Science.gov

Sample records for actomyosin motility system

  1. Electrophoretic control of actomyosin motility

    NASA Astrophysics Data System (ADS)

    Hanson, Kristi L.; Solana, Gerardin; Nicolau, Dan V.

    2005-03-01

    The effect of DC electric field strength on in vitro actomyosin motility was examined. Rabbit skeletal muscle heavy meromyosin (HMM) was adsorbed to nitrocellulose-coated glass, and the myosin driven movement of fluorescently labeled actin filaments was recorded in the presence of 0 to 9000 V m-1 applied DC voltage. The applied electric field resulted in increased filament velocity and oriented actin movement, with leading heads of filaments directed towards the positive electrode. Velocity (v) was found to increase moderately with electric field strength at applied fields up to ~ 4500 V m-1 (Δv/ΔE = 0.037 μm2 V-1sec-1), and then increased at a more rapid rate (Δv/ΔE = 0.100 μm2 V-1sec-1) at higher field strengths up to 9000 V m-1. The electrophoretic effect caused up to 70% of actin motion to be oriented within 30 degrees of the positive electrode, with the largest effect observed using an applied field of 6000 V m-1. Higher electric field strengths caused filament breakage.

  2. Simulating an Actomyosin in Vitro Motility Assay: Toward the Rational Design of Actomyosin-Based Microtransporters.

    PubMed

    Ishigure, Yuki; Nitta, Takahiro

    2015-09-01

    We present a simulation study of an actomyosin in vitro motility assay. In vitro motility assays have served as an essential element facilitating the application of actomyosin in nanotechnology; such applications include biosensors and biocomputation. Although actomyosin in vitro motility assays have been extensively investigated, some ambiguities remain, as a result of the limited spatio-temporal resolution and unavoidable uncertainties associated with the experimental process. These ambiguities hamper the rational design of nanodevices for practical applications. Here, with the aim of moving toward a rational design process, we developed a 3D computer simulation method of an actomyosin in vitro motility assay, based on a Brownian dynamics simulation. The simulation explicitly included the ATP hydrolysis cycle of myosin. The simulation was validated by the reproduction of previous experimental results. More importantly, the simulation provided new insights that are difficult to obtain experimentally, including data on the number of myosin motors actually binding to actin filaments, the mechanism responsible for the guiding of actin filaments by chemical edges, and the effect of the processivity of motor proteins on the guiding probabilities. The simulations presented here will be useful in interpreting experimental results, and also in designing future nanodevices integrated with myosin motors.

  3. Effect of surface chemistry on in vitro actomyosin motility

    NASA Astrophysics Data System (ADS)

    Hanson, Kristi L.; Solana, Gerardin; Nicolau, Dan V.

    2005-02-01

    A variety of surface coatings were evaluated for their ability to promote in vitro actomyosin motility. Rabbit skeletal muscle heavy meromyosin (HMM) was adsorbed to uncoated glass and to surfaces coated with nitrocellulose, poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA), poly(tert-butyl methacrylate (PtBMA), polystyrene (PS) and hexamethyldisilazane (HMDS), and the myosin driven movement of fluorescently labeled actin filaments was recorded using epifluorescence microscopy. HMDS and uncoated glass did not support actomyosin motility, while mean velocities on other surfaces ranged from 1.7 μm sec-1 (PtBMA) to 3.5 μm sec-1 (NC). Nitrocellulose supported the highest proportion of motile filaments (75%), while 47 - 61% of filaments were motile on other surfaces. Within the methacrylate polymers, average filament velocities increased with decreasing hydrophobicity of the surface. Distributions of instantaneous acceleration values and angle deviations suggested more erratic and stuttered movement on the methacrylates and polystyrene than on NC, in line with qualitative visual observations. Despite the higher velocities and high proportion of motile filaments on NC, this surface resulted in a high proportion of small filaments and high rates of filament breakage during motility. Similar effects were observed on PS and PtBMA, while PBMA and PMMA supported longer filaments with less observed breakage.

  4. Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells.

    PubMed

    Liebe, S; Menzel, D

    1995-01-01

    Intracellular localization and motile behaviour of the endoplasmic reticulum (ER), plastids and mitochondria were studied in living mesophyll cells of Vallisneria using the vital fluorochrome 3,3'-dihexyloxacarbocyanine iodide (DIOC6(3)). In quiescent cells, the ER was composed of a three-dimensional network of tubular and lamellar elements. Chloroplasts were distributed evenly throughout the cell periphery and appeared embedded within the ER network. The ER network was relatively stationary, with the exception of rare motile episodes occurring as movement of tubular ER strands and adjacent areas of the polygonal network in localized areas of the cell. During experimental induction of streaming, most of the lamellar ER elements transformed into tubules and together with the chloroplasts they began to translocate to the anticlinal walls to establish the circular streaming around the circumference of the cell. Microwave-accelerated fixation followed by immunofluorescence revealed an hitherto unknown phase of actin reorganization occurring within the cells and most interestingly at the surface of the chloroplasts during streaming induction. Myosin was localized in an ER-like pattern in quiescent as well as in streaming cells, with bright fluorescent label localized on mitochondria and proplastids. In addition, myosin label appeared on the surface of the chloroplasts, preferentially in streaming mesophyll cells. Motile activities were impeded by the actin-depolymerizing drug cytochalasin D (CD), the thioreagent N-ethylmaleimide (NEM), and thapsigargin, an inhibitor of the ER-Ca(2+)-ATPase. These inhibitors also interfered with the integrity of actin filaments, the intracellular distribution of myosin and calcium-homeostasis, respectively. These effects suggested an obligate association of at least one type of myosin with the membranes of ER and smaller organelles and are consistent with the appearance of another type of myosin on the chloroplast surface upon streaming

  5. A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement

    PubMed Central

    Ramalingam, Nagendran; Franke, Christof; Jaschinski, Evelin; Winterhoff, Moritz; Lu, Yao; Brühmann, Stefan; Junemann, Alexander; Meier, Helena; Noegel, Angelika A.; Weber, Igor; Zhao, Hongxia; Merkel, Rudolf; Schleicher, Michael; Faix, Jan

    2015-01-01

    Cell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting. PMID:26415699

  6. The circumferential actomyosin belt in epithelial cells is regulated by the Lulu2-p114RhoGEF system

    PubMed Central

    Nakajima, Hiroyuki; Tanoue, Takuji

    2012-01-01

    In epithelial cells, myosin-II-dependent forces regulate many aspects of animal morphogenesis, such as apical constriction, cell intercalation, cell sorting, and the formation and maintenance of the adherens junction. These forces are mainly generated by the circumferential actomyosin belt, which is composed of F-actin–myosin II bundles located along apical cell–cell junctions. Although several of the molecular pathways regulating the belt have been identified, the precise mechanisms underlying its function are largely unknown. Our recent studies identified Lulu proteins (Lulu1 and Lulu2), FERM-domain-containing molecules, as the regulators of the belt. Lulus activate the circumferential actomyosin belt and thereby induce apical constriction in epithelial cells; conversely, RNAi-mediated Lulu-knockdown results in the severe disorganization of the circumferential actomyosin belt. We also showed that p114RhoGEF is a downstream molecule of Lulu2 in its regulation of the belt; Lulu2 enhances the catalytic activity of p114RhoGEF through a direct interaction and thereby activates the circumferential actomyosin belt. We further identified aPKC and Patj as regulators of Lulu2-p114RhoGEF. In this commentary, we discuss current knowledge of the circumferential actomyosin belt's regulation, focusing on the Lulu2-p114RhoGEF system. PMID:22790195

  7. DEVELOPMENTALLY REGULATED PLASMA MEMBRANE PROTEIN of Nicotiana benthamiana contributes to potyvirus movement and transports to plasmodesmata via the early secretory pathway and the actomyosin system.

    PubMed

    Geng, Chao; Cong, Qian-Qian; Li, Xiang-Dong; Mou, An-Li; Gao, Rui; Liu, Jin-Liang; Tian, Yan-Ping

    2015-02-01

    The intercellular movement of plant viruses requires both viral and host proteins. Previous studies have demonstrated that the frame-shift protein P3N-PIPO (for the protein encoded by the open reading frame [ORF] containing 5'-terminus of P3 and a +2 frame-shift ORF called Pretty Interesting Potyviridae ORF and embedded in the P3) and CYLINDRICAL INCLUSION (CI) proteins were required for potyvirus cell-to-cell movement. Here, we provide genetic evidence showing that a Tobacco vein banding mosaic virus (TVBMV; genus Potyvirus) mutant carrying a truncated PIPO domain of 58 amino acid residues could move between cells and induce systemic infection in Nicotiana benthamiana plants; mutants carrying a PIPO domain of seven, 20, or 43 amino acid residues failed to move between cells and cause systemic infection in this host plant. Interestingly, the movement-defective mutants produced progeny that eliminated the previously introduced stop codons and thus restored their systemic movement ability. We also present evidence showing that a developmentally regulated plasma membrane protein of N. benthamiana (referred to as NbDREPP) interacted with both P3N-PIPO and CI of the movement-competent TVBMV. The knockdown of NbDREPP gene expression in N. benthamiana impeded the cell-to-cell movement of TVBMV. NbDREPP was shown to colocalize with TVBMV P3N-PIPO and CI at plasmodesmata (PD) and traffic to PD via the early secretory pathway and the actomyosin motility system. We also show that myosin XI-2 is specially required for transporting NbDREPP to PD. In conclusion, NbDREPP is a key host protein within the early secretory pathway and the actomyosin motility system that interacts with two movement proteins and influences virus movement.

  8. Lulu2 regulates the circumferential actomyosin tensile system in epithelial cells through p114RhoGEF

    PubMed Central

    Nakajima, Hiroyuki

    2011-01-01

    Myosin II–driven mechanical forces control epithelial cell shape and morphogenesis. In particular, the circumferential actomyosin belt, which is located along apical cell–cell junctions, regulates many cellular processes. Despite its importance, the molecular mechanisms regulating the belt are not fully understood. In this paper, we characterize Lulu2, a FERM (4.1 protein, ezrin, radixin, moesin) domain–containing molecule homologous to Drosophila melanogaster Yurt, as an important regulator. In epithelial cells, Lulu2 is localized along apical cell–cell boundaries, and Lulu2 depletion by ribonucleic acid interference results in disorganization of the circumferential actomyosin belt. In its regulation of the belt, Lulu2 interacts with and activates p114RhoGEF, a Rho-specific guanine nucleotide exchanging factor (GEF), at apical cell–cell junctions. This interaction is negatively regulated via phosphorylation events in the FERM-adjacent domain of Lulu2 catalyzed by atypical protein kinase C. We further found that Patj, an apical cell polarity regulator, recruits p114RhoGEF to apical cell–cell boundaries via PDZ (PSD-95/Dlg/ZO-1) domain–mediated interaction. These findings therefore reveal a novel molecular system regulating the circumferential actomyosin belt in epithelial cells. PMID:22006950

  9. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... include signal conditioning, amplifying, and recording equipment. This generic type of device includes...

  10. Method and system for enhancing microbial motility

    SciTech Connect

    Hazen, T.C.; Lopez-De-Victoria, G.

    1992-12-31

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  11. Motor domain-based motility system and motile properties of alpha heavy chain in Tetrahymena outer arm dynein.

    PubMed

    Edamatsu, Masaki

    2014-10-24

    Axonemal dynein plays an essential role in ciliary motility, and impaired ciliary motility causes human diseases such as primary ciliary dyskinesia (PCD). The motor domain of axonemal dynein powers ciliary motility and its function is regulated by several accessary proteins bound to the tail region. Therefore, to understand the essential properties of dynein motility, examining the motile properties of the motor domain without the tail is necessary. In this study, the functional motor domain of the alpha heavy chain in Tetrahymena outer arm dynein was purified, and its motile properties were examined using an in vitro motility system. The purified protein caused microtubules to glide at a velocity of 5.0μm/s with their minus-end trailing, and motility was inhibited in an ATP concentration-dependent manner, which is in contrast with kinesin1. This method could be applicable to other axonemal dyneins and will enable further molecular studies on diverse axonemal dyneins and ciliary motility.

  12. Differential positioning of C(4) mesophyll and bundle sheath chloroplasts: recovery of chloroplast positioning requires the actomyosin system.

    PubMed

    Kobayashi, Hiroaki; Yamada, Masahiro; Taniguchi, Mitsutaka; Kawasaki, Michio; Sugiyama, Tatsuo; Miyake, Hiroshi

    2009-01-01

    In C(4) plants, bundle sheath (BS) chloroplasts are arranged in the centripetal position or in the centrifugal position, although mesophyll (M) chloroplasts are evenly distributed along cell membranes. To examine the molecular mechanism for the intracellular disposition of these chloroplasts, we observed the distribution of actin filaments in BS and M cells of the C(4) plants finger millet (Eleusine coracana) and maize (Zea mays) using immunofluorescence. Fine actin filaments encircled chloroplasts in both cell types, and an actin network was observed adjacent to plasma membranes. The intracellular disposition of both chloroplasts in finger millet was disrupted by centrifugal force but recovered within 2 h in the dark. Actin filaments remained associated with chloroplasts during recovery. We also examined the effects of inhibitors on the rearrangement of chloroplasts. Inhibitors of actin polymerization, myosin-based activities and cytosolic protein synthesis blocked migration of chloroplasts. In contrast, a microtubule-depolymerizing drug had no effect. These results show that C(4) plants possess a mechanism for keeping chloroplasts in the home position which is dependent on the actomyosin system and cytosolic protein synthesis but not tubulin or light. PMID:19022806

  13. How substrate rigidity regulates the cellular motility

    NASA Astrophysics Data System (ADS)

    Sarvestani, Alireza

    2011-03-01

    Mechanical stiffness of bio-adhesive substrates has been recognized as a major regulator of cell motility. We present a simple physical model to study the crawling locomotion of a contractile cell on a soft elastic substrate. The mechanism of rigidity sensing is accounted for using Schwarz's two spring model (Schwarz et al. (2006) BioSystems 83, 225-232). The predicted dependency between the speed of motility and substrate stiffness is qualitatively consistent with experimental observations. The model demonstrates that the rigidity dependent motility of cells is rooted in the regulation of actomyosin contractile forces by substrate deformation at each anchorage point. On stiffer substrates, the traction forces required for cell translocation acquire larger magnitude but show weaker asymmetry which leads to slower cell motility. On very soft substrates, the model predicts a biphasic relationship between the substrate rigidity and the speed of locomotion, over a narrow stiffness range, which has been observed experimentally for some cell types.

  14. Flavobacterium gliding motility and the type IX secretion system.

    PubMed

    McBride, Mark J; Nakane, Daisuke

    2015-12-01

    Cells of Flavobacterium johnsoniae crawl rapidly over surfaces in a process called gliding motility. These cells do not have flagella or pili but instead rely on a novel motility machine composed of proteins that are unique to the phylum Bacteroidetes. The motility adhesins SprB and RemA are propelled along the cell surface by the still poorly-defined gliding motor. Interaction of these adhesins with a surface results in translocation of the cell. SprB and RemA are delivered to the cell surface by the type IX secretion system (T9SS). T9SSs are confined to but common in the phylum Bacteroidetes. Transmembrane components of the T9SS may perform roles in both secretion and gliding motility. PMID:26461123

  15. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastrointestinal motility monitoring system. 876.1725 Section 876.1725 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices §...

  16. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gastrointestinal motility monitoring system. 876.1725 Section 876.1725 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices §...

  17. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gastrointestinal motility monitoring system. 876.1725 Section 876.1725 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices §...

  18. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gastrointestinal motility monitoring system. 876.1725 Section 876.1725 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices §...

  19. Schmidtea mediterranea: a model system for analysis of motile cilia.

    PubMed

    Rompolas, Panteleimon; Patel-King, Ramila S; King, Stephen M

    2009-01-01

    Cilia are cellular organelles that appeared early in the evolution of eukaryotes. These structures and the pool of about 600genes involved in their assembly and function are highly conserved in organisms as distant as single-cell protists, like Chlamydomonas reinhardtti, and humans (Silflow and Lefebvre, 2001). A significant body of work on the biology of cilia has been produced over the years, with the help of powerful model organisms including C. reinhardtti, Caenorhabditis elegans, sea urchins, and mice. However, specific limitations of these systems, especially regarding the ability to efficiently study gene loss-of-function, warrant the search for a new model organism to study cilia and cilia-based motility. Schmidtea mediterranea is a species of planarian (Class: Tubellaria) with a well-defined monostratified ciliated epithelium, which contributes to the motility of the organism, in addition to other more specialized ciliary structures. The use of S. mediterranea as an experimental system to study stem cell biology and regeneration has led to a recently sequenced genome and to the development of a wide array of powerful tools including the ability to inhibit gene expression via RNA interference. In addition, we have developed and describe here a number of methods for analyzing motile cilia in S. mediterranea. Overall, S. mediterranea is a highly versatile, easy to maintain, and genetically tractable organism that provides a powerful alternative model system for the study of motile cilia.

  20. Macromolecular Crowding Modulates Actomyosin Kinetics.

    PubMed

    Ge, Jinghua; Bouriyaphone, Sherry D; Serebrennikova, Tamara A; Astashkin, Andrei V; Nesmelov, Yuri E

    2016-07-12

    Actomyosin kinetics is usually studied in dilute solutions, which do not reflect conditions in the cytoplasm. In cells, myosin and actin work in a dense macromolecular environment. High concentrations of macromolecules dramatically reduce the amount of free space available for all solutes, which results in an effective increase of the solutes' chemical potential and protein stabilization. Moreover, in a crowded solution, the chemical potential depends on the size of the solute, with larger molecules experiencing a larger excluded volume than smaller ones. Therefore, since myosin interacts with two ligands of different sizes (actin and ATP), macromolecular crowding can modulate the kinetics of individual steps of the actomyosin ATPase cycle. To emulate the effect of crowding in cells, we studied actomyosin cycle reactions in the presence of a high-molecular-weight polymer, Ficoll70. We observed an increase in the maximum velocity of the actomyosin ATPase cycle, and our transient-kinetics experiments showed that virtually all individual steps of the actomyosin cycle were affected by the addition of Ficoll70. The observed effects of macromolecular crowding on the myosin-ligand interaction cannot be explained by the increase of a solute's chemical potential. A time-resolved Förster resonance energy transfer experiment confirmed that the myosin head assumes a more compact conformation in the presence of Ficoll70 than in a dilute solution. We conclude that the crowding-induced myosin conformational change plays a major role in the changed kinetics of actomyosin ATPase. PMID:27410745

  1. Optical trapping studies of acto-myosin motor proteins

    NASA Astrophysics Data System (ADS)

    Farrow, Rachel E.; Rosenthal, Peter B.; Mashanov, Gregory I.; Holder, Anthony A.; Molloy, Justin E.

    2007-09-01

    Optical tweezers have been used extensively to measure the mechanical properties of individual biological molecules. Over the past 10-15 years optical trapping studies have revealed important information about the way in which motor proteins convert chemical energy to mechanical work. This paper focuses on studies of the acto-myosin motor system that is responsible for muscle contraction and a host of other cellular motilities. Myosin works by binding to filamentous actin, pulling and then releasing. Each cycle of interaction produces a few nanometres movement and a few piconewtons force. Individual interactions can be observed directly by holding an individual actin filament between two optically trapped microspheres and positioning it in the immediate vicinity of a single myosin motor. When the chemical fuel (adenosine triphosphate or ATP) is present the myosin undergoes repeated cycles of interaction with the actin filament producing square-wave like displacements and forces. Analysis of optical trapping data sets enables the size and timing of the molecular motions to be deduced.

  2. Wrinkling of a spherical lipid interface induced by actomyosin cortex.

    PubMed

    Ito, Hiroaki; Nishigami, Yukinori; Sonobe, Seiji; Ichikawa, Masatoshi

    2015-12-01

    Actomyosin actively generates contractile forces that provide the plasma membrane with the deformation stresses essential to carry out biological processes. Although the contractile property of purified actomyosin has been extensively studied, to understand the physical contribution of the actomyosin contractile force on a deformable membrane is still a challenging problem and of great interest in the field of biophysics. Here, we reconstitute a model system with a cell-sized deformable interface that exhibits anomalous curvature-dependent wrinkling caused by the actomyosin cortex underneath the spherical closed interface. Through a shape analysis of the wrinkling deformation, we find that the dominant contributor to the wrinkled shape changes from bending elasticity to stretching elasticity of the reconstituted cortex upon increasing the droplet curvature radius of the order of the cell size, i.e., tens of micrometers. The observed curvature dependence is explained by the theoretical description of the cortex elasticity and contractility. Our present results provide a fundamental insight into the deformation of a curved membrane induced by the actomyosin cortex. PMID:26764731

  3. Wrinkling of a spherical lipid interface induced by actomyosin cortex

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Nishigami, Yukinori; Sonobe, Seiji; Ichikawa, Masatoshi

    2015-12-01

    Actomyosin actively generates contractile forces that provide the plasma membrane with the deformation stresses essential to carry out biological processes. Although the contractile property of purified actomyosin has been extensively studied, to understand the physical contribution of the actomyosin contractile force on a deformable membrane is still a challenging problem and of great interest in the field of biophysics. Here, we reconstitute a model system with a cell-sized deformable interface that exhibits anomalous curvature-dependent wrinkling caused by the actomyosin cortex underneath the spherical closed interface. Through a shape analysis of the wrinkling deformation, we find that the dominant contributor to the wrinkled shape changes from bending elasticity to stretching elasticity of the reconstituted cortex upon increasing the droplet curvature radius of the order of the cell size, i.e., tens of micrometers. The observed curvature dependence is explained by the theoretical description of the cortex elasticity and contractility. Our present results provide a fundamental insight into the deformation of a curved membrane induced by the actomyosin cortex.

  4. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters.

    PubMed

    Boryshpolets, S; Kowalski, R K; Dietrich, G J; Dzyuba, B; Ciereszko, A

    2013-10-15

    In this study, we examined different computer-assisted sperm analysis (CASA) systems (CRISMAS, Hobson Sperm Tracker, and Image J CASA) on the exact same video recordings to evaluate the differences in sperm motility parameters related to the specific CASA used. To cover a wide range of sperm motility parameters, we chose 12-second video recordings at 25 and 50 Hz frame rates after sperm motility activation using three taxonomically distinct fish species (sterlet: Acipenser ruthenus L.; common carp: Cyprinus carpio L.; and rainbow trout: Oncorhynchus mykiss Walbaum) that are characterized by essential differences in sperm behavior during motility. Systematically higher values of velocity and beat cross frequency (BCF) were observed in video recordings obtained at 50 Hz frame frequency compared with 25 Hz for all three systems. Motility parameters were affected by the CASA and species used for analyses. Image J and CRISMAS calculated higher curvilinear velocity (VCL) values for rainbow trout and common carp at 25 Hz frequency compared with the Hobson Sperm Tracker, whereas at 50 Hz, a significant difference was observed only for rainbow trout sperm recordings. No significant difference was observed between the CASA systems for sterlet sperm motility at 25 and 50 Hz. Additional analysis of 1-second segments taken at three time points (1, 6, and 12 seconds of the recording) revealed a dramatic decrease in common carp and rainbow trout sperm speed. The motility parameters of sterlet spermatozoa did not change significantly during the 12-second motility period and should be considered as a suitable model for longer motility analyses. Our results indicated that the CASA used can affect motility results even when the same motility recordings are used. These results could be critically altered by the recording quality, time of analysis, and frame rate of camera, and could result in erroneous conclusions.

  5. An infrared system for monitoring Drosophila motility during microgravity

    NASA Technical Reports Server (NTRS)

    Miller, Mark S.; Fortney, Michael D.; Keller, Tony S.

    2002-01-01

    Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket.

  6. An infrared system for monitoring Drosophila motility during microgravity.

    PubMed

    Miller, Mark S; Fortney, Michael D; Keller, Tony S

    2002-12-01

    Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket. PMID:14638462

  7. Gastrointestinal symptoms and motility disorders in patients with systemic scleroderma

    PubMed Central

    Di Ciaula, Agostino; Covelli, Michele; Berardino, Massimo; Wang, David QH; Lapadula, Giovanni; Palasciano, Giuseppe; Portincasa, Piero

    2008-01-01

    Background Studies on gastrointestinal symptoms, dysfunctions, and neurological disorders in systemic scleroderma are lacking so far. Methods Thirty-eight scleroderma patients (34 limited, 4 diffuse), 60 healthy controls and 68 dyspeptic controls were scored for upper and lower gastrointestinal symptoms (dyspepsia, bowel habits), gastric and gallbladder emptying to liquid meal (functional ultrasonography) and small bowel transit (H2-breath test). Autonomic nerve function was assessed by cardiovascular tests. Results The score for dyspepsia (mainly gastric fullness) was greater in scleroderma patients than healthy controls, but lower than dyspeptic controls who had multiple symptoms, instead. Scleroderma patients with dyspepsia had a longer disease duration. Fasting antral area and postprandial antral dilatation were smaller in scleroderma patients than dyspeptic and healthy controls. Gastric emptying was delayed in both scleroderma patients (particularly in those with abnormal dyspeptic score) and dyspeptic controls, who also showed a larger residual area. Despite gallbladder fasting and postprandial volumes were comparable across the three groups, gallbladder refilling appeared delayed in dyspeptic controls and mainly dependent on delayed gastric emptying in scleroderma. Small intestinal transit was also delayed in 74% of scleroderma and 66% of dyspeptic controls. Bowel habits were similar among the three groups. Autonomic neuropathy was not associated with dyspepsia, gastric and gallbladder motility and small intestinal transit. Conclusion In scleroderma patients dyspepsia (mainly gastric fullness), restricted distension of the gastric antrum and diffuse gastrointestinal dysmotility are frequent features. These defects are independent from the occurrence of autonomic neuropathy. PMID:18304354

  8. An infrared system for monitoring Drosophila motility during microgravity.

    PubMed

    Miller, Mark S; Fortney, Michael D; Keller, Tony S

    2002-12-01

    Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket.

  9. The cell sorting process of Xenopus gastrula cells involves the acto-myosin system and TGF-β signaling.

    PubMed

    Harata, Ayano; Matsuzaki, Takashi; Nishikawa, Akio; Ihara, Setsunosuke

    2013-03-01

    We have previously shown that the cell sorting process of animal pole cells (AC) and vegetal pole cells (VC) from Xenopus gastrulae is considered to involve two steps: concentrification and polarization. In this study, we addressed the question of what specified the spatial relationship of the AC and VC clusters during the process. First, we examined the inhibitory or facilitatory treatment for myosin 2 activity during each of the two steps. The aggregates treated with Y27632 or blebbistatin during the concentrification step showed a cluster random arrangement, suggesting the prevention of the cell sorting by inhibition of myosin 2. Meanwhile, the treatment with a Rac1 inhibitor, NSC23766, during the same step resulted in promotion of the fusion of the AC clusters and the progression of the cell sorting, presumably by an indirect activation of myosin 2. On the other hand, the treatments with any of the three drugs during the polarization step showed that the two clusters did not appose, and their array remained concentric. Thus, the modulation of cell contraction might be indispensable to each of the two steps. Next, the activin/nodal TGF-β signaling was perturbed by using a specific activin receptor-like kinase inhibitor, SB431542. The results revealed a bimodal participation of the activin/nodal TGF-β signaling, i.e., suppressive and promotive effects on the concentrification and the polarization, respectively. Thus, the present in vitro system, which permits not only the cell contraction-mediated cell sorting but also the TGF-β-directed mesodermal induction such as cartilage formation, may fairly reflect the embryogenesis in vivo.

  10. A two-component regulatory system modulates twitching motility in Dichelobacter nodosus.

    PubMed

    Kennan, Ruth M; Lovitt, Carrie J; Han, Xiaoyan; Parker, Dane; Turnbull, Lynne; Whitchurch, Cynthia B; Rood, Julian I

    2015-08-31

    Dichelobacter nodosus is the essential causative agent of footrot in sheep and type IV fimbriae-mediated twitching motility has been shown to be essential for virulence. We have identified a two-component signal transduction system (TwmSR) that shows similarity to chemosensory systems from other bacteria. Insertional inactivation of the gene encoding the response regulator, TwmR, led to a twitching motility defect, with the mutant having a reduced rate of twitching motility when compared to the wild-type and a mutant complemented with the wild-type twmR gene. The reduced rate of twitching motility was not a consequence of a reduced growth rate or decreased production of surface located fimbriae, but video microscopy indicated that it appeared to result from an overall loss of twitching directionality. These results suggest that a chemotactic response to environmental factors may play an important role in the D. nodosus-mediated disease process.

  11. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer

    PubMed Central

    Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R. Dyche; Rao, Madan; Mayor, Satyajit

    2016-01-01

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  12. Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence.

    PubMed

    Kazmierczak, Barbara I; Schniederberend, Maren; Jain, Ruchi

    2015-12-01

    Pseudomonas aeruginosa navigates using two distinct forms of motility, swimming and twitching. A polar flagellum and Type 4 pili power these movements, respectively, allowing P. aeruginosa to attach to and colonize surfaces. Single cell imaging and particle tracking algorithms have revealed a wide range of bacterial surface behaviors which are regulated by second messengers cyclic-di-GMP and cAMP; the production of these signals is, in turn, responsive to the engagement of motility organelles with a surface. Innate immune defense systems, long known to recognize structural components of flagella, appear to respond to motility itself. The association of motility with both upregulation of virulence and induction of host defense mechanisms underlies the complex contributions of flagella and pili to P. aeruginosa pathogenesis. PMID:26476804

  13. Geometrical Origins of Contractility in Disordered Actomyosin Networks

    NASA Astrophysics Data System (ADS)

    Lenz, Martin

    2014-10-01

    Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical understanding of contractility in the myriad of disordered actomyosin systems found in vivo.

  14. Roles of Pseudomonas aeruginosa las and rhl Quorum-Sensing Systems in Control of Twitching Motility

    PubMed Central

    Glessner, Alex; Smith, Roger S.; Iglewski, Barbara H.; Robinson, Jayne B.

    1999-01-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an important human pathogen. The production of several virulence factors by P. aeruginosa is controlled through two quorum-sensing systems, las and rhl. We have obtained evidence that both the las and rhl quorum-sensing systems are also required for type 4 pilus-dependent twitching motility and infection by the pilus-specific phage D3112cts. Mutants which lack the ability to synthesize PAI-1, PAI-2, or both autoinducers were significantly or greatly impaired in twitching motility and in susceptibility to D3112cts. Twitching motility and phage susceptibility in the autoinducer-deficient mutants were partially restored by exposure to exogenous PAI-1 and PAI-2. Both twitching motility and infection by pilus-specific phage are believed to be dependent on the extension and retraction of polar type 4 pili. Western blot analysis of whole-cell lysates and enzyme-linked immunosorbent assays of intact cells were used to measure the amounts of pilin on the cell surfaces of las and rhl mutants relative to that of the wild type. It appears that PAI-2 plays a crucial role in twitching motility and phage infection by affecting the export and assembly of surface type 4 pili. The ability of P. aeruginosa cells to adhere to human bronchial epithelial cells was also found to be dependent on the rhl quorum-sensing system. Microscopic analysis of twitching motility indicated that mutants which were unable to synthesize PAI-1 were defective in the maintenance of cellular monolayers and migrating packs of cells. Thus, PAI-1 appears to have an essential role in maintaining cell-cell spacing and associations required for effective twitching motility. PMID:10049396

  15. Reassessing the mechanics of parasite motility and host-cell invasion.

    PubMed

    Tardieux, Isabelle; Baum, Jake

    2016-08-29

    The capacity to migrate is fundamental to multicellular and single-celled life. Apicomplexan parasites, an ancient protozoan clade that includes malaria parasites (Plasmodium) and Toxoplasma, achieve remarkable speeds of directional cell movement. This rapidity is achieved via a divergent actomyosin motor system, housed within a narrow compartment that lies underneath the length of the parasite plasma membrane. How this motor functions at a mechanistic level during motility and host cell invasion is a matter of debate. Here, we integrate old and new insights toward refining the current model for the function of this motor with the aim of revitalizing interest in the mechanics of how these deadly pathogens move. PMID:27573462

  16. Shortening actin filaments cause force generation in actomyosin network to change from contractile to extensile

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Gardel, Margaret

    Motor proteins in conjunction with filamentous proteins convert biochemical energy into mechanical energy which serves a number of cellular processes including cell motility, force generation and intracellular cargo transport. In-vitro experiments suggest that the forces generated by kinesin motors on microtubule bundles are extensile in nature whereas myosin motors on actin filaments are contractile. It is not clear how qualitatively similar systems can show completely different behaviors in terms of the nature of force generation. In order to answer this question, we carry out in vitro experiments where we form quasi 2D filamentous actomyosin networks and vary the length of actin filaments by adding capping protein. We show that when filaments are much shorter than their typical persistence length (approximately 10 microns), the forces generated are extensile and we see active nematic defect propagation, as seen in the microtubule-kinesin system. Based on this observation, we claim that the rigidity of rods plays an important role in dictating the nature of force generation in such systems. In order to understand this transition, we selectively label individual filaments and find that longer filaments show considerable bending and buckling, making them difficult to slide and extend along their length.

  17. Microfabricated Systems and Assays for Studying the Cytoskeletal Organization, Micromechanics, and Motility Patterns of Cancerous Cells

    PubMed Central

    Huda, Sabil; Pilans, Didzis; Makurath, Monika; Hermans, Thomas

    2015-01-01

    Cell motions are driven by coordinated actions of the intracellular cytoskeleton – actin, microtubules (MTs) and substrate/focal adhesions (FAs). This coordination is altered in metastatic cancer cells resulting in deregulated and increased cellular motility. Microfabrication tools, including photolithography, micromolding, microcontact printing, wet stamping and microfluidic devices have emerged as a powerful set of experimental tools with which to probe and define the differences in cytoskeleton organization/dynamics and cell motility patterns in non-metastatic and metastatic cancer cells. In this review, we discuss four categories of microfabricated systems: (i) micropatterned substrates for studying of cell motility sub-processes (for example, MT targeting of FAs or cell polarization); (ii) systems for studying cell mechanical properties, (iii) systems for probing overall cell motility patterns within challenging geometric confines relevant to metastasis (for example, linear and ratchet geometries), and (iv) microfluidic devices that incorporate co-cultures of multiple cells types and chemical gradients to mimic in vivo intravasation/extravasation steps of metastasis. Together, these systems allow for creating controlled microenvironments that not only mimic complex soft tissues, but are also compatible with live cell high-resolution imaging and quantitative analysis of single cell behavior. PMID:26900544

  18. Electrochemical monitoring systems of demembranated flagellate algal motility for ATP sensing.

    PubMed

    Shitanda, Isao; Tanaka, Koji; Hoshi, Yoshinao; Itagaki, Masayuki

    2014-02-21

    The ATP-induced behavior of the unicellular flagellate alga Chlamydomonas reinhardtii was recorded as changes in the redox currents for a coexisting redox marker. The ATP concentration was estimated using the presented compact electrochemical system, which is based on monitoring of the motility of the flagellates. PMID:24336166

  19. A protein secretion system linked to bacteroidete gliding motility and pathogenesis.

    PubMed

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J; Rhodes, Ryan G; Nakayama, Koji

    2010-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  20. A protein secretion system linked to bacteroidete gliding motility and pathogenesis

    PubMed Central

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji

    2009-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  1. A protein secretion system linked to bacteroidete gliding motility and pathogenesis.

    PubMed

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J; Rhodes, Ryan G; Nakayama, Koji

    2010-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum.

  2. Evaluation of the three-dimensional endoscope system for assessing the gastrointestinal motility

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kayo; Yamada, Kenji; Watabe, Kenji; Takeda, Maki; Nishimura, Takahiro; Kido, Michiko; Nagakura, Toshiaki; Takahashi, Hideya; Nishida, Tsutomu; Iijima, Hideki; Tsujii, Masahiko; Takehara, Tetsuo; Ohno, Yuko

    2014-02-01

    This paper described evaluation of the three-dimensional endoscope system for assessing the gastrointestinal motility. Gastrointestinal diseases are mainly based on the morphological or anatomical abnormity. However, sometimes the gastrointestinal symptoms are apparent without visible abnormalities. Such diseases are called functional gastrointestinal disorder, for example, functional dyspepsia, and irritable bowel syndrome. One of the major factors of these diseases is the gastrointestinal dysmotility. Assessment procedures for motor function are either invasive, or indirect. We thus propose a three-dimensional endoscope system for assessing the gastrointestinal motility. To assess the dynamic motility of the stomach, three-dimensional endoscopic imaging of stomach lining is performed. Propagating contraction waves are detected by subtracting estimated stomach geometry without contraction waves from one with contraction waves. After detecting constriction waves, their frequency, amplitude, and speed of propagation can be calculated. In this study, we evaluate the proposed system. First, we evaluate the developed three-dimensional endoscope system by a flat plane. This system can measure the geometry of the flat plane with an error of less than 10 percent of the distance between endoscope tip and the object. Then we confirm the validity of a prototype system by a wave simulated model. The detected wave is approximated by a Gaussian function. In the experiment, the amplitude and position of the wave can be measure with 1 mm accuracy. These results suggest that the proposed system can measure the speed and amplitude of contraction. In the future, we evaluate the proposed system in vivo experiments.

  3. Isolation of Cytokinetic Actomyosin Rings from Saccharomyces cerevisiae and Schizosaccharomyces pombe

    PubMed Central

    Palani, Saravanan; Chew, Ting Gang; Balasubramanian, Mohan K.

    2016-01-01

    Cytokinesis is the final stage of cell division, through which cellular constituents of mother cells are partitioned into two daughter cells resulting in the increase in cell number. In animal and fungal cells cytokinesis is mediated by an actomyosin contractile ring, which is attached to the overlying cell membrane. Contraction of this ring after chromosome segregation physically severs the mother cell into two daughters. Here we describe methods for the isolation and partial purification of the actomyosin ring from the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae, which can serve as in vitro systems to facilitate biochemical and ultrastructural analysis of cytokinesis in these genetically tractable model systems. PMID:26519310

  4. Isolation of Cytokinetic Actomyosin Rings from Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    PubMed

    Huang, Junqi; Mishra, Mithilesh; Palani, Saravanan; Chew, Ting Gang; Balasubramanian, Mohan K

    2016-01-01

    Cytokinesis is the final stage of cell division, through which cellular constituents of mother cells are partitioned into two daughter cells resulting in the increase in cell number. In animal and fungal cells cytokinesis is mediated by an actomyosin contractile ring, which is attached to the overlying cell membrane. Contraction of this ring after chromosome segregation physically severs the mother cell into two daughters. Here we describe methods for the isolation and partial purification of the actomyosin ring from the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae, which can serve as in vitro systems to facilitate biochemical and ultrastructural analysis of cytokinesis in these genetically tractable model systems.

  5. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    SciTech Connect

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A.; Solecki, David J.

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  6. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE PAGES

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A.; Solecki, David J.

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  7. Orchestrated content release from Drosophila glue-protein vesicles by a contractile actomyosin network.

    PubMed

    Rousso, Tal; Schejter, Eyal D; Shilo, Ben-Zion

    2016-02-01

    Releasing content from large vesicles measuring several micrometres in diameter poses exceptional challenges to the secretory system. An actomyosin network commonly coats these vesicles, and is thought to provide the necessary force mediating efficient cargo release. Here we describe the spatial and temporal dynamics of the formation of this actomyosin coat around large vesicles and the resulting vesicle collapse, in live Drosophila melanogaster salivary glands. We identify the Formin family protein Diaphanous (Dia) as the main actin nucleator involved in generating this structure, and uncover Rho as an integrator of actin assembly and contractile machinery activation comprising this actomyosin network. High-resolution imaging reveals a unique cage-like organization of myosin II on the actin coat. This myosin arrangement requires branched-actin polymerization, and is critical for exerting a non-isotropic force, mediating efficient vesicle contraction.

  8. Involvement of the Type IX Secretion System in Capnocytophaga ochracea Gliding Motility and Biofilm Formation

    PubMed Central

    Kita, Daichi; Shibata, Satoshi; Kikuchi, Yuichiro; Kokubu, Eitoyo; Nakayama, Koji; Saito, Atsushi

    2016-01-01

    Capnocytophaga ochracea is a Gram-negative, rod-shaped bacterium that demonstrates gliding motility when cultured on solid agar surfaces. C. ochracea possesses the ability to form biofilms; however, factors involved in biofilm formation by this bacterium are unclear. A type IX secretion system (T9SS) in Flavobacterium johnsoniae was shown to be involved in the transport of proteins (e.g., several adhesins) to the cell surface. Genes orthologous to those encoding T9SS proteins in F. johnsoniae have been identified in the genome of C. ochracea; therefore, the T9SS may be involved in biofilm formation by C. ochracea. Here we constructed three ortholog-deficient C. ochracea mutants lacking sprB (which encodes a gliding motility adhesin) or gldK or sprT (which encode T9SS proteins in F. johnsoniae). Gliding motility was lost in each mutant, suggesting that, in C. ochracea, the proteins encoded by sprB, gldK, and sprT are necessary for gliding motility, and SprB is transported to the cell surface by the T9SS. For the ΔgldK, ΔsprT, and ΔsprB strains, the amounts of crystal violet-associated biofilm, relative to wild-type values, were 49%, 34%, and 65%, respectively, at 48 h. Confocal laser scanning and scanning electron microscopy revealed that the biofilms formed by wild-type C. ochracea were denser and bacterial cells were closer together than in those formed by the mutant strains. Together, these results indicate that proteins exported by the T9SS are key elements of the gliding motility and biofilm formation of C. ochracea. PMID:26729712

  9. Metal cation controls myosin and actomyosin kinetics

    PubMed Central

    Tkachev, Yaroslav V; Ge, Jinghua; Negrashov, Igor V; Nesmelov, Yuri E

    2013-01-01

    We have perturbed myosin nucleotide binding site with magnesium-, manganese-, or calcium-nucleotide complexes, using metal cation as a probe to examine the pathways of myosin ATPase in the presence of actin. We have used transient time-resolved FRET, myosin intrinsic fluorescence, fluorescence of pyrene labeled actin, combined with the steady state myosin ATPase activity measurements of previously characterized D.discoideum myosin construct A639C:K498C. We found that actin activation of myosin ATPase does not depend on metal cation, regardless of the cation-specific kinetics of nucleotide binding and dissociation. The rate limiting step of myosin ATPase depends on the metal cation. The rate of the recovery stroke and the reverse recovery stroke is directly proportional to the ionic radius of the cation. The rate of nucleotide release from myosin and actomyosin, and ATP binding to actomyosin depends on the cation coordination number. PMID:24115140

  10. Infection of Central Nervous System by Motile Enterococcus: First Case Report

    PubMed Central

    Kurup, Asok; Tee, Wen Sim Nancy; Loo, Liat Hui; Lin, Raymond

    2001-01-01

    A 66-year-old man with four indwelling ventriculoperitoneal shunts for multiloculated hydrocephalus from a complicated case of meningitis a year before developed shunt infection based on a syndrome of fever, drowsiness, and cerebrospinal fluid neutrophil pleocytosis in the background of repeated surgical manipulation to relieve successive shunt blockages. The cerebrospinal fluid culture, which yielded a motile Enterococcus species, was believed to originate from the gut. This isolate was lost in storage and could not be characterized further. The patient improved with vancomycin and high-dose ampicillin therapy. He relapsed a month later with Enterococcus gallinarum shunt infection, which responded to high-dose ampicillin and gentamicin therapy. This is probably the first case report of motile Enterococcus infection of the central nervous system. PMID:11158162

  11. Regulation of tissue morphodynamics: an important role for actomyosin contractility

    PubMed Central

    Siedlik, Michael J.; Nelson, Celeste M.

    2015-01-01

    Forces arising from contractile actomyosin filaments help shape tissue form during morphogenesis. Developmental events that result from actomyosin contractility include tissue elongation, bending, budding, and collective migration. Here, we highlight recent insights into these morphogenetic processes from the perspective of actomyosin contractility as a key regulator. Emphasis is placed on a range of results obtained through live imaging, culture, and computational methods. Combining these approaches in the future has the potential to generate a robust, quantitative understanding of tissue morphodynamics. PMID:25748251

  12. Influence of the Enteric Nervous System on Gut Motility Patterns in Zebrafish

    NASA Astrophysics Data System (ADS)

    Baker, Ryan; Ganz, Julia; Melancon, Ellie; Eisen, Judith; Parthasarathy, Raghuveer

    The enteric nervous system (ENS), composed of diverse neuronal subtypes and glia, regulates essential gut functions including motility, secretion, and homeostasis. In humans and animals, decreased numbers of enteric neurons lead to a variety of types of gut dysfunction. However, surprisingly little is known about how the number, position, or subtype of enteric neurons affect the regulation of gut peristalsis, due to the lack of good model systems and the lack of tools for the quantitative characterization of gut motion. We have therefore developed a method of quantitative spatiotemporal mapping using differential interference contrast microscopy and particle image velocimetry, and have applied this to investigate intestinal dynamics in normal and mutant larval zebrafish. From movies of gut motility, we obtain a velocity vector field representative of gut motion, from which we can quantify parameters relating to gut peristalsis such as frequency, wave speed, deformation amplitudes, wave duration, and non-linearity of waves. We show that mutants with reduced neuron number have contractions that are more regular in time and reduced in amplitude compared to wild-type (normal) fish. We also show that feeding fish before their yolk is consumed leads to stronger motility patterns. We acknowledge support from NIH awards P50 GM098911 and P01 HD022486.

  13. Planaria as a Model System for the Analysis of Ciliary Assembly and Motility.

    PubMed

    King, Stephen M; Patel-King, Ramila S

    2016-01-01

    Planarian flatworms are carnivorous invertebrates with astounding regenerative properties. They have a ventral surface on which thousands of motile cilia are exposed to the extracellular environment. These beat in a synchronized manner against secreted mucus thereby propelling the animal forward. Similar to the nematode Caenorhabditis elegans, the planarian Schmidtea mediterranea is easy to maintain in the laboratory and is highly amenable to simple RNAi approaches through feeding with dsRNA. The methods are simple and robust, and the level of gene expression reduction that can be obtained is, in many cases, almost total. Moreover, cilia assembly and function is not essential for viability in this organism, as animals readily survive for weeks even with the apparent total absence of this organelle. Both genome and expressed sequence tag databases are available and allow design of vectors to target any desired gene of choice. Combined, these feature make planaria a useful model system in which to examine ciliary assembly and motility, especially in the context of a ciliated epithelium where many organelles beat in a hydrodynamically coupled synchronized manner. In addition, as planaria secrete mucus against which the cilia beat to generate propulsive force, this system may also prove useful for analysis of mucociliary interactions. In this chapter, we provide simple methods to maintain a planarian colony, knockdown gene expression by RNAi, and analyze the resulting animals for whole organism motility as well as ciliary architecture and function.

  14. Planaria as a Model System for the Analysis of Ciliary Assembly and Motility.

    PubMed

    King, Stephen M; Patel-King, Ramila S

    2016-01-01

    Planarian flatworms are carnivorous invertebrates with astounding regenerative properties. They have a ventral surface on which thousands of motile cilia are exposed to the extracellular environment. These beat in a synchronized manner against secreted mucus thereby propelling the animal forward. Similar to the nematode Caenorhabditis elegans, the planarian Schmidtea mediterranea is easy to maintain in the laboratory and is highly amenable to simple RNAi approaches through feeding with dsRNA. The methods are simple and robust, and the level of gene expression reduction that can be obtained is, in many cases, almost total. Moreover, cilia assembly and function is not essential for viability in this organism, as animals readily survive for weeks even with the apparent total absence of this organelle. Both genome and expressed sequence tag databases are available and allow design of vectors to target any desired gene of choice. Combined, these feature make planaria a useful model system in which to examine ciliary assembly and motility, especially in the context of a ciliated epithelium where many organelles beat in a hydrodynamically coupled synchronized manner. In addition, as planaria secrete mucus against which the cilia beat to generate propulsive force, this system may also prove useful for analysis of mucociliary interactions. In this chapter, we provide simple methods to maintain a planarian colony, knockdown gene expression by RNAi, and analyze the resulting animals for whole organism motility as well as ciliary architecture and function. PMID:27514927

  15. Electroacupuncture at ST37 Enhances Jejunal Motility via Excitation of the Parasympathetic System in Rats and Mice

    PubMed Central

    Yuan, Mengqian; Li, Yuqin; Wang, Yidan; Zhang, Na; Hu, XuanMing; Yin, Yin; Zhu, Bing

    2016-01-01

    Background. The roles of the sympathetic and parasympathetic systems in mediating the effect of electroacupuncture (EA) at ST37 on jejunal motility have yet to be demonstrated. Aim. We used rats and mice to investigate the effect and mechanism of action of EA at ST37 on jejunal motility. Methods. Jejunal motility was recorded by a balloon placed in the jejunum and connected to a biological signal collection system through a transducer. The effects of EA (3 mA) at ST37 were evaluated in Sprague-Dawley rats without drugs and with the administration of clenbuterol, propranolol, acetylcholine, and atropine. Further, the efficacy of EA at different intensities (1/2/4/6/8 mA) was measured in wild-type mice and β1β2−/− mice and M2M3−/− mice. Results. In Sprague-Dawley rats, the excitatory effect of EA at ST37 on jejunal motility disappeared in the presence of the muscarinic receptor antagonist atropine. EA at ST37 was less effective in M2M3−/− mice than in wild-type mice. Furthermore, to a certain extent, there existed “intensity-response” relationship between jejunal motility and EA. Conclusions. EA at ST37 can enhance jejunal motility in rats and mice mainly via excitation of the parasympathetic pathway. There is an “intensity-response” relationship between EA and effect on jejunal motility.

  16. Integrin Molecular Tension within Motile Focal Adhesions.

    PubMed

    Wang, Xuefeng; Sun, Jie; Xu, Qian; Chowdhury, Farhan; Roein-Peikar, Mehdi; Wang, Yingxiao; Ha, Taekjip

    2015-12-01

    Forces transmitted by integrins regulate many important cellular functions. Previously, we developed tension gauge tether (TGT) as a molecular force sensor and determined the threshold tension across a single integrin-ligand bond, termed integrin tension, required for initial cell adhesion. Here, we used fluorescently labeled TGTs to study the magnitude and spatial distribution of integrin tension on the cell-substratum interface. We observed two distinct levels of integrin tension. A >54 pN molecular tension is transmitted by clustered integrins in motile focal adhesions (FAs) and such force is generated by actomyosin, whereas the previously reported ∼40 pN integrin tension is transmitted by integrins before FA formation and is independent of actomyosin. We then studied FA motility using a TGT-coated surface as a fluorescent canvas, which records the history of integrin force activity. Our data suggest that the region of the strongest integrin force overlaps with the center of a motile FA within 0.2 μm resolution. We also found that FAs move in pairs and that the asymmetry in the motility of an FA pair is dependent on the initial FA locations on the cell-substratum interface.

  17. Low-cost motility tracking system (LOCOMOTIS) for time-lapse microscopy applications and cell visualisation.

    PubMed

    Lynch, Adam E; Triajianto, Junian; Routledge, Edwin

    2014-01-01

    Direct visualisation of cells for the purpose of studying their motility has typically required expensive microscopy equipment. However, recent advances in digital sensors mean that it is now possible to image cells for a fraction of the price of a standard microscope. Along with low-cost imaging there has also been a large increase in the availability of high quality, open-source analysis programs. In this study we describe the development and performance of an expandable cell motility system employing inexpensive, commercially available digital USB microscopes to image various cell types using time-lapse and perform tracking assays in proof-of-concept experiments. With this system we were able to measure and record three separate assays simultaneously on one personal computer using identical microscopes, and obtained tracking results comparable in quality to those from other studies that used standard, more expensive, equipment. The microscopes used in our system were capable of a maximum magnification of 413.6×. Although resolution was lower than that of a standard inverted microscope we found this difference to be indistinguishable at the magnification chosen for cell tracking experiments (206.8×). In preliminary cell culture experiments using our system, velocities (mean µm/min ± SE) of 0.81 ± 0.01 (Biomphalaria glabrata hemocytes on uncoated plates), 1.17 ± 0.004 (MDA-MB-231 breast cancer cells), 1.24 ± 0.006 (SC5 mouse Sertoli cells) and 2.21 ± 0.01 (B. glabrata hemocytes on Poly-L-Lysine coated plates), were measured and are consistent with previous reports. We believe that this system, coupled with open-source analysis software, demonstrates that higher throughput time-lapse imaging of cells for the purpose of studying motility can be an affordable option for all researchers.

  18. Contraction of cross-linked actomyosin bundles

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  19. Identification of biotin carboxyl carrier protein in Tetrahymena and its application in in vitro motility systems of outer arm dynein.

    PubMed

    Edamatsu, Masaki

    2014-10-01

    Axonemal dynein plays a central role in ciliary beating. Recently, a functional expression system of axonemal dynein was established in the ciliated protozoan Tetrahymena. This study identifies biotin carboxyl carrier protein (BCCP) in Tetrahymena and demonstrates its application in in vitro motility systems of outer arm dynein.

  20. Role of catch bonds in actomyosin mechanics and cell mechanosensitivity.

    PubMed

    Vernerey, Franck J; Akalp, Umut

    2016-07-01

    We propose a mechanism of adherent cell mechanosensing, based on the idea that the contractile actomyosin machinery behaves as a catch bond. For this, we construct a simplified model of the actomyosin structure that constitutes the building block of stress fibers and express the stability of cross bridges in terms of the force-dependent bonding energy of the actomyosin bond. Consistent with experimental measurements, we then consider that the energy barrier of the actomyosin bond increases for tension and show that this response is enough to explain the force-induced stabilization of a stress fiber. Further numerical simulations at the cellular level show that the catch-bond hypothesis can help in understanding and predict the sensitivity of adherent cells to substrate stiffness. PMID:27575160

  1. Role of catch bonds in actomyosin mechanics and cell mechanosensitivity

    NASA Astrophysics Data System (ADS)

    Vernerey, Franck J.; Akalp, Umut

    2016-07-01

    We propose a mechanism of adherent cell mechanosensing, based on the idea that the contractile actomyosin machinery behaves as a catch bond. For this, we construct a simplified model of the actomyosin structure that constitutes the building block of stress fibers and express the stability of cross bridges in terms of the force-dependent bonding energy of the actomyosin bond. Consistent with experimental measurements, we then consider that the energy barrier of the actomyosin bond increases for tension and show that this response is enough to explain the force-induced stabilization of a stress fiber. Further numerical simulations at the cellular level show that the catch-bond hypothesis can help in understanding and predict the sensitivity of adherent cells to substrate stiffness.

  2. Drak Is Required for Actomyosin Organization During Drosophila Cellularization

    PubMed Central

    Chougule, Ashish B.; Hastert, Mary C.; Thomas, Jeffrey H.

    2016-01-01

    The generation of force by actomyosin contraction is critical for a variety of cellular and developmental processes. Nonmuscle myosin II is the motor that drives actomyosin contraction, and its activity is largely regulated by phosphorylation of the myosin regulatory light chain. During the formation of the Drosophila cellular blastoderm, actomyosin contraction drives constriction of microfilament rings, modified cytokinesis rings. Here, we find that Drak is necessary for most of the phosphorylation of the myosin regulatory light chain during cellularization. We show that Drak is required for organization of myosin II within the microfilament rings. Proper actomyosin contraction of the microfilament rings during cellularization also requires Drak activity. Constitutive activation of myosin regulatory light chain bypasses the requirement for Drak, suggesting that actomyosin organization and contraction are mediated through Drak’s regulation of myosin activity. Drak is also involved in the maintenance of furrow canal structure and lateral plasma membrane integrity during cellularization. Together, our observations suggest that Drak is the primary regulator of actomyosin dynamics during cellularization. PMID:26818071

  3. Contractile Units in Disordered Actomyosin Bundles Arise from F-Actin Buckling

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Thoresen, Todd; Gardel, Margaret L.; Dinner, Aaron R.

    2012-06-01

    Bundles of filaments and motors are central to contractility in cells. The classic example is striated muscle, where actomyosin contractility is mediated by highly organized sarcomeres which act as fundamental contractile units. However, many contractile bundles in vivo and in vitro lack sarcomeric organization. Here we propose a model for how contractility can arise in bundles without sarcomeric organization and validate its predictions with experiments on a reconstituted system. In the model, internal stresses in frustrated arrangements of motors with diverse velocities cause filaments to buckle, leading to overall shortening. We describe the onset of buckling in the presence of stochastic motor head detachment and predict that buckling-induced contraction occurs in an intermediate range of motor densities. We then calculate the size of the “contractile units” associated with this process. Consistent with these results, our reconstituted actomyosin bundles show contraction at relatively high motor density, and we observe buckling at the predicted length scale.

  4. Central Nervous System Control of Gastrointestinal Motility and Secretion and Modulation of Gastrointestinal Functions

    PubMed Central

    Browning, Kirsteen N.; Travagli, R. Alberto

    2016-01-01

    Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers. PMID:25428846

  5. A mechanical model for the motility of actin filaments on myosin

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V., Jr.; Fulga, Florin; Nicolau, Dan V.

    2004-03-01

    The interaction of actin filaments with myosin is crucial to cell motility, muscular contraction, cell division and other processes. The in vitro motility assay involves the motion of actin filaments on a substrate coated with myosin, and is used extensively to investigate the dynamics of the actomyosin system. Following on from previous work, we propose a new mechanical model of actin motility on myosin, wherein a filament is modeled as a chain of beads connected by harmonic springs. This imposes a limitation on the "stretching" of the filament. The rotation of one bead with respect to its neighbours is also constrained in similar way. We implemented this model and used Monte Carlo simulations to determine whether it can predict the directionality of filament motion. The principal advantages of this model over our previous one are that we have removed the empirically correct but artificial assumption that the filament moves like a "worm" i.e. the head determines the direction of movement and the rest of the filament "follows" the head as well as the inclusion of dependencies on experimental rate constants (and so also on e.g. ATP concentration) via the cross-bridge cycle.

  6. Extending the molecular clutch beyond actin-based cell motility

    NASA Astrophysics Data System (ADS)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-10-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.

  7. Extending the molecular clutch beyond actin-based cell motility

    PubMed Central

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-01-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the “molecular clutch” description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of Major Sperm Protein (MSP), which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton. PMID:25383039

  8. Self-Organizing Actomyosin Patterns on the Cell Cortex at Epithelial Cell-Cell Junctions

    PubMed Central

    Moore, Thomas; Wu, Selwin K.; Michael, Magdalene; Yap, Alpha S.; Gomez, Guillermo A.; Neufeld, Zoltan

    2014-01-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  9. Self-organizing actomyosin patterns on the cell cortex at epithelial cell-cell junctions.

    PubMed

    Moore, Thomas; Wu, Selwin K; Michael, Magdalene; Yap, Alpha S; Gomez, Guillermo A; Neufeld, Zoltan

    2014-12-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  10. Microfluidic system based on the digital holography microscope for analysis of motile sperm

    NASA Astrophysics Data System (ADS)

    Di Caprio, G.; Coppola, G.; Grilli, S.; Ferraro, P.; Puglisi, R.; Balduzzi, D.; Galli, A.

    2009-06-01

    Digital holography (DH) has been employed in the retrieval of three dimensional images of bull's sperm heads. The system allows a three dimensional analysis of the sperm morphology by means of a Digital Holographic Microscope (DHM). Microscopic holography measurements are performed by projecting a magnified image of a microscopic hologram plane onto a CCD plane. This could constitute the basis of an alternative method for the zoothecnic industry aimed at the investigation of morphological features and the sorting of the motile sperm cells. Indeed, one of the main advantages of digital holography consists in its full non-invasivity and in the capability of investigating the shape of the sperm cells without altering their characteristics. In particular the proposed technique could be applied to investigate the frequency of aberrant spermatozoa. Until now, in fact, such industrial investigations have been mainly performed by means of specific painting probes: unfortunately this technique dramatically reduces the vitality of the sperm cells and can even cause chromosome aberration, making them useless for the zootechnical applications.

