Science.gov

Sample records for actual burst pressure

  1. Eddy current technique for predicting burst pressure

    DOEpatents

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  2. Neural network/acoustic emission burst pressure prediction for impact damaged composite pressure vessels

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.; Hill, E.V.K.

    1997-08-01

    Acoustic emission signal analysis has been used to measure the effect impact damage has on the burst pressure of 146 mm (5.75 in.) diameter graphite/epoxy and the organic polymer, Kevlar/epoxy filament wound pressure vessels. Burst pressure prediction models were developed by correlating the differential acoustic emission amplitude distribution collected during low level hydroproof tests to known burst pressures using backpropagation artificial neural networks. Impact damage conditions ranging from barely visible to obvious fiber breakage, matrix cracking, and delamination were included in this work. A simulated (inert) propellant was also cast into a series of the vessels from each material class, before impact loading, to provide boundary conditions during impact that would simulate those found on solid rocket motors. The results of this research effort demonstrate that a quantitative assessment of the effects that impact damage has on burst pressure can be made for both organic polymer/epoxy and graphite/epoxy pressure vessels. Here, an artificial neural network analysis of the acoustic emission parametric data recorded during low pressure hydroproof testing is used to relate burst pressure to the vessel`s acoustic signature. Burst pressure predictions within 6.0% of the actual failure pressure are demonstrated for a series of vessels.

  3. 46 CFR 154.554 - Cargo hose: Bursting pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo hose: Bursting pressure. 154.554 Section 154.554... Hose § 154.554 Cargo hose: Bursting pressure. Cargo hose that may be exposed to the pressure in the cargo tank, the cargo pump discharge, or the vapor compressor discharge must have a bursting pressure...

  4. 46 CFR 154.554 - Cargo hose: Bursting pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo hose: Bursting pressure. 154.554 Section 154.554... Hose § 154.554 Cargo hose: Bursting pressure. Cargo hose that may be exposed to the pressure in the cargo tank, the cargo pump discharge, or the vapor compressor discharge must have a bursting pressure...

  5. 46 CFR 154.554 - Cargo hose: Bursting pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Bursting pressure. 154.554 Section 154.554... Hose § 154.554 Cargo hose: Bursting pressure. Cargo hose that may be exposed to the pressure in the cargo tank, the cargo pump discharge, or the vapor compressor discharge must have a bursting pressure...

  6. 46 CFR 154.554 - Cargo hose: Bursting pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo hose: Bursting pressure. 154.554 Section 154.554... Hose § 154.554 Cargo hose: Bursting pressure. Cargo hose that may be exposed to the pressure in the cargo tank, the cargo pump discharge, or the vapor compressor discharge must have a bursting pressure...

  7. Neural Network Burst Pressure Prediction in Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Dion, Seth-Andrew T.; Karl, Justin O.; Spivey, Nicholas S.; Walker, James L., II

    2007-01-01

    Acoustic emission data were collected during the hydroburst testing of eleven 15 inch diameter filament wound composite overwrapped pressure vessels. A neural network burst pressure prediction was generated from the resulting AE amplitude data. The bottles shared commonality of graphite fiber, epoxy resin, and cure time. Individual bottles varied by cure mode (rotisserie versus static oven curing), types of inflicted damage, temperature of the pressurant, and pressurization scheme. Three categorical variables were selected to represent undamaged bottles, impact damaged bottles, and bottles with lacerated hoop fibers. This categorization along with the removal of the AE data from the disbonding noise between the aluminum liner and the composite overwrap allowed the prediction of burst pressures in all three sets of bottles using a single backpropagation neural network. Here the worst case error was 3.38 percent.

  8. An Analysis of Burst Disc Pressure Instability

    SciTech Connect

    S. L. Robinson; B. C. Odegard, Jr.; N. r. Moody; S. H. Goods

    2000-06-01

    During the development stage of the 1X Acorn burst disc, burst pressure test results exhibited an unexpected increase of 8 to 14% over times of 90--100 days from initial fabrication. This increase is a concern where design constraints require stability. The disc material, 316L stainless steel sheet, is formed to a dome-like geometry and scored to produce a thin-walled, high-strength ligament. The fracture events controlling burst occur in that ligament. Thus it has been characterized both for tensile properties and microstructure through nanoindentation, magnetic measurements, optical and transmission electron microscopy. These results compare favorably with finite element simulation of the properties of the ligament. The ligament exhibits a highly heterogeneous microstructure; its small volume and microstructural heterogeneity make it difficult to identify which microstructural feature controls fracture and hence burst pressure. Bulk mechanical test specimens were fabricated to emulate mid-ligament properties, and aged at both room and elevated temperatures to characterize and accelerate the temporal behavior of the burst disc. Property changes included yield and ultimate tensile strength increases, and fracture strain decreases with aging. Specimens were subjected to a reversion anneal identical to that given the burst disc to eliminate the martensite phase formed during rolling. Reversion-annealed samples exhibited no change in properties in room temperature or accelerated aging, showing that the reversion-anneal eliminated the aging phenomenon. Aging was analyzed in terms of diffusion controlled precipitate growth kinetics, showing that carbon migration to dislocations is consistent with the strength increases. A vacancy-assisted diffusion mechanism for carbon transport is proposed, giving rise to rapid aging, which replaces interstitial carbon diffusion until excess vacancies from deformation are consumed. Mechanical activation parameters in stress relaxation

  9. 46 CFR 154.554 - Cargo hose: Bursting pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo hose: Bursting pressure. 154.554 Section 154.554... Hose § 154.554 Cargo hose: Bursting pressure. Cargo hose that may be exposed to the pressure in the... at least five times the maximum working pressure on the hose during cargo transfer....

  10. 49 CFR 179.400-6 - Bursting and buckling pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bursting and buckling pressure. 179.400-6 Section 179.400-6 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... and 107A) § 179.400-6 Bursting and buckling pressure. (a) (b) The outer jacket of the...

  11. 49 CFR 179.400-6 - Bursting and buckling pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Bursting and buckling pressure. 179.400-6 Section 179.400-6 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... 107A) § 179.400-6 Bursting and buckling pressure. (a) (b) The outer jacket of the required...

  12. 49 CFR 179.400-6 - Bursting and buckling pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Bursting and buckling pressure. 179.400-6 Section 179.400-6 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... 107A) § 179.400-6 Bursting and buckling pressure. (a) (b) The outer jacket of the required...

  13. 49 CFR 179.400-6 - Bursting and buckling pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Bursting and buckling pressure. 179.400-6 Section 179.400-6 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... 107A) § 179.400-6 Bursting and buckling pressure. (a) (b) The outer jacket of the required...

  14. Neural Network Burst Pressure Prediction in Graphite/Epoxy Pressure Vessels from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Walker, James L., II; Rowell, Ginger H.

    1995-01-01

    Acoustic emission (AE) data were taken during hydroproof for three sets of ASTM standard 5.75 inch diameter filament wound graphite/epoxy bottles. All three sets of bottles had the same design and were wound from the same graphite fiber; the only difference was in the epoxies used. Two of the epoxies had similar mechanical properties, and because the acoustic properties of materials are a function of their stiffnesses, it was thought that the AE data from the two sets might also be similar; however, this was not the case. Therefore, the three resin types were categorized using dummy variables, which allowed the prediction of burst pressures all three sets of bottles using a single neural network. Three bottles from each set were used to train the network. The resin category, the AE amplitude distribution data taken up to 25 % of the expected burst pressure, and the actual burst pressures were used as inputs. Architecturally, the network consisted of a forty-three neuron input layer (a single categorical variable defining the resin type plus forty-two continuous variables for the AE amplitude frequencies), a fifteen neuron hidden layer for mapping, and a single output neuron for burst pressure prediction. The network trained on all three bottle sets was able to predict burst pressures in the remaining bottles with a worst case error of + 6.59%, slightly greater than the desired goal of + 5%. This larger than desired error was due to poor resolution in the amplitude data for the third bottle set. When the third set of bottles was eliminated from consideration, only four hidden layer neurons were necessary to generate a worst case prediction error of - 3.43%, well within the desired goal.

  15. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William

    2011-01-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  16. Burst Pressure Prediction of Multiple Cracks in Pipelines

    NASA Astrophysics Data System (ADS)

    Razak, N. A.; Alang, N. A.; Murad, M. A.

    2013-12-01

    Available industrial code such as ASME B1G, modified ASME B1G and DNV RP-F101 to assess pipeline defects appear more conservative for multiple crack like- defects than single crack-like defects. Thus, this paper presents burst pressure prediction of pipe with multiple cracks like defects. A finite element model was developed and the burst pressure prediction was compared with the available code. The model was used to investigate the effect of the distance between the cracks and the crack length. The coalescence diagram was also developed to evaluate the burst pressure of the multiple cracks. It was found as the distance between crack increases, the interaction effect comes to fade away and multiple cracks behave like two independent single cracks.

  17. Evacuation areas for transportation accidents involving propellant tank pressure bursts

    NASA Technical Reports Server (NTRS)

    Siewert, R. D.

    1972-01-01

    Evacuation areas are defined for those transportation accidents where volatile chemical propellant tanks are exposed to fire in the wreckage and eventually explode with consequent risks from fragments in surrounding populated areas. An evacuation area with a minimum radius of 600 m (2000 ft) is recommended to limit the statistical probability of fatality to one in 100 such accidents. The result was made possible by the derivation of a distribution function of distances reached by fragments from bursting chemical car tanks. Data concerning fragments was obtained from reports or tank car pressure bursts between 1958 and 1971.

  18. Measurement of Blast Waves from Bursting Pressureized Frangible Spheres

    NASA Technical Reports Server (NTRS)

    Esparza, E. D.; Baker, W. E.

    1977-01-01

    Small-scale experiments were conducted to obtain data on incident overpressure at various distances from bursting pressurized spheres. Complete time histories of blast overpressure generated by rupturing glass spheres under high internal pressure were obtained using eight side-on pressure transducers. A scaling law is presented, and its nondimensional parameters are used to compare peak overpressures, arrival times, impulses, and durations for different initial conditions and sizes of blast source. The nondimensional data are also compared, whenever possible, with results of theoretical calculations and compiled data for Pentolite high explosive. The scaled data are repeatable and show significant differences from blast waves generated by condensed high-explosives.

  19. Predicting burst pressures in filament-wound composite pressure vessels by using acoustic emission data

    NASA Astrophysics Data System (ADS)

    Hill, Eric V. K.

    1992-12-01

    Multivariate statistical analysis was used to generate equations for predicting burst pressures in 14.6 cm dia. fiberglass-epoxy and 45.7 cm dia. graphite-epoxy pressure vessels from acoustic emission (AE) data taken during hydroproof. Using the AE energy and amplitude measurements as the primary independent variables, the less accurate of the two linear equations was able to predict burst pressures to within +/- 0.841 MPa of the value given by the 95 percent prediction interval. Moreover, this equation included the effects of two bottles that contained simulated manufacturing defects. Because the AE data used to generate the burst-pressure equations were both taken at or below 25 percent of the expected burst pressures, it is anticipated that by using this approach, it would be possible to lower proof pressures in larger filament-wound composite pressure vessels such as rocket motor cases. This would minimize hydroproof damage to the composite structure and the accompanying potential for premature failure in service.

  20. Prediction of failure behavior of a welded pressure vessel containing flaws during a hydrogen-charged burst test

    SciTech Connect

    Bhuyan, G.S.; Sperling, E.J.; Shen, G.; Yin, H.; Rana, M.D.

    1996-12-01

    An industry-government collaborative program was carried out with an aim to promoting the acceptance of fracture mechanics based fitness-for-service assessment methodology for a service-damaged pressure vessel. A collaborative round robin exercise was carried out to predict the fracture behavior of a vessel containing hydrogen damage, fabrication related lack-of-fusion defects, an artificially induced fatigue crack and a localized thinned area. The fracture assessment procedures used include the US ASME Material Property Council`s PREFIS Program based on the British Standard (BS) Published Document (PD) 6493, ASME Section XI and The Central Electricity Generating Board (CEGB) R6 approach; The welding Institute (TWI) CRACKWISE program (based on BS PD6493 Level 2 approach), a variant of the R6 approach, J-tearing instability approaches, various J-estimation schemes, LEFM approach and simplified stress analysis. Assessments were compared with the results obtained from a hydrogen charged burst test of the vessel. Predictions, based on the J-tearing approach, compared well with the actual burst test results. Actual burst pressure was about five times the operating pressure.

  1. Prediction of failure behavior of a welded pressure vessel containing flaws during a hydrogen-charged burst test

    SciTech Connect

    Bhuyan, G.S.; Sperling, E.J.; Shen, G.; Yin, H.; Rana, M.D.

    1999-08-01

    An industry-government collaborative program was carried out with an aim to promoting the acceptance of fracture mechanics-based fitness-for-service assessment methodology for a service-damaged pressure vessel. A collaborative round robin exercise was carried out to predict the fracture behavior of a vessel containing hydrogen damage, fabrication-related lack-of-fusion defects, an artificially induced fatigue crack, and a localized thinned area. The fracture assessment procedures used include the US ASME Material Property Council`s PREFIS Program based on the British Standard (BS) Published Document (PD) 6493, ASME Section XI and The Central Electricity Generating Board (CEGB) R6 approach, The Welding Institute (TWI) CRACKWISE program (based on BS PD6493 Level 2 approach), a variant of the R6 approach, J-tearing instability approaches, various J-estimation schemes, LEFM approach, and simplified stress analysis. Assessments were compared with the results obtained from a hydrogen-charged burst test of the vessel. Predictions, based on the J-tearing approach, compared well with the actual burst test results. Actual burst pressure was about five times the operating pressure.

  2. Prediction of Burst Pressure Using a Decoupled Ductile Fracture Criterion for Tube Hydroforming of Aerospace Alloys

    NASA Astrophysics Data System (ADS)

    Saboori, M.; Gholipour, J.; Champliaud, H.; Gakwaya, A.; Savoie, J.; Wanjara, P.

    2011-05-01

    One of the failure modes in tube hydroforming (THF) is bursting. To predict the burst pressure in the THF process, Brozzo's decoupled ductile fracture criterion was used in conjunction with a dynamic nonlinear commercial finite element software, Ls-Dyna, and the criterion was evaluated using the data obtained from the free expansion (tube bulging) tests performed on 0.9 mm and 1.2 mm thick stainless steel (SS) 321 tubes. The predicted burst pressures were compared with the experimental results for both thicknesses. The predicted burst failure of the tube bulging, based on the Brozzo's criterion, demonstrated a good agreement with the experimental data, indicating that the present approach for predicting the burst failure for the tube bulging can be extended to predict formability limits in THF applications.

  3. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    SciTech Connect

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  4. Impact damage and burst of filament-wound CFRP composite pressure vessel

    SciTech Connect

    Matemilola, S.A.; Stronge, W.J.

    1996-12-31

    Quasi-static and impact tests were conducted on filament-wound carbon fiber composite pressure vessels to study factors that affect burst pressure. Observed damage include fiber microbuckling, matrix cracking, and delamination. For vessels that were not pressurized during test, both the matrix cracking and fiber breakage were restricted to the outer layer, whereas in the case of an internally pressurized vessel struck by a wedge nose shaped impactor these cracks extended into the second layer. Fiber microbuckling of the outer surface layer near the impact point was the main factor that degraded the burst pressure of the vessels. This type of damage was visually detectable on the surface. For an unpressurized vessel it appeared as a pair of cracks radiating from the periphery of contact region. On the other hand, for a pressurized vessel circumferential microbuckling developed within the contact region. The burst pressure for a damaged vessel decreased as the ratio of axial length of the buckled fibers l, to vessel thickness h, increased, up to a ratio {ell}/h {approx} 3, beyond which the burst pressure became constant. Strain measurements near the region of loading showed that fiber microbuckling occurred, the failure strain value at a strain rate of 104 s{sup {minus}1} was about six times the microbuckling strain for quasi-static loading.

  5. The sensitivity of the burst performance of impact damaged pressure vessels to material strength properties

    NASA Astrophysics Data System (ADS)

    Lasn, K.; Vedvik, N. P.; Echtermeyer, A. T.

    2016-07-01

    This numerical study is carried out to improve the understanding of short-term residual strength of impacted composite pressure vessels. The relationship between the impact, created damage and residual strength is predicted by finite element (FE) analysis. The burst predictions depend largely on the strength properties used in the material models. However, it is typically not possible to measure all laminate properties on filament wound structures. Reasonable testing efforts are concentrated on critical properties, while obtaining other less sensitive parameters from e.g. literature. A parametric FE model is hereby employed to identify the critical strength properties, focusing on the cylindrical section of the pressure vessel. The model simulates an impactor strike on an empty vessel, which is subsequently pressurized until burst. Monte Carlo Simulations (MCS) are employed to investigate the correlations between strength related material parameters and the burst pressure. The simulations indicate the fracture toughness of the composite, hoop layer tensile strength and the yield stress of the PE liner as the most influential parameters for current vessel and impact configurations. In addition, the conservative variation in strength parameters is shown to have a rather moderate effect (COV ca. 7%) on residual burst pressures.

  6. Radiation-pressure-driven dust waves inside bursting interstellar bubbles

    NASA Astrophysics Data System (ADS)

    Ochsendorf, B. B.; Verdolini, S.; Cox, N. L. J.; Berné, O.; Kaper, L.; Tielens, A. G. G. M.

    2014-06-01

    Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even though direct evidence supporting this scenario is lacking. Here we explore the possibility that interstellar bubbles seen by the Spitzer- and Herschel space telescopes, blown by stars with log (L/L⊙) ≲ 5.2, form and expand because of the thermal pressure that accompanies the ionization of the surrounding gas. We show that density gradients in the natal cloud or a puncture in the swept-up shell lead to an ionized gas flow through the bubble into the general interstellar medium, which is traced by a dust wave near the star, which demonstrates the importance of radiation pressure during this phase. Dust waves provide a natural explanation for the presence of dust inside H II bubbles, offer a novel method to study dust in H II regions and provide direct evidence that bubbles are relieving their pressure into the interstellar medium through a champagne flow, acting as a probe of the radiative interaction of a massive star with its surroundings. We explore a parameter space connecting the ambient density, the ionizing source luminosity, and the position of the dust wave, while using the well studied H II bubbles RCW 120 and RCW 82 as benchmarks of our model. Finally, we briefly examine the implications of our study for the environments of super star clusters formed in ultraluminous infrared galaxies, merging galaxies, and the early Universe, which occur in very luminous and dense environments and where radiation pressure is expected to dominate the dynamical evolution.

  7. Earthward Flow Bursts in the Magnetotail Driven by Solar Wind Pressure Impulse

    NASA Astrophysics Data System (ADS)

    Kim, Khan-Hyuk; Kwak, Young-Sil; Lee, Jae-Jin; Hwang, Junga

    2008-12-01

    On August 31, 2001, ˜1705-1718 UT, Cluster was located near the midnight magnetotail, GSE (x, y, z) ˜ (-19, -2, 2) RE, and observed fast earthward flow bursts in the vicinity of the neutral sheet. They occurred while the tail magnetic field suddenly increased. Using simultaneous measurements in the solar wind, at geosynchronous orbit, and on the ground, it is confirmed that tail magnetic field enhancement is due to an increased solar wind pressure. In the neutral sheet region, strongly enhanced earthward flow bursts perpendicular to the local magnetic field (V_{bot x}) were observed. Auroral brightenings localized in the pre-midnight sector (˜2200-2400 MLT) occurred during the interval of the V_{bot x} enhancements. The V_{bot x} bursts started ˜2 minutes before the onset of auroral brightenings. Our observations suggest that the earthward flow bursts are associated with tail reconnection directly driven by a solar wind pressure impulse and that V_{bot x} caused localized auroral brightenings.

  8. Measurements of blast waves from bursting frangible spheres pressurized with flash-evaporation vapor or liquid

    NASA Technical Reports Server (NTRS)

    Esparaza, E. D.; Baker, W. E.

    1977-01-01

    Incident overpressure data from frangible spheres pressurized with a flash-evaporating fluid in liquid and vapor form were obtained in laboratory experiments. Glass spheres under higher than ambient internal pressure of Freon-12 were purposely burst to obtain time histories of overpressure. Nondimensional peak pressures, arrival and duration times, and impulses are presented, and whenever possible plotted and compared with compiled data for Pentolite high-explosive. The data are generally quite repeatable and show differences from blast data produced by condensed high-explosives.

  9. Results of 1.0-L sample bottle pressurization tests for the pit burst experiment

    SciTech Connect

    Veirs, K.D.; Prenger, F.C.; Harradine, D.M.; McFarlan, J.T.

    1997-02-01

    Pressurization tests were performed on a 1.0-L sample bottle to verify operational aspects of the pit burst experimental test apparatus. The 1.0-L sample bottle was selected because of its known geometry, certified performance and ready availability. Redundant strain gage instrumentation was installed on the test sample enabling evaluation of the repeatability and consistency of data acquisition. Test results were compared with analytical model predictions to evaluate instrumentation accuracy.

  10. Neural network burst pressure prediction in impact damaged Kevlar/epoxy bottles from acoustic emission amplitude data

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.

    1994-12-31

    Acoustic emission (AE) signal analysis has been used to measure the effect of impact damage on the burst pressure of 5.75 inch diameter filament wound Kevlar/epoxy pressure vessels. A calibrated dead weight drop fixture, featuring both sharp and blunt hemispherical impact tups, generated impact damages with energies up to twenty ft-lb{sub f} in the mid hoop region of each vessel. Burst pressures were obtained by hydrostatically testing twenty-seven damaged and undamaged bottles, eleven of which were filled with inert propellant to simulate a rocket motor. Burst pressure prediction models were developed by correlating the differential AE amplitude distributions, Generated during the first pressure ramp to 25% of the expected burst pressure for the undamaged vessels, to known burst pressures using back propagation neural networks. Independent networks were created for the inert propellant filled vessels and the unfilled vessels using a small subset of each during the training phases. The remaining bottles served as the test sets. The eleven filled vessels had an average prediction error of 5.6%, while the unfilled bottles averaged 5.4%. Both of these results were within the 95% prediction interval, but a portion of the vessel burst pressure errors were greater than the {+-}5% worst case error obtained in previous work. in conclusion, the AE amplitude distribution data collected at low proof loads provided a suitable input for neural network burst pressure prediction in damaged and undamaged Kevlar/epoxy bottles. This included pressure vessels both with and without propellant backing. Work is ongoing to decrease the magnitude of the prediction error through network restructuring.

  11. Tissue fusion bursting pressure and the role of tissue water content

    NASA Astrophysics Data System (ADS)

    Cezo, James; Kramer, Eric; Taylor, Kenneth; Ferguson, Virginia; Rentschler, Mark

    2013-02-01

    Tissue fusion is a complex, poorly understood process which bonds collagenous tissues together using heat and pressure. The goal of this study is to elucidate the role of hydration in bond efficacy. Hydration of porcine splenic arteries (n=30) was varied by pre-fusion treatments: 24-48 hour immersion in isotonic, hypotonic, or hypertonic baths. Treated arteries were fused in several locations using Conmed's Altrus thermal fusion device and the bursting pressure was then measured for each fused segment. Artery sections were then weighed before and after lyophilization, to quantify water content. Histology (HE, EVG staining) enabled visualization of the bonding interface. Bursting pressure was significantly greater (p=4.17 E-ll) for the hypotonic group (607.6 +/- 83.2mmHg), while no significant difference existed between the isotonic (332.6 +/- 44.7mmHg) and hypertonic (348.7 +/- 44.0mmHg) treatment groups. Total water content varied (p=8.80 E-24) from low water content in the hypertonic samples (72.5% weight +/- 0.9), to high water content in the hypotonic samples (83.1% weight +/- 1.9), while the isotonic samples contained 78.8% weight +/- 1.1. Strength differences between the treated vessels imply that bound water driven from the tissue during fusion may reveal available collagen crosslinking sites to facilitate bond formation during the fusion process. Thus when the tissue contains greater bound water volumes, more crosslinking sites may become available during fusion, leading to a stronger bond. This study provides an important step towards understanding the chemistry underlying tissue fusion and the mechanics of tissue fusion as a function of bound water within the tissue.

  12. Diencephalic regulation of respiration and arterial pressure during actual and fictive locomotion in cat.

    PubMed

    Millhorn, D E; Eldridge, F L; Waldrop, T G; Kiley, J P

    1987-10-01

    The purpose of this study was to examine by experimentation the hypothesis that the respiratory and circulatory responses during exercise are attributable to command signals that emanate from the suprapontine brain. We studied the relations between locomotion (exercise) and phrenic nerve activity and arterial pressure in cats that walked or ran on a treadmill and in animals during fictive locomotion, i.e., locomotor activity in motor nerves to legs. Anesthetized cats with intact brains and unanesthetized decorticated cats were used. All preparations exhibited spontaneous actual and fictive locomotion. Electrical stimulation or microinjection of picrotoxin, a GABA antagonist, of the subthalamic locomotor areas always caused locomotion to develop. Phrenic nerve activity and arterial pressure increased in proportion to the level of locomotor activity despite control or ablation of feedback signals from chemoreceptors and vagal receptors. Similar relations were measured during fictive locomotion despite the absence of muscular contraction and limb movement and the lack of change in metabolic rate. These findings provide experimental support for the central command hypothesis for the genesis of the respiratory hyperpnea and increased cardiovascular function that occur during exercise. We believe that the command signals emanate from the subthalamic locomotor area of the diencephalon. PMID:3652403

  13. Eddy current signal deconvolution technique for the improvement of steam generator tubing burst pressure predictions.

    SciTech Connect

    Petri, M. C.; Wei, T. Y. C.; Kupperman, D. S.; Reifman, J.; Morman, J. A.

    2000-01-01

    Eddy current techniques are extremely sensitive to the presence of axial cracks in nuclear power plant steam generator tube walls, but they are equally sensitive to the presence of dents, fretting, support structures, corrosion products, and other artifacts. Eddy current signal interpretation is further complicated by cracking geometries more complex than a single axial crack. Although there has been limited success in classifying and sizing defects through artificial neural networks, the ability to predict tubing integrity has, so far, eluded modelers. In large part, this lack of success stems from an inability to distinguish crack signals from those arising from artifacts. We present here a new signal processing technique that deconvolves raw eddy current voltage signals into separate signal contributions from different sources, which allows signals associated with a dominant crack to be identified. The signal deconvolution technique, combined with artificial neural network modeling, significantly improves the prediction of tube burst pressure from bobbin-coil eddy current measurements of steam generator tubing.

  14. Characterization of the Relationship between Intracranial Pressure and Electroencephalographic Monitoring in Burst Suppressed Patients

    PubMed Central

    Connolly, Mark; Vespa, Paul; Pouratian, Nader; Gonzalez, Nestor R.; Hu, Xiao

    2014-01-01

    Objective To characterize the relationship between ICP and EEG Methods Simultaneous ICP and EEG data were obtained from burst-suppressed patients and segmented by EEG bursts. Segments were categorized as increasing/decreasing and peak/valley to investigate relationship between ICP changes and EEG burst duration. A generalized ICP response was obtained by averaging all segments time-aligned at burst onsets. A vasodilatation index (VDI) was derived from the ICP pulse waveform and calculated on a sliding interval to investigate cerebrovascular changes post-burst. Results Data from two patients contained 309 bursts. 246 ICP segments initially increased, of which 154 peaked. 63 ICP segments decreased, and zero reached a valley. The change in ICP (0.54±0.85mmHg) was significantly correlated with the burst duration (p<0.001). Characterization of the ICP segments showed a peak at 8.1s and a return to baseline at 14.7s. The VDI for increasing segments was significantly elevated (median 0.56, IQR 0.31, p<0.001) and correlated with burst duration (p<0.001). Conclusions Changes in the ICP and pulse-waveform shape after EEG burst suggest that these signals can be related within the context of neurovascular coupling. Significance Existence of a physiological relationship between ICP and EEG may allow the study of neurovascular coupling in acute brain injury patients. PMID:25142827

  15. Fluid displacement fronts in porous media: pore scale interfacial jumps, pressure bursts and acoustic emissions

    NASA Astrophysics Data System (ADS)

    Moebius, Franziska; Or, Dani

    2014-05-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.

  16. Reliability of COPVs Accounting for Margin of Safety on Design Burst

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L.N.

    2012-01-01

    In this paper, the stress rupture reliability of Carbon/Epoxy Composite Overwrapped Pressure Vessels (COPVs) is examined utilizing the classic Phoenix model and accounting for the differences between the design and the actual burst pressure, and the liner contribution effects. Stress rupture life primarily depends upon the fiber stress ratio which is defined as the ratio of stress in fibers at the maximum expected operating pressure to actual delivered fiber strength. The actual delivered fiber strength is calculated using the actual burst pressures of vessels established through burst tests. However, during the design phase the actual burst pressure is generally not known and to estimate the reliability of the vessels calculations are usually performed based upon the design burst pressure only. Since the design burst is lower than the actual burst, this process yields a much higher value for the stress ratio and consequently a conservative estimate for the reliability. Other complications arise due to the fact that the actual burst pressure and the liner contributions have inherent variability and therefore must be treated as random variables in order to compute the stress rupture reliability. Furthermore, the model parameters, which have to be established based on stress rupture tests of subscale vessels or coupons, have significant variability as well due to limited available data and hence must be properly accounted for. In this work an assessment of reliability of COPVs including both parameter uncertainties and physical variability inherent in liner and overwrap material behavior is made and estimates are provided in terms of degree of uncertainty in the actual burst pressure and the liner load sharing.

  17. Pressure standards and sensors up to 3 GPa, actual state and development trends

    NASA Astrophysics Data System (ADS)

    Wisniewski, Roland; Molinar, Gianfranco

    1999-04-01

    Metrological problems connected with pressure standards and sensors up to 3 GPa as an introduction to the pressure measurements in the so-called “GIGAPASCAL REGION”, 1-100 GPa, are discussed. Re-examination of Bi I-Bi II phase transition pressure as a fixed point of the International Practical Pressure Scale and correction of the NaCl Pressure Scale is proposed. Well-established sensors as candidates for secondary pressure standards up to 3 GPa are briefly presented.

  18. The effects of viscosity and pressure on the bursting of a drop in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    White, Andrew; Ward, Thomas

    2009-11-01

    As one fluid is injected into another fluid of greater viscosity, instabilities occur in the form of fingers which extend radially from the injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). As the lower-viscosity fluid reaches the free surface it rapidly bursts through the higher- viscosity fluid (times are typically less that 50 ms for our system) and a pressure drop occurs. This pressure drop induces the shrinking of the non-bursting fingers. By varying the air pressure and water-glycerol viscosity we study this process by analyzing sequences of images prior and after the bursting event inside a Hele-Shaw cell with a gap spacing of between 10 and 500 micrometers. It has been shown that in a micro-scale environment the effects of gravity are negligible as fluid flow is dominated by capillary forces, thus such a setup would behave in space just as it does on Earth. Therefore it may then be possible to use hot air injected into a Hele-Shaw cell filled with water to generate steam in a microgravity environment.

  19. Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes.

    PubMed

    Laterreur, Véronique; Ruel, Jean; Auger, François A; Vallières, Karine; Tremblay, Catherine; Lacroix, Dan; Tondreau, Maxime; Bourget, Jean-Michel; Germain, Lucie

    2014-06-01

    Tissue engineering provides a promising alternative for small diameter vascular grafts, especially with the self-assembly method. It is crucial that these grafts possess mechanical properties that allow them to withstand physiological flow and pressure without being damaged. Therefore, an accurate assessment of their mechanical properties, especially the burst pressure, is essential prior to clinical release. In this study, the burst pressure of self-assembled tissue-engineered vascular substitutes was first measured by the direct method, which consists in pressurizing the construct with fluid until tissue failure. It was then compared to the burst pressure estimated by Laplace׳s law using data from a ring tensile test. The major advantage of this last method is that it requires a significantly smaller tissue sample. However, it has been reported as overestimating the burst pressure compared to a direct measurement. In the present report, it was found that an accurate estimation of the burst pressure may be obtained from a ring tensile test when failure internal diameter is used as the diameter parameter in Laplace׳s law. Overestimation occurs with the method previously reported, i.e. when the unloaded internal diameter is used for calculations. The estimation of other mechanical properties was also investigated. It was demonstrated that data from a ring tensile test provide an accurate estimate of the failure strain and the stiffness of the constructs when compared to measurements with the direct method.

  20. Thin-metal lined PRD 49-III composite vessels. [evaluation of pressure vessels for burst strength and fatigue performance

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.

    1974-01-01

    Filament wound pressure vessels of various configurations were evaluated for burst strength and fatigue performance. The dimensions and characteristics of the vessels are described. The types of tests conducted are explained. It was determined that all vessels leaked in a relatively few cycles (20 to 60 cycles) with failure occurring in all cases in the metallic liner. The thin liner would de-bond from the composite and buckling took place during depressurization. No composite failures or indications of impeding composite failures were obtained in the metal-lined vessels.

  1. Statistics of electron avalanches and bursts in low pressure gases below the breakdown voltage

    SciTech Connect

    Donko, Z.

    1995-12-31

    Avalanches in different types of dynamical systems have been subject of recent interest. Avalanches building up in gases play an important role in radiation detectors and in the breakdown process of gas discharges. We have used computer simulation to study statistical properties of electron avalanches and bursts (sequences of avalanches) in a gas subjected to a homogeneous electric field. Helium was used as buffer gas, but we believe that our results are more general. The bursts were initiated by injecting low energy electrons into the gas. We applied Monte Carlo procedure to trace the trajectories of electrons. The elementary processes considered in the model were anisotropic elastic scattering of electrons from He atoms, electron impact excitation and ionization of He atoms. The electrons were traced until the are reached the perfectly absorbing anode.

