΔpH/minute) following an acid load, while excluding the contribution of non-V-ATPase proton transport mechanisms through pharmacological inhibition or ion substitution. Expression of V-ATPase was confirmed by immunohistochemistry. We observed concanamycin A-sensitive V-ATPase activity in rat parietal cells following intracellular acidification and H,K-ATPase inhibition. Furthermore, V-ATPase-mediated proton transport could be abolished by inhibiting trafficking mechanisms with paclitaxel and by stimulating H,K-ATPase with acid secretagogues. Our results propose that parietal cells contain a functional V-ATPase that can be mobilized using a microtubule network. V-ATPase may function as an auxiliary acid secretion or proton-buffering pathway in parietal cells, which is inactive during H,K-ATPase activity. Our findings may have important implications for patients experiencing acid breakthrough under proton pump inhibitor therapy. PMID:22146938

  5. Purification and properties of an ATPase from Sulfolobus solfataricus

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    The paper reports properties of a sulfite-activated ATPase from Sulfolobus solfataricus, purified using ammonium sulfate precipitation, column chromatography on UltraGel and Sepharose 6B, and SDS-PAGE. The 92-fold purified enzyme had a relative molecular mass of 370,000. It could be dissociated into three subunits with respective molecular masses of 63,000, 48,000, and 24,000. The ATPase activity was found to be inhibitable by nitrate, N-ethylmaleimide (which bound predominantly to the largest subunit), and 4-chloro 7-nitrobenzofurazan, but not by azide, quercetin, or vanadate. While the ATPase from S. solfataricus shared a number of properties with the S. acidocaldarius ATPase, there were also significant differences suggesting the existence of several types of archaeal ATPases.

  6. Activation of K{sup +} channels and Na{sup +}/K{sup +} ATPase prevents aortic endothelial dysfunction in 7-day lead-treated rats

    SciTech Connect

    Fiorim, Jonaina; Ribeiro Júnior, Rogério Faustino; Azevedo, Bruna Fernades; Simões, Maylla Ronacher; Padilha, Alessandra Simão; Stefanon, Ivanita; Alonso, Maria Jesus; Salaices, Mercedes; Vassallo, Dalton Valentim

    2012-07-01

    Seven day exposure to a low concentration of lead acetate increases nitric oxide bioavailability suggesting a putative role of K{sup +} channels affecting vascular reactivity. This could be an adaptive mechanism at the initial stages of toxicity from lead exposure due to oxidative stress. We evaluated whether lead alters the participation of K{sup +} channels and Na{sup +}/K{sup +}-ATPase (NKA) on vascular function. Wistar rats were treated with lead (1st dose 4 μg/100 g, subsequent doses 0.05 μg/100 g, im, 7 days) or vehicle. Lead treatment reduced the contractile response of aortic rings to phenylephrine (PHE) without changing the vasodilator response to acetylcholine (ACh) or sodium nitroprusside (SNP). Furthermore, this treatment increased basal O{sub 2}{sup −} production, and apocynin (0.3 μM), superoxide dismutase (150 U/mL) and catalase (1000 U/mL) reduced the response to PHE only in the treated group. Lead also increased aortic functional NKA activity evaluated by K{sup +}-induced relaxation curves. Ouabain (100 μM) plus L-NAME (100 μM), aminoguanidine (50 μM) or tetraethylammonium (TEA, 2 mM) reduced the K{sup +}-induced relaxation only in lead-treated rats. When aortic rings were precontracted with KCl (60 mM/L) or preincubated with TEA (2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 μM) or charybdotoxin (0.1 μM), the ACh-induced relaxation was more reduced in the lead-treated rats. Additionally, 4-AP and IbTX reduced the relaxation elicited by SNP more in the lead-treated rats. Results suggest that lead treatment promoted NKA and K{sup +} channels activation and these effects might contribute to the preservation of aortic endothelial function against oxidative stress. -- Highlights: ► Increased free radicals production ► Increased Na{sup +}/K{sup +} ATPase activity ► Promotes activation of the K{sup +} channels and reduced vascular reactivity ► These effects preserve endothelial function against oxidative

  7. Lycopene protects against atrazine-induced hepatic ionic homeostasis disturbance by modulating ion-transporting ATPases.