  11. Towards a computer-aided diagnosis system for colon motility dysfunctions

    NASA Astrophysics Data System (ADS)

    Glocker, Ben; Buhmann, Sonja; Kirchhoff, Chlodwig; Mussack, Thomas; Reiser, Maximilian; Navab, Nassir

    2007-03-01

    Colon motility disorders are a very common problem. A precise diagnosis with current methods is almost unachievable. This makes it extremely difficult for the clinical experts to decide for the right intervention such as colon resection. The use of cine MRI for visualizing the colon motility is a very promising technique. In addition, if image segmentation and qualitative motion analysis provide the necessary tools, it could provide the appropriate diagnostic solution. In this work we defined necessary steps in the image processing workflow to gain valuable measurements for a computer aided diagnosis of colon motility disorders. For each step, we developed methods to deal with the dynamic image data. There is need for compensating the breathing motion since no respiratory gating could be used. We segment the colon using a graph cuts approach in 2D and 3D for further analysis and visualization. The analysis of the large bowel motility is done by tracking the extension of the colon during a propagating peristaltic wave. The main objective of this work is to extract a motion model to define a clinical index that can be used in diagnosis of large bowel motility dysfunction. We aim at the classification and localization of such pathologies.

  12. Molecular Simulations of Actomyosin Network Self-Assembly and Remodeling

    NASA Astrophysics Data System (ADS)

    Komianos, James; Popov, Konstantin; Papoian, Garegin; Papoian Lab Team

    Actomyosin networks are an integral part of the cytoskeleton of eukaryotic cells and play an essential role in determining cellular shape and movement. Actomyosin network growth and remodeling in vivo is based on a large number of chemical and mechanical processes, which are mutually coupled and spatially and temporally resolved. To investigate the fundamental principles behind the self-organization of these networks, we have developed a detailed mechanochemical, stochastic model of actin filament growth dynamics, at a single-molecule resolution, where the nonlinear mechanical rigidity of filaments and their corresponding deformations under internally and externally generated forces are taken into account. Our work sheds light on the interplay between the chemical and mechanical processes governing the cytoskeletal dynamics, and also highlights the importance of diffusional and active transport phenomena. Our simulations reveal how different actomyosin micro-architectures emerge in response to varying the network composition. Support from NSF Grant CHE-1363081.

  13. Actin Depolymerization Drives Actomyosin Ring Contraction during Budding Yeast Cytokinesis

    PubMed Central

    Pinto, Inês Mendes; Rubinstein, Boris; Kucharavy, Andrei; Unruh, Jay R.; Li, Rong

    2012-01-01

    SUMMARY Actin filaments and myosin-II are evolutionarily conserved force generating components of the contractile ring during cytokinesis. Here we show that in budding yeast actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuates actomyosin ring constriction. Deletion of myosin-II motor domain or the myosin regulatory light chain reduced the contraction rate and also the rate of actin depolymerization in the ring. We constructed a quantitative microscopic model of actomyosin ring constriction via filament sliding driven by both actin depolymerization and myosin-II motor activity. Model simulations based on experimental measurements supports the notion that actin depolymerization is the predominant mechanism for ring constriction. The model predicts invariability of total contraction time irrespective of the initial ring size as originally reported for C elegans embryonic cells. This prediction was validated in yeast cells of different sizes due to having different ploidies. PMID:22698284

  14. Detection of motile micro-organisms in biological samples by means of a fully automated image processing system

    NASA Astrophysics Data System (ADS)

    Alanis, Elvio; Romero, Graciela; Alvarez, Liliana; Martinez, Carlos C.; Hoyos, Daniel; Basombrio, Miguel A.

    2001-08-01

    A fully automated image processing system for detection of motile microorganism is biological samples is presented. The system is specifically calibrated for determining the concentration of Trypanosoma Cruzi parasites in blood samples of mice infected with Chagas disease. The method can be adapted for use in other biological samples. A thin layer of blood infected by T. cruzi parasites is examined in a common microscope in which the images of the vision field are taken by a CCD camera and temporarily stored in the computer memory. In a typical field, a few motile parasites are observable surrounded by blood red cells. The parasites have low contrast. Thus, they are difficult to detect visually but their great motility betrays their presence by the movement of the nearest neighbor red cells. Several consecutive images of the same field are taken, decorrelated with each other where parasites are present, and digitally processed in order to measure the number of parasites present in the field. Several fields are sequentially processed in the same fashion, displacing the sample by means of step motors driven by the computer. A direct advantage of this system is that its results are more reliable and the process is less time consuming than the current subjective evaluations made visually by technicians.

  15. Analysis of rumen motility patterns using a wireless telemetry system to characterize bovine reticuloruminal contractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to characterize rumen motility patterns of cattle fed once daily. Eight ruminally-cannulated Holstein steers (BW = 321 ± 11 kg) were fed alfalfa cubes once daily at 1.5 × NEm top-dressed with a TM-salt pre-mix. Three 24-h collection periods were conducted and each com...

  16. Effect of dialysis on the proacrosin/acrosin system and motility of turkey (Meleagris gallopavo) spermatozoa during liquid storage.

    PubMed

    Słowińska, M; Dietrich, G J; Liszewska, E; Kozłowski, K; Jankowski, J; Ciereszko, A

    2013-01-01

    1. The effect of dialysis on the proacrosin/acrosin system and motility of turkey spermatozoa were examined after 24 and 48 h of liquid storage at 4°C. 2. Fifteen pools of semen diluted in extender were dialysed against Clemson Turkey Semen Diluent (dialysed semen) or stored in aerobic conditions (undialysed semen). Semen quality was assessed by measuring spermatozoa motility, amidase activity of spermatozoa suspension, spermatozoa extract and seminal plasma and anti-trypsin activity of seminal plasma. 3. Extracted amidase activity of dialysed semen was lower than undialysed by 28%. Higher values for speed parameters of spermatozoa were found in dialysed semen in comparison to undialysed, for example, 81.6 µm/s versus 75.0 µm/s for straight-line velocity (VSL), 114.7 µm/s versus 110.3 µm/s for curvilinear velocity (VCL) and 86.6 µm/s versus 79.8 µm/s for average path velocity (VAP). 4. It was concluded that dialysis caused lower amidase activity of spermatozoa and increased speed parameters of progressively motile turkey spermatozoa during storage. Lower extracted amidase activity of dialysed semen reflected better membrane integrity of dialysed semen and suggests that the proacrosin/acrosin system of dialysed spermatozoa is less susceptible to activation compared to undialysed semen.

  17. Rear actomyosin contractility-driven directional cell migration in three-dimensional matrices: a mechano-chemical coupling mechanism

    PubMed Central

    Chi, Qingjia; Yin, Tieying; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Zhao, Jingbo; Liao, Donghua; Wang, Guixue

    2014-01-01

    Cell migration is of vital importance in many biological processes, including organismal development, immune response and development of vascular diseases. For instance, migration of vascular smooth muscle cells from the media to intima is an essential part of the development of atherosclerosis and restenosis after stent deployment. While it is well characterized that cells use actin polymerization at the leading edge to propel themselves to move on two-dimensional substrates, the migration modes of cells in three-dimensional matrices relevant to in vivo environments remain unclear. Intracellular tension, which is created by myosin II activity, fulfils a vital role in regulating cell migration. We note that there is compelling evidence from theoretical and experimental work that myosin II accumulates at the cell rear, either isoform-dependent or -independent, leading to three-dimensional migration modes driven by posterior myosin II tension. The scenario is not limited to amoeboid migration, and it is also seen in mesenchymal migration in which a two-dimensional-like migration mode based on front protrusions is often expected, suggesting that there may exist universal underlying mechanisms. In this review, we aim to shed some light on how anisotropic myosin II localization induces cell motility in three-dimensional environments from a biomechanical view. We demonstrate an interesting mechanism where an interplay between mechanical myosin II recruitment and biochemical myosin II activation triggers directional migration in three-dimensional matrices. In the case of amoeboid three-dimensional migration, myosin II first accumulates at the cell rear to induce a slight polarization displayed as a uropod-like structure under the action of a tension-dependent mechanism. Subsequent biochemical signalling pathways initiate actomyosin contractility, producing traction forces on the adhesion system or creating prominent motile forces through blebbing activity, to drive cells

  18. Curvature-induced expulsion of actomyosin bundles during cytokinetic ring contraction

    PubMed Central

    Huang, Junqi; Chew, Ting Gang; Kamnev, Anton; Martin, Douglas S; Carter, Nicholas J; Cross, Robert Anthony; Oliferenko, Snezhana; Balasubramanian, Mohan K

    2016-01-01

    Many eukaryotes assemble a ring-shaped actomyosin network that contracts to drive cytokinesis. Unlike actomyosin in sarcomeres, which cycles through contraction and relaxation, the cytokinetic ring disassembles during contraction through an unknown mechanism. Here we find in Schizosaccharomyces japonicus and Schizosaccharomyces pombe that, during actomyosin ring contraction, actin filaments associated with actomyosin rings are expelled as micron-scale bundles containing multiple actomyosin ring proteins. Using functional isolated actomyosin rings we show that expulsion of actin bundles does not require continuous presence of cytoplasm. Strikingly, mechanical compression of actomyosin rings results in expulsion of bundles predominantly at regions of high curvature. Our work unprecedentedly reveals that the increased curvature of the ring itself promotes its disassembly. It is likely that such a curvature-induced mechanism may operate in disassembly of other contractile networks. DOI: http://dx.doi.org/10.7554/eLife.21383.001 PMID:27734801

  19. Micro-motors: A motile bacteria based system for liposome cargo transport

    PubMed Central

    Dogra, Navneet; Izadi, Hadi; Vanderlick, T. Kyle

    2016-01-01

    Biological micro-motors (microorganisms) have potential applications in energy utilization and nanotechnology. However, harnessing the power generated by such motors to execute desired work is extremely difficult. Here, we employ the power of motile bacteria to transport small, large, and giant unilamellar vesicles (SUVs, LUVs, and GUVs). Furthermore, we demonstrate bacteria–bilayer interactions by probing glycolipids inside the model membrane scaffold. Fluorescence Resonance Energy Transfer (FRET) spectroscopic and microscopic methods were utilized for understanding these interactions. We found that motile bacteria could successfully propel SUVs and LUVs with a velocity of 28 μm s−1 and 13 μm s−1, respectively. GUVs, however, displayed Brownian motion and could not be propelled by attached bacteria. Bacterial velocity decreased with the larger loaded cargo, which agrees with our calculations of loaded bacteria swimming at low Reynolds number. PMID:27377152

  20. Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium.

    PubMed

    Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar

    2010-02-01

    Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.

  1. Adaptations and selection of harmful and other dinoflagellate species in upwelling systems. 2. Motility and migratory behaviour

    NASA Astrophysics Data System (ADS)

    Smayda, T. J.

    2010-04-01

    The motility and migrational behaviour of upwelling dinoflagellates as adaptations for growth in upwelling systems is evaluated. Traits considered include hydrodynamic streamlining; chain formation; motility rates of single cells and chains; adaptations to turbulence; turbulence sensing; and migrational scattering to avoid turbulence, including its role in the maintenance of indigenous populations. Motility rates are compared to vertical mixing and upwelling rates. Diverse combinations of cell shape, size and motility rates characterize the dinoflagellate species selected for growth in physically energetic upwelling systems. Specific or unique combinations of cell shape, size, propulsion system and swimming rate are not evident. The traits are shared with dinoflagellates generally, and probably reflect their swim-based ecology. Experimental evidence - primarily from Alexandrium catenella - suggests upwelling dinoflagellates can sense turbulence leading to three distinct, but coherent, adaptive responses: chain formation (in such species); increased swimming speed (including non-chain-forming species); and the capacity to re-orient swimming trajectory in response to changes in turbulence, and at time-scales appropriate to survival and growth in the turbulence field being experienced. The added swimming power that dinoflagellates gain through chain formation does not appear to be a major requirement for their selection or success in upwelling systems. Only three of the 42 most prominent dinoflagellates that bloom in eastern boundary upwelling systems form chains, a representation far below expectations. Most chain-forming dinoflagellates are excluded from those upwelling systems. The role of temperature in this exclusion is evaluated. Field and experimental evidence suggests that strong turbulence would be required to overwhelm the swimming-based ecology of the upwelling dinoflagellates and deter their blooms. The Yamazaki-Kamykowski model demonstrating that the

  2. The comparison of assessment of pigeon semen motility and sperm concentration by conventional methods and the CASA system (HTM IVOS).

    PubMed

    Klimowicz, M D; Nizanski, W; Batkowski, F; Savic, M A

    2008-07-01

    The aim of these experiments was to compare conventional, microscopic methods of evaluating pigeon sperm motility and concentration to those measured by computer-assisted sperm analysis (CASA system). Semen was collected twice a week from two groups of pigeons, each of 40 males (group I: meat-type breed; group II: fancy pigeon) using the lumbo-sacral and cloacal region massage method. Ejaculates collected in each group were diluted 1:100 in BPSE solution and divided into two equal samples. One sample was examined subjectively by microscope and the second one was analysed using CASA system. The sperm concentration was measured by CASA using the anti-collision (AC) system and fluorescent staining (IDENT). There were not any significant differences between the methods of evaluation of sperm concentration. High positive correlations in both groups were observed between the sperm concentration estimated by Thom counting chamber and AC (r=0.87 and r=0.91, respectively), and between the sperm concentration evaluated by Thom counting chamber and IDENT (r=0.85 and r=0.90, respectively). The mean values for CASA measurement of proportion of motile spermatozoa (MOT) and progressive movement (PMOT) were significantly lower than the values estimated subjectively in both groups of pigeons (p< or =0.05 and p< or =0.01, respectively). Positive correlations in MOT and PMOT were noted between both methods of evaluation. The CASA system is very rapid, objective and sensitive method in detecting subtle motility characteristics as well as sperm concentration and is recommended for future research into pigeon semen.

  3. The LonA Protease Regulates Biofilm Formation, Motility, Virulence, and the Type VI Secretion System in Vibrio cholerae

    PubMed Central

    Rogers, Andrew; Townsley, Loni; Gallego-Hernandez, Ana L.; Beyhan, Sinem; Kwuan, Laura

    2016-01-01

    ABSTRACT The presence of the Lon protease in all three domains of life hints at its biological importance. The prokaryotic Lon protease is responsible not only for degrading abnormal proteins but also for carrying out the proteolytic regulation of specific protein targets. Posttranslational regulation by Lon is known to affect a variety of physiological traits in many bacteria, including biofilm formation, motility, and virulence. Here, we identify the regulatory roles of LonA in the human pathogen Vibrio cholerae. We determined that the absence of LonA adversely affects biofilm formation, increases swimming motility, and influences intracellular levels of cyclic diguanylate. Whole-genome expression analysis revealed that the message abundance of genes involved in biofilm formation was decreased but that the message abundances of those involved in virulence and the type VI secretion system were increased in a lonA mutant compared to the wild type. We further demonstrated that a lonA mutant displays an increase in type VI secretion system activity and is markedly defective in colonization of the infant mouse. These findings suggest that LonA plays a critical role in the environmental survival and virulence of V. cholerae. IMPORTANCE Bacteria utilize intracellular proteases to degrade damaged proteins and adapt to changing environments. The Lon protease has been shown to be important for environmental adaptation and plays a crucial role in regulating the motility, biofilm formation, and virulence of numerous plant and animal pathogens. We find that LonA of the human pathogen V. cholerae is in line with this trend, as the deletion of LonA leads to hypermotility and defects in both biofilm formation and colonization of the infant mouse. In addition, we show that LonA regulates levels of cyclic diguanylate and the type VI secretion system. Our observations add to the known regulatory repertoire of the Lon protease and the current understanding of V. cholerae physiology

  4. Effect of Elevated Intracellular cAMP Levels on Actomyosin Contraction in Bovine Trabecular Meshwork Cells

    PubMed Central

    Ramachandran, Charanya; Patil, Rajkumar V.; Sharif, Najam A.

    2011-01-01

    Purpose. Elevated cAMP in the trabecular meshwork (TM) cells increases the aqueous humor outflow facility. The authors investigated the mechanisms by which elevated cAMP opposes the RhoA-Rho kinase pathway, leading to the relaxation of the actomyosin system in bovine TM cells. Methods. Forskolin (Fsk) and rolipram were used to elevate cAMP levels. Changes in the phosphorylation of RhoA at Ser188 (a putative inhibitory site), the regulatory light chain of myosin (pMLC), and the regulatory subunit of myosin phosphatase (MYPT1) were determined by Western blot analysis. The actomyosin contraction was measured by collagen gel contraction (CGC) assay. The impact of cAMP on cell-matrix adhesion was followed by immunostaining of focal adhesion proteins and by electric cell-substrate impedance sensing. Results. Elevated cAMP led to an increase in the phosphorylation of RhoA at Ser188, to the inhibition of endothelin-1 (ET-1)–induced activation of RhoA, and to the formation of stress fibers. The loss of pMLC along the stress fibers was comparable to that induced by Y-27632 (Rho kinase inhibitor). A concomitant reduction in both MYPT1 phosphorylation and pMLC was observed. Elevated cAMP also reduced (ET-1)–induced CGC and the cell-substrate resistance by >50%. Conclusions. In TM cells, elevated cAMP leads to the phosphorylation of RhoA at Ser188. Consequent inhibition of RhoA activity reduces the phosphorylation of MYPT1 at Thr853, leading to a reduction in MLC phosphorylation and actomyosin contraction. These actions, similar to those of the Rho kinase inhibitors, possibly underlie the reported increase in outflow facility in response to Fsk perfusion ex vivo. PMID:21071747

  5. Guenther Gerisch and Dictyostelium, the microbial model for ameboid motility and multicellular morphogenesis.

    PubMed

    Bozzaro, Salvatore; Fisher, Paul R; Loomis, William; Satir, Peter; Segall, Jeffrey E

    2004-10-01

    Beginning in 1960 and continuing to this day, Guenther Gerisch's work on the social ameba Dictyostelium discoideum has helped to make it the model organism of choice for studies of cellular activities that depend upon the actomyosin cytoskeleton. Gerisch has brought insight and quantitative rigor to cell biology by developing novel assays and by applying advanced genetic, biochemical and microscopic techniques to topics as varied as cell-cell adhesion, chemotaxis, motility, endocytosis and cytokinesis. PMID:15450981

  6. Site-Directed Spectroscopic Probes of Actomyosin Structural Dynamics

    PubMed Central

    Thomas, David D.; Kast, David; Korman, Vicci L.

    2010-01-01

    Spectroscopy of myosin and actin has entered a golden age. High-resolution crystal structures of isolated actin and myosin have been used to construct detailed models for the dynamic actomyosin interactions that move muscle. Improved protein mutagenesis and expression technologies have facilitated site-directed labeling with fluorescent and spin probes. Spectroscopic instrumentation has achieved impressive advances in sensitivity and resolution. Here we highlight the contributions of site-directed spectroscopic probes to understanding the structural dynamics of myosin II and its actin complexes in solution and muscle fibers. We emphasize studies that probe directly the movements of structural elements within the myosin catalytic and light-chain domains, and changes in the dynamics of both actin and myosin due to their alternating strong and weak interactions in the ATPase cycle. A moving picture emerges in which single biochemical states produce multiple structural states, and transitions between states of order and dynamic disorder power the actomyosin engine. PMID:19416073

  7. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility

    PubMed Central

    Nakayama, K

    2015-01-01

    Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria. PMID:25546073

  8. Effect of Motility on Surface Colonization and Reproductive Success of Pseudomonas fluorescens in Dual-Dilution Continuous Culture and Batch Culture Systems

    PubMed Central

    Korber, Darren R.; Lawrence, John R.; Caldwell, Douglas E.

    1994-01-01

    The colonization of glass surfaces by motile and nonmotile strains of Pseudomonas fluorescens was evaluated by using dual-dilution continuous culture (DDCC), competitive and noncompetitive attachment assays, and continuous-flow slide culture. Both strains possessed identical growth rates whether in the attached or planktonic state. Results of attachment assays using radiolabeled bacteria indicated that both strains obeyed first-order (monolayer) adsorption kinetics in pure culture. However, the motile strain attached about four times more rapidly and achieved higher final cell densities on surfaces than did the nonmotile strain (2.03 × 108 versus 5.57 × 107 cells vial-1) whether evaluated alone or in cocultures containing motile and nonmotile P. fluorescens. These kinetics were attributed to the increased transport of motile cells from the bulk aqueous phase to the hydrodynamic boundary layer where bacterial attachment, growth, and recolonization could occur. First-order attachment kinetics were also observed for both strains by using continuous-flow slide culture assays analyzed by image analysis. The DDCC system contained both aqueous and particulate phases which could be diluted independently. DDCC results indicated that when cocultures containing motile and nonmotile P. fluorescens colonized solid particles, the motile strain replaced the nonmotile strain in the system over time. Increasing the aqueous-phase rates of dilution decreased the time required for extinction of the nonmotile strain while concurrently decreasing the overall carrying capacity of the DDCC system for both strains. These results confirmed that bacterial motility conveyed a selective advantage during surface colonization even in aqueous-phase systems not dominated by laminar flow. PMID:16349247

  9. Septum Development in Neurospora crassa: The Septal Actomyosin Tangle

    PubMed Central

    Delgado-Álvarez, Diego Luis; Bartnicki-García, Salomón; Seiler, Stephan; Mouriño-Pérez, Rosa Reyna

    2014-01-01

    Septum formation in Neurospora crassa was studied by fluorescent tagging of actin, myosin, tropomyosin, formin, fimbrin, BUD-4, and CHS-1. In chronological order, we recognized three septum development stages: 1) septal actomyosin tangle (SAT) assembly, 2) contractile actomyosin ring (CAR) formation, 3) CAR constriction together with plasma membrane ingrowth and cell wall construction. Septation began with the assembly of a conspicuous tangle of cortical actin cables (SAT) in the septation site >5 min before plasma membrane ingrowth. Tropomyosin and myosin were detected as components of the SAT from the outset. The SAT gradually condensed to form a proto-CAR that preceded CAR formation. During septum development, the contractile actomyosin ring remained associated with the advancing edge of the septum. Formin and BUD-4 were recruited during the transition from SAT to CAR and CHS-1 appeared two min before CAR constriction. Actin patches containing fimbrin were observed surrounding the ingrowing septum, an indication of endocytic activity. Although the trigger of SAT assembly remains unclear, the regularity of septation both in space and time gives us reason to believe that the initiation of the septation process is integrated with the mechanisms that control both the cell cycle and the overall growth of hyphae, despite the asynchronous nature of mitosis in N. crassa. PMID:24800890

  10. Metallic Glass Wire Based Localization of Kinesin/Microtubule Bio-molecular Motility System

    NASA Astrophysics Data System (ADS)

    Kim, K.; Sikora, A.; Yaginuma, S.; Nakayama, K. S.; Nakazawa, H.; Umetsu, M.; Hwang, W.; Teizer, W.

    2014-03-01

    We report electrophoretic accumulation of microtubules along metallic glass (Pd42.5Cu30Ni7.5P20) wires free-standing in solution. Microtubules are dynamic cytoskeletal filaments. Kinesin is a cytoskeletal motor protein. Functions of these bio-molecules are central to various dynamic cellular processes. Functional artificial organization of bio-molecules is a prerequisite for transferring their native functions into device applications. Fluorescence microscopy at the individual-microtubule level reveals microtubules aligning along the wire axis during the electrophoretic migration. Casein-treated electrodes are effective for releasing trapped microtubules upon removal of the external field. Furthermore, we demonstrate gliding motion of microtubules on kinesin-treated metallic glass wires. The reversible manner in the local adsorption of microtubules, the flexibility of wire electrodes, and the compatibility between the wire electrode and the bio-molecules are beneficial for spatio-temporal manipulation of the motility machinery in 3 dimensions.

  11. Spiral and never-settling patterns in active systems

    NASA Astrophysics Data System (ADS)

    Yang, X.; Marenduzzo, D.; Marchetti, M. C.

    2014-01-01

    We present a combined numerical and analytical study of pattern formation in an active system where particles align, possess a density-dependent motility, and are subject to a logistic reaction. The model can describe suspensions of reproducing bacteria, as well as polymerizing actomyosin gels in vitro or in vivo. In the disordered phase, we find that motility suppression and growth compete to yield stable or blinking patterns, which, when dense enough, acquire internal orientational ordering to give asters or spirals. We predict these may be observed within chemotactic aggregates in bacterial fluids. In the ordered phase, the reaction term leads to previously unobserved never-settling patterns which can provide a simple framework to understand the formation of motile and spiral patterns in intracellular actin systems.

  12. Actomyosin-based Self-organization of cell internalization during C. elegans gastrulation

    PubMed Central

    2012-01-01

    Background Gastrulation is a key transition in embryogenesis; it requires self-organized cellular coordination, which has to be both robust to allow efficient development and plastic to provide adaptability. Despite the conservation of gastrulation as a key event in Metazoan embryogenesis, the morphogenetic mechanisms of self-organization (how global order or coordination can arise from local interactions) are poorly understood. Results We report a modular structure of cell internalization in Caenorhabditis elegans gastrulation that reveals mechanisms of self-organization. Cells that internalize during gastrulation show apical contractile flows, which are correlated with centripetal extensions from surrounding cells. These extensions converge to seal over the internalizing cells in the form of rosettes. This process represents a distinct mode of monolayer remodeling, with gradual extrusion of the internalizing cells and simultaneous tissue closure without an actin purse-string. We further report that this self-organizing module can adapt to severe topological alterations, providing evidence of scalability and plasticity of actomyosin-based patterning. Finally, we show that globally, the surface cell layer undergoes coplanar division to thin out and spread over the internalizing mass, which resembles epiboly. Conclusions The combination of coplanar division-based spreading and recurrent local modules for piecemeal internalization constitutes a system-level solution of gradual volume rearrangement under spatial constraint. Our results suggest that the mode of C. elegans gastrulation can be unified with the general notions of monolayer remodeling and with distinct cellular mechanisms of actomyosin-based morphogenesis. PMID:23198792

  13. Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin.

    PubMed

    Buxboim, Amnon; Swift, Joe; Irianto, Jerome; Spinler, Kyle R; Dingal, P C Dave P; Athirasala, Avathamsa; Kao, Yun-Ruei C; Cho, Sangkyun; Harada, Takamasa; Shin, Jae-Won; Discher, Dennis E

    2014-08-18

    Tissue microenvironments are characterized not only in terms of chemical composition but also by collective properties such as stiffness, which influences the contractility of a cell, its adherent morphology, and even differentiation. The nucleoskeletal protein lamin-A,C increases with matrix stiffness, confers nuclear mechanical properties, and influences differentiation of mesenchymal stem cells (MSCs), whereas B-type lamins remain relatively constant. Here we show in single-cell analyses that matrix stiffness couples to myosin-II activity to promote lamin-A,C dephosphorylation at Ser22, which regulates turnover, lamina physical properties, and actomyosin expression. Lamin-A,C phosphorylation is low in interphase versus dividing cells, and its levels rise with states of nuclear rounding in which myosin-II generates little to no tension. Phosphorylated lamin-A,C localizes to nucleoplasm, and phosphorylation is enriched on lamin-A,C fragments and is suppressed by a cyclin-dependent kinase (CDK) inhibitor. Lamin-A,C knockdown in primary MSCs suppresses transcripts predominantly among actomyosin genes, especially in the serum response factor (SRF) pathway. Levels of myosin-IIA thus parallel levels of lamin-A,C, with phosphosite mutants revealing a key role for phosphoregulation. In modeling the system as a parsimonious gene circuit, we show that tension-dependent stabilization of lamin-A,C and myosin-IIA can suitably couple nuclear and cell morphology downstream of matrix mechanics.

  14. Membrane and acto-myosin tension promote clustering of adhesion proteins

    PubMed Central

    Delanoë-Ayari, H.; Al Kurdi, R.; Vallade, M.; Gulino-Debrac, D.; Riveline, D.

    2004-01-01

    Physicists have studied the aggregation of adhesive proteins, giving a central role to the elastic properties of membranes, whereas cell biologists have put the emphasis on the cytoskeleton. However, there is a dramatic lack of experimental studies probing both contributions on cellular systems. Here, we tested both mechanisms on living cells. We compared, for the same cell line, the growth of cadherin-GFP patterns on recombinant cadherin-coated surfaces, with the growth of vinculin-GFP patterns on extracellular matrix protein-coated surfaces by using evanescent wave microscopy. In our setup, cadherins are not linked to actin, whereas vinculins are. This property allows us to compare formation of clusters with proteins linked or not to the cytoskeleton and thus study the role of membrane versus cytoskeleton in protein aggregation. Strikingly, the motifs we obtained on both surfaces share common features: they are both elongated and located at the cell edges. We showed that a local force application can impose this symmetry breaking in both cases. However, the origin of the force is different as demonstrated by drug treatment (butanedione monoxime) and hypotonic swelling. Cadherins aggregate when membrane tension is increased, whereas vinculins (cytoplasmic proteins of focal contacts) aggregate when acto-myosin stress fibers are pulling. We propose a mechanism by which membrane tension is localized at cell edges, imposing flattening of membrane and enabling aggregation of cadherins by diffusion. In contrast, cytoplasmic proteins of focal contacts aggregate by opening cryptic sites in focal contacts under acto-myosin contractility. PMID:14982992

  15. Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure

    PubMed Central

    Zhou, Jian; Kim, Hye Young; Davidson, Lance A.

    2009-01-01

    Summary Physical forces drive the movement of tissues within the early embryo. Classical and modern approaches have been used to infer and, in rare cases, measure mechanical properties and the location and magnitude of forces within embryos. Elongation of the dorsal axis is a crucial event in early vertebrate development, yet the mechanics of dorsal tissues in driving embryonic elongation that later support neural tube closure and formation of the central nervous system is not known. Among vertebrates, amphibian embryos allow complex physical manipulation of embryonic tissues that are required to measure the mechanical properties of tissues. In this paper, we measure the stiffness of dorsal isolate explants of frog (Xenopus laevis) from gastrulation to neurulation and find dorsal tissues stiffen from less than 20 Pascal (Pa) to over 80 Pa. By iteratively removing tissues from these explants, we find paraxial somitic mesoderm is nearly twice as stiff as either the notochord or neural plate, and at least 10-fold stiffer than the endoderm. Stiffness measurements from explants with reduced fibronectin fibril assembly or disrupted actomyosin contractility suggest that it is the state of the actomyosin cell cortex rather than accumulating fibronectin that controls tissue stiffness in early amphibian embryos. PMID:19168681

  16. Modeling collective cell motility

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan

    Eukaryotic cells often move in groups, a critical aspect of many biological and medical processes including wound healing, morphogenesis and cancer metastasis. Modeling can provide useful insights into the fundamental mechanisms of collective cell motility. Constructing models that incorporate the physical properties of the cells, however, is challenging. Here, I discuss our efforts to build a comprehensive cell motility model that includes cell membrane properties, cell-substrate interactions, cell polarity, and cell-cell interaction. The model will be applied to a variety of systems, including motion on micropatterned substrates and the migration of border cells in Drosophila. This work was supported by NIH Grant No. P01 GM078586 and NSF Grant No. 1068869.

  17. Turnover of the actomyosin complex in zebrafish embryos directs geometric remodelling and the recruitment of lipid droplets

    PubMed Central

    Dutta, Asmita; Kumar Sinha, Deepak

    2015-01-01

    Lipid droplets (LDs), reservoirs of cholesterols and fats, are organelles that hydrolyse lipids in the cell. In zebrafish embryos, the actomyosin complex and filamentous microtubules control the periodic regulation of the LD geometry. Contrary to the existing hypothesis that LD transport involves the kinesin-microtubule system, we find that their recruitment to the blastodisc depends on the actomyosin turnover and is independent of the microtubules. For the first time we report the existence of two distinct states of LDs, an inactive and an active state, that occur periodically, coupled weakly to the cleavage cycles. LDs are bigger, more circular and more stable in the inactive state in which the geometry of the LDs is maintained by actomyosin as well as microtubules. The active state has smaller and irregularly shaped LDs that show shape fluctuations that are linked to actin depolymerization. Because most functions of LDs employ surface interactions, our findings on the LD geometry and its regulation bring new insights to the mechanisms associated with specific functions of LDs, such as their storage capacity for fats or proteins, lipolysis etc. PMID:26355567

  18. Spontaneous symmetry breaking in active droplets provides a generic route to motility

    PubMed Central

    Tjhung, Elsen; Marenduzzo, Davide; Cates, Michael E.

    2012-01-01

    We explore a generic mechanism whereby a droplet of active matter acquires motility by the spontaneous breakdown of a discrete symmetry. The model we study offers a simple representation of a “cell extract” comprising, e.g., a droplet of actomyosin solution. (Such extracts are used experimentally to model the cytoskeleton). Actomyosin is an active gel whose polarity describes the mean sense of alignment of actin fibres. In the absence of polymerization and depolymerization processes (‘treadmilling’), the gel’s dynamics arises solely from the contractile motion of myosin motors; this should be unchanged when polarity is inverted. Our results suggest that motility can arise in the absence of treadmilling, by spontaneous symmetry breaking (SSB) of polarity inversion symmetry. Adapting our model to wall-bound cells in two dimensions, we find that as wall friction is reduced, treadmilling-induced motility falls but SSB-mediated motility rises. The latter might therefore be crucial in three dimensions where frictional forces are likely to be modest. At a supracellular level, the same generic mechanism can impart motility to aggregates of nonmotile but active bacteria; we show that SSB in this (extensile) case leads generically to rotational as well as translational motion. PMID:22797894

  19. Shape determination in motile cells

    NASA Astrophysics Data System (ADS)

    Mogilner, Alex

    2010-03-01

    Flat, simple shaped, rapidly gliding fish keratocyte cell is the model system of choice to study cell motility. The cell motile appendage, lamellipod, has a characteristic bent-rectangular shape. Recent experiments showed that the lamellipodial geometry is tightly correlated with cell speed and with actin dynamics. These quantitative data combined with computational modeling suggest that a model for robust actin treadmill inside the 'unstretchable membrane bag'. According to this model, a force balance between membrane tension and growing and pushing actin network distributed unevenly along the cell periphery can explain the cell shape and motility. However, when adhesion of the cell to the surface weakens, the actin dynamics become less regular, and myosin-powered contraction starts playing crucial role in stabilizing the cell shape. I will illustrate how the combination of theoretical and experimental approaches helped to unravel the keratocyte motile behavior.

  20. Region-Specific Microtubule Transport in Motile Cells

    PubMed Central

    Yvon, Anne-Marie C.; Wadsworth, Patricia

    2000-01-01

    Photoactivation and photobleaching of fluorescence were used to determine the mechanism by which microtubules (MTs) are remodeled in PtK2 cells during fibroblast-like motility in response to hepatocyte growth factor (HGF). The data show that MTs are transported during cell motility in an actomyosin-dependent manner, and that the direction of transport depends on the dominant force in the region examined. MTs in the leading lamella move rearward relative to the substrate, as has been reported in newt cells (Waterman-Storer, C.M., and E.D. Salmon. 1997. J. Cell Biol. 139:417–434), whereas MTs in the cell body and in the retraction tail move forward, in the direction of cell locomotion. In the transition zone between the peripheral lamella and the cell body, a subset of MTs remains stationary with respect to the substrate, whereas neighboring MTs are transported either forward, with the cell body, or rearward, with actomyosin retrograde flow. In addition to transport, the photoactivated region frequently broadens, indicating that individual marked MTs are moved either at different rates or in different directions. Mark broadening is also observed in nonmotile cells, indicating that this aspect of transport is independent of cell locomotion. Quantitative measurements of the dissipation of photoactivated fluorescence show that, compared with MTs in control nonmotile cells, MT turnover is increased twofold in the lamella of HGF-treated cells but unchanged in the retraction tail, demonstrating that microtubule turnover is regionally regulated. PMID:11086002

  1. A model for cell motility on soft bio-adhesive substrates.

    PubMed

    Sarvestani, Alireza S

    2011-02-24

    Mechanical stiffness of bio-adhesive substrates has been recognized as a major regulator of cell motility. We present a simple physical model to study the crawling locomotion of a contractile cell on a soft elastic substrate. The mechanism of rigidity sensing is accounted for using Schwarz's two-spring model Schwarz et al. (2006). The predicted dependency between the speed of motility and substrate stiffness is qualitatively consistent with experimental observations. The model demonstrates that the rigidity dependent motility of cells is rooted in the regulation of actomyosin contractile forces by substrate deformation at each anchorage point. On stiffer substrates, the traction forces required for cell translocation acquire larger magnitude but show weaker asymmetry which leads to slower cell motility. On very soft substrates, the model predicts a biphasic relationship between the substrate rigidity and the speed of locomotion, over a narrow stiffness range, which has been observed experimentally for some cell types. PMID:21106198

  2. Effect of nitrergic system on colonic motility in a rat model of irritable bowel syndrome

    PubMed Central

    Temiz, Tijen Kaya; Demir, Omer; Simsek, Fatma; Kaplan, Yusuf Cem; Bahceci, Selen; Karadas, Barıs; Celik, Aslı; Koyluoglu, Gokhan

    2016-01-01

    Aim: The aim of this study is to investigate whether nitric oxide (NO)-mediated colonic motility was altered in rat irritable bowel syndrome (IBS) model, using different isoforms of NO-synthase (NOS) inhibitors. Materials and Methods: The animal model of IBS-like visceral hypersensitivity was induced by intra-colonic infusion of 0.5% acetic acid (AA) in saline once daily from postnatal days 8 to 21. Control animals received saline instead of AA. Experiments were performed at the end of 8 weeks. Distal colon tissues were resected and direct effects of different NOS inhibitors; N-omega-nitro-L-arginine methyl ester hydrochloride, (L-NAME), ARL-17477 dihydrochloride hydrate (ARL 17477), N-[3-(Aminomethyl) phenyl] methyl]-ethanimidamidedihydrochloride (1400 W), and N5-(1-Iminoethyl)-L-ornithine dihydrochloride (L-NIO) were evaluated concentration-dependently in vitro tissue bath. Besides, morphology of both groups was assessed with hematoxylin and eosin (H and E) staining and the impact of NO antibodies was determined using the immunohistochemical method. Results: The mean pressure values of spontaneous contractions and KCL (80 mmol/L) responses of distal colonic segments were similar in normal and IBS rats. L-NAME and ARL-17477 significantly increased the mean pressure of spontaneous colonic contractions in normal rats versus own base values (P < 0.05), but this increase did not significantly different when compared to IBS rats. In H and E staining, there was no difference with regard to morphology between two groups. Neuronal NOS (nNOS) immunoreactivity was found to be significantly decreased in IBS when compared to control groups (P < 0.05). Conclusion: L-NAME and ARL-17477 mediated mean pressure values were found to be slightly decreased in IBS rats. These findings may be related to a decrease in nNOS level in IBS. PMID:27756955

  3. Motility disorders in childhood.

    PubMed

    Milla, P J

    1998-12-01

    Motility disorders are very common in childhood, causing a number of gastrointestinal symptoms: recurrent vomiting, abdominal pain and distension, constipation and obstipation, and loose stools. The disorders result from disturbances of gut motor control mechanisms caused by either intrinsic disease of nerve and muscle, central nervous system dysfunction or perturbation of the humoral environment in which they operate. Intrinsic gut motor disease and central nervous system disorder are most usually congenital in origin, and alterations of the humoral environment acquired. Irritable bowel syndrome occurs in children as well as adults and is multifactorial in origin, with an interplay of psychogenic and organic disorders. PMID:10079906

  4. Cortical Actomyosin Breakage Triggers Shape Oscillations in Cells and Cell Fragments

    PubMed Central

    Paluch, Ewa; Piel, Matthieu; Prost, Jacques; Bornens, Michel; Sykes, Cécile

    2005-01-01

    Cell shape and movements rely on complex biochemical pathways that regulate actin, microtubules, and substrate adhesions. Some of these pathways act through altering the cortex contractility. Here we examined cellular systems where contractility is enhanced by disassembly of the microtubules. We found that adherent cells, when detached from their substrate, developed a membrane bulge devoid of detectable actin and myosin. A constriction ring at the base of the bulge oscillated from one side of the cell to the other. The movement was accompanied by sequential redistribution of actin and myosin to the membrane. We observed this oscillatory behavior also in cell fragments of various sizes, providing a simplified, nucleus-free system for biophysical studies. Our observations suggest a mechanism based on active gel dynamics and inspired by symmetry breaking of actin gels growing around beads. The proposed mechanism for breakage of the actomyosin cortex may be used for cell polarization. PMID:15879479

  5. Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis.

    PubMed

    Cheffings, Thomas H; Burroughs, Nigel J; Balasubramanian, Mohan K

    2016-08-01

    Cell division facilitated by a contractile ring is an almost universal feature across all branches of cellular life, with the notable exception of higher plants. In all organisms that use a contractile ring for cell division, the process of cytokinesis can be divided into four distinct stages. Firstly, the cell needs to specify a location at which to place the cell division ring to ensure proper separation of the cell contents into two daughter cells. Secondly, the cell needs to be able to transport all the necessary components to this region, and construct the cell division ring reliably and efficiently. Thirdly, the cell division ring needs to generate contractile stress in a regulated manner, to physically cleave the mother cell into two daughter cells. Finally, the ring must be disassembled to allow for the final abscission and separation of the daughter cells. In this review, we will discuss some of the proposed mechanisms by which eukaryotic cells are able to complete the first three of these stages. While there is a good understanding of the mechanisms of division site specification in most organisms, and the mechanisms of actomyosin ring formation are well studied in fission and budding yeast, there is relatively poor understanding of how actomyosin interactions are able to generate contractile stresses during ring constriction, although a number of models have been proposed. We also discuss a number of myosin motor-independent mechanisms that have been proposed to generate contractile stress in various organisms. PMID:27505246

  6. Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth

    PubMed Central

    Roland, Alexandre B; Ricobaraza, Ana; Carrel, Damien; Jordan, Benjamin M; Rico, Felix; Simon, Anne; Humbert-Claude, Marie; Ferrier, Jeremy; McFadden, Maureen H; Scheuring, Simon; Lenkei, Zsolt

    2014-01-01

    Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆9-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid and reversible non-muscle myosin II (NM II) dependent contraction of the actomyosin cytoskeleton, through a Rho-GTPase and Rho-associated kinase (ROCK). This induces rapid neuronal remodeling, such as retraction of neurites and axonal growth cones, elevated neuronal rigidity, and reshaping of somatodendritic morphology. Chronic pharmacological inhibition of NM II prevents cannabinoid-induced reduction of dendritic development in vitro and leads, similarly to blockade of endocannabinoid action, to excessive growth of corticofugal axons into the sub-ventricular zone in vivo. Our results suggest that CB1R can rapidly transform the neuronal cytoskeleton through actomyosin contractility, resulting in cellular remodeling events ultimately able to affect the brain architecture and wiring. DOI: http://dx.doi.org/10.7554/eLife.03159.001 PMID:25225054

  7. Cellular mechanics and motility

    NASA Astrophysics Data System (ADS)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  8. Coupling of lever arm swing and biased Brownian motion in actomyosin.

    PubMed

    Nie, Qing-Miao; Togashi, Akio; Sasaki, Takeshi N; Takano, Mitsunori; Sasai, Masaki; Terada, Tomoki P

    2014-04-01

    An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5-11 nm displacement due to the biased Brownian motion and the 3-5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family.

  9. The enigma of eugregarine epicytic folds: where gliding motility originates?

    PubMed Central

    2013-01-01

    Background In the past decades, many studies focused on the cell motility of apicomplexan invasive stages as they represent a potential target for chemotherapeutic intervention. Gregarines (Conoidasida, Gregarinasina) are a heterogeneous group that parasitize invertebrates and urochordates, and are thought to be an early branching lineage of Apicomplexa. As characteristic of apicomplexan zoites, gregarines are covered by a complicated pellicle, consisting of the plasma membrane and the closely apposed inner membrane complex, which is associated with a number of cytoskeletal elements. The cell cortex of eugregarines, the epicyte, is more complicated than that of other apicomplexans, as it forms various superficial structures. Results The epicyte of the eugregarines, Gregarina cuneata, G. polymorpha and G. steini, analysed in the present study is organised in longitudinal folds covering the entire cell. In mature trophozoites and gamonts, each epicytic fold exhibits similar ectoplasmic structures and is built up from the plasma membrane, inner membrane complex, 12-nm filaments, rippled dense structures and basal lamina. In addition, rib-like myonemes and an ectoplasmic network are frequently observed. Under experimental conditions, eugregarines showed varied speeds and paths of simple linear gliding. In all three species, actin and myosin were associated with the pellicle, and this actomyosin complex appeared to be restricted to the lateral parts of the epicytic folds. Treatment of living gamonts with jasplakinolide and cytochalasin D confirmed that actin actively participates in gregarine gliding. Contributions to gliding of specific subcellular components are discussed. Conclusions Cell motility in gregarines and other apicomplexans share features in common, i.e. a three-layered pellicle, an actomyosin complex, and the polymerisation of actin during gliding. Although the general architecture and supramolecular organisation of the pellicle is not correlated with

  10. Rho signaling in Entamoeba histolytica modulates actomyosin-dependent activities stimulated during invasive behavior.

    PubMed

    Franco-Barraza, Janusz; Zamudio-Meza, Horacio; Franco, Elizabeth; del Carmen Domínguez-Robles, M; Villegas-Sepúlveda, Nicolás; Meza, Isaura

    2006-03-01

    Interaction of Entamoeba histolytica trophozoites with target cells and substrates activates signaling pathways in the parasite. Phosphorylation cascades triggered by phospho-inositide and adenyl-cyclase-dependent pathways modulate reorganization of the actin cytoskeleton to form structures that facilitate adhesion. In contrast, little is known about participation of Rho proteins and Rho signaling in actin rearrangements. We report here the in vivo expression of at least one Rho protein in trophozoites, whose activation induced actin reorganization and actin-myosin interaction. Antibodies to EhRhoA1 recombinant protein mainly localized Rho in the cytosol of nonactivated amoebae, but it was translocated to vesicular membranes and to some extent to the plasma membrane after treatment with lysophosphatidic acid (LPA), a specific agonist of Rho activation. Activated Rho was identified in LPA-treated trophozoites. LPA induced striking polymerization of actin into distinct dynamic structures. Disorganization of these structures by inhibition of Rho effector, Rho-kinase (ROCK), and by ML-7, an inhibitor of myosin light chain kinase dependent phosphorylation of myosin light chain, suggested that the actin structures also contained myosin. LPA stimulated concanavalin-A-mediated formation of caps, chemotaxis, invasion of extracellular matrix substrates, and erythrophagocytosis, but not binding to fibronectin. ROCK inhibition impaired LPA-stimulated functions and to some extent adhesion to fibronectin. Similar results were obtained with ML-7. These data suggest the presence and operation of Rho-signaling pathways in E. histolytica, that together with other, already described, signaling routes modulate actomyosin-dependent motile processes, particularly stimulated during invasive behavior.

  11. Nonlinear Cross-Bridge Elasticity and Post-Power-Stroke Events in Fast Skeletal Muscle Actomyosin

    PubMed Central

    Persson, Malin; Bengtsson, Elina; ten Siethoff, Lasse; Månsson, Alf

    2013-01-01

    Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28–29°C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP]-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle. PMID:24138863

  12. Kinematics and subpopulations' structure definition of blue fox (Alopex lagopus) sperm motility using the ISAS® V1 CASA system.

    PubMed

    Soler, C; García, A; Contell, J; Segervall, J; Sancho, M

    2014-08-01

    Over recent years, technological advances have brought innovation in assisted reproduction to the agriculture. Fox species are of great economical interest in some countries, but their semen characteristics have not been studied enough. To advance the knowledge of function of fox spermatozoa, five samples were obtained by masturbation, in the breeding season. Kinetic analysis was performed using ISAS® v1 system. Usual kinematic parameters (VCL, VSL, VAP, LIN, STR, WOB, ALH and BCF) were considered. To establish the standardization for the analysis of samples, the minimum number of cells to analyse and the minimum number of fields to capture were defined. In the second step, the presence of subpopulations in blue fox semen was analysed. The minimum number of cells to test was 30, because kinematic parameters remained constant along the groups of analysis. Also, the effectiveness of ISAS® D4C20 counting chamber was studied, showing that the first five squares presented equivalent results, while in the squares six and seven, the kinematic parameters showed a reduction in all of them, but not in the concentration or motility percentage. Kinematic variables were grouped into two principal components (PC). A linear movement characterized PC1, while PC2 showed an oscillatory movement. Three subpopulations were found, varying in structure among different animals.

  13. The actomyosin machinery is required for Drosophila retinal lumen formation.

    PubMed

    Nie, Jing; Mahato, Simpla; Zelhof, Andrew C

    2014-09-01

    Multicellular tubes consist of polarized cells wrapped around a central lumen and are essential structures underlying many developmental and physiological functions. In Drosophila compound eyes, each ommatidium forms a luminal matrix, the inter-rhabdomeral space, to shape and separate the key phototransduction organelles, the rhabdomeres, for proper visual perception. In an enhancer screen to define mechanisms of retina lumen formation, we identified Actin5C as a key molecule. Our results demonstrate that the disruption of lumen formation upon the reduction of Actin5C is not linked to any discernible defect in microvillus formation, the rhabdomere terminal web (RTW), or the overall morphogenesis and basal extension of the rhabdomere. Second, the failure of proper lumen formation is not the result of previously identified processes of retinal lumen formation: Prominin localization, expansion of the apical membrane, or secretion of the luminal matrix. Rather, the phenotype observed with Actin5C is phenocopied upon the decrease of the individual components of non-muscle myosin II (MyoII) and its upstream activators. In photoreceptor cells MyoII localizes to the base of the rhabdomeres, overlapping with the actin filaments of the RTW. Consistent with the well-established roll of actomyosin-mediated cellular contraction, reduction of MyoII results in reduced distance between apical membranes as measured by a decrease in lumen diameter. Together, our results indicate the actomyosin machinery coordinates with the localization of apical membrane components and the secretion of an extracellular matrix to overcome apical membrane adhesion to initiate and expand the retinal lumen.

  14. A dynamical systems approach to actin-based motility in Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    Hotton, S.

    2010-11-01

    A simple kinematic model for the trajectories of Listeria monocytogenes is generalized to a dynamical system rich enough to exhibit the resonant Hopf bifurcation structure of excitable media and simple enough to be studied geometrically. It is shown how L. monocytogenes trajectories and meandering spiral waves are organized by the same type of attracting set.

  15. A new system for three-dimensional tracking of motile microorganisms.

    PubMed

    Thar, R; Blackburn, N; Kühl, M

    2000-05-01

    A new three-dimensional (3D)-tracking system with optimized dark-field illumination is presented. It allows simultaneous 3D tracking of several free-swimming microorganisms with diameters of >10 microm. Resolution limits and illumination efficiencies for different size classes of microorganisms are treated analytically. First applications for 3D tracking of protists are demonstrated.

  16. Spirochete motility and morpholgy

    NASA Astrophysics Data System (ADS)

    Charon, Nyles

    2004-03-01

    . burgdorferi during chemotaxis. In translational motility, the bundles of periplasmic flagella rotate in opposite directions. When not translating, they rotate in the same direction, and the cells flex. We present evidence that asymmetrical rotation of the bundles during translation does not depend upon the chemotaxis signal transduction system. The histidine kinase CheA is known to be an essential component in the signaling pathway for bacterial chemotaxis. Mutants of cheA in flagellated bacteria continually rotate their flagella in one direction. B. burgdorferi has two copies of cheA. We reasoned that if chemotaxis were essential for asymmetrical rotation of the flagellar bundles, and if the flagellar motors at both cell ends were identical, inactivation of the two cheA genes should result in cells that constant flex. To test this hypothesis, the signaling pathway was completely blocked by construction of a double cheA mutant. This mutant was completely deficient in chemotaxis. Rather than flexing, it failed to reverse, and it continually translated only in one direction. The results indicate that asymmetrical rotation does not depend upon the chemotaxis system but rather upon differences between the two flagellar bundles. We propose that certain factors within the spirochete localize at flagellar motors at one end of the cell to effect this asymmetry (3). References: 1. Charon, N.W. and S.F. Goldstein. 2002. The genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Ann. Rev. Genetics. 36: 47-73. 2. Motaleb M.A., L. Corum, J.L Bono, A.F. Elias, P. Rosa, D.S. Samuels, N.W. Charon. 2000. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc Natl Acad Sci. 2000 97:10899-10904. 3. Li, C. R. Bakker, M. Motaleb, F. Cabello, M.L. Sartakova, and N.W. Charon. 2002. Asymmetrical flagellar rotation in Borrelia burgdorferi non-chemotaxis mutants. Proc. Natl. Acad. Sci. 99:6169-6174.

  17. Collective motion of motile cilia: from human airways to model systems

    NASA Astrophysics Data System (ADS)

    Cicuta, Pietro; Feriani, Luigi; Chioccioli, Maurizio; Kotar, Jurij

    Mammalian airways are a fantastic playground of nonlinear phenomena, from the function of individual active filaments, to the emerging collective behaviour, to the rheology of the mucus solution surrounding cilia. We have been investigating the fundamental physics of this system through a variety of model system approaches, both experimental and computational. In the last year we have started measurements on living human cells, observing cilia shape during beating, and measuring speed and coherence of the collective dynamics. We report on significant differences in the collective motion in ciliated cell carpets from a variety of diseases, and we attempt to reconcile the collective dynamical phenotypes to the properties of individual filaments and the mechanics of the environment.

  18. Actomyosin contraction, aggregation and traveling waves in a treadmilling actin array

    NASA Astrophysics Data System (ADS)

    Oelz, Dietmar; Mogilner, Alex

    2016-04-01

    We use perturbation theory to derive a continuum model for the dynamic actomyosin bundle/ring in the regime of very strong crosslinking. Actin treadmilling is essential for contraction. Linear stability analysis and numerical solutions of the model equations reveal that when the actin treadmilling is very slow, actin and myosin aggregate into equidistantly spaced peaks. When treadmilling is significant, actin filament of one polarity are distributed evenly, while filaments of the opposite polarity develop a shock wave moving with the treadmilling velocity. Myosin aggregates into a sharp peak surfing the crest of the actin wave. Any actomyosin aggregation diminishes contractile stress. The easiest way to maintain higher contraction is to upregulate the actomyosin turnover which destabilizes nontrivial patterns and stabilizes the homogeneous actomyosin distributions. We discuss the model's implications for the experiment.

  19. Actomyosin stress fiber mechanosensing in 2D and 3D

    PubMed Central

    Lee, Stacey; Kumar, Sanjay

    2016-01-01

    Mechanotransduction is the process through which cells survey the mechanical properties of their environment, convert these mechanical inputs into biochemical signals, and modulate their phenotype in response. These mechanical inputs, which may be encoded in the form of extracellular matrix stiffness, dimensionality, and adhesion, all strongly influence cell morphology, migration, and fate decisions. One mechanism through which cells on planar or pseudo-planar matrices exert tensile forces and interrogate microenvironmental mechanics is through stress fibers, which are bundles composed of actin filaments and, in most cases, non-muscle myosin II filaments. Stress fibers form a continuous structural network that is mechanically coupled to the extracellular matrix through focal adhesions. Furthermore, myosin-driven contractility plays a central role in the ability of stress fibers to sense matrix mechanics and generate tension. Here, we review the distinct roles that non-muscle myosin II plays in driving mechanosensing and focus specifically on motility. In a closely related discussion, we also describe stress fiber classification schemes and the differing roles of various myosin isoforms in each category. Finally, we briefly highlight recent studies exploring mechanosensing in three-dimensional environments, in which matrix content, structure, and mechanics are often tightly interrelated. Stress fibers and the myosin motors therein represent an intriguing and functionally important biological system in which mechanics, biochemistry, and architecture all converge. PMID:27635242

  20. Actomyosin stress fiber mechanosensing in 2D and 3D.

    PubMed

    Lee, Stacey; Kumar, Sanjay

    2016-01-01

    Mechanotransduction is the process through which cells survey the mechanical properties of their environment, convert these mechanical inputs into biochemical signals, and modulate their phenotype in response. These mechanical inputs, which may be encoded in the form of extracellular matrix stiffness, dimensionality, and adhesion, all strongly influence cell morphology, migration, and fate decisions. One mechanism through which cells on planar or pseudo-planar matrices exert tensile forces and interrogate microenvironmental mechanics is through stress fibers, which are bundles composed of actin filaments and, in most cases, non-muscle myosin II filaments. Stress fibers form a continuous structural network that is mechanically coupled to the extracellular matrix through focal adhesions. Furthermore, myosin-driven contractility plays a central role in the ability of stress fibers to sense matrix mechanics and generate tension. Here, we review the distinct roles that non-muscle myosin II plays in driving mechanosensing and focus specifically on motility. In a closely related discussion, we also describe stress fiber classification schemes and the differing roles of various myosin isoforms in each category. Finally, we briefly highlight recent studies exploring mechanosensing in three-dimensional environments, in which matrix content, structure, and mechanics are often tightly interrelated. Stress fibers and the myosin motors therein represent an intriguing and functionally important biological system in which mechanics, biochemistry, and architecture all converge. PMID:27635242

  1. Actomyosin stress fiber mechanosensing in 2D and 3D

    PubMed Central

    Lee, Stacey; Kumar, Sanjay

    2016-01-01

    Mechanotransduction is the process through which cells survey the mechanical properties of their environment, convert these mechanical inputs into biochemical signals, and modulate their phenotype in response. These mechanical inputs, which may be encoded in the form of extracellular matrix stiffness, dimensionality, and adhesion, all strongly influence cell morphology, migration, and fate decisions. One mechanism through which cells on planar or pseudo-planar matrices exert tensile forces and interrogate microenvironmental mechanics is through stress fibers, which are bundles composed of actin filaments and, in most cases, non-muscle myosin II filaments. Stress fibers form a continuous structural network that is mechanically coupled to the extracellular matrix through focal adhesions. Furthermore, myosin-driven contractility plays a central role in the ability of stress fibers to sense matrix mechanics and generate tension. Here, we review the distinct roles that non-muscle myosin II plays in driving mechanosensing and focus specifically on motility. In a closely related discussion, we also describe stress fiber classification schemes and the differing roles of various myosin isoforms in each category. Finally, we briefly highlight recent studies exploring mechanosensing in three-dimensional environments, in which matrix content, structure, and mechanics are often tightly interrelated. Stress fibers and the myosin motors therein represent an intriguing and functionally important biological system in which mechanics, biochemistry, and architecture all converge.

  2. Cellular Motility--Experiments on Contractile and Motile Mechanisms in the Slime Mould, Physarum Polycephalum

    ERIC Educational Resources Information Center

    Holmes, R. P.; Stewart, P. R.

    1977-01-01

    Actin and myosin have now been demonstrated to be important constituents of many eukaryotic cells. Their role is primarily that of a contractile system underlying all aspects of cellular motility. Described here is a simple experimental system to demonstrate quantitatively aspects of motility and its regulation in a slime mold. (Author/MA)

  3. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks

    PubMed Central

    Papoian, Garegin A.

    2016-01-01

    Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament’s resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the

  4. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks.

    PubMed

    Popov, Konstantin; Komianos, James; Papoian, Garegin A

    2016-04-01

    Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament's resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the

  5. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks.

    PubMed

    Popov, Konstantin; Komianos, James; Papoian, Garegin A

    2016-04-01

    Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament's resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the

  6. Spectrin regulates Hippo signaling by modulating cortical actomyosin activity

    PubMed Central

    Deng, Hua; Wang, Wei; Yu, Jianzhong; Zheng, Yonggang; Qing, Yun; Pan, Duojia

    2015-01-01

    The Hippo pathway controls tissue growth through a core kinase cascade that impinges on the transcription of growth-regulatory genes. Understanding how this pathway is regulated in development remains a major challenge. Recent studies suggested that Hippo signaling can be modulated by cytoskeletal tension through a Rok-myosin II pathway. How cytoskeletal tension is regulated or its relationship to the other known upstream regulators of the Hippo pathway remains poorly defined. In this study, we identify spectrin, a contractile protein at the cytoskeleton-membrane interface, as an upstream regulator of the Hippo signaling pathway. We show that, in contrast to canonical upstream regulators such as Crumbs, Kibra, Expanded, and Merlin, spectrin regulates Hippo signaling in a distinct way by modulating cortical actomyosin activity through non-muscle myosin II. These results uncover an essential mediator of Hippo signaling by cytoskeleton tension, providing a new entry point to dissecting how mechanical signals regulate Hippo signaling in living tissues. DOI: http://dx.doi.org/10.7554/eLife.06567.001 PMID:25826608

  7. Pediatric intestinal motility disorders

    PubMed Central

    Gfroerer, Stefan; Rolle, Udo

    2015-01-01

    Pediatric intestinal motility disorders affect many children and thus not only impose a significant impact on pediatric health care in general but also on the quality of life of the affected patient. Furthermore, some of these conditions might also have implications for adulthood. Pediatric intestinal motility disorders frequently present as chronic constipation in toddler age children. Most of these conditions are functional, meaning that constipation does not have an organic etiology, but in 5% of the cases, an underlying, clearly organic disorder can be identified. Patients with organic causes for intestinal motility disorders usually present in early infancy or even right after birth. The most striking clinical feature of children with severe intestinal motility disorders is the delayed passage of meconium in the newborn period. This sign is highly indicative of the presence of Hirschsprung disease (HD), which is the most frequent congenital disorder of intestinal motility. HD is a rare but important congenital disease and the most significant entity of pediatric intestinal motility disorders. The etiology and pathogenesis of HD have been extensively studied over the last several decades. A defect in neural crest derived cell migration has been proven as an underlying cause of HD, leading to an aganglionic distal end of the gut. Numerous basic science and clinical research related studies have been conducted to better diagnose and treat HD. Resection of the aganglionic bowel remains the gold standard for treatment of HD. Most recent studies show, at least experimentally, the possibility of a stem cell based therapy for HD. This editorial also includes rare causes of pediatric intestinal motility disorders such as hypoganglionosis, dysganglionosis, chronic intestinal pseudo-obstruction and ganglioneuromatosis in multiple endocrine metaplasia. Underlying organic pathologies are rare in pediatric intestinal motility disorders but must be recognized as early as

  8. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair.