  2. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  3. Liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. [design techniques and practices

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development of and operational programs for effective use in design are presented for liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. A review of the total design problem is presented, and design elements are identified which are involved in successful design. Current technology pertaining to these elements is also described. Design criteria are presented which state what rule or standard must be imposed on each essential design element to assure successful design. These criteria serve as a checklist of rules for a project manager to use in guiding a design or in assessing its adequacy. Recommended practices are included which state how to satisfy each of the criteria.

  4. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    NASA Astrophysics Data System (ADS)

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-06-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.

  5. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    PubMed Central

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-01-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery. PMID:27295608

  6. Magnetar Bursts

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2014-01-01

    The Fermi/Gamma-ray Burst Monitor (GBM) was launched in June 2008. During the last five years the instrument has observed several hundreds of bursts from 8 confirmed magnetars and 19 events from unconfirmed sources. I will discuss the results of the GBM magnetar burst catalog, expand on the different properties of their diverse source population, and compare these results with the bursting activity of past sources. I will then conclude with thoughts of how these properties fit the magnetar theoretical models.

  7. Broadband Spectral Study of Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Kirmizibayrak, Demet; Gogus, Ersin; Sasmaz Mus, Sinem; Kaneko, Yuki

    2016-07-01

    Magnetar bursts occur sporadically on random occasions, and every burst-active episode carries unique information about the bursting magnetar. Therefore, in-depth spectral and temporal analyses of each of the magnetar bursts provide new insights into the bursting and radiation mechanisms. There have been a number of studies over the last decade, investigating the spectral and temporal properties of magnetar bursts. The spectra of typical magnetar bursts were generally described with the Comptonized model or the sum of two blackbody functions. However, it was recently shown that the actual spectral nature of these bursts can be conclusively determined if the spectral analysis is performed on a wide energy coverage. We present the results of in-depth systematic broadband (2 - 250 keV) spectral analysis of a large number of bursts originated from three magnetars: SGR 1806-20, SGR 1900+14, and SGR J1550-5418, observed with the Rossi X-ray Timing Explorer.

  8. Analysis on the Dynamics of Burst Debris Flood at the Inclined Pressure-Shaft of Svandalsflona Hydropower Project, Norway

    NASA Astrophysics Data System (ADS)

    Panthi, K. K.

    2014-05-01

    Long-term stability of the waterway system of the hydropower plants is crucial and should not be underestimated. The compromise may result in severe economic consequences related to revenue loss caused by the plant closedown for needed repair, extra resources and time required for repair work, and third party loss related to industries and societies at large. In addition, possible contractual disputes between the clients and the contractors may arise in some occasions. Serious accidents may happen during repair and construction work with loss of life, since engineering geological environment (conditions) in the rock mass changed once under water for long period. This article focuses on one of the recent shaft collapse that happened in Norway in 2008. The article discusses and analyses the dynamics of burst debris flood that took place on 9 May 2009, while removing the slide rock mass deposited in the 45° inclined shaft of the Svandalsflona hydropower plant located at the Southern Norway. Careful review on the geological conditions inside the shaft, evaluation on the course of events, investigations on the inspections and inspections reports, assessment on the temperature and precipitation conditions have been carried out to come to the conclusion on what might have triggered the sudden burst flood.

  9. Development report for dual-burst disks

    SciTech Connect

    Fusco, A.M.

    1996-11-01

    Burst disks, commonly used in pressure relief applications, were studied as single-use valves. A dual-burst disk design was chosen for primary investigation for systems involving separation of gases of two significantly different pressures. The two disks are used to seal either end of a piston cavity that has a different cross-sectional area on each side. Different piston surface areas are used to maintain hydrostatic equilibrium, P{sub 1}A{sub 1} = P{sub 2}A{sub 2}. The single-use valve functions when the downstream pressure is reduced to approximately atmospheric pressure, creating a pressure differential that causes the burst disks to fail. Several parameters were studied to determine the optimum design of the burst disk. These parameters include thickness, diameter, area/pressure ratio, scoring, and disk geometry. The disk material was limited to 304L stainless steel. Factors that were considered essential to the optimization of the design were robustness, manufacturability, and burst pressure variability. The thicknesses of the disks that were studied range from 0.003 in. to 0.010 in. A model for predicting burst pressures of the burst disks was derived. The model combines membrane stress theory with force/displacement data to predict the burst pressure of various designs to within {+-}10%. This model results from studies that characterize the behavior of individual small and large disks. Welding techniques used to join the dual-disk assembly are discussed. Laser welds are used to join and seal the disks to the bulkhead. These welds were optimized for repeatability and robustness. Resistance upset welding is suggested for joining the dual-disk assembly to the pressure vessel body. Resistance upset weld parameters were developed for this particular design so as to minimize the side effects on the burst-disk performance and to provide high-quality welds.

  10. Ceramic Matrix Composite Vane Subelement Burst Testing

    NASA Technical Reports Server (NTRS)

    Brewer, David N.; Verrilli, Michael; Calomino, Anthony

    2006-01-01

    Burst tests were performed on Ceramic Matrix Composite (CMC) vane specimens, manufactured by two vendors, under the Ultra Efficient Engine Technology (UEET) project. Burst specimens were machined from the ends of 76mm long vane sub-elements blanks and from High Pressure Burner Rig (HPBR) tested specimens. The results of burst tests will be used to compare virgin specimens with specimens that have had an Environmental Barrier Coating (EBC) applied, both HPBR tested and untested, as well as a comparison between vendors.

  11. Spectral Tests of the Homogeneity of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Band, David L.

    1999-01-01

    We proposed to determine whether the spectral-hardness-intensity relation found when comparing dim and bright bursts is also found within the set of bright bursts. In the simplest cosmological burst paradigm all bursts have the same intrinsic brightness (they are "standard candles") and the faintest BATSE bursts are at a redshift of approx. 1. The cumulative intensity distribution, which is a -3/2 power law at the bright end but flatter at the low intensity end, is explained by the cosmological curvature of space. Thus bursts at the bright end should be at such low redshifts that they do not suffer cosmological redshifting of their spectra or time dilation of their lightcurves. The spectral-hardness and burst intensity are correlated when dim and bright bursts are compared, consistent with cosmological redshifting. However, the actual redshifts of a number of bursts have been determined, showing that bursts are not standard candles, and that their redshifts are frequently greater than approx. 1; the maximum redshift is 3.4! Consequently many bright bursts are at redshifts where cosmological effects are significant. We had proposed to determine A,hether the redshifting effect continued into the bright bursts; even moderately bright bursts should be at cosmological distances.

  12. Predicting rock bursts in mines

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    The microseismic method relies on observational data, amply demonstrated in laboratory experiments, that acoustic noise occurs in rocks subjected to high differential stresses. Acoustic emission becomes most pronounced as the breaking strength of the rock is reached. Laboratory studies have shown that the acoustic emission is linked with the release of stored strain energy as the rock mass undergoes small-scale adjustments such as the formation of cracks. Studies in actual mines have shown that acoustic noises often precede failure of rock masses in rock bursts or in coal bumps. Seismologists are, therefore, very interested in whether these results can be applied to large-scale failures; that is, earthquakes. An active research program in predicting rock bursts in mines is being conducted by Brian T. Brady and his colleagues at the U.S Bureau of Mines, Denver Colo.  

  13. Bursting Neurons and Ultrasound Avoidance in Crickets

    PubMed Central

    Marsat, Gary; Pollack, Gerald S.

    2012-01-01

    Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2’s spike train consists of clusters of spikes – bursts – that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing – the auditory receptor – already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2’s sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles. PMID:22783158

  14. Bursting neurons and ultrasound avoidance in crickets.

    PubMed

    Marsat, Gary; Pollack, Gerald S

    2012-01-01

    Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2's spike train consists of clusters of spikes - bursts - that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing - the auditory receptor - already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2's sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles.

  15. Burst-by-burst laser frequency monitor

    NASA Technical Reports Server (NTRS)

    Esproles, Carlos (Inventor)

    1994-01-01

    The invention is a system for real-time frequency monitoring and display of an RF burst where the burst frequency is analyzed and displayed on a burst-by-burst basis in order to allow for frequency control. Although the invention was made for monitoring the laser frequency of a LIDAR system, it has other applications where realtime monitoring is required. The novelty of the invention resides in the use of a counter that is reset at the beginning of each unit time of monitoring and then gated for a unit of time. The invention also has an LED bar graph for displaying the measure of frequency at the end of each unit time in either a bar length mode or a moving dot mode. In the latter mode, the operator makes necessary adjustments to maintain the dot at the center of the bar graph.

  16. Low-Cost, Lightweight Pressure Vessel Proof Test

    NASA Astrophysics Data System (ADS)

    Chanez, Eric

    This experiment seeks to determine the burst strength of the low-cost, lightweight pressure vessel fabricated by the Suborbital Center of Excellence (SCE). Moreover, the test explores the effects of relatively large gage pressures on material strain for ‘pumpkin-shaped' pressure vessels. The SCE team used pressure transducers and analog gauges to measure the gage pressure while a video camera assembly recorded several gores in the shell for strain analysis. The team loaded the vessel in small intervals of pressure until the structure failed. Upon test completion, the pressure readings and video recordings were analyzed to determine the burst strength and material strain in the shell. The analysis yielded a burst pressure of 13.5 psi while the strain analysis reported in the shell. While the results of this proof test are encouraging, the structure's factor of safety must be increased for actual balloon flights. Furthermore, the pressure vessel prototype must be subjected to reliability tests to show the design can sustain gage pressures for the length of a balloon flight.

  17. Neural heterogeneities and stimulus properties affect burst coding in vivo.

    PubMed

    Avila-Akerberg, O; Krahe, R; Chacron, M J

    2010-06-16

    Many neurons tend to fire clusters of action potentials called bursts followed by quiescence in response to sensory input. While the mechanisms that underlie burst firing are generally well understood in vitro, the functional role of these bursts in generating behavioral responses to sensory input in vivo are less clear. Pyramidal cells within the electrosensory lateral line lobe (ELL) of weakly electric fish offer an attractive model system for studying the coding properties of burst firing, because the anatomy and physiology of the electrosensory circuitry are well understood, and the burst mechanism of ELL pyramidal cells has been thoroughly characterized in vitro. We investigated the coding properties of bursts generated by these cells in vivo in response to mimics of behaviorally relevant sensory input. We found that heterogeneities within the pyramidal cell population had quantitative but not qualitative effects on burst coding for the low frequency components of broadband time varying input. Moreover, spatially localized stimuli mimicking, for example, prey tended to elicit more bursts than spatially global stimuli mimicking conspecific-related stimuli. We also found small but significant correlations between burst attributes such as the number of spikes per burst or the interspike interval during the burst and stimulus attributes such as stimulus amplitude or slope. These correlations were much weaker in magnitude than those observed in vitro. More surprisingly, our results show that correlations between burst and stimulus attributes actually decreased in magnitude when we used low frequency stimuli that are expected to promote burst firing. We propose that this discrepancy is attributable to differences between ELL pyramidal cell burst firing under in vivo and in vitro conditions.

  18. How long does a burst burst?

    SciTech Connect

    Zhang, Bin-Bin; Connaughton, Valerie; Briggs, Michael S.; Zhang, Bing; Murase, Kohta

    2014-05-20

    Several gamma-ray bursts (GRBs) last much longer (∼hours) in γ-rays than typical long GRBs (∼minutes), and it has recently been proposed that these 'ultra-long GRBs' may form a distinct population, probably with a different (e.g., blue supergiant) progenitor than typical GRBs. However, Swift observations suggest that many GRBs have extended central engine activities manifested as flares and internal plateaus in X-rays. We perform a comprehensive study on a large sample of Swift GRBs with X-Ray Telescope observations to investigate GRB central engine activity duration and to determine whether ultra-long GRBs are unusual events. We define burst duration t {sub burst} based on both γ-ray and X-ray light curves rather than using γ-ray observations alone. We find that t {sub burst} can be reliably measured in 343 GRBs. Within this 'good' sample, 21.9% GRBs have t {sub burst} ≳ 10{sup 3} s and 11.5% GRBs have t {sub burst} ≳ 10{sup 4} s. There is an apparent bimodal distribution of t {sub burst} in this sample. However, when we consider an 'undetermined' sample (304 GRBs) with t {sub burst} possibly falling in the gap between GRB duration T {sub 90} and the first X-ray observational time, as well as a selection effect against t {sub burst} falling into the first Swift orbital 'dead zone' due to observation constraints, the intrinsic underlying t {sub burst} distribution is consistent with being a single component distribution. We found that the existing evidence for a separate ultra-long GRB population is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion. We also discuss the theoretical implications of our results. In particular, the central engine activity duration of GRBs is generally much longer than the γ-ray T {sub 90} duration and it does not even correlate with T {sub 90}. It would be premature to make a direct connection between T {sub 90} and the size of the progenitor star.

  19. Investigation of primordial black hole bursts using interplanetary network gamma-ray bursts

    DOE PAGES

    Ukwatta, Tilan Niranjan; Hurley, Kevin; MacGibbon, Jane H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'Shin, V. D.; Goldsten, J.; Boynton, W.; et al

    2016-07-25

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected bymore » the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Furthermore, assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.« less

  20. Investigation of Primordial Black Hole Bursts Using Interplanetary Network Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Ukwatta, T. N.; Hurley, K.; MacGibbon, J. H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'shin, V. D.; Goldsten, J.; Boynton, W.; Kozyrev, A. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Connaughton, V.; Yamaoka, K.; Ohno, M.; Ohmori, N.; Feroci, M.; Frontera, F.; Guidorzi, C.; Cline, T.; Gehrels, N.; Krimm, H. A.; McTiernan, J.

    2016-07-01

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  1. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Bhat, Narayana; Connaughton, Valerie; Briggs, Michael; Diehl, Roland; Fishman, Gerald; Greiner, Jochen; Kippen, R. Marc; vonKienlin, Andreas; Kouveliotou, Chryssa; Lichti, Giselher; Paciesas, William; Preece, Robert; Steinle, Helmut; Wilson-Hodge, Colleen

    2007-01-01

    The GLAST Burst Monitor (GBM) comprises an array of NaI and BGO scintillation detectors designed to enhance the scientific return from GLAST in the study of gamma-ray bursts (GRBs). By observing in the 10 keV to 30 MeV energy range, GBM extends the spectral coverage of GRBs more than 3 decades below the LAT energy threshold. GBM computes burst locations on-board, allowing repointing of the GLAST Observatory to place strong bursts within the LAT field-of-view to observe delayed high-energy emission.

  2. Pressure Relief Devices

    NASA Astrophysics Data System (ADS)

    Manha, William D.

    2010-09-01

    Pressure relief devices are used in pressure systems and on pressure vessels to prevent catastrophic rupture or explosion from excessive pressure. Pressure systems and pressure vessels have manufacturers maximum rated operating pressures or maximum design pressures(MDP) for which there are relatively high safety factors and minimum risk of rupture or explosion. Pressure systems and pressure vessels that have a potential to exceed the MDP by being connected to another higher pressure source, a compressor, or heat to water(boiler) are required to have over-pressure protecting devices. Such devices can be relief valves and/or burst discs to safely relieve potentially excessive pressure and prevent unacceptable ruptures and explosions which result in fail-safe pressure systems and pressure vessels. Common aerospace relief valve and burst disc requirements and standards will be presented. This will include the NASA PSRP Interpretation Letter TA-88-074 Fault Tolerance of Systems Using Specially Certified Burst Disks that dictates burst disc requirements for payloads on Shuttle. Two recent undesirable manned space payloads pressure relief devices and practices will be discussed, as well as why these practices should not be continued. One example for discussion is the use of three burst discs that have been placed in series to comply with safety requirements of three controls to prevent a catastrophic hazard of the over-pressurization and rupture of pressure system and/or vessels. The cavities between the burst discs are evacuated and are the reference pressures for activating the two upstream burst discs. If the upstream burst disc leaks into the reference cavity, the reference pressure increases and it can increase the burst disc activating pressure and potentially result in the burst disc assembly being ineffective for over pressure protection. The three burst discs-in-series assembly was found acceptable because the burst discs are designed for minimum risk(DFMR) of

  3. Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Wijers, Ralph A. M. J.; Woosley, Stan

    2012-11-01

    Prologue C. Kouveliotou, R. A . M. J. Wijers and S. E. Woosley; 1. The discovery of the gamma-ray burst phenomenon R. W. Klebesadel; 2. Instrumental principles E. E. Fenimore; 3. The BATSE era G. J. Fishman and C. A. Meegan; 4. The cosmological era L. Piro and K. Hurley; 5. The Swift era N. Gehrels and D. N. Burrows; 6. Discoveries enabled by multi-wavelength afterglow observations of gamma-ray bursts J. Greiner; 7. Prompt emission from gamma-ray bursts T. Piran, R. Sari and R. Mochkovitch; 8. Basic gamma-ray burst afterglows P. Mészáros and R. A. M. J. Wijers; 9. The GRB-supernova connection J. Hjorth and J. S. Bloom; 10. Models for gamma-ray burst progenitors and central engines S. E. Woosley; 11. Jets and gamma-ray burst unification schemes J. Granot and E. Ramirez-Ruiz; 12. High-energy cosmic rays and neutrinos E. Waxman; 13. Long gamma-ray burst host galaxies and their environments J. P. U. Fynbo, D. Malesani and P. Jakobsson; 14. Gamma-ray burst cosmology V. Bromm and A. Loeb; 15. Epilogue R. D. Blandford; Index.

  4. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  5. Sawtooth bursts: observations and model

    NASA Astrophysics Data System (ADS)

    Karlický, M.; Bárta, M.; Klassen, A.; Aurass, H.; Mann, G.

    2002-12-01

    An example of the sawtooth burst observed during the November 3, 1997 flare is shown. Basic parameters of the sawtooth bursts are summarized and compared with those of fibers, fiber chains, zebras, EEL bursts and lace bursts. The sawtooth bursts are found to be most similar to the lace bursts, therefore the lace bursts model is proposed also for them. Then using this model the dynamic spectrum with the sawtooth burst is modelled. The model considers accelerated electrons with an unstable distribution function on the double resonance frequency and quasi-periodic variations of the electron plasma density and/or magnetic field in the radio source.

  6. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  7. HYDROGEN EFFECTS ON THE BURST PROPERTIES OF TYPE 304L STAINLESS STEEL FLAWED VESSELS

    SciTech Connect

    Morgan, M; Monica Hall, M; Ps Lam, P; Dean Thompson, D

    2008-03-27

    The effect of hydrogen on the burst properties Type 304L stainless steel vessels was investigated. The purpose of the study was to compare the burst properties of hydrogen-exposed stainless steel vessels burst with different media: water, helium gas, or deuterium gas. A second purpose of the tests was to provide data for the development of a predictive finite-element model. The burst tests were conducted on hydrogen-exposed and unexposed axially-flawed cylindrical vessels. The results indicate that samples burst pneumatically had lower volume ductility than those tested hydraulically. Deuterium gas tests had slightly lower ductility than helium gas tests. Burst pressures were not affected by burst media. Hydrogen-charged samples had lower volume ductility and slightly higher burst pressures than uncharged samples. Samples burst with deuterium gas fractured by quasi-cleavage near the inside wall. The results of the tests were used to improve a previously developed predictive finite-element model. The results show that predicting burst behavior requires as a material input the effect of hydrogen on the plastic strain to fracture from tensile tests. The burst test model shows that a reduction in the plastic strain to fracture of the material will result in lower volume ductility without a reduction in burst pressure which is in agreement with the burst results.

  8. The LOFT burst alert system and its burst onboard trigger

    NASA Astrophysics Data System (ADS)

    Schanne, Stéphane; Götz, Diego; Le Provost, Hervé; Château, Frédéric; Bozzo, Enrico; Brandt, Søren

    2014-07-01

    The ESA M3 candidate mission LOFT (Large Observatory For x-ray Timing) has been designed to study strong gravitational fields by observing compact objects, such as black-hole binaries or neutron-star systems and supermassive black-holes, based on the temporal analysis of photons collected by the primary instrument LAD (Large Area Detector), sensitive to X-rays from 2 to 50 keV, offering a very large effective area (>10 m2), but a small field of view (ø<1°). Simultaneously the second instrument WFM (Wide Field Monitor), composed of 5 coded-mask camera pairs (2-50 keV), monitors a large part of the sky, in order to detect and localize eruptive sources, to be observed with the LAD after ground-commanded satellite repointing. With its large field of view (>π sr), the WFM actually detects all types of transient sources, including Gamma-Ray Bursts (GRBs), which are of primary interest for a world-wide observers community. However, observing the quickly decaying GRB afterglows with ground-based telescopes needs the rapid knowledge of their precise localization. The task of the Loft Burst Alert System (LBAS) is therefore to detect in near-real- time GRBs (about 120 detections expected per year) and other transient sources, and to deliver their localization in less than 30 seconds to the observers, via a VHF antenna network. Real-time full resolution data download to ground being impossible, the real-time data processing is performed onboard by the LBOT (LOFT Burst On-board Trigger system). In this article we present the LBAS and its components, the LBOT and the associated ground-segment.

  9. Theta-burst LTP.

    PubMed

    Larson, John; Munkácsy, Erin

    2015-09-24

    This review covers the spatial and temporal rules governing induction of hippocampal long-term potentiation (LTP) by theta-burst stimulation. Induction of LTP in field CA1 by high frequency stimulation bursts that resemble the burst discharges (complex-spikes) of hippocampal pyramidal neurons involves a multiple-step mechanism. A single burst is insufficient for LTP induction because it evokes both excitatory and inhibitory currents that partially cancel and limit postsynaptic depolarization. Bursts repeated at the frequency (~5 Hz) of the endogenous theta rhythm induce maximal LTP, primarily because this frequency disables feed-forward inhibition and allows sufficient postsynaptic depolarization to activate voltage-sensitive NMDA receptors. The disinhibitory process, referred to as "priming", involves presynaptic GABA autoreceptors that inhibit GABA release. Activation of NMDA receptors allows a calcium flux into dendritic spines that serves as the proximal trigger for LTP. We include new data showing that theta-burst stimulation is more efficient than other forms of stimulation for LTP induction. In addition, we demonstrate that associative interactions between synapses activated during theta-bursts are limited to major dendritic domains since such interactions occur within apical or basal dendritic trees but not between them. We review evidence that recordings of electrophysiological responses during theta burst stimulation can help to determine if experimental manipulations that affect LTP do so by affecting events antecedent to the induction process, such as NMDA receptor activation, or downstream signaling cascades that result from postsynaptic calcium fluxes. Finally, we argue that theta-burst LTP represents a minimal model for stable, non-decremental LTP that is more sensitive to a variety of experimental manipulations than is LTP induced by other stimulation paradigms. This article is part of a Special Issue entitled SI: Brain and Memory.

  10. Theta-Burst LTP

    PubMed Central

    Larson, John; Munkácsy, Erin

    2014-01-01

    This review covers the spatial and temporal rules governing induction of hippocampal long-term potentiation (LTP) by theta-burst stimulation. Induction of LTP in field CA1 by high frequency stimulation bursts that resemble the burst discharges (complex-spikes) of hippocampal pyramidal neurons involves a multiple-step mechanism. A single burst is insufficient for LTP induction because it evokes both excitatory and inhibitory currents that partially cancel and limit postsynaptic depolarization. Bursts repeated at the frequency (~5 Hz) of the endogenous theta rhythm induce maximal LTP, primarily because this frequency disables feed-forward inhibition and allows sufficient postsynaptic depolarization to activate voltage-sensitive NMDA receptors. The disinhibitory process, referred to as “priming”, involves presynaptic GABA autoreceptors that inhibit GABA release. Activation of NMDA receptors allows a calcium flux into dendritic spines that serves as the proximal trigger for LTP. We include new data showing that theta-burst stimulation is more efficient than other forms of stimulation for LTP induction. In addityion, we demonstrate that associative interactions between synapses activated during theta-bursts are limited to major dendritic domains since such interactions occur within apical or basal dendritic trees but not between them. We review evidence that recordings of electrophysiological responses during theta burst stimulation can help to determine if experimental manipulations that affect LTP do so by affecting events antecedent to the induction process, such as NMDA receptor activation, or downstream signaling cascades that result from postsynaptic calcium fluxes. Finally, we argue that theta-burst LTP represents a minimal model for stable, non-decremental LTP that is more sensitive to a variety of experimental manipulations than is LTP induced by other stimulation paradigms. PMID:25452022

  11. Form and Actuality

    NASA Astrophysics Data System (ADS)

    Bitbol, Michel

    A basic choice underlies physics. It consists of banishing actual situations from theoretical descriptions, in order to reach a universal formal construct. Actualities are then thought of as mere local appearances of a transcendent reality supposedly described by the formal construct. Despite its impressive success, this method has left major loopholes in the foundations of science. In this paper, I document two of these loopholes. One is the problem of time asymmetry in statistical thermodynamics, and the other is the measurement problem of quantum mechanics. Then, adopting a broader philosophical standpoint, I try to turn the whole picture upside down. Here, full priority is given to actuality (construed as a mode of the immanent reality self-reflectively being itself) over formal constructs. The characteristic aporias of this variety of "Copernican revolution" are discussed.

  12. Gamma-Ray Bursts

    SciTech Connect

    Paciesas, W.S. ); Fishman, G.J. )

    1992-01-01

    This proceedings represents the works presented at the Gamma-Ray Bursts Workshop -- 1991 which was held on the campus of theUniversity of Alabama in Huntsville, October 16-18. The emphasis ofthe Workshop was to present and discuss new observations of gamma-ray bursts made recently by experiments on the Compton Gamma-RayObservatory (CGRO), Granat, Ginga, Pioneer Venus Orbiter, Prognozand Phobos. These presentations were complemented by some groundbased observations, reanalysis of older data, descriptions offuture gamma-ray burst experiments and a wide-ranging list oftheoretical discussions. Over seventy papers are included in theproceedings. Eleven of them are abstracted for the database. (AIP)

  13. Burst diaphragm leak detector

    NASA Technical Reports Server (NTRS)

    Pascolla, J. A.

    1969-01-01

    New method replaces flowmeter approach with readily available burst diaphragm leak detector assembly mounted to all drain ports. This allows simultaneous leak detection of all flange seals under operating conditions.

  14. INTEGRAL burst alert service

    NASA Technical Reports Server (NTRS)

    Pedersen, H.; Jennings, D.; Mereghetti, S.; Teegarden, B.

    1997-01-01

    The detection, accurate positioning, and spectral analysis of cosmic gamma ray bursts is an objective of the International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission. Due to their unpredictable nature, gamma ray bursts can only be observed in serendipity mode. In order to allow and promote multiwavelength follow-up observations of such events, it is desirable to make the information available to the astrophysics community with a minimum delay through the use of Internet. Ideally, the data dissemination should occur within a few seconds of the start of the burst event so that follow up observations can proceed while gamma rays are still being emitted. The technical feasibility of building such a system to disseminate INTEGRAL burst alerts in real time is currently under consideration, the preliminary results of which are presented. It is concluded that such an alert service is technically feasible.

  15. Parameters for burst detection

    PubMed Central

    Bakkum, Douglas J.; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas; Takahashi, Hirokazu

    2014-01-01

    Bursts of action potentials within neurons and throughout networks are believed to serve roles in how neurons handle and store information, both in vivo and in vitro. Accurate detection of burst occurrences and durations are therefore crucial for many studies. A number of algorithms have been proposed to do so, but a standard method has not been adopted. This is due, in part, to many algorithms requiring the adjustment of multiple ad-hoc parameters and further post-hoc criteria in order to produce satisfactory results. Here, we broadly catalog existing approaches and present a new approach requiring the selection of only a single parameter: the number of spikes N comprising the smallest burst to consider. A burst was identified if N spikes occurred in less than T ms, where the threshold T was automatically determined from observing a probability distribution of inter-spike-intervals. Performance was compared vs. different classes of detectors on data gathered from in vitro neuronal networks grown over microelectrode arrays. Our approach offered a number of useful features including: a simple implementation, no need for ad-hoc or post-hoc criteria, and precise assignment of burst boundary time points. Unlike existing approaches, detection was not biased toward larger bursts, allowing identification and analysis of a greater range of neuronal and network dynamics. PMID:24567714

  16. Creep Burst Testing of a Woven Inflatable Module

    NASA Technical Reports Server (NTRS)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  17. GRO: Black hole models for gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1993-01-01

    This grant deals with the production of gamma-ray bursts (GRB's) close to horizons of black holes (BH's), mainly via accretion of small chunks of matter onto extreme Kerr BH's. In the past year, we laid the ground work for actual calculations close to Kerr BH's. Because of technical reasons, actual work has only started very recently. Following the detailed list of research subprojects as per our original proposal, we have performed research in the following areas: spectrum calculation; burst dynamics; tidal capture and primordial cloud collapse; halo density profile; and capture of other objects.

  18. Effect of wear on the burst strength of l-80 steel casing

    NASA Astrophysics Data System (ADS)

    Irawan, S.; Bharadwaj, A. M.; Temesgen, B.; Karuppanan, S.; Abdullah, M. Z. B.

    2015-12-01

    Casing wear has recently become one of the areas of research interest in the oil and gas industry especially in extended reach well drilling. The burst strength of a worn out casing is one of the significantly affected mechanical properties and is yet an area where less research is done The most commonly used equations to calculate the resulting burst strength after wear are Barlow, the initial yield burst, the full yield burst and the rupture burst equations. The objective of this study was to estimate casing burst strength after wear through Finite Element Analysis (FEA). It included calculation and comparison of the different theoretical bursts pressures with the simulation results along with effect of different wear shapes on L-80 casing material. The von Misses stress was used in the estimation of the burst pressure. The result obtained shows that the casing burst strength decreases as the wear percentage increases. Moreover, the burst strength value of the casing obtained from the FEA has a higher value compared to the theoretical burst strength values. Casing with crescent shaped wear give the highest burst strength value when simulated under nonlinear analysis.

  19. A Burst to See

    NASA Astrophysics Data System (ADS)

    2008-04-01

    On 19 March, Nature was particularly generous and provided astronomers with the wealth of four gamma-ray bursts on the same day. But that was not all: one of them is the most luminous object ever observed in the Universe. Despite being located in a distant galaxy, billions of light years away, it was so bright that it could have been seen, for a brief while, with the unaided eye. ESO PR Photo 08a/08 ESO PR Photo 08a/08 The REM Telescope and TORTORA Camera Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. It is now widely accepted that the majority of the gamma-ray bursts signal the explosion of very massive, highly evolved stars that collapse into black holes. Gamma-ray bursts, which are invisible to our eyes, are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a short while in the optical and in the near-infrared. This 'afterglow' fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness. The gamma-ray burst GRB 080319B was detected by the NASA/STFC/ASI Swift satellite. "It was so bright that it almost blinded the Swift instruments for a while," says Guido Chincarini, Italian principal investigator of the mission. A bright optical counterpart was soon identified in the Boötes Constellation (the "Bear Driver" or "Herdsman"). A host of ground-based telescopes reacted promptly to study this new object in the sky. In particular, the optical emission was detected by a few wide-field cameras on telescopes that constantly monitor a large fraction of the sky, including the TORTORA camera in symbiosis with the 0.6-m REM telescope located at La Silla

  20. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  1. Periodic bursts of Jovian non-Io decametric radio emission.

    PubMed

    Panchenko, M; Rucker, H O; Farrell, W M

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  2. Periodic bursts of Jovian non-Io decametric radio emission

    PubMed Central

    Panchenko, M.; Rucker, H.O.; Farrell, W.M.

    2013-01-01

    During the years 2000–2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  3. Periodic Bursts of Jovian Non-Io Decametric Radio Emission

    NASA Technical Reports Server (NTRS)

    Panchenko, M.; Rucker, H O.; Farrell, W. M.

    2013-01-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have Recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period approx. = 1:5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300 deg. and 60 deg. (via 360 deg.). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every approx. 25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  4. Periodic bursts of Jovian non-Io decametric radio emission.

    PubMed

    Panchenko, M; Rucker, H O; Farrell, W M

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  5. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    2004-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) observatory, scheduled for launch in 2007, comprises the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM). spectral changes that are known to occur within GRBs. between the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and the Max Planck Institute for Extraterrestrial Physics. It consists of an array of NaI and BGO scintillation detectors operating in the 10 kev to 25 MeV range. The field of view includes the entire unocculted sky when the observatory is pointing close to the zenith. The GBM will enhance LAT observations of GRBs by extending the spectral coverage into the range of current GRB databases, and will provide a trigger for reorienting the spacecraft to observe delayed emission from bursts outside the LAT field of view. GBM is expected to trigger on about 200 bursts per year, and will provide on-board locations of strong bursts accurate to better than 10 degrees.

  6. [Relation between actual barometric pressure at sea level and alveolar and arterial pO2: correlations in 3,054 coal workers with and without pneumoconiosis (author's transl)].

    PubMed

    Sohnius, J; Smidt, U; Worth, G

    1978-01-01

    The correlation between barometric pressure and arterial oxygen pressure has been investigated in 3,054 coal miners. Furthermore, the correlation between alveolar oxygen pressure and alveolar-arterial oxygen pressure difference and barometric pressure has been investigated in 1,669 coal miners. For low and for high pO2a there are significant correlations to barometric pressure, in particular for the young age groups. PO2A and AaDO2 show closer correlations to barometric pressure in the middle range of pO2a (65--84 mm Hg). This points to different regulating mechanisms. A correction with a uniform factor is not possible and, for clinical purposes, unnecessary, since the influence of changing barometric pressure on pO2a is only about 1--3 mm Hg.