    PubMed

    Lin, Jia; Zhao, Hua-Shan; Xiang, Li-Run; Xia, Jun; Wang, Li-Li; Li, Xue-Nan; Li, Jin-Long; Zhang, Ying

    2016-01-01

    The aim of this study was to evaluate the possible chemoprotective role of lycopene (LYC) against atrazine (ATR)-induced ionic disorder and hepatotoxicity in mice. Male kunming mice were treated with LYC (5mg/kg) and/or ATR (50mg/kg or 200mg/kg) by lavage administration for 21days. Ionic disorder was assessed by determining the Na(+), K(+) and Ca(2+) content and the alteration in ATP enzymes (ATPases) including Na(+)-K(+)-ATPase, Ca(2+)-ATPase, Mg(2+)-ATPase and Ca(2+)-Mg(2+)-ATPase and the mRNA levels of ATPase's subunits in liver. ATR caused the increases of alanine aminotransferase and aspartate aminotransferase activities and histological changes. LYC pretreatment significantly protected liver against ATR-caused alternation. The significant effect of ATR and LYC on the K(+) and Mg(2+) content in liver was not observed, but ATR increased hepatic Na(+)-K(+)-ATPase activity and decreased Mg(2+)-ATPase and Ca(2+)-Mg(2+)-ATPase activity. The mRNA expressions of Na(+)-K(+)-ATPase subunits were regulated significantly by ATR. A significant increase of Ca(2+) content and seven down-regulated mRNA expressions of Ca(2+)-ATPase subunits and a decrease of Ca(2+)-ATPase activity were observed in the ATR-treated mice. Notably, LYC modulated these ATR-induced alterations of ATPase activity and mRNA expression of their subunits. These results suggest that ATR presents hepatotoxicity via regulating hepatic ATPase's activities and their subunit transcriptions and inducing ionic disorder. LYC protects liver against ATR-induced hepatotoxicity, significantly. LYC modulated hepatic ionic homeostasis disturbance via regulation of ATPase activities and their subunits' (1a1, 1b3, 1b4 and 2b4) transcriptions. In summary, these effects play a critical role of LYC-mediated chemoprevention against ATR-induced hepatotoxicity. PMID:26476475

  8. Actomyosin contraction, aggregation and traveling waves in a treadmilling actin array

    NASA Astrophysics Data System (ADS)

    Oelz, Dietmar; Mogilner, Alex

    2016-04-01

    We use perturbation theory to derive a continuum model for the dynamic actomyosin bundle/ring in the regime of very strong crosslinking. Actin treadmilling is essential for contraction. Linear stability analysis and numerical solutions of the model equations reveal that when the actin treadmilling is very slow, actin and myosin aggregate into equidistantly spaced peaks. When treadmilling is significant, actin filament of one polarity are distributed evenly, while filaments of the opposite polarity develop a shock wave moving with the treadmilling velocity. Myosin aggregates into a sharp peak surfing the crest of the actin wave. Any actomyosin aggregation diminishes contractile stress. The easiest way to maintain higher contraction is to upregulate the actomyosin turnover which destabilizes nontrivial patterns and stabilizes the homogeneous actomyosin distributions. We discuss the model's implications for the experiment.

  9. Torsin ATPases: structural insights and functional perspectives.

    PubMed

    Laudermilch, Ethan; Schlieker, Christian

    2016-06-01

    Torsin ATPases are the only members of the AAA+ ATPase family that localize to the endoplasmic reticulum and contiguous perinuclear space. Accordingly, they are well positioned to perform essential work in these compartments, but their precise functions remain elusive. Recent studies have deciphered an unusual ATPase activation mechanism relying on Torsin-associated transmembrane cofactors, LAP1 or LULL1. These findings profoundly change our molecular view of the Torsin machinery and rationalize several human mutations in TorsinA or LAP1 leading to congenital disorders, symptoms of which have recently been recapitulated in mouse models. Here, we review these recent advances in the Torsin field and discuss the most pressing questions in relation to nuclear envelope dynamics. PMID:26803745

  10. A procedure for the rapid isolation from rat liver of plasma membrane vesicles exhibiting Ca2+-transport and Ca2+-ATPase activities.