    PubMed

    Hunter, Miranda V; Lee, Donghoon M; Harris, Tony J C; Fernandez-Gonzalez, Rodrigo

    2015-08-31

    Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair.

  9. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair

    PubMed Central

    Hunter, Miranda V.; Lee, Donghoon M.; Harris, Tony J.C.

    2015-01-01

    Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair. PMID:26304727

  10. Non-periodic oscillatory deformation of an actomyosin microdroplet encapsulated within a lipid interface

    NASA Astrophysics Data System (ADS)

    Nishigami, Yukinori; Ito, Hiroaki; Sonobe, Seiji; Ichikawa, Masatoshi

    2016-01-01

    Active force generation in living organisms, which is mainly involved in actin cytoskeleton and myosin molecular motors, plays a crucial role in various biological processes. Although the contractile properties of actomyosin have been extensively investigated, their dynamic contribution to a deformable membrane remains unclear because of the cellular complexities and the difficulties associated with in vitro reconstitution. Here, by overcoming these experimental difficulties, we demonstrate the dynamic deformation of a reconstituted lipid interface coupled with self-organized structure of contractile actomyosin. Therein, the lipid interface repeatedly oscillates without any remarkable periods. The oscillatory deformation of the interface is caused by the aster-like three-dimensional hierarchical structure of actomyosin inside the droplet, which is revealed that the oscillation occurs stochastically as a Poisson process.

  11. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation

    PubMed Central

    Mih, Justin D.; Marinkovic, Aleksandar; Liu, Fei; Sharif, Asma S.; Tschumperlin, Daniel J.

    2012-01-01

    Summary The stiffness of the extracellular matrix exerts powerful effects on cell proliferation and differentiation, but the mechanisms transducing matrix stiffness into cellular fate decisions remain poorly understood. Two widely reported responses to matrix stiffening are increases in actomyosin contractility and cell proliferation. To delineate their relationship, we modulated cytoskeletal tension in cells grown across a physiological range of matrix stiffnesses. On both synthetic and naturally derived soft matrices, and across a panel of cell types, we observed a striking reversal of the effect of inhibiting actomyosin contractility, switching from the attenuation of proliferation on rigid substrates to the robust promotion of proliferation on soft matrices. Inhibiting contractility on soft matrices decoupled proliferation from cytoskeletal tension and focal adhesion organization, but not from cell spread area. Our results demonstrate that matrix stiffness and actomyosin contractility converge on cell spreading in an unexpected fashion to control a key aspect of cell fate. PMID:23097048

  12. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility

    PubMed Central

    Linsmeier, Ian; Banerjee, Shiladitya; Oakes, Patrick W.; Jung, Wonyeong; Kim, Taeyoon; Murrell, Michael P.

    2016-01-01

    While the molecular interactions between individual myosin motors and F-actin are well established, the relationship between F-actin organization and actomyosin forces remains poorly understood. Here we explore the accumulation of myosin-induced stresses within a two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin activity is controlled spatiotemporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actin networks is highly cooperative, telescopic with the activation size, and capable of generating non-uniform patterns of mechanical stress. We quantitatively reproduce these collective biomimetic properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. PMID:27558758

  13. Non-periodic oscillatory deformation of an actomyosin microdroplet encapsulated within a lipid interface

    PubMed Central

    Nishigami, Yukinori; Ito, Hiroaki; Sonobe, Seiji; Ichikawa, Masatoshi

    2016-01-01

    Active force generation in living organisms, which is mainly involved in actin cytoskeleton and myosin molecular motors, plays a crucial role in various biological processes. Although the contractile properties of actomyosin have been extensively investigated, their dynamic contribution to a deformable membrane remains unclear because of the cellular complexities and the difficulties associated with in vitro reconstitution. Here, by overcoming these experimental difficulties, we demonstrate the dynamic deformation of a reconstituted lipid interface coupled with self-organized structure of contractile actomyosin. Therein, the lipid interface repeatedly oscillates without any remarkable periods. The oscillatory deformation of the interface is caused by the aster-like three-dimensional hierarchical structure of actomyosin inside the droplet, which is revealed that the oscillation occurs stochastically as a Poisson process. PMID:26754862

  14. Non-periodic oscillatory deformation of an actomyosin microdroplet encapsulated within a lipid interface.

    PubMed

    Nishigami, Yukinori; Ito, Hiroaki; Sonobe, Seiji; Ichikawa, Masatoshi

    2016-01-01

    Active force generation in living organisms, which is mainly involved in actin cytoskeleton and myosin molecular motors, plays a crucial role in various biological processes. Although the contractile properties of actomyosin have been extensively investigated, their dynamic contribution to a deformable membrane remains unclear because of the cellular complexities and the difficulties associated with in vitro reconstitution. Here, by overcoming these experimental difficulties, we demonstrate the dynamic deformation of a reconstituted lipid interface coupled with self-organized structure of contractile actomyosin. Therein, the lipid interface repeatedly oscillates without any remarkable periods. The oscillatory deformation of the interface is caused by the aster-like three-dimensional hierarchical structure of actomyosin inside the droplet, which is revealed that the oscillation occurs stochastically as a Poisson process.

  15. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility

    NASA Astrophysics Data System (ADS)

    Linsmeier, Ian; Banerjee, Shiladitya; Oakes, Patrick W.; Jung, Wonyeong; Kim, Taeyoon; Murrell, Michael P.

    2016-08-01

    While the molecular interactions between individual myosin motors and F-actin are well established, the relationship between F-actin organization and actomyosin forces remains poorly understood. Here we explore the accumulation of myosin-induced stresses within a two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin activity is controlled spatiotemporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actin networks is highly cooperative, telescopic with the activation size, and capable of generating non-uniform patterns of mechanical stress. We quantitatively reproduce these collective biomimetic properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations.

  16. Link between the enzymatic kinetics and mechanical behavior in an actomyosin motor.

    PubMed Central

    Amitani, I; Sakamoto, T; Ando, T

    2001-01-01

    We have attempted to link the solution actomyosin ATPase with the mechanical properties of in vitro actin filament sliding over heavy meromyosin. To accomplish this we perturbed the system by altering the substrate with various NTPs and divalent cations, and by altering ionic strength. A wide variety of enzymatic and mechanical measurements were made under very similar solution conditions. Excellent correlations between the mechanical and enzymatic quantities were revealed. Analysis of these correlations based on a force-balance model led us to two fundamental equations, which can be described approximately as follows: the maximum sliding velocity is proportional to square root of V(max)K(m)(A), where K(m)(A) is the actin concentration at which the substrate turnover rate is half of its maximum (V(max)). The active force generated by a cross-bridge under no external load or under a small external load is proportional to square root of V(max)/K(m)(A). The equations successfully accounted for the correlations observed in the present study and observations in other laboratories. PMID:11159410

  17. Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli.

    PubMed

    Wang, Shaohui; Liu, Xin; Xu, Xuan; Yang, Denghui; Wang, Dong; Han, Xiangan; Shi, Yonghong; Tian, Mingxing; Ding, Chan; Peng, Daxin; Yu, Shengqing

    2016-01-01

    Type III secretion systems (T3SSs) are crucial for bacterial infections because they deliver effector proteins into host cells. The Escherichia coli type III secretion system 2 (ETT2) is present in the majority of E. coli strains, and although it is degenerate, ETT2 regulates bacterial virulence. An ATPase is essential for T3SS secretion, but the function of the ETT2 ATPase has not been demonstrated. Here, we show that EivC is homologous to the β subunit of F0F1 ATPases and it possesses ATPase activity. To investigate the effects of ETT2 ATPase EivC on the phenotype and virulence of avian pathogenic Escherichia coli (APEC), eivC mutant and complemented strains were constructed and characterized. Inactivation of eivC led to impaired flagella production and augmented fimbriae on the bacterial surface, and, consequently, reduced bacterial motility. In addition, the eivC mutant strain exhibited attenuated virulence in ducks, diminished serum resistance, reduced survival in macrophage cells and in ducks, upregulated fimbrial gene expression, and downregulated flagellar and virulence gene expression. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were increased in HD-11 macrophages infected with the eivC mutant strain, compared with the wild-type strain. These virulence-related phenotypes were restored by genetic complementation. These findings demonstrate that ETT2 ATPase EivC is involved in the motility and pathogenicity of APEC. PMID:27630634

  18. Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli

    PubMed Central

    Wang, Shaohui; Liu, Xin; Xu, Xuan; Yang, Denghui; Wang, Dong; Han, Xiangan; Shi, Yonghong; Tian, Mingxing; Ding, Chan; Peng, Daxin; Yu, Shengqing

    2016-01-01

    Type III secretion systems (T3SSs) are crucial for bacterial infections because they deliver effector proteins into host cells. The Escherichia coli type III secretion system 2 (ETT2) is present in the majority of E. coli strains, and although it is degenerate, ETT2 regulates bacterial virulence. An ATPase is essential for T3SS secretion, but the function of the ETT2 ATPase has not been demonstrated. Here, we show that EivC is homologous to the β subunit of F0F1 ATPases and it possesses ATPase activity. To investigate the effects of ETT2 ATPase EivC on the phenotype and virulence of avian pathogenic Escherichia coli (APEC), eivC mutant and complemented strains were constructed and characterized. Inactivation of eivC led to impaired flagella production and augmented fimbriae on the bacterial surface, and, consequently, reduced bacterial motility. In addition, the eivC mutant strain exhibited attenuated virulence in ducks, diminished serum resistance, reduced survival in macrophage cells and in ducks, upregulated fimbrial gene expression, and downregulated flagellar and virulence gene expression. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were increased in HD-11 macrophages infected with the eivC mutant strain, compared with the wild-type strain. These virulence-related phenotypes were restored by genetic complementation. These findings demonstrate that ETT2 ATPase EivC is involved in the motility and pathogenicity of APEC.

  19. Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli

    PubMed Central

    Wang, Shaohui; Liu, Xin; Xu, Xuan; Yang, Denghui; Wang, Dong; Han, Xiangan; Shi, Yonghong; Tian, Mingxing; Ding, Chan; Peng, Daxin; Yu, Shengqing

    2016-01-01

    Type III secretion systems (T3SSs) are crucial for bacterial infections because they deliver effector proteins into host cells. The Escherichia coli type III secretion system 2 (ETT2) is present in the majority of E. coli strains, and although it is degenerate, ETT2 regulates bacterial virulence. An ATPase is essential for T3SS secretion, but the function of the ETT2 ATPase has not been demonstrated. Here, we show that EivC is homologous to the β subunit of F0F1 ATPases and it possesses ATPase activity. To investigate the effects of ETT2 ATPase EivC on the phenotype and virulence of avian pathogenic Escherichia coli (APEC), eivC mutant and complemented strains were constructed and characterized. Inactivation of eivC led to impaired flagella production and augmented fimbriae on the bacterial surface, and, consequently, reduced bacterial motility. In addition, the eivC mutant strain exhibited attenuated virulence in ducks, diminished serum resistance, reduced survival in macrophage cells and in ducks, upregulated fimbrial gene expression, and downregulated flagellar and virulence gene expression. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were increased in HD-11 macrophages infected with the eivC mutant strain, compared with the wild-type strain. These virulence-related phenotypes were restored by genetic complementation. These findings demonstrate that ETT2 ATPase EivC is involved in the motility and pathogenicity of APEC. PMID:27630634

  20. Novel mechanisms power bacterial gliding motility.

    PubMed

    Nan, Beiyan; Zusman, David R

    2016-07-01

    For many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility. Bacterial gliders are a heterogeneous group containing diverse bacteria that utilize surface motilities that do not depend on traditional flagella or pili, but are powered by mechanisms that are less well understood. Recently, advances in our understanding of the molecular machineries for several gliding bacteria revealed the roles of modified ion channels, secretion systems and unique machinery for surface movements. These novel mechanisms provide rich source materials for studying the function and evolution of complex microbial nanomachines. In this review, we summarize recent findings made on the gliding mechanisms of the myxobacteria, flavobacteria and mycoplasmas. PMID:27028358

  1. Electric field modulation of the motility of actin filaments on myosin-functionalised surfaces

    NASA Astrophysics Data System (ADS)

    Ramsey, L. C.; Aveyard, J.; van Zalinge, H.; Persson, M.; Mânsson, A.; Nicolau, D. V.

    2013-02-01

    We investigated the difference in electrically guided acto-myosin motility on two surfaces. Rabbit skeletal muscle heavy meromyosin (HMM) was absorbed onto surfaces coated with Nitrocellulose (NC) and Poly(butyl methacrylate) (PBMA). A modified in vitro motility assay with sealed chambers for the insertion of electrodes allowed an electrical field to be applied across the flow cell. On all surfaces a small increase in velocity and general guidance of the actin filaments towards the positive electrode is seen at field strengths in the range of ~3000 - 4000Vm-1. A large increase in velocity was observed at ~5000Vm-1 and a significant change in the velocity of the actin filaments present in field strengths higher than this. NC supported the highest percentage of motile filaments and at a field of 8000Vm-1 reached ~66%. PBMA however supported the least percentage of motile filaments and irregular motility was observed even at higher fields where guidance was expected to be strong. The change in velocity in the range of fields tested varied significantly on the surfaces with NC displaying a 46% increase from 0 to 8000Vm-1 whereas on PBMA this value was just 37%.

  2. Axonemal motility in Chlamydomonas.

    PubMed

    Wakabayashi, Ken-ichi; Kamiya, Ritsu

    2015-01-01

    Motile cilia and flagella rapidly propagate bending waves and produce water flow over the cell surface. Their function is important for the physiology and development of various organisms including humans. The movement is based on the sliding between outer doublet microtubules driven by axonemal dyneins, and is regulated by various axonemal components and environmental factors. For studies aiming to elucidate the mechanism of cilia/flagella movement and regulation, Chlamydomonas is an invaluable model organism that offers a variety of mutants. This chapter introduces standard methods for studying Chlamydomonas flagellar motility including analysis of swimming paths, measurements of swimming speed and beat frequency, motility reactivation in demembranated cells (cell models), and observation of microtubule sliding in disintegrating axonemes. Most methods may be easily applied to other organisms with slight modifications of the medium conditions.

  3. Cell motility on nanotopography

    NASA Astrophysics Data System (ADS)

    Kimura, Masahiro; Tsai, Irene; Green, Angelo; Jacobson, Bruce; Russell, Thomas

    2003-03-01

    Cell motility is strongly influenced by the structure of the substratum. Understanding cells motility on a surface has significant applications both in vivo and in vitro applications, such as biological sensors and hip replacement. A gradient surface is used to study the effect of the lateral nanotopography on cell motility. A gradient surface is generated by block copolymer and homopolymer blends, where the concentration of the components varies uniformly across the surface. The two homopolymers phase separate on the micron scale and this length scale gradually decrease to the nanoscopic, i.e. microphase separation of the diblock, as the copolymer concentration increases. Quantitative analysis of the speed of cell migration is correlated to the lateral length scale of the surface.

  4. [Obesity and gastrointestinal motility].

    PubMed

    Lee, Joon Seong

    2006-08-01

    Gastrointestinal (GI) motility has a crucial role in the food consumption, digestion and absorption, and also controls the appetite and satiety. In obese patients, various alterations of GI motility have been investigated. The prevalence of GERD and esophageal motor disorders in obese patients are higher than those of general population. Gastric emptying of solid food is generally accelerated and fasting gastric volume especially in distal stomach is larger in obese patients without change in accommodation. Contractile activity of small intestine in fasting period is more prominent, but orocecal transit is delayed. Autonomic dysfunction is frequently demonstrated in obese patients. These findings correspond with increased appetite and delayed satiety in obese patients, but causes or results have not been confirmed. Therapeutic interventions of these altered GI motility have been developed using botulinum toxin, gastric electrical stimulation in obese patients. Novel agents targeted for GI hormone modulation (such as ghrelin and leptin) need to be developed in the near future. PMID:16929152

  5. Cooperativity of thiol-modified myosin filaments. ATPase and motility assays of myosin function.

    PubMed Central

    Root, D D; Reisler, E

    1992-01-01

    The effects of chemical modifications of myosin's reactive cysteines on actomyosin adenosine triphosphatase (ATPase) activities and sliding velocities in the in vitro motility assays were examined in this work. The three types of modifications studied were 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3- diazole labeling of SH2 (based on Ajtai and Burghart. 1989. Biochemistry. 28:2204-2210.), phenylmaleimide labeling of SH1, and phenylmaleimide labeling of myosin in myofibrils under rigor conditions. Each type of modified myosin inhibited the sliding of actin in motility assays. The sliding velocities of actin over copolymers of modified and unmodified myosins in the motility assay were slowest with rigor-modified myosin and most rapid with SH2-labeled myosin. The actin-activated ATPase activities of similarly copolymerized myosins were lowest with SH2-labeled myosin and highest with rigor-modified myosin. The actin-activated ATPase activities of myosin subfragment-1 obtained from these modified myosins decreased in the same linear manner with the fraction of modified heads. These results are interpreted using a model in which the sliding of actin filaments over myosin filaments decreases the probability of myosin activation by actin. The sliding velocity of actin over monomeric rigor-modified myosin exceeded that over the filamentous form, which suggests for this myosin that filament structure is important for the inhibition of actin sliding in motility assays. The fact that all cysteine modifications examined inhibited the actomyosin ATPase activities and sliding velocities of actin over myosin poses questions concerning the information about the activated crossbridge obtained from probes attached to SH1 or SH2 on myosin. PMID:1420910

  6. MasABK Proteins Interact with Proteins of the Type IV Pilin System to Affect Social Motility of Myxococcus xanthus

    PubMed Central

    Fremgen, Sarah; Williams, Amanda; Furusawa, Gou; Dziewanowska, Katarzyna; Settles, Matthew; Hartzell, Patricia

    2013-01-01

    Gliding motility is critical for normal development of spore-filled fruiting bodies in the soil bacterium Myxococcus xanthus. Mutations in mgl block motility and development but one mgl allele can be suppressed by a mutation in masK, the last gene in an operon adjacent to the mgl operon. Deletion of the entire 5.5 kb masABK operon crippled gliding and fruiting body development and decreased sporulation. Expression of pilAGHI, which encodes type IV pili (TFP) components essential for social (S) gliding, several cryptic pil genes, and a LuxR family protein were reduced significantly in the Δmas mutant while expression of the myxalamide operon was increased significantly. Localization and two-hybrid analysis suggest that the three Mas proteins form a membrane complex. MasA-PhoA fusions confirmed that MasA is an integral cytoplasmic membrane protein with a ≈100 amino acid periplasmic domain. Results from yeast two-hybrid assays showed that MasA interacts with the lipoprotein MasB and MasK, a protein kinase and that MasB and MasK interact with one another. Additionally, yeast two-hybrid analysis revealed a physical interaction between two gene products of the mas operon, MasA and MasB, and PilA. Deletion of mas may be accompanied by compensatory mutations since complementation of the Δmas social gliding and developmental defects required addition of both pilA and masABK. PMID:23342171

  7. The Effect of Alcohol on Gastrointestinal Motility.

    PubMed

    Grad, Simona; Abenavoli, Ludovico; Dumitrascu, Dan L

    2016-01-01

    The Gastrointestinal (GI) tract is one of the most affected systems by alcohol consumption. Alcohol can affect the esophagus in several ways: induces mucosal inflammation, increases the risk for Barrett esophagus and esophageal cancer, and also impairs the esophageal motility. Numerous studies have reported an increased prevalence of Gastroesophageal Reflux Disease (GERD) or erosive esophagitis in alcoholics. Some alcoholics exhibit an abnormality of esophageal motility known as a "nutcracker esophagus". Alcohol effect on gastric motility depends on the alcohol concentration. In general, beverages with high alcohol concentrations (i.e., above 15 percent) appear to inhibit gastric motility and low alcohol doses (wine and beer) accelerate gastric emptying. Also, acute administration of ethanol inhibits the gastric emptying, while chronic administration of a large dose of alcohol accelerates gastric motility. The effect of alcohol on small bowel motility differs according to the type of consumption (acute or chronic). Acute administration of alcohol has been found to inhibit small bowel transit and chronic administration of a large dose of alcohol accelerates small bowel transit. This article reviews some of the below findings. PMID:27527893

  8. L-Cysteine/D,L-homocysteine-regulated ileum motility via system L and B°(,+) transporter: Modification by inhibitors of hydrogen sulfide synthesis and dietary treatments.

    PubMed

    Yamane, Satoshi; Nomura, Ryouya; Yanagihara, Madoka; Nakamura, Hiroyuki; Fujino, Hiromichi; Matsumoto, Kenjiro; Horie, Syunji; Murayama, Toshihiko

    2015-10-01

    Previous studies including ours demonstrated that L-cysteine treatments decreased motility in gastrointestinal tissues including the ileum via hydrogen sulfide (H2S), which is formed from sulfur-containing amino acids such as L-cysteine and L-homocysteine. However, the amino acid transport systems involved in L-cysteine/L-homocysteine-induced responses have not yet been elucidated in detail; therefore, we investigated these systems pharmacologically by measuring electrical stimulation (ES)-induced contractions with amino acids in mouse ileum preparations. The treatments with L-cysteine and D,L-homocysteine inhibited ES-induced contractions in ileum preparations from fasted mice, and these responses were decreased by the treatment with 2-aminobicyclo[2.2.1]heptane-2-carboxylate (BCH), an inhibitor of systems L and B°(,+). The results obtained using ileum preparations and a model cell line (PC12 cells) with various amino acids and BCH showed that not only L-cysteine, but also aminooxyacetic acid and D,L-propargylglycine, which act as H2S synthesis inhibitors, appeared to be taken up by these preparations/cells in L and B°(,+) system-dependent manners. The L-cysteine and D,L-homocysteine responses were delayed and abolished, respectively, in ileum preparations from fed mice. Our results suggested that the regulation of ileum motility by L-cysteine and D,L-homocysteine was dependent on BCH-sensitive systems, and varied depending on feeding in mice. Therefore, the effects of aminooxyacetic acid and D,L-propargylglycine on transport systems need to be considered in pharmacological analyses.

  9. Gastrointestinal motility revisited: The wireless motility capsule

    PubMed Central

    Farmer, Adam D; Scott, S Mark

    2013-01-01

    Introduction The wireless motility capsule (WMC) is a novel ambulatory technology that concurrently measures intraluminal pH, temperature, and pressure as it traverses the gastrointestinal tract. Objectives We aim to provide a concise summary of the WMC, detailing the procedure for its administration and the parameters it records. We also review the evidence that has validated the WMC against other methods currently regarded as ‘gold standard’. Conclusions The WMC offers a number of advantages over and above current techniques, especially with respect to patient tolerability, safety, and standardization. The WMC represents a considerable enhancement of the researchers’ and clinicians’ investigatory armamentarium. If this technology becomes widely adopted, coupled with international consensus upon the interpretation of physiological data derived therein, it may herald a new and exciting era in gastrointestinal physiology. PMID:24917991

  10. Global control of GacA in secondary metabolism, primary metabolism, secretion systems, and motility in the rhizobacterium Pseudomonas aeruginosa M18.

    PubMed

    Wei, Xue; Huang, Xianqing; Tang, Lulu; Wu, Daqiang; Xu, Yuquan

    2013-08-01

    The rhizobacterium Pseudomonas aeruginosa M18 can produce a broad spectrum of secondary metabolites, including the antibiotics pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA), hydrogen cyanide, and the siderophores pyoverdine and pyochelin. The antibiotic biosynthesis of M18 is coordinately controlled by multiple distinct regulatory pathways, of which the GacS/GacA system activates Plt biosynthesis but strongly downregulates PCA biosynthesis. Here, we investigated the global influence of a gacA mutation on the M18 transcriptome and related metabolic and physiological processes. Transcriptome profiling revealed that the transcript levels of 839 genes, which account for approximately 15% of the annotated genes in the M18 genome, were significantly influenced by the gacA mutation during the early stationary growth phase of M18. Most secondary metabolic gene clusters, such as pvd, pch, plt, amb, and hcn, were activated by GacA. The GacA regulon also included genes encoding extracellular enzymes and cytochrome oxidases. Interestingly, the primary metabolism involved in the assimilation and metabolism of phosphorus, sulfur, and nitrogen sources was also notably regulated by GacA. Another important category of the GacA regulon was secretion systems, including H1, H2, and H3 (type VI secretion systems [T6SSs]), Hxc (T2SS), and Has and Apr (T1SSs), and CupE and Tad pili. More remarkably, GacA inhibited swimming, swarming, and twitching motilities. Taken together, the Gac-initiated global regulation, which was mostly mediated through multiple regulatory systems or factors, was mainly involved in secondary and primary metabolism, secretion systems, motility, etc., contributing to ecological or nutritional competence, ion homeostasis, and biocontrol in M18. PMID:23708134

  11. Sperm Motility in Flow

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman

    2012-11-01

    A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.

  12. [Effect of electromagnetic field of extremely low frequency on ATPase activity of actomyosin].

    PubMed

    Tseĭslier, Iu V; Sheliuk, O V; Martyniuk, V S; Nuryshchenko, N Ie

    2012-01-01

    The Mg2+/Ca2+ and K(+)-ATPase actomyosin activity of rabbit skeletal muscle was evaluated by the Fiske-Subbarow method during a five-hour exposition of protein solutions in electromagnetic field of extremely low frequency of 8 Hz and 25 microT induction. The results of the study of the ATPase activity of actomyosin upon electromagnetic exposure have shown statistically significant changes that are characterized by a rather complex time dynamics. After 1, 2 and 4 hours of exposure of protein solutions the effect of ELF EMF exposure inhibits the ATPase activity compared to control samples, which are not exposed to the magnetic field. By the third and fifth hours of exposure to the electromagnetic field, there is a significant increase in the ATPase activity of actomyosin. It should be noted that a similar pattern of change in enzyme activity was universal, both for the environment by Mg2+ and Ca2+, and in the absence of these ions in the buffer. This can evidence for Ca(2+)-independent ways of the infuence of electromagnetic field (EMP) on biologic objects. In our opinion, the above effects are explained by EMP influence on the dynamic properties of actomyosin solutions, which are based on the processes of spontaneous dynamic formation of structure.

  13. The role of catch-bonds in acto-myosin mechanics and cell mechano-sensitivity

    NASA Astrophysics Data System (ADS)

    Akalp, Umut; Vernerey, Franck J.

    Contraction and spreading of adherent cells are important phenomena in range of cellular processes such as differentiation, morphogenesis, and healing. In this presentation, we propose a novel mechanism of adherent cell mechano-sensing, based on the idea that the contractile acto-myosin machinery behaves as a catch-bond. For this, we construct a simplified model of the acto-myosin structure that constitute the building block of stress fibers and express the stability of cross-bridges in terms of the force-dependent bonding energy of the acto-myosin bond. Consistent with experimental measurements, we then consider that the energy barrier of the acto-myosin bond increases for tension and show that this response is enough to explain the force-induced stabilization of an SF. The resulting model eventually takes the form of a force-sensitive, active visco-elastic material, powered by ATP hydrolysis. The model is used to investigate the organization and contraction of the actin cytoskeleton of cells laying on arrays of microposts. Upon comparison with experimental observations and measurements, simulations show that the catch-bond hypothesis is satisfactory to predict the sensitivity of adherent cells to substrate stiffness as well as the complex organization of the actin cytoskeleton.

  14. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis

    PubMed Central

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G.; González-Reyes, Acaimo; Martín-Bermudo, María D.

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies. PMID:26888436

  15. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

    PubMed

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G; González-Reyes, Acaimo; Martín-Bermudo, María D

    2016-02-18

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies.

  16. Characterization of actomyosin bond properties in intact skeletal muscle by force spectroscopy

    PubMed Central

    Colombini, Barbara; Bagni, M. Angela; Romano, Giovanni; Cecchi, Giovanni

    2007-01-01

    Force generation and motion in skeletal muscle result from interaction between actin and myosin myofilaments through the cyclical formation and rupture of the actomyosin bonds, the cross-bridges, in the overlap region of the sarcomeres. Actomyosin bond properties were investigated here in single intact muscle fibers by using dynamic force spectroscopy. The force needed to forcibly detach the cross-bridge ensemble in the half-sarcomere (hs) was measured in a range of stretching velocity between 3.4 × 103 nm·hs−1·s−1 or 3.3 fiber length per second (l0s−1) and 6.1 × 104 nm·hs−1·s−1 or 50 l0·s−1 during tetanic force development. The rupture force of the actomyosin bond increased linearly with the logarithm of the loading rate, in agreement with previous experiments on noncovalent single bond and with Bell theory [Bell GI (1978) Science 200:618–627]. The analysis permitted calculation of the actomyosin interaction length, xβ and the dissociation rate constant for zero external load, k0. Mean xβ was 1.25 nm, a value similar to that reported for single actomyosin bond under rigor condition. Mean k0 was 20 s−1, a value about twice as great as that reported in the literature for isometric force relaxation in the same type of muscle fibers. These experiments show, for the first time, that force spectroscopy can be used to reveal the properties of the individual cross-bridge in intact skeletal muscle fibers. PMID:17517641

  17. The unique paradigm of spirochete motility and chemotaxis

    PubMed Central

    Charon, Nyles W.; Cockburn, Andrew; Li, Chunhao; Liu, Jun; Miller, Kelly A.; Miller, Michael R.; Motaleb, Md.; Wolgemuth, Charles W.

    2013-01-01

    Spirochete motility is enigmatic: It differs from the motility of most other bacteria in that the entire bacterium is involved in translocation in the absence of external appendages. Using the Lyme disease spirochete Borrelia burgdorferi (Bb) as a model system, we explore the current research on spirochete motility and chemotaxis. Bb has periplasmic flagella (PFs) subterminally attached to each end of the protoplasmic cell cylinder, and surrounding the cell is an outer membrane. These internal helically shaped PFs allow the spirochete to swim by generating backward-moving waves by rotation. Exciting advances using cryoelectron microscopy tomography are presented with respect to in situ analysis of cell, PF, and motor structure. In addition, advances in the dynamics of motility, chemotaxis, gene regulation, and the role of motility and chemotaxis in the life cycle of Bb are summarized. The results indicate that the motility paradigms of flagellated bacteria do not apply to these unique bacteria. PMID:22994496

  18. The unique paradigm of spirochete motility and chemotaxis.

    PubMed

    Charon, Nyles W; Cockburn, Andrew; Li, Chunhao; Liu, Jun; Miller, Kelly A; Miller, Michael R; Motaleb, Md A; Wolgemuth, Charles W

    2012-01-01

    Spirochete motility is enigmatic: It differs from the motility of most other bacteria in that the entire bacterium is involved in translocation in the absence of external appendages. Using the Lyme disease spirochete Borrelia burgdorferi (Bb) as a model system, we explore the current research on spirochete motility and chemotaxis. Bb has periplasmic flagella (PFs) subterminally attached to each end of the protoplasmic cell cylinder, and surrounding the cell is an outer membrane. These internal helix-shaped PFs allow the spirochete to swim by generating backward-moving waves by rotation. Exciting advances using cryoelectron tomography are presented with respect to in situ analysis of cell, PF, and motor structure. In addition, advances in the dynamics of motility, chemotaxis, gene regulation, and the role of motility and chemotaxis in the life cycle of Bb are summarized. The results indicate that the motility paradigms of flagellated bacteria do not apply to these unique bacteria.

  19. [Esophageal motility disorders].

    PubMed

    Dughera, L; Battaglia, E; Emanuelli, G

    2001-09-01

    Esophageal motility abnormalities are usually diagnosed when esophageal manometry is performed in patients with unexplained non-cardiac chest pain, non obstructive dysphagia or as a part of the preoperative evaluation for surgery of gastroesophageal reflux. Classification of these abnormalities has been a subject of controversy. These esophageal contraction abnormalities can be separated manometrically from the motor pattern seen in normal subjects, however, their clinical relevance is still unclear and debated. Many patients demonstrate motility abnormalities in the manometry laboratories, but may lack correlation with their presenting symptoms. Medical treatment can decrease symptoms particularly chest pain or acid reflux but there is no significant changes in the manometric patterns. Such motor abnormalities may not reflect a true disease state, but they could be markers of other abnormalities and they can modify the initial manometric findings in time.

  20. Statistical physical models of cellular motility

    NASA Astrophysics Data System (ADS)

    Banigan, Edward J.

    Cellular motility is required for a wide range of biological behaviors and functions, and the topic poses a number of interesting physical questions. In this work, we construct and analyze models of various aspects of cellular motility using tools and ideas from statistical physics. We begin with a Brownian dynamics model for actin-polymerization-driven motility, which is responsible for cell crawling and "rocketing" motility of pathogens. Within this model, we explore the robustness of self-diffusiophoresis, which is a general mechanism of motility. Using this mechanism, an object such as a cell catalyzes a reaction that generates a steady-state concentration gradient that propels the object in a particular direction. We then apply these ideas to a model for depolymerization-driven motility during bacterial chromosome segregation. We find that depolymerization and protein-protein binding interactions alone are sufficient to robustly pull a chromosome, even against large loads. Next, we investigate how forces and kinetics interact during eukaryotic mitosis with a many-microtubule model. Microtubules exert forces on chromosomes, but since individual microtubules grow and shrink in a force-dependent way, these forces lead to bistable collective microtubule dynamics, which provides a mechanism for chromosome oscillations and microtubule-based tension sensing. Finally, we explore kinematic aspects of cell motility in the context of the immune system. We develop quantitative methods for analyzing cell migration statistics collected during imaging experiments. We find that during chronic infection in the brain, T cells run and pause stochastically, following the statistics of a generalized Levy walk. These statistics may contribute to immune function by mimicking an evolutionarily conserved efficient search strategy. Additionally, we find that naive T cells migrating in lymph nodes also obey non-Gaussian statistics. Altogether, our work demonstrates how physical

  1. An ocular motility conundrum

    PubMed Central

    McElnea, Elizabeth Margaret; Stephenson, Kirk; Lanigan, Bernie; Flitcroft, Ian

    2014-01-01

    Two siblings, an 11-year-old boy and a 7-year-old girl presented with bilateral symmetrical ptosis and limited eye movements. Having already been reviewed on a number of occasions by a variety of specialists in multiple hospital settings a diagnosis of their ocular motility disorder had remained elusive. We describe their cases, outline the differential diagnosis and review the investigations performed which were influential in finally making a diagnosis. PMID:25349186

  2. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes.

    PubMed

    Lobel, Lior; Herskovits, Anat A

    2016-02-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY's regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner. PMID:26895237

  3. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes

    PubMed Central

    Lobel, Lior; Herskovits, Anat A.

    2016-01-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY’s regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner. PMID:26895237

  4. Motility of Mycoplasma pneumoniae.

    PubMed Central

    Radestock, U; Bredt, W

    1977-01-01

    Cell of Mycoplasma pneumoniae FH gliding on a glass surface in liquid medium were examined by microscopic observation and quantitatively by microcinematography (30 frames per min). Comparisons were made only within the individual experiments. The cells moved in an irregular pattern with numerous narrow bends and circles. They never changed their leading end. The average speed (without pauses) was relatively constant between o.2 and 0.5 mum/s. The maximum speed was about 1.5 to 2.0 mum/s. The movements were interrupted by resting periods of different lengths and frequency. Temperature, viscosity, pH, and the presence of yeast extract in the medium influenced the motility significantly; changes in glucose, calcium ions, and serum content were less effective. The movements were affected by iodoacetate, p-mercuribenzoate, and mitomycin C at inhibitory or subinhibitory concentrations. Sodium fluoride, sodium cyanide, dinitrophenol, chloramphenicol, puromycin, cholchicin, and cytochalasin B at minimal inhibitory concentrations did not affect motility. The movements were effectively inhibited by anti-M. pneumoniae antiserum. Studies with absorbed antiserum suggested that the surface components involved in motility are heat labile. The gliding of M. pneumoniae cells required an intact energy metabolism and the proteins involved seemed to have a low turnover. Images PMID:14925

  5. Microtubule-dependent motility and orientation of the cortical endoplasmic reticulum in elongating characean internodal cells.

    PubMed

    Foissner, Ilse; Menzel, Diedrik; Wasteneys, Geoffrey O

    2009-03-01

    Motility of the endoplasmic reticulum (ER) is predominantly microtubule- dependent in animal cells but thought to be entirely actomyosin-dependent in plant cells. Using live cell imaging and transmission electron microscopy to examine ER motility and structural organization in giant internodal cells of characean algae, we discovered that at the onset of cell elongation, the cortical ER situated near the plasma membrane formed a tight meshwork of predominantly transverse ER tubules that frequently coaligned with microtubules. Microtubule depolymerization increased mesh size and decreased the dynamics of the cortical ER. In contrast, perturbing the cortical actin array with cytochalasins did not affect the transverse orientation but decreased mesh size and increased ER dynamics. Our data suggest that myosin-dependent ER motility is confined to the ER strands in the streaming endoplasm, while the more sedate cortical ER uses microtubule-based mechanisms for organization and motility during early stages of cell elongation. We show further that the ER has an inherent, NEM-sensitive dynamics which can be altered via interaction with the cytoskeleton and that tubule formation and fusion events are cytoskeleton-independent.

  6. MYBPH inhibits NM IIA assembly via direct interaction with NMHC IIA and reduces cell motility

    SciTech Connect

    Hosono, Yasuyuki; Usukura, Jiro; Yamaguchi, Tomoya; Yanagisawa, Kiyoshi; Suzuki, Motoshi; Takahashi, Takashi

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer MYBPH inhibits NMHC IIA assembly and cell motility. Black-Right-Pointing-Pointer MYBPH interacts to assembly-competent NM IIA. Black-Right-Pointing-Pointer MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA. -- Abstract: Actomyosin filament assembly is a critical step in tumor cell migration. We previously found that myosin binding protein H (MYBPH) is directly transactivated by the TTF-1 lineage-survival oncogene in lung adenocarcinomas and inhibits phosphorylation of the myosin regulatory light chain (RLC) of non-muscle myosin IIA (NM IIA) via direct interaction with Rho kinase 1 (ROCK1). Here, we report that MYBPH also directly interacts with an additional molecule, non-muscle myosin heavy chain IIA (NMHC IIA), which was found to occur between MYBPH and the rod portion of NMHC IIA. MYBPH inhibited NMHC IIA assembly and reduced cell motility. Conversely, siMYBPH-induced increased motility was partially, yet significantly, suppressed by blebbistatin, a non-muscle myosin II inhibitor, while more profound effects were attained by combined treatment with siROCK1 and blebbistatin. Electron microscopy observations showed well-ordered paracrystals of NMHC IIA reflecting an assembled state, which were significantly less frequently observed in the presence of MYBPH. Furthermore, an in vitro sedimentation assay showed that a greater amount of NMHC IIA was in an unassembled state in the presence of MYBPH. Interestingly, treatment with a ROCK inhibitor that impairs transition of NM IIA from an assembly-incompetent to assembly-competent state reduced the interaction between MYBPH and NMHC IIA, suggesting that MYBPH has higher affinity to assembly-competent NM IIA. These results suggest that MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA, and negatively regulates actomyosin organization at 2 distinct steps, resulting in firm inhibition of NM IIA assembly.

  7. Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system.

    PubMed

    Shah, Devendra H; Zhou, Xiaohui; Addwebi, Tarek; Davis, Margaret A; Orfe, Lisa; Call, Douglas R; Guard, Jean; Besser, Thomas E

    2011-05-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of S. Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low (n = 7), medium (n = 18) and high (n = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene spvB or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive in vivo and caused more and earlier mortalities, whereas the latter were significantly less invasive in vivo, causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on Salmonella pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of S. Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of S. Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins.

  8. Competency based medical education in gastrointestinal motility.

    PubMed

    Yadlapati, R; Keswani, R N; Pandolfino, J E

    2016-10-01

    Traditional apprenticeship-based medical education methods focusing on subjective evaluations and case-volume requirements do not reliably produce clinicians that provide high-quality care in unsupervised practice. Consequently, training approaches are shifting towards competency based medical education, which incorporates robust assessment methods and credible standards of physician proficiency. However, current gastroenterology and hepatology training in the US continues to utilize procedural volume and global impressions without standardized criteria as markers of competence. In particular, efforts to optimize competency based training in gastrointestinal (GI) motility are not underway, even though GI motility disorders account for nearly half of outpatient gastroenterology visits. These deficiencies compromise the quality of patient care. Thus, there is a great need and opportunity to shift our focus in GI motility training towards a competency based approach. First, we need to clarify the variable rates of learning for individual diagnostic tests. We must develop integrated systems that standardize training and monitor physician competency for GI motility diagnostics. Finally, as a profession and society, we must create certification processes to credential competent physicians. These advances are critical to optimizing the quality of GI motility diagnostics in practice.

  9. Direct Upstream Motility in Escherichia coli

    PubMed Central

    Kaya, Tolga; Koser, Hur

    2012-01-01

    We provide an experimental demonstration of positive rheotaxis (rapid and continuous upstream motility) in wild-type Escherichia coli freely swimming over a surface. This hydrodynamic phenomenon is dominant below a critical shear rate and robust against Brownian motion and cell tumbling. We deduce that individual bacteria entering a flow system can rapidly migrate upstream (>20 μm/s) much faster than a gradually advancing biofilm. Given a bacterial population with a distribution of sizes and swim speeds, local shear rate near the surface determines the dominant hydrodynamic mode for motility, i.e., circular or random trajectories for low shear rates, positive rheotaxis for moderate flow, and sideways swimming at higher shear rates. Faster swimmers can move upstream more rapidly and at higher shear rates, as expected. Interestingly, we also find on average that both swim speed and upstream motility are independent of cell aspect ratio. PMID:22500751

  10. Actomyosin tension as a determinant of metastatic cancer mechanical tropism

    NASA Astrophysics Data System (ADS)

    McGrail, Daniel J.; Kieu, Quang Minh N.; Iandoli, Jason A.; Dawson, Michelle R.

    2015-04-01

    Despite major advances in the characterization of molecular regulators of cancer growth and metastasis, patient survival rates have largely stagnated. Recent studies have shown that mechanical cues from the extracellular matrix can drive the transition to a malignant phenotype. Moreover, it is also known that the metastatic process, which results in over 90% of cancer-related deaths, is governed by intracellular mechanical forces. To better understand these processes, we identified metastatic tumor cells originating from different locations which undergo inverse responses to altered matrix elasticity: MDA-MB-231 breast cancer cells that prefer rigid matrices and SKOV-3 ovarian cancer cells that prefer compliant matrices as characterized by parameters such as tumor cell proliferation, chemoresistance, and migration. Transcriptomic analysis revealed higher expression of genes associated with cytoskeletal tension and contractility in cells that prefer stiff environments, both when comparing MDA-MB-231 to SKOV-3 cells as well as when comparing bone-metastatic to lung-metastatic MDA-MB-231 subclones. Using small molecule inhibitors, we found that blocking the activity of these pathways mitigated rigidity-dependent behavior in both cell lines. Probing the physical forces exerted by cells on the underlying substrates revealed that though force magnitude may not directly correlate with functional outcomes, other parameters such as force polarization do correlate directly with cell motility. Finally, this biophysical analysis demonstrates that intrinsic levels of cell contractility determine the matrix rigidity for maximal cell function, possibly influencing tissue sites for metastatic cancer cell engraftment during dissemination. By increasing our understanding of the physical interactions of cancer cells with their microenvironment, these studies may help develop novel therapeutic strategies.

  11. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-02-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.

  12. Evidence for the expression of actomyosin in the infective stage of the sporozoan protist Eimeria.

    PubMed

    Preston, T M; King, C A

    1992-04-01

    A high-speed supernatant extract was obtained from infective oocysts of Eimeria tenella homogenised in a sucrose-low ionic strength buffer. Immunoblotting showed this soluble, micropore-filtered preparation (designated E1) to be rich in actin. E1 underwent superprecipitation on addition of ATP but not its non-hydrolysable analogue AMP.PMP--behaviour typical of an actomyosin solution. The superprecipitate fluoresced strongly in the presence of rhodamine-phalloidin (indicative of the presence of F-actin) and electron microscopy of negatively-stained preparations of this flocculent matter confirmed the abundance of filamentous material within it. This is the first demonstration of a functional actomyosin isolated from a member of the economically important phylum Apicomplexa. PMID:1525837

  13. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    PubMed Central

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-01-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics. PMID:26877263

  14. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization

    PubMed Central

    Meddens, Marjolein B. M.; Pandzic, Elvis; Slotman, Johan A.; Guillet, Dominique; Joosten, Ben; Mennens, Svenja; Paardekooper, Laurent M.; Houtsmuller, Adriaan B.; van den Dries, Koen; Wiseman, Paul W.; Cambi, Alessandra

    2016-01-01

    Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area. PMID:27721497

  15. Chitooligosaccharides suppress the freeze-denaturation of actomyosin in Aristichthys nobilis surimi protein.

    PubMed

    Wang, Hong-Bin; Pan, Sai-Kun; Wu, Sheng-Jun

    2014-02-01

    Effect of chitooligosaccharides on the denaturation of bighead carp (Aristichthys nobilis) surimi protein during frozen storage at -18 °C was investigated. The addition of 4 g of chitooligosaccharides to 100 g of the bighead carp (A. nobilis) surimi effectively inhibited the inactivation of the Ca(2+)-ATPase during frozen storage at -18 °C for 15 days compared to the control group (p<0.05), while excessive chitooligosaccharides decreased the inhibition effect. The Ca(2+)-ATPase activity of actomyosin for the treatment group decreased gradually during frozen storage at -18 °C, while that of the control dropped drastically and could not be detected after 30 days of storage. On the other hand, the addition of chitooligosaccharides also significantly increased the solubility of actomyosin compared to the control group (p<0.05) during frozen storage at -18 °C up to 120 days. PMID:24189394

  16. Actomyosin bundles serve as a tension sensor and a platform for ERK activation.

    PubMed

    Hirata, Hiroaki; Gupta, Mukund; Vedula, Sri Ram Krishna; Lim, Chwee Teck; Ladoux, Benoit; Sokabe, Masahiro

    2015-02-01

    Tensile forces generated by stress fibers drive signal transduction events at focal adhesions. Here, we report that stress fibers per se act as a platform for tension-induced activation of biochemical signals. The MAP kinase, ERK is activated on stress fibers in a myosin II-dependent manner. In myosin II-inhibited cells, uniaxial stretching of cell adhesion substrates restores ERK activation on stress fibers. By quantifying myosin II- or mechanical stretch-mediated tensile forces in individual stress fibers, we show that ERK activation on stress fibers correlates positively with tensile forces acting on the fibers, indicating stress fibers as a tension sensor in ERK activation. Myosin II-dependent ERK activation is also observed on actomyosin bundles connecting E-cadherin clusters, thus suggesting that actomyosin bundles, in general, work as a platform for tension-dependent ERK activation.

  17. Actomyosin bundles serve as a tension sensor and a platform for ERK activation

    PubMed Central

    Hirata, Hiroaki; Gupta, Mukund; Vedula, Sri Ram Krishna; Lim, Chwee Teck; Ladoux, Benoit; Sokabe, Masahiro

    2015-01-01

    Tensile forces generated by stress fibers drive signal transduction events at focal adhesions. Here, we report that stress fibers per se act as a platform for tension-induced activation of biochemical signals. The MAP kinase, ERK is activated on stress fibers in a myosin II-dependent manner. In myosin II-inhibited cells, uniaxial stretching of cell adhesion substrates restores ERK activation on stress fibers. By quantifying myosin II- or mechanical stretch-mediated tensile forces in individual stress fibers, we show that ERK activation on stress fibers correlates positively with tensile forces acting on the fibers, indicating stress fibers as a tension sensor in ERK activation. Myosin II-dependent ERK activation is also observed on actomyosin bundles connecting E-cadherin clusters, thus suggesting that actomyosin bundles, in general, work as a platform for tension-dependent ERK activation. PMID:25550404

  18. D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system.

    PubMed Central

    Lankford, K L; DeMello, F G; Klein, W L

    1988-01-01

    Precedent exists for the early development and subsequent down-regulation of neurotransmitter receptor systems in the vertebrate central nervous system, but the function of such embryonic receptors has not been established. Here we show that stimulation of early-developing dopamine receptors in avian retina cells greatly inhibits the motility of neuronal growth cones. Neurons from embryonic chicken retinas were cultured in low-density monolayers, and their growth cones were observed with phase-contrast or video-enhanced-contrast-differential-interference-contrast (VEC-DIC) microscopy. Approximately 25% of the neurons responded to micromolar dopamine with a rapid reduction in filopodial activity followed by a flattening of growth cones and retraction of neurites. The response occurred at all ages examined (embryonic day-8 retinal neurons cultured on polylysine-coated coverslips for 1-7 days), although neurite retraction was greatest in younger cultures. Effects of dopamine on growth cone function could be reversed by haloperidol or (+)-SCH 23390, whereas forskolin elicited a response similar to dopamine; these data show the response was receptor-mediated, acting through a D1-type system, and are consistent with the use of cAMP as a second messenger. The experiments provide strong support for the hypothesis that neurotransmitters, besides mediating transynaptic signaling in the adult, may have a role in neuronal differentiation as growth regulators. Images PMID:3380807

  19. D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system.

    PubMed Central

    Lankford, K L; DeMello, F G; Klein, W L

    1988-01-01

    Precedent exists for the early development and subsequent down-regulation of neurotransmitter receptor systems in the vertebrate central nervous system, but the function of such embryonic receptors has not been established. Here we show that stimulation of early-developing dopamine receptors in avian retina cells greatly inhibits the motility of neuronal growth cones. Neurons from embryonic chicken retinas were cultured in low-density monolayers, and their growth cones were observed with phase-contrast or video-enhanced-contrast-differential-interference-contrast (VEC-DIC) microscopy. Approximately 25% of the neurons responded to micromolar dopamine with a rapid reduction in filopodial activity followed by a flattening of growth cones and retraction of neurites. The response occurred at all ages examined (embryonic day-8 retinal neurons cultured on polylysine-coated coverslips for 1-7 days), although neurite retraction was greatest in younger cultures. Effects of dopamine on growth cone function could be reversed by haloperidol or (+)-SCH 23390, whereas forskolin elicited a response similar to dopamine; these data show the response was receptor-mediated, acting through a D1-type system, and are consistent with the use of cAMP as a second messenger. The experiments provide strong support for the hypothesis that neurotransmitters, besides mediating transynaptic signaling in the adult, may have a role in neuronal differentiation as growth regulators. Images PMID:3357895

  20. Assembly and positioning of actomyosin rings by contractility and planar cell polarity

    PubMed Central

    Sehring, Ivonne M; Recho, Pierre; Denker, Elsa; Kourakis, Matthew; Mathiesen, Birthe; Hannezo, Edouard; Dong, Bo; Jiang, Di

    2015-01-01

    The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells′ anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events. DOI: http://dx.doi.org/10.7554/eLife.09206.001 PMID:26486861

  1. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility.

    PubMed

    García Ponce, Alexander; Citalán Madrid, Alí F; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-06-30

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity.

  2. Assembly and positioning of actomyosin rings by contractility and planar cell polarity.

    PubMed

    Sehring, Ivonne M; Recho, Pierre; Denker, Elsa; Kourakis, Matthew; Mathiesen, Birthe; Hannezo, Edouard; Dong, Bo; Jiang, Di

    2015-01-01

    The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells' anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events. PMID:26486861

  3. Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension.

    PubMed

    Simões, Sérgio de Matos; Mainieri, Avantika; Zallen, Jennifer A

    2014-02-17

    Actomyosin contraction generates mechanical forces that influence cell and tissue structure. During convergent extension in Drosophila melanogaster, the spatially regulated activity of the myosin activator Rho-kinase promotes actomyosin contraction at specific planar cell boundaries to produce polarized cell rearrangement. The mechanisms that direct localized Rho-kinase activity are not well understood. We show that Rho GTPase recruits Rho-kinase to adherens junctions and is required for Rho-kinase planar polarity. Shroom, an asymmetrically localized actin- and Rho-kinase-binding protein, amplifies Rho-kinase and myosin II planar polarity and junctional localization downstream of Rho signaling. In Shroom mutants, Rho-kinase and myosin II achieve reduced levels of planar polarity, resulting in decreased junctional tension, a disruption of multicellular rosette formation, and defective convergent extension. These results indicate that Rho GTPase activity is required to establish a planar polarized actomyosin network, and the Shroom actin-binding protein enhances myosin contractility locally to generate robust mechanical forces during axis elongation. PMID:24535826

  4. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility

    PubMed Central

    García Ponce, Alexander; Citalán Madrid, Alí F.; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-01-01

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity. PMID:27357373

  5. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility.

    PubMed

    García Ponce, Alexander; Citalán Madrid, Alí F; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-01-01

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity. PMID:27357373

  6. Sliding Motility in Mycobacteria

    PubMed Central

    Martínez, Asunción; Torello, Sandra; Kolter, Roberto

    1999-01-01

    Mycobacteria are nonflagellated gram-positive microorganisms. Previously thought to be nonmotile, we show here that Mycobacterium smegmatis can spread on the surface of growth medium by a sliding mechanism. M. smegmatis spreads as a monolayer of cells which are arranged in pseudofilaments by close cell-to-cell contacts, predominantly along their longitudinal axis. The monolayer moves away from the inoculation point as a unit with only minor rearrangements. No extracellular structures such as pili or fimbriae appear to be involved in this process. The ability to translocate over the surface correlates with the presence of glycopeptidolipids, a mycobacterium-specific class of amphiphilic molecules located in the outermost layer of the cell envelope. We present evidence that surface motility is not restricted to M. smegmatis but is also a property of the slow-growing opportunistic pathogen M. avium. This form of motility could play an important role in surface colonization by mycobacteria in the environment as well as in the host. PMID:10572138

  7. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  8. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  9. Active mechanical coupling between the nucleus, cytoskeleton and the extracellular matrix, and the implications for perinuclear actomyosin organization.

    PubMed

    Zemel, Assaf

    2015-03-28

    Experimental and theoretical studies have demonstrated that the polarization of actomyosin forces in the cytoskeleton of adherent cells is governed by local elastic stresses. Based on this phenomenon, and the established observation that the nucleus is mechanically connected to the extracellular matrix (ECM) via the cytoskeleton, we theoretically analyze here the active mechanical coupling between the nucleus, cytoskeleton and the ECM. The cell is modeled as an active spherical inclusion, containing a round nucleus at its center, and embedded in a 3D elastic matrix. We investigate three sources of cellular stress: spreading-induced stress, actomyosin contractility and chromatin entropic forces. Formulating the coupling of actomyosin contractility to the local stress we predict the consequences that the nucleus, cytoskeleton and ECM mechanical properties may have on the overall force-balance in the cell and the perinuclear acto-myosin polarization. We demonstrate that the presence of the nucleus induces symmetry breaking of the elastic stress that, we predict, elastically tends to orient actomyosin alignment tangentially around the nucleus; the softer the nucleus or the matrix, the stronger is the preference for tangential alignment. Spreading induced stresses may induce radial actomyosin alignment near stiff nuclei. In addition, we show that in regions of high actomyosin density myosin motors have an elastic tendency to orient tangentially as often occurs near the cell periphery. These conclusions highlight the role of the nucleus in the regulation of cytoskeleton organization and may provide new insight into the mechanics of stem cell differentiation involving few fold increase in nucleus stiffness. PMID:25652010

  10. Gliding Motility Revisited: How Do the Myxobacteria Move without Flagella?

    PubMed Central

    Mauriello, Emilia M. F.; Mignot, Tâm; Yang, Zhaomin; Zusman, David R.

    2010-01-01

    Summary: In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review. PMID:20508248

  11. Gastrointestinal Motility Disorders and Acupuncture

    PubMed Central

    Yin, Jieyun; Chen, Jiande D Z

    2010-01-01

    During the last decades, numerous studies have been performed to investigate the effects and mechanisms of acupuncture or electroacupuncture (EA) on gastrointestinal motility and patients with functional gastrointestinal diseases. A PubMed search was performed on this topic and all available studies published in English have been reviewed and evaluated. This review is organized based on the gastrointestinal organ (from the esophagus to the colon), components of gastrointestinal motility and the functional diseases related to specific motility disorders. It was found that the effects of acupuncture or EA on gastrointestinal motility were fairly consistent and the major acupuncture points used in these studies were ST36 and PC6. Gastric motility has been mostly studied, whereas much less information is available on the effect of EA on small and large intestinal motility or related disorders. A number of clinical studies have been published, investigating the therapeutic effects of EA on a number of functional gastrointestinal diseases, such as gastroesophageal reflux, functional dyspepsia and irritable bowel syndrome. However, the findings of these clinical studies were inconclusive. In summary, acupuncture or EA is able to alter gastrointestinal motility functions and improve gastrointestinal motility disorders. However, more studies are needed to establish the therapeutic roles of EA in treating functional gastrointestinal diseases. PMID:20363196

  12. Growth, collapse, and stalling in a mechanical model for neurite motility

    NASA Astrophysics Data System (ADS)

    Recho, Pierre; Jerusalem, Antoine; Goriely, Alain

    2016-03-01

    Neurites, the long cellular protrusions that form the routes of the neuronal network, are capable of actively extending during early morphogenesis or regenerating after trauma. To perform this task, they rely on their cytoskeleton for mechanical support. In this paper, we present a three-component active gel model that describes neurites in the three robust mechanical states observed experimentally: collapsed, static, and motile. These states arise from an interplay between the physical forces driven by growth of the microtubule-rich inner core of the neurite and the acto-myosin contractility of its surrounding cortical membrane. In particular, static states appear as a mechanical traction or compression balance of these two parallel structures. The model predicts how the response of a neurite to a towing force depends on the force magnitude and recovers the response of neurites to several drug treatments that modulate the cytoskeleton active and passive properties.

  13. Early endosome motility spatially organizes polysome distribution.

    PubMed

    Higuchi, Yujiro; Ashwin, Peter; Roger, Yvonne; Steinberg, Gero

    2014-02-01

    Early endosomes (EEs) mediate protein sorting, and their cytoskeleton-dependent motility supports long-distance signaling in neurons. Here, we report an unexpected role of EE motility in distributing the translation machinery in a fungal model system. We visualize ribosomal subunit proteins and show that the large subunits diffused slowly throughout the cytoplasm (Dc,60S = 0.311 µm(2)/s), whereas entire polysomes underwent long-range motility along microtubules. This movement was mediated by "hitchhiking" on kinesin-3 and dynein-driven EEs, where the polysomes appeared to translate EE-associated mRNA into proteins. Modeling indicates that this motor-driven transport is required for even cellular distribution of newly formed ribosomes. Indeed, impaired EE motility in motor mutants, or their inability to bind EEs in mutants lacking the RNA-binding protein Rrm4, reduced ribosome transport and induced ribosome aggregation near the nucleus. As a consequence, cell growth was severely restricted. Collectively, our results indicate that polysomes associate with moving EEs and that "off- and reloading" distributes the protein translation machinery.

  14. Flavobacterium columnare type IX secretion system mutations result in defects in gliding motility and loss of virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gliding bacterium Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. The related bacterium Flavobacterium johnsoniae uses a type IX secretion system (T9SS) to secrete enzymes, adhesin...

  15. Cyclic GMP and Cilia Motility

    PubMed Central

    Wyatt, Todd A.