  7. Terminal energy distribution of blast waves from bursting spheres

    NASA Technical Reports Server (NTRS)

    Adamczyk, A. A.; Strehlow, R. A.

    1977-01-01

    The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.

  8. The Double Firing Burst

    NASA Astrophysics Data System (ADS)

    2008-09-01

    Astronomers from around the world combined data from ground- and space-based telescopes to paint a detailed portrait of the brightest explosion ever seen. The observations reveal that the jets of the gamma-ray burst called GRB 080319B were aimed almost directly at the Earth. Uncovering the disc ESO PR Photo 28/08 A Gamma-Ray Burst with Two Jets Read more on this illuminating blast in the additional story. GRB 080319B was so intense that, despite happening halfway across the Universe, it could have been seen briefly with the unaided eye (ESO 08/08). In a paper to appear in the 11 September issue of Nature, Judith Racusin of Penn State University, Pennsylvania (USA), and a team of 92 co-authors report observations across the electromagnetic spectrum that began 30 minutes before the explosion and followed it for months afterwards. "We conclude that the burst's extraordinary brightness arose from a jet that shot material almost directly towards Earth at almost the speed of light - the difference is only 1 part in 20 000," says Guido Chincarini, a member of the team. Gamma-ray bursts are the Universe's most luminous explosions. Most occur when massive stars run out of fuel. As a star collapses, it creates a black hole or neutron star that, through processes not fully understood, drives powerful gas jets outward. As the jets shoot into space, they strike gas previously shed by the star and heat it, thereby generating bright afterglows. The team believes the jet directed toward Earth contained an ultra-fast component just 0.4 degrees across (this is slightly smaller than the apparent size of the Full Moon). This jet is contained within another slightly less energetic jet about 20 times wider. The broad component is more typical of other bursts. "Perhaps every gamma-ray burst has a narrow jet, but astronomers miss it most of the time," says team member Stefano Covino. "We happened to view this monster down the barrel of the very narrow and energetic jet, and the chance for

  9. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star. PMID:26934226

  10. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  11. THRESHOLD FOR EXTENDED EMISSION IN SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Norris, Jay P.; Gehrels, Neil

    2010-07-01

    The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection threshold. Using Bayesian Block (BB) methods, we measure the EE component and show that it is present in one-quarter of a Swift/BAT sample of 51 short bursts, as was found for the Compton/BATSE sample. We simulate bursts with EE to calibrate the BAT threshold for EE detection and show that this component would have been detected in nearly half of BAT short bursts if it were present, to intensities {approx}10{sup -2} counts cm{sup -2} s{sup -1}, a factor of 5 lower than actually observed in short bursts. In the BAT sample, the ratio of average EE intensity to IPC peak intensity, R{sub int}, ranges over a factor of 25, R{sub int} {approx} 3 x 10{sup -3} to 8 x 10{sup -2}. In comparison, for the average of the 39 bursts without an EE component, the 2{sigma} upper limit is R{sub int} < 8 x 10{sup -4}. These results suggest that a physical threshold effect operates near R{sub int} {approx} few x 10{sup -3} below which the EE component is not manifest.

  12. 14 CFR 25.1438 - Pressurization and pneumatic systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pressurization and pneumatic systems. 25... § 25.1438 Pressurization and pneumatic systems. (a) Pressurization system elements must be burst.... (b) Pneumatic system elements must be burst pressure tested to 3.0 times, and proof pressure...

  13. 14 CFR 25.1438 - Pressurization and pneumatic systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurization and pneumatic systems. 25... § 25.1438 Pressurization and pneumatic systems. (a) Pressurization system elements must be burst.... (b) Pneumatic system elements must be burst pressure tested to 3.0 times, and proof pressure...

  14. 49 CFR 179.15 - Pressure relief devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of the static head and gas padding pressure and the lading vapor pressure at the following reference... tank burst pressure but no more than 33 percent of the minimum tank burst pressure. (3) The vapor tight... detection device must be closed during transportation. (3) The vapor tight pressure and the...

  15. Cladding burst behavior of Fe-based alloys under LOCA

    DOE PAGES

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; Massey, Caleb P.

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. Themore » most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.« less

  16. Cladding burst behavior of Fe-based alloys under LOCA

    SciTech Connect

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; Massey, Caleb P.

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. The most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.

  17. Testing the Gamma-Ray Burst Energy Relationships

    NASA Technical Reports Server (NTRS)

    Band, David L.; Preece, Robert D.

    2005-01-01

    Building on Nakar & Piran's analysis of the Amati relation relating gamma-ray burst peak energies E(sub p) and isotropic energies E(sub iso ) we test the consistency of a large sample of BATSE bursts with the Amati and Ghirlanda (which relates peak energies and actual gamma-ray energies E(sub gamma)) relations. Each of these relations can be exp ressed as a ratio of the different energies that is a function of red shift (for both the Amati and Ghirlanda relations) and beaming fraction f(sub B) (for the Ghirlanda relation). The most rigorous test, whic h allows bursts to be at any redshift, corroborates Nakar & Piran's r esult - 88% of the BATSE bursts are inconsistent with the Amati relat ion - while only l.6% of the bursts are inconsistent with the Ghirlan da relation if f(sub B) = 1. Modelling the redshift distribution resu lts in an energy ratio distribution for the Amati relation that is sh ifted by an order of magnitude relative to the observed distributions; any sub-population satisfying the Amati relation can comprise at mos t approx. 18% of our burst sample. A similar analysis of the Ghirland a relation depends sensitively on the beaming fraction distribution f or small values of f(sub B); for reasonable estimates of this distrib ution about a third of the burst sample is inconsistent with the Ghir landa relation. Our results indicate that these relations are an artifact of the selection effects of the burst sample in which they were f ound; these selection effects may favor sub-populations for which the se relations are valid.

  18. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  19. X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1986-01-01

    There are about 100 bright X-ray sources in the Galaxy that are accretion-driven systems composed of a neutron star and a low mass companion that fills its critical Roche lobe. Many of these systems generate recurring X-ray bursts that are the result of thermonuclear flashes in the neutron star's surface layers, and are accompanied by a somewhat delayed optical burst due to X-ray heating of accretion disk. The Rapid Burster discovered in 1976 exhibits an interval between bursts that is strongly correlated with the energy in the preceding burst. There is no optical identification for this object.

  20. UWB dual burst transmit driver

    SciTech Connect

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Zumstein, James M.; Vigars, Mark L.; Romero, Carlos E.

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  1. Gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  2. Gamma-ray bursts.

    PubMed

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow. PMID:22923573

  3. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  4. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  5. Swift's 500th Gamma Ray Burst

    NASA Video Gallery

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  6. Burst propagation in Texas Helimak

    NASA Astrophysics Data System (ADS)

    Pereira, F. A. C.; Toufen, D. L.; Guimarães-Filho, Z. O.; Caldas, I. L.; Gentle, K. W.

    2016-05-01

    We present investigations of extreme events (bursts) propagating in the Texas Helimak, a toroidal plasma device in which the radial electric field can be changed by application of bias. In the experiments analyzed, a large grid of Langmuir probes measuring ion saturation current fluctuations is used to study the burst propagation and its dependence on the applied bias voltage. We confirm previous results reported on the turbulence intermittency in the Texas Helimak, extending them to a larger radial interval with a density ranging from a uniform decay to an almost uniform value. For our analysis, we introduce an improved procedure, based on a multiprobe bidimensional conditional averaging method, to assure precise determination of burst statistical properties and their spatial profiles. We verify that intermittent bursts have properties that vary in the radial direction. The number of bursts depends on the radial position and on the applied bias voltage. On the other hand, the burst characteristic time and size do not depend on the applied bias voltage. The bias voltage modifies the vertical and radial burst velocity profiles differently. The burst velocity is smaller than the turbulence phase velocity in almost all the analyzed region.

  7. Burst Detector Sensitivity: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Band, David L.

    2005-01-01

    I compare the burst detection sensitivity of CGRO's BATSE, Swift's BAT, the GLAST Burst Monitor (GBM) and EXIST as a function of a burst s spectrum and duration. A detector's overall burst sensitivity depends on its energy sensitivity and set of accumulations times (Delta)t; these two factors shape the detected burst population. For example, relative to BATSE, the BAT s softer energy band decreases the detection rate of short, hard bursts, while the BAT s longer accumulation times increase the detection rate of long, soft bursts. Consequently, Swift is detecting long, low fluence bursts (2-3 x fainter than BATSE).

  8. Rotational bursting of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Paddack, S. J.; Rhee, J. W.

    1974-01-01

    Solar radiation pressure is discussed as a cause of rotational bursting, and of eventual elimination of asymmetric dust particles from the solar system, by a windmill effect. The predicted life span with this process for metallic particles with radii of 0.00001 to 0.01 cm ranges from 10 to 10,000 years. The effects of magnetic spin damping were considered. This depletion mechanism works faster than the traditional Poynting-Robertson effect by approximately one order of magnitude for metallic particles and about two orders of magnitude for nonmetallic particles.

  9. Rotational bursting of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Paddack, S. J.; Rhee, J. W.

    1975-01-01

    Solar radiation pressure can cause rotational bursting and eventual elimination from the solar system of asymmetric dust particles by a windmill effect. The life span against this process for metallic particles with radii of 0.00001-0.01 cm ranges from 10 to 10,000 years. The effects of magnetic spin damping have been considered in this estimate. This depletion mechanism works faster than the traditional Poynting-Robertson effect by approximately one order of magnitude for metallic particles and about two-orders of magnitude for nonmetallic particles.

  10. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    PubMed Central

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  11. Quantum key based burst confidentiality in optical burst switched networks.

    PubMed

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  12. Bursts de raios gama

    NASA Astrophysics Data System (ADS)

    Braga, J.

    2003-02-01

    Nos últimos anos, graças principalmente aos dados obtidos pelo Compton Gamma-Ray Observatory e pelo satélite ítalo-holandês BeppoSAX, grandes avanços foram obtidos no nosso conhecimento sobre os fascinantes e enigmáticos fenômenos conhecidos por "bursts"de raios gama. Neste trabalho é feita uma revisão sobre a fenomenologia desses misteriosos objetos e são apresentados os desenvolvimentos recentes nessa área palpitante da astrofísica moderna, ressaltando tanto os resultados observacionais obtidos até o momento quanto os modelos teóricos propostos para explixá-los.

  13. Baroreflex physiology studied in healthy subjects with very infrequent muscle sympathetic bursts.

    PubMed

    Diedrich, André; Crossman, Alexandra A; Beightol, Larry A; Tahvanainen, Kari U O; Kuusela, Tom A; Ertl, Andrew C; Eckberg, Dwain L

    2013-01-15

    Because it is likely that, in healthy human subjects, baroreflex mechanisms operate continuously, independent of experimental interventions, we asked the question, In what ways might study of unprovoked, very infrequent muscle sympathetic bursts inform baroreflex physiology? We closely examined arterial pressure and R-R interval responses of 11 supine healthy young subjects to arterial pressure ramps triggered by large isolated muscle sympathetic bursts. We triggered data collection sweeps on the beginnings of sympathetic bursts and plotted changes of arterial pressure (finger volume clamp or intra-arterial) and R-R intervals occurring before as well as after the sympathetic triggers. We estimated baroreflex gain from regression of R-R intervals on systolic pressures after sympathetic bursts and from the transfer function between cross-spectra of systolic pressure and R-R intervals at low frequencies. Isolated muscle sympathetic bursts were preceded by arterial pressure reductions. Baroreflex gain, calculated with linear regression of R-R intervals on systolic pressures after bursts, was virtually identical to baroreflex gain, calculated with the cross-spectral modulus [mean and (range): 24 (7-43) vs. 24 (8-45) ms/mmHg], and highly significant, according to linear regression (r(2) = 0.91, P = 0.001). Our results indicate that 1) since infrequent human muscle sympathetic bursts are almost deterministically preceded by arterial pressure reductions, their occurrence likely reflects simple baroreflex physiology, and 2) the noninvasive low-frequency modulus reliably reproduces gains derived from R-R interval responses to arterial pressure ramps triggered by infrequent muscle sympathetic bursts.

  14. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  15. Burst conditions of explosive volcanic eruptions recorded on microbarographs

    USGS Publications Warehouse

    Morrissey, M.M.; Chouet, B.A.

    1997-01-01

    Explosive volcanic eruptions generate pressure disturbances in the atmosphere that propagate away either as acoustic or as shock waves, depending on the explosivity of the eruption. Both types of waves are recorded on microbarographs as 1- to 0.1-hertz N-shaped signals followed by a longer period coda. These waveforms can be used to estimate burst pressures end gas concentrations in explosive volcanic eruptions and provide estimates of eruption magnitudes.

  16. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  17. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  18. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  19. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  20. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  1. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.; Hartmann, D. H.; Brainerd, J. J.; Briggs, M.; Paciesas, W. S.; Pendleton, G.; Kouveliotou, C.; Fishman, G.; Blumenthal, G.; Brock, M.

    1994-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic ad the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the bursts cannot be excluded.

  2. Cosmological gamma-ray bursts

    SciTech Connect

    Fenimore, E.; Epstein, R.; Ho, C.; Intzand, J.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Gamma-ray bursts are brief events that dominate the emission from all other gamma-ray objects in the sky, flicker for tens of seconds, and then turn off. Their nature remains uncertain despite years of efforts to understand them. One hypothesis is that the bursts arise within our galaxy albeit in an extended halo of neutron stars. Another hypothesis uses the isotropic distribution of gamma-ray bursts to argue that they come from nearly the edge of the universe. If gamma-ray bursts originate from cosmological distances, then the expansion of the universe should cause the dimmer (and presumably further) bursts to last longer. The authors have developed methods for measuring this time stretching, related the time stretching to the distance to the bursts, determined how the detailed physics causes temporal variations, and found the amount of total energy and peak luminosity that the events must be producing.

  3. X-ray bursts: Observation versus theory

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1981-01-01

    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.

  4. The effects of pure density evolution on the brightness distribution of cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Horack, J. M.; Emslie, A. G.; Hartmann, D. H.

    1995-01-01

    In this work, we explore the effects of burst rate density evolution on the observed brightness distribution of cosmological gamma-ray bursts. Although the brightness distribution of gamma-ray bursts observed by the BATSE experiment has been shown to be consistent with a nonevolving source population observed to redshifts of order unity, evolution of some form is likely to be present in the gamma-ray bursts. Additionally, nonevolving models place significant constraints on the range of observed burst luminosities, which are relaxed if evolution of the burst population is present. In this paper, three analytic forms of density evolution are examined. In general, forms of evolution with densities that increase monotonically with redshift require that the BATSE data correspond to bursts at larger redshifts, or to incorporate a wider range of burst luminosities, or both. Independent estimates of the maximum observed redshift in the BATSE data and/or the range of luminosity from which a large fraction of the observed bursts are drawn therefore allow for constraints to be placed on the amount of evolution that may be present in the burst population. Specifically, if recent measurements obtained from analysis of the BATSE duration distribution of the actual limiting redshift in the BATSE data at z(sub lim) = 2 are correct, the BATSE N(P) distribution in a Lambda = 0 universe is inconsistent at a level of approximately 3 alpha with nonevolving gamma-ray bursts and some form of evolution in the population is required. The sense of this required source evolution is to provide a higher density, larger luminosities, or both with increasing redshift.

  5. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central element in a metaphysical…

  6. El Observatorio Gemini - Status actual

    NASA Astrophysics Data System (ADS)

    Levato, H.

    Se hace una breve descripción de la situación actual del Observatorio Gemini y de las últimas decisiones del Board para incrementar la eficiencia operativa. Se hace también una breve referencia al uso argentino del observatorio.

  7. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  8. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Norris, Jay P.; Gehrels, Neil

    2011-07-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of {approx}2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts ({approx}6x10{sup -10} erg cm{sup -2} s{sup -1}) is {approx}>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts ({approx}60,000 s) is {approx}30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  9. Heterogeneity in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  10. Detection of GW bursts with chirplet-like template families

    NASA Astrophysics Data System (ADS)

    Chassande Mottin, Éric; Miele, Miriam; Mohapatra, Satya; Cadonati, Laura

    2010-10-01

    Gravitational wave (GW) burst detection algorithms typically rely on the hypothesis that the burst signal is 'locally stationary', that is with slow variations of its frequency. Under this assumption, the signal can be decomposed into a small number of wavelets with constant frequency. This justifies the use of a family of sine-Gaussian wavelets in the Omega pipeline, one of the algorithms used in LIGO-Virgo burst searches. However, there are plausible scenarios where the burst frequency evolves rapidly, such as in the merger phase of a binary black-hole and/or neutron-star coalescence. In those cases, the local stationarity of sine Gaussians induces performance losses, due to the mismatch between the template and the actual signal. We propose an extension of the Omega pipeline based on chirplet-like templates. Chirplets incorporate an additional parameter, the chirp rate, to control the frequency variation. In this paper, we show that the Omega pipeline can easily be extended to include a chirplet template bank. We illustrate the method on a simulated data set, with a family of phenomenological binary black-hole coalescence waveforms embedded into Gaussian LIGO/Virgo-like noise. Chirplet-like templates result in an enhancement of the measured signal-to-noise ratio.

  11. Analysis of Q burst waveforms

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Komatsu, Masayuki

    2007-04-01

    The electric field changes in ELF to VLF were observed with a ball antenna in fair weather at Kochi (latitude 33.3°N, longitude 133.4°E) during 2003-2004. Some 376 Q bursts were obtained, seven examples of which are analyzed in the present study. The continuous frequency spectra of the Q bursts and the background noises from 1.0 Hz to 11 kHz are compared, and it was found that the Q bursts prevail over the background in the frequency range from 1 to 300 Hz. The surplus is 20 dB (in amplitude) near the fundamental mode frequency. The "W"-type changes found in the initial portion of the Q burst waveforms are interpreted as the combined electromagnetic waveform of direct and antipodal waves from the causative lightning strokes. From the time intervals between the two waves, the source-receiver distances are estimated as far as 19 Mm. The pulses to excite the Schumann resonances in the Q bursts are clearly identified.

  12. Bursts in discontinuous Aeolian saltation

    PubMed Central

    Carneiro, M. V.; Rasmussen, K. R.; Herrmann, H. J.

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  13. Chimera states in bursting neurons.

    PubMed

    Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M

    2016-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states. Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera, coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean phase velocity.

  14. Chimera states in bursting neurons

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2016-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states. Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera, coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean phase velocity.

  15. Experimental investigation of circular, flat, grooved and plain steel diaphragms bursting into a 30.5-centimeter-square section

    NASA Technical Reports Server (NTRS)

    Yamaki, Y.; Rooker, J. R.

    1972-01-01

    Limited data on the bursting of circular, initially flat, grooved and plain steel diaphragms opening into a 30.5-cm-square section are presented in tabular form. In addition, these data were used to determine values of an empirical constant to be used in a design equation for predicting diaphragm bursting pressures and opening times.

  16. High Redshift Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2012-01-01

    The Swift Observatory has been detecting 100 gamma-ray bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from 1 minute after the burst, continuing for days. GRBs are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=9.4 giving information on metallicity, star formation rate and reionization. The talk will present the latest results.

  17. Burst Strength of Tubing and Casing Based on Twin Shear Unified Strength Theory

    PubMed Central

    Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish

    2014-01-01

    The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells. PMID:25397886

  18. Cosmology: Home of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Lorimer, Duncan

    2016-02-01

    Our understanding of fast radio bursts -- intense pulses of radio waves -- and their use as cosmic probes promises to be transformed now that one burst has been associated with a galaxy of known distance from Earth. See Letter p.453

  19. Rotational bursting of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Paddack, S. J.; Rhee, J. W.

    1976-01-01

    Rotationally induced bursting of interplanetary dust particles by a windmill effect stemming from solar radiation pressure, and eventual elimination of the particles from the solar system, is discussed. A life span on the order of 100,000 years for stony meteoritic material or tektite glass with radii of about 1 cm is arrived at for this process. A life span of a million years is computed for particles containing Fe, Ni, or Al with spin damping effects taken into cognizance. This depletion mechanism operates at a rate two orders of magnitude greater than that of the Poynting-Robertson effect in the case of nonmetallic particles and one order of magnitude greater in the case of metallic particles.

  20. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  1. A STATE-DEPENDENT INFLUENCE OF TYPE I BURSTS ON THE ACCRETION IN 4U 1608-52?

    SciTech Connect

    Ji, Long; Zhang, Shu; Chen, YuPeng; Zhang, Shuang-Nan; Li, Jian; Torres, Diego F.; Kretschmar, Peter

    2014-08-20

    We investigated the possible feedback of type I bursts on the accretion process during the spectral evolution of the atoll source 4U 1608-52. By fitting the burst spectrum with a blackbody and an adjustable, persistent spectral component, we found that the latter is significantly state-dependent. In the banana state, the persistent flux increases along the burst evolution, while in the island state this trend holds only when the bursts are less luminous and start to reverse at higher burst luminosities. We speculate that, by taking into account both the Poynting-Robertson drag and radiation pressure, these phenomena may arise from the interactions between the radiation field of the type I burst and the inner region of the accretion disk.

  2. Bursts of non-deglutitive simultaneous contractions may be a normal oesophageal motility pattern.

    PubMed Central

    Janssens, J; Annese, V; Vantrappen, G

    1993-01-01

    The frequency and characteristics of non-deglutitive motor activity of the human oesophagus and its relation to motility patterns in the antrum and upper small intestine were studied in 25 fasted healthy subjects. Motility of the oesophagus, antrum, and upper small intestine was recorded by means of a manometric perfused catheter system. The most striking non-deglutitive motility pattern consisted of repetitive bursts of non-sequential pressure peaks occurring in the smooth muscle portion of the oesophagus. The mean number of pressure peaks per burst was 2.7 (SD 2) waves with a mean amplitude of 19.5 (SD 9.9) mm Hg and a duration of 3.09 (SD 0.22) seconds. The highest amplitude was 80 mm Hg and the longest burst consisted of 13 repetitive waves. The bursts were recorded up to a distance of 15-20 cm above the lower oesophageal sphincter. Ninety five per cent of the bursts occurred during a 15 minute period before the onset of phase 3 of the migrating motor complex in the antral or upper small intestinal area, or during the lower oesophageal sphincter component of the migrating motor complex. In conclusion, spontaneous bursts of non-sequential pressure peaks occurred in the smooth muscle part of the human oesophagus in relation to phase 3 of the migrating motor complex. They represent the oesophageal body component of phase 3 of the migrating motor complex and are not a sign of oesophageal motor abnormalities. PMID:8174946

  3. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  4. Solar Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  5. Spindle Bursts in Neonatal Rat Cerebral Cortex

    PubMed Central

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J.

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development. PMID:27034844

  6. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    PubMed

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development.

  7. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

    1995-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb, 1993; Wang and Lingenfelter, 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al., 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.

  8. Dynamics of plateau bursting depending on the location of its equilibrium.

    PubMed

    Osinga, H M; Tsaneva-Atanasova, K T

    2010-12-01

    We present a mathematical analysis of the dynamics that underlies plateau bursting in models of endocrine cells under variation of the location of the (unstable) equilibrium around which these bursting patterns are organised. We focus primarily on the less well-studied case of pseudo-plateau bursting, but also consider the square-wave case. The behaviour of such models is explained using the theory for systems with multiple time scales and it is well known that the underlying so-called fast subsystem organises their dynamics. However, such results are valid only in a sufficiently small neighbourhood of the singular limit that defines the fast subsystem. Hence, the slow variable (intracellular calcium concentration) must be very slow, which is actually not the case for pseudo-plateau bursting. Furthermore, the theoretical predictions are also only valid for parameter values such that the equilibrium is close to a homoclinic bifurcation occuring in the fast subsystem. In the present study, we use numerical explorations to discuss what happens outside this theoretically known neighbourhood of parameter space. In particular, we consider what happens as the equilibrium moves outside a small neighbourhood of the homoclinic bifurcation that occurs in the fast subsystem, and relatively fast speeds are allowed for the slow variable which is controlled by a relatively large value of a parameter ε. The results obtained complement our earlier work [Tsaneva-Atanasova et al. (2010) J Theor Biol264, 1133-1146], which focussed on how the bursting patterns vary with the rate of change ε of the slow variable: we fix ε and move the equilibrium over the full range of the bursting regime. Our findings show that the transitions between different bursting patterns are rather similar for square-wave and pseudo-plateau bursting, provided that the value of ε for the pseudo-plateau-bursting model is chosen so that it is much larger than for the square-wave bursting model. Furthermore

  9. Infrasound and Seismic Observation of the Hayabusa Reentry: Burst Signals and Air-to-Ground Coupling Process

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Hiramatsu, Y.; Yamamoto, M.; Furumoto, M.; Fujita, K.

    2012-12-01

    packets. Based on the arrival time and the slowness of the signals, we identified one of these signals as the shockwave signal that corresponds to the energetic burst of the spacecraft at altitude of 57.3 km, which was recorded by video. However, we could not identify a lot of signals as the direct arrivals of the burst and sonic-boom-type shockwave. Some of those unidentified signals were probably related the multipath phases of the burst and sonic boom shockwaves. To study the air-to-ground coupling, we compare the observed waveforms to synthetic waveforms computed by 2-D finite difference scheme. For the actual seismic data, we can find precursor wave packets slightly prior to the direct-coupled wave from the capsule at GOS2 and GOS2A station. On the other hand, GOS2B and sub stations did not recorded distinct precursor wave. According to the synthetic waveforms, apparent velocity of the incident air-pressure wave controls the existence of the precursor wave prior to the direct coupling. When the apparent velocity of the incident pressure wave is almost identical to the phase velocity of ground surface wave, the surface wave is excited efficiently as precursor wave. Namely, for GOS2B station, the elevation angle of the incident shockwave is high. Therefore, the apparent velocity of the shockwave is too fast to generate the precursor surface wave.

  10. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  11. Release from informational masking in children: Effect of multiple signal bursts

    PubMed Central

    Leibold, Lori J.; Bonino, Angela Yarnell

    2009-01-01

    This study examined the degree to which increasing the number of signal presentations provides children with a release from informational masking. Listeners were younger children (5–7 years), older children (8–10 years), and adults. Detection thresholds were measured for a sequence of repeating 50-ms bursts of a 1000-Hz pure-tone signal embedded in a sequence of 10- and 50-ms bursts of a random-frequency, two-tone masker. Masker bursts were played at an overall level of 60-dB sound pressure level in each interval of a two-interval, forced choice adaptive procedure. Performance was examined for conditions with two, four, five, and six signal bursts. Regardless of the number of signal bursts, thresholds for most children were higher than thresholds for most adults. Despite developmental effects in informational masking, however, masked threshold decreased with additional signal bursts by a similar amount for younger children, older children, and adults. The magnitude of masking release for both groups of children and for adults was inconsistent with absolute energy detection. Instead, increasing the number of signal bursts appears to aid children in the perceptual segregation of the fixed-frequency signal from the random-frequency masker as has been previously reported for adults [Kidd, G., et al. (2003). J. Acoust. Soc. Am. 114, 2835–2845]. PMID:19354396

  12. Investigation of the tone-burst tube for duct lining attenuation measurement

    NASA Technical Reports Server (NTRS)

    Soffel, A. R.; Morrow, P. F.

    1972-01-01

    The tone burst technique makes practical the laboratory evaluation of potential inlet and discharge duct treatments. Tone burst apparatus requires only simple machined parts and standard components. Small, simply made, lining samples are quickly and easily installed in the system. Two small electromagnetric loudspeaker drivers produce peak sound pressure level of over 166 db in the 3-square-inch sample duct. Air pump available in most laboratories can produce air flows of over plus and minus Mach 0.3 in the sample duct. The technique uses short shaped pulses of sound propagated down a progressive wave tube containing the sample duct. The peak pressure level output of the treated duct is compared with the peak pressure level output of a substituted reference duct. The difference between the levels is the attenuation or insertion loss of the treated duct. Evaluations of resonant absorber linings by the tone burst technique check attenuation values predicted by empirical formulas based on full scale ducts.

  13. A new design criterion based on pressure testing of torispherical heads

    SciTech Connect

    Kalnins, A.; Rana, M.D.

    1996-08-01

    Two vessels with torispherical heads were pressurized to destruction at the Praxair Tonawanda facility on September 12--13, 1994. The objective was to determine pressures at which observable or measurable indications of failure could be detected. Plastic limit pressures for the two heads were calculated at 190 and 240 psi, respectively. For Vessel 1, the only observable action was a slow formation of some waviness of the knuckle profile at approximately 600 psi. It lost pressure at 700 psi when a crack developed at a nozzle weld at the bottom of the shell. For Vessel 2, no indication of any sign of failure was observed until it burst at a pressure of 1,080 psi by a ductile fracture along the longitudinal weld of the shell. The main conclusion is that there is a problem in the application of the double elastic slope collapse criterion to torispherical heads. It was determined that when using this criterion a collapse pressure signaling excessive deformation cannot be determined with any certainty. Furthermore, the test data do not show anything at any of the calculated collapse pressures that suggests excessive deformation. Thus, the collapse pressures for torispherical heads cannot be confirmed by test. This leads to the inconsistency that if the collapse load is divided by a safety factor, say 1.5, to obtain an allowable pressure, the actual safety margin of the design is not known and may not be 1.5. For a material with sufficient ductility, the use of an estimated burst pressure appears preferable. A design criterion based on the membrane stress at the crown of a torispherical head reaching the ultimate tensile strength is proposed, which is simple, can be supported by theoretical arguments, and is shown to be conservative by current test results as well as by those of two previous test programs.

  14. Solar radiation induced rotational bursting of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.

    1975-01-01

    It is suggested that the magnitudes of the two radiation-induced rotational bursting mechanisms (Radzieskii effect and windmill effect) have been overestimated and that they do not work significantly faster than the Poynting-Robertson effect in removing interplanetary particles. These two mechanisms are described, and serious doubts are raised regarding the derivation of their radiation pressure-torque proportionality constants, which are required for calculating their magnitudes. It is shown that both mechanisms will cause the alignment of elongated particles and, consequently, the polarization of zodiacal light. Since no positive polarization has been measured at the antisolar point, it is concluded that the magnitudes of the rotational bursting mechanisms are smaller than that of the Poynting-Robertson effect.

  15. Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms

    PubMed Central

    Thio, Tzer Hwai Gilbert; Soroori, Salar; Al-Faqheri, Wisam; Soin, Norhayati; Kulinsky, Lawrence; Madou, Marc

    2013-01-01

    This paper presents a theoretical development and critical analysis of the burst frequency equations for capillary valves on a microfluidic compact disc (CD) platform. This analysis includes background on passive capillary valves and the governing models/equations that have been developed to date. The implicit assumptions and limitations of these models are discussed. The fluid meniscus dynamics before bursting is broken up into a multi-stage model and a more accurate version of the burst frequency equation for the capillary valves is proposed. The modified equations are used to evaluate the effects of various CD design parameters such as the hydraulic diameter, the height to width aspect ratio, and the opening wedge angle of the channel on the burst pressure. PMID:23292292

  16. Bursts of Type III and Type V

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Dulk, G. A.

    The observational database on Types III and V solar radio bursts is summarized and used as a basis for developing analytical models of the observed phenomena. Type III events are characterized by a rapid drift from high to low frequencies, a harmonic structure consisting of F-H pairs, and circular polarization. Type V events last longer than Type III bursts and have a broader bandwidth. Both bursts are thought to arise from the same mechanism. Probable sources of the F-H pairs are characterized, along with the brightness temperature, time profiles, and polarization features typical of Type III and IIIb, structureless Type III and storm Type III bursts. Attention is also given to the interaction between Type III bursts and the coronal magnetic field and to similarities between Type III events and inverted-U and J bursts.

  17. Physics of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1984-01-01

    Attention is given to the accumulating evidence for the view that gamma-ray bursts come from strongly magnetic neutron stars, discussing the physical properties of the emission region and the radiation processes expected in strong magnetic fields, and emphasizing that the observed burst spectra require that the emission region be optically thin. This entails that the energy of the emitting plasma and/or the plasma itself be continuously replenished during a burst, and that the cooling time scale of the emitting plasma be much shorter than the observed duration of the bursts. This characteristic of the cooling time scale implies that the burst intensity and spectrum can vary on extremely short time scales, and that the burst duration must have a separate explanation. It is emphasized that synchrotron emission is favored as the gamma-ray production mechanism; it is the only mechanism capable of satisfying the optical thinness constraint while producing the observed luminosity.

  18. Hardness/intensity correlations among BATSE bursts

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Pendleton, Geoffrey N.; Kouveliotou, Chryssa; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.

    1992-01-01

    Conclusions about the nature of gamma-ray bursts derived from the size-frequency distribution may be altered if a significant correlation exists between burst intensity and spectral shape. Moreover, if gamma-ray bursts have a cosmological origin, such a correlation may be expected to result from the expansion of the universe. We have performed a rudimentary search of the BATSE bursts for hardness/intensity correlations. The range of spectral shapes was determined for each burst by computing the ratio of the intensity in the range 100-300 keV to that in 55-300 keV. We find weak evidence for the existence of a correlation, the strongest effect being present when comparing the maximum hardness ratio for each burst with its maximum rate.