    PubMed Central

    Epping, R J; Bygrave, F L

    1984-01-01

    A technique is described for the isolation of a plasma membrane-enriched preparation from a rat liver post-mitochondrial fraction by using discontinuous Percoll density-gradient centrifugation. The procedure is simple, of high reproducibility and yield and requires a total isolation time of only 90 min. The preparation consists almost exclusively of membrane vesicles and is enriched approx. 26-fold in plasma membrane-localized enzymes with minor contamination (less than 10%) with membranes derived mainly from the endoplasmic reticulum and Golgi apparatus. Approx. 20% of the fraction comprises tightly-sealed vesicles in the inverted orientation which are capable of accumulating calcium ions and exhibiting vanadate-insensitive Ca2+-ATPase activity. The properties of these activities, including insensitivity to vanadate, oxalate, and to p-chloromercuribenzoate as well as a lack of requirement for added Mg2+, contrast markedly with the reported properties of Ca2+ transport by the endoplasmic reticulum isolated from rat liver. The technique may have wide application in the study of plasma membrane-associated activities in rat liver, particularly in relation to sinusoidal membrane surface-related events. Images Fig. 2. PMID:6239615

  11. Demarcation of diapause development by cold and its relation to time-interval activation of TIME-ATPase in eggs of the silkworm, Bombyx mori.

    PubMed

    Ti, Xiaonan; Tuzuki, Nobuhiko; Tani, Naoki; Morigami, Etsuko; Isobe, Minoru; Kai, Hidenori

    2004-11-01

    We investigated the mode of action of winter cold in the termination of diapause by investigating Time-Interval-Measuring Enzyme (TIME). First, we determined the period of cold required for the completion of diapause development. Synchronously developing egg batches of a pure strain (C108 Bombyx mori silkworm) were used to minimize variations in hatching time. Hatching occurred with only 18 days chilling at 5 degrees C when the incubation at 25 degrees C after the chilling was elongated. The 18-day period was much shorter than we expected; diapause in B. mori is known to terminate completely with about 100 days of chilling. Even in such a short period of chilling, no sporadic hatching occurred. Moreover, we determined that a temperature-insensitive stage, which we called "Neboke", followed the short cold-requiring stage. Thus, the stage of diapause development was demarcated from other stages of diapause. While the length of diapause development was elongated when chilling was delayed after oviposition, the Neboke stage length was invariant. Cold evidently exerts its effect only on diapause development. When TIME was purified from eggs and chilled in test tubes, a transitory burst of its ATPase activity occurred at a time equivalent to shortly before the completion of diapause development; this was an interval-timer activation. The mechanism by which cold activates TIME to measure the time interval may help explain in biochemical terms the insect's adaptation to its seasonal environments. PMID:15607508

  12. Adaptive alterations on gill Na⁺, K⁺-ATPase activity and mitochondrion-rich cells of juvenile Acipenser sinensis acclimated to brackish water.