    2015-01-01

    Motile cilia of the lungs respond to environmental challenges by increasing their ciliary beat frequency in order to enhance mucociliary clearance as a fundamental tenant of innate defense. One important second messenger in transducing the regulable nature of motile cilia is cyclic guanosine 3′,5′-monophosphate (cGMP). In this review, the history of cGMP action is presented and a survey of the existing data addressing cGMP action in ciliary motility is presented. Nitric oxide (NO)-mediated regulation of cGMP in ciliated cells is presented in the context of alcohol-induced cilia function and dysfunction. PMID:26264028

  16. The effects of actomyosin disruptors on the mechanical integrity of the avian crystalline lens

    PubMed Central

    Won, Gah-Jone; Fudge, Douglas S.

    2015-01-01

    Purpose: Actin and myosin within the crystalline lens maintain the structural integrity of lens fiber cells and form a hexagonal lattice cradling the posterior surface of the lens. The actomyosin network was pharmacologically disrupted to examine the effects on lenticular biomechanics and optical quality. Methods: One lens of 7-day-old White Leghorn chickens was treated with 10 µM of a disruptor and the other with 0.01% dimethyl sulfoxide (vehicle). Actin, myosin, and myosin light chain kinase (MLCK) disruptors were used. The stiffness and the optical quality of the control and treated lenses were measured. Western blotting and confocal imaging were used to confirm that treatment led to a disruption of the actomyosin network. The times for the lenses to recover stiffness to match the control values were also measured. Results: Disruptor-treated lenses were significantly less stiff than their controls (p≤0.0274 for all disruptors). The disruptors led to changes in the relative protein amounts as well as the distributions of proteins within the lattice. However, the disruptors did not affect the clarity of the lenses (p≥0.4696 for all disruptors), nor did they affect spherical aberration (p = 0.02245). The effects of all three disruptors were reversible, with lenses recovering from treatment with actin, myosin, and MLCK disruptors after 4 h, 1 h, and 8 min, respectively. Conclusions: Cytoskeletal protein disruptors led to a decreased stiffness of the lens, and the effects were reversible. Optical quality was mostly unaffected, but the long-term consequences remain unclear. Our results raise the possibility that the mechanical properties of the avian lens may be actively regulated in vivo via adjustments to the actomyosin lattice. PMID:25684975

  17. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution.

    PubMed

    von der Ecken, Julian; Heissler, Sarah M; Pathan-Chhatbar, Salma; Manstein, Dietmar J; Raunser, Stefan

    2016-06-30

    The interaction of myosin with actin filaments is the central feature of muscle contraction and cargo movement along actin filaments of the cytoskeleton. The energy for these movements is generated during a complex mechanochemical reaction cycle. Crystal structures of myosin in different states have provided important structural insights into the myosin motor cycle when myosin is detached from F-actin. The difficulty of obtaining diffracting crystals, however, has prevented structure determination by crystallography of actomyosin complexes. Thus, although structural models exist of F-actin in complex with various myosins, a high-resolution structure of the F-actin–myosin complex is missing. Here, using electron cryomicroscopy, we present the structure of a human rigor actomyosin complex at an average resolution of 3.9 Å. The structure reveals details of the actomyosin interface, which is mainly stabilized by hydrophobic interactions. The negatively charged amino (N) terminus of actin interacts with a conserved basic motif in loop 2 of myosin, promoting cleft closure in myosin. Surprisingly, the overall structure of myosin is similar to rigor-like myosin structures in the absence of F-actin, indicating that F-actin binding induces only minimal conformational changes in myosin. A comparison with pre-powerstroke and intermediate (Pi-release) states of myosin allows us to discuss the general mechanism of myosin binding to F-actin. Our results serve as a strong foundation for the molecular understanding of cytoskeletal diseases, such as autosomal dominant hearing loss and diseases affecting skeletal and cardiac muscles, in particular nemaline myopathy and hypertrophic cardiomyopathy. PMID:27324845

  18. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution.

    PubMed

    von der Ecken, Julian; Heissler, Sarah M; Pathan-Chhatbar, Salma; Manstein, Dietmar J; Raunser, Stefan

    2016-06-30

    The interaction of myosin with actin filaments is the central feature of muscle contraction and cargo movement along actin filaments of the cytoskeleton. The energy for these movements is generated during a complex mechanochemical reaction cycle. Crystal structures of myosin in different states have provided important structural insights into the myosin motor cycle when myosin is detached from F-actin. The difficulty of obtaining diffracting crystals, however, has prevented structure determination by crystallography of actomyosin complexes. Thus, although structural models exist of F-actin in complex with various myosins, a high-resolution structure of the F-actin–myosin complex is missing. Here, using electron cryomicroscopy, we present the structure of a human rigor actomyosin complex at an average resolution of 3.9 Å. The structure reveals details of the actomyosin interface, which is mainly stabilized by hydrophobic interactions. The negatively charged amino (N) terminus of actin interacts with a conserved basic motif in loop 2 of myosin, promoting cleft closure in myosin. Surprisingly, the overall structure of myosin is similar to rigor-like myosin structures in the absence of F-actin, indicating that F-actin binding induces only minimal conformational changes in myosin. A comparison with pre-powerstroke and intermediate (Pi-release) states of myosin allows us to discuss the general mechanism of myosin binding to F-actin. Our results serve as a strong foundation for the molecular understanding of cytoskeletal diseases, such as autosomal dominant hearing loss and diseases affecting skeletal and cardiac muscles, in particular nemaline myopathy and hypertrophic cardiomyopathy.

  19. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance

    PubMed Central

    Turney, Stephen G.; Ahmed, Mostafa; Chandrasekar, Indra; Wysolmerski, Robert B.; Goeckeler, Zoe M.; Rioux, Robert M.; Whitesides, George M.; Bridgman, Paul C.

    2016-01-01

    Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion–cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation. PMID:26631553

  20. Wound closure in the lamellipodia of single cells: mediation by actin polymerization in the absence of an actomyosin purse string.

    PubMed

    Henson, John H; Nazarian, Ronniel; Schulberg, Katrina L; Trabosh, Valerie A; Kolnik, Sarah E; Burns, Andrew R; McPartland, Kenneth J

    2002-03-01

    The actomyosin purse string is an evolutionarily conserved contractile structure that is involved in cytokinesis, morphogenesis, and wound healing. Recent studies suggested that an actomyosin purse string is crucial for the closure of wounds in single cells. In the present study, morphological and pharmacological methods were used to investigate the role of this structure in the closure of wounds in the peripheral cytoplasm of sea urchin coelomocytes. These discoidal shaped cells underwent a dramatic form of actin-based centripetal/retrograde flow and occasionally opened and closed spontaneous wounds in their lamellipodia. Fluorescent phalloidin staining indicated that a well defined fringe of actin filaments assembles from the margin of these holes, and drug studies with cytochalasin D and latrunculin A indicated that actin polymerization is required for wound closure. Additional evidence that actin polymerization is involved in wound closure was provided by the localization of components of the Arp2/3 complex to the wound margin. Significantly, myosin II immunolocalization demonstrated that it is not associated with wound margins despite being present in the perinuclear region. Pharmacological evidence for the lack of myosin II involvement in wound closure comes from experiments in which a microneedle was used to produce wounds in cells in which actomyosin contraction was inhibited by treatment with kinase inhibitors. Wounds produced in kinase inhibitor-treated cells closed in a manner similar to that seen with control cells. Taken together, our results suggest that an actomyosin purse string mechanism is not responsible for the closure of lamellar wounds in coelomocytes. We hypothesize that the wounds heal by means of a combination of the force produced by actin polymerization alone and centripetal flow. Interestingly, these cells did assemble an actomyosin structure around the margin of phagosome-like membrane invaginations, indicating that myosin is not simply

  1. Gastrointestinal Motility Disorders in Children

    PubMed Central

    Ambartsumyan, Lusine

    2014-01-01

    The most common and challenging gastrointestinal motility disorders in children include gastroesophageal reflux disease (GERD), esophageal achalasia, gastroparesis, chronic intestinal pseudo-obstruction, and constipation. GERD is the most common gastrointestinal motility disorder affecting children and is diagnosed clinically and treated primarily with acid secretion blockade. Esophageal achalasia, a less common disorder in the pediatric patient population, is characterized by dysphagia and treated with pneumatic balloon dilation and/or esophagomyotomy. Gastroparesis and chronic intestinal pseudo-obstruction are poorly characterized in children and are associated with significant morbidity. Constipation is among the most common complaints in children and is associated with significant morbidity as well as poor quality of life. Data on epidemiology and outcomes, clinical trials, and evaluation of new diagnostic techniques are needed to better diagnose and treat gastrointestinal motility disorders in children. We present a review of the conditions and challenges related to these common gastrointestinal motility disorders in children. PMID:24799835

  2. The effect of flagellar motor-rotor complexes on twitching motility in P. aeruginosa

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Utada, Andrew; Gibiansky, Maxsim; Xian, Wujing; Wong, Gerard

    2013-03-01

    P. aeruginosa is an opportunistic bacterium responsible for a broad range of biofilm infections. In order for biofilms to form, P. aeruginosa uses different types of surface motility. In the current understanding, flagella are used for swarming motility and type IV pili are used for twitching motility. The flagellum also plays important roles in initial surface attachment and in shaping the architectures of mature biofilms. Here we examine how flagella and pili interact during surface motility, by using cell tracking techniques. We show that the pili driven twitching motility of P. aeruginosa can be affected by the motor-rotor complexes of the flagellar system.

  3. Dynamic self-assembly of motile bacteria in liquid crystals

    PubMed Central

    Mushenheim, Peter C.; Trivedi, Rishi R.; Tuson, Hannah H.

    2014-01-01

    This paper reports an investigation of dynamical behaviors of motile rod-shaped bacteria within anisotropic viscoelastic environments defined by lyotropic liquid crystals (LCs). In contrast to passive microparticles (including non-motile bacteria) that associate irreversibly in LCs via elasticity-mediated forces, we report that motile Proteus mirabilis bacteria form dynamic and reversible multi-cellular assemblies when dispersed in a lyotropic LC. By measuring the velocity of the bacteria through the LC (8.8 +/− 0.2 μm/s) and by characterizing the ordering of the LC about the rod-shaped bacteria (tangential anchoring), we conclude that the reversibility of the inter-bacterial interaction emerges from the interplay of forces generated by the flagella of the bacteria and the elasticity of the LC, both of which are comparable in magnitude (tens of pN) for motile Proteus mirabilis cells. We also measured the dissociation process, which occurs in a direction determined by the LC, to bias the size distribution of multi-cellular bacterial complexes in a population of motile Proteus mirabilis relative to a population of non-motile cells. Overall, these observations and others reported in this paper provide insight into the fundamental dynamical behaviors of bacteria in complex anisotropic environments and suggest that motile bacteria in LCs are an exciting model system for exploration of principles for the design of active materials. PMID:24652584

  4. Elenoside increases intestinal motility

    PubMed Central

    Navarro, E; Alonso, SJ; Navarro, R; Trujillo, J; Jorge, E

    2006-01-01

    AIM: To study the effects of elenoside, an arylnaph-thalene lignan from Justicia hyssopifolia, on gastro-intestinal motility in vivo and in vitro in rats. METHODS: Routine in vivo experimental assessments were catharsis index, water percentage of boluses, intestinal transit, and codeine antagonism. The groups included were vehicle control (propylene glycol-ethanol-plant oil-tween 80), elenoside (i.p. 25 and 50 mg/kg), cisapride (i.p. 10 mg/kg), and codeine phosphate (intragastric route, 50 mg/kg). In vitro approaches used isolated rat intestinal tissues (duodenum, jejunum, and ileum). The effects of elenoside at concentrations of 3.2 x 10-4, 6.4 x 10-4 and 1.2 x 10-3 mol/L, and cisapride at 10-6 mol/L were investigated. RESULTS: Elenoside in vivo produced an increase in the catharsis index and water percentage of boluses and in the percentage of distance traveled by a suspension of activated charcoal. Codeine phosphate antagonized the effect of 25 mg/kg of elenoside. In vitro, elenoside in duodenum, jejunum and ileum produced an initial decrease in the contraction force followed by an increase. Elenoside resulted in decreased intestinal frequency in duodenum, jejunum, and ileum. The in vitro and in vivo effects of elenoside were similar to those produced by cisapride. CONCLUSION: Elenoside is a lignan with an action similar to that of purgative and prokinetics drugs. Elenoside, could be an alternative to cisapride in treatment of gastrointestinal diseases as well as a preventive therapy for the undesirable gastrointestinal effects produced by opioids used for mild to moderate pain. PMID:17131476

  5. Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells

    PubMed Central

    Klingner, Christoph; Cherian, Anoop V.; Fels, Johannes; Diesinger, Philipp M.; Aufschnaiter, Roland; Maghelli, Nicola; Keil, Thomas; Beck, Gisela; Tolić-Nørrelykke, Iva M.; Bathe, Mark

    2014-01-01

    Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin–Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization. PMID:25313407

  6. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly

    PubMed Central

    Tojkander, Sari; Gateva, Gergana; Husain, Amjad; Krishnan, Ramaswamy; Lappalainen, Pekka

    2015-01-01

    Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells. DOI: http://dx.doi.org/10.7554/eLife.06126.001 PMID:26652273

  7. Changes in Ect2 Localization Couple Actomyosin-Dependent Cell Shape Changes to Mitotic Progression

    PubMed Central

    Matthews, Helen K.; Delabre, Ulysse; Rohn, Jennifer L.; Guck, Jochen; Kunda, Patricia; Baum, Buzz

    2012-01-01

    Summary As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division. PMID:22898780

  8. Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor.

    PubMed

    Takano, Mitsunori; Terada, Tomoki P; Sasai, Masaki

    2010-04-27

    The actomyosin molecular motor, the motor composed of myosin II and actin filament, is responsible for muscle contraction, converting chemical energy into mechanical work. Although recent single molecule and structural studies have shed new light on the energy-converting mechanism, the physical basis of the molecular-level mechanism remains unclear because of the experimental limitations. To provide a clue to resolve the controversy between the lever-arm mechanism and the Brownian ratchet-like mechanism, we here report an in silico single molecule experiment of an actomyosin motor. When we placed myosin on an actin filament and allowed myosin to move along the filament, we found that myosin exhibits a unidirectional Brownian motion along the filament. This unidirectionality was found to arise from the combination of a nonequilibrium condition realized by coupling to the ATP hydrolysis and a ratchet-like energy landscape inherent in the actin-myosin interaction along the filament, indicating that a Brownian ratchet-like mechanism contributes substantially to the energy conversion of this molecular motor.

  9. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly.

    PubMed

    Tojkander, Sari; Gateva, Gergana; Husain, Amjad; Krishnan, Ramaswamy; Lappalainen, Pekka

    2015-01-01

    Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells. PMID:26652273

  10. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity

    PubMed Central

    Badoual, Mathilde; Asmussen, Hannelore; Patel, Heather; Whitmore, Leanna; Horwitz, Alan Rick

    2015-01-01

    RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front–back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front–back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines. PMID:26169356

  11. Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure.

    PubMed

    Zhou, Aimei; Lin, Liying; Liang, Yan; Benjakul, Soottawat; Shi, Xiaoling; Liu, Xin

    2014-08-01

    Changes of physicochemical properties in natural actomyosin (NAM) from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure (200, 400, 600MPa for 10, 30, 50min) were studied. The increase in turbidity of NAM was coincidental with the decrease in protein solubility with increasing pressure and time, suggesting the formation of protein aggregates. SDS-PAGE showed that polymerisation and degradation of myosin heavy chain were induced by high pressure. Ca(2+)-ATPase activity of NAM treated by high pressure was lost, suggesting the denaturation of myosin and the dissociation of actomyosin complex. Surface hydrophobicity of NAM increased when the pressure and pressurization time increased, indicating that the exposed hydrophobic residues increased upon application of high pressure. Decrease in total sulfhydryl content and increase in surface-reactive sulfhydryl content of NAM samples were observed with the extension of pressurizing time, indicating the formation of disulphide bonds through oxidation of SH groups or disulphide interchanges. The above changes of physicochemical properties suggested conformational changes of NAM from muscle of threadfin bream induced by high hydrostatic pressure.

  12. Flagella-independent surface motility in Salmonella enterica serovar Typhimurium.

    PubMed

    Park, Sun-Yang; Pontes, Mauricio H; Groisman, Eduardo A

    2015-02-10

    Flagella are multiprotein complexes necessary for swimming and swarming motility. In Salmonella enterica serovar Typhimurium, flagella-mediated motility is repressed by the PhoP/PhoQ regulatory system. We now report that Salmonella can move on 0.3% agarose media in a flagella-independent manner when experiencing the PhoP/PhoQ-inducing signal low Mg(2+). This motility requires the PhoP-activated mgtA, mgtC, and pagM genes, which specify a Mg(2+) transporter, an inhibitor of Salmonella's own F1Fo ATPase, and a small protein of unknown function, respectively. The MgtA and MgtC proteins are necessary for pagM expression because pagM mRNA levels were lower in mgtA and mgtC mutants than in wild-type Salmonella, and also because pagM expression from a heterologous promoter rescued motility in mgtA and mgtC mutants. PagM promotes group motility by a surface protein(s), as a pagM-expressing strain conferred motility upon a pagM null mutant, and proteinase K treatment eliminated motility. The pagM gene is rarely found outside subspecies I of S. enterica and often present in nonfunctional allelic forms in organisms lacking the identified motility. Deletion of the pagM gene reduced bacterial replication on 0.3% agarose low Mg(2+) media but not in low Mg(2+) liquid media. Our findings define a form of motility that allows Salmonella to scavenge nutrients and to escape toxic compounds in low Mg(2+) semisolid environments. PMID:25624475

  13. Active patterning and asymmetric transport in a model actomyosin network

    SciTech Connect

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  14. Time-resolved microrheology of actively remodeling actomyosin networks

    NASA Astrophysics Data System (ADS)

    Silva, Marina Soares e.; Stuhrmann, Björn; Betz, Timo; Koenderink, Gijsje H.

    2014-07-01

    Living cells constitute an extraordinary state of matter since they are inherently out of thermal equilibrium due to internal metabolic processes. Indeed, measurements of particle motion in the cytoplasm of animal cells have revealed clear signatures of nonthermal fluctuations superposed on passive thermal motion. However, it has been difficult to pinpoint the exact molecular origin of this activity. Here, we employ time-resolved microrheology based on particle tracking to measure nonequilibrium fluctuations produced by myosin motor proteins in a minimal model system composed of purified actin filaments and myosin motors. We show that the motors generate spatially heterogeneous contractile fluctuations, which become less frequent with time as a consequence of motor-driven network remodeling. We analyze the particle tracking data on different length scales, combining particle image velocimetry, an ensemble analysis of the particle trajectories, and finally a kymograph analysis of individual particle trajectories to quantify the length and time scales associated with active particle displacements. All analyses show clear signatures of nonequilibrium activity: the particles exhibit random motion with an enhanced amplitude compared to passive samples, and they exhibit sporadic contractile fluctuations with ballistic motion over large (up to 30 μm) distances. This nonequilibrium activity diminishes with sample age, even though the adenosine triphosphate level is held constant. We propose that network coarsening concentrates motors in large clusters and depletes them from the network, thus reducing the occurrence of contractile fluctuations. Our data provide valuable insight into the physical processes underlying stress generation within motor-driven actin networks and the analysis framework may prove useful for future microrheology studies in cells and model organisms.

  15. Symbiosis and the origin of eukaryotic motility

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  16. Automated measurement of cell motility and proliferation

    PubMed Central

    Bahnson, Alfred; Athanassiou, Charalambos; Koebler, Douglas; Qian, Lei; Shun, Tongying; Shields, Donna; Yu, Hui; Wang, Hong; Goff, Julie; Cheng, Tao; Houck, Raymond; Cowsert, Lex

    2005-01-01

    Background Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. Results We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non-cell objects, and uncertainty in the

  17. Development of a methodology to measure the effect of ergot alkaloids on forestomach motility using real-time wireless telemetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of these experiments were to characterize rumen motility patterns of cattle fed once daily using a real-time wireless telemetry system, determine when to measure rumen motility with this system, and determine the effect of ruminal dosing of ergot alkaloids on rumen motility. Ruminally...

  18. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling

    PubMed Central

    2016-01-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630

  19. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling.

    PubMed

    Marcucci, Lorenzo; Washio, Takumi; Yanagida, Toshio

    2016-09-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630

  20. Characterization of swarming motility in Citrobacter freundii.

    PubMed

    Cong, Yanguang; Wang, Jing; Chen, Zhijin; Xiong, Kun; Xu, Qiwang; Hu, Fuquan

    2011-04-01

    Bacterial swarming motility is a flagella-dependent translocation on the surface environment. It has received extensive attention as a population behavior involving numerous genes. Here, we report that Citrobacter freundii, an opportunistic pathogen, exhibits swarming movement on a solid medium surface with appropriate agar concentration. The swarming behavior of C. freundii was described in detail. Insertional mutagenesis with transposon Mini-Tn5 was carried out to discover genetic determinants related to the swarming of C. freundii. A number of swarming genes were identified, among which flhD, motA, motB, wzx, rfaL, rfaJ, rfbX, rfaG, rcsD, rcsC, gshB, fabF, dam, pgi, and rssB have been characterized previously in other species. In mutants related to lipopolysaccharide synthesis and RcsCDB signal system, a propensity to form poorly motile bacterial aggregates on the agar surface was observed. The aggregates hampered bacterial surface migration. In several mutants, the insertion sites were identified to be in the ORF of yqhC, yeeZ, CKO_03941, glgC, and ttrA, which have never been shown to be involved in swarming. Our results revealed several novel characteristics of swarming motility in C. freundii which are worthy of further study.

  1. [Mechanism of bacterial gliding motility].

    PubMed

    Nakane, Daisuke

    2015-01-01

    Bacteria have various way to move over solid surfaces, such as glass, agar, and host cell. These movements involve surface appendages including flagella, type IV pili and other "mysterious" nano-machineries. Gliding motility was a term used various surface movements by several mechanisms that have not been well understood in past few decades. However, development of visualization techniques allowed us to make much progress on their dynamics of machineries. It also provided us better understanding how bacteria move over surfaces and why bacteria move in natural environments. In this review, I will introduce recent studies on the gliding motility of Flavobacteium and Mycoplasma based on the detail observation of single cell and its motility machinery with micro-nano scales. PMID:26632217

  2. Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation.

    PubMed

    Dhawan, Jyotsna; Helfman, David M

    2004-08-01

    Cell-substratum interactions trigger key signaling pathways that modulate growth control and tissue-specific gene expression. We have previously shown that abolishing adhesive interactions by suspension culture results in G(0) arrest of myoblasts. We report that blocking intracellular transmission of adhesion-dependent signals in adherent cells mimics the absence of adhesive contacts. We investigated the effects of pharmacological inhibitors of acto-myosin contractility on growth and differentiation of C2C12 myogenic cells. ML7 (5-iodonaphthalene-1-sulfonyl homopiperazine) and BDM (2,3, butanedione monoxime) are specific inhibitors of myosin light chain kinase, and myosin heavy chain ATPase, respectively. ML7 and BDM affected cell shape by reducing focal adhesions and stress fibers. Both inhibitors rapidly blocked DNA synthesis in a dose-dependent, reversible fashion. Furthermore, both ML7 and BDM suppressed expression of MyoD and myogenin, induced p27(kip1) but not p21(cip1), and inhibited differentiation. Thus, as with suspension-arrest, inhibition of acto-myosin contractility in adherent cells led to arrest uncoupled from differentiation. Over-expression of inhibitors of the small GTPase RhoA (dominant negative RhoA and C3 transferase) mimicked the effects of myosin inhibitors. By contrast, wild-type RhoA induced arrest, maintained MyoD and activated myogenin and p21 expression. The Rho effector kinase ROCK did not appear to mediate Rho's effects on MyoD. Thus, ROCK and MLCK play different roles in the myogenic program. Signals regulated by MLCK are critical, since inhibition of MLCK suppressed MyoD expression but inhibition of ROCK did not. Inhibition of contractility suppressed MyoD but did not reduce actin polymer levels. However, actin depolymerization with latrunculin B inhibited MyoD expression. Taken together, our observations indicate that actin polymer status and contractility regulate MyoD expression. We suggest that in myoblasts, the Rho pathway and

  3. Effects of magnesium chloride on smooth muscle actomyosin adenosine-5'-triphosphatase activity, myosin conformation, and tension development in glycerinated smooth muscle fibers.

    PubMed

    Ikebe, M; Barsotti, R J; Hinkins, S; Hartshorne, D J

    1984-10-01

    The contractile system of smooth muscle exhibits distinctive responses to varying Mg2+ concentrations in that maximum adenosine-5'-triphosphatase (ATPase) activity of actomyosin requires relatively high concentrations of Mg2+ and also that tension in skinned smooth muscle fibers can be induced in the absence of Ca2+ by high Mg2+ concentrations. We have examined the effects of MgCl2 on actomyosin ATPase activity and on tension development in skinned gizzard fibers and suggest that the MgCl2-induced changes may be correlated to shifts in myosin conformation. At low concentrations of free Mg2+ (less than or equal to 1 mM) the actin-activated ATPase activity of phosphorylated turkey gizzard myosin is reduced and is increased as the Mg2+ concentration is raised. The increase in Mg2+ (over a range of 1-10 mM added MgCl2) induces the conversion of 10S phosphorylated myosin to the 6S form, and it was found that the proportion of myosin as 10S is inversely related to the level of actin-activated ATPase activity. Activation of the actin-activated ATPase activity also occurs with dephosphorylated myosin but at higher MgCl2 concentrations, between 10 and 40 mM added MgCl2. Viscosity and fluorescence measurements indicate that increasing Mg2+ levels over this concentration range favor the formation of the 6S conformation of dephosphorylated myosin, and it is proposed that the 10S to 6S transition is a prerequisite for the observed activation of ATPase activity. With glycerinated chicken gizzard fibers high MgCl2 concentrations (6-20 mM) promote tension in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Calcium-induced changes in cytoskeleton and motility of cultured human keratinocytes.

    PubMed

    Magee, A I; Lytton, N A; Watt, F M

    1987-09-01

    In normal epidermis keratinocytes migrate upward from the basal layer as they undergo terminal differentiation, yet they also have the capacity for lateral movement during wound healing. The purpose of our experiments was to investigate these two types of movement by manipulating the calcium ion concentration of the medium so that keratinocytes formed monolayers (0.1 mM calcium) or stratified sheets (2.0 mM calcium). Time-lapse video recording indicated that keratinocytes in low-calcium medium were laterally more motile than keratinocytes in normal medium. This was consistent with the ultrastructural appearance of the cells and the lack of desmosomal junctions, determined by scanning and transmission electron microscopy. During calcium-induced stratification keratinocytes moved upward from the basal layer by gliding over their neighbors and forming contacts with other suprabasal cells. Keratinocytes in low-calcium medium migrated into wounds made in the cultures, a process which was inhibited by monensin; however, stratified keratinocytes in normal medium did not enter wounds. Cytochalasin D caused rapid cell rounding and disruption of actin filaments in keratinocytes grown in low-calcium but not in normal medium, indicating more rapid treadmilling of actin and consistent with the greater motility of keratinocytes in low-calcium medium. Our results suggest that desmosome formation may place constraints on the movement of individual keratinocytes and that the actomyosin cytoskeleton is involved in lateral migration.

  5. Mucin Promotes Rapid Surface Motility in Pseudomonas aeruginosa

    PubMed Central

    Yeung, Amy T. Y.; Parayno, Alicia; Hancock, Robert E. W.

    2012-01-01

    ABSTRACT An important environmental factor that determines the mode of motility adopted by Pseudomonas aeruginosa is the viscosity of the medium, often provided by adjusting agar concentrations in vitro. However, the viscous gel-like property of the mucus layer that overlays epithelial surfaces is largely due to the glycoprotein mucin. P. aeruginosa is known to swim within 0.3% (wt/vol) agar and swarm on the surface at 0.5% (wt/vol) agar with amino acids as a weak nitrogen source. When physiological concentrations or as little as 0.05% (wt/vol) mucin was added to the swimming agar, in addition to swimming, P. aeruginosa was observed to undergo highly accelerated motility on the surface of the agar. The surface motility colonies in the presence of mucin appeared to be circular, with a bright green center surrounded by a thicker white edge. While intact flagella were required for the surface motility in the presence of mucin, type IV pili and rhamnolipid production were not. Replacement of mucin with other wetting agents indicated that the lubricant properties of mucin might contribute to the surface motility. Based on studies with mutants, the quorum-sensing systems (las and rhl) and the orphan autoinducer receptor QscR played important roles in this form of surface motility. Transcriptional analysis of cells taken from the motility zone revealed the upregulation of genes involved in virulence and resistance. Based on these results, we suggest that mucin may be promoting a new or highly modified form of surface motility, which we propose should be termed “surfing.” PMID:22550036

  6. Power gain exhibited by motile mechanosensory neurons in Drosophila ears

    PubMed Central

    Göpfert, M. C.; Humphris, A. D. L.; Albert, J. T.; Robert, D.; Hendrich, O.

    2005-01-01

    In insects and vertebrates alike, hearing is assisted by the motility of mechanosensory cells. Much like pushing a swing augments its swing, this cellular motility is thought to actively augment vibrations inside the ear, thus amplifying the ear's mechanical input. Power gain is the hallmark of such active amplification, yet whether and how much energy motile mechanosensory cells contribute within intact auditory systems has remained uncertain. Here, we assess the mechanical energy provided by motile mechanosensory neurons in the antennal hearing organs of Drosophila melanogaster by analyzing the fluctuations of the sound receiver to which these neurons connect. By using dead WT flies and live mutants (tilB2, btv5P1, and nompA2) with defective neurons as a background, we show that the intact, motile neurons do exhibit power gain. In WT flies, the neurons lift the receiver's mean total energy by 19 zJ, which corresponds to 4.6 times the energy of the receiver's Brownian motion. Larger energy contributions (200 zJ) associate with self-sustained oscillations, suggesting that the neurons adjust their energy expenditure to optimize the receiver's sensitivity to sound. We conclude that motile mechanosensory cells provide active amplification; in Drosophila, mechanical energy contributed by these cells boosts the vibrations that enter the ear. PMID:15623551

  7. Power gain exhibited by motile mechanosensory neurons in Drosophila ears.

    PubMed

    Göpfert, M C; Humphris, A D L; Albert, J T; Robert, D; Hendrich, O

    2005-01-11

    In insects and vertebrates alike, hearing is assisted by the motility of mechanosensory cells. Much like pushing a swing augments its swing, this cellular motility is thought to actively augment vibrations inside the ear, thus amplifying the ear's mechanical input. Power gain is the hallmark of such active amplification, yet whether and how much energy motile mechanosensory cells contribute within intact auditory systems has remained uncertain. Here, we assess the mechanical energy provided by motile mechanosensory neurons in the antennal hearing organs of Drosophila melanogaster by analyzing the fluctuations of the sound receiver to which these neurons connect. By using dead WT flies and live mutants (tilB(2), btv(5P1), and nompA(2)) with defective neurons as a background, we show that the intact, motile neurons do exhibit power gain. In WT flies, the neurons lift the receiver's mean total energy by 19 zJ, which corresponds to 4.6 times the energy of the receiver's Brownian motion. Larger energy contributions (200 zJ) associate with self-sustained oscillations, suggesting that the neurons adjust their energy expenditure to optimize the receiver's sensitivity to sound. We conclude that motile mechanosensory cells provide active amplification; in Drosophila, mechanical energy contributed by these cells boosts the vibrations that enter the ear. PMID:15623551

  8. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement.

    PubMed

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P; Cattin, Cedric J; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A; Hierlemann, Andreas; Müller, Daniel J

    2015-11-25

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  9. ER-PM Contacts Define Actomyosin Kinetics for Proper Contractile Ring Assembly.

    PubMed

    Zhang, Dan; Bidone, Tamara C; Vavylonis, Dimitrios

    2016-03-01

    The cortical endoplasmic reticulum (ER), an elaborate network of tubules and cisternae [1], establishes contact sites with the plasma membrane (PM) through tethering machinery involving a set of conserved integral ER proteins [2]. The physiological consequences of forming ER-PM contacts are not fully understood. Here, we reveal a kinetic restriction role of ER-PM contacts over ring compaction process for proper actomyosin ring assembly in Schizosaccharomyces pombe. We show that fission yeast cells deficient in ER-PM contacts exhibit aberrant equatorial clustering of actin cables during ring assembly and are particularly susceptible to compromised actin filament crosslinking activity. Using quantitative image analyses and computer simulation, we demonstrate that ER-PM contacts function to modulate the distribution of ring components and to constrain their compaction kinetics. We propose that ER-PM contacts have evolved as important physical modulators to ensure robust ring assembly. PMID:26877082

  10. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement.

    PubMed

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P; Cattin, Cedric J; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A; Hierlemann, Andreas; Müller, Daniel J

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  11. Cdk1-dependent phosphorylation of Iqg1 governs actomyosin ring assembly prior to cytokinesis.

    PubMed

    Naylor, Stephen G; Morgan, David O

    2014-03-01

    Contraction of the actomyosin ring (AMR) provides the centripetal force that drives cytokinesis. In budding yeast (Saccharomyces cerevisiae), assembly and contraction of the AMR is coordinated with membrane deposition and septum formation at the bud neck. A central player in this process is Iqg1, which promotes recruitment of actin to the myosin ring and links AMR assembly with that of septum-forming components. We observed early actin recruitment in response to inhibition of cyclin-dependent kinase 1 (Cdk1) activity, and we find that the Cdk1-dependent phosphorylation state of Iqg1 is a determining factor in the timing of bud neck localization of both Iqg1 and actin, with both proteins accumulating prematurely in cells expressing nonphosphorylatable Iqg1 mutants. We also identified the primary septum regulator Hof1 as a binding partner of Iqg1, providing a regulatory link between the septation and contractile pathways that cooperate to complete cytokinesis. PMID:24413167

  12. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    PubMed Central

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  13. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    NASA Astrophysics Data System (ADS)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  14. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex

    PubMed Central

    Murrell, Michael P.; Gardel, Margaret L.

    2012-01-01

    Here we develop a minimal model of the cell actomyosin cortex by forming a quasi-2D cross-linked filamentous actin (F-actin) network adhered to a model cell membrane and contracted by myosin thick filaments. Myosin motors generate both compressive and tensile stresses on F-actin and consequently induce large bending fluctuations, which reduces their effective persistence length to <1 μm. Over a large range of conditions, we show the extent of network contraction corresponds exactly to the extent of individual F-actin shortening via buckling. This demonstrates an essential role of buckling in breaking the symmetry between tensile and compressive stresses to facilitate mesoscale network contraction of up to 80% strain. Portions of buckled F-actin with a radius of curvature ∼300 nm are prone to severing and thus compressive stresses mechanically coordinate contractility with F-actin severing, the initial step of F-actin turnover. Finally, the F-actin curvature acquired by myosin-induced stresses can be further constrained by adhesion of the network to a membrane, accelerating filament severing but inhibiting the long-range transmission of the stresses necessary for network contractility. Thus, the extent of membrane adhesion can regulate the coupling between network contraction and F-actin severing. These data demonstrate the essential role of the nonlinear response of F-actin to compressive stresses in potentiating both myosin-mediated contractility and filament severing. This may serve as a general mechanism to mechanically coordinate contractility and cortical dynamics across diverse actomyosin assemblies in smooth muscle and nonmuscle cells. PMID:23213249

  15. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  16. The ppuI-rsaL-ppuR quorum-sensing system regulates cellular motility, pectate lyase activity, and virulence in potato opportunistic pathogen Pseudomonas sp. StFLB209.

    PubMed

    Kato, Taro; Morohoshi, Tomohiro; Someya, Nobutaka; Ikeda, Tsukasa

    2015-01-01

    Pseudomonas sp. StFLB209 was isolated from potato leaf as an N-acylhomoserine lactone (AHL)-producing bacterium and showed a close phylogenetic relationship with P. cichorii, a known plant pathogen. Although there are no reports of potato disease caused by pseudomonads in Japan, StFLB209 was pathogenic to potato leaf. In this study, we reveal the complete genome sequence of StFLB209, and show that the strain possesses a ppuI-rsaL-ppuR quorum-sensing system, the sequence of which shares a high similarity with that of Pseudomonas putida. Disruption of ppuI results in a loss of AHL production as well as remarkable reduction in motility. StFLB209 possesses strong pectate lyase activity and causes maceration on potato tuber and leaf, which was slightly reduced in the ppuI mutant. These results suggest that the quorum-sensing system is well conserved between StFLB209 and P. putida and that the system is essential for motility, full pectate lyase activity, and virulence in StFLB209. PMID:25485871

  17. Gastrointestinal motility in space motion sickness

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Linder, Barry J.; Moore, Thomas P.; Pool, Sam L.

    1987-01-01

    Gastrointestinal symptoms in space motion sickness (SMS) are significantly different from those in ordinary motion sickness (MS). Recording and tabulation of sounds was the only technique that could be used as a measure of motility during spaceflight operations. There were 17 subjects, six unaffected by SMS, who made ambulatory recordings preflight and inflight. With one exception, all those affected had sharply reduced sounds, while those unaffected had increases or moderate reductions. The mechanism of vomiting in SMS appears to be secondary to this ileus, in contrast to vomiting in ordinary MS, where the emesis center is thought to be directly triggered by the vestibular system.

  18. Sodium affects the sperm motility in the European eel.

    PubMed

    Vílchez, M Carmen; Morini, Marina; Peñaranda, David S; Gallego, Víctor; Asturiano, Juan F; Pérez, Luz

    2016-08-01

    The role of seminal plasma sodium and activation media sodium on sperm motility was examined by selectively removing the element from these two media, in European eel sperm. Sperm size (sperm head area) was also measured using an ASMA (Automated Sperm Morphometry Analyses) system, in the different conditions. Intracellular sodium [Na(+)]i was quantitatively analyzed by first time in the spermatozoa from a marine fish species. Measurement of [Na(+)]i was done before and after motility activation, by Flow Cytometry, using CoroNa Green AM as a dye. Sperm motility activation induced an increase in [Na(+)]i, from 96.72mM in quiescent stage to 152.21mM post-activation in seawater. A significant decrease in sperm head area was observed post-activation in seawater. There was a notable reduction in sperm motility when sodium was removed from the seminal plasma, but not when it was removed from the activation media. Sodium removal was also linked to a significant reduction in sperm head area in comparison to the controls. Our results indicate that the presence of the ion Na(+) in the seminal plasma (or in the extender medium) is necessary for the preservation of sperm motility in European eel, probably because it plays a role in maintaining an appropriate sperm cell volume in the quiescent stage of the spermatozoa. PMID:27085371

  19. Control of actin-based motility through localized actin binding.

    PubMed

    Banigan, Edward J; Lee, Kun-Chun; Liu, Andrea J

    2013-12-01

    A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it, if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disc. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young's modulus of the actin network and can explain several aspects of actin-based motility.

  20. Gliding motility in bacteria: insights from studies of Myxococcus xanthus.

    PubMed

    Spormann, A M

    1999-09-01

    Gliding motility is observed in a large variety of phylogenetically unrelated bacteria. Gliding provides a means for microbes to travel in environments with a low water content, such as might be found in biofilms, microbial mats, and soil. Gliding is defined as the movement of a cell on a surface in the direction of the long axis of the cell. Because this definition is operational and not mechanistic, the underlying molecular motor(s) may be quite different in diverse microbes. In fact, studies on the gliding bacterium Myxococcus xanthus suggest that two independent gliding machineries, encoded by two multigene systems, operate in this microorganism. One machinery, which allows individual cells to glide on a surface, independent of whether the cells are moving alone or in groups, requires the function of the genes of the A-motility system. More than 37 A-motility genes are known to be required for this form of movement. Depending on an additional phenotype, these genes are divided into two subclasses, the agl and cgl genes. Videomicroscopic studies on gliding movement, as well as ultrastructural observations of two myxobacteria, suggest that the A-system motor may consist of multiple single motor elements that are arrayed along the entire cell body. Each motor element is proposed to be localized to the periplasmic space and to be anchored to the peptidoglycan layer. The force to glide which may be generated here is coupled to adhesion sites that move freely in the outer membrane. These adhesion sites provide a specific contact with the substratum. Based on single-cell observations, similar models have been proposed to operate in the unrelated gliding bacteria Flavobacterium johnsoniae (formerly Cytophaga johnsonae), Cytophaga strain U67, and Flexibacter polymorphus (a filamentous glider). Although this model has not been verified experimentally, M. xanthus seems to be the ideal organism with which to test it, given the genetic tools available. The second gliding

  1. Gliding Motility in Bacteria: Insights from Studies of Myxococcus xanthus

    PubMed Central

    Spormann, Alfred M.

    1999-01-01

    Gliding motility is observed in a large variety of phylogenetically unrelated bacteria. Gliding provides a means for microbes to travel in environments with a low water content, such as might be found in biofilms, microbial mats, and soil. Gliding is defined as the movement of a cell on a surface in the direction of the long axis of the cell. Because this definition is operational and not mechanistic, the underlying molecular motor(s) may be quite different in diverse microbes. In fact, studies on the gliding bacterium Myxococcus xanthus suggest that two independent gliding machineries, encoded by two multigene systems, operate in this microorganism. One machinery, which allows individual cells to glide on a surface, independent of whether the cells are moving alone or in groups, requires the function of the genes of the A-motility system. More than 37 A-motility genes are known to be required for this form of movement. Depending on an additional phenotype, these genes are divided into two subclasses, the agl and cgl genes. Videomicroscopic studies on gliding movement, as well as ultrastructural observations of two myxobacteria, suggest that the A-system motor may consist of multiple single motor elements that are arrayed along the entire cell body. Each motor element is proposed to be localized to the periplasmic space and to be anchored to the peptidoglycan layer. The force to glide which may be generated here is coupled to adhesion sites that move freely in the outer membrane. These adhesion sites provide a specific contact with the substratum. Based on single-cell observations, similar models have been proposed to operate in the unrelated gliding bacteria Flavobacterium johnsoniae (formerly Cytophaga johnsonae), Cytophaga strain U67, and Flexibacter polymorphus (a filamentous glider). Although this model has not been verified experimentally, M. xanthus seems to be the ideal organism with which to test it, given the genetic tools available. The second gliding

  2. TOR complex 2 localises to the cytokinetic actomyosin ring and controls the fidelity of cytokinesis

    PubMed Central

    Baker, Karen; Kirkham, Sara; Halova, Lenka; Atkin, Jane; Franz-Wachtel, Mirita; Cobley, David; Krug, Karsten; Maček, Boris; Petersen, Janni

    2016-01-01

    ABSTRACT The timing of cell division is controlled by the coupled regulation of growth and division. The target of rapamycin (TOR) signalling network synchronises these processes with the environmental setting. Here, we describe a novel interaction of the fission yeast TOR complex 2 (TORC2) with the cytokinetic actomyosin ring (CAR), and a novel role for TORC2 in regulating the timing and fidelity of cytokinesis. Disruption of TORC2 or its localisation results in defects in CAR morphology and constriction. We provide evidence that the myosin II protein Myp2 and the myosin V protein Myo51 play roles in recruiting TORC2 to the CAR. We show that Myp2 and TORC2 are co-dependent upon each other for their normal localisation to the cytokinetic machinery. We go on to show that TORC2-dependent phosphorylation of actin-capping protein 1 (Acp1, a known regulator of cytokinesis) controls CAR stability, modulates Acp1–Acp2 (the equivalent of the mammalian CAPZA–CAPZB) heterodimer formation and is essential for survival upon stress. Thus, TORC2 localisation to the CAR, and TORC2-dependent Acp1 phosphorylation contributes to timely control and the fidelity of cytokinesis and cell division. PMID:27206859

  3. Chemical interactions and gel properties of black carp actomyosin affected by MTGase and their relationships.

    PubMed

    Jia, Dan; Huang, Qilin; Xiong, Shanbai

    2016-04-01

    Partial least squares regression (PLSR) was applied to evaluate and correlate chemical interactions (-NH2 content, S-S bonds, four non-covalent interactions) with gel properties (dynamic rheological properties and cooking loss (CL)) of black carp actomyosin affected by microbial transglutaminase (MTGase) at suwari and kamaboko stages. The G' and CL were significantly enhanced by MTGase and their values in kamaboko gels were higher than those in suwari gels at the same MTGase concentration. The γ-carboxyamide and amino cross-links, catalyzed by MTGase, were constructed at suwari stage and contributed to the network formation, while disulfide bonds were formed not only in suwari gels but also in kamaboko gels, further enhancing the gel network. PLSR analysis revealed that 86.6-90.3% of the variation of G' and 91.8-94.4% of the variation of CL were best explained by chemical interactions. G' mainly depended on covalent cross-links and gave positive correlation. CL was positively correlated with covalent cross-links, but negatively related to non-covalent bonds, indicating that covalent bonds promoted water extrusion, whereas non-covalent bonds were beneficial for water-holding.

  4. A Combination of Actin Treadmilling and Cross-Linking Drives Contraction of Random Actomyosin Arrays.

    PubMed

    Oelz, Dietmar B; Rubinstein, Boris Y; Mogilner, Alex

    2015-11-01

    We investigate computationally the self-organization and contraction of an initially random actomyosin ring. In the framework of a detailed physical model for a ring of cross-linked actin filaments and myosin-II clusters, we derive the force balance equations and solve them numerically. We find that to contract, actin filaments have to treadmill and to be sufficiently cross linked, and myosin has to be processive. The simulations reveal how contraction scales with mechanochemical parameters. For example, they show that the ring made of longer filaments generates greater force but contracts slower. The model predicts that the ring contracts with a constant rate proportional to the initial ring radius if either myosin is released from the ring during contraction and actin filaments shorten, or if myosin is retained in the ring, while the actin filament number decreases. We demonstrate that a balance of actin nucleation and compression-dependent disassembly can also sustain contraction. Finally, the model demonstrates that with time pattern formation takes place in the ring, worsening the contractile process. The more random the actin dynamics are, the higher the contractility will be. PMID:26536259

  5. Evidence against essential roles for subdomain 1 of actin in actomyosin sliding movements

    SciTech Connect

    Siddique, Md. Shahjahan P.; Miyazaki, Takashi; Katayama, Eisaku; Uyeda, Taro Q.P.; Suzuki, Makoto . E-mail: msuzuki@material.tohoku.ac.jp

    2005-07-01

    We have engineered acto-S1chimera proteins carrying the entire actin inserted in loop 2 of the motor domain of Dictyostelium myosin II with 24 or 18 residue-linkers (CP24 and CP18, respectively). These proteins were capable of self-polymerization as well as copolymerization with skeletal actin and exhibited rigor-like structures. The MgATPase rate of CP24-skeletal actin copolymer was 1.06 s{sup -1}, which is slightly less than the V {sub max} of Dictyostelium S1. Homopolymer filaments of skeletal actin, CP24, and CP18 moved at 4.7 {+-} 0.6, 2.9 {+-} 0.6, and 4.1 {+-} 0.8 {mu}m/s (mean {+-} SD), respectively, on coverslips coated with skeletal myosin at 27 deg C. Statistically thermodynamic considerations suggest that the S1 portion of chimera protein mostly resides on subdomain 1 (SD-1) of the actin portion even in the presence of ATP. This and the fact that filaments of CP18 with shorter linkers moved faster than CP24 filaments suggest that SD-1 might not be as essential as conventionally presumed for actomyosin sliding interactions.

  6. NF2/Merlin mediates contact-dependent inhibition of EGFR mobility and internalization via cortical actomyosin

    PubMed Central

    Chiasson-MacKenzie, Christine; Morris, Zachary S.; Baca, Quentin; Morris, Brett; Coker, Joanna K.; Mirchev, Rossen; Jensen, Anne E.; Carey, Thomas; Stott, Shannon L.; Golan, David E.

    2015-01-01

    The proliferation of normal cells is inhibited at confluence, but the molecular basis of this phenomenon, known as contact-dependent inhibition of proliferation, is unclear. We previously identified the neurofibromatosis type 2 (NF2) tumor suppressor Merlin as a critical mediator of contact-dependent inhibition of proliferation and specifically found that Merlin inhibits the internalization of, and signaling from, the epidermal growth factor receptor (EGFR) in response to cell contact. Merlin is closely related to the membrane–cytoskeleton linking proteins Ezrin, Radixin, and Moesin, and localization of Merlin to the cortical cytoskeleton is required for contact-dependent regulation of EGFR. We show that Merlin and Ezrin are essential components of a mechanism whereby mechanical forces associated with the establishment of cell–cell junctions are transduced across the cell cortex via the cortical actomyosin cytoskeleton to control the lateral mobility and activity of EGFR, providing novel insight into how cells inhibit mitogenic signaling in response to cell contact. PMID:26483553

  7. TOR complex 2 localises to the cytokinetic actomyosin ring and controls the fidelity of cytokinesis.

    PubMed

    Baker, Karen; Kirkham, Sara; Halova, Lenka; Atkin, Jane; Franz-Wachtel, Mirita; Cobley, David; Krug, Karsten; Maček, Boris; Mulvihill, Daniel P; Petersen, Janni

    2016-07-01

    The timing of cell division is controlled by the coupled regulation of growth and division. The target of rapamycin (TOR) signalling network synchronises these processes with the environmental setting. Here, we describe a novel interaction of the fission yeast TOR complex 2 (TORC2) with the cytokinetic actomyosin ring (CAR), and a novel role for TORC2 in regulating the timing and fidelity of cytokinesis. Disruption of TORC2 or its localisation results in defects in CAR morphology and constriction. We provide evidence that the myosin II protein Myp2 and the myosin V protein Myo51 play roles in recruiting TORC2 to the CAR. We show that Myp2 and TORC2 are co-dependent upon each other for their normal localisation to the cytokinetic machinery. We go on to show that TORC2-dependent phosphorylation of actin-capping protein 1 (Acp1, a known regulator of cytokinesis) controls CAR stability, modulates Acp1-Acp2 (the equivalent of the mammalian CAPZA-CAPZB) heterodimer formation and is essential for survival upon stress. Thus, TORC2 localisation to the CAR, and TORC2-dependent Acp1 phosphorylation contributes to timely control and the fidelity of cytokinesis and cell division.

  8. Motility in normal and filamentous forms of Rhodospirillum rubrum.

    PubMed

    Lee, A G; Fitzsimons, J T

    1976-04-01

    By suitable choice of medium, Rhodospirillum rubrum has been grown both in normal (length 2 mum) and filamentous (length up to 60 mum) forms. Both forms were highly motile, and negatively-stained preparations showed bipolar flagellated cells, with an average of seven flagella at each pole. Motion consisted of a series of runs and tumbles, the ditribution of run time-lengths being Poissonian. Both forms tumbled in response to dark shock and showed negative chemotaxis to oxygen. The observation that the motility pattern was very similar in normal and filamentous forms makes chemical control of tumbling unlikely and favours a system involving membrane potentials. PMID:819618

  9. Gastrointestinal motility and functional gastrointestinal diseases.

    PubMed

    Kusano, Motoyasu; Hosaka, Hiroko; Kawada, Akiyo; Kuribayashi, Shiko; Shimoyama, Yasuyuki; Zai, Hiroaki; Kawamura, Osamu; Yamada, Masanobu

    2014-01-01

    Digestive tract motility patterns are closely related to the pathophysiology of functional gastrointestinal diseases (FGID), and these patterns differ markedly between the interdigestive period and the postprandial period. The characteristic motility pattern in the interdigestive period is so-called interdigestive migrating contraction (IMC). IMCs have a housekeeping role in the intestinal tract, and could also be related to FGID. IMCs arising from the stomach are called gastrointestinal IMCs (GI-IMC), while IMCs arising from the duodenum without associated gastric contractions are called intestinal IMCs (I-IMC). It is thought that I-IMCs are abnormal in FGID. Transport of food residue to the duodenum via gastric emptying is one of the most important postprandial functions of the stomach. In patients with functional dyspepsia (FD), abnormal gastric emptying is a possible mechanism of gastric dysfunction. Accordingly, delayed gastric emptying has attracted attention, with prokinetic agents and herbal medicines often being administered in Japan to accelerate gastric emptying in patients who have anorexia associated with dyspepsia. Recently, we found that addition of monosodium L-glutamate (MSG) to a high-calorie liquid diet rich in casein promoted gastric emptying in healthy men. Therefore, another potential method of improving delayed gastric emptying could be activation of chemosensors that stimulate the autonomic nervous system of the gastrointestinal tract, suggesting a role for MSG in the management of delayed gastric emptying in patients with FD.

  10. Transcriptome analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility.

    PubMed

    Casey, Aidan; Fox, Edward M; Schmitz-Esser, Stephan; Coffey, Aidan; McAuliffe, Olivia; Jordan, Kieran

    2014-01-01

    Listeria monocytogenes is a virulent food-borne pathogen most often associated with the consumption of "ready-to-eat" foods. The organism is a common contaminant of food processing plants where it may persist for extended periods of time. A commonly used approach for the control of Listeria monocytogenes in the processing environment is the application of biocides such as quaternary ammonium compounds. In this study, the transcriptomic response of a persistent strain of L. monocytogenes (strain 6179) on exposure to a sub-lethal concentration of the quaternary ammonium compound benzethonium chloride (BZT) was assessed. Using RNA-Seq, gene expression levels were quantified by sequencing the transcriptome of L. monocytogenes 6179 in the presence (4 ppm) and absence of BZT, and mapping each data set to the sequenced genome of strain 6179. Hundreds of differentially expressed genes were identified, and subsequent analysis suggested that many biological processes such as peptidoglycan biosynthesis, bacterial chemotaxis and motility, and carbohydrate uptake, were involved in the response of L. monocyotogenes to the presence of BZT. The information generated in this study further contributes to our understanding of the response of bacteria to environmental stress. In addition, this study demonstrates the importance of using the bacterium's own genome as a reference when analysing RNA-Seq data.

  11. Transcriptome analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility

    PubMed Central

    Casey, Aidan; Fox, Edward M.; Schmitz-Esser, Stephan; Coffey, Aidan; McAuliffe, Olivia; Jordan, Kieran

    2014-01-01

    Listeria monocytogenes is a virulent food-borne pathogen most often associated with the consumption of “ready-to-eat” foods. The organism is a common contaminant of food processing plants where it may persist for extended periods of time. A commonly used approach for the control of Listeria monocytogenes in the processing environment is the application of biocides such as quaternary ammonium compounds. In this study, the transcriptomic response of a persistent strain of L. monocytogenes (strain 6179) on exposure to a sub-lethal concentration of the quaternary ammonium compound benzethonium chloride (BZT) was assessed. Using RNA-Seq, gene expression levels were quantified by sequencing the transcriptome of L. monocytogenes 6179 in the presence (4 ppm) and absence of BZT, and mapping each data set to the sequenced genome of strain 6179. Hundreds of differentially expressed genes were identified, and subsequent analysis suggested that many biological processes such as peptidoglycan biosynthesis, bacterial chemotaxis and motility, and carbohydrate uptake, were involved in the response of L. monocyotogenes to the presence of BZT. The information generated in this study further contributes to our understanding of the response of bacteria to environmental stress. In addition, this study demonstrates the importance of using the bacterium's own genome as a reference when analysing RNA-Seq data. PMID:24616718

  12. Elastic mismatch enhances cell motility

    NASA Astrophysics Data System (ADS)

    Bresler, Yony; Palmieri, Benoit; Grant, Martin

    In recent years, the study of physics phenomena in cancer has drawn considerable attention. In cancer metastasis, a soft cancer cell leaves the tumor, and must pass through the endothelium before reaching the bloodstream. Using a phase-field model we have shown that the elasticity mismatch between cells alone is sufficient to enhance the motility of thesofter cancer cell by means of bursty migration, in agreement with experiment. We will present further characterization of these behaviour, as well as new possible applications for this model.

  13. A computational model of gastro-intestinal motility

    NASA Astrophysics Data System (ADS)

    Wilson, K. F.; Goossens, D. J.

    2001-12-01

    A simulated neural network model of a section of enteric nervous system is presented. The network is a layered feed-forward network consisting of integrate and fire units. The network shows the basic form of intestinal motility; a descending wave of relaxation followed by a wave of contraction. It also shows interesting (but not biologically realistic) spontaneous behaviours when no stimulus is present.

  14. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  15. Chemotactic Motility of Pseudomonas fluorescens F113 under Aerobic and Denitrification Conditions

    PubMed Central

    Redondo-Nieto, Miguel; Rivilla, Rafael; Martín, Marta

    2015-01-01

    The sequence of the genome of Pseudomonas fluorescens F113 has shown the presence of multiple traits relevant for rhizosphere colonization and plant growth promotion. Among these traits are denitrification and chemotactic motility. Besides aerobic growth, F113 is able to grow anaerobically using nitrate and nitrite as final electron acceptors. F113 is able to perform swimming motility under aerobic conditions and under anaerobic conditions when nitrate is used as the electron acceptor. However, nitrite can not support swimming motility. Regulation of swimming motility is similar under aerobic and anaerobic conditions, since mutants that are hypermotile under aerobic conditions, such as gacS, sadB, kinB, algU and wspR, are also hypermotile under anaerobic conditions. However, chemotactic behavior is different under aerobic and denitrification conditions. Unlike most pseudomonads, the F113 genome encode three complete chemotaxis systems, Che1, Che2 and Che3. Mutations in each of the cheA genes of the three Che systems has shown that the three systems are functional and independent. Mutation of the cheA1 gene completely abolished swimming motility both under aerobic and denitrification conditions. Mutation of the cheA2 gene, showed only a decrease in swimming motility under both conditions, indicating that this system is not essential for chemotactic motility but is necessary for optimal motility. Mutation of the cheA3 gene abolished motility under denitrification conditions but only produced a decrease in motility under aerobic conditions. The three Che systems proved to be implicated in competitive rhizosphere colonization, being the cheA1 mutant the most affected. PMID:26161531

  16. Semi-automated measurement of motility of human subgingival microflora by image analysis.

    PubMed

    Ojima, M; Tamagawa, H; Hayashi, N; Hanioka, T; Shizukuishi, S

    1998-08-01

    The purpose of this investigation was to quantitatively estimate bacterial motility by image analysis, and to apply this method for the measurement of motility of human subgingival microflora. We developed a semi-automated method for the quantification of bacterial motility using video microscopy, digitization and image processing. Moving images of both authentic bacterial samples and clinical samples were recorded using a phase contrast microscope with a high speed (1/100 s) shutter camera. The motility was evaluated by measuring the total number of pixels remaining after the subtraction of 2 serial video images. The total number of pixels was significantly correlated with both the sum of the velocity of each bacterial cell and the number of motile bacteria on the same original images. Motility of subgingival microflora from 140 clinical samples tested was measured at 0 pixels to 3600 pixels, whereas the effect of Brownian movement was less than 150 pixels. The motility of subgingival microflora estimated with this image analysis system did not differ much from objective judgments by the naked eyes of experts. These results suggest that a semi-automated image analysis system may be useful in the evaluation of the motility of human subgingival microflora.

  17. The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids.

    PubMed

    Lai, Hsin-Chih; Soo, Po-Chi; Wei, Jun-Rong; Yi, Wen-Ching; Liaw, Shwu-Jen; Horng, Yu-Tze; Lin, Shi-Ming; Ho, Shen-Wu; Swift, Simon; Williams, Paul

    2005-05-01

    Serratia marcescens swarms at 30 degrees C but not at 37 degrees C on a nutrient-rich (LB) agar surface. Mini-Tn5 mutagenesis of S. marcescens CH-1 yielded a mutant (WC100) that swarms not only vigorously at 37 degrees C but also earlier and faster than the parent strain swarms at 30 degrees C. Analysis of this mutant revealed that the transposon was inserted into a gene (rssA) predicted to encode a bacterial two-component signal transduction sensor kinase, upstream of which a potential response regulator gene (rssB) was located. rssA and rssB insertion-deletion mutants were constructed through homologous recombination, and the two mutants exhibited similar swarming phenotypes on LB swarming agar, in which swarming not only occurred at 37 degrees C but also initiated at a lower cell density, on a surface with a higher agar concentration, and more rapidly than the swarming of the parent strain at 30 degrees C. Both mutants also exhibited increased hemolysin activity and altered cell surface topologies compared with the parent CH-1 strain. Temperature and certain saturated fatty acids (SFAs) were found to negatively regulate S. marcescens swarming via the action of RssA-RssB. Analysis of the fatty acid profiles of the parent and the rssA and rssB mutants grown at 30 degrees C or 37 degrees C and under different nutrition conditions revealed a relationship between cellular fatty acid composition and swarming phenotypes. The cellular fatty acid profile was also observed to be affected by RssA and RssB. SFA-dependent inhibition of swarming was also observed in Proteus mirabilis, suggesting that either SFAs per se or the modulation of cellular fatty acid composition and hence homeostasis of membrane fluidity may be a conserved mechanism for regulating swarming motility in gram-negative bacteria.