  19. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    , Denmark), Johan Fynbo, Palle Møller (European Southern Observatory), Richard Marc Kippen (University of Alabama in Huntsville and NASA/Marshall Space Flight Center, USA), Bjarne Thomsen (University of Århus, Denmark), Marianne Vestergaard (Ohio State University, USA), Nicola Masetti, Eliana Palazzi (Instituto Tecnologie e Studio Radiazoni Extraterresti, Bologna, Italy) Kevin Hurley (University of California, Berkeley, USA), Thomas Cline (NASA Goddard Space Flight Center, Greenbelt, USA), Lex Kaper (Sterrenkundig Instituut ``Anton Pannekoek", the Netherlands) and Andreas O. Jaunsen (formerly University of Oslo, Norway; now ESO-Paranal). [2]: Detailed reports about the early observations of this gamma-ray burst are available at the dedicated webpage within the GRB Coordinates Network website. [3]: The photometric redshift method makes it possible to judge the distance to a remote celestial object (a galaxy, a quasar, a gamma-ray burst afterglow) from its measured colours. It is based on the proportionality between the distance and the velocity along the line of sight (Hubble's law) that reflects the expansion of the Universe. The larger the distance of an object is, the larger is its velocity and, due to the Doppler effect, the spectral shift of its emission towards longer (redder) wavelengths. Thus, the measured colour provides a rough indication of the distance. Examples of this method are shown in ESO PR 20/98 (Photos 48a/00 and 48e/00). [4]: In fact, the object was so faint that the positioning of the spectrograph slit had to be done in "blind" offset, i.e. without actually seeing the object on the slit during the observation. This very difficult observational feat was possible because of excellent preparations by the team of astronomers and the very good precision of the telescope and instrument. [5]: The " Lyman-alpha forest" refers to the crowding of absorption lines from intervening hydrogen clouds, shortward of the strong Lyman-alpha spectral line at rest

  20. Ballerina - pirouettes in search of gamma bursts

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Pedersen, H.; Hjorth, J.; BALLERINA Collaboration

    1999-09-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.

  1. Topological and phenomenological classification of bursting oscillations.

    PubMed

    Bertram, R; Butte, M J; Kiemel, T; Sherman, A

    1995-05-01

    We describe a classification scheme for bursting oscillations which encompasses many of those found in the literature on bursting in excitable media. This is an extension of the scheme of Rinzel (in Mathematical Topics in Population Biology, Springer, Berlin, 1987), put in the context of a sequence of horizontal cuts through a two-parameter bifurcation diagram. We use this to describe the phenomenological character of different types of bursting, addressing the issue of how well the bursting can be characterized given the limited amount of information often available in experimental settings. PMID:7728115

  2. Gravitational wave bursts from cosmic strings

    PubMed

    Damour; Vilenkin

    2000-10-30

    Cusps of cosmic strings emit strong beams of high-frequency gravitational waves (GW). As a consequence of these beams, the stochastic ensemble of gravitational waves generated by a cosmological network of oscillating loops is strongly non-Gaussian, and includes occasional sharp bursts that stand above the rms GW background. These bursts might be detectable by the planned GW detectors LIGO/VIRGO and LISA for string tensions as small as G&mgr; approximately 10(-13). The GW bursts discussed here might be accompanied by gamma ray bursts. PMID:11041921

  3. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Supid

    2007-01-01

    This viewgraph presentation describes neutron stars and thermonuclear x ray bursts. The contents include: 1) Neutron Stars: why do we care?; 2) Thermonuclear Bursts: why do we care?; 3) Neutron Stars: Mass, Radius and Spin: a. Continuum Spectroscopy of Bursts b. Spectral Lines from Bursts c. Timing Properties of Bursts; 4) Neutron Star Atmosphere: Thermonuclear Flame Spreading; and 5) Future Prospects and Conclusions.

  4. Bursts in inclined layer convection

    NASA Astrophysics Data System (ADS)

    Busse, F. H.; Clever, R. M.

    2000-08-01

    A new instability of longitudinal rolls in an inclined fluid layer heated from below is analyzed in the case of the Prandtl number P=0.71. The instability assumes the form of subharmonic undulations and evolves into a spatially chaotic pattern when the angle of inclination is of the order of 20°. The chaotic state rapidly decays and longitudinal rolls recover until the next burst of chaotic convection occurs. The theoretical findings closely correspond to recent experimental observations by Daniels et al. [Phys. Rev. Lett. (to be published)].

  5. Transcriptional burst frequency and burst size are equally modulated across the human genome

    SciTech Connect

    Dar, Roy D.; Simpson, Michael L; Weinberger, Leor S.; Razooky, B; Cox, Chris D.; McCollum, James M.; Trimeloni, Tom; Singh, A

    2012-01-01

    Gene expression occurs either as an episodic process, characterized by pulsatile bursts or as a constitutive, Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy, building off of theoretical studies that exploit the time-resolved structure of stochastic fluctuations in gene expression, to develop a three-dimensional method for mapping underlying gene-regulatory mechanisms. Over 8,000 individual human genomic loci were analyzed, and at virtually all loci, episodic bursting as opposed to constitutive expression was found to be the predominant mode of expression. Quantitative analysis of the expression dynamics at these 8,000 loci indicates that both frequency and size of transcriptional bursts vary equally across the human genome independent of promoter sequence. Strikingly, weaker expression loci modulate burst frequency to increase activity, while stronger expression loci modulate burst size to increase activity. Transcriptional activators, such as TNF, generate similar patterns of change in burst frequency and burst size. In summary, transcriptional bursting dominates across the human genome, both burst frequency and burst size vary by chromosomal location, and transcriptional activators alter burst frequency and burst size, depending on the expression level of the locus.

  6. 14 CFR 23.1438 - Pressurization and pneumatic systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurization and pneumatic systems. 23... Equipment Miscellaneous Equipment § 23.1438 Pressurization and pneumatic systems. (a) Pressurization system... normal operating pressure. (b) Pneumatic system elements must be burst pressure tested to 3.0 times,...

  7. 14 CFR 23.1438 - Pressurization and pneumatic systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pressurization and pneumatic systems. 23... Equipment Miscellaneous Equipment § 23.1438 Pressurization and pneumatic systems. (a) Pressurization system... normal operating pressure. (b) Pneumatic system elements must be burst pressure tested to 3.0 times,...

  8. Coupling and noise induced spiking-bursting transition in a parabolic bursting model.

    PubMed

    Ji, Lin; Zhang, Jia; Lang, Xiufeng; Zhang, Xiuhui

    2013-03-01

    The transition from tonic spiking to bursting is an important dynamic process that carry physiologically relevant information. In this work, coupling and noise induced spiking-bursting transition is investigated in a parabolic bursting model with specific discussion on their cooperation effects. Fast/slow analysis shows that weak coupling may help to induce the bursting by changing the geometric property of the fast subsystem so that the original unstable periodical solution are stabilized. It turned out that noise can play the similar stabilization role and induce bursting at appropriate moderate intensity. However, their cooperation may either strengthen or weaken the overall effect depending on the choice of noise level.

  9. Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage

    PubMed Central

    Rahmanian, Omid D.

    2014-01-01

    A simple and reliable method for fabricating single-use normally closed burst valves in thermoplastic microfluidic devices is presented, using a process flow that is readily integrated into established workflows for the fabrication of thermoplastic microfluidics. An experimental study of valve performance reveals the relationships between valve geometry and burst pressure. The technology is demonstrated in a device employing multiple valves engineered to actuate at different inlet pressures that can be generated using integrated screw pumps. On-chip storage and reconstitution of fluorescein salt sealed within defined reagent chambers are demonstrated. By taking advantage of the low gas and water permeability of cyclic olefin copolymer, the robust burst valves allow on-chip hermetic storage of reagents, making the technology well suited for the development of integrated and disposable assays for use at the point of care. PMID:25972774

  10. Forecasting SEP Events with Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Coffey, J. R.; Winter, L. M.

    2015-12-01

    Solar Energetic Particle (SEP) events from the Sun occur when particles associated with solar bursts like CMEs and flares are propelled into space. These events can cause substantial damage to objects in their paths, like satellites, by penetrating into them and causing radiation. In a related recent study a method was devised to forecast the occurrence of an SEP event using properties of the type II and type III radio bursts measured from WIND/WAVES (Winter & Ledbetter 2015). This study analyzed 27 SEP events from 2010 to 2013. We now present an analysis of type II and type III bursts in solar cycle 23, associated with the 63 SEP events from 2000-2003. Parameters including the peak flux of type II bursts, integral flux of type II and II bursts, and the duration of type III bursts are used to create a radio index. This index is used to predict whether or not an SEP event will occur. Cycle 23 was more active than cycle 24, with significantly more radio bursts and SEP events. Our results show that the radio index successfully predicts the occurrence of SEPs for the events in the more active solar cycle 23. We also find that, in general, the higher the radio index the higher the peak proton flux will be following the burst.

  11. Air bubble bursting effect of lotus leaf.

    PubMed

    Wang, Jingming; Zheng, Yongmei; Nie, Fu-Qiang; Zhai, Jin; Jiang, Lei

    2009-12-15

    In this paper, a phenomenon of air bubbles quickly bursting within several milliseconds on a "self-cleaning" lotus leaf was described. This observation prompted the synthesis of artificial surfaces similar to that of the lotus leaf. The artificial leaf surfaces, prepared by photolithography and wet etching, showed a similar air bubble bursting effect. Smooth and rough silicon surfaces with an ordered nanostructure or patterned microstructure were utilized to study the contribution of the micro/nano hierarchical structures to this phenomenon of air bubble bursting. Air bubbles were found to burst on some superhydrophobic surfaces with microstructure (within 220 ms). However, air bubbles burst much more rapidly (within 13 ms) on similar surfaces with micro/nanostructure. The height, width, and spacing of hierarchical structures could also affect air bubble bursting, and the effect of the height was more obvious. When the height of hierarchical structures was around the height found in natural lotus papillae, the width and spacing were significant for air bubble bursting. An original model was proposed to further evaluate the reason why the micro/nano hierarchical rough structures had an excellent air bubble bursting effect, and the validity of the model was theoretically demonstrated.

  12. Gas bursts from cameroon crater lakes: a new natural hazard.

    PubMed

    Sigurdsson, H

    1988-06-01

    Gas bursts from tropical crater lakes constitute a hitherto unrecognized natural hazard, which claimed 37 lives around Lake Monoun in 1984 and 1,746 lives in 1986 around Lake Nyos in Cameroon, west Africa. Studies of these events indicate that the lethal gas clouds were dominantly CO(2) which exsolved catastrophically from deep waters of the lakes, producing in the case of Lake Nyos a gas cloud of 1.94 times 10(6) tons CO(2) . Carbon-isotope data indicate a magmatic source of the carbon dioxide, but the geochemistry of deep water and gases does not support a sudden injection of volcanic gas from a deep source into the lakes. Rather, it is proposed that the gas bursts were preceded by gradual build-up of dissolved bicarbonate in deep waters, where anoxic conditions in enclosed and stagnant basins led to low pH and pCO(2) close to saturation. Steady input from the Earth's mantle to submerged mofettes or CO(2) -rich soda springs within the lakes is most likely the primary source of carbon dioxide. Lethal effects of the gas bursts are almost entirely due to CO(2) -induced asphyxia. A small percentage of victims awoke from coma one or two days after the event, but most died. Unusual skin lesions on about 5% of victims arose from the comatose state. It is shown that the mass of gas required to account for the lethal effects and observed gas clouds is an order of magnitude less than the potential gas yield from the lakes. In view of the lethal gas bursts from the small Cameroon lakes, the potential hazard of future gas bursts from other much larger density-stratified equatorial lakes must be seriously considered, particularly in Lake Kivu in east Africa, where methane and carbon dioxide gas content is higher by two to four orders of magnitude than that of the Cameroon lakes. A gas burst from Lake Kivu would form a carbon dioxide cloud up to 340 km(3) in volume and expansion of the exsolving gas from deep water to atmospheric pressure would correspond to an energy release

  13. Gas bursts from cameroon crater lakes: a new natural hazard.

    PubMed

    Sigurdsson, H

    1988-06-01

    Gas bursts from tropical crater lakes constitute a hitherto unrecognized natural hazard, which claimed 37 lives around Lake Monoun in 1984 and 1,746 lives in 1986 around Lake Nyos in Cameroon, west Africa. Studies of these events indicate that the lethal gas clouds were dominantly CO(2) which exsolved catastrophically from deep waters of the lakes, producing in the case of Lake Nyos a gas cloud of 1.94 times 10(6) tons CO(2) . Carbon-isotope data indicate a magmatic source of the carbon dioxide, but the geochemistry of deep water and gases does not support a sudden injection of volcanic gas from a deep source into the lakes. Rather, it is proposed that the gas bursts were preceded by gradual build-up of dissolved bicarbonate in deep waters, where anoxic conditions in enclosed and stagnant basins led to low pH and pCO(2) close to saturation. Steady input from the Earth's mantle to submerged mofettes or CO(2) -rich soda springs within the lakes is most likely the primary source of carbon dioxide. Lethal effects of the gas bursts are almost entirely due to CO(2) -induced asphyxia. A small percentage of victims awoke from coma one or two days after the event, but most died. Unusual skin lesions on about 5% of victims arose from the comatose state. It is shown that the mass of gas required to account for the lethal effects and observed gas clouds is an order of magnitude less than the potential gas yield from the lakes. In view of the lethal gas bursts from the small Cameroon lakes, the potential hazard of future gas bursts from other much larger density-stratified equatorial lakes must be seriously considered, particularly in Lake Kivu in east Africa, where methane and carbon dioxide gas content is higher by two to four orders of magnitude than that of the Cameroon lakes. A gas burst from Lake Kivu would form a carbon dioxide cloud up to 340 km(3) in volume and expansion of the exsolving gas from deep water to atmospheric pressure would correspond to an energy release

  14. Bursting Bubbles from Combustion of Thermoplastic Materials in Microgravity

    NASA Technical Reports Server (NTRS)

    Butler, K. B.

    1999-01-01

    Many thermoplastic materials in common use for a wide range of applications, including spacecraft, develop bubbles internally as they burn due to chemical reactions taking place within the bulk. These bubbles grow and migrate until they burst at the surface, forceably ejecting volatile gases and, occasionally, molten fuel. In experiments in normal gravity, Kashiwagi and Ohlemiller observed vapor jets extending a few centimeters from the surface of a radiatively heated polymethylmethacrylate (PMMA) sample, with some molten material ejected into the gas phase. These physical phenomena complicated the combustion process considerably. In addition to the non-steady release of volatiles, the depth of the surface layer affected by oxygen was increased, attributed to the roughening of the surface by bursting events. The ejection of burning droplets in random directions presents a potential fire hazard unique to microgravity. In microgravity combustion experiments on nylon Velcro fasteners and on polyethylene wire insulation, the presence of bursting fuel vapor bubbles was associated with the ejection of small particles of molten fuel as well as pulsations of the flame. For the nylon fasteners, particle velocities were higher than 30 cm/sec. The droplets burned robustly until all fuel was consumed, demonstrating the potential for the spread of fire in random directions over an extended distance. The sequence of events for a bursting bubble has been photographed by Newitt et al.. As the bubble reaches the fluid surface, the outer surface forms a dome while the internal bubble pressure maintains a depression at the inner interface. Liquid drains from the dome until it breaks into a cloud of droplets on the order of a few microns in size. The bubble gases are released rapidly, generating vortices in the quiescent surroundings and transporting the tiny droplets. The depression left by the escaping gases collapses into a central jet, which rises with a high velocity and may

  15. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  16. Backstreaming Electrons Associated With Solar Electron Bursts

    NASA Astrophysics Data System (ADS)

    Skoug, R. M.; Steinberg, J. T.; de Koning, C. A.; Gosling, J. T.; McComas, D. J.

    2007-12-01

    Solar electron bursts are frequently observed in the ACE/SWEPAM suprathermal electron measurements at energies below 1.4 keV. A significant fraction of such events show backscattered electrons, beginning after the burst onset and traveling back towards the Sun along the magnetic field direction. Such backscattered particles imply a scattering mechanism beyond the spacecraft location. Some bursts also show backstreaming conic distributions, implying mirroring at magnetic field enhancements beyond the spacecraft. Here we present a study of these backstreaming particles during solar electron events. We examine the occurrence of backstreaming electrons and their relationship to other burst characteristics such as pitch angle width, duration, and energy range. We also investigate the time delay between burst onset and the appearance of backscattered electrons, including energy and pitch-angle dispersion. We examine the pitch angle distribution and energy dependence of backstreaming electrons, and consider possible origins of these electron distributions and their relationship to solar wind structure beyond the spacecraft.

  17. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  18. Gamma and Beta Bursts Underlie Working Memory.

    PubMed

    Lundqvist, Mikael; Rose, Jonas; Herman, Pawel; Brincat, Scott L; Buschman, Timothy J; Miller, Earl K

    2016-04-01

    Working memory is thought to result from sustained neuron spiking. However, computational models suggest complex dynamics with discrete oscillatory bursts. We analyzed local field potential (LFP) and spiking from the prefrontal cortex (PFC) of monkeys performing a working memory task. There were brief bursts of narrow-band gamma oscillations (45-100 Hz), varied in time and frequency, accompanying encoding and re-activation of sensory information. They appeared at a minority of recording sites associated with spiking reflecting the to-be-remembered items. Beta oscillations (20-35 Hz) also occurred in brief, variable bursts but reflected a default state interrupted by encoding and decoding. Only activity of neurons reflecting encoding/decoding correlated with changes in gamma burst rate. Thus, gamma bursts could gate access to, and prevent sensory interference with, working memory. This supports the hypothesis that working memory is manifested by discrete oscillatory dynamics and spiking, not sustained activity. PMID:26996084

  19. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  20. Harmonic components of decametric solar radio bursts

    NASA Astrophysics Data System (ADS)

    Tsybko, Ia. G.

    1984-05-01

    Type IIIb, IIId, and III solar decametric radio bursts distinguished by the typical negative drift rate of their dynamic spectra are compared and noted to fall into two groups: the type IIIb chains of simple stria bursts and normal type III storm bursts observed at central regions constitute a group of events with a fast drifting spectrum, while type III bursts from type IIIb-III pairs and the limb variant of normal III bursts, as well as peculiar type IIId chains of diffuse striae and related chains with an echo component, constitute a second group of events with comparatively slow drift rates. The first group is associated with the fundamental F frequency; the second group is associated with the harmonic H of the coronal plasma frequency.

  1. FRBCAT: The Fast Radio Burst Catalogue

    NASA Astrophysics Data System (ADS)

    Petroff, E.; Barr, E. D.; Jameson, A.; Keane, E. F.; Bailes, M.; Kramer, M.; Morello, V.; Tabbara, D.; van Straten, W.

    2016-09-01

    Here, we present a catalogue of known Fast Radio Burst sources in the form of an online catalogue, FRBCAT. The catalogue includes information about the instrumentation used for the observations for each detected burst, the measured quantities from each observation, and model-dependent quantities derived from observed quantities. To aid in consistent comparisons of burst properties such as width and signal-to-noise ratios, we have re-processed all the bursts for which we have access to the raw data, with software which we make available. The originally derived properties are also listed for comparison. The catalogue is hosted online as a Mysql database which can also be downloaded in tabular or plain text format for off-line use. This database will be maintained for use by the community for studies of the Fast Radio Burst population as it grows.

  2. Microsecond flares in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cohen, Justin; Teegarden, Bonnard J.; Cline, Thomas L.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, William S.; Pendleton, Geoffrey N.; Matteson, James L.

    1993-01-01

    It has been suggested that gamma-ray burst light curves may consist of many superposed flares with a duration shorter than 30/microsec. If true, the implications for the interpretation of burst data are enormous. With the launch of the Compton Gamma-Ray Observatory, four predictions of Mitrofanov's (1989) suggestion can be tested. Our results which contradict this suggestion are (1) the photon arrival times are not correlated between independent detectors, (2) the spectral hardness and intensity does not depend on the detector area, (3) the bursts seen by detectors which measure photon positions do not see microsecond flares, and (4) burst positions deduced from detectors with different projected areas are close to the positions deduced from time-of-flight differences between separated spacecraft. We conclude, therefore, that gamma-ray bursts are not composed of microsecond flares.

  3. Structural Health Monitoring of Composite Wound Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, Raj; Taylor, Scott; Jackson, Kurt; Myers, George; Sharma, A.

    2002-01-01

    The increasing use of advanced composite materials in the wide range of applications including Space Structures is a great impetus to the development of smart materials. Incorporating these FBG sensors for monitoring the integrity of structures during their life cycle will provide valuable information about viability of the usage of such material. The use of these sensors by surface bonding or embedding in this composite will measure internal strain and temperature, and hence the integrity of the assembled engineering structures. This paper focuses on such a structure, called a composite wound pressure vessel. This vessel was fabricated from the composite material: TRH50 (a Mitsubishi carbon fiber with a 710-ksi tensile strength and a 37 Msi modulus) impregnated with an epoxy resin from NEWPORT composites (WDE-3D-1). This epoxy resin in water dispersed system without any solvents and it cures in the 240-310 degrees F range. This is a toughened resin system specifically designed for pressure applications. These materials are a natural fit for fiber sensors since the polyimide outer buffer coating of fiber can be integrated into the polymer matrix of the composite material with negligible residual stress. The tank was wound with two helical patterns and 4 hoop wraps. The order of winding is: two hoops, two helical and two hoops. The wall thickness of the composite should be about 80 mil or less. The tank should burst near 3,000 psi or less. We can measure the actual wall thickness by ultrasonic or we can burst the tank and measure the pieces. Figure 1 shows a cylinder fabricated out of carbon-epoxy composite material. The strain in different directions is measured with a surface bonded fiber Bragg gratings and with embedded fiber Bragg gratings as the cylinder is pressurized to burst pressures. Figure 2 shows the strain as a function of pressure of carbon-epoxy cylinder as it is pressurized with water. Strain is measured in different directions by multiple gratings

  4. Cloaked Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  5. CLOAKED GAMMA-RAY BURSTS

    SciTech Connect

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  6. Spatiotemporal chaos from bursting dynamics

    SciTech Connect

    Berenstein, Igal; De Decker, Yannick

    2015-08-14

    In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators.

  7. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution.

    PubMed

    Slater, Graham J; Pennell, Matthew W

    2014-05-01

    A central prediction of much theory on adaptive radiations is that traits should evolve rapidly during the early stages of a clade's history and subsequently slowdown in rate as niches become saturated--a so-called "Early Burst." Although a common pattern in the fossil record, evidence for early bursts of trait evolution in phylogenetic comparative data has been equivocal at best. We show here that this may not necessarily be due to the absence of this pattern in nature. Rather, commonly used methods to infer its presence perform poorly when when the strength of the burst--the rate at which phenotypic evolution declines--is small, and when some morphological convergence is present within the clade. We present two modifications to existing comparative methods that allow greater power to detect early bursts in simulated datasets. First, we develop posterior predictive simulation approaches and show that they outperform maximum likelihood approaches at identifying early bursts at moderate strength. Second, we use a robust regression procedure that allows for the identification and down-weighting of convergent taxa, leading to moderate increases in method performance. We demonstrate the utility and power of these approach by investigating the evolution of body size in cetaceans. Model fitting using maximum likelihood is equivocal with regards the mode of cetacean body size evolution. However, posterior predictive simulation combined with a robust node height test return low support for Brownian motion or rate shift models, but not the early burst model. While the jury is still out on whether early bursts are actually common in nature, our approach will hopefully facilitate more robust testing of this hypothesis. We advocate the adoption of similar posterior predictive approaches to improve the fit and to assess the adequacy of macroevolutionary models in general.

  8. An assessment of burst strength distribution data for monitoring quality of condom stocks in developing countries.

    PubMed

    Free, M J; Hutchings, J; Lubis, F; Natakusumah, R

    1986-03-01

    Laboratory tests were conducted on condoms to examine the changes that occur over time in indicators of condom burst strength, and to determine the relationship between laboratory-assessed condom burst strength and breakage during use in a developing country setting. Three groups of unaged condoms purchased directly from the manufacturer were used: one group exposed to UV light for 10 hours; one group exposed for five hours; and one group unexposed. A sample of each of these groups was tested according to ISO condom air burst test protocols. The remaining condoms were individually packaged in coded polyethylene bags for shipment to the developing country study site. Also used in the study was a group of condoms that had been aged for over 40 months under field conditions in a tropical climate; a sample from this group was tested by the ISO air burst test protocol and the remainder distributed to the study site. One-hundred-thirty Indonesian urban males participated in the double-blind study. Volunteers were not relying on the condom for contraceptive purposes. Each volunteer was given one individually packaged untreated condom, one condom from each treatment group, and four condoms aged in the field. Study participants were instructed to return all used condoms. Each condom that was returned after use was examined for breakage, and the unbroken condoms were subjected to an air inflation test to determine volume and pressure at burst. A comparison of the air burst volume data for a sample of unused and used condoms from the same treatment group indicates that most of the condoms that broke during use had air burst volumes below 11 liters. Therefore, a significant downward shift in the burst strength distribution as measured in the laboratory is likely to result in an increased breakage rate during use. A Condom Deterioration Index calculated from regular periodic testing of stored condom stocks is a convenient and sensitive means of monitoring trends in the

  9. Observation of gamma ray bursts at ground level under the thunderclouds

    NASA Astrophysics Data System (ADS)

    Kuroda, Y.; Oguri, S.; Kato, Y.; Nakata, R.; Inoue, Y.; Ito, C.; Minowa, M.

    2016-07-01

    We observed three γ-ray bursts related to thunderclouds in winter using the prototype of anti-neutrino detector PANDA made of 360-kg plastic scintillator deployed at Ohi Power Station at the coastal area of the Japan Sea. The maximum rate of the events which deposited the energy higher than 3 MeV was (5.5 ± 0.1) ×102 /s. Monte Carlo simulation showed that electrons with approximately monochromatic energy falling downwards from altitudes of order 100 m roughly produced the observed total energy spectra of the bursts. It is supposed that secondary cosmic-ray electrons, which act as seed, were accelerated in electric field of thunderclouds and multiplied by relativistic runaway electron avalanche. We actually found that the γ-rays of the bursts entered into the detector from the direction close to the zenith. The direction stayed constant during the burst within the detector resolution. In addition, taking advantage of the delayed coincidence detection of the detector, we found neutron events in one of the bursts at the maximum rate of ∼ 14 ± 5 /s.

  10. Observing a Burst with Sunglasses

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Unique Five-Week VLT Study of the Polarisation of a Gamma-Ray Burst Afterglow "Gamma-ray bursts (GRBs)" are certainly amongst the most dramatic events known in astrophysics. These short flashes of energetic gamma-rays, first detected in the late 1960's by military satellites, last from less than one second to several minutes. GRBs have been found to be situated at extremely large ("cosmological") distances. The energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00. During the past years circumstantial evidence has mounted that GRBs signal the collapse of extremely massive stars, the so-called hypernovae. This was finally demonstrated some months ago when astronomers, using the FORS instrument on ESO's Very Large Telescope (VLT), documented in unprecedented detail the changes in the spectrum of the light source ("the optical afterglow") of the gamma-ray burst GRB 030329 (cf. ESO PR 16/03). A conclusive and direct link between cosmological gamma-ray bursts and explosions of very massive stars was provided on this occasion. Gamma-Ray Burst GRB 030329 was discovered on March 29, 2003 by NASA's High Energy Transient Explorer spacecraft. Follow-up observations with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) showed the burst to have a redshift of 0.1685 [1]. This corresponds to a distance of about 2,650 million light-years, making GRB 030329 the second-nearest long-duration GRB ever detected. The proximity of GRB 030329 resulted in very bright afterglow emission, permitting the most extensive follow-up observations of any afterglow to date. A team of astronomers [2] led by Jochen Greiner of the Max-Planck-Institut für extraterrestrische Physik (Germany) decided to make use of this unique opportunity to study the

  11. Frequency-domain order parameters for the burst and spike synchronization transitions of bursting neurons.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2015-08-01

    We are interested in characterization of synchronization transitions of bursting neurons in the frequency domain. Instantaneous population firing rate (IPFR) [Formula: see text], which is directly obtained from the raster plot of neural spikes, is often used as a realistic collective quantity describing population activities in both the computational and the experimental neuroscience. For the case of spiking neurons, a realistic time-domain order parameter, based on [Formula: see text], was introduced in our recent work to characterize the spike synchronization transition. Unlike the case of spiking neurons, the IPFR [Formula: see text] of bursting neurons exhibits population behaviors with both the slow bursting and the fast spiking timescales. For our aim, we decompose the IPFR [Formula: see text] into the instantaneous population bursting rate [Formula: see text] (describing the bursting behavior) and the instantaneous population spike rate [Formula: see text] (describing the spiking behavior) via frequency filtering, and extend the realistic order parameter to the case of bursting neurons. Thus, we develop the frequency-domain bursting and spiking order parameters which are just the bursting and spiking "coherence factors" [Formula: see text] and [Formula: see text] of the bursting and spiking peaks in the power spectral densities of [Formula: see text] and [Formula: see text] (i.e., "signal to noise" ratio of the spectral peak height and its relative width). Through calculation of [Formula: see text] and [Formula: see text], we obtain the bursting and spiking thresholds beyond which the burst and spike synchronizations break up, respectively. Consequently, it is shown in explicit examples that the frequency-domain bursting and spiking order parameters may be usefully used for characterization of the bursting and the spiking transitions, respectively.

  12. The Case of the Disappearing Spindle Burst

    PubMed Central

    Tiriac, Alexandre; Blumberg, Mark S.

    2016-01-01

    Sleep spindles are brief cortical oscillations at 10–15 Hz that occur predominantly during non-REM (quiet) sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves); accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches—and their associated spindle bursts—occur exclusively during REM (active) sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems. PMID:27119028

  13. From Enigma to Tool: Gamma-Ray Burst Reveals Secrets of Host Galaxy

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Five years ago, astronomers knew almost nothing about Gamma Ray Bursts. Now, a team of observers using the National Science Foundation's Very Large Array (VLA) radio telescope has used a gamma-ray burst as a powerful tool to unveil the nature of the galaxy in which it occurred, more than 7 billion light-years away. VLA Images of GRB980703 Host Galaxy "We believe that gamma-ray bursts may become one of the best available tools for studying the history of star formation in the universe," said Edo Berger, a graduate student at Caltech. Berger worked with Caltech astronomy professor Shri Kulkarni and Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, to study a gamma-ray burst first seen on July 3, 1998. The astronomers presented their results at the American Astronomical Society's meeting in Pasadena, CA. "For the first time, we've seen the host galaxy of a gamma-ray burst with a radio telescope," Berger said. "Previously, gamma-ray-burst host galaxies have been seen with optical telescopes, but detecting this galaxy with a radio telescope has given us new clues about the nature of the galaxy itself -- clues we couldn't have gotten any other way," he added. For example, based on optical-telescope studies, astronomers estimated that new stars are forming in the host galaxy at the rate of about the mass equivalent of 20 suns per year. However, data from the radio observations show that the actual star-formation rate is 25 times greater -- the mass equivalent of 500 suns per year. "With the VLA, we are seeing the entire region of star formation in this galaxy, including the areas so dusty that visible light can't get out," said Frail. Gamma-ray bursts are the most powerful explosions since the Big Bang. First discovered in 1967 by a satellite launched to monitor compliance with the atmospheric nuclear test ban treaty, gamma-ray bursts remained one of astronomy's premier mysteries for 30 years. For three decades

  14. 49 CFR 179.400-6 - Bursting and buckling pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... insulation system must be designed in accordance with § 179.400-8(d) and in addition must comply with the... through the support system....

  15. Burst Oscillations: Watching Neutron Stars Spin

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  16. Burst ArcSecond Imaging & Spectroscopy (BASIS): A Gamma-Ray Burst Mission Concept

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Teegarden, B.; Barbier, L.; Cline, T.; Parsons, A.; Tueller, J.; Barthelmy, S.; Palmer, D.; Krizmanic, J.; Fenimore, E.; Fishman, G.; Kouveliotou, C.; Hurley, K.; Paciesas, W.; van Paradijs, J.; Woosley, S.; Leventhal, M.; McCammon, D.; Sanders, W.; Schaefer, B.

    1996-12-01

    We are studying a gamma-ray burst mission concept called Burst ArcSecond Imaging and Spectroscopy (BASIS) as part of NASA's New Mission Concepts for Astrophysics program. The scientific objectives are to accurately locate bursts, determine their distance scale, and measure the physical characteristics of the emission region. Arcsecond burst positions (angular resolution ~ 30 arcsec, source positions ~ 3 arcsec for >10(-6) erg/cm(2) bursts) would be obtained for ~ 100 bursts per year using the 10-100 keV emission. This would allow the first deep, unconfused counterpart searches at other wavelengths. The key technological breakthrough that makes such measurements possible is the development of CdZnTe room-temperature semiconductor detectors with fine ( ~ 100 micron) spatial resolution. A secondary scientific objective is to perform a sensitive hard x-ray all-sky survey. A description of the mission concept and its scientific objectives will be presented.

  17. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    NASA Astrophysics Data System (ADS)

    Gu, Hua-Guang; Chen, Sheng-Gen; Li, Yu-Ye

    2015-05-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372224 and 11402039) and the Fundamental Research Funds for Central Universities designated to Tongji University (Grant No. 1330219127).

  18. Angular response calibration of the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1988-01-01

    The Gamma Ray Observatory includes four experiments designed to observe the gamma-ray universe. Laboratory measurements to test the response the Burst and Transient Source Experiment (BATSE) modules to gamma-ray sources that are non-axial were recently completed. The results of these observations are necessary for the correct interpretation of BATSE data obtained after it is put in Earth orbit. The launch is planned for March, 1900. Preliminary analyses of these test data show the presence of a radial dependence to the detector's light collection efficiency. It is proposed to evaluate the importance of this radial response, analyze future experimental data to derive the actual functional dependence on radius, and calculate the net effect on the output spectrum as a function of the angle of incidence.