    PubMed

    Zhao, Feng; Wu, Beibei; Yang, Gang; Zhang, Tao; Zhuang, Ping

    2016-04-01

    Understanding the physiological changes and osmoregulatory strategy is critical for anadromous species to adapt to large changes between freshwater and marine environments. In this study, juvenile Chinese sturgeon (Acipenser sinensis) were acclimated for 2 months to freshwater (FW, c. 0‰) and brackish water (BW, 15‰). Blood was assessed for changes in osmolality and ions. Gill tissue was assayed for Na(+), K(+)-ATPase (NKA) activity and immunohistochemical analysis on mitochondria-rich cells (MRCs). Serum osmolality and ions concentrations (Na(+), Cl(-) and K(+)) examined, except K(+), increased significantly in those specimens adapted to BW. However, the variations were within the range of effective hyperosmotic adaptation. The specific activity of gill NKA of juveniles adapted to BW was significantly higher (c. 1.6 times) than that of fish adapted to FW. MRCs were mainly presented in the interlamellar region of the filament and at the base of the lamella in either FW- or BW-acclimated individuals. In BW, the number and size of MRCs on filaments greatly increased. However, there was no significant difference in the number and size of the MRCs at the lamella region. Results show that juvenile Chinese sturgeon keep osmotic homeostasis in hyperosmotic environments by increasing gill NKA activity and MRCs' size and number, which is similar to other sturgeons and euryhaline teleosts. PMID:26614501

  13. The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity

    PubMed Central

    Hoskisson, Paul A.; Sumby, Paul; Smith, Margaret C.M.

    2015-01-01

    The phage growth limitation system of Streptomyces coelicolor A3(2) is an unusual bacteriophage defence mechanism. Progeny ϕC31 phage from an initial infection are thought to be modified such that subsequent infections are attenuated in a Pgl+ host but normal in a Pgl− strain. Earlier work identified four genes required for phage resistance by Pgl. Here we demonstrate that Pgl is an elaborate and novel phage restriction system that, in part, comprises a toxin/antitoxin system where PglX, a DNA methyltransferase is toxic in the absence of a functional PglZ. In addition, the ATPase activity of PglY and a protein kinase activity in PglW are shown to be essential for phage resistance by Pgl. We conclude that on infection of a Pgl+ cell by bacteriophage ϕC31, PglW transduces a signal, probably via phosphorylation, to other Pgl proteins resulting in the activation of the DNA methyltransferase, PglX and this leads to phage restriction. PMID:25592393

  14. Dicyclohexylcarbodiimide-sensitive ATPase in Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, H.; Hochstein, L. I.

    1985-01-01

    Membranes from Halobacterium saccharovorum contained a cryptic ATPase which required Mg(2+) or Mn(2+) and was activated by Triton X-100. The optimal pH for ATP hydrolysis was 9-10. ATP or GTP were hydrolyzed at the same rate while ITP, CTP, and UTP were hydrolyzed at about half that rate. The products of ATP hydrolysis were ADP and phosphate. The ATPase required high concentrations (3.5 M) of NaCl for maximum activity. ADP was a competitive inhibitor of the activity, with an apparent Ki of 50 micro-M. Dicyclohexylcarbodiimide (DCCD) inhibited ATP hydrolysis. The inhibition was marginal at the optimum pH of the enzyme. When the ATPase was preincubated with DCCD at varying pH values, but assayed at the optimal pH for activity, DCCD inhibition was observed to increase with increasing acidity of the preincubation medium. DCCD inhibition was also dependent on time of preincubation, and protein and DCCD concentrations. When preincubated at pH 6.0 for 4 h at a protein:DCCD ratio of 40 (w/w), ATPase activity was inhibited 90 percent.

  15. Influence of N-dodecyl-N,N-dimethylamine N-oxide on the activity of sarcoplasmic reticulum Ca(2+)-transporting ATPase reconstituted into diacylphosphatidylcholine vesicles: efects of bilayer physical parameters.

    PubMed

    Karlovská, J; Uhríková, D; Kucerka, N; Teixeira, J; Devínsky, F; Lacko, I; Balgavý, P