  18. Kinetics and thermodyamics of the rate limiting conformational change in the actomyosin V mechanochemical cycle

    PubMed Central

    Jacobs, Donald J.; Trivedi, Darshan; David, Charles; Yengo, Christopher M.

    2011-01-01

    We used FRET to examine the kinetics and thermodynamics of structural changes associated with ADP release in myosin V, which is thought to be a strain sensitive step in many muscle and non-muscle myosins. We also explore essential dynamics using FIRST/FRODA starting with three different myosin V X-ray crystal structures to examine intrinsic flexibility and correlated motions. Our steady-state and time resolved FRET analysis demonstrates a temperature dependent reversible conformational change in the nucleotide binding pocket. Our kinetic results demonstrate that the nucleotide binding pocket goes from a closed to an open conformation prior to the release of ADP while the actin binding cleft remains closed. Interestingly, we find that the temperature dependence of the maximum actin-activated myosin V ATPase rate is similar to the pocket opening step, demonstrating this is the rate limiting structural transition in the ATPase cycle. Thermodynamic analysis demonstrates the transition from the open to closed nucleotide binding pocket conformation is unfavorable because of a decrease in entropy. The intrinsic flexibility analysis is consistent with conformational entropy playing a role in this transition as the MV.ADP structure is highly flexible compared to the MV.APO structure. Our experimental and modeling studies support the conclusion of a novel post-power-stroke actomyosin.ADP state in which the nucleotide binding pocket and actin binding cleft are closed. The novel state may be important for strain sensitivity as the transition from the closed to open nucleotide binding pocket conformation may be altered by lever arm position. PMID:21315083

  19. Characterization of the pre-force-generation state in the actomyosin cross-bridge cycle

    PubMed Central

    Sun, Mingxuan; Rose, Michael B.; Ananthanarayanan, Shobana K.; Jacobs, Donald J.; Yengo, Christopher M.

    2008-01-01

    Myosin is an actin-based motor protein that generates force by cycling between actin-attached (strong binding: ADP or rigor) and actin-detached (weak binding: ATP or ADP·Pi) states during its ATPase cycle. However, it remains unclear what specific conformational changes in the actin binding site take place on binding to actin, and how these structural changes lead to product release and the production of force and motion. We studied the dynamics of the actin binding region of myosin V by using fluorescence resonance energy transfer (FRET) to monitor conformational changes in the upper-50-kDa domain of the actin binding cleft in the weak and strong actin binding states. Steady-state and lifetime data monitoring the FRET signal suggest that the cleft is in a more open conformation in the weak actin binding states. Transient kinetic experiments suggest that a rapid conformational change occurs, which is consistent with cleft closure before actin-activated phosphate release. Our results have identified a pre-force-generation actomyosin ADP·Pi state, and suggest force generation may occur from a state not yet seen by crystallography in which the actin binding cleft and the nucleotide binding pocket are closed. Computational modeling uncovers dramatic changes in the rigidity of the upper-50-kDa domain in different nucleotide states, which suggests that the intrinsic flexibility of this domain allows myosin motors to accomplish simultaneous tight nucleotide binding (closed nucleotide binding pocket) and high-affinity actin binding (closed actin binding cleft). PMID:18552179

  20. Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain

    NASA Astrophysics Data System (ADS)

    Filas, Benjamen A.; Oltean, Alina; Majidi, Shabnam; Bayly, Philip V.; Beebe, David C.; Taber, Larry A.

    2012-12-01

    In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis.

  1. A thermal study of cellular motility by optical time-resolved correlation

    NASA Astrophysics Data System (ADS)

    Sierra-Valdez, F. J.; Cisneros-Mejorado, A. J.; Sánchez Herrera, D. P.; Ruiz-Suárez, J. C.

    2012-04-01

    The study of motor properties of cells under appropriate physical-chemical conditions is a significant problem nowadays. The standard techniques presently used do not allow to evaluate neither large samples nor to control their thermodynamic conditions. In this work, we report a cell motility sensor based on an optical technique with a time-resolved correlation, adapted in a system able to study several samples simultaneously. Image correlation analysis is used to follow their temporal behavior. A wide variety of motile cells, such as archaea, bacteria, spermatozoa, and even contractile cells, can be studied using this technique. Here, we tested our technique with the study of sperm motility. In particular, both the sperm motility and its prevalence are studied under a temperature range from 0 to 37 °C. We found that incubation at 10 °C presents the lengthiest prevalence in motility and observed, for the first time, an interesting thermal reversibility behavior.

  2. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain

    PubMed Central

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D.

    2015-01-01

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40–45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC’s location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  3. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain.

    PubMed

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D

    2015-04-14

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40-45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC's location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  4. Effects of cochlear loading on the motility of active outer hair cells

    PubMed Central

    Ó Maoiléidigh, Dáibhid; Hudspeth, A. J.

    2013-01-01

    Outer hair cells (OHCs) power the amplification of sound-induced vibrations in the mammalian inner ear through an active process that involves hair-bundle motility and somatic motility. It is unclear, though, how either mechanism can be effective at high frequencies, especially when OHCs are mechanically loaded by other structures in the cochlea. We address this issue by developing a model of an active OHC on the basis of observations from isolated cells, then we use the model to predict the response of an active OHC in the intact cochlea. We find that active hair-bundle motility amplifies the receptor potential that drives somatic motility. Inertial loading of a hair bundle by the tectorial membrane reduces the bundle’s reactive load, allowing the OHC’s active motility to influence the motion of the cochlear partition. The system exhibits enhanced sensitivity and tuning only when it operates near a dynamical instability, a Hopf bifurcation. This analysis clarifies the roles of cochlear structures and shows how the two mechanisms of motility function synergistically to create the cochlear amplifier. The results suggest that somatic motility evolved to enhance a preexisting amplifier based on active hair-bundle motility, thus allowing mammals to hear high-frequency sounds. PMID:23509256

  5. Asian Motility Studies in Irritable Bowel Syndrome

    PubMed Central

    2010-01-01

    Altered motility remains one of the important pathophysiologic factors in patients with irritable bowel syndrome (IBS) who commonly complain of abdominal pain and stool changes such as diarrhea and constipation. The prevalence of IBS has increased among Asian populations these days. Gastrointestinal (GI) physiology may vary between Asian and Western populations because of differences in diets, socio-cultural backgrounds, and genetic factors. The characteristics and differences of GI dysmotility in Asian IBS patients were reviewed. MEDLINE search work was performed including following terms, 'IBS,' 'motility,' 'transit time,' 'esophageal motility,' 'gastric motility,' 'small intestinal motility,' 'colonic motility,' 'anorectal function,' and 'gallbladder motility' and over 100 articles were categorized under 'esophagus,' 'stomach,' 'small intestine,' 'colon,' 'anorectum,' 'gallbladder,' 'transit,' 'motor pattern,' and 'effect of stressors.' Delayed gastric emptying, slow tansit in constipation predominant IBS patients, rapid transit in diarrhea predominant IBS patients, accelerated motility responses to various stressors such as meals, mental stress, or corticotrophin releasing hormones, and altered rectal compliance and altered rectal accomodation were reported in many Asian studies regarding IBS. Many conflicting results were found among these studies and there are still controversies to conclude these as unique features of Asian IBS patients. Multinational and multicenter studies are needed to be performed vigorously in order to elaborate characteristics as well as differences of altered motililty in Asian patients with IBS. PMID:20535342

  6. Kobe earthquake and reduced sperm motility.

    PubMed

    Fukuda, M; Fukuda, K; Shimizu, T; Yomura, W; Shimizu, S

    1996-06-01

    We investigated a possible relationship between the Kobe earthquake (January 17, 1995) and the quality of semen. We assessed sperm concentration and motility of 27 male patients who had a concentration of more than 30 million/ml and >40% sperm motility within 5 months before the earthquake. Twelve male patients from districts with a magnitude of <4 on the Richter scale showed no difference in sperm concentration and motility before and after the earthquake. Of 15 male patients from districts with a magnitude of >6, five patients whose houses received no damage showed no distinct changes in sperm concentration and motility. In contrast, 10 patients whose houses were partially or completely destroyed showed significantly (P < 0.001) lower sperm motility after the earthquake than before, although no significant difference of sperm concentration could be observed. Of these latter 10 patients, seven could be followed. In six patients, sperm motility was restored between 2 and 9 months after the earthquake; the sperm motility in one patient, whose father died a victim of the house crash, has not yet recovered. Thus, the acute stress resulting from such a catastrophic earthquake could be a possible cause of reduced sperm motility.

  7. Intercellular Adhesion-Dependent Cell Survival and ROCK-Regulated Actomyosin-Driven Forces Mediate Self-Formation of a Retinal Organoid.

    PubMed

    Lowe, Albert; Harris, Raven; Bhansali, Punita; Cvekl, Ales; Liu, Wei

    2016-05-10

    In this study we dissected retinal organoid morphogenesis in human embryonic stem cell (hESC)-derived cultures and established a convenient method for isolating large quantities of retinal organoids for modeling human retinal development and disease. Epithelialized cysts were generated via floating culture of clumps of Matrigel/hESCs. Upon spontaneous attachment and spreading of the cysts, patterned retinal monolayers with tight junctions formed. Dispase-mediated detachment of the monolayers and subsequent floating culture led to self-formation of retinal organoids comprising patterned neuroretina, ciliary margin, and retinal pigment epithelium. Intercellular adhesion-dependent cell survival and ROCK-regulated actomyosin-driven forces are required for the self-organization. Our data supports a hypothesis that newly specified neuroretina progenitors form characteristic structures in equilibrium through minimization of cell surface tension. In long-term culture, the retinal organoids autonomously generated stratified retinal tissues, including photoreceptors with ultrastructure of outer segments. Our system requires minimal manual manipulation, has been validated in two lines of human pluripotent stem cells, and provides insight into optic cup invagination in vivo. PMID:27132890

  8. Divalent Cation Control of Flagellar Motility in African Trypanosomes

    NASA Astrophysics Data System (ADS)

    Westergard, Anna M.; Hutchings, Nathan R.

    2005-03-01

    Changes in calcium concentration have been shown to dynamically affect flagellar motility in several eukaryotic systems. The African trypanosome is a monoflagellated protozoan parasite and the etiological agent of sleeping sickness. Although cell motility has been implicated in disease progression, very little is currently known about biochemical control of the trypanosome flagellum. In this study, we assess the effects of extracellular changes in calcium and nickel concentration on trypanosome flagellar movement. Using a flow through chamber, we determine the relative changes in motility in individual trypanosomes in response to various concentrations of calcium and nickel, respectively. Extracellular concentrations of calcium and nickel (as low as 100 micromolar) significantly inhibit trypanosome cell motility. The effects are reversible, as indicated by the recovery of motion after removal of the calcium or nickel from the chamber. We are currently investigating the specific changes in flagellar oscillation and coordination that result from calcium and nickel, respectively. These results verify the presence of a calcium-responsive signaling mechanism(s) that regulates flagellar beat in trypanosomes.

  9. Is sperm motility maturation affected by static magnetic fields?

    PubMed Central

    Tablado, L; Pérez-Sánchez, F; Soler, C

    1996-01-01

    Kinematic parameters were evaluated in mouse epididymal extracts to monitor maturation of sperm movement in animals exposed to static magnetic fields using the Sperm-Class Analyzer computerized image analysis system. For this purpose, animals were exposed to a field of 0.7 T generated by a permanent magnet over 10 or 35 days for either 1 or 24 hr/day. The values of the motion endpoints were similar in animals used as controls and in those exposed to the nonionizing radiation, whatever the period of exposure or daily dosage. Changes in motility were observed in all groups: the percentage of total motile and progressive motile spermatozoa increased during passage through the epididymis, with major changes between the caput and corpus epididymides, and the pattern of swimming changed clearly towards more rapid and straighter trajectories. The processes of initiation of sperm motility and maturation of displacement patterns were not then affected by magnetic treatment. Moreover, it appears that sperm production is unaffected because no changes were observed in testicular or epididymal weights after exposure to static magnetic fields. Images Figure 1. Figure 2. Figure 3. PMID:8959411

  10. Thyroxin Is Useful to Improve Sperm Motility

    PubMed Central

    Mendeluk, Gabriela Ruth; Rosales, Mónica

    2016-01-01

    Background The aim of this study was to evaluate the non-genomic action of thyroxin on sperm kinetic and its probable use to improve sperm recovery after applying an en- richment method like “swim-up” in comparison with the available one, pentoxifylline. Materials and Methods This is an experimental study. A total of 50 patients were re- cruited, followed by infertility consultation. Conventional sperm assays were performed according to World Health Organization criteria-2010 (WHO-2010). A Computer Aided Semen Analysis System was employed to assess kinetic parameters and concentrations. Number of the motile sperm recovered after preparation technique was calculated. Results Addition of T4 (0.002 µg/ml) to semen samples increased hypermotility at 20 minutes (control: 14.18 ± 5.1% vs. 17.66 ± 8.88%, P<0.03, data expressed as mean ± SD) and remained unchanged after 40 minutes. Significant differences were found in the motile sperm recovered after swim-up (control: 8.93×106 ± 9.52× 06vs. 17.20×106 ± 21.16×106, P<0.03), achieving all of the tested samples a desirable threshold value for artificial insemination outcome, while adding pentoxifylline increased the number of recovered sperm after swim-up in 60% of the studied cases. No synergism between two treatments could be determined. Conclusion We propose a new physiological tool to artificially improve insemination. The discussion opens windows to investigate unknown pathways involved in sperm ca- pacitation and gives innovative arguments to better understand infertility mechanisms. PMID:27441054

  11. Regulation of flagellar motility during biofilm formation

    PubMed Central

    Guttenplan, Sarah B.; Kearns, Daniel B.

    2013-01-01

    Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form non-motile multicellular aggregates held together by an extracellular matrix called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are likely diluted to extinction through growth. Both short term and long term control is likely important to the motility-to-biofilm transition to stabilize aggregates and optimize resource investment. We emphasize the newly discovered classes of flagellar functional regulators and speculate that others await discovery in the context of biofilm formation. PMID:23480406

  12. Protonmotive force and motility of Bacillus subtilis.

    PubMed Central

    Shioi, J I; Imae, Y; Oosawa, F

    1978-01-01

    Motility of Bacillus subtilis was inhibited within a few minutes by a combination of valinomycin and a high concentration of potassium ions in the medium at neutral pH. Motility was restored by lowering the concentration of valinomycin or potassium ions. The valinomycin concentration necessary for motility inhibition was determined at various concentrations of potassium ions and various pH's. At pH 7.5, valinomycin of any concentration did not inhibit the motility, when the potassium ion concentration was lower than 9 mM. In the presence of 230 mM potassium ion, the motility inhibition by valinomycin was not detected at pH lower than 6.1. These results are easily explained by the idea that the motility of B. subtilis is supported by the electrochemical potential difference of the proton across the membrane, or the protonmotive force. The electrochemical potential difference necessary for motility was estimated to be about -90 mV. PMID:25261

  13. Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin

    PubMed Central

    Zhou, Jian; Kim, Hye Young; Wang, James H.-C.; Davidson, Lance A.

    2010-01-01

    During morphogenesis, forces generated by cells are coordinated and channeled by the viscoelastic properties of the embryo. Microtubules and F-actin are considered to be two of the most important structural elements within living cells accounting for both force production and mechanical stiffness. In this paper, we investigate the contribution of microtubules to the stiffness of converging and extending dorsal tissues in Xenopus laevis embryos using cell biological, biophysical and embryological techniques. Surprisingly, we discovered that depolymerizing microtubules stiffens embryonic tissues by three- to fourfold. We attribute tissue stiffening to Xlfc, a previously identified RhoGEF, which binds microtubules and regulates the actomyosin cytoskeleton. Combining drug treatments and Xlfc activation and knockdown lead us to the conclusion that mechanical properties of tissues such as viscoelasticity can be regulated through RhoGTPase pathways and rule out a direct contribution of microtubules to tissue stiffness in the frog embryo. We can rescue nocodazole-induced stiffening with drugs that reduce actomyosin contractility and can partially rescue morphogenetic defects that affect stiffened embryos. We support these conclusions with a multi-scale analysis of cytoskeletal dynamics, tissue-scale traction and measurements of tissue stiffness to separate the role of microtubules from RhoGEF activation. These findings suggest a re-evaluation of the effects of nocodazole and increased focus on the role of Rho family GTPases as regulators of the mechanical properties of cells and their mechanical interactions with surrounding tissues. PMID:20630946

  14. Regulation of Eukaryotic Flagellar Motility

    NASA Astrophysics Data System (ADS)

    Mitchell, David R.

    2005-03-01

    The central apparatus is essential for normal eukaryotic flagellar bend propagation as evidenced by the paralysis associated with mutations that prevent central pair (CP) assembly. Interactions between doublet-associated radial spokes and CP projections are thought to modulate spoke-regulated protein kinases and phosphatases on outer doublets, and these enzymes in turn modulate dynein activity. To better understand CP control mechanisms, we determined the three-dimensional structure of the Chlamydomonas reinhardtii CP complex and analyzed CP orientation during formation and propagation of flagellar bending waves. We show that a single CP microtubule, C1, is near the outermost doublet in curved regions of the flagellum, and this orientation is maintained by twists between successive principal and reverse bends. The Chlamydomonas CP is inherently twisted; twists are not induced by bend formation, and do not depend on forces or signals transmitted through spoke-central pair interactions. We hypothesize that CP orientation passively responds to bend formation, and that bend propagation drives rotation of the CP and maintains a constant CP orientation in bends, which in turn permits signal transduction between specific CP projections and specific doublet-associated dyneins through radial spokes. The central pair kinesin, Klp1, although essential for normal motility, is therefore not the motor that drives CP rotation. The CP also acts as a scaffold for enzymes that maintain normal intraflagellar ATP concentration.

  15. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination.

    PubMed

    Broekhuijse, M L W J; Soštarić, E; Feitsma, H; Gadella, B M

    2011-11-01

    In order to obtain a more standardised semen motility evaluation, Varkens KI Nederland has introduced a computer assisted semen analysis (CASA) system in all their pig AI laboratories. The repeatability of CASA was enhanced by standardising for: 1) an optimal sample temperature (39 °C); 2) an optimal dilution factor; 3) optimal mixing of semen and dilution buffer by using mechanical mixing; 4) the slide chamber depth, and together with the previous points; 5) the optimal training of technicians working with the CASA system; and 6) the use of a standard operating procedure (SOP). Once laboratory technicians were trained in using this SOP, they achieved a coefficient of variation of < 5% which was superior to the variation found when the SOP was not strictly used. Microscopic semen motility assessments by eye were subjective and not comparable to the data obtained by standardised CASA. CASA results are preferable as accurate continuous motility dates are generated rather than discrimination motility percentage increments of 10% motility as with motility estimation by laboratory technicians. The higher variability of sperm motility found with CASA and the continuous motility values allow better analysis of the relationship between semen motility characteristics and fertilising capacity. The benefits of standardised CASA for AI is discussed both with respect to estimate the correct dilution factor of the ejaculate for the production of artificial insemination (AI) doses (critical for reducing the number of sperm per AI doses) and thus to get more reliable fertility data from these AI doses in return.

  16. Motility parameters and intracellular ATP content of rabbit spermatozoa stored for 3 days at 15 degrees C.

    PubMed

    Gogol, Piotr

    2013-01-01

    The effect of semen storage duration on motility parameters and ATP content of rabbit spermatozoa were investigated. Ejaculates were collected from 9 New Zealand White male rabbits and diluted with a commercial rabbit semen extender Galap. Semen was stored at 15 degrees C for 3 days. On each day of storage sperm motility and intracellular ATP content were evaluated. Sperm motility parameters were assessed using the computer-assisted sperm analysis (CASA) system and ATP content using the bioluminescence method. The time of storage had a significant effect on sperm motility parameters (except straight-line velocity) and ATP content. A significant correlation was observed between motility parameters and sperm ATP content. The motility parameters most strongly correlated with ATP content were total motile spermatozoa (r = 0.6364), progressively motile spermatozoa (r = 0.529), amplitude of lateral head displacement (r = 0.4178), curvilinear velocity (r = 0.4111) and average path velocity (r = 0.3743). Results show that motility parameters determined using the CASA system and intracellular ATP content are sensitive indicators of sperm quality during in vitro storage and may be useful for estimation of in vivo fertilizing ability of rabbit semen. PMID:23767298

  17. Motility in the epsilon-proteobacteria.

    PubMed

    Beeby, Morgan

    2015-12-01

    The epsilon-proteobacteria are a widespread group of flagellated bacteria frequently associated with either animal digestive tracts or hydrothermal vents, with well-studied examples in the human pathogens of Helicobacter and Campylobacter genera. Flagellated motility is important to both pathogens and hydrothermal vent members, and a number of curious differences between the epsilon-proteobacterial and enteric bacterial motility paradigms make them worthy of further study. The epsilon-proteobacteria have evolved to swim at high speed and through viscous media that immobilize enterics, a phenotype that may be accounted for by the molecular architecture of the unusually large epsilon-proteobacterial flagellar motor. This review summarizes what is known about epsilon-proteobacterial motility and focuses on a number of recent discoveries that rationalize the differences with enteric flagellar motility. PMID:26590774

  18. Mammalian Sperm Motility: Observation and Theory

    NASA Astrophysics Data System (ADS)

    Gaffney, E. A.; Gadêlha, H.; Smith, D. J.; Blake, J. R.; Kirkman-Brown, J. C.

    2011-01-01

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics.

  19. Implications of altered gastrointestinal motility in obesity.

    PubMed

    Gallagher, T K; Geoghegan, J G; Baird, A W; Winter, D C

    2007-10-01

    The onset of obesity occurs as a result of an imbalance between nutrient consumption/absorption and energy expenditure. Gastrointestinal (GI) motility plays a critical role in the rate of consumption of foods, digestion, and absorption of nutrients. Various segments of the GI tract coordinate in a complex yet precise way, to control the process of food consumption, digestion, and absorption of nutrients. GI motility not only regulates the rates at which nutrients are processed and absorbed in the gut, but also, via mechanical and neurohormonal methods, participates in the control of appetite and satiety. Altered GI motility has frequently been observed in obese patients, the significance of which is incompletely understood. However, these alterations can be considered as potential contributing factors in the development and maintenance of obesity and changed eating behavior. Therapies aimed at regulating or counteracting the observed changes in GI motility are being actively explored and applied clinically in the management of obese patients. PMID:18098402

  20. Microbial Morphology and Motility as Biosignatures for Outer Planet Missions

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Lindensmith, Chris; Deming, Jody W.; Fernandez, Vicente I.; Stocker, Roman

    2016-10-01

    Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies.

  1. Microbial Morphology and Motility as Biosignatures for Outer Planet Missions

    PubMed Central

    Lindensmith, Chris; Deming, Jody W.; Fernandez, Vicente I.; Stocker, Roman

    2016-01-01

    Abstract Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies. Key Words: In situ measurement—Biosignatures—Microbiology—Europa—Ice. Astrobiology 16, 755–774. PMID:27552160

  2. [C-terminal sites of caldesmon drive ATP hydrolysis cycle by shifting actomyosin itermediates from strong to weak binding of myosin and actin].

    PubMed

    Pronina, O E; Copeland, O; Marston, S; Borovikov, Iu S

    2006-01-01

    Polarized fluorimetry technique and ghost muscle fibers containing tropomyosin were used to study effects of caldesmon (CaD) and recombinant peptides CaDH1 (residues 506-793), CaDH2 (residues 683-767), CaDH12 (residues 506-708) and 658C (residues 658-793) on the orientation and mobility of fluorescent label 1.5-IAEDANS specifically bound to Cys-707 of myosin subfragment-1 (S1) in the absence of nucleotide, and in the presence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. It was shown that at modelling different intermediates of actomyosin ATPase, the orientation and mobility of dye dipoles changed discretely, suggesting a multi-step changing of the myosin head structural state in ATP hydrolysis cycle. The maximum difference in orientation and mobility of the oscillator (4 degrees and 30%, respectively) was observed between actomyosin in the presence of MgATP, and actomyosin in the presence of MgADP. Caldesmon actin-binding sites C and B' inhibit formation of actomyosin strong binding states, while site B activates it. It is suggested that actin-myosin interaction in ATP hydrolysis cycle initiates nucleotide-dependent rotation of myosin motor domain, or that of its site for dye binding as well as the change in myosin head mobility. Caldesmon drives ATP hydrolysis cycle by shifting the equilibrium between strong and weak forms of actin-myosin binding.

  3. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6.

    PubMed

    Hidalgo-Carcedo, Cristina; Hooper, Steven; Chaudhry, Shahid I; Williamson, Peter; Harrington, Kevin; Leitinger, Birgit; Sahai, Erik

    2011-01-01

    Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell-cell junctions. Here we show that collective invasion by cancer cells depends on decreasing actomyosin contractility at sites of cell-cell contact. When actomyosin is not downregulated at cell-cell contacts, migrating cells lose cohesion. We provide a molecular mechanism for this downregulation. Depletion of discoidin domain receptor 1 (DDR1) blocks collective cancer-cell invasion in a range of two-dimensional, three-dimensional and 'organotypic' models. DDR1 coordinates the Par3/Par6 cell-polarity complex through its carboxy terminus, binding PDZ domains in Par3 and Par6. The DDR1-Par3/Par6 complex controls the localization of RhoE to cell-cell contacts, where it antagonizes ROCK-driven actomyosin contractility. Depletion of DDR1, Par3, Par6 or RhoE leads to increased actomyosin contactility at cell-cell contacts, a loss of cell-cell cohesion and defective collective cell invasion.

  4. ATPases, ion exchangers and human sperm motility.

    PubMed

    Peralta-Arias, Rubén D; Vívenes, Carmen Y; Camejo, María I; Piñero, Sandy; Proverbio, Teresa; Martínez, Elizabeth; Marín, Reinaldo; Proverbio, Fulgencio

    2015-05-01

    Human sperm has several mechanisms to control its ionic milieu, such as the Na,K-ATPase (NKA), the Ca-ATPase of the plasma membrane (PMCA), the Na(+)/Ca(2) (+)-exchanger (NCX) and the Na(+)/H(+)-exchanger (NHE). On the other hand, the dynein-ATPase is the intracellular motor for sperm motility. In this work, we evaluated NKA, PMCA, NHE, NCX and dynein-ATPase activities in human sperm and investigated their correlation with sperm motility. Sperm motility was measured by Computer Assisted Semen Analysis. It was found that the NKA activity is inhibited by ouabain with two Ki (7.9 × 10(-9) and 9.8 × 10(-5) M), which is consistent with the presence of two isoforms of α subunit of the NKA in the sperm plasma membranes (α1 and α4), being α4 more sensitive to ouabain. The decrease in NKA activity is associated with a reduction in sperm motility. In addition, sperm motility was evaluated in the presence of known inhibitors of NHE, PMCA and NCX, such as amiloride, eosin, and KB-R7943, respectively, as well as in the presence of nigericin after incubation with ouabain. Amiloride, eosin and KB-R7943 significantly reduced sperm motility. Nigericin reversed the effect of ouabain and amiloride on sperm motility. Dynein-ATPase activity was inhibited by acidic pH and micromolar concentrations of Ca(2) (+). We explain our results in terms of inhibition of the dynein-ATPase in the presence of higher cytosolic H(+) and Ca(2) (+), and therefore inhibition of sperm motility. PMID:25820902

  5. Flagellar motility in eukaryotic human parasites.

    PubMed

    Krüger, Timothy; Engstler, Markus

    2015-10-01

    A huge variety of protists rely on one or more motile flagella to either move themselves or move fluids and substances around them. Many of these flagellates have evolved a symbiotic or parasitic lifestyle. Several of the parasites have adapted to human hosts, and include agents of prevalent and serious diseases. These unicellular parasites have become specialised in colonising a wide range of biological niches within humans. They usually have diverse transmission cycles, and frequently manifest a variety of distinct morphological stages. The motility of the single or multiple flagella plays important but understudied roles in parasite transmission, host invasion, dispersal, survival, proliferation and pathology. In this review we provide an overview of the important human pathogens that possess a motile flagellum for at least part of their life cycle. We highlight recently published studies that aim to elucidate motility mechanisms, and their relevance for human disease. We then bring the physics of swimming at the microscale into context, emphasising the importance of interdisciplinary approaches for a full understanding of flagellate motility - especially in light of the parasites' microenvironments and population dynamics. Finally, we summarise some important technological aspects, describing challenges for the field and possibilities for motility analyses in the future.

  6. Flagellar motility in eukaryotic human parasites.

    PubMed

    Krüger, Timothy; Engstler, Markus

    2015-10-01

    A huge variety of protists rely on one or more motile flagella to either move themselves or move fluids and substances around them. Many of these flagellates have evolved a symbiotic or parasitic lifestyle. Several of the parasites have adapted to human hosts, and include agents of prevalent and serious diseases. These unicellular parasites have become specialised in colonising a wide range of biological niches within humans. They usually have diverse transmission cycles, and frequently manifest a variety of distinct morphological stages. The motility of the single or multiple flagella plays important but understudied roles in parasite transmission, host invasion, dispersal, survival, proliferation and pathology. In this review we provide an overview of the important human pathogens that possess a motile flagellum for at least part of their life cycle. We highlight recently published studies that aim to elucidate motility mechanisms, and their relevance for human disease. We then bring the physics of swimming at the microscale into context, emphasising the importance of interdisciplinary approaches for a full understanding of flagellate motility - especially in light of the parasites' microenvironments and population dynamics. Finally, we summarise some important technological aspects, describing challenges for the field and possibilities for motility analyses in the future. PMID:26523344

  7. Polymer Nanocomposites as a Facile Method for Engineering Acto-Myosin Networks at the Interface

    NASA Astrophysics Data System (ADS)

    Caporizzo, Matthew; Sun, Yujie; Goldman, Yale; Composto, Russell; Nano-Bio Interface Center Collaboration

    2011-03-01

    Filamentous actin acts as the rails for the molecular motor myosin in muscle contraction and intercellular mass transport. Consequently, understanding the process by which actin organizes, polymerizes, and binds is fundamental for the design of myosin based actuators capable of responding to external stimuli. Starting with atomically smooth, freshly cleaved mica optically coupled to glass slides, a random copolymer nanoparticle composite is engineered for in situ single molecule TIRF/AFM studies with controlled roughness, electrostatic binding strength, and binding site density. Four distinct regimes of actin binding are observed; no attachment, end-on attachment, weak side-on attachment, and side-on immobilization. Transitions between regimes are likely to mark competition between the affinity to charged nanoparticles and the inherent resistance of the semi-rigid filaments to bending. Surface conditions optimal for actin immobilization are identified, and Myosin V stepping kinetics are studied on the artificially immobilized filaments, confirming filament support of motility. Supported by NSF grant DMR-0425780.

  8. Earthquake-like dynamics in Myxococcus xanthus social motility

    PubMed Central

    Gibiansky, Maxsim L.; Hu, Wei; Dahmen, Karin A.; Shi, Wenyuan; Wong, Gerard C. L.

    2013-01-01

    Myxococcus xanthus is a bacterium capable of complex social organization. Its characteristic social (“S”)-motility mechanism is mediated by type IV pili (TFP), linear actuator appendages that propel the bacterium along a surface. TFP are known to bind to secreted exopolysaccharides (EPS), but it is unclear how M. xanthus manages to use the TFP-EPS technology common to many bacteria to achieve its unique coordinated multicellular movements. We examine M. xanthus S-motility, using high-resolution particle-tracking algorithms, and observe aperiodic stick–slip movements. We show that they are not due to chemotaxis, but are instead consistent with a constant TFP-generated force interacting with EPS, which functions both as a glue and as a lubricant. These movements are quantitatively homologous to the dynamics of earthquakes and other crackling noise systems. These systems exhibit critical behavior, which is characterized by a statistical hierarchy of discrete “avalanche” motions described by a power law distribution. The measured critical exponents from M. xanthus are consistent with mean field theoretical models and with other crackling noise systems, and the measured Lyapunov exponent suggests the existence of highly branched EPS. Such molecular architectures, which are common for efficient lubricants but rare in bacterial EPS, may be necessary for S-motility: We show that the TFP of leading “locomotive” cells initiate the collective motion of follower cells, indicating that lubricating EPS may alleviate the force generation requirements on the lead cell and thus make S-motility possible. PMID:23341622

  9. Where to Go: Breaking the Symmetry in Cell Motility

    PubMed Central

    2016-01-01

    Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology. PMID:27196433

  10. FAM123A Binds Microtubules and Inhibits the Guanine Nucleotide Exchange Factor ARHGEF2 to Decrease Actomyosin Contractility***

    PubMed Central

    Siesser, Priscila F.; Motolese, Marta; Walker, Matthew P.; Goldfarb, Dennis; Gewain, Kelly; Yan, Feng; Kulikauskas, Rima M.; Chien, Andy J.; Wordeman, Linda; Major, Michael B.

    2013-01-01

    The FAM123 gene family comprises three members, FAM123A, the tumor suppressor WTX(FAM123B) and FAM123C. WTX is required for normal development and causally contributes to human disease, in part through its regulation of β-catenin-dependent WNT signaling. The roles of FAM123A and FAM123C in signaling, cell behavior and human disease remain less understood. We defined and compared the protein-protein interaction networks for each member of the FAM123 family by affinity purification and mass spectrometry. Protein localization and functional studies suggest that the FAM123 family members have conserved and divergent cellular roles. In contrast to WTX and FAM123C, we found that microtubule-associated proteins were enriched in the FAM123A protein interaction network. FAM123A interacted with and tracked dynamic microtubules in a plus-end direction. Domain interaction experiments revealed a ‘SKIP’ amino acid motif in FAM123A that mediated interaction with the microtubule tip tracking proteins EB1 and EB3, and therefore with microtubules. Cells depleted of FAM123A showed compartment-specific effects on microtubule dynamics, increased actomyosin contractility, larger focal adhesions and decreased cell migration. These effects required binding of FAM123A to and inhibition of the guanine nucleotide exchange factor ARHGEF2, a microtubule-associated activator of RhoA. Together, these data suggest that the ‘family-unique’ SKIP motif enables FAM123A to bind EB proteins, localize to microtubules and coordinate microtubule dynamics and actomyosin contractility. PMID:22949735

  11. Spirochetal motility and chemotaxis in the natural enzootic cycle and development of Lyme disease.

    PubMed

    Motaleb, Md A; Liu, Jun; Wooten, R Mark

    2015-12-01

    Two-thirds of all bacterial genomes sequenced to-date possess an organelle for locomotion, referred to as flagella, periplasmic flagella or type IV pili. These genomes may also contain a chemotaxis-signaling system which governs flagellar rotation, thus leading a coordinated function for motility. Motility and chemotaxis are often crucial for infection or disease process caused by pathogenic bacteria. Although motility-associated genes are well-characterized in some organisms, the highly orchestrated synthesis, regulation, and assembly of periplasmic flagella in spirochetes are just being delineated. Recent advances were fostered by development of unique genetic manipulations in spirochetes coupled with cutting-edge imaging techniques. These contemporary advances in understanding the role of spirochetal motility and chemotaxis in host persistence and disease development are highlighted in this review.

  12. Spirochetal motility and chemotaxis in the natural enzootic cycle and development of Lyme disease.

    PubMed

    Motaleb, Md A; Liu, Jun; Wooten, R Mark

    2015-12-01

    Two-thirds of all bacterial genomes sequenced to-date possess an organelle for locomotion, referred to as flagella, periplasmic flagella or type IV pili. These genomes may also contain a chemotaxis-signaling system which governs flagellar rotation, thus leading a coordinated function for motility. Motility and chemotaxis are often crucial for infection or disease process caused by pathogenic bacteria. Although motility-associated genes are well-characterized in some organisms, the highly orchestrated synthesis, regulation, and assembly of periplasmic flagella in spirochetes are just being delineated. Recent advances were fostered by development of unique genetic manipulations in spirochetes coupled with cutting-edge imaging techniques. These contemporary advances in understanding the role of spirochetal motility and chemotaxis in host persistence and disease development are highlighted in this review. PMID:26519910

  13. Single mutation (A162H) in human cardiac troponin I corrects acid pH sensitivity of Ca2+-regulated actomyosin S1 ATPase.

    PubMed

    Dargis, Roland; Pearlstone, Joyce R; Barrette-Ng, Isabelle; Edwards, Helena; Smillie, Lawrence B

    2002-09-20

    In contrast to skeletal muscle, the efficiency of the contractile apparatus of cardiac tissue has long been known to be severely compromised by acid pH as in the ischemia of myocardial infarction and other cardiac myopathies. Recent reports (Westfall, M. V., and Metzger, J. M. (2001) News Physiol. Sci. 16, 278-281; Li, G., Martin, A. F., and Solaro, R. J. (2001) J. Mol. Cell. Cardiol. 33, 1309-1320) have indicated that the reduced Ca(2+) sensitivity of cardiac contractility at low pH (actomyosin S1 ATPase assay, we report that a single TnI mutation, A162H, restores Ca(2+) sensitivity at pH 6.5 to that at pH 7.0. Levels of inhibition (pCa 7.0), activation (pCa 4.0), and cooperativity of ATPase activity were minimally affected. Two other mutations (Q155R and E164V) also previously suggested by us (Pearlstone, J. R., Sykes, B. D., and Smillie, L. B. (1997) Biochemistry 36, 7601-7606) and involving charged residues showed no such effects. With fast skeletal muscle troponin, a single TnI H130A mutation reduced Ca(2+) sensitivity at pH 6.5 to levels approaching the cardiac system at pH 6.5. These observations provide structural insight into long-standing physiological and clinical phenomena and are of potential relevance to therapeutic treatments of heart disease by gene transfer, stem cell, and cell transplantation approaches. PMID:12151382

  14. Motility modes of the parasite Trypanosoma brucei

    NASA Astrophysics Data System (ADS)

    Temel, Fatma Zeynep; Qu, Zijie; McAllaster, Michael; de Graffenried, Christopher; Breuer, Kenneth

    2015-11-01

    The parasitic single-celled protozoan Trypanosoma brucei causes African Sleeping Sickness, which is a fatal disease in humans and animals that threatens more than 60 million people in 36 African countries. Cell motility plays a critical role in the developmental phases and dissemination of the parasite. Unlike many other motile cells such as bacteria Escherichia coli or Caulobacter crescentus, the flagellum of T. brucei is attached along the length of its awl-like body, producing a unique mode of motility that is not fully understood or characterized. Here, we report on the motility of T. brucei, which swims using its single flagellum employing both rotating and undulating propulsion modes. We tracked cells in real-time in three dimensions using fluorescent microscopy. Data obtained from experiments using both short-term tracking within the field of view and long-term tracking using a tracking microscope were analyzed. Motility modes and swimming speed were analyzed as functions of cell size, rotation rate and undulation pattern. Research supported by NSF.

  15. Motility of single one-headed kinesin molecules along microtubules.

    PubMed

    Inoue, Y; Iwane, A H; Miyai, T; Muto, E; Yanagida, T

    2001-11-01

    The motility of single one-headed kinesin molecules (K351 and K340), which were truncated fragments of Drosophila two-headed kinesin, has been tested using total internal reflection fluorescence microscopy. One-headed kinesin fragments moved continuously along the microtubules. The maximum distance traveled until the fragments dissociated from the microtubules for both K351 and K340 was approximately 600 nm. This value is considerably larger than the space resolution of the measurement system (SD approximately 30 nm). Although the movements of the fragments fluctuated in forward and backward directions, statistical analysis showed that the average movements for both K340 and K351 were toward the plus end of the microtubules, i.e., forward direction. When BDTC (a 1.3-S subunit of Propionibacterium shermanii transcarboxylase, which binds weakly to a microtubule), was fused to the tail (C-terminus) of K351, its movement was enhanced, smooth, and unidirectional, similar to that of the two-headed kinesin fragment, K411. However, the travel distance and velocity of K351BDTC molecules were approximately 3-fold smaller than that of K411. These observations suggest that a single kinesin head has basal motility, but coordination between the two heads is necessary for stabilizing the basal motility for the normal level of kinesin processivity.

  16. Reduced Protein Synthesis Fidelity Inhibits Flagellar Biosynthesis and Motility.

    PubMed

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2016-01-01

    Accurate translation of the genetic information from DNA to protein is maintained by multiple quality control steps from bacteria to mammals. Genetic and environmental alterations have been shown to compromise translational quality control and reduce fidelity during protein synthesis. The physiological impact of increased translational errors is not fully understood. While generally considered harmful, translational errors have recently been shown to benefit cells under certain stress conditions. In this work, we describe a novel regulatory pathway in which reduced translational fidelity downregulates expression of flagellar genes and suppresses bacterial motility. Electron microscopy imaging shows that the error-prone Escherichia coli strain lacks mature flagella. Further genetic analyses reveal that translational errors upregulate expression of a small RNA DsrA through enhancing its transcription, and deleting DsrA from the error-prone strain restores motility. DsrA regulates expression of H-NS and RpoS, both of which regulate flagellar genes. We demonstrate that an increased level of DsrA in the error-prone strain suppresses motility through the H-NS pathway. Our work suggests that bacteria are capable of switching on and off the flagellar system by altering translational fidelity, which may serve as a previously unknown mechanism to improve fitness in response to environmental cues. PMID:27468805

  17. Actin-based motility propelled by molecular motors

    NASA Astrophysics Data System (ADS)

    Upadyayula, Sai Pramod; Rangarajan, Murali

    2012-09-01

    Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.

  18. Gains of Bacterial Flagellar Motility in a Fungal World

    PubMed Central

    Pion, Martin; Bshary, Redouan; Bindschedler, Saskia; Filippidou, Sevasti; Wick, Lukas Y.; Job, Daniel

    2013-01-01

    The maintenance of energetically costly flagella by bacteria in non-water-saturated media, such as soil, still presents an evolutionary conundrum. Potential explanations have focused on rare flooding events allowing dispersal. Such scenarios, however, overlook bacterial dispersal along mycelia as a possible transport mechanism in soils. The hypothesis tested in this study is that dispersal along fungal hyphae may lead to an increase in the fitness of flagellated bacteria and thus offer an alternative explanation for the maintenance of flagella even in unsaturated soils. Dispersal along fungal hyphae was shown for a diverse array of motile bacteria. To measure the fitness effect of dispersal, additional experiments were conducted in a model system mimicking limited dispersal, using Pseudomonas putida KT2440 and its nonflagellated (ΔfliM) isogenic mutant in the absence or presence of Morchella crassipes mycelia. In the absence of the fungus, flagellar motility was beneficial solely under conditions of water saturation allowing dispersal, while under conditions limiting dispersal, the nonflagellated mutant exhibited a higher level of fitness than the wild-type strain. In contrast, in the presence of a mycelial network under conditions limiting dispersal, the flagellated strain was able to disperse using the mycelial network and had a higher level of fitness than the mutant. On the basis of these results, we propose that the benefit of mycelium-associated dispersal helps explain the persistence of flagellar motility in non-water-saturated environments. PMID:23995942

  19. Reduced Protein Synthesis Fidelity Inhibits Flagellar Biosynthesis and Motility

    PubMed Central

    Fan, Yongqiang; Evans, Christopher R.; Ling, Jiqiang

    2016-01-01

    Accurate translation of the genetic information from DNA to protein is maintained by multiple quality control steps from bacteria to mammals. Genetic and environmental alterations have been shown to compromise translational quality control and reduce fidelity during protein synthesis. The physiological impact of increased translational errors is not fully understood. While generally considered harmful, translational errors have recently been shown to benefit cells under certain stress conditions. In this work, we describe a novel regulatory pathway in which reduced translational fidelity downregulates expression of flagellar genes and suppresses bacterial motility. Electron microscopy imaging shows that the error-prone Escherichia coli strain lacks mature flagella. Further genetic analyses reveal that translational errors upregulate expression of a small RNA DsrA through enhancing its transcription, and deleting DsrA from the error-prone strain restores motility. DsrA regulates expression of H-NS and RpoS, both of which regulate flagellar genes. We demonstrate that an increased level of DsrA in the error-prone strain suppresses motility through the H-NS pathway. Our work suggests that bacteria are capable of switching on and off the flagellar system by altering translational fidelity, which may serve as a previously unknown mechanism to improve fitness in response to environmental cues. PMID:27468805

  20. Cytokine-induced alterations of gastrointestinal motility in gastrointestinal disorders

    PubMed Central

    Akiho, Hirotada; Ihara, Eikichi; Motomura, Yasuaki; Nakamura, Kazuhiko

    2011-01-01

    Inflammation and immune activation in the gut are usually accompanied by alteration of gastrointestinal (GI) motility. In infection, changes in motor function have been linked to host defense by enhancing the expulsion of the infectious agents. In this review, we describe the evidence for inflammation and immune activation in GI infection, inflammatory bowel disease, ileus, achalasia, eosinophilic esophagitis, microscopic colitis, celiac disease, pseudo-obstruction and functional GI disorders. We also describe the possible mechanisms by which inflammation and immune activation in the gut affect GI motility. GI motility disorder is a broad spectrum disturbance of GI physiology. Although several systems including central nerves, enteric nerves, interstitial cells of Cajal and smooth muscles contribute to a coordinated regulation of GI motility, smooth muscle probably plays the most important role. Thus, we focus on the relationship between activation of cytokines induced by adaptive immune response and alteration of GI smooth muscle contractility. Accumulated evidence has shown that Th1 and Th2 cytokines cause hypocontractility and hypercontractility of inflamed intestinal smooth muscle. Th1 cytokines downregulate CPI-17 and L-type Ca2+ channels and upregulate regulators of G protein signaling 4, which contributes to hypocontractility of inflamed intestinal smooth muscle. Conversely, Th2 cytokines cause hypercontractilty via signal transducer and activator of transcription 6 or mitogen-activated protein kinase signaling pathways. Th1 and Th2 cytokines have opposing effects on intestinal smooth muscle contraction via 5-hydroxytryptamine signaling. Understanding the immunological basis of altered GI motor function could lead to new therapeutic strategies for GI functional and inflammatory disorders. PMID:22013552

  1. Visual versus cinemicrographic evaluation of human sperm motility and morphology.

    PubMed

    Freund, M; Oliveira, N

    1987-01-01

    Ratings of human sperm motility by visual estimation through the microscope remain important measures of semen quality and of male fertility. More objective methods, including cinemicrography, time lapse photography, and videomicrography, are advocated. Subjective (visual) and objective (cinemicrographic) ratings of motility were compared. Sixty workers in 30 laboratories rated motilities of 40 specimens on motion picture film, and motilities were also measured by cinephotomicrographic methods. The morphology of each of the motile and immotile sperm was rated. In 34 of 40 specimens visual ratings were higher (range = +2 to +31%) than actual percentage motility. Specimens with both high sperm concentration and forward progression received the highest overestimations by visual rating. This was especially apparent in specimens with the highest motility. There was a statistically significant positive relationship between sperm motility and morphology rated on a one-by-one basis, but the relationship was too small to influence the visual rating of human sperm motility.

  2. Sperm motility in the fishes of pesticide exposed and from polluted rivers of Gomti and Ganga of north India.

    PubMed

    Singh, Pratap B; Sahu, Vikash; Singh, Vandana; Nigam, Santosh K; Singh, Hement K

    2008-12-01

    Investigation of lethal dose of gamma-HCH (gamma isomer of hexachlorocyclohexane), DDT (dichlorodiphenyltrichloroethane) and chlorpyrifos on spermatozoa motility after 40 days exposure in catfish, Heteropneustes fossilis was done under laboratory conditions. The sperm motility was done in the fishes captured from unpolluted ponds of Gujartal considering as reference site and polluted rivers Gomti and Ganga of north India at pre-spermiating stage. Results indicate that 1ppm of gamma-HCH, DDT and chlorpyrifos was lethal dose on sperm motility. The motility of spermatozoa decreased in insecticide exposed fish as well as in the fishes of polluted rivers when compared with their respective controls. The sperm motility was highest at 1:2000 (testicular milt: extender) dilution and duration of sperm motility was 90s after post-activation. The duration of motility also declined in the fishes captured from polluted rivers when compared with the same species captured from the reference site. It is concluded that the insecticides decrease the sperm motility and its duration in exposed fish as well as in the captured fishes from polluted rivers causing the decline in fish population of riverine systems due to influence of xenobiotics on the endocrine system.

  3. Sperm motility in the fishes of pesticide exposed and from polluted rivers of Gomti and Ganga of north India.

    PubMed

    Singh, Pratap B; Sahu, Vikash; Singh, Vandana; Nigam, Santosh K; Singh, Hement K

    2008-12-01

    Investigation of lethal dose of gamma-HCH (gamma isomer of hexachlorocyclohexane), DDT (dichlorodiphenyltrichloroethane) and chlorpyrifos on spermatozoa motility after 40 days exposure in catfish, Heteropneustes fossilis was done under laboratory conditions. The sperm motility was done in the fishes captured from unpolluted ponds of Gujartal considering as reference site and polluted rivers Gomti and Ganga of north India at pre-spermiating stage. Results indicate that 1ppm of gamma-HCH, DDT and chlorpyrifos was lethal dose on sperm motility. The motility of spermatozoa decreased in insecticide exposed fish as well as in the fishes of polluted rivers when compared with their respective controls. The sperm motility was highest at 1:2000 (testicular milt: extender) dilution and duration of sperm motility was 90s after post-activation. The duration of motility also declined in the fishes captured from polluted rivers when compared with the same species captured from the reference site. It is concluded that the insecticides decrease the sperm motility and its duration in exposed fish as well as in the captured fishes from polluted rivers causing the decline in fish population of riverine systems due to influence of xenobiotics on the endocrine system. PMID:18952138

  4. Trimebutine as a modulator of gastrointestinal motility.

    PubMed

    Lee, Hyun-Tai; Kim, Byung Joo

    2011-06-01

    Trimebutine has been used for treatment of both hypermotility and hypomotility disorders of the gastrointestinal (GI) tract, such as irritable bowel syndrome. In this issue, Tan et al. (2011) examined the concentration-dependent dual effects of trimebutine on colonic motility in guinea pig. The authors suggested that trimebutine attenuated colonic motility mainly through the inhibition of L-type Ca(2+) channels at higher concentrations, whereas, at lower concentrations, it depolarized membrane potentials by reducing BK(ca) currents, resulting in the enhancement of the muscle contractions. Trimebutine might be a plausible modulator of GI motility, which gives an insight in developing new prokinetic agents. Further studies to elucidate the effects of trimebutine on the interstitial cells of Cajal, the pacemaker in GI muscles would promote the therapeutic benefits as a GI modulator. PMID:21725804

  5. Role of calcium on the initiation of sperm motility in the European eel.

    PubMed

    Pérez, Luz; Vílchez, M Carmen; Gallego, Víctor; Morini, Marina; Peñaranda, David S; Asturiano, Juan F

    2016-01-01

    Sperm from European eel males treated with hCGrec was washed in a calcium free extender, and sperm motility was activated both in the presence (seawater, SW) and in the absence of calcium (NaCl+EDTA), and treated with calcium inhibitors or modulators. The sperm motility parameters were evaluated by a computer-assisted sperm analysis (CASA) system, and changes in the [Ca(2+)]i fluorescence (and in [Na(+)]i in some cases) were evaluated by flow cytometry. After sperm motility was activated in a medium containing Ca(2+) (seawater, SW) the intracellular fluorescence emitted by Ca(2+) increased 4-6-fold compared to the levels in quiescent sperm. However, while sperm activation in a Ca-free media (NaCl+EDTA) resulted in a percentage of motility similar to seawater, the [Ca(2+)]i levels did not increase at all. This result strongly suggests that increasing [Ca(2+)]i is not a pre-requisite for the induction of sperm motility in European eel sperm. Several sperm velocities (VCL, VSL, VAP) decreased when sperm was activated in the Ca-free activator, thus supporting the theory that Ca(2+) has a modulatory effect on sperm motility. The results indicate that a calcium/sodium exchanger (NCX) which is inhibited by bepridil and a calcium calmodulin kinase (inhibited by W-7), are involved in the sperm motility of the European eel. Our results indicate that the increase in [Ca(2+)]i concentrations during sperm activation is due to an influx from the external medium, but, unlike in most other species, it does not appear to be necessary for the activation of motility in European eel sperm. PMID:26459984

  6. Role of calcium on the initiation of sperm motility in the European eel.

    PubMed

    Pérez, Luz; Vílchez, M Carmen; Gallego, Víctor; Morini, Marina; Peñaranda, David S; Asturiano, Juan F

    2016-01-01

    Sperm from European eel males treated with hCGrec was washed in a calcium free extender, and sperm motility was activated both in the presence (seawater, SW) and in the absence of calcium (NaCl+EDTA), and treated with calcium inhibitors or modulators. The sperm motility parameters were evaluated by a computer-assisted sperm analysis (CASA) system, and changes in the [Ca(2+)]i fluorescence (and in [Na(+)]i in some cases) were evaluated by flow cytometry. After sperm motility was activated in a medium containing Ca(2+) (seawater, SW) the intracellular fluorescence emitted by Ca(2+) increased 4-6-fold compared to the levels in quiescent sperm. However, while sperm activation in a Ca-free media (NaCl+EDTA) resulted in a percentage of motility similar to seawater, the [Ca(2+)]i levels did not increase at all. This result strongly suggests that increasing [Ca(2+)]i is not a pre-requisite for the induction of sperm motility in European eel sperm. Several sperm velocities (VCL, VSL, VAP) decreased when sperm was activated in the Ca-free activator, thus supporting the theory that Ca(2+) has a modulatory effect on sperm motility. The results indicate that a calcium/sodium exchanger (NCX) which is inhibited by bepridil and a calcium calmodulin kinase (inhibited by W-7), are involved in the sperm motility of the European eel. Our results indicate that the increase in [Ca(2+)]i concentrations during sperm activation is due to an influx from the external medium, but, unlike in most other species, it does not appear to be necessary for the activation of motility in European eel sperm.

  7. HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus

    PubMed Central

    zur Lage, Petra; Ait-Lounis, Aouatef; Schmidts, Miriam; Shoemark, Amelia; Garcia Munoz, Amaya; Halachev, Mihail R.; Gautier, Philippe; Yeyati, Patricia L.; Bonthron, David T.; Carr, Ian M.; Hayward, Bruce; Markham, Alexander F.; Hope, Jilly E.; von Kriegsheim, Alex; Mitchison, Hannah M.; Jackson, Ian J.; Durand, Bénédicte; Reith, Walter; Sheridan, Eamonn; Jarman, Andrew P.; Mill, Pleasantine

    2014-01-01

    Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme. PMID:25232951

  8. Peroxisomes, lipid droplets, and endoplasmic reticulum “hitchhike” on motile early endosomes

    PubMed Central

    Guimaraes, Sofia C.; Schuster, Martin; Bielska, Ewa; Dagdas, Gulay; Kilaru, Sreedhar; Meadows, Ben R.A.; Schrader, Michael

    2015-01-01

    Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3– and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell. PMID:26620910

  9. The putative Poc complex controls two distinct Pseudomonas aeruginosa polar motility mechanisms

    PubMed Central

    Cowles, Kimberly N.; Moser, Theresa S.; Siryaporn, Albert; Nyakudarika, Natsai; Dixon, William; Turner, Jonathan J.; Gitai, Zemer

    2015-01-01

    Summary Each Pseudomonas aeruginosa cell localizes two types of motility structures, a single flagellum and one or two clusters of type IV pili, to the cell poles. Previous studies suggested that these motility structures arrive at the pole through distinct mechanisms. Here we performed a swimming motility screen to identify polar flagellum localization factors and discovered three genes homologous to the TonB/ExbB/ExbD complex that have defects in both flagella-mediated swimming and pilus-mediated twitching motility. We found that deletion of tonB3, PA2983 or PA2982 led to non-polar localization of the flagellum and FlhF, which was thought to sit at the top of the flagellar localization hierarchy. Surprisingly, these mutants also exhibited pronounced changes in pilus formation or localization, indicating that these proteins may co-ordinate both the pilus and flagellum motility systems. Thus, we have renamed PA2983 and PA2982, pocA and pocB, respectively, for polar organelle co-ordinator to reflect this function. Our results suggest that TonB3, PocA and PocB may form a membrane-associated complex, which we term the Poc complex. These proteins do not exhibit polar localization themselves, but are required for increased expression of pilus genes upon surface association, indicating that they regulate motility structures through either localization or transcriptional mechanisms. PMID:24102920

  10. Nectophotometer: an infrared motility monitor used to rapidly identify toxicity in effluents and receiving waters

    NASA Astrophysics Data System (ADS)

    Lo Pinto, Richard W.; Santelli, John

    2007-04-01

    A change in the motility pattern of fish and aquatic invertebrates when initially exposed to a toxin has long been used in tests designed to signal the presence of toxins in effluents and receiving waters. We have discovered that the level of motility change occurring within 2.5 hours of exposure to all concentrations of a test toxicant correlates well with mortality observed after three days exposure to the toxin, but that the first 30 minutes of exposure is a poor predictor of mortality. Defining this 'best to use exposure time' can increase the sensitivity of toxicity monitoring systems to a weak toxin, one that causes a motility change so minor that it may otherwise go unnoticed. Motility is monitored and automatically recorded using a Nectophotometer, an automated bio-monitor with computer interface that senses interruptions of infrared beams when organisms separately exposed to multiple concentrations of a toxin move through the beams. In our tests changes in the motility of Artemia salina within the first 2.5 hours of exposure predict 3 day mortality with an average accuracy of 89%. The Nectophotometer has promise for allowing rapid assessment of the toxicity to invertebrates and fish, and may also be used to assess airborne toxicity if motile insects respond in a similar manner.

  11. Slow motility in hair cells of the frog amphibian papilla: Myosin light chain-mediated shape change

    PubMed Central

    Farahbakhsh, Nasser A.; Narins, Peter M.

    2008-01-01

    Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca2+/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca2+/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter the phase 1 response. However, they appear to counter effects of the inhibitors of Ca2+/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells. PMID:18534795

  12. Slow motility in hair cells of the frog amphibian papilla: myosin light chain-mediated shape change.

    PubMed

    Farahbakhsh, Nasser A; Narins, Peter M

    2008-07-01

    Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca(2+)/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca(2+)/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter phase 1 response. However, they appear to counter effects of the inhibitors of Ca(2+)/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells.

  13. Flagellar motility of the pathogenic spirochetes.

    PubMed

    Wolgemuth, Charles W

    2015-10-01

    Bacterial pathogens are often classified by their toxicity and invasiveness. The invasiveness of a given bacterium is determined by how capable the bacterium is at invading a broad range of tissues in its host. Of mammalian pathogens, some of the most invasive come from a group of bacteria known as the spirochetes, which cause diseases, such as syphilis, Lyme disease, relapsing fever and leptospirosis. Most of the spirochetes are characterized by their distinct shapes and unique motility. They are long, thin bacteria that can be shaped like flat-waves, helices, or have more irregular morphologies. Like many other bacteria, the spirochetes use long, helical appendages known as flagella to move; however, the spirochetes enclose their flagella in the periplasm, the narrow space between the inner and outer membranes. Rotation of the flagella in the periplasm causes the entire cell body to rotate and/or undulate. These deformations of the bacterium produce the force that drives the motility of these organisms, and it is this unique motility that likely allows these bacteria to be highly invasive in mammals. This review will describe the current state of knowledge on the motility and biophysics of these organisms and provide evidence on how this knowledge can inform our understanding of spirochetal diseases. PMID:26481969

  14. Semiautomated Motility Assay For Determining Toxicity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond

    1996-01-01

    Improved method of assessing toxicities of various substances based on observation of effects of those substances on motilities of manageably small number of cells of protozoan species Tetrahema pyriformis. Provides repeatable, standardized tests with minimal handling by technicians and with minimal exposure of technicians to chemicals. Rapid and economical alternative to Draize test.

  15. Flagellar motility of the pathogenic spirochetes

    PubMed Central

    Wolgemuth, Charles W.