  19. CMEs and frequency cutoff of solar bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Al.; Konovalenko, Al.; Koval, Ar.; Volvach, Y.; Zarka, P.

    2016-05-01

    Radio observations of solar bursts with high-frequency cutoff by the radio telescope UTR-2 (near Kharkiv, Ukraine) at 8-33 MHz on 17-19 August 2012 are presented. Such cutoff may be attributed to the emergence of the burst sources behind limb of the Sun with respect to an observer on the Earth. The events are strongly associated with solar eruptions occurred in a new active region. Ray tracing simulations show that the CMEs play a constructive role for the behind-limb bursts to be detected in ground-based observations. Likely, due to tunnel-like cavities with low density in CMEs, the radio emission of behind-limb solar bursts can be directed towards the Earth.

  20. Overview Animation of Gamma-ray Burst

    NASA Video Gallery

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

  1. GLAST Burst Monitor Trigger Classification Algorithm

    NASA Technical Reports Server (NTRS)

    Perrin, D. J.; Sidman, E. D.; Meegan, C. A.; Briggs, M. S.; Connaughton, V.

    2004-01-01

    The Gamma Ray Large Area Space Telescope (GLAST), currently set for launch in the first quarter of 2007, will consist of two instruments, the GLAST Burst Monitor (GBM) and the Large Area Telescope (LAT). One of the goals of the GBM is to identify and locate gamma-ray bursts using on-board software. The GLAST observatory can then be re-oriented to allow observations by the LAT. A Bayesian analysis will be used to distinguish gamma-ray bursts from other triggering events, such as solar flares, magnetospheric particle precipitation, soft gamma repeaters (SGRs), and Cygnus X-1 flaring. The trigger parameters used in the analysis are the burst celestial coordinates, angle from the Earth's horizon, spectral hardness, and the spacecraft geomagnetic latitude. The algorithm will be described and the results of testing will be presented.

  2. Spectral evolution in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Share, G. H.; Messina, D. C.; Matz, M.; Kouveliotou, C.; Dennis, B. R.; Desai, U. D.; Cline, T. L.

    1986-01-01

    The Hard X-ray Burst Spectrometer (HXRBS) and the Gamma-Ray Spectrometer (GRS) on NASA's Solar Maximum Mission satellite have independently monitored cosmic gamma-ray bursts since launch in February 1980. Several bursts with relatively simple pulse structure and sufficient intensity have been analyzed for evidence of spectral variability on time scales shorter than the pulse durations. In many of these bursts pulse structures are found, ranging in duration from 1 to 10 seconds, which exhibit a trend of hard-to-soft spectral evolution. No significant evidence for soft-to-hard evolution has been found. The HXRBS data above 100 keV and the GRS data above 1 MeV indicate that the spectral evolution generally is not due to time-varying absorption features at energies below 100 keV.

  3. Transverse Bursts in Inclined Layer Convection: Experiment

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Wiener, Richard; Bodenschatz, Eberhard

    2002-03-01

    We report experimental results on inclined layer convection in a fluid of Prandtl number σ ≈ 1. A codimension-two point divides regions of buoyancy-driven convection (longitudinal rolls) at lower angles from shear-driven convection (transverse rolls) at higher angles (Daniels et al. PRL 84: 5320, 2000). In the region of buoyancy-driven convection, near the codimension-two point, we observe longitudinal rolls with intermittent, localized, subharmonic transverse bursts. The patterns are spatiotemporally chaotic. With increasing temperature difference the bursts increase in duration and number. We examine the details of the bursting process (e.g. the energy of longitudinal, transverse, and mixed modes) and compare our results to bursting processes in other systems. This work is supported by the National Science Foundation under grant DMR-0072077 and the IGERT program in nonlinear systems, grant DGE-9870631.

  4. Impulsive solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Frost, K. J.; Maetzler, C.; Ohki, K.; Saba, J. L.

    1977-01-01

    A set of 22 simple, impulsive solar flares, identified in the OSO-5 hard X-ray data, were analyzed together with coincident microwave and meterwave radio observations. The rise times and fall times of the X-ray bursts are found to be highly correlated and effectively equal, strongly suggesting a flare energizing mechanism that is reversible. The good time resolution available for these observations reveals that the microwave emission is influenced by an additional process, evident in the tendency of the microwave emission to peak later and decay more slowly than the symmetric X-ray bursts. Meterwave emission is observed in coincidence with the 5 events which show the strongest time correlation between the X-ray and microwave burst structure. This meterwave emission is characterized by U-burst radiation, indicating confinement of the flare source.

  5. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  6. Astrophysics: Burst of support for relativity

    NASA Astrophysics Data System (ADS)

    Amelino-Camelia, Giovanni

    2009-11-01

    Light from a distant γ-ray burst backs up a key prediction of Albert Einstein's theory of relativity - that photon speed is the same regardless of energy. But it might set the stage for evolution of the theory.

  7. Bursts of intermediate ions in atmospheric air

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  8. NASA's Swift Sees 'Dual Personality' Burst

    NASA Video Gallery

    These animations illustrate two wildly different explanations for GRB 101225A, better known as the "Christmas burst." First, a solitary neutron star in our own galaxy shreds and accretes an approac...

  9. QoS-guaranteed burst transmission for VoIP service over optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Tachibana, Takuji; Kasahara, Shoji

    2007-08-01

    We propose a burst transmission method that guarantees the voice over Internet protocol (VoIP) service. The proposed method consists of three techniques: round-robin burst assembly with slotted scheduling, priority control with void filling, and hop-based preemption. Each technique is utilized so that the burst loss probability and the burst transmission delay satisfy VoIP quality of service (QoS). We evaluate by simulation the performance of the proposed method in NSFNET with 14 nodes. Numerical examples show that our proposed method is effective for guaranteeing the VoIP QoS while accommodating a large number of VoIP users.

  10. A Non-Triggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, J.; Lewin, W. H.; Kouveliotou, C.; vanParadijs, J.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the onboard burst trigger. For example, the burst may be too faint to exceed the onboard detection threshold, or it may occur while the onboard burst trigger is disabled for technical reasons. This paper is a catalog of such "non-triggered" GRBs that were detected in a search of the archival continuous data from BATSE. It lists 873 non-triggered bursts that were recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  11. Gamma-ray burst locations from the Burst and Transient Source Experiment

    NASA Technical Reports Server (NTRS)

    Brock, M. N.; Meegan, C. A.; Roberts, F. E.; Fishman, G. J.; Wilson, R. B.; Paciesas, W. S.; Pendleton, G. N.

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) consists of eight anisotropic gamma-ray spectrometers at the corners of the Compton Gamma Ray Observatory. BATSE monitors the full sky from a fixed orientation and determines the direction of gamma-ray bursts with an accuracy appropriate for studying the bursts' celestial distribution. We describe the calculation of gamma-ray burst directions from measurements made by BATSE. We present a sample of calculated directions from BATSE's measurement of solar flaxes and compare the calculated directions with the solar direction. We describe the systematic errors apparent in these data and discuss ongoing efforts to correct them.

  12. Propofol and sevoflurane induce distinct burst suppression patterns in rats

    PubMed Central

    Kenny, Jonathan D.; Westover, M. Brandon; Ching, ShiNung; Brown, Emery N.; Solt, Ken

    2014-01-01

    Burst suppression is an EEG pattern characterized by alternating periods of high-amplitude activity (bursts) and relatively low amplitude activity (suppressions). Burst suppression can arise from several different pathological conditions, as well as from general anesthesia. Here we review current algorithms that are used to quantify burst suppression, its various etiologies, and possible underlying mechanisms. We then review clinical applications of anesthetic-induced burst suppression. Finally, we report the results of our new study showing clear electrophysiological differences in burst suppression patterns induced by two common general anesthetics, sevoflurane and propofol. Our data suggest that the circuit mechanisms that generate burst suppression activity may differ among general anesthetics. PMID:25565990

  13. Optimal Codes for the Burst Erasure Channel

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure

  14. Self-Actualization, Liberalism, and Humanistic Education.

    ERIC Educational Resources Information Center

    Porter, Charles Mack

    1979-01-01

    The relationship between personality factors and political orientation has long been of interest to psychologists. This study tests the hypothesis that there is no significant relationship between self-actualization and liberalism-conservatism. The hypothesis is supported. (Author)

  15. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  16. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  17. Supernovae and gamma-ray bursts connection

    NASA Astrophysics Data System (ADS)

    Valle, Massimo Della

    2015-12-01

    I'll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ˜ 0.4% - 3%.

  18. Solar Type III Radio Bursts: Directivity Characteristics

    NASA Astrophysics Data System (ADS)

    Thejappa, G.; MacDowall, R. J.

    2015-09-01

    Type III radio bursts are a group of fast drifting radio emissions associated with solar flares. These radio emissions are believed to be excited at the fundamental and second harmonic of the electron plasma frequency, fpe by the electron beam excited Langmuir waves through a mechanism called the plasma mechanism. This mechanism attributes the dipole and quadrupole beam patterns for the fundamental and harmonic emissions. To verify these predictions, we analyze the simultaneous observations of type III radio bursts by the STEREO A, B and Wind spacecraft located at different vantage points in the ecliptic plane, and determine their normalized peak intensities (directivity factors) at each spacecraft using their time profiles. Assuming that the sources of these bursts are located on the Parker spiral magnetic field lines emerging from the associated active regions, we estimate the angles between the magnetic field directions and the lines connecting the sources to the spacecraft (viewing angles). Based on the plots of the directivity factors versus the viewing angles, one can divide these bursts into (1) intense bursts emitted into a narrow cone centered around the tangent to the magnetic field, and (2) relatively weaker bursts emitting into a wider cone centered around the tangent to the magnetic field. We compute the distributions of ray trajectories emitted by an isotropic point source and show that the refraction focuses the fundamental and harmonic emissions into narrow and wider cones, respectively. The comparison of these distributions with observations indicates that the intense bursts visible to a narrow range of angles around the tangent to the magnetic field probably correspond to the fundamental, and the relatively weaker bursts visible to a wide range of angles probably are the harmonic emissions.

  19. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  20. Search for absorption edges in superexpansion bursts

    NASA Astrophysics Data System (ADS)

    in't Zand, Jean

    2013-09-01

    Our goal is to measure with the LETGS a series of bright type-I X-ray bursts with strong photospheric radius expansion ('superexpansion') to search for absorption edges due to the ashes of nuclear burning. We request a quick TOO, to be triggered by ISS-MAXI and Swift-BAT, with a total exposure time of 100 ks to obtain the detection of about 10 bursts.

  1. Photospheric Radius Expansion During Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Watts, Anna L.; Kouveliotou, Chryssa; van der Horst, Alexander J.; Göǧüş, Ersin; Kaneko, Yuki; van der Klis, Michiel; Wijers, Ralph A. M. J.; Harding, Alice K.; Baring, Matthew G.

    2010-08-01

    On 2008 August 24 the new magnetar SGR 0501+4516 (discovered by Swift) emitted a bright burst with a pronounced double-peaked structure in hard X-rays, reminiscent of the double-peaked temporal structure seen in some bright thermonuclear bursts on accreting neutron stars. In the latter case this is due to Photospheric Radius Expansion (PRE): when the flux reaches the Eddington limit, the photosphere expands and cools so that emission becomes softer and drops temporarily out of the X-ray band, re-appearing as the photosphere settles back down. We consider the factors necessary to generate double-peaked PRE events, and show that such a mechanism could plausibly operate in magnetar bursts despite the vastly different emission process. Identification of the magnetic Eddington limit in a magnetar would constrain magnetic field and distance and could, in principle, enable a measurement of gravitational redshift. It would also locate the emitting region at the neutron star surface, constraining the burst trigger mechanism. Conclusive confirmation of PRE events will require more detailed radiative models for bursts. However, for SGR 0501+4516 the predicted critical flux (using the magnetic field strength inferred from timing and the distance suggested by its probable location in the Perseus arm of our Galaxy) is consistent with that observed in the August 24 burst.

  2. Dynamics of soap bubble bursting and its implications to volcano acoustics

    NASA Astrophysics Data System (ADS)

    Vidal, V.; Ripepe, M.; Divoux, T.; Legrand, D.; Géminard, J.-C.; Melo, F.

    2010-04-01

    In order to assess the physical mechanisms at stake when giant gas bubbles burst at the top of a magma conduit, laboratory experiments have been performed. An overpressurized gas cavity is initially closed by a thin liquid film, which suddenly bursts. The acoustic signal produced by the bursting is investigated. The key result is that the amplitude and energy of the acoustic signal strongly depend on the film rupture time. As the rupture time is uncontrolled in the experiments and in the field, the measurement of the acoustic excess pressure in the atmosphere, alone, cannot provide any information on the overpressure inside the bubble before explosion. This could explain the low energy partitioning between infrasound, seismic and explosive dynamics often observed on volcanoes.

  3. HUBBLE STAYS ON TRAIL OF FADING GAMMA-RAY BURST FIREBALL

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A Hubble Space Telescope image of the fading fireball from one of the universe's most mysterious phenomena, a gamma-ray burst. Though the visible component has faded to 1/500th its brightness (27.7 magnitude) from the time it was first discovered by ground- based telescopes last March (the actual gamma-ray burst took place on February 28), Hubble continues to clearly see the fireball and discriminated a surrounding nebulosity (at 25th magnitude) which is considered a host galaxy. The continued visibility of the burst, and the rate of its fading, support theories that the light from a gamma-ray burst is an expanding relativistic (moving near the speed of light) fireball, possibly produced by the collision of two dense objects, such as an orbiting pair of neutron stars. If the burst happened nearby, within our own galaxy, the resulting fireball should have had only enough energy to propel it into space for a month. The fact that this fireball is still visible after six months means the explosion was truly titanic and, to match the observed brightness, must have happened at the vast distances of galaxies. The energy released in a burst, which can last from a fraction of a second to a few hundred seconds, is equal to all of the Sun's energy generated over its 10 billion year lifetime. The false-color image was taken Sept. 5, 1997 with the Space Telescope Imaging Spectrograph. Credit: Andrew Fruchter (STScI), Elena Pian (ITSRE-CNR), and NASA

  4. Determination of the Actual Contact Surface of a Brush Contact

    NASA Technical Reports Server (NTRS)

    Holm, Ragnar

    1944-01-01

    The number of partial contact surfaces of a brush-ring contact is measured by means of a statistical method. The particular brush is fitted with wicks - that is, insulated and cemented cylinders of brush material, terminating in the brush surface. The number of partial contact surfaces can be computed from the length of the rest periods in which such wicks remain without current. Resistance measurements enable the determination of the size of the contact surfaces. The pressure in the actual contact surface of a recently bedded brush is found to be not much lower than the Brinell hardness of the brush.

  5. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  6. Efficient inhibition of bursts by bursts in the auditory system of crickets.

    PubMed

    Marsat, G; Pollack, G S

    2007-06-01

    In crickets, auditory information about ultrasound is carried bilaterally to the brain by the AN2 neurons. The ON1 neuron provides contralateral inhibitory input to AN2, thereby enhancing bilateral contrast between the left and right AN2s, an important cue for sound localization. We examine how the structures of the spike trains of these neurons affect this inhibitory interaction. As previously shown for AN2, ON1 responds to salient peaks in stimulus amplitude with bursts of spikes. Spike bursts, but not isolated spikes, reliably signal the occurrence of specific features of the stimulus. ON1 and AN2 burst at similar times relative to the amplitude envelope of the stimulus, and bursts are more tightly time-locked to stimulus feature than the isolated spikes. As a consequence, spikes that, in the absence of contralateral inhibition, would occur within AN2 bursts are more likely to be preceded by spikes in ON1 (mainly also in bursts) than are isolated AN2 spikes. This leads to a large decrease in the burst rate of the inhibited AN2. We conclude that the match in coding properties of ON1 and AN2 allows contralateral inhibition to be most efficient for those portions of the response that carry the behaviourally relevant information, i.e. for bursts.

  7. A Nontriggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, Jefferson M.; Lewin, Walter H. G.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.

    2001-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the on-board burst trigger. For example, the burst may be too faint to exceed the on-board detection threshold, or it may occur while the on-board burst trigger is disabled for technical reasons. This paper describes a catalog of 873 "nontriggered" GRBs that were detected in a search of the archival continuous data from BATSE recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  8. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  9. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  10. Apparatus and method for pressure testing closure disks

    DOEpatents

    Merten, Jr., Charles W.

    1992-01-21

    A method and device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A tensile load is transmitted by a piston in combination with fluid pressure to the hollow notched plug.

  11. Apparatus and method for pressure testing closure disks

    DOEpatents

    Merten, C.W. Jr.

    1992-01-21

    A method and device are described for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A tensile load is transmitted by a piston in combination with fluid pressure to the hollow notched plug. 5 figs.

  12. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  13. Dynamical systems analysis of spike-adding mechanisms in transient bursts.

    PubMed

    Nowacki, Jakub; Osinga, Hinke M; Tsaneva-Atanasova, Krasimira

    2012-01-01

    Transient bursting behaviour of excitable cells, such as neurons, is a common feature observed experimentally, but theoretically, it is not well understood. We analyse a five-dimensional simplified model of after-depolarisation that exhibits transient bursting behaviour when perturbed with a short current injection. Using one-parameter continuation of the perturbed orbit segment formulated as a well-posed boundary value problem, we show that the spike-adding mechanism is a canard-like transition that has a different character from known mechanisms for periodic burst solutions. The biophysical basis of the model gives a natural time-scale separation, which allows us to explain the spike-adding mechanism using geometric singular perturbation theory, but it does not involve actual bifurcations as for periodic bursts. We show that unstable sheets of the critical manifold, formed by saddle equilibria of the system that only exist in a singular limit, are responsible for the spike-adding transition; the transition is organised by the slow flow on the critical manifold near folds of this manifold. Our analysis shows that the orbit segment during the spike-adding transition includes a fast transition between two unstable sheets of the slow manifold that are of saddle type. We also discuss a different parameter regime where the presence of additional saddle equilibria of the full system alters the spike-adding mechanism. PMID:22655748

  14. Burst X-ray detection using RMSAFE

    NASA Astrophysics Data System (ADS)

    Yamanishi, Hirokuni; Miyake, Hitoshi; Kodaira, Jun-ichi; Obayashi, Haruo; Isobe, Mitsutaka; Matsuoka, Keisuke

    2003-04-01

    The function of the radiation monitoring system Radiation Monitoring System Applicable to Fusion Experiments (RMSAFE) is well verified to detect burst radiation, that is, radiation generated suddenly and explosively. When an increase in 50 ms integrated count from a radiation monitor, which is recorded and updated every 10 ms in the system CPU, is encountered to exceed a pre-set level, RMSAFE recognizes it as an outbreak of burst radiation and alters its recording mode so that the burst event data is saved in a specified file. In this study, we detected X-rays arising from Compact Helical System (CHS), a high-temperature plasma experimental device, in order to verify that RMSAFE is able to detect radiation bursts successfully and accurately. Increases in the dose of radiation due to X-rays from CHS were observed concurrently at various observation points in several plasma shots. The weekly accumulated values of radiation dose observed by RMSAFE in the CHS torus hall were consistent with the results of integrated dose measurements by thermoluminescent dosimeter (TLD) and by radiophotoluminescent dosimeter (RPLD), and furthermore, the general decreasing tendency of the observed dose with the distance from the CHS torus was clearly seen, though detailed radiation patterns might be dependent on source plasma and other conditions. These results support our conclusion that RMSAFE is able to successfully detect burst X-rays.

  15. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  16. Transverse Bursts in Inclined Layer Convection: Theory

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Brink, Jeandrew; Pesch, Werner

    2002-03-01

    We report theoretical and computational results on thermally driven inclined layer convection. For small Prandtl number fluids, experiments have reported bursting phenomena at both small angles, strong driving and high angles, weak driving (Daniels et al. PRL 84: 5320, 2000). Theoretically, the small angle, strong driving case was described by Clever and Busse (Physics of Fluids 12: 2137, 2000) and was connected to a subharmonic instability. At large angles, close to the codimension-two point, intermittent, localized, transverse subharmonic bursts occur at weak driving. Qualitatively, the bursts draw energy from the roll modes, exhaust them while growing, and die out when they are unable to find a new attractor. We investigate a connection between the small- and large-angle bursts. Using Galerkin methods and direct simulations of the underlying Boussinesq equations, we examine the extent to which they are related to a linear instability of the roll pattern. We address a possible connection to the shear flow turbulent bursts observed in Taylor-Couette flow. In addition, we present a theoretical analysis of the small Prandtl number case, for which the codimension-two point moves to zero angle. This work is supported by a Cornell Graduate Student Fellowship and by the National Science Foundation under grant DMR-0072077.

  17. Sources of type III solar microwave bursts

    NASA Astrophysics Data System (ADS)

    Zhdanov, Dmitriy; Lesovoi, Sergey; Tokhchukova, Susanna

    2016-06-01

    Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT) is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4-8 GHz spectropolarimeter, and SSRT, simultaneously with extreme UV data, made it possible to localize sources of III type microwave drift bursts in August 10, 2011 event within the entire frequency band of burst occurrences, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5 and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to source sizes at other frequencies.

  18. Olivary subthreshold oscillations and burst activity revisited

    PubMed Central

    Bazzigaluppi, Paolo; De Gruijl, Jornt R.; van der Giessen, Ruben S.; Khosrovani, Sara; De Zeeuw, Chris I.; de Jeu, Marcel T. G.

    2012-01-01

    The inferior olive (IO) forms one of the major gateways for information that travels to the cerebellar cortex. Olivary neurons process sensory and motor signals that are subsequently relayed to Purkinje cells. The intrinsic subthreshold membrane potential oscillations of the olivary neurons are thought to be important for gating this flow of information. In vitro studies have revealed that the phase of the subthreshold oscillation determines the size of the olivary burst and may gate the information flow or encode the temporal state of the olivary network. Here, we investigated whether the same phenomenon occurred in murine olivary cells in an intact olivocerebellar system using the in vivo whole-cell recording technique. Our in vivo findings revealed that the number of wavelets within the olivary burst did not encode the timing of the spike relative to the phase of the oscillation but was related to the amplitude of the oscillation. Manipulating the oscillation amplitude by applying Harmaline confirmed the inverse relationship between the amplitude of oscillation and the number of wavelets within the olivary burst. Furthermore, we demonstrated that electrotonic coupling between olivary neurons affect this modulation of the olivary burst size. Based on these results, we suggest that the olivary burst size might reflect the “expectancy” of a spike to occur rather than the spike timing, and that this process requires the presence of gap junction coupling. PMID:23189043

  19. GRB Catalog: Bursts from Vela to Swift

    NASA Technical Reports Server (NTRS)

    Angelini, L.

    2008-01-01

    Gamma ray burst (GRB) astronomy started when the first event was recorded on July 2, 1967 by Vela 4a and 4b. Since then many missions have flown experiments capable of detecting GRBs. The events collected by these older experiments are mostly available in paper copy, each containing a few ten to a few hundred bursts. No systematic effort in cataloging of these bursts has been available. In some cases the information is unpublished and in others difficult to retrieve. The first major GRB catalog was obtained by GRO with the BATSE experiment. It contains more than 2000 bursts and includes homogeneous information for each of the bursts. With the launch of Swift, the first Gamma-ray/X-ray mission dedicated to the study of GRBs and their afterglows, a wealth of information is collected by the Swift instrument as well as from ground-based telescopes. This talk will describe the efforts to create a comprehensive GRBCAT and its current status and future prospective.

  20. Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev

    2016-08-01

    Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal ( σ 11) and shear ( τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress ( P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress ( σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.

  1. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  2. [Actual diet of patients with gastrointestinal diseases].

    PubMed

    Loranskaia, T I; Shakhovskaia, A K; Pavliuchkova, M S

    2000-01-01

    The study of actual nutrition of patients with erosive-ulcerative lesions in the gastroduodenal zone and of patients with operated ulcer has revealed defects in intake of essential nutrients by these patients: overeating of animal fat and refined carbohydrates, deficiency of oil, vitamins A, B2, C, D and food fibers.

  3. Humanistic Education and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  4. Group Counseling for Self-Actualization.

    ERIC Educational Resources Information Center

    Streich, William H.; Keeler, Douglas J.

    Self-concept, creativity, growth orientation, an integrated value system, and receptiveness to new experiences are considered to be crucial variables to the self-actualization process. A regular, year-long group counseling program was conducted with 85 randomly selected gifted secondary students in the Farmington, Connecticut Public Schools. A…

  5. Teenagers' Perceived and Actual Probabilities of Pregnancy.

    ERIC Educational Resources Information Center

    Namerow, Pearila Brickner; And Others

    1987-01-01

    Explored adolescent females' (N=425) actual and perceived probabilities of pregnancy. Subjects estimated their likelihood of becoming pregnant the last time they had intercourse, and indicated the dates of last intercourse and last menstrual period. Found that the distributions of perceived probability of pregnancy were nearly identical for both…

  6. Bioinspired preparation of alginate nanoparticles using microbubble bursting.

    PubMed

    Elsayed, Mohamed; Huang, Jie; Edirisinghe, Mohan

    2015-01-01

    Nanoparticles are considered to be one of the most advanced tools for drug delivery applications. In this research, alginate (a model hydrophilic polymer) nanoparticles 80 to 200 nm in diameter were obtained using microbubble bursting. The natural process of bubble bursting occurs through a number of stages, which consequently produce nano- and microsized droplets via two main production mechanisms, bubble shell disintegration and a jetting process. In this study, nano-sized droplets/particles were obtained by promoting the disintegrating mechanism and suppressing (limiting) the formation of larger microparticles resulting from the jetting mechanism. A T-junction microfluidic device was used to prepare alginate microbubbles with different sizes in a well-controlled manner. The size of the bubbles was varied by controlling two processing parameters, the solution flow rate and the bubbling pressure. Crucially, the bubble size was found to be the determining factor for inducing (or limiting) the bubble shell disintegration mechanism and the size needed to promote this process was influenced by the properties of the solution used for preparing the bubbles, particularly the viscosity. The size of alginate nanoparticles produced via the disintegration mechanism was found to be directly proportional to the viscosity of the alginate solution.

  7. Gamma-ray bursts and cosmology.

    PubMed

    Lamb, D Q

    2007-05-15

    I review the current status of the use of gamma-ray bursts (GRBs) as probes of the early Universe and cosmology. I describe the promise of long GRBs as probes of the high redshift (z>4) and very high redshift (z>5) Universe, and several key scientific results that have come from observations made possible by accurate, rapid localizations of these bursts by Swift. I then estimate the fraction of long GRBs that lie at very high redshifts and discuss ways in which it may be possible to rapidly identify-and therefore study-a larger number of these bursts. Finally, I discuss the ways in which both long and short GRBs can be made 'standard candles' and used to constrain the properties of dark energy. PMID:17301023

  8. Interaction function of coupled bursting neurons

    NASA Astrophysics Data System (ADS)

    Xia, Shi; Jiadong, Zhang

    2016-06-01

    The interaction functions of electrically coupled Hindmarsh-Rose (HR) neurons for different firing patterns are investigated in this paper. By applying the phase reduction technique, the phase response curve (PRC) of the spiking neuron and burst phase response curve (BPRC) of the bursting neuron are derived. Then the interaction function of two coupled neurons can be calculated numerically according to the PRC (or BPRC) and the voltage time course of the neurons. Results show that the BPRC is more and more complicated with the increase of the spike number within a burst, and the curve of the interaction function oscillates more and more frequently with it. However, two certain things are unchanged: ϕ = 0, which corresponds to the in-phase synchronization state, is always the stable equilibrium, while the anti-phase synchronization state with ϕ = 0.5 is an unstable equilibrium. Project supported by the National Natural Science Foundation of China (Grant Nos. 11272065 and 11472061).

  9. A solar microwave Type-M burst

    NASA Astrophysics Data System (ADS)

    Ning, Zong-jun; Fu, Qi-jun; Lu, Quan-kang

    A microwave M-type burst observed by Beijing Astronomical observatory on 1998 April 15 is studied and analysed in this paper. It is composed of two continuous inverted U-type bursts, the sources moving to and fro within one magnetic arch from reflection by the magnetic mirror around one footpoint of the same magnetic arch. At a low time resolution (0.2 s) the records show the U-type morphology while the true motion is revealed by the high time resolution (8 ms) records. By comparing the two constituent U-type bursts, we see that the magnetic arch.is probably at the descending phase of evolution. Its possible configuration in space is discussed.

  10. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  11. Theory of type IIIb solar radio bursts

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; De La Noe, J.

    1976-01-01

    During the initial space-time evolution of an electron beam injected into the corona, the strong beam-plasma interaction occurs at the head of the beam, leading to the amplification of a quasi-monochromatic large-amplitude plasma wave that stabilizes by trapping the beam particles. Oscillation of the trapped particles in the wave troughs amplifies sideband electrostatic waves. The sidebands and the main wave subsequently decay to observable transverse electromagnetic waves through the parametric decay instability. This process gives rise to the elementary striation bursts. Owing to velocity dispersion in the beam and the density gradient of the corona, the entire process may repeat at a finite number of discrete plasma levels, producing chains of elementary bursts. All the properties of the type IIIb bursts are accounted for in the context of the theory.

  12. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  13. Mechanism of Transcriptional Bursting in Bacteria

    PubMed Central

    Chong, Shasha; Chen, Chongyi; Ge, Hao; Xie, X. Sunney

    2014-01-01

    SUMMARY Transcription of highly expressed genes has been shown to occur in stochastic bursts. But the origin of such ubiquitous phenomenon has not been understood. Here we present the mechanism in bacteria. We developed a high-throughput in vitro single-molecule assay to follow transcription on individual DNA templates in real time. We showed that positive supercoiling buildup on a DNA segment by transcription slows down transcription elongation and eventually stops transcription initiation. Transcription can be resumed upon gyrase binding to the DNA segment. Furthermore, using single-cell mRNA counting fluorescence in situ hybridization (FISH), we found the extent of transcriptional bursting depends on the intracellular gyrase concentration. Together, these findings prove that transcriptional bursting of highly expressed genes in bacteria is primarily caused by reversible gyrase dissociation from and rebinding to a DNA segment, changing the supercoiling level of the segment. PMID:25036631

  14. Gamma-Ray Burst Progenitors: Merger Model

    NASA Astrophysics Data System (ADS)

    Ruffert, Maximilian

    2002-04-01

    The mergers of neutron stars and black holes remain a viable model for gamma-ray burst central engines, at least for the class of short bursts: their time scales, occurrence rates and energy output seem to be consistent with observations. We will present results of our latest simulations showing how the orbit of a neutron star around a black hole shrinks due to gravitational radiation, how the neutron star's matter gets accreted by the black hole, and how the tidal forces of the black hole finally shred the neutron star into a thick disk. In this process, huge amounts of energy are radiated away by gravitational waves and by neutrinos emitted from the hot disk. The neutrino luminosities are so large that an appreciable fraction (some few percent!) of neutrinos annihilate with antineutrinos creating the clean fireball necessary to power gamma-ray bursts.

  15. Interaction function of coupled bursting neurons

    NASA Astrophysics Data System (ADS)

    Xia, Shi; Jiadong, Zhang

    2016-06-01

    The interaction functions of electrically coupled Hindmarsh–Rose (HR) neurons for different firing patterns are investigated in this paper. By applying the phase reduction technique, the phase response curve (PRC) of the spiking neuron and burst phase response curve (BPRC) of the bursting neuron are derived. Then the interaction function of two coupled neurons can be calculated numerically according to the PRC (or BPRC) and the voltage time course of the neurons. Results show that the BPRC is more and more complicated with the increase of the spike number within a burst, and the curve of the interaction function oscillates more and more frequently with it. However, two certain things are unchanged: ϕ = 0, which corresponds to the in-phase synchronization state, is always the stable equilibrium, while the anti-phase synchronization state with ϕ = 0.5 is an unstable equilibrium. Project supported by the National Natural Science Foundation of China (Grant Nos.  11272065 and 11472061).

  16. Gamma-ray burst theory after Swift.

    PubMed

    Piran, Tsvi; Fan, Yi-Zhong

    2007-05-15

    Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.

  17. Indicated and actual mass inventory measurements for an inverted U-tube steam generator

    SciTech Connect

    Loomis, G.G.; Plessinger, M.P.; Boucher, T.J.

    1986-01-01

    Results from an experimental investigation of actual versus indicated secondary liquid level in a steam generator at steaming conditions are presented. The experimental investigation was performed in two different small scale U-tube-in-shell steam generators at typical pressurized water reactor operating conditions (5-7 MPa; saturated) in the Semiscale facility. During steaming conditions, the indicated secondary liquid level was found to vary considerably from the actual ''bottled-up'' liquid level. These difference between indicated and actual liquid level are related to the frictional pressure drop associated with the two-phase steaming condition in the riser. Data from a series of bottle-up experiments (Simultaneously, the primary heat source and secondary feed and steam are terminated) are tabulated and the actual liquid level is correlated to the indicated liquid level.