    2006-01-01

    Sarcoplasmic reticulum Ca-transporting ATPase (EC 3.6.1.38) was isolated from rabbit white muscle, purified and reconstituted into vesicles of synthetic diacylphosphatidylcholines with monounsaturated acyl chains using the cholate dilution method. In fluid bilayers at 37 degrees C, the specific activity of ATPase displays a maximum (31.5+/-0.8 IU/mg) for dioleoylphosphatidylcholine (diC18:1PC) and decreases progressively for both shorter and longer acyl chain lengths. Besides the hydrophobic mismatch between protein and lipid bilayer, changes in the bilayer hydration and lateral interactions detected by small angle neutron scattering (SANS) can contribute to this acyl chain length dependence. When reconstituted into dierucoylphosphatidylcholine (diC22:1PC), the zwitterionic surfactant N-dodecyl-N,N-dimethylamine N-oxide (C12NO) stimulates the ATPase activity from 14.2+/-0.6 to 32.5+/-0.8 IU/mg in the range of molar ratios C12NO:diC22:1PC=0/1.2. In dilauroylphosphatidylcholines (diC12:0PC) and diC18:1PC, the effect of C12NO is twofold-the ATPase activity is stimulated at low and inhibited at high C12NO concentrations. In diC18:1PC, it is observed an increase of activity induced by C12NO in the range of molar ratios C12NO:diC18:1PC< or =1.3 in bilayers, where the bilayer thickness estimated by SANS decreases by 0.4+/-0.1 nm. In this range, the 31P-NMR chemical shift anisotropy increases indicating an effect of C12NO on the orientation of the phosphatidylcholine dipole N(+)-P- accompanied by a variation of the local membrane dipole potential. A decrease of the ATPase activity is observed in the range of molar ratios C12NO:diC18:1PC=1.3/2.5, where mixed tubular micelles are detected by SANS in C12NO+diC18:1PC mixtures. It is concluded that besides hydrophobic thickness changes, the changes in dipole potential and curvature frustration of the bilayer could contribute as well to C12NO effects on Ca(2+)-ATPase activity. PMID:16223561

  16. FXYD11 mediated modulation of Na(+)/K(+)-ATPase activity in gills of the brackish medaka (Oryzias dancena) when transferred to hypoosmotic or hyperosmotic environments.

    PubMed

    Chang, Chia-Hao; Yang, Wen-Kai; Lin, Chia-Hao; Kang, Chao-Kai; Tang, Cheng-Hao; Lee, Tsung-Han

    2016-04-01

    FXYD proteins regulate Na(+)/K(+)-ATPase (NKA), which is a primary active pump that provides the driving force that triggers osmoregulatory systems in teleosts. To explore the regulatory mechanisms between FXYD and NKA in euryhaline teleosts, the expression of NKA (mRNA, protein, and activity) and FXYD11 and their interaction were examined in the gills of brackish medaka (Oryzias dancena) when transferred from brackish water (BW; 15‰) to fresh water (FW) or seawater (SW; 35‰). The mRNA expression of Odfxyd11 and Odnka-α was elevated 48h post-hypoosmotic transfer. Moreover, FXYD11 protein and NKA activity were upregulated 12h after transfer to FW. When transferred to SW, the protein abundance of FXYD11 and the NKA α-subunit did not show apparent changes, while Odfxyd11 and Odnka-α mRNA expression and NKA activity increased significantly 12h and 1h post-transfer, respectively. To clarify the FXYD11 mechanisms involved in modulating NKA activity via their interaction, co-immunoprecipitation was further applied to O. dancena gills. The results revealed that the levels of protein-protein interaction between branchial NKA and FXYD11 increased acutely 12h after the transfer from BW to FW. However, immediate upregulation of NKA activity 1h following post-exposure to SW, without the elevation of protein-protein interaction levels, was found. Hence, branchial NKA activity of O. dancena was suggested to be rapidly regulated by FXYD11 interaction with NKA when acclimated to hypoosmotic environments. To the best of our knowledge, this is the first study that focuses on the efficacy of interactions between FXYD11 and NKA in the gills of euryhaline teleosts. PMID:26797570

  17. Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin

    PubMed Central

    Zhou, Jian; Kim, Hye Young; Wang, James H.-C.; Davidson, Lance A.