    2016-01-01

    Bacterial pathogens are often classified by their toxicity and invasiveness. The invasiveness of a given bacterium is determined by how capable the bacterium is at invading a broad range of tissues in its host. Of mammalian pathogens, some of the most invasive come from a group of bacteria known as the spirochetes, which cause diseases such as syphilis, Lyme disease, relapsing fever and leptospirosis. Most of the spirochetes are characterized by their distinct shapes and unique motility. They are long, thin bacteria that can be shaped like flat-waves, helices, or have more irregular morphologies. Like many other bacteria, the spirochetes use long, helical appendages known as flagella to move; however, the spirochetes enclose their flagella in the periplasm, the narrow space between the inner and outer membranes. Rotation of the flagella in the periplasm causes the entire cell body to rotate and/or undulate. These deformations of the bacterium produce the force that drives the motility of these organisms, and it is this unique motility that likely allows these bacteria to be highly invasive in mammals. This review will describe the current state of knowledge on the motility and biophysics of these organisms and provide evidence on how this knowledge can inform our understanding of spirochetal diseases. PMID:26481969

  16. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  17. Maintenance of motility bias during cyanobacterial phototaxis.

    PubMed

    Chau, Rosanna Man Wah; Ursell, Tristan; Wang, Shuo; Huang, Kerwyn Casey; Bhaya, Devaki

    2015-04-01

    Signal transduction in bacteria is complex, ranging across scales from molecular signal detectors and effectors to cellular and community responses to stimuli. The unicellular, photosynthetic cyanobacterium Synechocystis sp. PCC6803 transduces a light stimulus into directional movement known as phototaxis. This response occurs via a biased random walk toward or away from a directional light source, which is sensed by intracellular photoreceptors and mediated by Type IV pili. It is unknown how quickly cells can respond to changes in the presence or directionality of light, or how photoreceptors affect single-cell motility behavior. In this study, we use time-lapse microscopy coupled with quantitative single-cell tracking to investigate the timescale of the cellular response to various light conditions and to characterize the contribution of the photoreceptor TaxD1 (PixJ1) to phototaxis. We first demonstrate that a community of cells exhibits both spatial and population heterogeneity in its phototactic response. We then show that individual cells respond within minutes to changes in light conditions, and that movement directionality is conferred only by the current light directionality, rather than by a long-term memory of previous conditions. Our measurements indicate that motility bias likely results from the polarization of pilus activity, yielding variable levels of movement in different directions. Experiments with a photoreceptor (taxD1) mutant suggest a supplementary role of TaxD1 in enhancing movement directionality, in addition to its previously identified role in promoting positive phototaxis. Motivated by the behavior of the taxD1 mutant, we demonstrate using a reaction-diffusion model that diffusion anisotropy is sufficient to produce the observed changes in the pattern of collective motility. Taken together, our results establish that single-cell tracking can be used to determine the factors that affect motility bias, which can then be coupled with

  18. The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces in C. elegans epidermis to control morphogenesis.

    PubMed

    Diogon, Marie; Wissler, Frédéric; Quintin, Sophie; Nagamatsu, Yasuko; Sookhareea, Satis; Landmann, Frédéric; Hutter, Harald; Vitale, Nicolas; Labouesse, Michel

    2007-07-01

    Embryonic morphogenesis involves the coordinate behaviour of multiple cells and requires the accurate balance of forces acting within different cells through the application of appropriate brakes and throttles. In C. elegans, embryonic elongation is driven by Rho-binding kinase (ROCK) and actomyosin contraction in the epidermis. We identify an evolutionary conserved, actin microfilament-associated RhoGAP (RGA-2) that behaves as a negative regulator of LET-502/ROCK. The small GTPase RHO-1 is the preferred target of RGA-2 in vitro, and acts between RGA-2 and LET-502 in vivo. Two observations show that RGA-2 acts in dorsal and ventral epidermal cells to moderate actomyosin tension during the first half of elongation. First, time-lapse microscopy shows that loss of RGA-2 induces localised circumferentially oriented pulling on junctional complexes in dorsal and ventral epidermal cells. Second, specific expression of RGA-2 in dorsal/ventral, but not lateral, cells rescues the embryonic lethality of rga-2 mutants. We propose that actomyosin-generated tension must be moderated in two out of the three sets of epidermal cells surrounding the C. elegans embryo to achieve morphogenesis.

  19. NMR Evidence for Complexing of Na+ in Muscle, Kidney, and Brain, and by Actomyosin. The Relation of Cellular Complexing of Na+ to Water Structure and to Transport Kinetics

    PubMed Central

    Cope, Freeman W.

    1967-01-01

    The nuclear magnetic resonance (NMR) spectrum of Na+ is suitable for qualitative and quantitative analysis of Na+ in tissues. The width of the NMR spectrum is dependent upon the environment surrounding the individual Na+ ion. NMR spectra of fresh muscle compared with spectra of the same samples after ashing show that approximately 70% of total muscle Na+ gives no detectable NMR spectrum. This is probably due to complexation of Na+ with macromolecules, which causes the NMR spectrum to be broadened beyond detection. A similar effect has been observed when Na+ interacts with ion exchange resin. NMR also indicates that about 60% of Na+ of kidney and brain is complexed. Destruction of cell structure of muscle by homogenization little alters the per cent complexing of Na+. NMR studies show that Na+ is complexed by actomyosin, which may be the molecular site of complexation of some Na+ in muscle. The same studies indicate that the solubility of Na+ in the interstitial water of actomyosin gel is markedly reduced compared with its solubility in liquid water, which suggests that the water in the gel is organized into an icelike state by the nearby actomyosin molecules. If a major fraction of intracellular Na+ exists in a complexed state, then major revisions in most theoretical treatments of equilibria, diffusion, and transport of cellular Na+ become appropriate. PMID:6033590

  20. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production

    PubMed Central

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B.; Igoshin, Oleg A.

    2016-01-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. PMID:27362260

  1. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production.

    PubMed

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B; Igoshin, Oleg A

    2016-06-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.

  2. Realizing the Physics of Motile Cilia Synchronization with Driven Colloids

    NASA Astrophysics Data System (ADS)

    Bruot, Nicolas; Cicuta, Pietro

    2016-03-01

    Cilia and flagella in biological systems often show large scale cooperative behaviors such as the synchronization of their beats in "metachronal waves." These are beautiful examples of emergent dynamics in biology, and are essential for life, allowing diverse processes from the motility of eukaryotic microorganisms, to nutrient transport and clearance of pathogens from mammalian airways. How these collective states arise is not fully understood, but it is clear that individual cilia interact mechanically, and that a strong and long-ranged component of the coupling is mediated by the viscous fluid. We review here the work by ourselves and others aimed at understanding the behavior of hydrodynamically coupled systems, and particularly a set of results that have been obtained both experimentally and theoretically by studying actively driven colloidal systems. In these controlled scenarios, it is possible to selectively test aspects of living motile cilia, such as the geometrical arrangement, the effects of the driving profile and the distance to no-slip boundaries. We outline and give examples of how it is possible to link model systems to observations on living systems, which can be made on microorganisms, on cell cultures or on tissue sections. This area of research has clear clinical application in the long term, as severe pathologies are associated with compromised cilia function in humans.

  3. Motility patterns of ex vivo intestine segments depend on perfusion mode

    PubMed Central

    Schreiber, Dominik; Jost, Viktor; Bischof, Michael; Seebach, Kristina; Lammers, Wim JEP; Douglas, Rees; Schäfer, Karl-Herbert

    2014-01-01

    AIM: To evaluate and characterize motility patterns from small intestinal gut segments depending on different perfusion media and pressures. METHODS: Experiments were carried out in a custom designed perfusion chamber system to validate and standardise the perfusion technique used. The perfusion chamber was built with a transparent front wall allowing for optical motility recordings and a custom made fastener to hold the intestinal segments. Experiments with different perfusion and storage media combined with different luminal pressures were carried out to evaluate the effects on rat small intestine motility. Software tools which enable the visualization and characterization of intestinal motility in response to different stimuli were used to evaluate the videotaped experiments. The data collected was presented in so called heatmaps thus providing a concise overview of form and strength of contractility patterns. Furthermore, the effect of different storage media on tissue quality was evaluated. Haematoxylin-Eosin stainings were used to compare tissue quality depending on storage and perfusion mode. RESULTS: Intestinal motility is characterized by different repetitive motility patterns, depending on the actual situation of the gut. Different motility patterns could be recorded and characterized depending on the perfusion pressure and media used. We were able to describe at least three different repetitive patterns of intestinal motility in vitro. Patterns with an oral, anal and oro-anal propagation direction could be recorded. Each type of pattern finalized its movement with or without a subsequent distension of the wavefront. Motility patterns could clearly be distinguished in heatmap diagrams. Furthermore undirected motility could be observed. The quantity of the different patterns varies and is highly dependent on the perfusion medium used. Tissue preservation varies depending on the perfusion medium utilized, therefore media with a simple composition as Tyrode

  4. Cytokinesis failure in RhoA-deficient mouse erythroblasts involves actomyosin and midbody dysregulation and triggers p53 activation

    PubMed Central

    Konstantinidis, Diamantis G.; Giger, Katie M.; Risinger, Mary; Pushkaran, Suvarnamala; Zhou, Ping; Dexheimer, Phillip; Yerneni, Satwica; Andreassen, Paul; Klingmüller, Ursula; Palis, James; Zheng, Yi

    2015-01-01

    RhoA GTPase has been shown in vitro in cell lines and in vivo in nonmammalian organisms to regulate cell division, particularly during cytokinesis and abscission, when 2 daughter cells partition through coordinated actomyosin and microtubule machineries. To investigate the role of this GTPase in the rapidly proliferating mammalian erythroid lineage, we developed a mouse model with erythroid-specific deletion of RhoA. This model was proved embryonic lethal as a result of severe anemia by embryonic day 16.5 (E16.5). The primitive red blood cells were enlarged, poikilocytic, and frequently multinucleated, but were able to sustain life despite experiencing cytokinesis failure. In contrast, definitive erythropoiesis failed and the mice died by E16.5, with profound reduction of maturing erythroblast populations within the fetal liver. RhoA was required to activate myosin-regulatory light chain and localized at the site of the midbody formation in dividing wild-type erythroblasts. Cytokinesis failure caused by RhoA deficiency resulted in p53 activation and p21-transcriptional upregulation with associated cell-cycle arrest, increased DNA damage, and cell death. Our findings demonstrate the role of RhoA as a critical regulator for efficient erythroblast proliferation and the p53 pathway as a powerful quality control mechanism in erythropoiesis. PMID:26228485

  5. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism

    NASA Astrophysics Data System (ADS)

    Jung, Yong-Woon; Mascagni, Michael

    2014-09-01

    We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ring constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.

  6. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism

    SciTech Connect

    Jung, Yong-Woon; Mascagni, Michael

    2014-09-28

    We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ring constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.

  7. Striated Acto-Myosin Fibers Can Reorganize and Register in Response to Elastic Interactions with the Matrix

    PubMed Central

    Friedrich, Benjamin M.; Buxboim, Amnon; Discher, Dennis E.; Safran, Samuel A.

    2011-01-01

    The remarkable striation of muscle has fascinated many for centuries. In developing muscle cells, as well as in many adherent, nonmuscle cell types, striated, stress fiberlike structures with sarcomere-periodicity tend to register: Based on several studies, neighboring, parallel fibers at the basal membrane of cultured cells establish registry of their respective periodic sarcomeric architecture, but, to our knowledge, the mechanism has not yet been identified. Here, we propose for cells plated on an elastic substrate or adhered to a neighboring cell, that acto-myosin contractility in striated fibers close to the basal membrane induces substrate strain that gives rise to an elastic interaction between neighboring striated fibers, which in turn favors interfiber registry. Our physical theory predicts a dependence of interfiber registry on externally controllable elastic properties of the substrate. In developing muscle cells, registry of striated fibers (premyofibrils and nascent myofibrils) has been suggested as one major pathway of myofibrillogenesis, where it precedes the fusion of neighboring fibers. This suggests a mechanical basis for the optimal myofibrillogenesis on muscle-mimetic elastic substrates that was recently observed by several groups in cultures of mouse-, human-, and chick-derived muscle cells. PMID:21641316

  8. α-Spectrin and integrins act together to regulate actomyosin and columnarization, and to maintain a monolayered follicular epithelium

    PubMed Central

    Ng, Bing Fu; Selvaraj, Gokul Kannan; Santa-Cruz Mateos, Carmen; Grosheva, Inna; Alvarez-Garcia, Ines; Martín-Bermudo, María Dolores; Palacios, Isabel M.

    2016-01-01

    The spectrin cytoskeleton crosslinks actin to the membrane, and although it has been greatly studied in erythrocytes, much is unknown about its function in epithelia. We have studied the role of spectrins during epithelia morphogenesis using the Drosophila follicular epithelium (FE). As previously described, we show that α-Spectrin and β-Spectrin are essential to maintain a monolayered FE, but, contrary to previous work, spectrins are not required to control proliferation. Furthermore, spectrin mutant cells show differentiation and polarity defects only in the ectopic layers of stratified epithelia, similar to integrin mutants. Our results identify α-Spectrin and integrins as novel regulators of apical constriction-independent cell elongation, as α-Spectrin and integrin mutant cells fail to columnarize. Finally, we show that increasing and reducing the activity of the Rho1-Myosin II pathway enhances and decreases multilayering of α-Spectrin cells, respectively. Similarly, higher Myosin II activity enhances the integrin multilayering phenotype. This work identifies a primary role for α-Spectrin in controlling cell shape, perhaps by modulating actomyosin. In summary, we suggest that a functional spectrin-integrin complex is essential to balance adequate forces, in order to maintain a monolayered epithelium. PMID:26952981

  9. MOTILITY, AGGRESSION, AND THE BODILY I: AN INTERPRETATION OF WINNICOTT.

    PubMed

    Elkins, Jeremy

    2015-10-01

    Among the central ideas associated with the name of Winnicott, scant mention is made of motility. This is largely attributable to Winnicott himself, who never thematized motility and never wrote a paper specifically devoted to the topic. This paper suggests both that the idea of motility is nonetheless of central significance in Winnicott's thought, and that motility is of central importance in the development and constitution of the bodily I. In elaborating both these suggestions, the paper gives particular attention to the connections between motility, continuity, aggression, and creativity in Winnicott's work. PMID:26443951

  10. Particle-based simulations of self-motile suspensions

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2015-11-01

    A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.

  11. Thermodynamics of the motility-induced phase separation

    NASA Astrophysics Data System (ADS)

    Solon, Alexandre; Stenhammar, Joachim; Cates, Michael; Tailleur, Julien

    Self-propelled particles are known to accumulate in regions of space where their velocity is lowered. In addition, if their velocity diminishes when the local density increases (for example due to crowding effects), a positive feedback loop leads to the now well-established motility-induced phase separation (MIPS) between a dense immotile phase and a dilute motile phase. Understanding the phase equilibrium of MIPS is still a matter of debate. Although, depending on the models used to study the transition, a chemical potential or a pressure can be defined, these quantities do not play their usual thermodynamic role. In particular, the usual common tangent or equal-area constructions fail in these systems. Indeed, we will show that describing the phase equilibrium of MIPS necessitates generalized thermodynamics that include non-equilibrium contributions. This approach allows us to predict correctly the phase diagram of MIPS and to gain insight into the thermodynamics of active systems. It also sheds light on the (in)equivalence of statistical ensembles for these systems, paving the way for more efficient computational studies.

  12. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2012-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use a simply analytic model in conjuction with computational experiments to investigate intracellular fluid flow in a simple model of Physarum. Of particlar interest are stresses generated by cytoplasmic flow which may be used to aid in cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, flow waves, adhesion, and locomotive forces in an attempt to characterize conditions necessary to generate directed motion.

  13. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2011-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use both analytic and computational models to investigate intracellular fluid flow in a simple model of Physarum. In both models, of we are specifically interested in stresses generated by cytoplasmic flow which act in the direction of cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, low waves and locomotive forces, and attempt characterize conditions necessary to generate directed motion.

  14. Soft micromachines with programmable motility and morphology

    NASA Astrophysics Data System (ADS)

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J.; Pané, Salvador; Nelson, Bradley J.

    2016-07-01

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers.

  15. Soft micromachines with programmable motility and morphology.

    PubMed

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J; Pané, Salvador; Nelson, Bradley J

    2016-01-01

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers. PMID:27447088

  16. Electrical Signaling in Motile and Primary Cilia

    PubMed Central

    Kleene, Steven J.; Van Houten, Judith L.

    2014-01-01

    Cilia are highly conserved for their structure and also for their sensory functions. They serve as antennae for extracellular information. Whether the cilia are motile or not, they respond to environmental mechanical and chemical stimuli and send signals to the cell body. The information from extracellular stimuli is commonly converted to electrical signals through the repertoire of ion-conducting channels in the ciliary membrane, which results in changes in concentrations of ions, especially calcium ions, in the cilia. These changes, in turn, affect motility and the ability of the signaling pathways in the cilia and cell body to carry on the signal transduction. We review here the activities of ion channels in cilia in animals from protists to vertebrates. PMID:25892740

  17. Hydroxyapatite motility implants in ocular prosthetics.

    PubMed

    Cowper, T R

    1995-03-01

    For the past 5 years, an increasing number of ophthalmologists have been using hydroxyapatite (HA) motility implants after uncomplicated enucleation or evisceration of the eye. Unlike previous implant materials, HA promotes fibrovascular ingrowth and seemingly true integration of the motility implant to the residual ocular structures. As a result, a more stable defect and greater movement of the overlying prosthesis is produced. In addition, the problems of long-term orbital implant migration and the vexing postenucleation socket syndrome are thought to be minimized. This article briefly reviews the history and development of orbital implants and HA implant surgical and prosthetic procedures. It is concluded that HA implant rehabilitation is indicated after most uncomplicated enucleations or eviscerations where there is small likelihood of complication.

  18. [Gastrointestinal motility and possibilities of influencing it].

    PubMed

    Duris, I; Payer, J; Huorka, M; Randus, V; Ondrejka, P

    1994-06-01

    The authors discuss factors which influence the motility of the smooth muscles in the pancreatobiliary region. They investigated some clinical and laboratory parameters after administration of the selective antagonist of calcium influx-Pineverium bromide-Dicetel. The drug influenced significantly in a positive way nausea, flatulence, pain and chronically elevated amylases. The authors mention a cycle of possible neurohumoral changes with which specific calcium channel antagonists could interfere. PMID:8073641

  19. [Motility of human spermatozoa (author's transl)].

    PubMed

    David, G; Serres, C; Escalier, D

    1981-01-01

    Microcinematography has permitted the analysis of human sperm motility and the definition of various parameters which can be used to characterize such movements. The locomotor apparatus of the sperm flagellum consists of an axoneme to which has been added the dense fibers and the fibrous sheath. A dysfunction of flagellar locomotion may be caused by mutations resulting in various structural defects of which the most common affect the dynein arms.

  20. Hyaluronan stimulates pancreatic cancer cell motility

    PubMed Central

    Cheng, Xiao-Bo; Kohi, Shiro; Koga, Atsuhiro; Hirata, Keiji; Sato, Norihiro

    2016-01-01

    Hyaluronan (HA) accumulates in pancreatic ductal adenocarcinoma (PDAC), but functional significance of HA in the aggressive phenotype remains unknown. We used different models to investigate the effect of HA on PDAC cell motility by wound healing and transwell migration assay. Changes in cell motility were examined in 8 PDAC cell lines in response to inhibition of HA production by treatment with 4-methylumbelliferone (4-MU) and to promotion by treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or by co-culture with tumor-derived stromal fibroblasts. We also investigated changes in cell motility by adding exogenous HA. Additionally, mRNA expressions of hyaluronan synthases and hyaluronidases were examined using real time RT-PCR. Inhibition of HA by 4-MU significantly decreased the migration, whereas promotion of HA by TPA or co-culture with tumor-derived fibroblasts significantly increased the migration of PDAC cells. The changes in HA production by these treatments tended to be associated with changes in HAS3 mRNA expression. Furthermore, addition of exogenous HA, especially low-molecular-weight HA, significantly increased the migration of PDAC cells. These findings suggest that HA stimulates PDAC cell migration and thus represents an ideal therapeutic target to prevent invasion and metastasis. PMID:26684359

  1. Effect of total laryngectomy on esophageal motility

    SciTech Connect

    Hanks, J.B.; Fisher, S.R.; Meyers, W.C.; Christian, K.C.; Postlethwait, R.W.; Jones, R.S.

    1981-01-01

    Total laryngectomy for cancer can result in dysphagia and altered esophageal motility. Manometric changes in the upper esophageal sphincter (UES), and in proximal and distal esophageal function have been reported. However, most studies have failed to take into account radiation therapy and appropriate controls. We selected ten male patients (54.3 +/- 1.9 yr) for longitudinal manometric evaluation prior to laryngectomy then at two weeks and again six months later. No patient received preoperative radiation therapy, had a previous history of esophageal surgery, or developed a postoperative wound infection or fistula. Seven of ten patients had positive nodes and received 6,000-6,600 rads postoperative radiation therapy. Preoperatively 4 of 10 patients complained of dysphagia which did not significantly change following surgery and radiation. Two of three patients who did not complain of dysphagia preoperatively and received radiation postoperatively developed dysphagia. No patient without dysphagia preoperatively who received no radiation therapy developed symptoms. Our studies show that laryngectomy causes alterations in the UES resting and peak pressures but not in the proximal or distal esophagus, or the lower esophageal sphincter. These data also imply radiation therapy may be associated with progressive alterations in motility and symptomatology. Further study regarding the effects of radiation on esophageal motility and function are urged.

  2. Swimming Motility Reduces Deposition to Silica Surfaces

    SciTech Connect

    Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng; Hu, Dehong; Kamai, Tamir; Ginn, Timothy R.; Zilles, Julie L.; Nguyen, Thanh H.

    2015-01-01

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 μm/s, DJ77 showed impaired swimming averaged at 8.7 μm/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation point flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 μm from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.

  3. The functional expression and motile properties of recombinant outer arm dynein from Tetrahymena.

    PubMed

    Edamatsu, Masaki

    2014-05-16

    Cilia and flagella are motile organelles that play various roles in eukaryotic cells. Ciliary movement is driven by axonemal dyneins (outer arm and inner arm dyneins) that bind to peripheral microtubule doublets. Elucidating the molecular mechanism of ciliary movement requires the genetic engineering of axonemal dyneins; however, no expression system for axonemal dyneins has been previously established. This study is the first to purify recombinant axonemal dynein with motile activity. In the ciliated protozoan Tetrahymena, recombinant outer arm dynein purified from ciliary extract was able to slide microtubules in a gliding assay. Furthermore, the recombinant dynein moved processively along microtubules in a single-molecule motility assay. This expression system will be useful for investigating the unique properties of diverse axonemal dyneins and will enable future molecular studies on ciliary movement.

  4. Targeting ion channels for the treatment of gastrointestinal motility disorders

    PubMed Central

    Beyder, Arthur

    2012-01-01

    Gastrointestinal (GI) functional and motility disorders are highly prevalent and responsible for long-term morbidity and sometimes mortality in the affected patients. It is estimated that one in three persons has a GI functional or motility disorder. However, diagnosis and treatment of these widespread conditions remains challenging. This partly stems from the multisystem pathophysiology, including processing abnormalities in the central and peripheral (enteric) nervous systems and motor dysfunction in the GI wall. Interstitial cells of Cajal (ICCs) are central to the generation and propagation of the cyclical electrical activity and smooth muscle cells (SMCs) are responsible for electromechanical coupling. In these and other excitable cells voltage-sensitive ion channels (VSICs) are the main molecular units that generate and regulate electrical activity. Thus, VSICs are potential targets for intervention in GI motility disorders. Research in this area has flourished with advances in the experimental methods in molecular and structural biology and electrophysiology. However, our understanding of the molecular mechanisms responsible for the complex and variable electrical behavior of ICCs and SMCs remains incomplete. In this review, we focus on the slow waves and action potentials in ICCs and SMCs. We describe the constituent VSICs, which include voltage-gated sodium (NaV), calcium (CaV), potassium (KV, KCa), chloride (Cl–) and nonselective ion channels (transient receptor potentials [TRPs]). VSICs have significant structural homology and common functional mechanisms. We outline the approaches and limitations and provide examples of targeting VSICs at the pores, voltage sensors and alternatively spliced sites. Rational drug design can come from an integrated view of the structure and mechanisms of gating and activation by voltage or mechanical stress. PMID:22282704

  5. Polar Pattern Formation in Driven Filament Systems Require Non-Binary Particle Collisions

    PubMed Central

    Suzuki, Ryo; Weber, Christoph A.; Frey, Erwin; Bausch, Andreas R.

    2016-01-01

    Living matter has the extraordinary ability to behave in a concerted manner, which is exemplified throughout nature ranging from the self-organisation of the cytoskeleton to flocks of animals [1–4]. The microscopic dynamics of constituents have been linked to the system’s meso- or macroscopic behaviour in silico via the Boltzmann equation for propelled particles [5–10]. Thereby, simplified binary collision rules between the constituents had to be assumed due to the lack of experimental data. We report here experimentally determined binary collision statistics by studying the recently introduced molecular system, the high density actomyosin motility assay [11–13]. We demonstrate that the alignment effect of the binary collision statistics is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, which indicates that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. The presented findings demonstrate that the unique properties of biological active matter systems require a description that goes well beyond a gas-like picture developed in the framework of kinetic theories.

  6. Polar Pattern Formation in Driven Filament Systems Require Non-Binary Particle Collisions

    PubMed Central

    Suzuki, Ryo; Weber, Christoph A.; Frey, Erwin; Bausch, Andreas R.

    2016-01-01

    Living matter has the extraordinary ability to behave in a concerted manner, which is exemplified throughout nature ranging from the self-organisation of the cytoskeleton to flocks of animals [1–4]. The microscopic dynamics of constituents have been linked to the system’s meso- or macroscopic behaviour in silico via the Boltzmann equation for propelled particles [5–10]. Thereby, simplified binary collision rules between the constituents had to be assumed due to the lack of experimental data. We report here experimentally determined binary collision statistics by studying the recently introduced molecular system, the high density actomyosin motility assay [11–13]. We demonstrate that the alignment effect of the binary collision statistics is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, which indicates that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. The presented findings demonstrate that the unique properties of biological active matter systems require a description that goes well beyond a gas-like picture developed in the framework of kinetic theories. PMID:27656244

  7. Polar pattern formation in driven filament systems requires non-binary particle collisions

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Weber, Christoph A.; Frey, Erwin; Bausch, Andreas R.

    2015-10-01

    From the self-organization of the cytoskeleton to the synchronous motion of bird flocks, living matter has the extraordinary ability to behave in a concerted manner. The Boltzmann equation for self-propelled particles is frequently used in silico to link a system’s meso- or macroscopic behaviour to the microscopic dynamics of its constituents. But so far such studies have relied on an assumption of simplified binary collisions owing to a lack of experimental data suggesting otherwise. We report here experimentally determined binary-collision statistics by studying a recently introduced molecular system, the high-density actomyosin motility assay. We demonstrate that the alignment induced by binary collisions is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, indicating that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. Our findings demonstrate that the unique properties of biological active-matter systems require a description that goes well beyond that developed in the framework of kinetic theories.

  8. [Motility disorders of the small intestine in functional intestinal disorders].

    PubMed

    Wingate, D

    1989-02-15

    Functional digestive disorders have their origin in disturbances of the digestive motility control. This control ensured primarily by the "gut brain", which is able to integrate sensitive information from mucosal receptors and to organize an appropriate motor response from a choice of predetermined "programs". The gut brain is in close relationship with the central nervous system (CNS) which collects in fact most of the information and modulates the sensitive integration and the motor response of the enteric nervous system (ENS). Thus, a perturbation of the CNS, such as stress, may induce a dysfunctioning of the ENS, resulting in motor disturbances and finally functional digestive disorders. In a first study involving fasting healthy volunteers, we showed that stress produces a significant reduction of the intestinal migrating motor complexes (MMC). In a second study, patients with irritable bowel syndrome (IBS) were subjected to stress and compared to patients with inflammatory bowel disease and to healthy controls. All subjects exhibited a decrease of MMC; however, total depletion was observed in numerous IBS patients, together with a characteristic irregular motor activity which was associated with symptoms. Finally, 24-hour recordings of the intestinal motility in these patients showed an entirely normal pattern during sleep and when abnormalities just awakening in association with symptoms. Stress-induced perturbation of the CNS in IBS patients seems to provoke an inappropriate modulation of the motor activity programmed by the ENS, resulting in motor disturbances and finally in the symptoms of the disease. PMID:2522225

  9. Mannose-Binding Lectin Inhibits the Motility of Pathogenic Salmonella by Affecting the Driving Forces of Motility and the Chemotactic Response

    PubMed Central

    Nakamura, Shuichi; Islam, Md. Shafiqul; Guo, Yijie; Ihara, Kohei; Tomioka, Rintaro; Masuda, Mizuki; Yoneyama, Hiroshi; Isogai, Emiko

    2016-01-01

    Mannose-binding lectin (MBL) is a key pattern recognition molecule in the lectin pathway of the complement system, an important component of innate immunity. MBL functions as an opsonin which enhances the sequential immune process such as phagocytosis. We here report an inhibitory effect of MBL on the motility of pathogenic bacteria, which occurs by affecting the energy source required for motility and the signaling pathway of chemotaxis. When Salmonella cells were treated with a physiological concentration of MBL, their motile fraction and free-swimming speed decreased. Rotation assays of a single flagellum showed that the flagellar rotation rate was significantly reduced by the addition of MBL. Measurements of the intracellular pH and membrane potential revealed that MBL affected a driving force for the Salmonella flagellum, the electrochemical potential difference of protons. We also found that MBL treatment increased the reversal frequency of Salmonella flagellar rotation, which interfered with the relative positive chemotaxis toward an attractive substrate. We thus propose that the motility inhibition effect of MBL may be secondarily involved in the attack against pathogens, potentially facilitating the primary role of MBL in the complement system. PMID:27104738

  10. Spreading and spontaneous motility of multicellular aggregates on soft substrates

    NASA Astrophysics Data System (ADS)

    Brochard-Wyart, Françoise

    2013-03-01

    We first describe the biomechanics of multicellular aggregates, a model system for tissues and tumors. We first characterize the tissue mechanical properties (surface tension, elasticity, viscosity) by a new pipette aspiration technique. The aggregate exhibits a viscoelastic response but, unlike an inert fluid, we observe aggregate reinforcement with pressure, which for a narrow range of pressures results in pulsed contractions or shivering. We interpret this reinforcement as a mechanosensitive active response of the acto-myosin cortex. Such an active behavior has previously been found to cause tissue pulsation during dorsal closure of Drosophila embryo. We then describe the spreading of aggregates on rigid glass substrates, varying both intercellular and substrate adhesion. We find both partial and complete wetting regimes. For the dynamics, we find a universal spreading law at short time, analogous to that of a viscoelastic drop. At long time, we observe, for strong substrate adhesion, a precursor film spreading around the aggregate. Depending on aggregate cohesion, this precursor film can be a dense cellular monolayer (liquid state) or consist of individual cells escaping from the aggregate body (gas state). The transition from liquid to gas state appears also to be present in the progression of a tumor from noninvasive to metastatic, known as the epithelial-mesenchymal transition. Finally, we describe the effect of the substrate rigidity on the phase diagram of wetting. On soft gels decorated with fibronectin and strongly cohesive aggregates, we have observed a wetting transition induced by the substrate rigidity: on ultra soft gels, below an elastic modulus Ec the aggregates do not spread, whereas above Ec we observe a precursor film expending with a diffusive law. The diffusion coefficient D(E) present a maximum for E =Em. A maximum of mobility versus the substrate rigidity had also been observed for single cells. Near Em, we observe a new phenomenon: a cell

  11. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility.

    PubMed

    McMenamin, Caitlin A; Travagli, R Alberto; Browning, Kirsteen N

    2016-06-01

    The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions. PMID:27302177

  12. Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids.

    PubMed

    Nickzad, Arvin; Lépine, François; Déziel, Eric

    2015-01-01

    Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour. PMID:26047513

  13. Computer-Aided Sperm Analysis (CASA) of sperm motility and hyperactivation.

    PubMed

    Mortimer, David; Mortimer, Sharon T

    2013-01-01

    Progressive motility is a vital functional characteristic of ejaculated human spermatozoa that governs their ability to penetrate into, and migrate through, both cervical mucus and the oocyte vestments, and ultimately fertilize the oocyte. A detailed protocol, based on the most common computer-aided sperm analysis (CASA) system with phase contrast microscope optics, is provided for performing reliable assessments of sperm movement pattern characteristics ("kinematics") in semen. The protocol can also be used with washed sperm suspensions where, in addition, the percentages of motile and progressively motile spermatozoa can also be derived. Using CASA technology it is also possible to identify biologically, and hence clinically, important subpopulations of spermatozoa (e.g., those in semen with good mucus-penetrating characteristics, or those showing hyperactivation when incubated under capacitating conditions) by applying multi-parametric definitions on a cell-by-cell basis.

  14. Purified Kinesin Promotes Vesicle Motility and Induces Active Sliding Between Microtubules In vitro

    NASA Astrophysics Data System (ADS)

    Urrutia, Raul; McNiven, Mark A.; Albanesi, Joseph P.; Murphy, Douglas B.; Kachar, Bechara

    1991-08-01

    We examined the ability of kinesin to support the movement of adrenal medullary chromaffin granules on microtubules in a defined in vitro system. We found that kinesin and ATP are all that is required to support efficient (33% vesicle motility) and rapid (0.4-0.6 μ m/s) translocation of secretory granule membranes on microtubules in the presence of a low-salt motility buffer. Kinesin also induced the formation of microtubule asters in this buffer, with the plus ends of microtubules located at the center of each aster. This observation indicates that kinesin is capable of promoting active sliding between microtubules toward their respective plus ends, a movement analogous to that of anaphase b in the mitotic spindle. The fact that vesicle translocation, microtubule sliding, and microtubule-dependent kinesin ATPase activities are all enhanced in low-salt buffer establishes a functional parallel between this translocator and other motility ATPases, myosin, and dynein.

  15. [Inhibition of menstrual uterine motility with four beta-adrenergic drugs (author's transl)].

    PubMed

    Cifuentes, R; Cobo, E

    1981-01-01

    Effects of the sublingual administration of four beta-adrenoceptor drugs on the uterine motility in 40 normal menstruating women were studied. The drugs and total doses tested were: orciprenaline (40 mg), Partusisten (10 mg), salbutamol (8 mg) and isoxsuprine (40 mg). The uterine and antidiuretic activities were studied before and after administration of each one. All those drugs employed reduced greatly the uterine contractions in all the patients. The cardiovascular side-effects were minimal and well tolerated. It suggested that the adrenergic system has an important role in the control of uterine motility during human menstruation.

  16. Modelling cell motility and chemotaxis with evolving surface finite elements

    PubMed Central

    Elliott, Charles M.; Stinner, Björn; Venkataraman, Chandrasekhar

    2012-01-01

    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction–diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html. PMID:22675164

  17. Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise

    PubMed Central

    Wakabayashi, Ken-ichi; King, Stephen M.

    2006-01-01

    Redox-based regulatory systems are essential for many cellular activities. Chlamydomonas reinhardtii exhibits alterations in motile behavior in response to different light conditions (photokinesis). We hypothesized that photokinesis is signaled by variations in cytoplasmic redox poise resulting from changes in chloroplast activity. We found that this effect requires photosystem I, which generates reduced NADPH. We also observed that photokinetic changes in beat frequency and duration of the photophobic response could be obtained by altering oxidative/reductive stress. Analysis of reactivated cell models revealed that this redox poise effect is mediated through the outer dynein arms (ODAs). Although the global redox state of the thioredoxin-related ODA light chains LC3 and LC5 and the redox-sensitive Ca2+-binding subunit of the docking complex DC3 did not change upon light/dark transitions, we did observe significant alterations in their interactions with other flagellar components via mixed disulfides. These data indicate that redox poise directly affects ODAs and suggest that it may act in the control of flagellar motility. PMID:16754958

  18. Symmetry breaking in actin gels - Implications for cellular motility

    NASA Astrophysics Data System (ADS)

    John, Karin; Peyla, Philippe; Misbah, Chaouqi

    2007-03-01

    The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.

  19. Patterns of periodic holes created by increased cell motility

    PubMed Central

    Chen, Ting-Hsuan; Guo, Chunyan; Zhao, Xin; Yao, Yucheng; Boström, Kristina I.; Wong, Margaret N.; Tintut, Yin; Demer, Linda L.; Ho, Chih-Ming; Garfinkel, Alan

    2012-01-01

    The reaction and diffusion of morphogens is a mechanism widely used to explain many spatial patterns in physics, chemistry and developmental biology. However, because experimental control is limited in most biological systems, it is often unclear what mechanisms account for the biological patterns that arise. Here, we study a biological model of cultured vascular mesenchymal cells (VMCs), which normally self-organize into aggregates that form into labyrinthine configurations. We use an experimental control and a mathematical model that includes reacting and diffusing morphogens and a third variable reflecting local cell density. With direct measurements showing that cell motility was increased ninefold and threefold by inhibiting either Rho kinase or non-muscle myosin-II, respectively, our experimental results and mathematical modelling demonstrate that increased motility alters the multicellular pattern of the VMC cultures, from labyrinthine to a pattern of periodic holes. These results suggest implications for the tissue engineering of functional replacements for trabecular or spongy tissue such as endocardium and bone. PMID:22649581

  20. Nerve growth factor promotes human sperm motility in vitro by increasing the movement distance and the number of A grade spermatozoa.

    PubMed

    Lin, Kai; Ding, Xue-Feng; Shi, Cui-Ge; Zeng, Dan; QuZong, SuoLang; Liu, Shu-Hong; Wu, Yan; LuoBu, GeSang; Fan, Ming; Zhao, Y-Q

    2015-11-01

    Nerve growth factor (NGF) was first found in the central nervous system and is now well known for its multiple pivotal roles in the nervous system and immune system. However, more and more evidences showed that NGF and its receptors TrkA and p75 were also found in the head and tail of spermatozoa, which indicate the possible effect of NGF on the sperm motility. Nevertheless, the exact role of NGF in the human sperm motility remains unclear until now. In this study, we investigated the effect of NGF on human sperm motility, and the results showed that NGF could promote human sperm motility in vitro by increasing the movement distance and the number of A grade spermatozoa. Further analysis demonstrated that NGF promoted the sperm motility in a dose-dependent manner in vitro. These results may facilitate the further studies on human fertility and assisted reproduction techniques.

  1. Automated analysis of rabbit sperm motility and the effect of chemicals on sperm motion parameters.

    PubMed

    Young, R J; Bodt, B A; Iturralde, T G; Starke, W C

    1992-11-01

    Appropriate software settings and optimum procedures were determined for the measurement of the motion parameters of rabbit spermatozoa by the CellSoft (Cryo Resources Ltd., Montgomery, NY) computer-assisted digital image analysis system. The system was used to follow motion parameter changes occurring in spermatozoa incubated for 6 hr with or without exposure to chemicals. Mean amplitude of lateral head displacement (AALH) increased over the 6 hr period, while curvilinear velocity (Vc) first increased and then decreased. Values for linearity (Lin), or beat cross frequency (BCF), were unchanged. The majority of spermatozoa progressed linearly, with rapid rotation of the sperm head, but subpopulations of spermatozoa with different swimming patterns appeared after 1-3 hr of incubation. Percentage motile sperm and Vc were most sensitive to the action of the compounds (pyrogallol, hydroquinone, ammonium oxalate, triethyl phosphite, and pinocolyl alcohol), while BCF was least affected. The decline in percentage of motile sperm was dependent on duration of exposure and chemical concentration. Mean Vc of the sperm population decreased rapidly upon chemical exposure and remained at a low value until motility ceased. The initial decrease in Vc was dependent on the concentration of the added compound. Motion-based indices--motility concentration (MCI50), motility time (MTI50), and velocity (VI)--were defined and used as toxicological endpoints. The rank order of these indices, the end point of the neutral red in vitro assay for cytotoxicity, and LD50 values for the five compounds were the same, suggesting that chemical inhibition of sperm motility may be useful as a method for the in vitro assessment of chemical cytotoxicity.

  2. Dynamic Clustering in Suspension of Motile Bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Hepeng; Chen, Xiao; Yang, Xiang; Yang, Mingcheng

    2015-03-01

    Bacteria suspension exhibits a wide range of collective phenomena arising from interactions between individual cells. Here we investigate dynamic clusters of motile bacteria near an air-liquid interface. Cell in a cluster orient its flagella perpendicular to the interface and generate attractive radial fluid flow that leads to cluster formation. Rotating cell also creates tangential forces on neighbors that sets clusters into counter-clockwise rotation. We construct a numerical model of self-propelled particles that interact via pair-wise forces extracted from hydrodynamic calculations; such a model reproduces many properties of observed cluster dynamics.

  3. [Effects of cell-binding protein A of Staphylococcus aureus on the level of intracellular calcium ions and actomyosin ATP-ase activity in the smooth muscles].

    PubMed

    Melenevs'ka, N V; Miroshnychenko, M S; Filippov, I B; Artemenko, O Iu; Shuba, M F

    2006-01-01

    Immune-active substance of Staphylococcus aureus, cell-bound protein A (CBPA), enhances the acetylcholine- or hyperpotassium (K+) Krebs solution-evoked excitation in Taenia coli smooth muscles. CBPA increases caffeine- and carbachole-evoked Ca2+ signals in smooth muscle cells suspension, loaded with indo-1, and also caffeine- and acetylcholine-evoked contraction in smooth muscles slices. Against a background of CBPA-suppressed action of sodium nitroprusside, ATP evokes the membrane depolarization. CBPA in small concentrations potentiates ATPase (Mg2+,Ca2+-; Mg2+- and Mg2+- in the presence of EGTA) activity of actomyosin in the smooth muscles.

  4. Flagellar motility confers epiphytic fitness advantages upon Pseudomonas syringae

    SciTech Connect

    Haefele, D.M.; Lindow, S.E.

    1987-10-01

    The role of flagellar motility in determining the epiphytic fitness of an ice-nucleation-active strain of Pseudomonas syringae was examined. The loss of flagellar motility reduced the epiphytic fitness of a normally motile P. syringae strain as measured by its growth, survival, and competitive ability on bean leaf surfaces. Equal population sizes of motile parental or nonmotile mutant P. syringae strains were maintained on bean plants for at least 5 days following the inoculation of fully expanded primary leaves. However, when bean seedlings were inoculated before the primary leaves had expanded and bacterial populations on these leaves were quantified at full expansion, the population size of the nonmotile derivative strain reached only 0.9% that of either the motile parental or revertant strain. When fully expanded bean primary leaves were coinoculated with equal numbers of motile and nonmotile cells, the population size of a nonmotile derivative strain was one-third of that of the motile parental or revertant strain after 8 days. Motile and nonmotile cells were exposed in vitro and on plants to UV radiation and desiccating conditions. The motile and nonmotile strains exhibited equal resistance to both stresses in vitro. However, the population size of a nonmotile strain on leaves was less than 20% that of a motile revertant strain when sampled immediately after UV irradiation. Epiphytic populations of both motile and nonmotile P. syringae declined under desiccating conditions on plants, and after 8 days, the population size of a nonmotile strain was less than one-third that of the motile parental or revertant strain.

  5. The effect of vaginal lubricants on sperm motility in vitro.

    PubMed

    Goldenberg, R L; White, R

    1975-09-01

    Apart from the documentation of the spermicidal effects of KY Jelly and Surgilube, little information about the effect of vaginal lubricants on sperm motility has been available. Fifteen substances utilizable as vaginal lubricants were therefore tested for their effect on sperm motility in vitro. Petroleum jelly and glycerin had minimal detrimental effects on motility and apparently are the lubricants of choice when an infertility problem exists.

  6. Flagellar Motility Confers Epiphytic Fitness Advantages upon Pseudomonas syringae

    PubMed Central

    Haefele, Douglas M.; Lindow, Steven E.

    1987-01-01

    The role of flagellar motility in determining the epiphytic fitness of an ice-nucleation-active strain of Pseudomonas syringae was examined. The loss of flagellar motility reduced the epiphytic fitness of a normally motile P. syringae strain as measured by its growth, survival, and competitive ability on bean leaf surfaces. Equal population sizes of motile parental or nonmotile mutant P. syringae strains were maintained on bean plants for at least 5 days following the inoculation of fully expanded primary leaves. However, when bean seedlings were inoculated before the primary leaves had expanded and bacterial populations on these leaves were quantified at full expansion, the population size of the nonmotile derivative strain reached only 0.9% that of either the motile parental or revertant strain. When fully expanded bean primary leaves were coinoculated with equal numbers of motile and nonmotile cells, the population size of a nonmotile derivative strain was one-third of that of the motile parental or revertant strain after 8 days. Motile and nonmotile cells were exposed in vitro and on plants to UV radiation and desiccating conditions. The motile and nonmotile strains exhibited equal resistance to both stresses in vitro. However, the population size of a nonmotile strain on leaves was less than 20% that of a motile revertant strain when sampled immediately after UV irradiation. Epiphytic populations of both motile and nonmotile P. syringae declined under desiccating conditions on plants, and after 8 days, the population size of a nonmotile strain was less than one-third that of the motile parental or revertant strain. PMID:16347469

  7. MONTHLY VARIATION IN SPERM MOTILITY IN COMMON CARP ASSESSED USING COMPUTER-ASSISTED SPERM ANALYSIS (CASA)

    EPA Science Inventory

    Sperm motility variables from the milt of the common carp Cyprinus carpio were assessed using a computer-assisted sperm analysis (CASA) system across several months (March-August 1992) known to encompass the natural spawning period. Two-year-old pond-raised males obtained each mo...

  8. Complete ON/OFF photoswitching of the motility of a nanobiomolecular machine.

    PubMed

    Kumar, K R Sunil; Kamei, Takashi; Fukaminato, Tuyoshi; Tamaoki, Nobuyuki

    2014-05-27

    To apply motor proteins as natural nanomolecular machines to transporting systems in nanotechnology, complete temporal control over ON/OFF switching of the motility is necessary. We have studied the photoresponsive inhibition properties of azobenzene-tethered peptides for regulation of kinesin-microtubule motility. Although a compound containing a peptide having an amino acid sequence derived from the kinesin's C-terminus (a known inhibitor of kinesin's motor domain) and also featuring a terminal azobenzene unit exhibited an inhibition effect, the phototunability of this behavior upon irradiation with UV or visible light was only moderate. Unexpectedly, newly synthesized peptides featuring the reverse sequence of amino acids of the C-terminus of kinesin exhibited excellent photoresponsive inhibition. In particular, azobenzene-CONH-IPKAIQASHGR completely stopped and started the motility of kinesin-microtubules in its trans- and cis-rich states, respectively, obtained after irradiation with visible and UV light, respectively. A gliding motility system containing this photoresponsive inhibitor allowed in situ control of the motion of microtubules on a kinesin-coated glass substrate. It is expected that the present results on the photoresponsive nanomotor system open up new opportunities to design nanotransportation systems.

  9. A genome-wide RNAi screen for microtubule bundle formation and lysosome motility regulation in Drosophila S2 cells

    PubMed Central

    Jolly, Amber L.; Luan, Chi-Hao; Dusel, Brendon E.; Dunne, Sara Fernandez; Winding, Michael; Dixit, Vishrut J.; Robins, Chloe; Saluk, Jennifer L.; Logan, David J.; Carpenter, Anne E.; Sharma, Manu; Dean, Deborah; Cohen, Andrew R.; Gelfand, Vladimir I.

    2016-01-01

    Summary Long-distance intracellular transport of organelles, mRNA, and proteins (“cargo”) occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins; the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naïve Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes, and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels and signaling proteins having a role in lysosome motility regulation, and find an unexpected relationship between the dynein motor, Rab7a and lysosome motility regulation. PMID:26774481

  10. Hydrogel Walkers with Electro-Driven Motility for Cargo Transport

    PubMed Central

    Yang, Chao; Wang, Wei; Yao, Chen; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin

    2015-01-01

    In this study, soft hydrogel walkers with electro-driven motility for cargo transport have been developed via a facile mould-assisted strategy. The hydrogel walkers consisting of polyanionic poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) exhibit an arc looper-like shape with two “legs” for walking. The hydrogel walkers can reversibly bend and stretch via repeated “on/off” electro-triggers in electrolyte solution. Based on such bending/stretching behaviors, the hydrogel walkers can move their two “legs” to achieve one-directional walking motion on a rough surface via repeated “on/off” electro-triggering cycles. Moreover, the hydrogel walkers loaded with very heavy cargo also exhibit excellent walking motion for cargo transport. Such hydrogel systems create new opportunities for developing electro-controlled soft systems with simple design/fabrication strategies in the soft robotic field for remote manipulation and transportation. PMID:26314786

  11. LBP based detection of intestinal motility in WCE images

    NASA Astrophysics Data System (ADS)

    Gallo, Giovanni; Granata, Eliana

    2011-03-01

    In this research study, a system to support medical analysis of intestinal contractions by processing WCE images is presented. Small intestine contractions are among the motility patterns which reveal many gastrointestinal disorders, such as functional dyspepsia, paralytic ileus, irritable bowel syndrome, bacterial overgrowth. The images have been obtained using the Wireless Capsule Endoscopy (WCE) technique, a patented, video colorimaging disposable capsule. Manual annotation of contractions is an elaborating task, since the recording device of the capsule stores about 50,000 images and contractions might represent only the 1% of the whole video. In this paper we propose the use of Local Binary Pattern (LBP) combined with the powerful textons statistics to find the frames of the video related to contractions. We achieve a sensitivity of about 80% and a specificity of about 99%. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.

  12. Hydrogel Walkers with Electro-Driven Motility for Cargo Transport

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wang, Wei; Yao, Chen; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin

    2015-08-01

    In this study, soft hydrogel walkers with electro-driven motility for cargo transport have been developed via a facile mould-assisted strategy. The hydrogel walkers consisting of polyanionic poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) exhibit an arc looper-like shape with two “legs” for walking. The hydrogel walkers can reversibly bend and stretch via repeated “on/off” electro-triggers in electrolyte solution. Based on such bending/stretching behaviors, the hydrogel walkers can move their two “legs” to achieve one-directional walking motion on a rough surface via repeated “on/off” electro-triggering cycles. Moreover, the hydrogel walkers loaded with very heavy cargo also exhibit excellent walking motion for cargo transport. Such hydrogel systems create new opportunities for developing electro-controlled soft systems with simple design/fabrication strategies in the soft robotic field for remote manipulation and transportation.

  13. Chemokinetic motility responses of the cyanobacterium oscillatoria terebriformis

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Castenholz, Richard W.

    1989-01-01

    Oscillatoria terebriformis, a gliding, filamentous, thermophilic cyanobacterium, exhibited an inhibition of gliding motility upon exposure to fructose. The observed response was transient, and the duration of nonmotility was directly proportional to the concentration of fructose. Upon resumption of motility, the rate of motility was also inversely proportional to the concentration of fructose. Sulfide caused a similar response. The effect of sulfide was specific and not due to either anoxia or negative redox potential. Exposure to glucose, acetate, lactate, or mat interstitial water did not elicit any motility response.

  14. Motility Evaluation in the Patient with Inflammatory Bowel Disease.

    PubMed

    Abdalla, Sherine M; Kalra, Gorav; Moshiree, Baha

    2016-10-01

    Patients with inflammatory bowel disease (IBD) suffer frequently from functional bowel diseases (FBD) and motility disorders. Management of FBD and motility disorders in IBD combined with continued treatment of a patient's IBD symptoms will likely lead to better clinical outcomes and improve the patient's quality of life. The goals of this review were to summarize the most recent literature on motility disturbances in patients with IBD and to give a brief overview of the ranges of motility disturbances, from reflux disease to anorectal disorders, and discuss their diagnosis and specific management. PMID:27633599

  15. Motility Evaluation in the Patient with Inflammatory Bowel Disease.

    PubMed

    Abdalla, Sherine M; Kalra, Gorav; Moshiree, Baha

    2016-10-01

    Patients with inflammatory bowel disease (IBD) suffer frequently from functional bowel diseases (FBD) and motility disorders. Management of FBD and motility disorders in IBD combined with continued treatment of a patient's IBD symptoms will likely lead to better clinical outcomes and improve the patient's quality of life. The goals of this review were to summarize the most recent literature on motility disturbances in patients with IBD and to give a brief overview of the ranges of motility disturbances, from reflux disease to anorectal disorders, and discuss their diagnosis and specific management.

  16. Assay of sperm motility to study the effects of metal ions

    SciTech Connect

    Timourian, H.; Watchmaker, G.

    1984-01-01

    A method for quantitating sperm motility is applied here to study the effects of metal ions on animal cells. The quantitative technique is based on orienting sperm by subjecting them to flow and then measuring their capacity for returning to randomness when the orienting force is discontinued. The optical anisotropy of sperm permits determination of orientation with a spectrophotometer equipped with a flow cell. A wide range of concentrations of zinc, copper, and nickel ions were tested to determine their effects on the motility of sea-urchin sperm. Sea urchins are a ready and convenient source of sperm. Since energy production in sperm depends on their limited supply of endogenous substrate, this test system gives us a simple screening procedure for comparing the effects of various agents on the cell's capacity for utilizing energy. Nickel at concentrations higher than 10..pi../sup 5/M had an initial depressing effect on motility; however, this effect was eventually overcome, and in some cases overcompensation resulted in an increase motility. Zinc had either an enhancing or a depressing effect, depending not only on its concentration but on the time of exposure. At 10/sup -5/M it enhanced motility if present at the time the sperm were first shed in seawater, the time of high respiration. At 10..pi../sup 4/M it depressed motility only if present during the period of decreasing respiration, 1 to 2 hr after being shed into seawater. Copper depressed activity at 10..pi../sup 4/M to 10..pi../sup 6/M at all times tested.

  17. Small intestine motility development in newborn mammals.

    PubMed

    Woliński, Jarosław; Słupecka-Ziemilska, Monika; Boryczka, Maria; Grzesiak, Paulina; Kwiatkowski, Jakub; Kotarba, Grzegorz

    2016-01-01

    Since the beginning of the 20th century, researchers have been working to improve the understanding of gastrointestinal motility. The first major discovery was the observation of a migrating myoelectric complex that turned out to be a universal occurrence among vertebrates. Further inquires resulted in a detailed description of its development during different stages of ontogeny. Some time before that, a cornerstone had been laid for a breakthrough that would come years later. That cornerstone came in the form of interstitial cells of Cajal whose true role could not be discerned until the discovery of a CD117 receptor - their main marker. With the ability to precisely mark interstitial cells of Cajal, a wave of subsequent new experiments and observations connected them to the occurrence of slow waves and allowed an understanding of the mechanism responsible for their generation. Some of these findings suggested that Cajal cells might have a role in the development of several motility disorders thus opening an avenue of research that requires the usage of both traditional and advanced diagnostic methods. PMID:27416626

  18. Intensification of ciliary motility by extracellular ATP.

    PubMed

    Ovadyahu, D; Eshel, D; Priel, Z

    1988-01-01

    Ciliary metachronism and motility were examined optically in tissue cultures from frog palate epithelium as a function of extracellular ATP concentration in the range of 10(-7)-10(-3) M. The main findings were: a) upon addition of ATP the metachronal wavelength increased by a factor of up to 2. b) the velocity of the metachronal wave increased by a factor of up to 5. c) the frequency of ciliary beating increased by a factor of up to 2-3, the increase being temperature insensitive in the range of 15 degrees C-25 degrees C. d) the area under the 1-second FFT spectrum decreased by a factor of up to 2.5. e) the energy of the metachronal wave is increased by a factor of up to 9.5. f) all the spectrum parameters are subject to influence by ATP, as also by ADP and AMP. However, there are pronounced differences in the various responses to them. Based on these findings, physical aspects of the rate increase of particle transport caused by addition of extracellular ATP are explained. A plausible overall chemical mechanism causing pronounced changes in ciliary motility is discussed.

  19. Bacterial Motility Reveals Unknown Molecular Organization.

    PubMed

    Duchesne, Ismaël; Rainville, Simon; Galstian, Tigran

    2015-11-17

    The water solubility of lyotropic liquid crystals (LCs) makes them very attractive to study the behavior of biological microorganisms in an environment where local symmetry is broken (as often encountered in nature). Several recent studies have shown a dramatic change in the behavior of flagellated bacteria when swimming in solutions of the lyotropic LC disodium cromoglycate (DSCG). In this study, the movements of Escherichia coli bacteria in DSCG-water solutions of different concentrations are observed to improve our understanding of this phenomenon. In addition, the viscosity of DSCG aqueous solutions is measured as a function of concentration at room temperature. We also experimentally identify a previously undescribed isotropic pretransition zone where bacteria start sticking to each other and to surfaces. Simple estimations show that the unbalanced osmotic pressure induced depletion force might be responsible for this sticking phenomenon. An estimate of the bacteria propulsive force and the DSCG aggregates length (versus concentration) are calculated from the measured viscosity of the medium. All these quantities are found to undergo a strong increase in the pretransition zone, starting at a threshold concentration of 6±1 wt % DSCG that is well below the known isotropic-LC transition (∼10 wt %). This study also shines light on the motility of flagellated bacteria in realistic environments, and it opens new avenues for interesting applications such as the use of motile microorganisms to probe the physical properties of their host or smart bandages that could guide bacteria out of wounds.

  20. Rumen motility during induced hyper- and hypocalcaemia.

    PubMed

    Jørgensen, R J; Nyengaard, N R; Hara, S; Enemark, J M; Andersen, P H

    1998-01-01

    Rumen motility was recorded on an experimental cow by means of telemetric signal transfer from strain gauge force transducers fixed surgically on the peritoneal surface of the rumen wall in the left flank. The normocalcaemic cow was given a standard milk fever treatment with calcium borogluconate (400 ml with 14 mg Ca/ml) intravenously. Transient clinical signs were: decreased rumination, muscle ticks, salivation and a heart rate reduction of 20%. Rectal temperature remained unaltered. Frequency of rumen contractions was reduced up to 40% whereas amplitude of contractions did not deviate from baseline values. Hypocalcaemia was induced in a second experiment by iv infusion of Na2EDTA. At 0.60 mmol/l ionized blood calcium periods of no motility were recorded whereas inactivity of rumen activity was persistent at 0.55 mmol/l ionized blood calcium. The cow went down at 0.45-0.48 mmol/l ionized blood calcium at which point the heart rate was increased by 40%. The high sensitivity of the method employed allowed the conclusion that already at a concentration of ionized blood calcium at 1.0 mmol/l both frequency and amplitude of rumen contractions decreased rapidly although eating behaviour and rumination appeared unaffected during the short term observation periods. Implications of this finding towards health and production in transition cows are discussed.

  1. Intracellular Microrheology of Motile Amoeba proteus

    NASA Astrophysics Data System (ADS)

    Rogers, S.; Waigh, T.; Lu, J.

    2008-04-01

    The motility of motile Amoeba proteus was examined using the technique of passive particle tracking microrheology, with the aid of newly-developed particle tracking software, a fast digital camera and an optical microscope. We tracked large numbers of endogeneous particles in the amoebae, which displayed subdiffusive motion at short time scales, corresponding to thermal motion in a viscoelastic medium, and superdiffusive motion at long time scales due to the convection of the cytoplasm. Subdiffusive motion was characterised by a rheological scaling exponent of 3/4 in the cortex, indicative of the semiflexible dynamics of the actin fibres. We observed shear-thinning in the flowing endoplasm, where exponents increased with increasing flow rate; i.e. the endoplasm became more fluid-like. The rheology of the cortex is found to be isotropic, reflecting an isotropic actin gel. A clear difference was seen between cortical and endoplasmic layers in terms of both viscoelasticity and flow velocity, where the profile of the latter is close to a Poiseuille flow for a Newtonian fluid.

  2. Single molecule analysis of cytoplasmic dynein motility

    NASA Astrophysics Data System (ADS)

    Yildiz, Ahmet

    2014-03-01

    Cytoplasmic dynein is a homodimeric AAA + motor that transports a multitude of cargos towards the microtubule (MT) minus end. The mechanism of dynein motility remains unclear, due to its large size (2.6 MDa) and the complexity of its structure. By tracking the stepping motion of both heads at nanometer resolution, we observed that dynein heads move independently along the MT, in contrast to hand over hand movement of kinesins and myosin. Stepping behavior of the heads varies as a function of interhead separation and establishing the basis of high variability in dynein step size. By engineering the mechanical and catalytic properties of the dynein motor domain, we show that a rigid linkage between monomers and dimerization between N-terminal tail domains are not essential for processive movement. Instead, dynein processivity minimally requires the linker domain of one active monomer to be attached to an inert MT tether retaining only the MT-binding domain. The release of a dynein monomer from the MT can be mediated either by nucleotide binding or external load. Nucleotide dependent release is inhibited by the tension on the linker domain at high interhead separations. Tension dependent release is highly asymmetric, with faster release towards the minus-end. Reversing the asymmetry of the MT binding interface results in plus end directed motility, even though the force was generated by the dynein motor activity. On the basis of these measurements, we propose a model that describes the basis of dynein processivity, directionality and force generation.