  18. Swift Burst Alert Telescope (BAT) Instrument Response

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Hullinger, D.; Markwardt, C.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Tueller, J.; Fenimore, E.; Palmer, D.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. In this talk, we describe the BAT instrument response as determined to an accuracy suitable for gamma-ray burst studies. We will also discuss the public data analysis tools developed to calculate the BAT response to sources at different energies and locations in the FOV. The level of accuracy required for the BAT instrument response used for the hard x-ray survey is significantly higher because this response must be used in the iterative clean algorithm for finding fainter sources. Because the bright sources add a lot of coding noise to the BAT sky image, fainter sources can be seen only after the counts due to the bright sources are removed. The better we know the BAT response, the lower the noise in the cleaned spectrum and thus the more sensitive the survey. Since the BAT detector plane consists of 32768 individual, 4 mm square CZT gamma-ray detectors, the most accurate BAT response would include 32768 individual detector response functions to separate mask modulation effects from differences in detector efficiencies! We describe OUT continuing work to improve the accuracy of the BAT instrument response and will present the current results of Monte Carlo simulations as well as BAT ground calibration data.

  19. On the bimodal distribution of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude; Narayan, Ramesh; Piran, Tsvi

    1994-01-01

    Kouveliotou et al. recently confirmed that gamma-ray bursts are bimodal in duration. In this paper we compute the statistical properties of the short (less than or = 2 s) and long (greater than 2 s) bursts using a method of analysis that makes no assumption regarding the location of the bursts, whether in the Galaxy or at a cosmological distance. We find the 64 ms channel on Burst and Transient Source Experiment (BATSE) to be more sensitive to short bursts and the 1024 ms channel to be more sensitive to long bursts. We show that all the currently available data are consistent with the simple hypothesis that both short and long bursts have the same spatial distribution and that within each population the sources are standard candles. The rate of short bursts per unit volume is about 40% of the rate of long bursts. Although the durations of short and long gamma-ray bursts span several orders of magnitude and the total energy of a typical short burst is smaller than that of a typical long burst by a factor of about 20, surprisingly the peak luminosities of the two kinds of bursts are equal to within a factor of about 2.

  20. Distribution of whistler mode bursts at Venus

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Jordan, K. F.; Russell, C. T.

    1987-01-01

    Several thousand impulsive whistler mode noise bursts were detected by the Pioneer Venus wave instrument during the first 10 seasons with nightside traversals at low altitudes. The altitude distribution for these events shows that essentially all of the bursts were detected when the orbiter was less than 2000 km above the planet, suggesting that the varying plasma conditions could not maintain coherent whistler mode field-aligned guidance over greater distances. Within the 2000-km range, the distribution of the number of events versus altitude shows that there are two distinct subregions. These results are interpreted in terms of two types of whistler mode propagation from sources below the ionosphere.

  1. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  2. Polyrhythmic synchronization in bursting networking motifs

    NASA Astrophysics Data System (ADS)

    Shilnikov, Andrey; Gordon, René; Belykh, Igor

    2008-09-01

    We study the emergence of polyrhythmic dynamics of motifs which are the building block for small inhibitory-excitatory networks, such as central pattern generators controlling various locomotive behaviors of animals. We discover that the pacemaker determining the specific rhythm of such a network composed of realistic Hodgkin-Huxley-type neurons is identified through the order parameter, which is the ratio of the neurons' burst durations or of duty cycles. We analyze different configurations of the motifs and describe the universal mechanisms for synergetics of the bursting patterns. We discuss also the multistability of inhibitory networks that results in polyrhythmicity of its emergent synchronous behaviors.

  3. Exploratory depth-of-burst experiments

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.

    1991-12-12

    This report describes the first small-scale explosion experiments with aerated grout (i.e., YTONG). Apart from data referring to crater depth and volume versus depth of burst (DOB), isobaric DOB curves in the range of 1.5 psi {le} p {le} 15 psi were established. The comparison with previous HOB values shows that the ground range to a given overpressure is considerably reduced with increasing depth of burst. The authors plan to continue the airblast investigations with different types of soil materials.

  4. Neutrinos and Nucleosynthesis in Gamma Ray Bursts

    SciTech Connect

    Surman, Rebecca; Mclaughlin, Gail C; Hix, William Raphael

    2006-01-01

    Gamma-ray bursts, while rare, may be important contributors to galactic nucleosynthesis. Here we consider the types of nucleosynthesis that can occur as material is ejected from a gamma-ray burst accretion disk. We calculate the composition of material within the disk as it dissociates into protons and neutrons and then use a parameterized outflow model to follow nuclear recombination in the wind. From the resulting nucleosynthesis we delineate the disk and outflow conditions in which iron peak, r-process, or light p-process nuclei may form. In all cases the neutrinos have an important impact on the final abundance distributions.

  5. Spike Bursts from an Excitable Optical System

    NASA Astrophysics Data System (ADS)

    Rios Leite, Jose R.; Rosero, Edison J.; Barbosa, Wendson A. S.; Tredicce, Jorge R.

    Diode Lasers with double optical feedback are shown to present power drop spikes with statistical distribution controllable by the ratio of the two feedback times. The average time between spikes and the variance within long time series are studied. The system is shown to be excitable and present bursting of spikes created with specific feedback time ratios and strength. A rate equation model, extending the Lang-Kobayashi single feedback for semiconductor lasers proves to match the experimental observations. Potential applications to construct network to mimic neural systems having controlled bursting properties in each unit will be discussed. Brazilian Agency CNPQ.

  6. Design and Characterization of Thin Stainless Steel Burst Disks for Increasing Two-Stage Light Gas Launcher Efficiency

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan M.; Johnson, Kenneth L.; Henderson, Donald; Rodriguez, Karen

    2012-01-01

    Laser etched 300 series Stainless Steel Burst Disks (SSBD) ranging between 0.178 mm (0.007-in.) and 0.508mm (0.020-in.) thick were designed for use in a 17-caliber two-stage light gas launcher. First, a disk manufacturing method was selected using a combination of wire electrical discharge machining (EDM) to form the blank disks and laser etching to define the pedaling fracture pattern. Second, a replaceable insert was designed to go between the SSDB and the barrel. This insert reduced the stress concentration between the SSBD and the barrel, providing a place for the petals of the SSDB to open, and protecting the rifling on the inside of the barrel. Thereafter, a design of experiments was implemented to test and characterize the burst characteristics of SSBDs. Extensive hydrostatic burst testing of the SSBDs was performed to complete the design of experiments study with one-hundred and seven burst tests. The experiment simultaneously tested the effects of the following: two SSBD material states (full hard, annealed); five SSBD thicknesses 0.178, 0.254, 0.305, 0.381 mm (0.007, 0.010, 0.012, 0.015, 0.020-in.); two grain directions relative); number of times the laser etch pattern was repeated (varies between 5-200 times); two heat sink configurations (with and without heat sink); and, two barrel configurations (with and without insert). These tests resulted in the quantification of the relationship between SSBD thickness, laser etch parameters, and desired burst pressure. Of the factors investigated only thickness and number of laser etches were needed to develop a mathematical relationship predicting hydrostatic burst pressure of disks using the same barrel configuration. The fracture surfaces of two representative SSBD bursts were then investigated with a scanning electron microscope, one burst hydrostatically in a fixture and another dynamically in the launcher. The fracture analysis verified that both burst conditions resulted in a ductile overload failure

  7. 14 CFR 23.1438 - Pressurization and pneumatic systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressurization and pneumatic systems. 23.1438 Section 23.1438 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... elements must be burst pressure tested to 2.0 times, and proof pressure tested to 1.5 times, the...

  8. METHOD FOR PUMPING GASES AT LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-01

    A method is given for pumping overpressure "pulses" or "bursts" of gases without a significant rise in base pressure within a "gettering-type" vacuum pump having surfaces within the pumping cavity coated with or comprising clean gettering metal, e.g., Mo or Ta. The cavity is first pumped down by any convenient means to an equilibrium base pressure in the range desired, generally below 10/sup -6/ mm Hg. At this pressure, the metal immediately adsorbs overpressures or "bursts" of gases striking same with thermal motion without raising the base pressure significantiy. Desorption takes place at an equilibrium rate which, of course, is dependent upon the equilibrium pressure, and such desorbed gases are continuously removed by diffuaion pump or other pumping, whereby said overpressures or "bursts" of gases are removed without a rise in the equilibrium pressure and/or back diffusion of the gaseous pulse from the pumping cavity. (AEC)

  9. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  10. THE FIVE YEAR FERMI/GBM MAGNETAR BURST CATALOG

    SciTech Connect

    Collazzi, A. C.; Kouveliotou, C.; Horst, A. J. van der; Younes, G. A.; Kaneko, Y.; Göğüş, E.; Lin, L.; Granot, J.; Finger, M. H.; Chaplin, V. L.; Huppenkothen, D.; Watts, A. L.; Kienlin, A. von; Baring, M. G.; Gruber, D.; Bhat, P. N.; Gibby, M. H.; and others

    2015-05-15

    Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here, we present the Fermi/GBM magnetar catalog, providing the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from 2008 July to 2013 June. We provide durations, spectral parameters for various models, fluences, and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550–5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.

  11. Power Enhancement Cavity for Burst-Mode Laser Pulses

    SciTech Connect

    Liu, Yun

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  12. The Five Year Fermi/GBM Magnetar Burst Catalog

    NASA Astrophysics Data System (ADS)

    Collazzi, A. C.; Kouveliotou, C.; van der Horst, A. J.; Younes, G. A.; Kaneko, Y.; Göğüş, E.; Lin, L.; Granot, J.; Finger, M. H.; Chaplin, V. L.; Huppenkothen, D.; Watts, A. L.; von Kienlin, A.; Baring, M. G.; Gruber, D.; Bhat, P. N.; Gibby, M. H.; Gehrels, N.; McEnery, J.; van der Klis, M.; Wijers, R. A. M. J.

    2015-05-01

    Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here, we present the Fermi/GBM magnetar catalog, providing the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from 2008 July to 2013 June. We provide durations, spectral parameters for various models, fluences, and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550-5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.

  13. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Ramirez-Ruiz, E.; Fox, D. B.

    2010-01-01

    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts.

  14. Swift's Christmas Burst From Blue Supergiant Star Explosion

    NASA Video Gallery

    GRB 101225A, better known as the "Christmas burst," was an unusually long-lasting gamma-ray burst. Because its distance was not measured, astronomers came up with two radically different interpreta...

  15. New Results on the Spectral Evolution of Magnetar Bright Bursts

    NASA Astrophysics Data System (ADS)

    Younes, George A.; Kouveliotou, C.; van der Horst, A.; GBM Magnetar Team

    2013-04-01

    Magnetars are isolated neutron stars characterized by long spin periods (2-12 s) and large spin down rates, implying a very strong magnetic field, B>10E14 G. Magnetars exhibit short bursts of hard X-/soft gamma-rays with luminosities ranging from 10E37 to 10E41 erg/s. The magnetar SGR J1550-5418 entered an extremely active bursting episode, starting on 2008 October 03 until 2009 April 17, during which Fermi Gamma-ray Burst Monitor (GBM) observed several hundred bursts from this source. Such wealth of bursts resulted in the largest catalog of detailed temporal and spectral results for SGR J1550-5418. Here, we discuss new results from time-resolved spectral analysis of the brightest bursts from this source. Our analysis, together with the comparison of our results with other magnetar bursts, enabled us to put strong constraints on the theories underlying the magnetar bursts emission mechanism.

  16. Prevalent properties of gamma-ray burst variability

    NASA Technical Reports Server (NTRS)

    Link, Bennett; Epstein, Richard I.; Priedhorsky, William C.

    1993-01-01

    With the aim of isolating universal characteristics of gamma-ray burst variability, we compare time histories for 20 bright bursts detected by the Burst and Transient Source Experiment (Fishman et al., 1992). Using an autocorrelation function method, we find that the durations of individual structures within a burst, as well as the burst as a whole, become shorter with increasing energy in most events. We introduce the skewness function, a measure of temporal asymmetry. We find that most bursts exhibit a net skewness, in the sense that the intensity rises more rapidly than it falls. Over short time scales, bursts exhibit no preferred asymmetry. Taken together, these properties suggest that the overall time structure of a burst is due to an explosive phenomenon in which the evolution is initially energetic and rapid and is later slower during a 'cooling' period. We cannot rule out the possibility that short time-scale variability is caused by radiation beams sweeping past the observer.

  17. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    SciTech Connect

    Linares, M.; Chakrabarty, D.; Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R.; Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A.; Camero-Arranz, A.; Finger, M.; Paciesas, W. S.; Beklen, E.; Von Kienlin, A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 {+-} 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  18. The Fermi-GBM X-Ray Burst Monitor: Thermonuclear Bursts from 4U 0614+09

    NASA Astrophysics Data System (ADS)

    Linares, M.; Connaughton, V.; Jenke, P.; van der Horst, A. J.; Camero-Arranz, A.; Kouveliotou, C.; Chakrabarty, D.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Finger, M.; Paciesas, W. S.; Preece, R.; von Kienlin, A.; Wilson-Hodge, C. A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 ± 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  19. Graphite filament wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Damico, J. J.

    1972-01-01

    Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.

  20. Reproducing Actual Morphology of Planetary Lava Flows

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Sasaki, S.

    1996-03-01

    Assuming that lava flows behave as non-isothermal laminar Bingham fluids, we developed a numerical code of lava flows. We take the self gravity effects and cooling mechanisms into account. The calculation method is a kind of cellular automata using a reduced random space method, which can eliminate the mesh shape dependence. We can calculate large scale lava flows precisely without numerical instability and reproduce morphology of actual lava flows.

  1. The Actual Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The actual Apollo 13 lunar landing mission prime crew from left to right are: Commander, James A. Lovell Jr., Command Module pilot, John L. Swigert Jr.and Lunar Module pilot, Fred W. Haise Jr. The original Command Module pilot for this mission was Thomas 'Ken' Mattingly Jr. but due to exposure to German measles he was replaced by his backup, Command Module pilot, John L. 'Jack' Swigert Jr.

  2. Is there cosmological time dilation in gamma-ray bursts?

    NASA Technical Reports Server (NTRS)

    Band, David L.

    1994-01-01

    Norris et al. report that the temporal structure of faint gamma-ray bursts is longer than that of bright bursts, as expected for time dilation in the cosmological models of burst origin. I show that the observed trends can easily be produced by a burst luminosity function and thus may not result from cosmological effects. A cosmological signature may be present, but the tests Norris et al. present are not powerful enough to detect these signatures.

  3. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    SciTech Connect

    Luan, Jing; Goldreich, Peter

    2014-04-20

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10{sup 3} pc cm{sup –3}. Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period.

  4. Gamma-Ray Bursts and Cosmology

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  5. Testing General Relativity with Bursting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Psaltis, Dimitrios

    2008-03-01

    Neutron stars offer the possibility of testing General Relativity in the highest possible curvature limit attainable by an astrophysical object. Such tests, however, are hampered by the lack of a theoretical framework with which potential deviations from the GR predictions can be quantified. I show that several observable properties of bursting neutron stars in metric theories of gravity can be calculated using only conservation laws, symmetries, and the Einstein equivalence principle, without requiring the validity of the general relativistic field equations. I discuss, in particular, the gravitational redshift of a surface atomic line, the touchdown luminosity of a radius-expansion burst, which is believed to be equal to the Eddington critical luminosity, and the apparent surface area of a neutron star as measured during the cooling tails of bursts. I show that, for a general metric theory of gravity, the apparent surface area of a neutron star depends on the coordinate radius of the stellar surface and on its gravitational redshift in the exact same way as in general relativity. On the other hand, the Eddington critical luminosity depends also on an additional parameter that measures the degree to which the general relativistic field equations are satisfied. These results can be used in conjunction with current and future high-energy observations of bursting neutron stars to test general relativity in the strong-field regime.

  6. Search for bursts in air shower data

    NASA Technical Reports Server (NTRS)

    Bruce, T. E. G.; Clay, R. W.; Dawson, B. R.; Protheroe, R. J.; Blair, D. G.; Cinquini, P.

    1985-01-01

    There have been reports in recent years of the possible observation of bursts in air shower data. If such events are truly of an astrophysical nature then, they represent an important new class of phemonenon since no other bursts have been observed above the MeV level. The spectra of conventional gamma ray bursts are unknown at higher energies but their observed spectra at MeV energies appear generally to exhibit a steepening in the higher MeV range and are thus unlikely to extrapolate to measurable fluxes at air shower energies. An attempt has been made to look for deviations from randomness in the arrival times of air showers above approx. 10 to the 14th power eV with a number of systems and results so far are presented here. This work will be continued for a substantial period of ime with a system capable of recording bursts with multiple events down to a spacing of 4 microns. Earlier data have also been searched for the possible association of air shower events with a glitch of the Vela pulsar.

  7. ASTRONOMY: Neighborhood Gamma Ray Burst Boosts Theory.

    PubMed

    Schilling, G

    2000-07-01

    Titanic explosions that emit powerful flashes of energetic gamma rays are one of astronomy's hottest mysteries. Now an analysis of the nearest gamma ray burst yet detected has added weight to the popular theory that they are expelled during the death throes of supermassive stars.

  8. BACODINE/3rd Interplanetary Network burst localization

    SciTech Connect

    Hurley, K.; Barthelmy, S.; Butterworth, P.; Cline, T.; Sommer, M.; Boer, M.; Niel, M.; Kouveliotou, C.; Fishman, G.; Meegan, C.

    1996-08-01

    Even with only two widely separated spacecraft (Ulysses and GRO), 3rd Interplanetary Network (IPN) localizations can reduce the areas of BATSE error circles by two orders of magnitude. Therefore it is useful to disseminate them as quickly as possible following BATSE bursts. We have implemented a system which transmits the light curves of BACODINE/BATSE bursts directly by e-mail to UC Berkeley immediately after detection. An automatic e-mail parser at Berkeley watches for these notices, determines the Ulysses crossing time window, and initiates a search for the burst data on the JPL computer as they are received. In ideal cases, it is possible to retrieve the Ulysses data within a few hours of a burst, generate an annulus of arrival directions, and e-mail it out to the astronomical community by local nightfall. Human operators remain in this loop, but we are developing a fully automated routine which should remove them, at least for intense events, and reduce turn-around times to an absolute minimum. We explain the current operations, the data types used, and the speed/accuracy tradeoffs.

  9. BurstMem: A High-Performance Burst Buffer System for Scientific Applications

    SciTech Connect

    Wang, Teng; Oral, H Sarp; Wang, Yandong; Settlemyer, Bradley W; Atchley, Scott; Yu, Weikuan

    2014-01-01

    The growth of computing power on large-scale sys- tems requires commensurate high-bandwidth I/O system. Many parallel file systems are designed to provide fast sustainable I/O in response to applications soaring requirements. To meet this need, a novel system is imperative to temporarily buffer the bursty I/O and gradually flush datasets to long-term parallel file systems. In this paper, we introduce the design of BurstMem, a high- performance burst buffer system. BurstMem provides a storage framework with efficient storage and communication manage- ment strategies. Our experiments demonstrate that BurstMem is able to speed up the I/O performance of scientific applications by up to 8.5 on leadership computer systems.

  10. Gamma ray bursts: Current status of observations and theory

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    1990-01-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed.

  11. Solar S-bursts at Frequencies of 10 - 30 MHz

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Konovalenko, A. A.; Rucker, H. O.; Dorovskyy, V. V.; Abranin, E. P.; Lecacheux, A.; Lonskaya, A. S.

    2010-06-01

    Solar S-bursts observed by the radio telescope UTR-2 in the period 2001 - 2002 are studied. The bursts chosen for a detailed analysis occurred in the periods 23 - 26 May 2001, 13 - 16 and 27 - 39 July 2002 during three solar radio storms. More than 800 S-bursts were registered in these days. Properties of S-bursts are studied in the frequency band 10 - 30 MHz. All bursts were always observed against a background of other solar radio activity such as type III and IIIb bursts, type III-like bursts, drift pairs and spikes. Moreover, S-bursts were observed during days when the active region was situated near the central meridian. Characteristic durations of S-bursts were about 0.35 and 0.4 - 0.6 s for the May and July storms, respectively. For the first time, we found that the instantaneous frequency width of S-bursts increased with frequency linearly. The dependence of drift rates on frequency followed the McConnell dependence derived for higher frequencies. We propose a model of S-bursts based on the assumption that these bursts are generated due to the confluence of Langmuir waves with fast magnetosonic waves, whose phase and group velocities are equal.

  12. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  13. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  14. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  15. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  16. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  17. IN SEARCH OF PROGENITORS FOR SUPERNOVALESS GAMMA-RAY BURSTS 060505 AND 060614: RE-EXAMINATION OF THEIR AFTERGLOWS

    SciTech Connect

    Xu, D.; Fynbo, J. P. U.; Sollerman, J.; Watson, D.; Hjorth, J.; Starling, R. L. C.; O'Brien, P. T.; Yost, S.; Foley, S.

    2009-05-01

    GRB 060505 and GRB 060614 are nearby long-duration gamma-ray bursts (LGRBs) without accompanying supernovae (SNe) down to very strict limits. They thereby challenge the conventional LGRB-SN connection and naturally give rise to the question: are there other peculiar features in their afterglows which would help shed light on their progenitors? To answer this question, we combine new observational data with published data and investigate the multiband temporal and spectral properties of the two afterglows. We find that both afterglows can be well interpreted within the framework of the jetted standard external shock wave model, and that the afterglow parameters for both bursts fall well within the range observed for other LGRBs. Hence, from the properties of the afterglows there is nothing to suggest that these bursts should have another progenitor than other LGRBs. Recently, Swift-discovered GRB 080503 also has the spike + tail structure during its prompt {gamma}-ray emission seemingly similar to GRB 060614. We analyze the prompt emission of this burst and find that this GRB is actually a hard-spike + hard-tail burst with a spectral lag of 0.8 {+-} 0.4 s during its tail emission. Thus, the properties of the prompt emission of GRB 060614 and GRB 080503 are clearly different, motivating further thinking of GRB classification (and even identification of faint core-collapse SNe). Finally, we note that, whereas the progenitor of the two SN-less bursts remains uncertain, the core-collapse origin for the SN-less bursts would be quite certain if a windlike environment can be observationally established, e.g., from an optical decay faster than the X-ray decay in the afterglow's slow cooling phase.

  18. Coronal type II bursts and interplanetary type II bursts: Distinct shock drivers

    NASA Astrophysics Data System (ADS)

    Suryanarayana, G. S.

    2012-02-01

    We study solar radio type II bursts combining with Wind/WAVES type II bursts and coronal mass ejections (CMEs). The aim of the present work is to investigate the effectiveness of shocks to cause type II bursts in the solar corona and the interplanetary space. We consider the following findings. The distribution of the cessation heights of type II emission is confined to a rather narrow range of height than the distribution of the heights of start frequencies. This is suggestive of the presence of a gradient for the Alfvén speed from the heliocentric height of ˜1.4 solar radii. The range of the kinetic energy of CMEs associated with coronal type II emission taken together with the suggested computation method and the Alfvén speed gradient, indicates the limit to the height up to which type II emission could be expected. This height is ˜2 solar radii from the center of the Sun. Further, the large time gap between the cessation time and heights of coronal type II emission and the commencement time and heights of most of the IP type II bursts do not account for the difference between the two heights and the average shock speed. Also, there is clear difference in the magnitude of the kinetic energies and the distinct characteristics of the CMEs associated with coronal and IP type II bursts. Hence, we suggest that in most instances the coronal type II bursts and IP type II bursts occur due to distinct shocks. We also address the question of the origin of type II bursts and discuss the possible explanation of observed results.

  19. The Green Bank Solar Radio Burst Spectrometer

    NASA Astrophysics Data System (ADS)

    Bastian, T. S.; Bradley, R.; White, S.; Mastrantonio, E.

    2005-05-01

    The Solar Radio Burst Spectrometer (SRBS) is a project designed to 1) provide high quality radio dynamic spectra to the wider solar, heliospheric, and space weather communities; 2) serve as a development platform for ultra-wideband feeds and receivers. Dynamic spectroscopy is a powerful tool for observing radio bursts in the Sun's corona. These bursts are associated with solar flares and/or coronal mass ejections and result from coronal shocks (type II radio bursts), electron beams (type III radio bursts), and other forms of energy release in the corona. The community has been hampered by a lack of readily available dynamic spectra in the 12-24 hr UT time range, a shortcoming that has now been remedied. The instrument is located at the Green Bank Site of the National Radio Astronomy Observatory in the National Radio Quiet Zone, where the effects of radio frequency interference are much reduced compared with unprotected sites. The spectrometer is composed of two swept-frequency systems that together support observations from 18 MHz to 2 GHz with a time resolution of approximately 1 sec. The low frequency system, operating from 18-70 MHz, is a standalone dipole antenna. The high frequency system is fed by an antenna mounted at the vertex of a 13.7 m telescope and operates from 70-300 MHz; a broadband feed at the prime focus of the telescope provides frequency coverage from 300-2500 MHz. The data are available daily through a web-based interface. Both raw and background-subtracted data are available in a variety of formats. Users are encouraged to view and download selected data for research or forecasting purposes.

  20. Non-Planckian behaviour of burst spectra - Dependence of the blackbody radius on the duration of bursts

    NASA Technical Reports Server (NTRS)

    Damen, E.; Oosterbroek, T.; Van Paradijs, J.; Jansen, F.; Penninx, W.

    1989-01-01

    Exosat observations indicate a strong correlation between X-ray burst duration and the blackbody temperature measured at the moment when the flux has decayed to 10 percent of the Eddington flux. No correlation is observed between the persistent flux near the burst and this temperature. Burst spectra reveal deviations from a Planckian spectrum which depend upon the chemical composition of the bursting layer. It is noted that this composition is not a simple function of the accretion rate.

  1. Initial design and physical characterization of a polymeric device for osmosis-driven delayed burst delivery of vaccines.

    PubMed

    Melchels, Ferry P W; Fehr, Ingo; Reitz, Annika S; Dunker, Urip; Beagley, Kenneth W; Dargaville, Tim R; Hutmacher, Dietmar W

    2015-09-01

    Achieving the combination of delayed and immediate release of a vaccine from a delivery device without applying external triggers remains elusive in implementing single administration vaccination strategies. Here a means of vaccine delivery is presented, which exploits osmosis to trigger delayed burst release of an active compound. Poly(ε-caprolactone) capsules of 2 mm diameter were prepared by dip-coating, and their burst pressure and release characteristics were evaluated. Burst pressures (in bar) increased with wall thickness (t in mm) following Pburst  = 131(.) t + 3(.) 4 (R(2)  = 0.93). Upon immersion in PBS, glucose solution-filled capsules burst after 8.7 ± 2.9 days. Copolymers of hydrophobic ε -caprolactone and hydrophilic polyethylene glycol were synthesized and their physico-chemical properties were assessed. With increasing hydrophilic content, the copolymer capsules showed increased water uptake rates and maximum weight increase, while the burst release was earlier: 5.6 ± 2.0 days and 1.9 ± 0.2 days for 5 and 10 wt% polyethylene glycol, respectively. The presented approach enables the reproducible preparation of capsules with high versatility in materials and properties, while these vaccine delivery vehicles can be prepared separately from, and independently of the active compound.

  2. Positional characteristics of meter-decameter wavelength bursts associated with hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Gergely, T. E.; Kane, S. R.

    1982-01-01

    Isolated and grouped type III bursts have been observed in temporal association with impulsive hard X-ray bursts in the 26-154 keV range, down to frequencies as low as 30 MHz and out to a distance of 3.1 solar radii from the disk center. The bursts occurred in regions whose electron density may have been as much as 20 times higher than that of the Newkirk-Saito model. The present observations indicate that electron acceleration/injection occurs over a region covering a wide range of magnetic field lines. It is noted that, of the two gradual hard X-ray bursts observed in association with type IV bursts, one was accompanied by a type II event, while the other was not, although both exhibited the same characteristics. It is suggested that the gradual burst associated with a type IV only involved electrons which are trapped in the plasmoid which produces the meter-decameter emission, while another fraction of the population is trapped in the low-lying loops which produce the hard X-ray and centimeter radiation.

  3. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  4. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  5. Explosive Percolation Transition is Actually Continuous

    NASA Astrophysics Data System (ADS)

    da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2010-12-01

    Recently a discontinuous percolation transition was reported in a new “explosive percolation” problem for irreversible systems [D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323, 1453 (2009)SCIEAS0036-807510.1126/science.1167782] in striking contrast to ordinary percolation. We consider a representative model which shows that the explosive percolation transition is actually a continuous, second order phase transition though with a uniquely small critical exponent of the percolation cluster size. We describe the unusual scaling properties of this transition and find its critical exponents and dimensions.

  6. The distribution of cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Cohen, Ehud; Piran, Tsvi

    1995-01-01

    We compare the burst distribution of the Burst and Transient Source Experiment (BATSE)-2B catalog to a cosmological distribution. The observed distribution agrees well with a cosmological one, however, it is insensitive to cosmological parameters such as omega and lambda. The bursts are not necessarily standard candles, and their luminosity can vary by up to a factor of 10. The maximal redshift, z(sub max), of bursts longer than 2 s is 2.1(sup +1)(sub -0.7) (assuming no evolution). The present data is insufficient to determine maximal redshift, z(sub max), of bursts shorter than 2 s.

  7. Dark Gamma-Ray Bursts and their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Volnova, Alina; Pozanenko, Alexei

    Despite the rapid GRB follow-up with robotic telescopes, 20-40% of long duration GRBs show a lack or even total absence of the optical afterglow. These events are called optically dark bursts. Only observations of X-ray afterglow and host galaxy of those dark bursts allow us to study the parameters of dark GRB sources and their environment and to determine the nature of the burst darkness. We review recent observations and present statistical studies of optically dark gamma-ray bursts and their host galaxies. Also we discuss their properties in comparison ordinary bright bursts.

  8. Experiment data report for Multirod Burst Test (MRBT) bundle B-6. [PWR; BWR

    SciTech Connect

    Chapman, R H; Longest, A W; Crowley, J L

    1984-07-01

    A reference source of MRBT bundle B-6 test data is presented with minimum interpretation. The primary objective of this 8 x 8 multirod burst test was to investigate cladding deformation in the alpha-plus-beta-Zircaloy temperature range under simulated light-water-reactor (LWR) loss-of-coolant accident (LOCA) conditions. B-6 test conditions simulated the adiabatic heatup (reheat) phase of an LOCA and produced very uniform temperature distributions. The fuel pin simulators were electrically heated (average linear power generation of 1.42 kW/m) and were slightly cooled with a very low flow (Re approx. 140) of low-pressure superheated steam. The cladding temperature increased from the initial temperature (330/sup 0/C) to the burst temperature at a rate of 3.5/sup 0/C/s. The simulators burst in a very narrow temperature range, with an average of 930/sup 0/C. Cladding burst strain ranged from 21 to 56%, with an average of 31%. Volumetric expansion over the heated length of the cladding ranged from 16 to 32%, with an average of 23%. 23 references.

  9. A gamma-ray burst monitor for GLAST

    NASA Astrophysics Data System (ADS)

    von Kienlin, A.; Briggs, M. S.; Diehl, R.; Fishman, G. J.; Georgii, R.; Kippen, R. M.; Kouveliotou, C.; Lichti, G. G.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Schönfelder, V.

    2001-09-01

    The Gamma-Ray Large-Area Space Telescope GLAST is the next NASA mission in the high-energy γ-ray regime (10 MeV to about 500 GeV), with launch anticipated in 2006 (Gehrels, 1999). Recently a design using silicon strips for the electron-positron pair tracking was selected for the main instrument. One of the key scientific objectives of the GLAST mission is to determine the high-energy behaviour of gamma-ray bursts and transients. The importance of studying bursts with GLAST has been emphasized by choosing a burst monitor as the secondary instrument on GLAST. A proposal to the NASA AO for such a burst monitor was submitted jointly by a collaboration between the Marshall Space-Flight Center/University of Alabama (both in Huntsville/Alabama) and the Max-Planck-Institut für extraterrestrische Physik in Garching. This GLAST Burst Monitor will complement the main instrument information about bursts in the energy range between 5 keV and 30 MeV. It will provide real-time burst locations over a wide FOV with sufficient accuracy to repoint the GLAST spacecraft. Time-resolved spectra of many bursts recorded with GLAST and the burst monitor will cover unprecedented 6 decades of energy. This will help to advance our understanding of the mechanisms by which gamma-rays are generated in gamma-ray bursts. Mid of March 2000 this proposal for GLAST's burst monitor has been selected.

  10. Directivity of low frequency solar type III radio bursts

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Fainberg, J.; Bundy, R. B.

    1976-01-01

    The occurrence rate of type III solar bursts in the frequency range 4.9 MHz to 30 kHz is analyzed as a function of burst intensity and burst arrival direction. We find that (1) the occurrence rate of bursts varies inversely with the 1.5 power of the flux, and (2) the distribution of burst arrival directions at each frequency shows a significantly larger number of bursts observed west of the earth-sun line than east of it. This western excess in occurrence rate appears to be correlated with the direction of the average interplanetary magnetic field, and is interpreted as beaming of the observed burst radiation along the magnetic field direction.

  11. Multiple Bifurcations in a Polynomial Model of Bursting Oscillations

    NASA Astrophysics Data System (ADS)

    de Vries, G.

    1998-06-01

    Bursting oscillations are commonly seen to be the primary mode of electrical behaviour in a variety of nerve and endocrine cells, and have also been observed in some biochemical and chemical systems. There are many models of bursting. This paper addresses the issue of being able to predict the type of bursting oscillation that can be produced by a model. A simplified model capable of exhibiting a wide variety of bursting oscillations is examined. By considering the codimension-2 bifurcations associated with Hopf, homoclinic, and saddle-node of periodics bifurcations, a bifurcation map in two-dimensional parameter space is created. Each region on the map is characterized by a qualitatively distinct bifurcation diagram and, hence, represents one type of bursting oscillation. The map elucidates the relationship between the various types of bursting oscillations. In addition, the map provides a different and broader view of the current classification scheme of bursting oscillations.