    2010-01-01

    During morphogenesis, forces generated by cells are coordinated and channeled by the viscoelastic properties of the embryo. Microtubules and F-actin are considered to be two of the most important structural elements within living cells accounting for both force production and mechanical stiffness. In this paper, we investigate the contribution of microtubules to the stiffness of converging and extending dorsal tissues in Xenopus laevis embryos using cell biological, biophysical and embryological techniques. Surprisingly, we discovered that depolymerizing microtubules stiffens embryonic tissues by three- to fourfold. We attribute tissue stiffening to Xlfc, a previously identified RhoGEF, which binds microtubules and regulates the actomyosin cytoskeleton. Combining drug treatments and Xlfc activation and knockdown lead us to the conclusion that mechanical properties of tissues such as viscoelasticity can be regulated through RhoGTPase pathways and rule out a direct contribution of microtubules to tissue stiffness in the frog embryo. We can rescue nocodazole-induced stiffening with drugs that reduce actomyosin contractility and can partially rescue morphogenetic defects that affect stiffened embryos. We support these conclusions with a multi-scale analysis of cytoskeletal dynamics, tissue-scale traction and measurements of tissue stiffness to separate the role of microtubules from RhoGEF activation. These findings suggest a re-evaluation of the effects of nocodazole and increased focus on the role of Rho family GTPases as regulators of the mechanical properties of cells and their mechanical interactions with surrounding tissues. PMID:20630946

  18. Potato virus Y HC-Pro Reduces the ATPase Activity of NtMinD, Which Results in Enlarged Chloroplasts in HC-Pro Transgenic Tobacco.

    PubMed

    Tu, Yayi; Zhang, Zhenqian; Li, Daofeng; Li, Heng; Dong, Jiangli; Wang, Tao

    2015-01-01

    Potato virus Y (PVY) is an important plant virus and causes great losses every year. Viral infection often leads to abnormal chloroplasts. The first step of chloroplast division is the formation of FtsZ ring (Z-ring), and the placement of Z-ring is coordinated by the Min system in both bacteria and plants. In our lab, the helper-component proteinase (HC-Pro) of PVY was previously found to interact with the chloroplast division protein NtMinD through a yeast two-hybrid screening assay and a bimolecular fluorescence complementation (BiFC) assay in vivo. Here, we further investigated the biological significance of the NtMinD/HC-Pro interaction. We purified the NtMinD and HC-Pro proteins using a prokaryotic protein purification system and tested the effect of HC-Pro on the ATPase activity of NtMinD in vitro. We found that the ATPase activity of NtMinD was reduced in the presence of HC-Pro. In addition, another important chloroplast division related protein, NtMinE, was cloned from the cDNA of Nicotiana tabacum. And the NtMinD/NtMinE interaction site was mapped to the C-terminus of NtMinD, which overlaps the NtMinD/HC-Pro interaction site. Yeast three-hybrid assay demonstrated that HC-Pro competes with NtMinE for binding to NtMinD. HC-Pro was previously reported to accumulate in the chloroplasts of PVY-infected tobacco and we confirmed this result in our present work. The NtMinD/NtMinE interaction is very important in the regulation of chloroplast division. To demonstrate the influence of HC-Pro on chloroplast division, we generated HC-Pro transgenic tobacco with a transit peptide to retarget HC-Pro to the chloroplasts. The HC-Pro transgenic plants showed enlarged chloroplasts. Our present study demonstrated that the interaction between HC-Pro and NtMinD interfered with the function of NtMinD in chloroplast division, which results in enlarged chloroplasts in HC-Pro transgenic tobacco. The HC-Pro/NtMinD interaction may cause the formation of abnormal chloroplasts in PVY

  19. U18666A Treatment Results in Cholesterol Accumulation, Reduced Na(+), K(+)-ATPase Activity, and Increased Oxidative Stress in Rat Cortical Astrocytes.