  3. Small intestine motility development in newborn mammals.

    PubMed

    Woliński, Jarosław; Słupecka-Ziemilska, Monika; Boryczka, Maria; Grzesiak, Paulina; Kwiatkowski, Jakub; Kotarba, Grzegorz

    2016-01-01

    Since the beginning of the 20th century, researchers have been working to improve the understanding of gastrointestinal motility. The first major discovery was the observation of a migrating myoelectric complex that turned out to be a universal occurrence among vertebrates. Further inquires resulted in a detailed description of its development during different stages of ontogeny. Some time before that, a cornerstone had been laid for a breakthrough that would come years later. That cornerstone came in the form of interstitial cells of Cajal whose true role could not be discerned until the discovery of a CD117 receptor - their main marker. With the ability to precisely mark interstitial cells of Cajal, a wave of subsequent new experiments and observations connected them to the occurrence of slow waves and allowed an understanding of the mechanism responsible for their generation. Some of these findings suggested that Cajal cells might have a role in the development of several motility disorders thus opening an avenue of research that requires the usage of both traditional and advanced diagnostic methods.

  4. Mechanics and polarity in cell motility

    NASA Astrophysics Data System (ADS)

    Ambrosi, D.; Zanzottera, A.

    2016-09-01

    The motility of a fish keratocyte on a flat substrate exhibits two distinct regimes: the non-migrating and the migrating one. In both configurations the shape is fixed in time and, when the cell is moving, the velocity is constant in magnitude and direction. Transition from a stable configuration to the other one can be produced by a mechanical or chemotactic perturbation. In order to point out the mechanical nature of such a bistable behaviour, we focus on the actin dynamics inside the cell using a minimal mathematical model. While the protein diffusion, recruitment and segregation govern the polarization process, we show that the free actin mass balance, driven by diffusion, and the polymerized actin retrograde flow, regulated by the active stress, are sufficient ingredients to account for the motile bistability. The length and velocity of the cell are predicted on the basis of the parameters of the substrate and of the cell itself. The key physical ingredient of the theory is the exchange among actin phases at the edges of the cell, that plays a central role both in kinematics and in dynamics.

  5. Epilepsy-induced motility of differentiated neurons.

    PubMed

    Chai, Xuejun; Münzner, Gert; Zhao, Shanting; Tinnes, Stefanie; Kowalski, Janina; Häussler, Ute; Young, Christina; Haas, Carola A; Frotscher, Michael

    2014-08-01

    Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs become motile following the induction of epileptiform activity, resulting in GCD. Hippocampal slice cultures from transgenic mice expressing green fluorescent protein in differentiated, but not in newly generated GCs, were incubated with the glutamate receptor agonist kainate (KA), which induced GC burst activity and GCD. Using real-time microscopy, we observed that KA-exposed, differentiated GCs translocated their cell bodies and changed their dendritic organization. As found in human TLE, KA application was associated with decreased expression of the extracellular matrix protein Reelin, particularly in hilar interneurons. Together these findings suggest that KA-induced motility of differentiated GCs contributes to the development of GCD and establish slice cultures as a model to study neuronal changes induced by epileptiform activity.

  6. Visualization of Twitching Motility and Characterization of the Role of the PilG in Xylella fastidiosa.

    PubMed

    Shi, Xiangyang; Lin, Hong

    2016-01-01

    Xylella fastidiosa is a Gram-negative non-flagellated bacterium that causes a number of economically important diseases of plants. The twitching motility provides X. fastidiosa a means for long-distance intra-plant movement and colonization, contributing toward pathogenicity in X. fastidiosa. The twitching motility of X. fastidiosa is operated by type IV pili. Type IV pili of Xylella fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon encoding proteins that are involved with signal transduction pathways. To elucidate the roles of pilG in the twitching motility of X. fastidiosa, a pilG-deficient mutant XfΔpilG and its complementary strain XfΔpilG-C containing native pilG were developed. A microfluidic chambers integrated with a time-lapse image recording system was used to observe twitching motility in XfΔpilG, XfΔpilG-C and its wild type strain. Using this recording system, it permits long-term spatial and temporal observations of aggregation, migration of individual cells and populations of bacteria via twitching motility. X. fastidiosa wild type and complementary XfΔpilG-C strain showed typical twitching motility characteristics directly observed in the microfluidic flow chambers, whereas mutant XfΔpliG exhibited the twitching deficient phenotype. This study demonstrates that pilG contributes to the twitching motility of X. fastidiosa. The microfluidic flow chamber is used as a means for observing twitching motility. PMID:27166660

  7. A tyrosine-phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3',5'-monophosphates and calcium.

    PubMed

    Vijayaraghavan, S; Trautman, K D; Goueli, S A; Carr, D W

    1997-06-01

    Sperm motility is regulated by protein phosphorylation. We have recently shown that a serine/threonine phosphatase system is involved in motility regulation. Two of the components of the phosphatase system, GSK-3 and PP1gamma2, are regulated by tyrosine phosphorylation. During our investigation of sperm tyrosine-phosphorylated proteins we discovered a 55-kDa protein whose tyrosine phosphorylation correlates closely to the motility state of sperm. This protein is tyrosine phosphorylated to a much higher degree in motile caudal than in immotile caput epididymal sperm. Motility inhibition of caudal epididymal sperm by protein kinase A (PKA) anchoring inhibition or by ionomycin-induced calcium overload led to the virtual disappearance of tyrosine phosphorylation of the 55-kDa protein. Conversely, treatment of sperm with motility activators, isobutylmethylxanthine or 8-bromo-cAMP, resulted in increased tyrosine phosphorylation of the protein. The protein was present in the soluble 100 000 x g supernatants of sperm extracts and was heat labile. Chromatography through diethylaminoethyl-cellulose and Western blot analysis showed that this 55-kDa protein is not a regulatory subunit of PKA or alpha-tubulin. Our results represent the identification of a soluble protein whose tyrosine phosphorylation varies directly with motility and suggest that motility regulation may involve cross talk between PKA, calcium, and tyrosine kinase pathways. PMID:9166697

  8. Balancing Thymocyte Adhesion and Motility: A Functional Linkage Between β1 Lntegrins and The Motility Receptor RHAMM

    PubMed Central

    Gares, Sheryl L.

    2000-01-01

    Thymocyte differentiation involves several processes that occur in different anatomic sites within the thymus. Therefore, thymocytes must have the ability to respond to signals received from stromal cells and adopt either adhesive or motile behavior. We will discuss our data indicating human thymocytes use α4β1 integrin, α5β1 integrin and RHAMM to mediate these activities. Immature multinegative (MN; CD3–4–8–19-) thymocytes use α4β1 and α5β1 integrins to mediate weak and strong adhesion. This subset also uses α4β1 integrin to mediate motility. As thymocytes differentiate, they begin to express and use RHAMM to mediate motility in conjunction with α4β1 and α5β1 integrins. Motile thymocytes use β1 integrins to maintain weakly adhesive contacts with substrate to provide traction for locomoting cells, thus weak adhesion is a requirement of motile behavior. Hyaluronan (HA) is also required by thymocytes to mediate motility. HA binding to cell surface RHAMM redistributes intracellular RHAMM to the cell surface where it functions to mediate motility. We propose that the decision to maintain adhesive or motile behavior is based on the balance between low and high avidity binding conformations of β1 integrins on thymocytes and that RHAMM:HA interactions decrease high avidity binding conformations of integrins pushing the balance toward motile behavior. PMID:11097213

  9. Ect2/Pbl Acts via Rho and Polarity Proteins to Direct the Assembly of an Isotropic Actomyosin Cortex upon Mitotic Entry

    PubMed Central

    Rosa, André; Vlassaks, Evi; Pichaud, Franck; Baum, Buzz

    2015-01-01

    Summary Entry into mitosis is accompanied by profound changes in cortical actomyosin organization. Here, we delineate a pathway downstream of the RhoGEF Pbl/Ect2 that directs this process in a model epithelium. Our data suggest that the release of Pbl/Ect2 from the nucleus at mitotic entry drives Rho-dependent activation of Myosin-II and, in parallel, induces a switch from Arp2/3 to Diaphanous-mediated cortical actin nucleation that depends on Cdc42, aPKC, and Par6. At the same time, the mitotic relocalization of these apical protein complexes to more lateral cell surfaces enables Cdc42/aPKC/Par6 to take on a mitosis-specific function—aiding the assembly of a relatively isotropic metaphase cortex. Together, these data reveal how the repolarization and remodeling of the actomyosin cortex are coordinated upon entry into mitosis to provide cells with the isotropic and rigid form they need to undergo faithful chromosome segregation and division in a crowded tissue environment. PMID:25703349

  10. Endoplasmic motility spectral characteristics in plasmodium of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Avsievich, T. I.; Ghaleb, K. E. S.; Frolov, S. V.; Proskurin, S. G.

    2015-03-01

    Spectral Fourier analysis of experimentally acquired velocity time dependencies, V(t), of shuttle endoplasmic motility in an isolated strand of plasmodium of slime mold Physarum Polycephalum has been realized. V(t) registration was performed in normal conditions and after the treatment by respiration inhibitors, which lead to a complete cessation of endoplasmic motion in the strand. Spectral analysis of the velocity time dependences of the endoplasm allows obtaining two distinct harmonic components in the spectra. Their ratio appeared to be constant in all cases, ν2/ν1=1.97±0.17. After the inhibitors are washed out respiratory system becomes normal, gradually restoring the activity of both harmonic oscillatory sources with time. Simulated velocity time dependences correspond to experimental data with good accuracy.

  11. Differential dynamic microscopy to characterize Brownian motion and bacteria motility

    NASA Astrophysics Data System (ADS)

    Germain, David; Leocmach, Mathieu; Gibaud, Thomas

    2016-03-01

    We have developed a lab module for undergraduate students, which involves the process of quantifying the dynamics of a suspension of microscopic particles using Differential Dynamic Microscopy (DDM). DDM is a relatively new technique that constitutes an alternative method to more classical techniques such as dynamic light scattering (DLS) or video particle tracking (VPT). The technique consists of imaging a particle dispersion with a standard light microscope and a camera and analyzing the images using a digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM in the textbook case of colloids under Brownian motion, where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biological systems such as motile bacteria.

  12. Curved tails in polymerization-based bacterial motility

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew D.; Grant, Martin

    2001-08-01

    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.

  13. Distinctions in growth cone morphology and motility between monopolar and multipolar neurons in Drosophila CNS cultures.

    PubMed

    Kim, Y T; Wu, C F

    1991-04-01

    Growth cones play a central role in determining neurite extension, pathfinding and branching, and in establishing synaptic connections. This paper describes an initial characterization of growth cone morphology and behavior in dissociated larval central nervous system (CNS) cultures of Drosophila. Contrast-enhanced video images of growth cones in monopolar and multipolar neurons were characterized by employing morphometric parameters such as the number and length of filopodia, and the area and roundness of the lamellipodia. Behavior of growth cones was analyzed by a motility index and boundary flow plots originally devised for measuring motility in other cellular systems. We found that separate CNS regions yielded cultures of different major cell types with distinct neuritic patterns that could be correlated with the morphology and motility of the associated growth cones. Monopolar neurons were the major cell type in brain cultures, whereas multipolar neurons were predominant in ventral ganglion cultures. Moreover, the growth cones of monopolar neurons, which are likely to be associated with the axonal processes, differed from those of multipolar neurons, which might be related to dendritic terminals. Growth cones in monopolar neurons had larger lamellipodia of less erratic shape accompanied by fewer and shorter filopodia, and, when active, displayed much higher motility and less directionality in motion. Alternatively, these morphological and behavioral distinctions between monopolar and multipolar neurons may result from intrinsic differences in membrane adhesion and intracellular transport properties.

  14. The effect of substrate elasticity and actomyosin contractility on different forms of endocytosis.

    PubMed

    Missirlis, Dimitris

    2014-01-01

    Substrate mechanical properties have emerged as potent determinants of cell functions and fate. We here tested the hypothesis that different forms of endocytosis are regulated by the elasticity of the synthetic hydrogels cells are cultured on. Towards this objective, we quantified cell-associated fluorescence of the established endocytosis markers transferrin (Tf) and cholera toxin subunit B (CTb) using a flow-cytometry based protocol, and imaged marker internalization using microscopy techniques. Our results demonstrated that clathrin-mediated endocytosis of Tf following a 10-minute incubation with a fibroblast cell line was lower on the softer substrates studied (5 kPa) compared to those with elasticities of 40 and 85 kPa. This effect was cancelled after 1-hour incubation revealing that intracellular accumulation of Tf at this time point did not depend on substrate elasticity. Lipid-raft mediated endocytosis of CTb, on the other hand, was not affected by substrate elasticity in the studied range of time and substrate elasticity. The use of pharmacologic contractility inhibitors revealed inhibition of endocytosis for both Tf and CTb after a 10-minute incubation and a dissimilar effect after 1 hour depending on the inhibitor type. Further, the internalization of fluorescent NPs, used as model drug delivery systems, showed a dependence on substrate elasticity, while transfection efficiency was unaffected by it. Finally, an independence on substrate elasticity of Tf and CTb association with HeLa cells indicated that there are cell-type differences in this respect. Overall, our results suggest that clathrin-mediated but not lipid-raft mediated endocytosis is potentially influenced by substrate mechanics at the cellular level, while intracellular trafficking and accumulation show a more complex dependence. Our findings are discussed in the context of previous work on how substrate mechanics affect the fundamental process of endocytosis and highlight important

  15. Laser radiation and motility patterns of human sperm

    SciTech Connect

    Lenzi, A.; Claroni, F.; Gandini, L.; Lombardo, F.; Barbieri, C.; Lino, A.; Dondero, F. )

    1989-01-01

    Human sperm were exposed in vitro to laser radiation. An increase in progressive sperm motility was associated with a faster rate of sperm ATP consumption. Computer-assisted analysis of sperm motility confirmed the positive effect of laser irradiation on velocity and linearity of sperm.

  16. Quantum Dot-Based Cell Motility Assay

    SciTech Connect

    Gu, Weiwei; Pellegrino, Teresa; Parak Wolfgang J; Boudreau,Rosanne; Le Gros, Mark A.; Gerion, Daniele; Alivisatos, A. Paul; Larabell, Carolyn A.

    2005-06-06

    Because of their favorable physical and photochemical properties, colloidal CdSe/ZnS-semiconductor nanocrystals (commonly known as quantum dots) have enormous potential for use in biological imaging. In this report, we present an assay that uses quantum dots as markers to quantify cell motility. Cells that are seeded onto a homogeneous layer of quantum dots engulf and absorb the nanocrystals and, as a consequence, leave behind a fluorescence-free trail. By subsequently determining the ratio of cell area to fluorescence-free track area, we show that it is possible to differentiate between invasive and noninvasive cancer cells. Because this assay uses simple fluorescence detection, requires no significant data processing, and can be used in live-cell studies, it has the potential to be a powerful new tool for discriminating between invasive and noninvasive cancer cell lines or for studying cell signaling events involved in migration.

  17. Mechanics model for actin-based motility.

    PubMed

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  18. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  19. Spontaneous embryonic motility: an enduring legacy.

    PubMed

    Bekoff, A

    2001-04-01

    This chapter addresses the influential contributions Viktor Hamburger has made to our understanding of embryonic motor behavior. With his classic review, published in 1963, Viktor Hamburger opened up the field of embryonic motor behavior, which had lain almost completely dormant for many years. He focused his observations and experimental studies on the spontaneously generated embryonic movements rather than on reflex responses. As a result, he and his colleagues firmly established the central generation of embryonic motility as a basic component of embryonic behavior in chicks. These studies were also extended to rat fetuses, showing that similar principles apply to mammalian fetuses. All of us who have followed after him owe Viktor Hamburger an enormous debt of gratitude for his pioneering work. PMID:11255029

  20. Evolutionary aspects of collective motility in pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Deforet, Maxime; Xavier, Joao

    Pseudomonas aeruginosa is a pathogenic bacteria that can use its single polar flagellum to swim through liquids. It can move collectively over semisolid surfaces, a behavior called swarming. It can also settle and form surface-attached communities called biofilms that protect them from antibiotics. The transition from single motility (swimming) to collective motility (swarming) is biologically relevant as it enables exploring environments that a single bacterium cannot explore on its own. It is also clinically relevant since swarming and biofilm formation are thought to be antagonistic. We investigate the mechanisms of bacterial collective motility using a multidisciplinary approach that combines mathematical modeling, quantitative experiments, and microbial genetics. We aim to identify how these mechanisms may evolve under the selective pressure of population expansion, and consequently reinforce or hinder collective motility. In particular, we clarify the role of growth rate and motility in invasive populations.

  1. Bacterial signaling and motility: Sure bets

    SciTech Connect

    Zhulin, Igor B

    2008-01-01

    The IX International Conference on Bacterial Locomotion and Signal Transduction (BLAST IX) was held from 14 to 19 January 2007 in Laughlin, NV, a town in the Mojave Desert on the Nevada-Arizona border near old Route 66 and along the banks of the Colorado River. This area is a home to rattlesnakes, sagebrush, abandoned gold mines, and compulsive gamblers. What better venue could scientists possibly dream of for a professional meeting? So there they were, about 190 scientists gathered in the Aquarius Casino Resort, the largest hotel and casino in Laughlin, discussing the latest advances in the field. Aside from a brief excursion to an abandoned gold mine and a dinner cruise on the Colorado River, the scientists focused on nothing but their data and hypotheses, in spirited arguments and rebuttals, and outlined their visions and future plans in a friendly and open environment. The BLAST IX program was dense, with nearly 50 talks and over 90 posters. For that reason, this meeting report will not attempt to be comprehensive; instead it will first provide general background information on the central topics of the meeting and then highlight only a few talks that were of special interest to us and hopefully to the wider scientific community. We will also attempt to articulate some of the future directions or perspectives to the best of our abilities. The best known and understood bacterial motility mechanism is swimming powered by flagella. The rotation of bacterial flagella drives this form of bacterial movement in an aqueous environment. A bacterial flagellum consists of a helical filament attached to the cell body through a complex structure known as the hook-basal body, which drives flagellar rotation. The essential components of the basal body are the MotA-MotB motor-stator proteins bound to the cytoplasmic membrane. These stator proteins interact with proteins that comprise the supramembrane and cytoplasmic rings, which are components of the motor imbedded in the

  2. High Motility Reduces Grazing Mortality of Planktonic Bacteria

    PubMed Central

    Matz, Carsten; Jürgens, Klaus

    2005-01-01

    We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated that the number of predator-prey contacts increased with bacterial swimming speed, but ingestion rates dropped at speeds of >25 μm s−1 as a result of handling problems with highly motile cells. Comparative studies of a moderately motile strain (<25 μm s−1) and a highly motile strain (>45 μm s−1) further revealed changes in the bacterial swimming speed distribution due to speed-selective flagellate grazing. Better long-term survival of the highly motile strain was indicated by fourfold-higher bacterial numbers in the presence of grazing compared to the moderately motile strain. Putative constraints of maintaining high swimming speeds were tested at high growth rates and under starvation with the following results: (i) for two out of three strains increased growth rate resulted in larger and slower bacterial cells, and (ii) starved cells became smaller but maintained their swimming speeds. Combined data sets for bacterial swimming speed and cell size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 μm3. Grazing mortality was lowest for cells of >0.5 μm3 and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (≤0.1 μm3, >50 μm s−1) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing. PMID:15691949

  3. Creatine kinase B deficient neurons exhibit an increased fraction of motile mitochondria

    PubMed Central

    Kuiper, Jan WP; Oerlemans, Frank TJJ; Fransen, Jack AM; Wieringa, Bé

    2008-01-01

    Background Neurons require an elaborate system of intracellular transport to distribute cargo throughout axonal and dendritic projections. Active anterograde and retrograde transport of mitochondria serves in local energy distribution, but at the same time also requires input of ATP. Here we studied whether brain-type creatine kinase (CK-B), a key enzyme for high-energy phosphoryl transfer between ATP and CrP in brain, has an intermediary role in the reciprocal coordination between mitochondrial motility and energy distribution. Therefore, we analysed the impact of brain-type creatine kinase (CK-B) deficiency on transport activity and velocity of mitochondria in primary murine neurons and made a comparison to the fate of amyloid precursor protein (APP) cargo in these cells, using live cell imaging. Results Comparison of average and maximum transport velocities and global transport activity showed that CK-B deficiency had no effect on speed of movement of mitochondria or APP cargo, but that the fraction of motile mitochondria was significantly increased by 36% in neurons derived from CK-B knockout mice. The percentage of motile APP vesicles was not altered. Conclusion CK-B activity does not directly couple to motor protein activity but cells without the enzyme increase the number of motile mitochondria, possibly as an adaptational strategy aimed to enhance mitochondrial distribution versatility in order to compensate for loss of efficiency in the cellular network for ATP distribution. PMID:18662381

  4. The evolution of eukaryotic cilia and flagella as motile and sensory organelles.

    PubMed

    Mitchell, David R

    2007-01-01

    Eukaryotic cilia and flagella are motile organelles built on a scaffold of doublet microtubules and powered by dynein ATPase motors. Some thirty years ago, two competing views were presented to explain how the complex machinery of these motile organelles had evolved. Overwhelming evidence now refutes the hypothesis that they are the modified remnants of symbiotic spirochaete-like prokaryotes, and supports the hypothesis that they arose from a simpler cytoplasmic microtubule-based intracellular transport system. However, because intermediate stages in flagellar evolution have not been found in living eukaryotes, a clear understanding of their early evolution has been elusive. Recent progress in understanding phylogenetic relationships among present day eukaryotes and in sequence analysis of flagellar proteins have begun to provide a clearer picture of the origins of doublet and triplet microtubules, flagellar dynein motors, and the 9+2 microtubule architecture common to these organelles. We summarize evidence that the last common ancestor of all eukaryotic organisms possessed a 9+2 flagellum that was used for gliding motility along surfaces, beating motility to generate fluid flow, and localized distribution of sensory receptors, and trace possible earlier stages in the evolution of these characteristics.

  5. Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence.

    PubMed

    Dunger, German; Guzzo, Cristiane R; Andrade, Maxuel O; Jones, Jeffrey B; Farah, Chuck S

    2014-10-01

    Bacterial type IV pili (T4P) are long, flexible surface filaments that consist of helical polymers of mostly pilin subunits. Cycles of polymerization, attachment, and depolymerization mediate several pilus-dependent bacterial behaviors, including twitching motility, surface adhesion, pathogenicity, natural transformation, escape from immune system defense mechanisms, and biofilm formation. The Xanthomonas citri subsp. citri strain 306 genome codes for a large set of genes involved in T4P biogenesis and regulation and includes several pilin homologs. We show that X. citri subsp. citri can exhibit twitching motility in a manner similar to that observed in other bacteria such as Pseudomonas aeruginosa and Xylella fastidiosa and that this motility is abolished in Xanthomonas citri subsp. citri knockout strains in the genes coding for the major pilin subunit PilAXAC3241, the ATPases PilBXAC3239 and PilTXAC2924, and the T4P biogenesis regulators PilZXAC1133 and FimXXAC2398. Microscopy analyses were performed to compare patterns of bacterial migration in the wild-type and knockout strains and we observed that the formation of mushroom-like structures in X. citri subsp. citri biofilm requires a functional T4P. Finally, infection of X. citri subsp. citri cells by the bacteriophage (ΦXacm4-11 is T4P dependent. The results of this study improve our understanding of how T4P influence Xanthomonas motility, biofilm formation, and susceptibility to phage infection. PMID:25180689

  6. Insect Stage-Specific Adenylate Cyclases Regulate Social Motility in African Trypanosomes

    PubMed Central

    Lopez, Miguel A.; Saada, Edwin A.

    2014-01-01

    Sophisticated systems for cell-cell communication enable unicellular microbes to act as multicellular entities capable of group-level behaviors that are not evident in individuals. These group behaviors influence microbe physiology, and the underlying signaling pathways are considered potential drug targets in microbial pathogens. Trypanosoma brucei is a protozoan parasite that causes substantial human suffering and economic hardship in some of the most impoverished regions of the world. T. brucei lives on host tissue surfaces during transmission through its tsetse fly vector, and cultivation on surfaces causes the parasites to assemble into multicellular communities in which individual cells coordinate their movements in response to external signals. This behavior is termed “social motility,” based on its similarities with surface-induced social motility in bacteria, and it demonstrates that trypanosomes are capable of group-level behavior. Mechanisms governing T. brucei social motility are unknown. Here we report that a subset of receptor-type adenylate cyclases (ACs) in the trypanosome flagellum regulate social motility. RNA interference-mediated knockdown of adenylate cyclase 6 (AC6), or dual knockdown of AC1 and AC2, causes a hypersocial phenotype but has no discernible effect on individual cells in suspension culture. Mutation of the AC6 catalytic domain phenocopies AC6 knockdown, demonstrating that loss of adenylate cyclase activity is responsible for the phenotype. Notably, knockdown of other ACs did not affect social motility, indicating segregation of AC functions. These studies reveal interesting parallels in systems that control social behavior in trypanosomes and bacteria and provide insight into a feature of parasite biology that may be exploited for novel intervention strategies. PMID:25416239

  7. Insect stage-specific adenylate cyclases regulate social motility in African trypanosomes.

    PubMed

    Lopez, Miguel A; Saada, Edwin A; Hill, Kent L

    2015-01-01

    Sophisticated systems for cell-cell communication enable unicellular microbes to act as multicellular entities capable of group-level behaviors that are not evident in individuals. These group behaviors influence microbe physiology, and the underlying signaling pathways are considered potential drug targets in microbial pathogens. Trypanosoma brucei is a protozoan parasite that causes substantial human suffering and economic hardship in some of the most impoverished regions of the world. T. brucei lives on host tissue surfaces during transmission through its tsetse fly vector, and cultivation on surfaces causes the parasites to assemble into multicellular communities in which individual cells coordinate their movements in response to external signals. This behavior is termed "social motility," based on its similarities with surface-induced social motility in bacteria, and it demonstrates that trypanosomes are capable of group-level behavior. Mechanisms governing T. brucei social motility are unknown. Here we report that a subset of receptor-type adenylate cyclases (ACs) in the trypanosome flagellum regulate social motility. RNA interference-mediated knockdown of adenylate cyclase 6 (AC6), or dual knockdown of AC1 and AC2, causes a hypersocial phenotype but has no discernible effect on individual cells in suspension culture. Mutation of the AC6 catalytic domain phenocopies AC6 knockdown, demonstrating that loss of adenylate cyclase activity is responsible for the phenotype. Notably, knockdown of other ACs did not affect social motility, indicating segregation of AC functions. These studies reveal interesting parallels in systems that control social behavior in trypanosomes and bacteria and provide insight into a feature of parasite biology that may be exploited for novel intervention strategies. PMID:25416239

  8. Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi.

    PubMed

    Yang, Qian; Defoirdt, Tom

    2015-04-01

    Vibrios belonging to the Harveyi clade are among the major pathogens of aquatic organisms. Quorum sensing (QS) is essential for virulence of V. harveyi towards different hosts. However, most virulence factors reported to be controlled by QS to date are negatively regulated by QS, therefore suggesting that their impact on virulence is limited. In this study, we report that QS positively regulates flagellar motility. We found that autoinducer synthase mutants showed significantly lower swimming motility than the wild type, and the swimming motility could be restored by adding synthetic signal molecules. Further, motility of a luxO mutant with inactive QS (LuxO D47E) was significantly lower than that of the wild type and of a luxO mutant with constitutively maximal QS activity (LuxO D47A). Furthermore, we found that the expression of flagellar genes (both early, middle and late genes) was significantly lower in the luxO mutant with inactive QS when compared with wild type and the luxO mutant with maximal QS activity. Motility assays and gene expression also revealed the involvement of the quorum-sensing master regulator LuxR in the QS regulation of motility. Finally, the motility inhibitor phenamil significantly decreased the virulence of V. harveyi towards gnotobiotic brine shrimp larvae. PMID:24528485

  9. Ion channels and calcium signaling in motile cilia

    PubMed Central

    Doerner, Julia F; Delling, Markus; Clapham, David E

    2015-01-01

    The beating of motile cilia generates fluid flow over epithelia in brain ventricles, airways, and Fallopian tubes. Here, we patch clamp single motile cilia of mammalian ependymal cells and examine their potential function as a calcium signaling compartment. Resting motile cilia calcium concentration ([Ca2+] ~170 nM) is only slightly elevated over cytoplasmic [Ca2+] (~100 nM) at steady state. Ca2+ changes that arise in the cytoplasm rapidly equilibrate in motile cilia. We measured CaV1 voltage-gated calcium channels in ependymal cells, but these channels are not specifically enriched in motile cilia. Membrane depolarization increases ciliary [Ca2+], but only marginally alters cilia beating and cilia-driven fluid velocity within short (~1 min) time frames. We conclude that beating of ependymal motile cilia is not tightly regulated by voltage-gated calcium channels, unlike that of well-studied motile cilia and flagella in protists, such as Paramecia and Chlamydomonas. DOI: http://dx.doi.org/10.7554/eLife.11066.001 PMID:26650848

  10. Hereditary haemochromatosis gene (HFE) H63D mutation shows an association with abnormal sperm motility.

    PubMed

    Gunel-Ozcan, Aysen; Basar, M Murad; Kisa, Ucler; Ankarali, Handan C

    2009-09-01

    The aim of this study was to screen infertile men for HFE H63D mutation in correlation with clinical characteristics of infertile men (sperm concentration, sperm motility, morphology, testicular volume, Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH) and total Testosterone levels) and find out if the HFE H63D mutation has an effect on male infertility. After excluding hormonal treatment, any scrotal pathology, having any systemic diseases such as diabetes mellitus, sickle cell anemia and microdeletions of the Y chromosome, a total of 148 infertile men with age range between 17 and 52-years-old (average age 29.6 +/- 7.2) were enrolled into the study. Our analysis indicates that the mean FSH levels are significantly higher (6.3 +/- 4.6 mIU/ml, P = 0.03), whereas sperm motility is significantly lower (36.6 +/- 28.1%, P = 0.01) in the infertile men with the HFE H63D mutation compared with subjects lacking this mutation. Comparison of allele frequencies of the infertile men with Ts < 50% versus the infertile men with Ts > 50% revealed a significant difference as expected (P = 0.001, OR = 0.14, %95 CI = 0.04-0.44). Comparison of allele frequencies of infertile men with abnormal sperm motility versus infertile men with normal sperm motility revealed a highly significant difference (P = 0.005, OR = 3.11, %95 CI = 1.41-6.86). Thus, the HFE H63D mutation seems to be an important risk factor for impaired sperm motility and is clinically associated with male infertility. PMID:18846434

  11. Swimming with protists: perception, motility and flagellum assembly.

    PubMed

    Ginger, Michael L; Portman, Neil; McKean, Paul G

    2008-11-01

    In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence. PMID:18923411

  12. Swimming with protists: perception, motility and flagellum assembly.

    PubMed

    Ginger, Michael L; Portman, Neil; McKean, Paul G

    2008-11-01

    In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.

  13. Effect of anionic polymeric hydrogels on spermatozoa motility.

    PubMed

    Singh, H; Jabbal, M S; Ray, A R; Vasudevan, P

    1984-09-01

    The effects of a few synthetic polymers on the motility of human spermatozoa in vitro have been studied. An alternate copolymer of styrene and maleic anhydride, poly(S-MA), poly (styrene-maleic acid), poly(S-MC), poly(hydroxy-ethyl methacrylate-methacrylic acid) copolymer, poly(HEMA-MAC), poly(HEMA) homopolymer and poly(MAC) homopolymer were chosen for this purpose. It was found that all the carboxylic acid containing polymers are strong inhibitors of the motility of spermatozoa. Poly(HEMA) did not have any inhibitory effect on the motility of spermatozoa.

  14. Shear alters motility of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Molaei, Mehdi; Jalali, Maryam; Sheng, Jian

    2013-11-01

    Understanding of locomotion of microorganisms in shear flows drew a wide range of interests in microbial related topics such as biological process including pathogenic infection and biophysical interactions like biofilm formation on engineering surfaces. We employed microfluidics and digital holography microscopy to study motility of E. coli in shear flows. We controlled the shear flow in three different shear rates: 0.28 s-1, 2.8 s-1, and 28 s-1 in a straight channel with the depth of 200 μm. Magnified holograms, recorded at 15 fps with a CCD camera over more than 20 minutes, are analyzed to obtain 3D swimming trajectories and subsequently used to extract shear responses of E.coli. Thousands of 3-D bacterial trajectories are tracked. The change of bacteria swimming characteristics including swimming velocity, reorientation, and dispersion coefficient are computed directly for individual trajectory and ensemble averaged over thousands of realizations. The results show that shear suppresses the bacterial dispersions in bulk but promote dispersions near the surface contrary to those in quiescent flow condition. Ongoing analyses are focusing to quantify effect of shear rates on tumbling frequency and reorientation of cell body, and its implication in locating the hydrodynamic mechanisms for shear enhanced angular scattering. NIH, NSF, GoMRI.

  15. [The flagellum: from cell motility to morphogenesis].

    PubMed

    Kohl, Linda; Robinson, Derrick; Bastin, Philippe

    2003-01-01

    Flagella and cilia are elaborate cytoskeletal structures conserved from protists to mammals, where they fulfil functions related to motility or sensitivity. We demonstrate a novel role for the flagellum in the control of cell morphogenesis and division of Trypanosoma brucei. To investigate flagellum functions, its formation was perturbed by inducible RNA interference silencing of components required for intraflagellar transport (IFT), a dynamic process necessary for flagellum assembly. First, we show that down-regulation of IFT leads to assembly of a shorter flagellum. Strikingly, cells with a shorter flagellum are smaller, with a direct correlation between flagellum length and cell size. Detailed morphogenetic analysis reveals that the tip of the new flagellum defines the point where cytokinesis is initiated. Furthermore, when new flagellum formation is completely blocked, non-flagellated cells are very short, lose their normal shape and polarity and fail to undergo cytokinesis. We show that flagellum elongation controls formation of cytoskeletal structures present in the cell body that act as molecular organisers of the cell.

  16. Colloidal motility and patterning by physical chemotaxis

    NASA Astrophysics Data System (ADS)

    Palacci, Jeremie; Abecassis, Benjamin; Cottin-Bizonne, Cecile; Ybert, Christophe; Bocquet, Lyderic

    2009-11-01

    We developped a microfluidic setup to show the motility of colloids or biomolecules under a controlled salt gradient thanks to the diffusiophoresis phenomenon [1,2]. We can therefore mimic chemotaxis on simple physical basis with thrilling analogies with the biological chemotaxis of E. Coli bacteria: salt dependance of the velocity [3] and log-sensing behavior [4]. In addition with a temporally tunable gradient we show we can generate an effective osmotic potential to trap colloids or DNA. These experimental observations are supported by numerical simulations and an asymptotic ratchet model. Finally, we use these traps to generate various patterns and because concentration gradients are ubiquitous in nature, we question for the role of such a mecanism in morphogenesis [5] or positioning perspectives in cells [6]. [4pt] [1] B. Abecassis, C. Cottin-Bizonne, C. Ybert, A. Ajdari, and L. Bocquet, Nat. Mat., 7(10):785--789, 2008. [2] Anderson, Ann. Rev. Fluid Mech, 21, 1989. [3] Y. L. Qi and J. Adler, PNAS, 86(21):8358--8362, 1989. [4] Y. V. Kalinin, L. L. Jiang, Y. H. Tu, and M. M. Wu, Biophys. J., 96(6):2439--2448, 2009. [4] J. B. Moseley, A. Mayeux, A. Paoletti, and P. Nurse, Nat., 459(7248):857--U8, 2009. [6] L. Wolpert, Dev., 107:3--12, 1989

  17. Comparative analysis of mammalian sperm motility.

    PubMed

    Phillips, D M

    1972-05-01

    Spermatozoa of several mammalian species were studied by means of high-speed cinematography and electron microscopy. Three types of motile patterns were observed in mouse spermatozoa. The first type involved an asymmetrical beat which seemed to propel the sperm in circular paths. The second type involved rotation of the sperm and appeared to allow them to maintain straight paths. In the third type of pattern, the sperm appeared to move by crawling on surfaces in a snakelike manner. Spermatozoa of rabbit and Chinese hamster also had an asymmetrical beat which sometimes caused them to swim in circles. In spite of the asymmetry of the beat, these spermatozoa were also able to swim in straight paths by rotating around a central axis as they swam. Spermatozoa of some species appeared very flexible; their flagella formed arcs with a very small radius of curvature as they beat. Spermatozoa of other species appeared very stiff, and their flagella formed arcs with a very large radius of curvature. The stiffness of the spermatozoan appeared to correlate positively with the cross-sectional area of the dense fibers. This suggests that the dense fibers may be stiff elastic elements. Opossum sperm become paired as they pass through the epididymis. Pairs of opossum spermatozoa beat in a coordinated, alternating manner.

  18. DNA Supercoiling Regulates the Motility of Campylobacter jejuni and Is Altered by Growth in the Presence of Chicken Mucus

    PubMed Central

    Shortt, Claire; Scanlan, Eoin; Hilliard, Amber; Cotroneo, Chiara E.; Bourke, Billy

    2016-01-01

    ABSTRACT Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans, but relatively little is known about the global regulation of virulence factors during infection of chickens or humans. This study identified DNA supercoiling as playing a key role in regulating motility and flagellar protein production and found that this supercoiling-controlled regulon is induced by growth in chicken mucus. A direct correlation was observed between motility and resting DNA supercoiling levels in different strains of C. jejuni, and relaxation of DNA supercoiling resulted in decreased motility. Transcriptional analysis and Western immunoblotting revealed that a reduction in motility and DNA supercoiling affected the two-component regulatory system FlgRS and was associated with reduced FlgR expression, increased FlgS expression, and aberrant expression of flagellin subunits. Electron microscopy revealed that the flagellar structure remained intact. Growth in the presence of porcine mucin resulted in increased negative supercoiling, increased motility, increased FlgR expression, and reduced FlgS expression. Finally, this supercoiling-dependent regulon was shown to be induced by growth in chicken mucus, and the level of activation was dependent on the source of the mucus from within the chicken intestinal tract. In conclusion, this study reports for the first time the key role played by DNA supercoiling in regulating motility in C. jejuni and indicates that the induction of this supercoiling-induced regulon in response to mucus from different sources could play a critical role in regulating motility in vivo. PMID:27624126

  19. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres.

    PubMed

    Yuen, Michaela; Cooper, Sandra T; Marston, Steve B; Nowak, Kristen J; McNamara, Elyshia; Mokbel, Nancy; Ilkovski, Biljana; Ravenscroft, Gianina; Rendu, John; de Winter, Josine M; Klinge, Lars; Beggs, Alan H; North, Kathryn N; Ottenheijm, Coen A C; Clarke, Nigel F

    2015-11-15

    Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition.

  20. Optical approaches to the study of foraminiferan motility.

    PubMed

    Travis, J L; Bowser, S S

    1988-01-01

    Microtubules are the major cytoskeletal component of foraminiferan reticulopodia. Video-enhanced differential interference contrast light microscopy has demonstrated that the microtubules serve as the intracellular tracks along which rapid bidirectional organelle transport and cell surface motility occurs. Microtubules appear to move, both axially and laterally within the pseudopodial cytoplasm, and these microtubule translocations appear to drive the various reticulopodial movements. F-actin is localized to discrete filament plaques form at sites of pseudopod-substrate adhesion. Correlative immunofluorescence and electron microscopy reveals a structural interaction between microtubules and the actin-containing filament plaques. Our recent data on reticulopodial motility are discussed in an historical context, and a model for foram motility, based on motile microtubules, is presented.

  1. Pediatric Gastrointestinal Motility Disorders: Challenges and a Clinical Update

    PubMed Central

    Chumpitazi, Bruno

    2008-01-01

    Pediatric gastrointestinal motility disorders are common and can range from relatively benign conditions such as functional constipation to more serious disorders such as achalasia, Hirschsprung disease, and intestinal pseudoobstruction. Performing and interpreting motility evaluations in children presents unique challenges and is complicated by a dearth of control information, underlying gastrointestinal developmental maturation, technical challenges (eg, catheter size limitations), and patient cooperation. Primary diseases such as congenital pseudoobstruction or Hirschsprung disease occur more often in children, but as with adults, abnormal motility may be secondary to other processes. Diagnostic studies include radiographic studies, manometry, breath testing, myoelectrical testing, and histologic evaluation. Although recent advances in technology, genetics, and biology are making an important impact and have allowed for a better understanding of the pathophysiology and therapy of gastrointestinal motility disorders in children, further research and new therapeutic agents are needed. PMID:21904491

  2. Bidirectional helical motility of cytoplasmic dynein around microtubules.

    PubMed

    Can, Sinan; Dewitt, Mark A; Yildiz, Ahmet

    2014-07-28

    Cytoplasmic dynein is a molecular motor responsible for minus-end-directed cargo transport along microtubules (MTs). Dynein motility has previously been studied on surface-immobilized MTs in vitro, which constrains the motors to move in two dimensions. In this study, we explored dynein motility in three dimensions using an MT bridge assay. We found that dynein moves in a helical trajectory around the MT, demonstrating that it generates torque during cargo transport. Unlike other cytoskeletal motors that produce torque in a specific direction, dynein generates torque in either direction, resulting in bidirectional helical motility. Dynein has a net preference to move along a right-handed helical path, suggesting that the heads tend to bind to the closest tubulin binding site in the forward direction when taking sideways steps. This bidirectional helical motility may allow dynein to avoid roadblocks in dense cytoplasmic environments during cargo transport.

  3. Ghrelin as a target for gastrointestinal motility disorders.

    PubMed

    Greenwood-Van Meerveld, Beverley; Kriegsman, Michael; Nelson, Richard

    2011-11-01

    The therapeutic potential of ghrelin and synthetic ghrelin receptor (GRLN-R) agonists for the treatment of gastrointestinal (GI) motility disorders is based on their ability to stimulate coordinated patterns of propulsive GI motility. This review focuses on the latest findings that support the therapeutic potential of GRLN-R agonists for the treatment of GI motility disorders. The review highlights the preclinical and clinical prokinetic effects of ghrelin and a series of novel ghrelin mimetics to exert prokinetic effects on the GI tract. We build upon a series of excellent reviews to critically discuss the evidence that supports the potential of GRLN-R agonists to normalize GI motility in patients with GI hypomotility disorders such as gastroparesis, post-operative ileus (POI), idiopathic chronic constipation and functional bowel disorders. PMID:21453735

  4. [Effects of trimebutine on motility of the small intestine in humans].

    PubMed

    Couturier, D; Chaussade, S; Grandjouan, S

    1989-02-15

    Trimebutine maleate induces a specific motor response in the human proximal small bowel: except for the few minutes lapse following the occurrence of a spontaneous phase 3, an intravenous injection of 100 mg trimebutine systematically produces, in fed or fasted state, a systemic propagated activity analogous to the spontaneous phase 3 of the migrating motor complex. In lower doses, this effect is not observed. The intraduodenal administration of a high dose (600 mg) induces a similar response to that observed after intravenous injection. Trimebutine possibly acts as a stimulator of peripheral receptors of the enkephalinergic nervous system. Theoretically, these results may result in recommending the therapeutic use of trimebutine in intestinal motility disorders where disappearance or depletion of phase 3 are observed. However, information is still lacking about the relationship between therapeutic activity and the effects on intestinal motility in pathological states. PMID:2537973

  5. A portable method for assessing gastrointestinal motility by simultaneously measuring transit time and contraction frequency.

    PubMed

    Li, H; Yan, G

    2008-01-01

    To portably monitor the motility of the total GI tract, a method for assessing GI motility by simultaneously measuring transit time and contraction frequency is put forward. The portable monitoring system is composed of a swallowable telemetric capsule, a portable recorder, magnetizing coils deposited in vitro, and workstation for data processing. The transit time and contraction frequency of the GI tract are deduced by analysing the variation of the position and orientation angles of a telemetric capsule in time domain and frequency domain. AC electromagnetic localization method is used to determine the position and orientation of the telemetric capsule in vivo. In the paper, the localization model based on a quasi-static magnetic field, the method of monitoring GI motility and the set-up of the monitoring system are detailed. Then from static and dynamic experiments, the performances of the system including the accuracy and dynamic response are evaluated. Finally, the electromagnetic safety of the system is verified by simulating electromagnetic radiation to the human body. PMID:19005962

  6. A re-examination of twitching motility in Pseudomonas aeruginosa.

    PubMed

    Semmler, A B; Whitchurch, C B; Mattick, J S

    1999-10-01

    Twitching motility is a form of solid surface translocation which occurs in a wide range of bacteria and which is dependent on the presence of functional type IV fimbriae or pili. A detailed examination of twitching motility in Pseudomonas aeruginosa under optimal conditions in vitro was carried out. Under these conditions (at the smooth surface formed between semi-solid growth media and plastic or glass surfaces) twitching motility is extremely rapid, leading to an overall radial rate of colony expansion of 0.6 mm h(-1) or greater. The zones of colony expansion due to twitching motility are very thin and are best visualized by staining. These zones exhibit concentric rings in which there is a high density of microcolonies, which may reflect periods of expansion and consolidation/cell division. Video microscopic analysis showed that twitching motility involves the initial formation of large projections or rafts of aggregated cells which move away from the colony edge. Behind the rafts, individual cells move rapidly up and down trails which thin and branch out, ultimately forming a fine lattice-like network of cells. The bacteria in the lattice network then appear to settle and divide to fill out the colonized space. Our observations redefine twitching motility as a rapid, highly organized mechanism of bacterial translocation by which P. aeruginosa can disperse itself over large areas to colonize new territories. It is also now clear, both morphologically and genetically, that twitching motility and social gliding motility, such as occurs in Myxococcus xanthus, are essentially the same process.

  7. Development of a methodology to measure the effect of ergot alkaloids on forestomach motility using real-time wireless telemetry

    PubMed Central

    Egert, Amanda M.; Klotz, James L.; McLeod, Kyle R.; Harmon, David L.

    2014-01-01

    The objectives of these experiments were to characterize rumen motility patterns of cattle fed once daily using a real-time wireless telemetry system, determine when to measure rumen motility with this system, and determine the effect of ruminal dosing of ergot alkaloids on rumen motility. Ruminally cannulated Holstein steers (n = 8) were fed a basal diet of alfalfa cubes once daily. Rumen motility was measured by monitoring real-time pressure changes within the rumen using wireless telemetry and pressure transducers. Experiment 1 consisted of three 24-h rumen pressure collections beginning immediately after feeding. Data were recorded, stored, and analyzed using iox2 software and the rhythmic analyzer. All motility variables differed (P < 0.01) between hours and thirds (8-h periods) of the day. There were no differences between days for most variables. The variance of the second 8-h period of the day was less than (P < 0.01) the first for area and less than the third for amplitude, frequency, duration, and area (P < 0.05). These data demonstrated that the second 8-h period of the day was the least variable for many measures of motility and would provide the best opportunity for testing differences in motility due to treatments. In Experiment 2, the steers (n = 8) were pair-fed the basal diet of Experiment 1 and dosed with endophyte-free (E−) or endophyte-infected (E+; 0 or 10 μg ergovaline + ergovalinine/kg BW; respectively) tall fescue seed before feeding for 15 d. Rumen motility was measured for 8 h beginning 8 h after feeding for the first 14 d of seed dosing. Blood samples were taken on d 1, 7, and 15, and rumen content samples were taken on d 15. Baseline (P = 0.06) and peak (P = 0.04) pressure were lower for E+ steers. Water intake tended (P = 0.10) to be less for E+ steers the first 8 h period after feeding. The E+ seed treatment at this dosage under thermoneutral conditions did not significantly affect rumen motility, ruminal fill, or dry matter of

  8. Development of a methodology to measure the effect of ergot alkaloids on forestomach motility using real-time wireless telemetry

    NASA Astrophysics Data System (ADS)

    Egert, Amanda; Klotz, James; McLeod, Kyle; Harmon, David

    2014-10-01

    The objectives of these experiments were to characterize rumen motility patterns of cattle fed once daily using a real-time wireless telemetry system, determine when to measure rumen motility with this system, and determine the effect of ruminal dosing of ergot alkaloids on rumen motility. Ruminally cannulated Holstein steers (n = 8) were fed a basal diet of alfalfa cubes once daily. Rumen motility was measured by monitoring real-time pressure changes within the rumen using wireless telemetry and pressure transducers. Experiment 1 consisted of three 24-h rumen pressure collections beginning immediately after feeding. Data were recorded, stored, and analyzed using iox2 software and the rhythmic analyzer. All motility variables differed (P < 0.01) between hours and thirds (8-h periods) of the day. There were no differences between days for most variables. The variance of the second 8-h period of the day was less than (P < 0.01) the first for area and less than the third for amplitude, frequency, duration, and area (P < 0.05). These data demonstrated that the second 8-h period of the day was the least variable for many measures of motility and would provide the best opportunity for testing differences in motility due to treatments. In Exp. 2, the steers (n = 8) were pair-fed the basal diet of Exp. 1 and dosed with endophyte-free (E-) or endophyte-infected (E+; 0 or 10 μg ergovaline + ergovalinine / kg BW; respectively) tall fescue seed before feeding for 15 d. Rumen motility was measured for 8 h beginning 8 h after feeding for the first 14 d of seed dosing. Blood samples were taken on d 1, 7, and 15, and rumen content samples were taken on d 15. Baseline (P = 0.06) and peak (P = 0.04) pressure were lower for E+ steers. Water intake tended (P = 0.10) to be less for E+ steers the first 8 hour period after feeding. The E+ seed treatment at this dosage under thermoneutral conditions did not significantly affect rumen motility, ruminal fill, or dry matter of rumen

  9. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen

    PubMed Central

    Lambert Emo, Kris; Hyun, Young-min; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo

    2016-01-01

    During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8–10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection. PMID:27644089

  10. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen.

    PubMed

    Lambert Emo, Kris; Hyun, Young-Min; Reilly, Emma; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo; Topham, David J

    2016-09-01

    During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8-10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection. PMID:27644089

  11. Study of stomach motility using the relaxation of magnetic tracers.

    PubMed

    Carneiro, A A; Baffa, O; Oliveira, R B

    1999-07-01

    Magnetic tracers can be observed in the interior of the human body to give information about their quantity, position and state of order. With the aim of detecting and studying the degree of disorder of these tracers after they have been previously magnetized inside the stomach, a system composed of magnetization coils and magnetic detectors was developed. Helmholtz coils of diameter 84 cm were used to magnetize the sample and the remanent magnetization (RM) was detected with two first-order gradiometric fluxgate arrays each with a 15 cm base line, sensitivity of 0.5 nT and common mode rejection (CMR) of at least 10. The system allows simultaneous measurement in the anterior and posterior projections of the stomach. Measurements of the time evolution of the RM were performed in vitro and in normal subjects after the ingestion of a test meal labelled with magnetic particles. The data were fitted with an exponential curve and the relaxation time tau was obtained. Initial studies were performed to ascertain the action of a drug that is known to affect the gastric motility, showing that the decay of the remanent magnetization was indeed due to stomach contractions. PMID:10442706

  12. Vagal tone: effects on sensitivity, motility, and inflammation.

    PubMed

    Bonaz, B; Sinniger, V; Pellissier, S

    2016-04-01

    The vagus nerve (VN) is a key element of the autonomic nervous system. As a mixed nerve, the VN contributes to the bidirectional interactions between the brain and the gut, i.e., the brain-gut axis. In particular, after integration in the central autonomic network of peripheral sensations such as inflammation and pain via vagal and spinal afferents, an efferent response through modulation of preganglionic parasympathetic neurons of the dorsal motor nucleus of the vagus and/or preganglionic sympathetic neurons of the spinal cord is able to modulate gastrointestinal nociception, motility, and inflammation. A low vagal tone, as assessed by heart rate variability, a marker of the sympatho-vagal balance, is observed in functional digestive disorders and inflammatory bowel diseases. To restore a normal vagal tone appears as a goal in such diseases. Among the therapeutic tools, such as drugs targeting the cholinergic system and/or complementary medicine (hypnosis, meditation…), deep breathing, physical exercise, VN stimulation (VNS), either invasive or non-invasive, appears as innovative. There is new evidence in the current issue of this Journal supporting the role of VNS in the modulation of gastrointestinal functions. PMID:27010234

  13. Three independent signalling pathways repress motility in Pseudomonas fluorescens F113.

    PubMed

    Navazo, Ana; Barahona, Emma; Redondo-Nieto, Miguel; Martínez-Granero, Francisco; Rivilla, Rafael; Martín, Marta

    2009-07-01

    Motility is one of the most important traits for rhizosphere colonization by pseudomonads. Despite this importance, motility is severely repressed in the rhizosphere-colonizing strain Pseudomonas fluorescens F113. This bacterium is unable to swarm under laboratory conditions and produce relatively small swimming haloes. However, phenotypic variants with the ability to swarm and producing swimming haloes up to 300% larger than the wild-type strain, arise during rhizosphere colonization. These variants harbour mutations in the genes encoding the GacA/GacS two-component system and in other genes. In order to identify genes and pathways implicated in motility repression, we have used generalized mutagenesis with transposons. Analysis of the mutants has shown that besides the Gac system, the Wsp system and the sadB gene, which have been previously implicated in cyclic di-GMP turnover, are implicated in motility repression: mutants in the gacS, sadB or wspR genes can swarm and produce swimming haloes larger than the wild-type strain. Epistasis analysis has shown that the pathways defined by each of these genes are independent, because double and triple mutants show an additive phenotype. Furthermore, GacS, SadB and WspR act at different levels. Expression of the fleQ gene, encoding the master regulator of flagella synthesis is higher in the gacS(-) and sadB(-) backgrounds than in the wild-type strain and this differential expression is reflected by a higher secretion of the flagellin protein FliC. Conversely, no differences in fleQ expression or FliC secretion were observed between the wild-type strain and the wspR(-) mutant.

  14. Actin-dependent motility of melanosomes from fish retinal pigment epithelial (RPE) cells investigated using in vitro motility assays.

    PubMed

    McNeil, E L; Tacelosky, D; Basciano, P; Biallas, B; Williams, R; Damiani, P; Deacon, S; Fox, C; Stewart, B; Petruzzi, N; Osborn, C; Klinger, K; Sellers, J R; Smith, C King

    2004-06-01

    Melanosomes (pigment granules) within retinal pigment epithelial (RPE) cells of fish and amphibians undergo massive migrations in response to light conditions to control light flux to the retina. Previous research has shown that melanosome motility within apical projections of dissociated fish RPE cells requires an intact actin cytoskeleton, but the mechanisms and motors involved in melanosome transport in RPE have not been identified. Two in vitro motility assays, the Nitella assay and the sliding filament assay, were used to characterize actin-dependent motor activity of RPE melanosomes. Melanosomes applied to dissected filets of the Characean alga, Nitella, moved along actin cables at a mean rate of 2 microm/min, similar to the rate of melanosome motility in dissociated, cultured RPE cells. Path lengths of motile melanosomes ranged from 9 to 37 microm. Melanosome motility in the sliding filament assay was much more variable, ranging from 0.4-33 microm/min; 70% of velocities ranged from 1-15 microm/min. Latex beads coated with skeletal muscle myosin II and added to Nitella filets moved in the same direction as RPE melanosomes, indicating that the motility is barbed-end directed. Immunoblotting using antibodies against myosin VIIa and rab27a revealed that both proteins are enriched on melanosome membranes, suggesting that they could play a role in melanosome transport within apical projections of fish RPE.

  15. Characterization of active hair-bundle motility by a mechanical-load clamp

    NASA Astrophysics Data System (ADS)

    Salvi, Joshua D.; Maoiléidigh, Dáibhid Ó.; Fabella, Brian A.; Tobin, Mélanie; Hudspeth, A. J.

    2015-12-01

    Active hair-bundle motility endows hair cells with several traits that augment auditory stimuli. The activity of a hair bundle might be controlled by adjusting its mechanical properties. Indeed, the mechanical properties of bundles vary between different organisms and along the tonotopic axis of a single auditory organ. Motivated by these biological differences and a dynamical model of hair-bundle motility, we explore how adjusting the mass, drag, stiffness, and offset force applied to a bundle control its dynamics and response to external perturbations. Utilizing a mechanical-load clamp, we systematically mapped the two-dimensional state diagram of a hair bundle. The clamp system used a real-time processor to tightly control each of the virtual mechanical elements. Increasing the stiffness of a hair bundle advances its operating point from a spontaneously oscillating regime into a quiescent regime. As predicted by a dynamical model of hair-bundle mechanics, this boundary constitutes a Hopf bifurcation.

  16. Two-Photon Imaging of Lymphocyte Motility and Antigen Response in Intact Lymph Node

    NASA Astrophysics Data System (ADS)

    Miller, Mark J.; Wei, Sindy H.; Parker, Ian; Cahalan, Michael D.

    2002-06-01

    Lymphocyte motility is vital for trafficking within lymphoid organs and for initiating contact with antigen-presenting cells. Visualization of these processes has previously been limited to in vitro systems. We describe the use of two-photon laser microscopy to image the dynamic behavior of individual living lymphocytes deep within intact lymph nodes. In their native environment, T cells achieved peak velocities of more than 25 micrometers per minute, displaying a motility coefficient that is five to six times that of B cells. Antigenic challenge changed T cell trajectories from random walks to ``swarms'' and stable clusters. Real-time two-photon imaging reveals lymphocyte behaviors that are fundamental to the initiation of the immune response.

  17. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging

    PubMed Central

    Roy, Jeremy; Kim, Bongki; Hill, Eric; Visconti, Pablo; Krapf, Dario; Vinegoni, Claudio; Weissleder, Ralph; Brown, Dennis; Breton, Sylvie

    2016-01-01

    Epithelial cells are generally considered to be static relative to their neighbours. Basal cells in pseudostratified epithelia display a single long cytoplasmic process that can cross the tight junction barrier to reach the lumen. Using in vivo microscopy to visualize the epididymis, a model system for the study of pseudostratified epithelia, we report here the surprising discovery that these basal cell projections—which we call axiopodia—periodically extend and retract over time. We found that axiopodia extensions and retractions follow an oscillatory pattern. This movement, which we refer to as periodic axial motility (PAM), is controlled by c-Src and MEK1/2–ERK1/2. Therapeutic inhibition of tyrosine kinase activity induces a retraction of these projections. Such unexpected cell motility may reflect a novel mechanism by which specialized epithelial cells sample the luminal environment. PMID:26868824

  18. Holographic microscopy for in situ studies of microorganism motility

    NASA Astrophysics Data System (ADS)

    Nadeau, J.; Hu, S.; Jericho, S.; Lindensmith, C.

    2011-12-01

    Robust technologies for the detection and identification of microorganisms at low concentrations in complex liquid media are needed for numerous applications: environmental and medical microbiology, food safety, and for the search for microbial life elsewhere in the Solar System. The best current method for microbial enumeration is specific labeling with fluorescent dyes followed by high-resolution light microscopy. However, fluorescent techniques are difficult to use in situ in extreme environments (such as the Arctic and Antarctic or the open ocean) due to the fragility of the instruments and their high power demands. In addition, light microscopic techniques rarely provide insight into microbial motility behaviors. Tracking single cells would provide important insight into the physics of micron-scale motility as well as into key microbial phenomena such as surface attachment and invasiveness. An alternative to traditional light microscopy that is attracting increasing attention is holographic microscopy. Holographic microscopy works by illuminating the object of interest with coherent light from a laser. The light reflected from (or transmitted through) the object is then combined with a coherent reference beam to create an interference pattern that contains the phase and intensity information required to reconstruct a three dimensional image of the object. The interference pattern is recorded on a high resolution detector and can be used to computationally reconstruct a 3D image of the object. The lateral resolution of the image depends upon the wavelength of the light used, the laser power, camera quality, and external noise sources (vibration, stray light, and so forth). Although the principle is simple, technological barriers have prevented wider use of holographic microscopy. Laser sources and CCD cameras with the appropriate properties have only very recently become affordable. In addition, holographic microscopy leads to large data sets that are

  19. Bacterial Motility As a Biosignature: Tests at Icy Moon Analogue Sites

    NASA Astrophysics Data System (ADS)

    Nadeau, J. L.; Lindensmith, C.; Deming, J. W.; Stocker, R.; Graff, E.; Serabyn, E.; Wallace, J. K.; Liewer, K.; Kuhn, J.