  12. Fermi/GAMMA-RAY BURST MONITOR OBSERVATIONS OF SGR J0501+4516 BURSTS

    SciTech Connect

    Lin Lin; Zhang Shuangnan; Kouveliotou, Chryssa; Van der Horst, Alexander J.; Finger, Mark H.; Guiriec, Sylvain; Preece, Robert; Chaplin, Vandiver; Bhat, Narayan; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Von Kienlin, Andreas; Watts, Anna L.; Wijers, Ralph A. M. J.; Gehrels, Neil; Harding, Alice

    2011-10-01

    We present our temporal and spectral analyses of 29 bursts from SGR J0501+4516, detected with the gamma-ray burst monitor on board the Fermi Gamma-ray Space Telescope during 13 days of the source's activation in 2008 (August 22- September 3). We find that the T{sub 90} durations of the bursts can be fit with a log-normal distribution with a mean value of {approx}123 ms. We also estimate for the first time event durations of soft gamma repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T{sub 90} values estimated in count space (following a log-normal distribution with a mean value of {approx}124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two blackbody functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E{sub peak} decreases with energy flux (and fluence) to a minimum of {approx}30 keV at F = 8.7 x 10{sup -6} erg cm{sup -2} s{sup -1}, increasing steadily afterward. Two more sources exhibit a similar trend: SGRs J1550-5418 and 1806-20. The isotropic luminosity, L{sub iso}, corresponding to these flux values is roughly similar for all sources (0.4-1.5 x 10{sup 40} erg s{sup -1}).

  13. Fermi/Gamma-Ray Burst Monitor Observations of SGR J0501+4516 Bursts

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Kouveliotou, Chryssa; Baring, Matthew G.; van der Horst, Alexander J.; Guiriec, Sylvain; Woods, Peter M.; Göǧüş, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; Preece, Robert; von Kienlin, Andreas; Chaplin, Vandiver; Watts, Anna L.; Wijers, Ralph A. M. J.; Zhang, Shuang Nan; Bhat, Narayan; Finger, Mark H.; Gehrels, Neil; Harding, Alice; Kaper, Lex; Kaspi, Victoria; Mcenery, Julie; Meegan, Charles A.; Paciesas, William S.; Pe'er, Asaf; Ramirez-Ruiz, Enrico; van der Klis, Michiel; Wachter, Stefanie; Wilson-Hodge, Colleen

    2011-10-01

    We present our temporal and spectral analyses of 29 bursts from SGR J0501+4516, detected with the gamma-ray burst monitor on board the Fermi Gamma-ray Space Telescope during 13 days of the source's activation in 2008 (August 22- September 3). We find that the T 90 durations of the bursts can be fit with a log-normal distribution with a mean value of ~123 ms. We also estimate for the first time event durations of soft gamma repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T 90 values estimated in count space (following a log-normal distribution with a mean value of ~124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two blackbody functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E peak decreases with energy flux (and fluence) to a minimum of ~30 keV at F = 8.7 × 10-6 erg cm-2 s-1, increasing steadily afterward. Two more sources exhibit a similar trend: SGRs J1550-5418 and 1806-20. The isotropic luminosity, L iso, corresponding to these flux values is roughly similar for all sources (0.4-1.5 × 1040 erg s-1).

  14. Coherence resonance in bursting neural networks

    NASA Astrophysics Data System (ADS)

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J.

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal—a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  15. Plasma Instabilities in Gamma-Ray Bursts

    SciTech Connect

    Tautz, Robert C.

    2008-12-24

    Magnetic fields are important in a variety of astrophysical scenarios, ranging from possible creation mechanisms of cosmological magnetic fields through relativistic jets such as that from Active Galactic Nuclei and gamma-ray bursts to local phenomena in the solar system. Here, the outstanding importance of plasma instabilities to astrophysics is illustrated by applying the so-called neutral point method to gamma-ray bursts (GRBs), which are assumed to have a homogeneous background magnetic field. It is shown how magnetic turbulence, which is a prerequisite for the creation of dissipation and, subsequently, radiation, is created by the highly relativistic particles in the GRB jet. Using the fact that different particle compositions lead to different instability conditions, conclusions can be drawn about the particle composition of the jet, showing that it is more likely of baryonic nature.

  16. Cement augmentation in vertebral burst fractures.

    PubMed

    Zaryanov, Anton V; Park, Daniel K; Khalil, Jad G; Baker, Kevin C; Fischgrund, Jeffrey S

    2014-01-01

    As a result of axial compression, traumatic vertebral burst fractures disrupt the anterior column, leading to segmental instability and cord compression. In situations with diminished anterior column support, pedicle screw fixation alone may lead to delayed kyphosis, nonunion, and hardware failure. Vertebroplasty and kyphoplasty (balloon-assisted vertebroplasty) have been used in an effort to provide anterior column support in traumatic burst fractures. Cited advantages are providing immediate stability, improving pain, and reducing hardware malfunction. When used in isolation or in combination with posterior instrumentation, these techniques theoretically allow for improved fracture reduction and maintenance of spinal alignment while avoiding the complications and morbidity of anterior approaches. Complications associated with cement use (leakage, systemic effects) are similar to those seen in the treatment of osteoporotic compression fractures; however, extreme caution must be used in fractures with a disrupted posterior wall.

  17. Burst Mode ASIC-Based Modem

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  18. Bursts of activity in collective cell migration

    PubMed Central

    Chepizhko, Oleksandr; Giampietro, Costanza; Mastrapasqua, Eleonora; Nourazar, Mehdi; Ascagni, Miriam; Sugni, Michela; Fascio, Umberto; Leggio, Livio; Malinverno, Chiara; Scita, Giorgio; Santucci, Stéphane; Alava, Mikko J.; Zapperi, Stefano; La Porta, Caterina A. M.

    2016-01-01

    Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media, and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems. PMID:27681632

  19. The Chase to Capture Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts are the most powerful explosions in the universe, thought to be the birth cries of black holes. It has taken 40 years of international cooperation and competition to begin to unravel the mystery of their origin. The most recent chapter in this field is being written by the SWIFT mission, a fast-response satellite with 3 power telescopes. An international team from countries all over the world participates in the chase to capture the fading light of bursts detected by SWIFT. This talk will discuss the challenges and excitement of building this space observatory. New results will be presented on our growing understanding of exploding stars and fiery mergers of orbiting stars.

  20. Exploring the Progenitors of Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Burke-Spolaor, Sarah; Kramer, Michael; Bhat, Ramesh; Kulkarni, S. R.; Keller, Stefan; Champion, David; Flynn, Chris; Kasliwal, Mansi

    2014-10-01

    Fast Radio Bursts (FRBs) are millisecond bursts that are broadly evidenced to arise from extragalactic, but yet unknown, progenitors. They have presented a true mystery in that so far no progenitor theory can adequately account for their observed properties. We request observations that will glean basic information on FRB progenitors. Our observations will execute a specific test of whether FRBs originate in nearby galaxies. We have also designed our target field and time request to enable a thorough exploration of optical counterparts before, during, and after any detected FRB episode. Additionally, with a number depending on the typical distance to FRBs, our observations will raise the running list of total FRB discoveries by 10-60%.

  1. Coherence resonance in bursting neural networks.

    PubMed

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal-a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  2. Cosmological blueshifting may explain the gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Krasiński, Andrzej

    2016-02-01

    It is shown that the basic observed properties of the gamma-ray bursts (GRBs) are accounted for if one assumes that the GRBs arise by blueshifting the emission radiation of hydrogen and helium generated during the last scattering epoch. The blueshift generator for a single GRB is a region with a nonconstant bang-time function tB(r ) (described by a Lemaître-Tolman (L-T) exact solution of Einstein's equations) matched into a homogeneous and isotropic (Friedmann) background. Blueshift visible to the present observer arises only on those rays that are emitted radially in an L-T region. The paper presents three L-T models with different Big Bang profiles, adapted for the highest and the lowest end of the GRB frequency range. The models account for (1) the observed frequency range of the GRBs; (2) their limited duration; (3) the afterglows; (4) their hypothetical collimation into narrow jets; (5) the large distances to their sources; (6) the multitude of the observed GRBs. Properties (2), (3) and (6) are accounted for only qualitatively. With a small correction of the parameters of the model, the implied perturbations of the CMB radiation will be consistent with those actually caused by the GRBs. A complete model of the Universe would consist of many L-T regions with different tB(r ) profiles, matched into the same Friedmann background. This paper is meant to be an initial exploration of the possibilities offered by models of this kind; the actual fitting of all parameters to observational results requires fine-tuning of several interconnected variables and is left for a separate study.

  3. Downhole drilling network using burst modulation techniques

    DOEpatents

    Hall; David R. , Fox; Joe

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  4. Identifying Crucial Parameter Correlations Maintaining Bursting Activity

    PubMed Central

    Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances (leak current, Leak; a persistent K current, K2; and of a persistent Na+ current, P) that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of Leak, K2, and P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained. PMID:24945358

  5. The actual status of Astronomy in Moldova

    NASA Astrophysics Data System (ADS)

    Gaina, A.

    The astronomical research in the Republic of Moldova after Nicolae Donitch (Donici)(1874-1956(?)) were renewed in 1957, when a satellites observations station was open in Chisinau. Fotometric observations and rotations of first Soviet artificial satellites were investigated under a program SPIN put in action by the Academy of Sciences of former Socialist Countries. The works were conducted by Assoc. prof. Dr. V. Grigorevskij, which conducted also research in variable stars. Later, at the beginning of 60-th, an astronomical Observatory at the Chisinau State University named after Lenin (actually: the State University of Moldova), placed in Lozovo-Ciuciuleni villages was open, which were coordinated by Odessa State University (Prof. V.P. Tsesevich) and the Astrosovet of the USSR. Two main groups worked in this area: first conducted by V. Grigorevskij (till 1971) and second conducted by L.I. Shakun (till 1988), both graduated from Odessa State University. Besides this research areas another astronomical observations were made: Comets observations, astroclimate and atmospheric optics in collaboration with the Institute of the Atmospheric optics of the Siberian branch of the USSR (V. Chernobai, I. Nacu, C. Usov and A.F. Poiata). Comets observations were also made since 1988 by D. I. Gorodetskij which came to Chisinau from Alma-Ata and collaborated with Ukrainean astronomers conducted by K.I. Churyumov. Another part of space research was made at the State University of Tiraspol since the beggining of 70-th by a group of teaching staff of the Tiraspol State Pedagogical University: M.D. Polanuer, V.S. Sholokhov. No a collaboration between Moldovan astronomers and Transdniestrian ones actually exist due to War in Transdniestria in 1992. An important area of research concerned the Radiophysics of the Ionosphere, which was conducted in Beltsy at the Beltsy State Pedagogical Institute by a group of teaching staff of the University since the beginning of 70-th: N. D. Filip, E

  6. MODIS Solar Diffuser: Modelled and Actual Performance

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.

  7. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  8. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  9. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  10. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  11. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  12. Radio Flares from Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  13. Gamma-Ray Burst Physics with GLAST

    SciTech Connect

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  14. Cosmology with Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Ghirlanda, G.; Firmani, C.; Lazzati, D.; Avila-Reese, V.

    2005-07-01

    Apparently, Gamma-Ray Bursts (GRBs) are all but standard candles. Their emission is collimated into a cone and the received flux depends on the cone aperture angle. Fortunately we can derive the aperture angle through an achromatic steepening of the lightcurve of the afterglow, and thus we can measure the “true” energetics of the prompt emission. Ghirlanda et al. (2004a) found that this collimation-corrected energy correlates tightly with the frequency at which most of the radiation of the prompt is emitted. Through this correlation we can infer the burst energy accurately enough for a cosmological use. Using the best known 15 GRBs we find very encouraging results that emphasize the cosmological GRB role. Probing the universe with high accuracy up to high redshifts, GRBs establish a new insight on the cosmic expanding acceleration history and accomplish the role of “missing link” between the Cosmic Microwave Background and type Ia supernovae, motivating the most optimistic hopes for what can be obtained from the bursts detected by SWIFT.

  15. RADIO FLARES FROM GAMMA-RAY BURSTS

    SciTech Connect

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  16. A Burst Chasing X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne; Hill, Joe; Barthelmy, S.; Black, K.; Deines-Jones, P.; Jahoda, K.; Sakamoto, T.; Kaaret, P.; McConnell, M.; Bloser, P.; Macri, J.; Legere, J.; Ryan, J.; Smith, B., Jr.; Zhang, B.

    2007-01-01

    Tihs is a viewgraph presentation of a discussion of the X-ray Polarimeter. Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect is the dominant interaction process We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts, the Gamma-Ray Burst Polarimeter (GRBP) for thc U S Naval Academy satellite MidSTAR-2, and thc Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission.

  17. A Burst Chasing X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Barthelmy, Scott; Black, J. kevin; Deines-Jones, Philip; Jahoda, Keith; Sakamoto, Takanori; Kaaret, Philip; McConnell, Mark L.; Bloser, Peter F.; Macri, John R.; Legere, Jason S.; Ryan, James M.; Smith, Billy R., Jr.; Zhang, Bing

    2007-01-01

    Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect 1s the dominant interaction process We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts, the Gamma-Ray Burst Polarimeter (GRBP) for thc U S Naval Academy satellite MidSTAR-2, and thc Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission.

  18. Burst Firing Enhances Neural Output Correlation

    PubMed Central

    Chan, Ho Ka; Yang, Dong-Ping; Zhou, Changsong; Nowotny, Thomas

    2016-01-01

    Neurons communicate and transmit information predominantly through spikes. Given that experimentally observed neural spike trains in a variety of brain areas can be highly correlated, it is important to investigate how neurons process correlated inputs. Most previous work in this area studied the problem of correlation transfer analytically by making significant simplifications on neural dynamics. Temporal correlation between inputs that arises from synaptic filtering, for instance, is often ignored when assuming that an input spike can at most generate one output spike. Through numerical simulations of a pair of leaky integrate-and-fire (LIF) neurons receiving correlated inputs, we demonstrate that neurons in the presence of synaptic filtering by slow synapses exhibit strong output correlations. We then show that burst firing plays a central role in enhancing output correlations, which can explain the above-mentioned observation because synaptic filtering induces bursting. The observed changes of correlations are mostly on a long time scale. Our results suggest that other features affecting the prevalence of neural burst firing in biological neurons, e.g., adaptive spiking mechanisms, may play an important role in modulating the overall level of correlations in neural networks. PMID:27242499

  19. Composite-flywheel burst-containment study

    SciTech Connect

    Sapowith, A D; Handy, W E

    1982-04-08

    A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These area: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk. The flywheel materials for the disk are S-glass; the subcircular rim is Kevlar over S-glass. Test data on flywheel bursts and containment failures were analyzed. Recommendations are made for further testing.

  20. Determination of burst initiation location and tear propagation velocity during air burst testing of latex condoms

    NASA Astrophysics Data System (ADS)

    Davidhazy, Andrew

    1991-04-01

    The stress testing of latex condoms by an air burst procedure has been slow in gaining industry acceptance because questions have been raised regarding the influence of the test apparatus on the likelihood of breakage occurring where the condom is attached to the inflation device. It was desired to locate the areas at which the condoms tend to burst and thus corroborate or disprove these claims. Several factors associated with the bursting condom demanded the use of special instrumentation to detect arid study the burst initiation process. Microsecond duration electronic flashes were used for the initial stages of the investigation. Although the absolute point of initiation of a given burst could not be photographed, these high speed studies tend to indicate that the most likely place for high quality condoms to break is not where they are attached to the inflation device but at an intermediate area between the base and the tip of the condom. In addition, tear propagation characteristics and velocities were determined with a delayed-flash technique, a double-slit strip method and a rotating drum framing camera.

  1. O/E/O storage mechanism for burst contention resolution in optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Sun, Yutong; Zheng, Xiaoping; Zhang, Hanyi; Pu, Tao; Wang, Lei; Guo, Yili

    2005-11-01

    Burst contention resolution is one of the most important issues in optical burst switching (OBS) networks. In this paper, an O/E/O conversion and electronic storage mechanism for contention resolution is proposed. Compared with fiber delay lines (FDL) O/E/O strategy can provide much longer and continuous delay time for the contending bursts, which can significantly reduce burst loss rate. For this mechanism, a new burst scheduling algorithm called Shortest Delay- Best Fit (SD-BF) is proposed here to improve bandwidth utilization. In a network, O/E/O can be implemented with FDL to achieve a better performance while reducing node cost. In this paper, a semi-share structure for this combination strategy is proposed to balance the cost and performance. Numerical results show that a better performance is achieved by the combination strategy in the long haul back-bone networks. We also investigate the maximum electronic RAM capacity needed in the nodes to support O/E/O storage, and how to implement Quality-of-Service (QoS) with O/E/O storage.

  2. Bursts and Heavy Tails in Temporal and Sequential Dynamics of Foraging Decisions

    PubMed Central

    Jung, Kanghoon; Jang, Hyeran; Kralik, Jerald D.; Jeong, Jaeseung

    2014-01-01

    A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices. PMID:25122498

  3. UWB multi-burst transmit driver for averaging receivers

    DOEpatents

    Dallum, Gregory E

    2012-11-20

    A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

  4. Statistical Properties of SGR 1900+14 Bursts

    NASA Technical Reports Server (NTRS)

    Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa; VanParadijs, Jan

    1999-01-01

    We study the statistics of soft gamma repeater (SGR) bursts using a database of 187 events detected with BATSE and 837 events detected with the Rossi X-Ray Timing Explorer Proportional Counter Array: all events are from SGR 1900+14 during its 1998-1999 active phase. We find that the fluence or energy distribution of bursts is consistent with a power law of index 1.66, over 4 orders of magnitude. This scale-free distribution resembles the Gutenberg-Richter law for earthquakes and gives evidence for self-organized criticality in SGRS. The distribution of time intervals between successive bursts from SGR 1900+14 is consistent with a lognormal distribution. There is no correlation between burst intensity and the waiting times till the next burst, but there is some evidence for a correlation between burst intensity and the time elapsed since the previous burst. We also find a correlation between the duration and the energy of the bursts, but with significant scatter. In all these statistical properties, SGR bursts resemble earthquakes and solar flares more closely than they resemble any known accretion-powered or nuclear-powered phenomena. Thus, our analysis lends support to the hypothesis that the energy source for SGR bursts is internal to the neutron star and plausibly magnetic.

  5. Statistical Properties of SGR 1900+14 Bursts

    NASA Technical Reports Server (NTRS)

    Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa; vanParadijs, Jan; Briggs, Michael S.; Duncan, Robert C.; Thompson, Christopher

    1999-01-01

    We study the statistics of soft gamma repeater (SGR) bursts, using a data base of 187 events detected with BATSE and 837 events detected with RXTE PCA, all from SGR 1900+14 during its 1998-1999 active phase. we find that the fluence or energy distribution of bursts is consistent with a power law of index 1.66, over 4 orders of magnitude. This scale-free distribution resembles the Gutenberg-Richter Law for earthquakes, and gives evidence for self-organized criticality in SGRS. The distribution of time intervals between successive bursts from SGR 1900+14 is consistent with a log-normal distribution. There is no correlation between burst intensity and the waiting times till the next burst, but there is some evidence for a correlation between burst intensity and the time elapsed since the previous burst. We also find a correlation between the duration and the energy of the bursts, but with significant scatter. In all these statistical properties, SGR bursts resemble earthquakes and solar flares more closely than they resemble any known accretion-powered or nuclear-powered phenomena. Thus our analysis lends support to the hypothesis that the energy source for SGR bursts is internal to the neutron star, and plausibly magnetic.

  6. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  7. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few

  8. Gamma-ray Burst Energetics an the Gamma-ray Burst Hubble Diagram: Promises and Limitations

    NASA Technical Reports Server (NTRS)

    Bloom, J. S.; Frail, D. A.; Kulkarni, S. R.

    2003-01-01

    We present a complete sample of 29 gamma-ray bursts (GRBs) for which it has been possible to determine temporal breaks (or limits) from their afterglow light curves. We interpret these breaks within the framework of the uniform conical jet model, incorporating realistic estimates of the ambient density and propagating error estimates on the measured quantities. In agreement with our previous analysis of a smaller sample, the derived jet opening angles of those 16 bursts with redshifts result in a narrow clustering of geometrically corrected gamma-ray energies about 1.33 x 10(exp 51) ergs; the burst-to-burst variance about this value is 0.35 dex, a factor of 2.2. Despite this rather small scatter, we demonstrate in a series of GRB Hubble diagrams that the current sample cannot place meaningful constraints upon the fundamental parameters of the universe. Indeed, for GRBs to ever be useful in cosmographic measurements, we argue the necessity of two directions. First, GRB Hubble diagrams should be based upon fundamental physical quantities such as energy, rather than empirically derived and physically ill-understood distance indicators (such as those based upon prompt burst time-profiles and spectra). Second, a more homogeneous set should be constructed by culling subclasses from the larger sample. These subclasses, although now first recognizable by deviant energies, ultimately must be identifiable by properties other than those directly related to energy. We identify a new subclass of GRBs (" f-GRBs ") that appear both underluminous by factors of at least 10 and exhibit a rapid fading (f(sub nu is proportional to t(sup -2) at early times (t < or = 0.5 day). About 10%-20% of observed long-duration bursts appear to be f-GRBs.

  9. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  10. An Analysis of Gamma-ray Burst Time Profiles from the Burst and Transient Source Experiment

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1996-01-01

    This proposal requested funding to measure the durations of gamma-ray bursts (GRB) in the 4B catalog as well as to study the structure of GRB time profiles returned by the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma-Ray Observatory. The duration (T90) was to be measured using the same techniques and algorithms developed by the principal investigator for the 3B data. The profile structure studies fall into the two categories of variability and fractal analyses.

  11. Mosquitoes drink with a burst in reserve: explaining pumping behavior with a fluid mechanics model

    NASA Astrophysics Data System (ADS)

    Chatterjee, Souvick; Socha, Jake; Stremler, Mark

    2014-11-01

    Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through the proboscis. Experimental observations with synchrotron x-ray imaging indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an occasional, isolated burst mode, in which the pharyngeal pump expansion is 10 to 30 times larger than in the continuous mode. We have used a reduced order model of the fluid mechanics to hypothesize an explanation of this variation in drinking behavior. Our model results show that the continuous mode is more energetically efficient, whereas the burst mode creates a large pressure drop across the proboscis, which could potentially be used to clear blockages. Comparisons with pump knock-out configurations demonstrate different functional roles of the pumps in mosquito feeding. This material is based upon work supported by the NSF under Grant No. #0938047.

  12. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    SciTech Connect

    Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; Gussev, M. N.; Terrani, K. A.

    2015-08-25

    Here, one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filtering unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.

  13. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    SciTech Connect

    Gussev, Maxim N.; Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; Terrani, Kurt A.

    2015-11-01

    The high resistance of cladding to plastic deformation and burst failure is one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) since the deformation and burst behavior governs the cooling efficiency of flow channels and process of fission product release. To simulate and evaluate such deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisted of a high-resolution video camera, light filtering unit, and monochromatic light sources, and the in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. In this study eleven (11) candidate cladding materials for ATF, i.e., 6 FeCrAl alloys and 5 nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800°C while negligible strain rates were measured for higher strength alloys and/or for relatively thick wall specimens.

  14. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    NASA Astrophysics Data System (ADS)

    Gussev, M. N.; Byun, T. S.; Yamamoto, Y.; Maloy, S. A.; Terrani, K. A.

    2015-11-01

    One of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filtering unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.

  15. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    DOE PAGES

    Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; Gussev, M. N.; Terrani, K. A.

    2015-08-25

    Here, one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filteringmore » unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.« less

  16. Validation and Verification of Composite Pressure Vessel Design

    NASA Technical Reports Server (NTRS)

    Kreger, Stephen T.; Ortyl, Nicholas; Grant, Joseph; Taylor, F. Tad

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors and pressure tested Through burst. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and also compare the fiber Bragg grating sensor data with data obtained against that obtained from foil strain gages.

  17. Burst synchronization transitions in a neuronal network of subnetworks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Lei, Jinzhi; Perc, Matjaž; Kurths, Jürgen; Chen, Guanrong

    2011-03-01

    In this paper, the transitions of burst synchronization are explored in a neuronal network consisting of subnetworks. The studied network is composed of electrically coupled bursting Hindmarsh-Rose neurons. Numerical results show that two types of burst synchronization transitions can be induced not only by the variations of intra- and intercoupling strengths but also by changing the probability of random links between different subnetworks and the number of subnetworks. Furthermore, we find that the underlying mechanisms for these two bursting synchronization transitions are different: one is due to the change of spike numbers per burst, while the other is caused by the change of the bursting type. Considering that changes in the coupling strengths and neuronal connections are closely interlaced with brain plasticity, the presented results could have important implications for the role of the brain plasticity in some functional behavior that are associated with synchronization.

  18. Decametric and hectometric Solar Type III bursts at Saturn's orbit

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Sawas, Sami; Galopeau, Patrick H. M.; Maksimovic, Milan

    2015-04-01

    We report on solar radio bursts observed by RPWS experiment onboard Cassini spacecraft. We consider Type III solar bursts observed in the frequency range from 1 MHz to 16 MHz. Those bursts are probably generated in the solar corona and the interplanetary medium. We show that the Type III burst occurrence is depending on the solar activity. We attempt to localize the regions where the Type III burst is probably emitted. We consider that the electrons at the origin of the Solar Type III bursts follow the interplanetary magnetic field. The trajectory is an Archimedean spiral contained in the ecliptic plane. We discuss our results taking into consideration on the one hand the spacecraft positions with regards to the source location, and on the other hand the temporal and spectral radio beam variation when combining Cassini and Wind observations.

  19. The signaling role of a mitochondrial superoxide burst during stress.

    PubMed

    Cvetkovska, Marina; Alber, Nicole A; Vanlerberghe, Greg C

    2013-01-01

    Plant mitochondria are proposed to act as signaling organelles in the orchestration of defense responses to biotic stress and acclimation responses to abiotic stress. However, the primary signal(s) being generated by mitochondria and then interpreted by the cell are largely unknown. Recently, we showed that mitochondria generate a sustained burst of superoxide (O 2(-)) during particular plant-pathogen interactions. This O 2(-) burst appears to be controlled by mitochondrial components that influence rates of O 2(-) generation and scavenging within the organelle. The O 2(-) burst appears to influence downstream processes such as the hypersensitive response, indicating that it could represent an important mitochondrial signal in support of plant stress responses. The findings generate many interesting questions regarding the upstream factors required to generate the O 2(-) burst, the mitochondrial events that occur in support of and in parallel with this burst and the downstream events that respond to this burst.

  20. Observations of cosmic gamma ray bursts with WATCH on EURECA

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Castro-Tirado, A. J.

    19 Cosmic Gamma-Ray Bursts were detected by the Wide Angle Telescope for Cosmic Hard X-rays (WATCH) instruments during the 11 months flight of the European Retrievable Carrier (EURECA). The identification of the bursts was complicated by a high frequency of background of events caused by a high energy cosmic ray interactions in the detector and by low energy, trapped particle streams. These background events may simulate the count rate increases characteristic of cosmic gamma bursts. For 12 of the detected events, their true cosmic nature have been confirmed through consistent localizations of the burst sources based on several independent WATCH data sets. The derived positions of the bursts are reported. Additionally, most of the events have been confirmed by coincident detections with instruments on other spacecraft. The features of two of the bursts and the results of searches for related events in the optical are described.

  1. Implications of fast radio bursts for superconducting cosmic strings

    SciTech Connect

    Yu, Yun-Wei; Cheng, Kwong-Sang; Shiu, Gary; Tye, Henry E-mail: hrspksc@hku.hk E-mail: iastye@ust.hk

    2014-11-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch.

  2. The Fourth BATSE Gamma-Ray Burst Catalog. Revised

    NASA Technical Reports Server (NTRS)

    Paciesas W. S.; Meegan, Charles A.; Pendleton, Geoffrey N.; Briggs, Michael S.; Kouveliotou, Chryssa; Koshut, Thomas M.; Lastrade, J. P.; McCollough, M. L.; Brainerd, Jerome J.; Hakkila, Jon; Henze, W.; Preece, Robert D

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1637 cosmic gamma-ray bursts between 1991 April 19 and 1996 August 29. These events constitute the Fourth BATSE burst catalog. The current version (4Br) has been revised from the version first circulated on CD-ROM in September 1997 (4B) to include improved locations for a subset of bursts that have been reprocessed using additional data. A significant difference from previous BATSE catalogs is the inclusion of bursts from periods when the trigger energy range differed from the nominal 50-300 keV. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance.

  3. The Fourth BATSE Gamma-Ray Burst Catalog. Revised

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Meegan, Charles A.; Pendleton, Geoffrey N.; Briggs, Michael S.; Kouveliotou, Chryssa; Koshut, Thomas M.; Lestrade, John Patrick; McCollough, Michael L.; Brainerd, Jerome J.; Hakkila, Jon

    1999-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1637 cosmic gamma-ray bursts between 1991 April 19 and 1996 August 29. These events constitute the Fourth BATSE burst catalog. The current version (4Br) has been revised from the version first circulated on CD-ROM in 1997 September (4B) to include improved locations for a subset of bursts that have been reprocessed using additional data. A significant difference from previous BATSE catalogs is the inclusion of bursts from periods when the trigger energy range differed from the nominal 50-300 keV. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance.

  4. An Integrated Universal Collapsar Gamma-ray Burst Model

    SciTech Connect

    Salmonson, J D

    2004-01-21

    Starting with two assumptions: (1) gamma-ray bursts originate from stellar death phenomena or so called ''collapsars'' and (2) that these bursts are quasi-universal, whereby the majority of the observed variation is due to our perspective of the jet, an integrated gamma-ray burst model is proposed. It is found that several of the key correlations in the data can be naturally explained with this simple picture and another possible correlation is predicted.

  5. Gamma ray bursts: Current status of observations and theory

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    1990-01-01

    Gamma-ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in the low-energy gamma-ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms were proposed.

  6. Gamma-Ray Burst Subclasses: Separating Instrumental Biases from Potential Source Populations

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon

    1999-01-01

    Instrumental effects mar gamma-ray burst observations. These effects can alter whether or not bursts trigger, as well as changing measured burst properties. The Burst And Transient Source Experiment (BATSE) on NASA's Compton Gamma-Ray Observatory (CGRO) has provided the largest database of gamma-ray bursts observed to date. It also provides an excellent laboratory for studying instrumental biases. We examine trigger biases and burst property biases as they pertain to previously identified gamma-ray burst classes. We also study some burst class properties in the new age of burst afterglow studies.

  7. Energy sources in gamma-ray burst models

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    The current status of energy sources in models of gamma-ray bursts is examined. Special emphasis is placed on the thermonuclear flash model which has been the most developed model to date. Although there is no generally accepted model, if the site for the gamma-ray burst is on a strongly magnetized neutron star, the thermonuclear model can qualitatively explain the energetics of some, but probably not all burst events. The critical issues that may differentiate between the possible sources of energy for gamma-ray bursts are listed and briefly discussed.

  8. CME-Associated Radio Bursts from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    Coronal mass ejections (CMEs) are closely associated with various types of radio bursts from the Sun. All radio bursts are due to nonthermal electrons, which are accelerated during the eruption of CMEs. Radio bursts at frequencies below about 15 MHz are of particular interest because they are associated with energetic CMEs that contribute to severe space weather. The low-frequency bursts need to be observed primarily from space because of the ionospheric cutoff. The main CME-related radio bursts are associated are: type III bursts due to accelerated electrons propagating along open magnetic field lines, type II bursts due to electrons accelerated in shocks, and type IV bursts due to electrons trapped in post-eruption arcades behind CMEs. This paper presents a summary of results obtained during solar cycle 23 primarily using the white-light coronagraphic observations from the Solar Heliospheric Observatory (SOHO) and the WAVES experiment on board Wind. Particular emphasis will be placed on what we can learn about particle acceleration in the coronal and interplanetary medium by analyzing the CMEs and the associated radio bursts.

  9. Local cortical dynamics of burst suppression in the anaesthetized brain.

    PubMed

    Lewis, Laura D; Ching, Shinung; Weiner, Veronica S; Peterfreund, Robert A; Eskandar, Emad N; Cash, Sydney S; Brown, Emery N; Purdon, Patrick L

    2013-09-01

    Burst suppression is an electroencephalogram pattern that consists of a quasi-periodic alternation between isoelectric 'suppressions' lasting seconds or minutes, and high-voltage 'bursts'. It is characteristic of a profoundly inactivated brain, occurring in conditions including hypothermia, deep general anaesthesia, infant encephalopathy and coma. It is also used in neurology as an electrophysiological endpoint in pharmacologically induced coma for brain protection after traumatic injury and during status epilepticus. Classically, burst suppression has been regarded as a 'global' state with synchronous activity throughout cortex. This assumption has influenced the clinical use of burst suppression as a way to broadly reduce neural activity. However, the extent of spatial homogeneity has not been fully explored due to the challenges in recording from multiple cortical sites simultaneously. The neurophysiological dynamics of large-scale cortical circuits during burst suppression are therefore not well understood. To address this question, we recorded intracranial electrocorticograms from patients who entered burst suppression while receiving propofol general anaesthesia. The electrodes were broadly distributed across cortex, enabling us to examine both the dynamics of burst suppression within local cortical regions and larger-scale network interactions. We found that in contrast to previous characterizations, bursts could be substantially asynchronous across the cortex. Furthermore, the state of burst suppression itself could occur in a limited cortical region while other areas exhibited ongoing continuous activity. In addition, we found a complex temporal structure within bursts, which recapitulated the spectral dynamics of the state preceding burst suppression, and evolved throughout the course of a single burst. Our observations imply that local cortical dynamics are not homogeneous, even during significant brain inactivation. Instead, cortical and, implicitly

  10. A behavioral role for feature detection by sensory bursts.

    PubMed

    Marsat, Gary; Pollack, Gerald S

    2006-10-11

    Brief episodes of high-frequency firing of sensory neurons, or bursts, occur in many systems, including mammalian auditory and visual systems, and are believed to signal the occurrence of particularly important stimulus features, i.e., to function as feature detectors. However, the behavioral relevance of sensory bursts has not been established in any system. Here, we show that bursts in an identified auditory interneuron of crickets reliably signal salient stimulus features and reliably predict behavioral responses. Our results thus demonstrate the close link between sensory bursts and behavior.