    PubMed

    Copetti-Santos, Daniela; Moraes, Vitoria; Weiler, Dácio Franco; de Mello, Alexandre Silva; Machado, Fernanda de Souza; Marinho, Jéssica Pereira; Siebert, Cassiana; Kolling, Janaina; Funchal, Cláudia; Wyse, Angela T S; Coelho, Janice Carneiro

    2015-10-01

    The objective of this study was to determine the effect of U18666A, an inhibitor of cholesterol synthesis and its intracellular transport, on oxidative stress parameters in cortical astrocytes cultured from Wistar rats (0-3 days old). The cultures were incubated with U18666A (0.25 µg/mL) for 48 h, conditions that are considered ideal to mimic Niemann-Pick type C disease. A variety of indicators of oxidative stress were measured. U18666A treatment increased cholesterol 2-fold in treated compared to control astrocytes. Oxidative stress was significantly elevated in treated cells as demonstrated by a 1.7-fold increase in thiobarbituric acid reactive substances, a 60% decrease is sulfhydral groups, and a 3.7-fold increase in carbonyl groups, indicative of increased lipid and protein oxidation following U18666A treatment. Consistent with these changes, both catalase and superoxide dismutase activities were significantly reduced nearly 50% in treated compared to control astrocytes. Collectively, these change resulted in a 50% reduction in Na(+), K(+)-ATPase specific activity following U18666A treatment, suggesting a significant alteration in its plasma membrane environment. Overall, these changes indicate that U18666A treatment results in increased cholesterol levels and an increased level of oxidative stress in cortical astrocytes, consistent with what is observed in Niemann-Pick type C disease. PMID:26344921

  20. Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity

    PubMed Central

    Gozzi, Gustavo Jabor; Bouaziz, Zouhair; Winter, Evelyn; Daflon-Yunes, Nathalia; Honorat, Mylène; Guragossian, Nathalie; Marminon, Christelle; Valdameri, Glaucio; Bollacke, Andre; Guillon, Jean; Pinaud, Noël; Marchivie, Mathieu; Cadena, Silvia M; Jose, Joachim; Le Borgne, Marc; Di Pietro, Attilio

    2015-01-01

    Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N5-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1), whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower interaction with CK2. Quite interestingly, they strongly stimulated ABCG2 ATPase activity, in contrast to ketonic derivatives, suggesting distinct binding sites. In contrast, the p-quinonic indenoindoles were cytotoxic and poor ABCG2 inhibitors, whereas a partial inhibition recovery could be reached upon hydrophobic substitutions on D-ring, similarly to the ketonic derivatives. PMID:26170632

  1. C-peptide, Na+,K+-ATPase, and Diabetes

    PubMed Central

    Coste, T. C.; Jannot, M. F.; Raccah, D.; Tsimaratos, M.

    2004-01-01

    Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity, mainly

  2. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks.

    PubMed

    Popov, Konstantin; Komianos, James; Papoian, Garegin A

    2016-04-01

    Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament's resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the

  3. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks

    PubMed Central

    Papoian, Garegin A.

    2016-01-01

    Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament’s resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the

  4. Active patterning and asymmetric transport in a model actomyosin network

    SciTech Connect

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  5. Active patterning and asymmetric transport in a model actomyosin network

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-01

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  6. Synthesis and assembly of functional mammalian Na,K-ATPase in yeast.

    PubMed

    Horowitz, B; Eakle, K A; Scheiner-Bobis, G; Randolph, G R; Chen, C Y; Hitzeman, R A; Farley, R A

    1990-03-15

    The yeast Saccharomyces cerevisiae was investigated as an in vivo protein expression system for mammalian Na,K-ATPase. Unlike animal cells, yeast cells lack endogenous Na,K-ATPase. Expression of high affinity ouabain binding sites, ouabain-sensitive ATPase activity, or ouabain-sensitive p-nitrophenylphosphatase activity in membrane fractions of yeast cells was observed to require the expression of both alpha subunit and beta subunit polypeptides of Na,K-ATPase in the same cell. High affinity ouabain binding sites are also expressed at the cell surface of intact yeast cells containing both the alpha subunit and the beta subunit of Na,K-ATPase. These observations demonstrate that both the alpha subunit and the beta subunit of Na,K-ATPase are required for the expression of functional Na,K-ATPase activity and that yeast cells can correctly assemble this oligomeric membrane protein and transport it to the cell surface. PMID:1689721