    2014-12-01

    Extraterrestrial life in our Solar System, if present, is almost certain to be microbial. Methods and technologies for unambiguous detection of living or extinct microorganisms are needed for life-detection missions to the Jovian and Saturnian moons, where liquid water is known to exist. Our research focuses specifically on microbial meaningful motion as a biosignature—"waving crowds" at the micron scale. Digital Holographic Microscopy (DHM) is an excellent tool for unambiguous identification of bacterial and protozoal swimming, even in the presence of turbidity, drift, and currents. The design of a holographic instrument with bacteria scale resolution was described in the previous talk. In this presentation, we will illustrate the design challenges for construction of a field instrument for extreme environments and space, and present plans for scientific investigations at analogue sites for the coming season. The challenges of creating a field instrument involve performance trade-offs, the ability to operate at extreme temperatures, and handling large volumes of data. A fully autonomous instrument without external cables or power is also desirable, and this is something that previous holographic instruments have not achieved. The primary issues for space exploration are identification of a laser and drive electronics that are qualified for the expected radiation environments of the moons around gas giant planets. Tests in Earth analogue environments will establish performance parameters as well as answer scientific questions that traditional microscopic techniques cannot. Specifically, we will visit a Greenland field site to determine whether or not microorganisms are motile within the brine-filled interior network of sea ice, and if they can be autonomously tracked using the instrument. Motility within the liquid phase of a frozen matrix has been hypothesized to explain how bacteria contribute to the biogeochemical signatures detected in ice, but observational

  20. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    PubMed

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility. PMID:27367677

  1. A novel multigene cloning method for the production of a motile ATPase.

    PubMed

    Jang, Min Su; Song, Woo Chul; Shin, Seung Won; Park, Kyung Soo; Kim, Jinseok; Kim, Dong-Ik; Kim, Byung Woo; Um, Soong Ho

    2015-08-10

    With the advent of nanotechnology, new functional modules (e.g., nanomotors, nanoprobes) have become essential in several medical fields. Generally, mechanical modulators systems are the principal components of most cutting-edge technologies in modern biomedical applications. However, the in vivo use of motile probes has raised many concerns due to their low sensitivity and non-biocompatibility. As an alternative, biological enzymatic engines have received increased attention. In particular, ATPases, which belong to a class of motile enzymes that catalyze chemical metabolic reactions, have emerged as a promising motor due to their improved biocompatibility and performance. However, ATPases usually suffer from lower functional activity and are difficult to express recombinantly in bacteria relative to their conventional and synthetic competitors. Here, we report a novel functional modified ATPase with both a simple purification protocol and enhanced motile activity. For this mutant ATPase, a new bacterial subcloning method was established. The ATPase-encoding sequence was redesigned so that the mutant ATPase could be easily produced in an Escherichia coli system. The modified thermophilic F1-ATPase (mTF1-ATPase) demonstrated 17.8unit/mg ATPase activity. We propose that derivatives of our ATPase may enable the development of novel in vitro and in vivo synthetic medical diagnostics, as well as therapeutics.

  2. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    PubMed

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-06-29

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility.

  3. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility

    PubMed Central

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility. PMID:27367677

  4. Computational and Modeling Strategies for Cell Motility

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Yang, Xiaofeng; Adalsteinsson, David; Elston, Timothy C.; Jacobson, Ken; Kapustina, Maryna; Forest, M. Gregory

    A predictive simulation of the dynamics of a living cell remains a fundamental modeling and computational challenge. The challenge does not even make sense unless one specifies the level of detail and the phenomena of interest, whether the focus is on near-equilibrium or strongly nonequilibrium behavior, and on localized, subcellular, or global cell behavior. Therefore, choices have to be made clear at the outset, ranging from distinguishing between prokaryotic and eukaryotic cells, specificity within each of these types, whether the cell is "normal," whether one wants to model mitosis, blebs, migration, division, deformation due to confined flow as with red blood cells, and the level of microscopic detail for any of these processes. The review article by Hoffman and Crocker [48] is both an excellent overview of cell mechanics and an inspiration for our approach. One might be interested, for example, in duplicating the intricate experimental details reported in [43]: "actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process," or to duplicate experimental evidence of traveling waves in cells recovering from actin depolymerization [42, 35]. Modeling studies of lamellipodial structure, protrusion, and retraction behavior range from early mechanistic models [84] to more recent deterministic [112, 97] and stochastic [51] approaches with significant biochemical and structural detail. Recent microscopic-macroscopic models and algorithms for cell blebbing have been developed by Young and Mitran [116], which update cytoskeletal microstructure via statistical sampling techniques together with fluid variables. Alternatively, whole cell compartment models (without spatial details) of oscillations in spreading cells have been proposed [35, 92, 109] which show positive and negative feedback

  5. The flagellum in bacterial pathogens: For motility and a whole lot more.

    PubMed

    Chaban, Bonnie; Hughes, H Velocity; Beeby, Morgan

    2015-10-01

    The bacterial flagellum is an amazingly complex molecular machine with a diversity of roles in pathogenesis including reaching the optimal host site, colonization or invasion, maintenance at the infection site, and post-infection dispersal. Multi-megadalton flagellar motors self-assemble across the cell wall to form a reversible rotary motor that spins a helical propeller - the flagellum itself - to drive the motility of diverse bacterial pathogens. The flagellar motor responds to the chemoreceptor system to redirect swimming toward beneficial environments, thus enabling flagellated pathogens to seek out their site of infection. At their target site, additional roles of surface swimming and mechanosensing are mediated by flagella to trigger pathogenesis. Yet while these motility-related functions have long been recognized as virulence factors in bacteria, many bacteria have capitalized upon flagellar structure and function by adapting it to roles in other stages of the infection process. Once at their target site, the flagellum can assist adherence to surfaces, differentiation into biofilms, secretion of effector molecules, further penetration through tissue structures, or in activating phagocytosis to gain entry into eukaryotic cells. Next, upon onset of infection, flagellar expression must be adapted to deal with the host's immune system defenses, either by reduced or altered expression or by flagellar structural modification. Finally, after a successful growth phase on or inside a host, dispersal to new infection sites is often flagellar motility-mediated. Examining examples of all these processes from different bacterial pathogens, it quickly becomes clear that the flagellum is involved in bacterial pathogenesis for motility and a whole lot more. PMID:26541483

  6. The flagellum in bacterial pathogens: For motility and a whole lot more.

    PubMed

    Chaban, Bonnie; Hughes, H Velocity; Beeby, Morgan

    2015-10-01

    The bacterial flagellum is an amazingly complex molecular machine with a diversity of roles in pathogenesis including reaching the optimal host site, colonization or invasion, maintenance at the infection site, and post-infection dispersal. Multi-megadalton flagellar motors self-assemble across the cell wall to form a reversible rotary motor that spins a helical propeller - the flagellum itself - to drive the motility of diverse bacterial pathogens. The flagellar motor responds to the chemoreceptor system to redirect swimming toward beneficial environments, thus enabling flagellated pathogens to seek out their site of infection. At their target site, additional roles of surface swimming and mechanosensing are mediated by flagella to trigger pathogenesis. Yet while these motility-related functions have long been recognized as virulence factors in bacteria, many bacteria have capitalized upon flagellar structure and function by adapting it to roles in other stages of the infection process. Once at their target site, the flagellum can assist adherence to surfaces, differentiation into biofilms, secretion of effector molecules, further penetration through tissue structures, or in activating phagocytosis to gain entry into eukaryotic cells. Next, upon onset of infection, flagellar expression must be adapted to deal with the host's immune system defenses, either by reduced or altered expression or by flagellar structural modification. Finally, after a successful growth phase on or inside a host, dispersal to new infection sites is often flagellar motility-mediated. Examining examples of all these processes from different bacterial pathogens, it quickly becomes clear that the flagellum is involved in bacterial pathogenesis for motility and a whole lot more.

  7. Determination of motility forces on isolated chromosomes with laser tweezers

    PubMed Central

    Khatibzadeh, Nima; Stilgoe, Alexander B.; Bui, Ann A. M.; Rocha, Yesenia; Cruz, Gladys M.; Loke, Vince; Shi, Linda Z.; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina; Berns, Michael W.

    2014-01-01

    Quantitative determination of the motility forces of chromosomes during cell division is fundamental to understanding a process that is universal among eukaryotic organisms. Using an optical tweezers system, isolated mammalian chromosomes were held in a 1064 nm laser trap. The minimum force required to move a single chromosome was determined to be ≈0.8–5 pN. The maximum transverse trapping efficiency of the isolated chromosomes was calculated as ≈0.01–0.02. These results confirm theoretical force calculations of ≈0.1–12 pN to move a chromosome on the mitotic or meiotic spindle. The verification of these results was carried out by calibration of the optical tweezers when trapping microspheres with a diameter of 4.5–15 µm in media with 1–7 cP viscosity. The results of the chromosome and microsphere trapping experiments agree with optical models developed to simulate trapping of cylindrical and spherical specimens. PMID:25359514

  8. Ultrastructure and motion analysis of permeabilized Paramecium capable of motility and regulation of motility.

    PubMed

    Lieberman, S J; Hamasaki, T; Satir, P

    1988-01-01

    Structural and behavioral features of intact and permeabilized Paramecium tetraurelia have been defined as a basis for study of Ca2+ control of ciliary reversal. Motion analysis of living paramecia shows that all the cells in a population swim forward with gently curving spirals at speeds averaging 369 +/- 19 microns/second. Ciliary reversal occurs in 10% of the cell population per second. Living paramecia, quick-fixed for scanning electron microscopy (SEM), show metachronal waves and an effective stroke obliquely toward the posterior end of the cell. Upon treatment with Triton X-100, swimming ceases and both scanning and transmission electron microscopy reveal cilia that uniformly project perpendicularly from the cell surface. Thin sections of these cells indicate that the ciliary, cell, and outer alveolar membranes are greatly disrupted or entirely missing and that the cytoplasm is also disrupted. These permeabilized paramecia can be reactivated and are capable of motility and regulation of motility. Motion analysis of cells reactivated with Mg2+ and ATP in low Ca2+ buffer (pCa greater than 7) shows that 71% swim forward in straight or curved paths at speeds averaging 221 +/- 20 microns/second. When these cells are quick-fixed for SEM the metachronal wave patterns of living, forward swimming cells reappear. Motion analysis of permeabilized cells reactivated in high Ca2+ buffers (pCa 5.5) shows that 94% swim backward in tight spirals at a velocity averaging 156 +/- 7 microns/second. SEM reveals a metachronal wave pattern with an effective stroke toward the anterior region. Although the permeabilized cells do not reverse spontaneously, the pCa response is preserved and the Ca2+ switch remains intact. The ciliary axonemes are largely exposed to the external environment. Therefore, the behavioral responses of these permeabilized cells depend on interaction of Ca2+ with molecules that remain bound to the axonemes throughout the extraction and reactivation procedures.

  9. PACRG, a protein linked to ciliary motility, mediates cellular signaling

    PubMed Central

    Loucks, Catrina M.; Bialas, Nathan J.; Dekkers, Martijn P. J.; Walker, Denise S.; Grundy, Laura J.; Li, Chunmei; Inglis, P. Nick; Kida, Katarzyna; Schafer, William R.; Blacque, Oliver E.; Jansen, Gert; Leroux, Michel R.

    2016-01-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon–associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan. PMID:27193298

  10. Sensory functions of motile cilia and implication for bronchiectasis

    PubMed Central

    Jain, Raksha; Javidan-Nejad, Cylen; Alexander-Brett, Jennifer; Horani, Amjad; Cabellon, Michelle C.; Walter, Michael J.; Brody, Steven L.

    2013-01-01

    Cilia are specialized organelles that extend from the surface of cells into the local environment. Airway epithelial cell cilia are motile to provide mucociliary clearance for host defense. On other cells, solitary cilia are specialized to detect chemical or mechanosensory signals. Sensory proteins in motile cilia have recently been identified that detect shear stress, osmotic force, fluid flow, bitter taste and sex hormones. The relationship of sensory function in human motile cilia to disease is now being revealed. One example is polycystin-1 and polycystin-2. As a complex, these proteins function as a flow sensor in cilia and are mutated in autosomal dominant polycystic kidney disease (ADPKD). The polycystins are also expressed in motile cilia of the airways, potentially operating as sensors in the lung. Computed tomography studies from patients with ADPKD revealed radiographic evidence for bronchiectasis, suggesting that polycystin-1 and -2 are important in lung function. The expression of this complex and sensory channel TRPV4, and bitter taste and sex hormones receptors in motile cilia indicate that the cell is wired to interpret environmental cues to regulate cilia beat frequency and other functions. Defective signaling of sensory proteins may result in a ciliopathy that includes lung disease. PMID:22202111

  11. 3D timelapse analysis of muscle satellite cell motility.

    PubMed

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, D D W

    2009-10-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin alpha 7 beta 1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of "pathfinding" cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues.

  12. Bidirectional motility of the fission yeast kinesin-5, Cut7

    SciTech Connect

    Edamatsu, Masaki

    2014-03-28

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.

  13. PACRG, a protein linked to ciliary motility, mediates cellular signaling.

    PubMed

    Loucks, Catrina M; Bialas, Nathan J; Dekkers, Martijn P J; Walker, Denise S; Grundy, Laura J; Li, Chunmei; Inglis, P Nick; Kida, Katarzyna; Schafer, William R; Blacque, Oliver E; Jansen, Gert; Leroux, Michel R

    2016-07-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon-associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan. PMID:27193298

  14. Microscopic analysis of bacterial motility at high pressure.

    PubMed

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-04-18

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment.

  15. Correlation of Adiponectin mRNA Abundance and Its Receptors with Quantitative Parameters of Sperm Motility in Rams

    PubMed Central

    Kadivar, Ali; Heidari Khoei, Heidar; Hassanpour, Hossein; Golestanfar, Arefe; Ghanaei, Hamid

    2016-01-01

    Background Adiponectin and its receptors (AdipoR1 and AdipoR2), known as adiponectin system, have some proven roles in the fat and glucose metabolisms. Several studies have shown that adiponectin can be considered as a candidate in linking metabolism to testicular function. In this regard, we evaluated the correlation between sperm mRNA abundance of adiponectin and its receptors, with sperm motility indices in the present study. Materials and Methods In this completely randomized design study, semen samples from 6 adult rams were fractionated on a two layer discontinuous percoll gradient into high and low motile sperm cells, then quantitative parameters of sperm motility were determined by computer-assisted sperm analyzer (CASA). The mRNA abundance levels of Adiponectin, AdipoR1 and AdipoR2 were measured quantitatively using real-time reverse transcriptase polymerase chain reaction (qRT-PCR) in the high and low motile groups. Results Firstly, we showed that adiponectin and its receptors (AdipoR1 and AdipoR2) were transcriptionally expressed in the ram sperm cells. Using Pfaff based method qRT- PCR, these levels of transcription were significantly higher in the high motile rather than low motile samples. This increase was 3.5, 3.6 and 2.5 fold change rate for Adiponectin, AdipoR1 and AdipoR2, respectively. Some of sperm motility indices [curvilinear velocity (VCL), straight-line velocity (VSL), average path velocity (VAP), linearity (LIN), wobble (WOB) and straightness (STR)] were also significantly correlated with Adiponectin and AdipoR1 relative expression. The correlation of AdipoR2 was also significant with the mentioned parameters, although this correlation was not comparable with adiponectin and AdipoR1. Conclusion This study revealed the novel association of adiponectin system with sperm motility. The results of our study suggested that adiponectin is one of the possible factors which can be evaluated and studied in male infertility disorders. PMID:27123210

  16. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator.

    PubMed

    Kuchma, S L; Delalez, N J; Filkins, L M; Snavely, E A; Armitage, J P; O'Toole, G A

    2015-02-01

    The second messenger cyclic diguanylate (c-di-GMP) plays a critical role in the regulation of motility. In Pseudomonas aeruginosa PA14, c-di-GMP inversely controls biofilm formation and surface swarming motility, with high levels of this dinucleotide signal stimulating biofilm formation and repressing swarming. P. aeruginosa encodes two stator complexes, MotAB and MotCD, that participate in the function of its single polar flagellum. Here we show that the repression of swarming motility requires a functional MotAB stator complex. Mutating the motAB genes restores swarming motility to a strain with artificially elevated levels of c-di-GMP as well as stimulates swarming in the wild-type strain, while overexpression of MotA from a plasmid represses swarming motility. Using point mutations in MotA and the FliG rotor protein of the motor supports the conclusion that MotA-FliG interactions are critical for c-di-GMP-mediated swarming inhibition. Finally, we show that high c-di-GMP levels affect the localization of a green fluorescent protein (GFP)-MotD fusion, indicating a mechanism whereby this second messenger has an impact on MotCD function. We propose that when c-di-GMP level is high, the MotAB stator can displace MotCD from the motor, thereby affecting motor function. Our data suggest a newly identified means of c-di-GMP-mediated control of surface motility, perhaps conserved among Pseudomonas, Xanthomonas, and other organisms that encode two stator systems.

  17. Induction of focal adhesions and motility in Drosophila S2 cells.

    PubMed

    Ribeiro, Susana A; D'Ambrosio, Michael V; Vale, Ronald D

    2014-12-01

    Focal adhesions are dynamic structures that interact with the extracellular matrix on the cell exterior and actin filaments on the cell interior, enabling cells to adhere and crawl along surfaces. We describe a system for inducing the formation of focal adhesions in normally non-ECM-adherent, nonmotile Drosophila S2 cells. These focal adhesions contain the expected molecular markers such as talin, vinculin, and p130Cas, and they require talin for their formation. The S2 cells with induced focal adhesions also display a nonpolarized form of motility on vitronectin-coated substrates. Consistent with findings in mammalian cells, the degree of motility can be tuned by changing the stiffness of the substrate and was increased after the depletion of PAK3, a p21-activated kinase. A subset of nonmotile, nonpolarized cells also exhibited focal adhesions that rapidly assembled and disassembled around the cell perimeter. Such cooperative and dynamic fluctuations of focal adhesions were decreased by RNA interference (RNAi) depletion of myosin II and focal adhesion kinase, suggesting that this behavior requires force and focal adhesion maturation. These results demonstrate that S2 cells, a cell line that is well studied for cytoskeletal dynamics and readily amenable to protein manipulation by RNAi, can be used to study the assembly and dynamics of focal adhesions and mechanosensitive cell motility.

  18. Life Span and Motility Effects of Ethanolic Extracts from Sophora moorcroftiana Seeds on Caenorhabditis elegans

    PubMed Central

    Li, Xin; Han, Junxian; Zhu, Rongyan; Cui, Rongrong; Ma, Xingming; Dong, Kaizhong

    2016-01-01

    Background: Sophora moorcroftiana is an endemic shrub species with a great value in folk medicine in Tibet, China. In this study, relatively little is known about whether S. moorcroftiana is beneficial in animals' nervous system and life span or not. Materials and Methods: To address this question, under survival normal temperature (25°C), S. moorcroftiana seeds were extracted with 95% ethanol, and Caenorhabditis elegans were exposed to three different extract concentrations (100 mg/L, 200 mg/L, and 400 mg/mL) from S. moorcroftiana seeds. Results: The 95% ethanolic extracts from S. moorcroftiana seeds could increase life span and slow aging-related increase in C. elegans and could not obviously influence the motility of C. elegans. Conclusion: Given these results by our experiment for life span and motility with 95% ethanolic extracts from S. moorcroftiana seeds in C. elegans, the question whether S. moorcroftiana acts as an anti-aging substance in vivo arises. SUMMARY The 95% ethanolic extracts from S. moorcroftiana seeds have no effect on the life span in C. elegans when extract concentrations from S. moorcroftiana seeds <400 mg/LThe 400 mg/L 95% ethanolic extracts from S. moorcroftiana seeds could increase life span in C. elegansThe 95% ethanolic extracts from S. moorcroftiana seeds could not obviously influence the motility in C. elegans. Abbreviation used: S. moorcroftiana: Sophora moorcroftiana; C. elegan: Caenorhabditis elegan; E. coli OP50: Escherichia coli OP50; DMSO: Dimethyl sulfoxide. PMID:27279712

  19. A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae.

    PubMed

    Cameron, D Ewen; Urbach, Jonathan M; Mekalanos, John J

    2008-06-24

    Defined mutant libraries allow for efficient genome-scale screening and provide a convenient collection of mutations in almost any nonessential gene of interest. Here, we present a near-saturating transposon insertion library in Vibrio cholerae strain C6706, a clinical isolate belonging to the O1 El Tor biotype responsible for the current cholera pandemic. Automated sequencing analysis of 23,312 mutants allowed us to build a 3,156-member subset library containing a representative insertion in every disrupted ORF. Because uncharacterized mutations that affect motility have shown utility in attenuating V. cholerae live vaccines, we used this genome-wide subset library to define all genes required for motility and to further assess the accuracy and purity of the library. In this screen, we identified the hypothetical gene VC2208 (flgT) as essential for motility. Flagellated cells were very rare in a flgT mutant, and transcriptional analysis showed it was specifically stalled at the class III/IV assembly checkpoint of the V. cholerae flagellar regulatory system. Because FlgT is predicted to have structural homology to TolB, a protein involved in determining outer membrane architecture, and the sheath of the V. cholerae flagellum appears to be derived from the cell's outer membrane, FlgT may play a direct role in flagellar sheath formation.

  20. The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion.

    PubMed

    Alsohim, Abdullah S; Taylor, Tiffany B; Barrett, Glyn A; Gallie, Jenna; Zhang, Xue-Xian; Altamirano-Junqueira, Astrid E; Johnson, Louise J; Rainey, Paul B; Jackson, Robert W

    2014-07-01

    Food security depends on enhancing production and reducing loss to pests and pathogens. A promising alternative to agrochemicals is the use of plant growth-promoting rhizobacteria (PGPR), which are commonly associated with many, if not all, plant species. However, exploiting the benefits of PGPRs requires knowledge of bacterial function and an in-depth understanding of plant-bacteria associations. Motility is important for colonization efficiency and microbial fitness in the plant environment, but the mechanisms employed by bacteria on and around plants are not well understood. We describe and investigate an atypical mode of motility in Pseudomonas fluorescens SBW25 that was revealed only after flagellum production was eliminated by deletion of the master regulator fleQ. Our results suggest that this 'spidery spreading' is a type of surface motility. Transposon mutagenesis of SBW25ΔfleQ (SBW25Q) produced mutants, defective in viscosin production, and surface spreading was also abolished. Genetic analysis indicated growth-dependency, production of viscosin, and several potential regulatory and secretory systems involved in the spidery spreading phenotype. Moreover, viscosin both increases efficiency of surface spreading over the plant root and protects germinating seedlings in soil infected with the plant pathogen Pythium. Thus, viscosin could be a useful target for biotechnological development of plant growth promotion agents. PMID:24684210

  1. Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming

    2015-03-01

    Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.

  2. Direct Correlation between Motile Behavior and Protein Abundance in Single Cells.

    PubMed

    Dufour, Yann S; Gillet, Sébastien; Frankel, Nicholas W; Weibel, Douglas B; Emonet, Thierry

    2016-09-01

    Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage. PMID:27599206

  3. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater.

    PubMed

    Becker, Matthew W; Collins, Samantha A; Metge, David W; Harvey, Ronald W; Shapiro, Allen M

    2004-04-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates.

  4. BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways

    PubMed Central

    de Jesus Perez, Vinicio A.; Ali, Ziad; Alastalo, Tero-Pekka; Ikeno, Fumiaki; Sawada, Hirofumi; Lai, Ying-Ju; Kleisli, Thomas; Spiekerkoetter, Edda; Qu, Xiumei; Rubinos, Laura H.; Ashley, Euan; Amieva, Manuel; Dedhar, Shoukat

    2011-01-01

    We present a novel cell-signaling paradigm in which bone morphogenetic protein 2 (BMP-2) consecutively and interdependently activates the wingless (Wnt)–β-catenin (βC) and Wnt–planar cell polarity (PCP) signaling pathways to facilitate vascular smooth muscle motility while simultaneously suppressing growth. We show that BMP-2, in a phospho-Akt–dependent manner, induces βC transcriptional activity to produce fibronectin, which then activates integrin-linked kinase 1 (ILK-1) via α4-integrins. ILK-1 then induces the Wnt–PCP pathway by binding a proline-rich motif in disheveled (Dvl) and consequently activating RhoA-Rac1–mediated motility. Transfection of a Dvl mutant that binds βC without activating RhoA-Rac1 not only prevents BMP-2–mediated vascular smooth muscle cell motility but promotes proliferation in association with persistent βC activity. Interfering with the Dvl-dependent Wnt–PCP activation in a murine stented aortic graft injury model promotes extensive neointima formation, as shown by optical coherence tomography and histopathology. We speculate that, in response to injury, factors that subvert BMP-2–mediated tandem activation of Wnt–βC and Wnt–PCP pathways contribute to obliterative vascular disease in both the systemic and pulmonary circulations. PMID:21220513

  5. The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion.

    PubMed

    Alsohim, Abdullah S; Taylor, Tiffany B; Barrett, Glyn A; Gallie, Jenna; Zhang, Xue-Xian; Altamirano-Junqueira, Astrid E; Johnson, Louise J; Rainey, Paul B; Jackson, Robert W

    2014-07-01

    Food security depends on enhancing production and reducing loss to pests and pathogens. A promising alternative to agrochemicals is the use of plant growth-promoting rhizobacteria (PGPR), which are commonly associated with many, if not all, plant species. However, exploiting the benefits of PGPRs requires knowledge of bacterial function and an in-depth understanding of plant-bacteria associations. Motility is important for colonization efficiency and microbial fitness in the plant environment, but the mechanisms employed by bacteria on and around plants are not well understood. We describe and investigate an atypical mode of motility in Pseudomonas fluorescens SBW25 that was revealed only after flagellum production was eliminated by deletion of the master regulator fleQ. Our results suggest that this 'spidery spreading' is a type of surface motility. Transposon mutagenesis of SBW25ΔfleQ (SBW25Q) produced mutants, defective in viscosin production, and surface spreading was also abolished. Genetic analysis indicated growth-dependency, production of viscosin, and several potential regulatory and secretory systems involved in the spidery spreading phenotype. Moreover, viscosin both increases efficiency of surface spreading over the plant root and protects germinating seedlings in soil infected with the plant pathogen Pythium. Thus, viscosin could be a useful target for biotechnological development of plant growth promotion agents.

  6. Bursts of non-deglutitive simultaneous contractions may be a normal oesophageal motility pattern.

    PubMed Central

    Janssens, J; Annese, V; Vantrappen, G

    1993-01-01

    The frequency and characteristics of non-deglutitive motor activity of the human oesophagus and its relation to motility patterns in the antrum and upper small intestine were studied in 25 fasted healthy subjects. Motility of the oesophagus, antrum, and upper small intestine was recorded by means of a manometric perfused catheter system. The most striking non-deglutitive motility pattern consisted of repetitive bursts of non-sequential pressure peaks occurring in the smooth muscle portion of the oesophagus. The mean number of pressure peaks per burst was 2.7 (SD 2) waves with a mean amplitude of 19.5 (SD 9.9) mm Hg and a duration of 3.09 (SD 0.22) seconds. The highest amplitude was 80 mm Hg and the longest burst consisted of 13 repetitive waves. The bursts were recorded up to a distance of 15-20 cm above the lower oesophageal sphincter. Ninety five per cent of the bursts occurred during a 15 minute period before the onset of phase 3 of the migrating motor complex in the antral or upper small intestinal area, or during the lower oesophageal sphincter component of the migrating motor complex. In conclusion, spontaneous bursts of non-sequential pressure peaks occurred in the smooth muscle part of the human oesophagus in relation to phase 3 of the migrating motor complex. They represent the oesophageal body component of phase 3 of the migrating motor complex and are not a sign of oesophageal motor abnormalities. PMID:8174946

  7. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    USGS Publications Warehouse

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  8. Direct Correlation between Motile Behavior and Protein Abundance in Single Cells

    PubMed Central

    Gillet, Sébastien; Frankel, Nicholas W.; Weibel, Douglas B.

    2016-01-01

    Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage. PMID:27599206

  9. Effects of wild fish and motile epibenthic invertebrates on the benthos below an open water fish farm

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, Carlos; Belando, María Dolores; Navarrete-Mier, Francisco; Marín, Arnaldo

    2011-01-01

    A manipulative caging experiment was carried out to evaluate the role of wild fish and motile epibenthic invertebrates on the benthic system influenced by an open water fish farm. Chemical and biological parameters of the sediment were measured as indicators of the ecological benthic status. The combination of wild fish and currents notably lowered aquaculture waste sedimentation below the fish farm. The limited waste sedimentation rate could have limited the scavenger and predation activity of wild fish on the benthos, whose role may be taken over by motile epibenthic invertebrates. The interaction of these motile epibenthic invertebrates with the sediment differed from that observed with fish. The motile epibenthic invertebrates led to more reduced conditions with lower redox values, significantly decreased the number of species of macrofaunal benthic assemblages and significantly modified macrofaunal benthic assemblages. Therefore, epibenthic invertebrates do not seem to have an ameliorative effect on the benthic status produced by fish farming. Since the effects of epibenthic species on the benthic system can greatly vary according to their identity, further experiments should be performed to better understand the drivers that influence the epibenthic species identity that modulate the benthic system affected by fish farming.

  10. Model for self-polarization and motility of keratocyte fragments.

    SciTech Connect

    Ziebert, F.; Swaminathan, S.; Aranson, I. S.

    2011-01-01

    Computational modeling of cell motility on substrates is a formidable challenge; regulatory pathways are intertwined and forces that influence cell motion are not fully quantified. Additional challenges arise from the need to describe a moving deformable cell boundary. Here, we present a simple mathematical model coupling cell shape dynamics, treated by the phase-field approach, to a vector field describing the mean orientation (polarization) of the actin filament network. The model successfully reproduces the primary phenomenology of cell motility: discontinuous onset of motion, diversity of cell shapes and shape oscillations. The results are in qualitative agreement with recent experiments on motility of keratocyte cells and cell fragments. The asymmetry of the shapes is captured to a large extent in this simple model, which may prove useful for the interpretation of experiments.

  11. Symbolic dynamics of jejunal motility in the irritable bowel

    NASA Astrophysics Data System (ADS)

    Wackerbauer, Renate; Schmidt, Thomas

    1999-09-01

    Different studies of the irritable bowel syndrome (IBS) by conventional analysis of jejunal motility report conflicting results. Therefore, our aim is to quantify the jejunal contraction activity by symbolic dynamics in order to discriminate between IBS and control subjects. Contraction amplitudes during fasting motility (phase II) are analyzed for 30 IBS and 30 healthy subjects. On the basis of a particular scale-independent discretization of the contraction amplitudes with respect to the median, IBS patients are characterized by increased block entropy as well as increased mean contraction amplitude. In a further more elementary level of analysis these differences can be reduced to specific contraction patterns within the time series, namely the fact that successive large contraction amplitudes are less ordered in IBS than in controls. These significant differences in jejunal motility may point to an altered control of the gut in IBS, although further studies on a representative number of patients have to be done for a validation of these findings.

  12. Lipid rafts direct macrophage motility in the tissue microenvironment.

    PubMed

    Previtera, Michelle L; Peterman, Kimberly; Shah, Smit; Luzuriaga, Juan

    2015-04-01

    Infiltrating leukocytes are exposed to a wide range of tissue elasticities. While we know the effects of substrate elasticity on acute inflammation via the study of neutrophil migration, we do not know its effects on leukocytes that direct chronic inflammatory events. Here, we studied morphology and motility of macrophages, the innate immune cells that orchestrate acute and chronic inflammation, on polyacrylamide hydrogels that mimicked a wide range of tissue elasticities. As expected, we found that macrophage spreading area increased as substrate elasticity increased. Unexpectedly, we found that morphology did not inversely correlate with motility. In fact, velocity of steady-state macrophages remained unaffected by substrate elasticity, while velocity of biologically stimulated macrophages was limited on stiff substrates. We also found that the lack of motility on stiff substrates was due to a lack of lipid rafts on the leading edge of the macrophages. This study implicates lipid rafts in the mechanosensory mechanism of innate immune cell infiltration. PMID:25269613

  13. Model for self-polarization and motility of keratocyte fragments

    PubMed Central

    Ziebert, Falko; Swaminathan, Sumanth; Aranson, Igor S.

    2012-01-01

    Computational modelling of cell motility on substrates is a formidable challenge; regulatory pathways are intertwined and forces that influence cell motion are not fully quantified. Additional challenges arise from the need to describe a moving deformable cell boundary. Here, we present a simple mathematical model coupling cell shape dynamics, treated by the phase-field approach, to a vector field describing the mean orientation (polarization) of the actin filament network. The model successfully reproduces the primary phenomenology of cell motility: discontinuous onset of motion, diversity of cell shapes and shape oscillations. The results are in qualitative agreement with recent experiments on motility of keratocyte cells and cell fragments. The asymmetry of the shapes is captured to a large extent in this simple model, which may prove useful for the interpretation of experiments. PMID:22012972

  14. Effect of 655-nm diode laser on dog sperm motility.

    PubMed

    Corral-Baqués, M I; Rigau, T; Rivera, M; Rodríguez, J E; Rigau, J

    2005-01-01

    Sperm motility depends on energy consumption. Low-level laser irradiation increases adenosin triphosphate (ATP) production and energy supply to the cell. The aim of this study is to analyse whether the irradiation affects the parameters that characterise dog sperm motility. Fresh dog sperm samples were divided into four groups and irradiated with a 655-nm continuous-wave diode laser with varying doses: 0 (control), 4, 6 and 10 J/cm(2). At 0, 15 and 45 min following irradiation, pictures were taken of all the groups in order to study motility with computer-aided sperm analysis (CASA). Functional tests were also performed. Average path velocity (VAP), linear coefficient (Lin) and beat cross frequency (BCF) were statistically and significantly different when compared to the control. The functional tests also showed a significant difference. At these parameters, the 655-nm continuous-wave diode laser improves the speed and linear coefficient of the sperm.

  15. Form and Function in Cell Motility: From Fibroblasts to Keratocytes

    PubMed Central

    Herant, Marc; Dembo, Micah

    2010-01-01

    Abstract It is plain enough that a horse is made for running, but similar statements about motile cells are not so obvious. Here the basis for structure-function relations in cell motility is explored by application of a new computational technique that allows realistic three-dimensional simulations of cells migrating on flat substrata. With this approach, some cyber cells spontaneously display the classic irregular protrusion cycles and handmirror morphology of a crawling fibroblast, and others the steady gliding motility and crescent morphology of a fish keratocyte. The keratocyte motif is caused by optimal recycling of the cytoskeleton from the back to the front so that more of the periphery can be devoted to protrusion. These calculations are a step toward bridging the gap between the integrated mechanics and biophysics of whole cells and the microscopic molecular biology of cytoskeletal components. PMID:20409459

  16. Single cell motility and trail formation in populations of microglia

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Jin

    2009-03-01

    Microglia are a special type of glia cell in brain that has immune responses. They constitute about 20 % of the total glia population within the brain. Compared to other glia cells, microglia are very motile, constantly moving to destroy pathogens and to remove dead neurons. While doing so, they exhibit interesting body shapes, have cell-to-cell communications, and have chemotatic responses to each other. Interestingly, our recent in vitro studies show that their unusual motile behaviors can self-organize to form trails, similar to those in populations of ants. We have studied the changes in the physical properties of these trails by varying the cell population density and by changing the degree of spatial inhomogeneities (``pathogens''). Our experimental observations can be quite faithfully reproduced by a simple mathematical model involving many motile cells whose mechanical motion are driven by actin polymerization and depolymerization process within the individual cell body and by external chemical gradients.

  17. Highly sensitive kinesin-microtubule motility assays using SLIM

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail; Teng, Kai Wen; Selvin, Paul R.; Popescu, Gabriel

    2016-03-01

    We provide an experimental demonstration of Spatial Light Interference Microscopy (SLIM) as a tool for measuring the motion of 25 nm tubulin structures without the use of florescence labels. Compared to intensity imaging methods such as phase contrast or DIC, our imaging technique relies on the ratios of images associated with optically introduced phase shifts, thus implicitly removing background illumination. To demonstrate our new found capabilities, we characterize kinesin-based motility continuously over periods of time where fluorescence would typically photobleach. We exploit this new method to compare the motility of microtubules at low ATP concentrations, with and without the tagging proteins formerly required to perform these studies. Our preliminary results show that the tags have a non-negligible effect on the microtubule motility, slowing the process down by more than 10%.

  18. Polymorphonuclear leucocyte motility in men with ankylosing spondylitis.

    PubMed Central

    Pease, C T; Fennell, M; Brewerton, D A

    1989-01-01

    The polymorphonuclear leucocyte (PMN) response to a chemotactic or chemokinetic stimulus is enhanced in men with ankylosing spondylitis (AS). This effect does not parallel the severity of disease activity or the size of the acute phase response, and it is independent of non-steroidal anti-inflammatory drug treatment. Polymorph function is normal in HLA-B27 positive brothers of probands with AS and in other HLA-B27 positive individuals in the absence of disease. Polymorph motility is also normal in patients with psoriasis vulgaris or Crohn's disease, indicating that enhanced PMN motility is not a non-specific consequence of all inflammatory disorders. PMID:2784306

  19. Cell motility and antibiotic tolerance of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  20. Unidirecetional motility of excherichia coli in restrictive capillaries

    SciTech Connect

    Liu, Z.; Papadopoulos, K.D.

    1995-10-01

    In a 6-{mu}m capillary filled with buffer and in the absence of any chemotactic stimuli, Escherichia coli K-12 cells swim persistently in only one direction. This behavior of E. coli can be simply explained by means of the length and relative rigidity of their flagella. Single-cell motility parameters-swimming speed, turn angle, and run length time-were measured. Compared with the motility parameters measured in bulk phase, turn angle was influenced because of the effect of the geometrical restriction. 30 refs., 6 figs.

  1. Capping Protein Increases the Rate of Actin-based Motility by Promoting Filament Nucleation by the Arp2/3 Complex

    PubMed Central

    Akin, Orkun; Mullins, R. Dyche

    2008-01-01

    Summary Capping protein is an integral component of Arp2/3-nucleated actin networks that drive amoeboid motility. Increasing the concentration of capping protein, which caps barbed ends of actin filaments and prevents elongation, increases the rate of actin-based motility in vivo and in vitro. We studied the synergy between capping protein and Arp2/3 using an in vitro actin-based motility system reconstituted from purified proteins. We find that capping protein increases the rate of motility by promoting more frequent filament nucleation by the Arp2/3 complex, and not by increasing the rate of filament elongation as previously suggested. One consequence of this coupling between capping and nucleation is that, while the rate of motility depends strongly on the concentration of capping protein and Arp2/3, the net rate of actin assembly is insensitive to changes in either factor. By reorganizing their architecture, dendritic actin networks harness the same assembly kinetics to drive different rates of motility. PMID:18510928

  2. Hindbrain glucoprivation effects on gastric vagal reflex circuits and gastric motility in the rat are suppressed by the astrocyte inhibitor fluorocitrate.

    PubMed

    Hermann, Gerlinda E; Viard, Edouard; Rogers, Richard C

    2014-08-01

    Fasting and hypoglycemia elicit powerful gastrointestinal contractions. Whereas the relationship between utilizable nutrient and gastric motility is well recognized, the explanation of this phenomenon has remained incomplete. A relatively recent controversial report suggested that astrocytes in the dorsal hindbrain may be the principal detectors of glucoprivic stimuli. Our own studies also show that a subset of astrocytes in the solitary nucleus (NST) is activated by low glucose. It is very likely that information about glucopenia may directly impact gastric control because the hindbrain is also the location of the vago-vagal reflex circuitry regulating gastric motility. Our in vivo single unit neurophysiological recordings in intact rats show fourth ventricular application of 2-deoxyglucose (2-DG) inhibits NST neurons and activates dorsal motor nucleus (DMN) neurons involved in the gastric accommodation reflex. Additionally, as shown in earlier studies, either systemic insulin or central 2-DG causes an increase in gastric motility. These effects on motility were blocked by fourth ventricle pretreatment with the astrocyte inactivator fluorocitrate. Fluorocitrate administered alone has no effect on gastric-NST or -DMN neuron responsiveness, or on gastric motility. These results suggest that glucoprivation-induced increases in gastric motility are dependent on intact hindbrain astrocytes.

  3. Emergence of macroscopic directed motion in populations of motile colloids

    NASA Astrophysics Data System (ADS)

    Bricard, Antoine; Caussin, Jean-Baptiste; Desreumaux, Nicolas; Dauchot, Olivier; Bartolo, Denis

    2013-11-01

    From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic `flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our

  4. Paxillin controls directional cell motility in response to physical cues

    PubMed Central

    Sero, Julia E.; German, Alexandra E.; Mammoto, Akiko; Ingber, Donald E.

    2012-01-01

    Physical cues from the extracellular environment that influence cell shape and directional migration are transduced into changes in cytoskeletal organization and biochemistry through integrin-based cell adhesions to extracellular matrix (ECM). Paxillin is a focal adhesion (FA) scaffold protein that mediates integrin anchorage to the cytoskeleton, and has been implicated in regulation of FA assembly and cell migration. To determine whether paxillin is involved in coupling mechanical distortion with directional movement, cell shape was physically constrained by culturing cells on square-shaped fibronectin-coated adhesive islands surrounded by non-adhesive barrier regions that were created with a microcontact printing technique. Square-shaped cells preferentially formed FAs and extended lamellipodia from their corner regions when stimulated with PDGF, and loss of paxillin resulted in loss of this polarized response. Selective expression of the N- and C-terminal domains of paxillin produced opposite, but complementary, effects on suppressing or promoting lamellipodia formation in different regions of square cells, which corresponded to directional motility defects in vitro. Paxillin loss or mutation was also shown to affect the formation of circular dorsal ruffles, and this corresponded to changes in cell invasive behavior in 3D. This commentary addresses the implications of these findings in terms of how a multifunctional FA scaffold protein can link physical cues to cell adhesion, protrusion and membrane trafficking so as to control directional migration in 2D and 3D. We also discuss how microengineered ECM islands and in vivo model systems can be used to further elucidate the functions of paxillin in directional migration. PMID:23076140

  5. Effect of gastric acid suppressants on human gastric motility

    PubMed Central

    Parkman, H; Urbain, J; Knight, L; Brown, K; Trate, D; Miller, M; Maurer, A; Fisher, R

    1998-01-01

    Background—The effect of histamine H2 receptor antagonists on gastric emptying is controversial. 
Aims—To determine the effects of ranitidine, famotidine, and omeprazole on gastric motility and emptying. 
Patients and methods—Fifteen normal subjects underwent simultaneous antroduodenal manometry, electrogastrography (EGG), and gastric emptying with dynamic antral scintigraphy (DAS). After 30 minutes of fasting manometry and EGG recording, subjects received either intravenous saline, ranitidine, or famotidine, followed by another 30 minutes recording and then three hours of postprandial recording after ingestion of a radiolabelled meal. Images were obtained every 10-15 minutes for three hours to measure gastric emptying and assess antral contractility. Similar testing was performed after omeprazole 20 mg daily for one week. 
Results—Fasting antral phase III migrating motor complexes (MMCs) were more common after ranitidine (9/15 subjects, 60%), famotidine (12/15, 80%), and omeprazole (8/12, 67%) compared with placebo (4/14, 29%; p<0.05). Postprandially, ranitidine, famotidine, and omeprazole slowed gastric emptying, increased the amplitude of DAS contractions, increased the EGG power, and increased the antral manometric motility index. 
Conclusions—Suppression of gastric acid secretion with therapeutic doses of gastric acid suppressants is associated with delayed gastric emptying but increased antral motility. 

 Keywords: gastric motility; gastric emptying; histamine H2 receptor antagonists; proton pump inhibitors; gastric acid secretion; scintigraphy PMID:9536950

  6. Correlation of cell membrane dynamics and cell motility

    PubMed Central

    2011-01-01

    Background Essential events of cell development and homeostasis are revealed by the associated changes of cell morphology and therefore have been widely used as a key indicator of physiological states and molecular pathways affecting various cellular functions via cytoskeleton. Cell motility is a complex phenomenon primarily driven by the actin network, which plays an important role in shaping the morphology of the cells. Most of the morphology based features are approximated from cell periphery but its dynamics have received none to scant attention. We aim to bridge the gap between membrane dynamics and cell states from the perspective of whole cell movement by identifying cell edge patterns and its correlation with cell dynamics. Results We present a systematic study to extract, classify, and compare cell dynamics in terms of cell motility and edge activity. Cell motility features extracted by fitting a persistent random walk were used to identify the initial set of cell subpopulations. We propose algorithms to extract edge features along the entire cell periphery such as protrusion and retraction velocity. These constitute a unique set of multivariate time-lapse edge features that are then used to profile subclasses of cell dynamics by unsupervised clustering. Conclusions By comparing membrane dynamic patterns exhibited by each subclass of cells, correlated trends of edge and cell movements were identified. Our findings are consistent with published literature and we also identified that motility patterns are influenced by edge features from initial time points compared to later sampling intervals. PMID:22372978

  7. Rhythmic changes in colonic motility are regulated by period genes.

    PubMed

    Hoogerwerf, Willemijntje A; Shahinian, Vahakn B; Cornélissen, Germaine; Halberg, Franz; Bostwick, Jonathon; Timm, John; Bartell, Paul A; Cassone, Vincent M

    2010-02-01

    Human bowel movements usually occur during the day and seldom during the night, suggesting a role for a biological clock in the regulation of colonic motility. Research has unveiled molecular and physiological mechanisms for biological clock function in the brain; less is known about peripheral rhythmicity. This study aimed to determine whether clock genes such as period 1 (per1) and period2 (per2) modulate rhythmic changes in colonic motility. Organ bath studies, intracolonic pressure measurements, and stool studies were used to examine measures of colonic motility in wild-type and per1per2 double-knockout mice. To further examine the mechanism underlying rhythmic changes in circular muscle contractility, additional studies were completed in neuronal nitric oxide synthase (nNOS) knockout mice. Intracolonic pressure changes and stool output in vivo, and colonic circular muscle contractility ex vivo, are rhythmic with greatest activity at the start of night in nocturnal wild-type mice. In contrast, rhythmicity in these measures was absent in per1per2 double-knockout mice. Rhythmicity was also abolished in colonic circular muscle contractility of wild-type mice in the presence of N(omega)-nitro-L-arginine methyl ester and in nNOS knockout mice. These findings suggest that rhythms in colonic motility are regulated by both clock genes and a nNOS-mediated inhibitory process and suggest a connection between these two mechanisms.

  8. HES6 enhances the motility of alveolar rhabdomyosarcoma cells

    SciTech Connect

    Wickramasinghe, Caroline M; Domaschenz, Renae; Amagase, Yoko; Williamson, Daniel; Missiaglia, Edoardo; Shipley, Janet; Murai, Kasumi; Jones, Philip H

    2013-01-01

    Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.

  9. Helical motion of the cell body enhances Caulobacter crescentus motility.

    PubMed

    Liu, Bin; Gulino, Marco; Morse, Michael; Tang, Jay X; Powers, Thomas R; Breuer, Kenneth S

    2014-08-01

    We resolve the 3D trajectory and the orientation of individual cells for extended times, using a digital tracking technique combined with 3D reconstructions. We have used this technique to study the motility of the uniflagellated bacterium Caulobacter crescentus and have found that each cell displays two distinct modes of motility, depending on the sense of rotation of the flagellar motor. In the forward mode, when the flagellum pushes the cell, the cell body is tilted with respect to the direction of motion, and it precesses, tracing out a helical trajectory. In the reverse mode, when the flagellum pulls the cell, the precession is smaller and the cell has a lower translation distance per rotation period and thus a lower motility. Using resistive force theory, we show how the helical motion of the cell body generates thrust and can explain the direction-dependent changes in swimming motility. The source of the cell body precession is believed to be associated with the flexibility of the hook that connects the flagellum to the cell body.

  10. Villous motility and unstirred water layers in canine intestine

    SciTech Connect

    Mailman, D.; Womack, W.A.; Kvietys, P.R.; Granger, D.N. )

    1990-02-01

    The possibility that villous motility reduces the mucosal unstirred water layer by mechanical stirring was examined. The frequency of contraction of villi was measured by using videomicroscopic techniques while a segment of anesthetized canine jejunum or ileum with its nerve and blood supply intact was maintained in a sealed chamber through which Tyrode solution was perfused. Radioisotopically labeled inulin, H{sub 2}O, and butyric and lauric acid were used to measure net and/or unidirectional fluxes from the chamber. The unidirectional absorptive transport of H{sub 2}O and butyric acid but not lauric acid by jejunal segments was significantly correlated with flow through the chamber. Plasma volume expansion increased villous motility but decreased the absorption of H{sub 2}O and lauric acid. Absorption of butyric acid from the ileum was little different than from the jejunum although the degree of villous motility was less and net water absorption was greater from the ileum. Absorption of butyric acid into dead tissue indicated that passive diffusion into the tissue accounted for between 7 and 25%, depending on flow rate, of the absorption in intact tissue and that nonspecific binding was low. It was concluded that villous motility did not stir the unstirred water layers and was not directly associated with altered transport.

  11. Rapid actin-dependent viral motility in live cells.

    PubMed

    Vaughan, Joshua C; Brandenburg, Boerries; Hogle, James M; Zhuang, Xiaowei

    2009-09-16

    During the course of an infection, viruses take advantage of a variety of mechanisms to travel in cells, ranging from diffusion within the cytosol to active transport along cytoskeletal filaments. To study viral motility within the intrinsically heterogeneous environment of the cell, we have developed a motility assay that allows for the global and unbiased analysis of tens of thousands of virus trajectories in live cells. Using this assay, we discovered that poliovirus exhibits anomalously rapid intracellular movement that was independent of microtubules, a common track for fast and directed cargo transport. Such rapid motion, with speeds of up to 5 microm/s, allows the virus particles to quickly explore all regions of the cell with the exception of the nucleus. The rapid, microtubule-independent movement of poliovirus was observed in multiple human-derived cell lines, but appeared to be cargo-specific. Other cargo, including a closely related picornavirus, did not exhibit similar motility. Furthermore, the motility is energy-dependent and requires an intact actin cytoskeleton, suggesting an active transport mechanism. The speed of this microtubule-independent but actin-dependent movement is nearly an order of magnitude faster than the fastest speeds reported for actin-dependent transport in animal cells, either by actin polymerization or by myosin motor proteins.

  12. Effects of Ergot Alkaloids on Bovine Sperm Motility In Vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids are synthesized by endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum (Schreb.) S.J. Darbyshire). Our objective was to determine direct effects of ergot alkaloids (ergotamine, dihydroergotamine and ergonovine) on the motility of bovine spermatozoa in vit...

  13. Motility in cyanobacteria: polysaccharide tracks and Type IV pilus motors.

    PubMed

    Wilde, Annegret; Mullineaux, Conrad W

    2015-12-01

    Motility in cyanobacteria is useful for purposes that range from seeking out favourable light environments to establishing symbioses with plants and fungi. No known cyanobacterium is equipped with flagella, but a diverse range of species is able to 'glide' or 'twitch' across surfaces. Cyanobacteria with this capacity range from unicellular species to complex filamentous forms, including species such as Nostoc punctiforme, which can generate specialised motile filaments called hormogonia. Recent work on the model unicellular cyanobacterium Synechocystis sp. PCC 6803 has shown that its means of propulsion has much in common with the twitching motility of heterotrophs such as Pseudomonas and Myxococcus. Movement depends on Type IV pili, which are extended, adhere to the substrate and then retract to pull the cell across the surface. Previous work on filamentous cyanobacteria suggested a very different mechanism, with movement powered by the directional extrusion of polysaccharide from pores close to the cell junctions. Now a new report by Khayatan and colleagues in this issue of Molecular Microbiology suggests that the motility of Nostoc hormogonia has much more in common with Synechocystis than was previously thought. In both cases, polysaccharide secretion is important for preparing the surface, but the directional motive force comes from Type IV pili.

  14. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...

  15. Rhythmic changes in colonic motility are regulated by period genes.

    PubMed

    Hoogerwerf, Willemijntje A; Shahinian, Vahakn B; Cornélissen, Germaine; Halberg, Franz; Bostwick, Jonathon; Timm, John; Bartell, Paul A; Cassone, Vincent M

    2010-02-01

    Human bowel movements usually occur during the day and seldom during the night, suggesting a role for a biological clock in the regulation of colonic motility. Research has unveiled molecular and physiological mechanisms for biological clock function in the brain; less is known about peripheral rhythmicity. This study aimed to determine whether clock genes such as period 1 (per1) and period2 (per2) modulate rhythmic changes in colonic motility. Organ bath studies, intracolonic pressure measurements, and stool studies were used to examine measures of colonic motility in wild-type and per1per2 double-knockout mice. To further examine the mechanism underlying rhythmic changes in circular muscle contractility, additional studies were completed in neuronal nitric oxide synthase (nNOS) knockout mice. Intracolonic pressure changes and stool output in vivo, and colonic circular muscle contractility ex vivo, are rhythmic with greatest activity at the start of night in nocturnal wild-type mice. In contrast, rhythmicity in these measures was absent in per1per2 double-knockout mice. Rhythmicity was also abolished in colonic circular muscle contractility of wild-type mice in the presence of N(omega)-nitro-L-arginine methyl ester and in nNOS knockout mice. These findings suggest that rhythms in colonic motility are regulated by both clock genes and a nNOS-mediated inhibitory process and suggest a connection between these two mechanisms. PMID:19926812

  16. Rhythmic changes in colonic motility are regulated by period genes

    PubMed Central

    Shahinian, Vahakn B.; Cornélissen, Germaine; Halberg, Franz; Bostwick, Jonathon; Timm, John; Bartell, Paul A.; Cassone, Vincent M.

    2010-01-01

    Human bowel movements usually occur during the day and seldom during the night, suggesting a role for a biological clock in the regulation of colonic motility. Research has unveiled molecular and physiological mechanisms for biological clock function in the brain; less is known about peripheral rhythmicity. This study aimed to determine whether clock genes such as period 1 (per1) and period2 (per2) modulate rhythmic changes in colonic motility. Organ bath studies, intracolonic pressure measurements, and stool studies were used to examine measures of colonic motility in wild-type and per1per2 double-knockout mice. To further examine the mechanism underlying rhythmic changes in circular muscle contractility, additional studies were completed in neuronal nitric oxide synthase (nNOS) knockout mice. Intracolonic pressure changes and stool output in vivo, and colonic circular muscle contractility ex vivo, are rhythmic with greatest activity at the start of night in nocturnal wild-type mice. In contrast, rhythmicity in these measures was absent in per1per2 double-knockout mice. Rhythmicity was also abolished in colonic circular muscle contractility of wild-type mice in the presence of Nω-nitro-l-arginine methyl ester and in nNOS knockout mice. These findings suggest that rhythms in colonic motility are regulated by both clock genes and a nNOS-mediated inhibitory process and suggest a connection between these two mechanisms. PMID:19926812

  17. [Sodium houttuyfonate inhibits virulence related motility of Pseudomonas aeruginosa].

    PubMed

    Wu, Da-qiang; Huang, Wei-feng; Duan, Qiang-jun; Cheng, Hui-juan; Wang, Chang-zhong

    2015-04-01

    Sodium houttuyfonate (SH) is a derivative of effective component of a Chinese material medica, Houttuynia cordata, which is applied in anti-infection of microorganism. But, the antimicrobial mechanisms of SH still remain unclear. Here, we firstly discovered that SH effectively inhibits the three types of virulence related motility of.Pseudomonas aeruginosa, i.e., swimming, twitching and swarming. The plate assay results showed that the inhibitory action of SH against swimming and twitching in 24 h and swarming in 48 h is dose-dependent; and bacteria nearly lost all of the motile activities under the concentration of 1 x minimum inhibitory concentration (MIC) (512 mg x L(-1) same as azithromycin positive group (1 x MIC, 16 mg x L(-1)). Furthermore, we found that the expression of structural gene flgB and pilG is down-regulated by SH, which implies that inhibitory mechanism of SH against motility of P. aeruginosa may be due to the inhibition of flagella and pili bioformation of P. aeruginosa by SR Therefore, our presented results firstly demonstrate that SH effectively inhibits the motility activities of P. aeruginosa, and suggest that SH could be a promising antipseudomonas agents in clinic. PMID:26281603

  18. Effectiveness of Hair Bundle Motility as the Cochlear Amplifier

    PubMed Central

    Sul, Bora; Iwasa, Kuni H.

    2009-01-01

    Abstract The effectiveness of hair bundle motility in mammalian and avian ears is studied by examining energy balance for a small sinusoidal displacement of the hair bundle. The condition that the energy generated by a hair bundle must be greater than energy loss due to the shear in the subtectorial gap per hair bundle leads to a limiting frequency that can be supported by hair-bundle motility. Limiting frequencies are obtained for two motile mechanisms for fast adaptation, the channel re-closure model and a model that assumes that fast adaptation is an interplay between gating of the channel and the myosin motor. The limiting frequency obtained for each of these models is an increasing function of a factor that is determined by the morphology of hair bundles and the cochlea. Primarily due to the higher density of hair cells in the avian inner ear, this factor is ∼10-fold greater for the avian ear than the mammalian ear, which has much higher auditory frequency limit. This result is consistent with a much greater significance of hair bundle motility in the avian ear than that in the mammalian ear. PMID:19917218

  19. Motility in cyanobacteria: polysaccharide tracks and Type IV pilus motors.

    PubMed

    Wilde, Annegret; Mullineaux, Conrad W

    2015-12-01

    Motility in cyanobacteria is useful for purposes that range from seeking out favourable light environments to establishing symbioses with plants and fungi. No known cyanobacterium is equipped with flagella, but a diverse range of species is able to 'glide' or 'twitch' across surfaces. Cyanobacteria with this capacity range from unicellular species to complex filamentous forms, including species such as Nostoc punctiforme, which can generate specialised motile filaments called hormogonia. Recent work on the model unicellular cyanobacterium Synechocystis sp. PCC 6803 has shown that its means of propulsion has much in common with the twitching motility of heterotrophs such as Pseudomonas and Myxococcus. Movement depends on Type IV pili, which are extended, adhere to the substrate and then retract to pull the cell across the surface. Previous work on filamentous cyanobacteria suggested a very different mechanism, with movement powered by the directional extrusion of polysaccharide from pores close to the cell junctions. Now a new report by Khayatan and colleagues in this issue of Molecular Microbiology suggests that the motility of Nostoc hormogonia has much more in common with Synechocystis than was previously thought. In both cases, polysaccharide secretion is important for preparing the surface, but the directional motive force comes from Type IV pili. PMID:26447922

  20. Pac-man motility of kinetochores unleashed by laser microsurgery

    PubMed Central

    LaFountain, James R.; Cohan, Christopher S.; Oldenbourg, Rudolf

    2012-01-01

    We report on experiments directly in living cells that reveal the regulation of kinetochore function by tension. X and Y sex chromosomes in crane fly (Nephrotoma suturalis) spermatocytes exhibit an atypical segregation mechanism in which each univalent maintains K-fibers to both poles. During anaphase, each maintains a leading fiber (which shortens) to one pole and a trailing fiber (which elongates) to the other. We used this intriguing behavior to study the motile states that X-Y kinetochores are able to support during anaphase. We used a laser microbeam to either sever a univalent along the plane of sister chromatid cohesion or knock out one of a univalent's two kinetochores to release one or both from the resistive influence of its sister's K-fiber. Released kinetochores with attached chromosome arms moved poleward at rates at least two times faster than normal. Furthermore, fluorescent speckle microscopy revealed that detached kinetochores converted their functional state from reverse pac-man to pac-man motility as a consequence of their release from mechanical tension. We conclude that kinetochores can exhibit pac-man motility, even though their normal behavior is dominated by traction fiber mechanics. Unleashing of kinetochore motility through loss of resistive force is further evidence for the emerging model that kinetochores are subject to tension-sensitive regulation. PMID:22740625