  11. Comparison of Medium Frequency Burst Generation Theories

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J. W.; Weatherwax, A. T.; Yoon, P. H.

    2009-12-01

    Auroral Medium Frequency (MF) burst is a naturally occurring spontaneous impulsive radio emission observed at ground level between 800 and 4500 kHz. MF burst has been shown to be associated with auroral substorm onset, commonly observed coincidentally with auroral roar and hiss, with typical durations of a few minutes, amplitudes of ~10-14 V^2 /m^2 Hz, and measured to be left hand polarized. Despite several suggested theories, the exact generation mechanism for MF burst still remains a mystery. Recent experimental findings combined with a discussion of normal wave modes available in the auroral ionosphere allow us to constrain potential modes of generation. Normal modes available in the auroral ionosphere (Omega_ce = ~800-1600 kHz, omega_pe = ~100-6000 kHz between 100 and 1000 km altitude) include R-X, L-O, Z (L-X), Langmuir-upper hybrid, electron cyclotron, electron acoustic, and electron cyclotron sound. Each mode is considered in light of experimental evidence, including accessibility to the L-O mode for propagation to ground with left hand polarization, and requirements for excitation by an auroral electron beam (100-10s of keV). A linear mode conversion process is also preferred over non-linear due to their inefficiency. Specific scenarios include: mode conversion of Langmuir waves at a range of altitudes on either the top or bottom side F-region, short wavelength (thermal branch) Langmuir waves, electron acoustic waves, electron cyclotron sound waves, direct generation of the L mode, and refraction and conversion of Z / upper hybrid waves - similar to that of auroral roar.

  12. DECIMETRIC TYPE III BURSTS: GENERATION AND PROPAGATION

    SciTech Connect

    Li, B.; Cairns, Iver H.; Robinson, P. A.; Yan, Y. H.

    2011-09-01

    Simulations are presented for decimetric type III radio bursts at 2f{sub p} , where f{sub p} is the local electron plasma frequency. The simulations show that 2f{sub p} radiation can be observed at Earth in two scenarios for the radiation's generation and propagation. In Scenario A, radiation is produced and propagates in warm plasmas in the lower corona that are caused by previous magnetic reconnection outflows and/or chromospheric evaporation. In Scenario B radiation is generated in normal plasmas, then due to its natural directivity pattern and refraction, radiation partly propagates into nearby regions, which are hot because of previous reconnection/evaporation. The profiles of plasma density n{sub e} (r) and electron temperature T{sub e} (r) in the lower corona (r - R{sub sun} {approx}< 100 Mm) are found to be crucial to whether radiation can be produced and escape at observable levels against the effects of free-free absorption, where r is the heliocentric distance. Significantly, the observed wide ranges of radiation properties (e.g., drift rates) require n{sub e} (r) with a large range of scale heights h{sub s} , consistent nonetheless for Scenario B with short observed EUV loops. This is relevant to problems with large h{sub s} inferred from tall EUV loops. The simulations suggest: (1) n{sub e} (r) with small h{sub s} , such as n{sub e} (r){proportional_to}(r - R{sub sun}){sup -2.38} for flaring regions, are unexpectedly common deep in the corona. This result is consistent with recent work on n{sub e} (r) for r {approx} (1.05-2)R{sub sun} extracted from observed metric type IIIs. (2) The dominance of reverse-slope bursts over normal bursts sometimes observed may originate from asymmetric reconnection/acceleration, which favors downgoing beams.

  13. Electronic implementation of optical burst switching techniques

    NASA Astrophysics Data System (ADS)

    Albanese, Ilijc; Darcie, Thomas E.; Ganti, Sudhakar

    2013-10-01

    Extensive research effort is ongoing in energy-efficient Internet-based communications. Optical Flow Switching (OFS) and Optical Burst Switching (OBS) offer potentially efficient alternatives to IP-router-based networks for large data transactions, but significant challenges remain. OFS requires each user to install expensive core network technology, limiting application to highly specialized nodes. OBS can achieve higher scalability but burst assembly/disassembly procedures reduce power efficiency. Finally both OFS and OBS use all-optical switching technologies for which energy efficiency and flexibility remain subject to debate. Our study aims at combining the advantages of both OBS and OFS while avoiding their shortcomings. We consider using a two-way resource reservation protocol for periodic concatenations of large (e.g. 1 Mb) packets or Media Frames (MFs). These chains of MFs (MFCs) are semi-transparent with a periodicity referred to as the "transparency degree". Each MFC is assembled and stored at an end-user machine during the resource reservation procedure and is then switched and buffered electronically along its path. The periodic configuration of each MFC enables interleaving of several chains using buffering only to align the MFs in each MFC in time, largely reducing the buffer requirements with respect to OBS. This periodicity also enables a simple scheduling algorithm to schedule large transactions with minimal control plane processing, achieving link utilization approaching 99.9%. In summary, results indicate that implementing optical burst switching techniques in the electronic domain is a compelling path forward to high-throughput power-efficient networking.

  14. Gamma ray burst outflows and afterglows

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.

    2008-08-01

    We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing prompt and afterglow emission. We study the long-term evolution of relativistic jets in collapsars and examine the effects of viewing angle on the subsequent gamma ray bursts. Our simulations allow us to single out three phases in the jet evolution: a precursor phase in which relativistic material turbulently shed from the head of the jet first emerges from the star; a shocked jet phase where a fully shocked jet of material is emerging; and an unshocked jet phase where the jet consists of a free-streaming, unshocked core surrounded by a thin boundary layer of shocked jet material. We also carry out a series of simulations with central engines that vary on long time periods comparable to the breakout time of the jet, on short time periods (0.1s) much less than the breakout time, and finally that decay as a power law at late times. We conclude that rapid variability seen in prompt GRB emission, as well as shallow decays and flares seen in the X-ray afterglow, can be caused by central engine variability. Finally, we present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock- generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behavior of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behavior.

  15. Consequences of Predicted or Actual Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  16. Thermomechanical analysis of fast-burst reactors

    SciTech Connect

    Miller, J.D.

    1994-08-01

    Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor.

  17. Prompt Emission Observations of Swift BAT Bursts

    NASA Technical Reports Server (NTRS)

    Barthelmy, Scott

    2009-01-01

    We review the prompt emission properties of Swift BAT gamma-ray bursts (GRBs). We present the global properties of BAT GRBs based on their spectral and temporal characteristics. The BAT T90 and T50 durations peak at 80 and 20 s, respectively. The peak energy (Epeak) of about 60% of BAT GRBs is very likely to be less than 1.00 keV. We also present the BAT characteristics of GRBs with soft spectra, so called Xray flashes (XRFs). We will compare the BAT GRBs and XRFs parameter distribution to the other missions.

  18. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  19. Precursors of Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Troja, E.; Rosswog, S.; Gehrels, N.

    2010-01-01

    We carried out a systematic search of precursors on the sample of short GRBs observed by Swift. We found that approx. 8-10% of short GRBs display such early episode of emission. One burst (GRB 090510) shows two precursor events, the former approx.13 s and the latter approx. 0.5 s before the GRB. We did not find any substantial difference between the precursor and the main GRB emission, and between short GRBs with and without precursors. We discuss possible mechanisms to reproduce the observed precursor emission within the scenario of compact object mergers. The implications of our results on quantum gravity constraints are also discussed.

  20. Bursting frequency prediction in turbulent boundary layers

    SciTech Connect

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  1. THE ORTHOGONAL GAMMA-RAY BURST MODEL

    SciTech Connect

    Contopoulos, Ioannis; Pugliese, Daniela; Nathanail, Antonios

    2014-01-01

    We explore the analogy between a rotating magnetized black hole and an axisymmetric pulsar and derive the black hole's electromagnetic spindown after its formation in the core collapse of a supermassive star. The spindown shows two characteristic phases: an early Blandford-Znajek phase that lasts a few hundred seconds and a late pulsar-like afterglow phase that lasts much longer. During the first phase, the spindown luminosity decreases almost exponentially, whereas during the afterglow phase it decreases as t {sup –a} with 1 ≲ a ≲ 1.5. We associate our findings with long duration gamma-ray bursts and compare them with observations.

  2. Ocean Mixing due to MJO wind bursts

    NASA Astrophysics Data System (ADS)

    Pujiana, K.

    2015-12-01

    Measurements in the equatorial Indian Ocean, including 2 months from ship at 0, 80E and a year from moorings at 0,80E and 0,90E with chipods to measure mixing, documented the oceanic responses to several MJO events during fall 2011-spring 2012. The MJO attributed westerly wind bursts generated the Yoshida-Wyrtki Jet and intense surface-forced mixing. The jet persisted long after the MJO passage and enhanced subsurface mixing at the Jet's base. The impact of MJO-initialized mixing on continued sea surface temperature modification is discussed.

  3. Dispersive Pc1 bursts observed by Freja

    SciTech Connect

    Mursula, K.; Braeysy, T.; Rasinkangas, R.; Tanskanen, P.; Blomberg, L.G.; Lindqvist, P.A.; Marklund, G.T.

    1994-08-15

    The authors report on observation of electromagnetic ion cyclotron waves (Pc1 pulsations) by the Freja satellite on November 18, 1992. These observations are coincident with ground based observation of such pearl like Pc1 pulsations extending over a 12 hour period. This is the first observation by a satellite above the ionosphere of such phenomena. The wave pulsations were observed to come in 10 to 25 second pulses, and to be clearly dispersive in nature. Two spectral bands were observed in all Pc1 pearls. In the longer bursts, the authors observed time differences between the two distinct spectral bands.

  4. Neutron star binaries, pulsars and burst sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1981-01-01

    Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.

  5. Decay time of type 3 solar bursts

    NASA Technical Reports Server (NTRS)

    Alvarez, H.; Haddock, F. T.

    1973-01-01

    Type 3 solar bursts observed by OGO-5, below 600 kHz, were analyzed. Decay times were measured, and collisional decay times were computed for distances out to 1 AU. By fitting power functions to the computed and observed decay times, and using local plasma hypothesis, it was found that the ratio rho of computed observed values varies with heliocentric radial distance according to a power function rho = 3r to the 0.7th power, assuming fundamental emission, and rho = 2r to the 0.7th power, assuming second harmonic emission.

  6. Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Bessey, R. L.; Westine, P. S.; Parr, V. B.; Oldham, G. A.

    1975-01-01

    Technology needed to predict damage and hazards from explosions of propellant tanks and bursts of pressure vessels, both near and far from these explosions is introduced. Data are summarized in graphs, tables, and nomographs.

  7. The Second SWIFT Burst Alert Telescope (BAT) Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; Stamatikos, M.; Tueller, J.; Ukwatta, T. N.; Zhang, B.

    2012-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts. (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples.. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T(sub 90) and T(sub 50) durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs.

  8. [The information of the schizophrenic patient: actuality].

    PubMed

    Palazzolo, J; Brousse, G; Favre, P; Llorca, P-M

    2005-01-01

    Social isolation has got to be one of the greatest losses in schizophrenia. For many authors, people with schizophrenia can have no friends, no spouse, and sometimes no family. Two thirds of patients with schizophrenia return to their parents' house after discharge from a hospital for the first psychosi episode. Family members generally receive very little education as to what they can expect. They may not know the importance of medication compliance. Family members are the primary victims of violence from psychotic individuals, usually their own son or daughter, and most families cannot believe their own son or daughter would be capable of such a thing. Although families are usually the main care givers at the beginning of schizophrenia they often find their experience very frustrating for a number of reasons, and relationships suffer. Family education and support have been shown to improve outcomes considerably and family education is the second strongest factor in relapse prevention. Without education and good relapse prevention families often burst out. Most of the homeless mentally ill in downtown city cores have lost their family relationships. It is not a reflection on their families so much as the lack of adequate treatment and support. The families tried and tried and lost their ill relative. A patient writes: "My father lives just outside of Monaco. My mother developed Alzheimer's a couple of years ago or so and with a series of mild strokes died recently. I haven't seen either of them very much in the last fifteen years. I have a sister, Nicole, who also lives in Paris. I lost those relationships to some degree over the years. I am rebuilding them now. Enter the professional friend, the case manager, usually in cases where the individual is quite disabled by schizophrenia and/or at considerable risk of relapse, and usually when the individual has lost their family relationships to some degree. I had a case manager for several years and always looked

  9. Carbon fiber internal pressure vessels

    NASA Technical Reports Server (NTRS)

    Simon, R. A.

    1973-01-01

    Internal pressure vessels were designed; the filament was wound of carbon fibers and epoxy resin and tested to burst. The fibers used were Thornel 400, Thornel 75, and Hercules HTS. Additional vessels with type A fiber were made. Polymeric linears were used, and all burst testing was done at room temperature. The objective was to produce vessels with the highest attainable PbV/W efficiencies. The type A vessels showed the highest average efficiency: 2.56 x 10 to the 6th power cm. Next highest efficiency was with Thornel 400 vessels: 2.21 x 10 to the 6th power cm. These values compare favorably with efficiency values from good quality S-glass vessels, but strains averaged 0.97% or less, which is less than 1/3 the strain of S-glass vessels.

  10. Simultaneous suppression of tone burst-evoked otoacoustic emissions: Two and three-tone burst combinations.

    PubMed

    Killan, Edward C; Lutman, Mark E; Thyer, Nicholas J

    2015-09-01

    Previous investigations have shown that components of a tone burst-evoked otoacoustic emission (TBOAE) evoked by a 1 kHz tone burst (TB1) can be suppressed by the simultaneous presence of a 2 kHz tone burst (TB2) or a pair of tone bursts at 2 and 3 kHz (TB2 and TB3 respectively). No previous study has measured this "simultaneous suppression of TBOAEs" for both TB2 alone and TB2 and TB3 from the same ears, so that the effect of the additional presence of TB3 on suppression caused by TB2 is not known. In simple terms, three outcomes are possible; suppression increases, suppression is reduced or suppression is not affected. Comparison of previously reported simultaneous suppression data suggests TB3 causes a reduction in suppression, though it is not clear if this is a genuine effect or simply reflects methodological and ear differences between studies. This issue has implications for previously proposed mechanisms of simultaneous suppression of TBOAEs and the interpretation of clinical data, and is clarified by the present study. Simultaneous suppression of TBOAEs was measured for TB1 and TB2 as well as TB1, TB2 and TB3 at 50, 60 and 70 dB p.e. SPL from nine normal human ears. Results showed no significant difference between mean suppression obtained for the two and three-tone burst combinations, indicating the reduction of suppression inferred from comparison of previous data is likely a result of methodological and ear differences rather than a genuine effect.

  11. Blood pressure

    MedlinePlus Videos and Cool Tools

    ... called diastole. Normal blood pressure is considered to be a systolic blood pressure of 115 millimeters of ... pressure reading of 140 over 90, he would be evaluated for having high blood pressure. If left ...

  12. ECN Pressure Test

    SciTech Connect

    Dixon, K.; /Fermilab

    1991-07-18

    This note describes: the rationale for the test pressure of the inner ECN cryostat vessel, the equipment to be used in this test, the test procedure, the status of the vessel prior to the test, the actual test results, and a schematic diagram of the testing set up and the pressure testing permit. The test, performed in the evening of July 17, 1991, was a major success. Based on a neglible pressure drop indicated on the pressure gages (1/4 psi), the vessel appeared to be structurally sound throughout the duration of the test (approx. 1.5 hrs.). No pressure increases were observed on the indicators looking at the beam tube bellows volumes. There was no indication of bubbles form the soap test on the welds and most of the fittings that were checked. There were some slight deviations in the actual procedure used. The UO filter was removed after the vessel had bled down to about 18 psig in order to speed up that aspect of the test. The rationale was that the higher velocity gas had already passed through at the higher pressures and there was no visible traces of the black uo particles. The rate of 4 psi/10 minutes seemed incredibly slow and often that time was reduced to just over half that rate. The testing personnel was allowed to stay in the pit throughout the duration of the test; this was a slight relaxation of the rules.

  13. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargle, . D.; Hakkila, J.; Giblin, T. W.

    2004-01-01

    Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.

  14. 40 CFR 74.22 - Actual SO2 emissions rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Actual SO2 emissions rate. 74.22... (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.22 Actual SO2 emissions... actual SO2 emissions rate shall be 1985. (2) For combustion sources that commenced operation...

  15. Actualization and the Fear of Death: Retesting an Existential Hypothesis.

    ERIC Educational Resources Information Center

    Wood, Keith; Robinson, Paul J.

    1982-01-01

    Demonstrates that within a group of highly actualized individuals, the degree to which "own death" is integrated into constructs of self is a far more powerful predictor of fear of death than actualization. Findings suggest that actualization and integration are independent in their overall effect on fear of death. (Author)

  16. Respiratory Burst Process in Diabetic Children

    PubMed Central

    Sanaei Dashti, Anahita; Taheri, Soodabeh; Jouybar, Reza; Hashemnia, Mohammadreza; Karimi, Abdollah; Shoja, Seyed Abdolmajid

    2016-01-01

    Background Increased rate of infections in diabetes mellitus (DM) is an accepted fact. Pathophysiologically, several tasks of the immune system could be involved including polymorphonuclear (PMN) functions. Objectives The aim of this research was to evaluate the respiratory burst process of PMNs that is an essential part of phagocytosis, in children with DM. Patients and Methods Fifty two children with insulin dependent diabetes and 29 non-diabetic children were enrolled in this cross sectional study from 2010 to 2011. Nitroblue tetrazolium (NBT) test was done on PMNs taken from their heparinized blood. The resultant data was analyzed by SPSS version 16. P values were considered significant when it was under 0.05. Results Mean NBTs were 72.1 ± 15.84 and 94.68 ± 5.31 in diabetics and non-diabetics, respectively (P < 0.001). Using Pearson correlation, there was no significant correlation between the NBT level and age, gender, duration of diabetes, daily insulin usage and blood HbA1C level. Conclusions Compared to non-diabetics, respiratory burst process of polymorphonuclears is obviously decreased in diabetic children. This can explain one of the mechanisms involved in the increased rate of infections in DM.

  17. The interplanetary gamma ray burst network

    NASA Astrophysics Data System (ADS)

    Cline, T.

    The Interplanetary Gamma-Ray Burst Network (IPN) is providing gamma-ray burst (GRB) alerts and localizations at the maximum rate anticipated before the launch of the Swift mission. The arc-minute source precision of the IPN is again permitting searches for GRB afterglows in the radio and optical regimes with delays of only hours up to 2 days. The successful addition of the Mars Odyssey mission has compensated for the loss of the asteroid mission NEAR, to reconstitute a fully long- baseline interplanetary network, with Ulysses at > 5 AU and Konus-Wind and HETE-2 near the Earth. In addition to making unassisted GRB localizations that enable a renewed supply of counterpart observations, the Mars/Ulysses/Wind IPN is confirming and reinforcing GRB source localizations with HETE-2. It has also confirmed and reinforced localizations with the BeppoSAX mission before the BeppoSAX termination in May and has detected and localized both SGRs and an unusual hard x-ray transient that is neither an SGR nor a GRB. This IPN is expected to operate until at least 2004.

  18. Theoretical Aspects of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Beloborodov, A. M.

    Cosmological GRBs are discussed with an emphasis on their plausible connection with black holes. GRBs can be triggered by collapse of stellar-mass objects that leads to formation of a black hole and a transient debris disk with a huge accretion rate. The disk is believed to produce a relativistic jet (``fireball'') that expands and emits to infinity the observed burst of gamma-rays. This accretion-jet picture is similar to quasars and X-ray binaries, however, there are important differences: the physical conditions and the cooling mechanism in the disk are very different. The observed radiation is emitted when the expanding fireball becomes transparent, at distances much larger than the Schwarzschild radius. The burst is then observed as a powerful relativistic explosion and the transient accretion disk in its center serves as a brief source of energy that drives the explosion. The explosion picture depends on the fireball nuclear composition which is shaped close to the black hole. A large amount of free neutrons survive till the emission phase and link the physics of the central engine to observed radiation.

  19. Distribution of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Diaz Rodriguez, Mariangelly; Smith, M.; Tešic, G.

    2014-01-01

    Gamma-Ray Bursts (GRBs) are known to be bright, irregular flashes of gamma rays that typically last just a few seconds, believed to be caused by stellar collapse or the merger of a pair of compact objects. Through previous work, it has been found that GRBs are distributed roughly uniformly over the entire sky, rather than being confined to the relatively narrow band of the Milky Way. Using the Python programming language, we generated a model of GRBs over cosmological distances, based on current empirical GRB distributions. The grbsim python module uses the acceptance-rejection Monte Carlo method to simulate the luminosity and redshift of a large population of GRBs, including cosmological effects such as dark energy and dark matter terms that modify the large-scale structure of space-time. The results of running grbsim are demonstrated to match the distribution of GRBs observed by the Burst Alert Telescope on NASA’s Swift satellite. The grbsim module will subsequently be used to simulate gamma ray and neutrino events for the Astrophysical Multimessenger Observatory Network.

  20. Measuring Cosmological Parameters with Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Amati, Lorenzo; Della Valle, Massimo

    2013-12-01

    In a few dozen seconds, gamma ray bursts (GRBs) emit up to 1054 erg in terms of an equivalent isotropically radiated energy Eiso, so they can be observed up to z 10. Thus, these phenomena appear to be very promising tools to describe the expansion rate history of the universe. Here, we review the use of the Ep,i-Eiso correlation of GRBs to measure the cosmological density parameter ΩM. We show that the present data set of GRBs, coupled with the assumption that we live in a flat universe, can provide independent evidence, from other probes, that ΩM 0.3. We show that current (e.g. Swift, Fermi/GBM, Konus-WIND) and forthcoming gamma ray burst (GRB) experiments (e.g. CALET/GBM, SVOM, Lomonosov/UFFO, LOFT/WFM) will allow us to constrain ΩM with an accuracy comparable to that currently exhibited by Type Ia supernovae (SNe-Ia) and to study the properties of dark energy and their evolution with time.

  1. Respiratory Burst Process in Diabetic Children

    PubMed Central

    Sanaei Dashti, Anahita; Taheri, Soodabeh; Jouybar, Reza; Hashemnia, Mohammadreza; Karimi, Abdollah; Shoja, Seyed Abdolmajid

    2016-01-01

    Background Increased rate of infections in diabetes mellitus (DM) is an accepted fact. Pathophysiologically, several tasks of the immune system could be involved including polymorphonuclear (PMN) functions. Objectives The aim of this research was to evaluate the respiratory burst process of PMNs that is an essential part of phagocytosis, in children with DM. Patients and Methods Fifty two children with insulin dependent diabetes and 29 non-diabetic children were enrolled in this cross sectional study from 2010 to 2011. Nitroblue tetrazolium (NBT) test was done on PMNs taken from their heparinized blood. The resultant data was analyzed by SPSS version 16. P values were considered significant when it was under 0.05. Results Mean NBTs were 72.1 ± 15.84 and 94.68 ± 5.31 in diabetics and non-diabetics, respectively (P < 0.001). Using Pearson correlation, there was no significant correlation between the NBT level and age, gender, duration of diabetes, daily insulin usage and blood HbA1C level. Conclusions Compared to non-diabetics, respiratory burst process of polymorphonuclears is obviously decreased in diabetic children. This can explain one of the mechanisms involved in the increased rate of infections in DM. PMID:27617067

  2. The GPS Burst Detector W-Sensor

    SciTech Connect

    McCrady, D.D.; Phipps, P.

    1994-08-01

    The NAVSTAR satellites have two missions: navigation and nuclear detonation detection. The main objective of this paper is to describe one of the key elements of the Nuclear Detonation Detection System (NDS), the Burst Detector W-Sensor (BDW) that was developed for the Air Force Space and Missle Systems Center, its mission on GPS Block IIR, and how it utilizes GPS timing signals to precisely locate nuclear detonations (NUDET). The paper will also cover the interface to the Burst Detector Processor (BDP) which links the BDW to the ground station where the BDW is controlled and where data from multiple satellites are processed to determine the location of the NUDET. The Block IIR BDW is the culmination of a development program that has produced a state-of-the-art, space qualified digital receiver/processor that dissipates only 30 Watts, weighs 57 pounds, and has a 12in. {times} l4.2in. {times} 7.16in. footprint. The paper will highlight several of the key multilayer printed circuit cards without which the required power, weight, size, and radiation requirements could not have been met. In addition, key functions of the system software will be covered. The paper will be concluded with a discussion of the high speed digital signal processing and algorithm used to determine the time-of-arrival (TOA) of the electromagnetic pulse (EMP) from the NUDET.

  3. Calibration of the GLAST Burst Monitor Detectors

    SciTech Connect

    von Kienlin, Andreas; Bissaldi, Elisabetta; Lichti, Giselher G.; Steinle, Helmut; Krumrey, Michael; Gerlach, Martin; Fishman, Gerald J.; Meegan, Charles; Bhat, Narayana; Briggs, Michael S.; Diehl, Roland; Connaughton, Valerie; Greiner, Jochen; Kippen, R.Marc; Kouveliotou, Chryssa; Paciesas, William; Preece, Robert; Wilson-Hodge, Colleen

    2011-11-29

    The GLAST Burst Monitor (GBM) will augment the capabilities of GLAST for the detection of cosmic gamma-ray bursts by extending the energy range (20 MeV to > 300 GeV) of the Large Area Telescope (LAT) towards lower energies by 2 BGO-detectors (150 keV to 30 MeV) and 12 NaI(Tl) detectors (10 keV to 1 MeV). The physical detector response of the GBM instrument for GRBs is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground calibration measurements, performed extensively with the individual detectors at the MPE in 2005. All flight and spare detectors were irradiated with calibrated radioactive sources in the laboratory (from 14 keV to 4.43 MeV). The energy/channel-relations, the dependences of energy resolution and effective areas on the energy and the angular responses were measured. Due to the low number of emission lines of radioactive sources below 100 keV, calibration measurements in the energy range from 10 keV to 60 keV were performed with the X-ray radiometry working group of the Physikalisch-Technische Bundesanstalt (PTB) at the BESSY synchrotron radiation facility, Berlin.

  4. The BATSE Gamma-Ray Burst Spectral Catalog. 1; High Time Resolution Spectroscopy of Bright Bursts Using High Energy Resolution Data

    NASA Technical Reports Server (NTRS)

    Preece, Robert D.; Briggs, Michael S.; Mallozzi, Robert S.; Pendleton, Geoffrey N.; Paciesas, W. S.; Band, David L.

    1999-01-01

    This is the first in a series of gamma-ray burst spectroscopy catalogs from the Burst And Transient Source Experiment (BATSE) on the Compton Gamma Ray Abstract: Observatory, each covering a different aspect of burst phenomenology. In this paper, we present time-sequences of spectral fit parameters for 156 bursts selected either for their high peak flux or fluence.

  5. The Swift Gamma Ray Burst Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelmy, S. D.; Burrows, D. N.; Cominsky, L. R.

    2004-01-01

    The Swift mission: scheduled for launch in early 2004: is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to: 1) determine the origin of GFU3s; 2) classify GRBs and search for new types; 3) study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and 4) use GRBs to study the early universe out to z greater than 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1-4 arcmin positions: and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 arcsec positions and perform spectroscopy in the 0.2 to 10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0.3 arcsec positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of approx. 1 mCrab (approx. 2 x l0(exp -11) erg/sq cm s in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients. with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program

  6. Failure Analysis of T-38 Aircraft Burst Hydraulic Aileron Return Line

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Figert, J. D.; Paton, R. M.; Nguyen, S. D.; Flint, A.

    2012-01-01

    During maintenance troubleshooting for fluctuating hydraulic pressures, a technician found that a right hand aileron return line, on the flight hydraulic side, was ruptured (Fig. 1, 2). This tubing is part of the Hydraulic Flight Control Aileron Return Reducer to Aileron Manifold and is suspected to be original to the T-38 Talon trainer aircraft. Ailerons are small hinged sections on the outboard portion of a wing used to generate rolling motion thereby banking the aircraft. The ailerons work by changing the effective shape of the airfoil of the outer portion of the wing [1]. The drawing, Northrop P/N 3-43033-55 (6/1960), specifies that the line is made from 0.375 inch OD, aluminum 5052-0 tubing with a 0.049 inch wall thickness. WW-T-787 requires the tube shall be seamless and uniform in quality and temper [2]. The test pressure for this line is 3000 psi, and the operational pressure for this line is estimated to be between 45 psi and 1500 psi based on dynamic loading during flight. Examination of the fracture surface found evidence of arrest bands originating on the inner diameter (Fig 3). Ductile dimples are observed on the tube fractures (Fig. 4). The etched cross-section revealed thinning and work-hardening in the burst region (Fig. 5). The wall thickness just outside the work-hardened fracture region measured 0.035". Barlow's Formula: P = 2St/D, where P is burst pressure, S is allowable stress, t is wall thickness and D is the outer diameter of tube. Using the ultimate tensile strength of 28 ksi and a measured wall thickness of 0.035 inches at burst, P = 5.2 ksi (burst pressure). Using the yield of 13 ksi (YS) for aluminum 5052-0, plastic deformation will happen at P = 2.4 ksi suggesting plastic deformation occurred at a proof pressure of 3.0 ksi. Conclusion: The burst resulted from high stress, low-cycle fatigue. Evidence of arrest bands originating on the inner diameter. Fracture is predominately shear dimples, characteristic of high load ductile fractures

  7. Unusual Type III Bursts at the Decametre Wavelengths

    NASA Astrophysics Data System (ADS)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Rucker, H. O.; Abranin, E. P.; Lecacheux, A.

    It is currently accepted that the dependences of frequency drift rate and instant duration of type III bursts on frequency follow a monotonic function. The observations carried out during summer months of 2002-2006 by the world largest decameter wavelength radio telescope UTR-2 in frequency band 10-30 MHz show that sometimes these dependences may have a jump at some frequency, when the steepness of the dependence changes step-wise. In this paper the results of observations of such unusual type III bursts are given. Since the dynamic spectrum of such bursts resembles a dog's leg we call them "dog-leg" type III bursts. More than a hundred of these "dog-leg" bursts were observed during 5 years. The parameters of the 41 bursts observed in 2002 were defined and statistically analyzed. The fact that "dog-leg" type III bursts are observed on the background of standard type III bursts allows to exclude any instrumental component of the observed phenomena.

  8. On the nature of gamma-ray burst time dilations

    NASA Technical Reports Server (NTRS)

    Wijers, Ralph A. M. J.; Paczynski, Bohdan

    1994-01-01

    The recent discovery that faint gamma-ray bursts are stretched in time relative to bright ones has been interpreted as support for cosmological distances: faint bursts have their durations redshifted relative to bright ones. It was pointed out, however, that the relative time stretching can also be produced by an intrinsic correlation bewteen duration and luminosity of gamma-ray bursts in a nearby, bounded distribution. While both models can explain the average amount of time stretching, we find a difference between them in the way the duration distribution of faint bursts deviates from that of bright ones, assuming the luminosity function of gamma-ray bursts is independent of distance. This allows us to distinguish between these two broad classes of model on the basis of the duration distributions of gamma-ray bursts, leading perhaps to an unambiguous determination of the distance scale of gamma-ray bursts. We apply our proposed test to the second Burst and Transient Source Experiment (BATSE) catalog and conclude, with some caution, that the data favor a cosmological interpretation of the time dilation.

  9. Monolithic fuel cell based power source for burst power generation

    SciTech Connect

    Fee, D.C.; Blackburn, P.E.; Busch, D.E.; Dees, D.W.; Dusek, J.; Easler, T.E.; Ellingson, W.A.; Flandermeyer, B.K.; Fousek, R.J.; Heiberger, J.J.; Majumdar, S.; McPheeters, C.C.; Mrazek, F.C.; Picciolo, J.J.; Singh, J.P.; Poeppel, R.B.

    1988-01-01

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The requisite high power, long-duration bursts appear achievable with appropriate development of the concept. A monolithic fuel cell/nuclear reactor system clearly possesses several advantages. Fabrication methods, performance advantages, and applications are discussed in this report.

  10. The Locations of Gamma-Ray Bursts Measured by Comptel

    NASA Technical Reports Server (NTRS)

    Kippen, R. Marc; Ryan, James M.; Connors, Alanna; Hartmann, Dieter H.; Winkler, Christoph; Kuiper, Lucien; Varendorff, Martin; McConnell, Mark L.; Hurley, Kevin; Hermsen, Wim; Schoenfelder, Volker

    1998-01-01

    The COMPTEL instrument on the Compton Gamma Ray Observatory is used to measure the locations of gamma-ray bursts through direct imaging of MeV photons. In a comprehensive search, we have detected and localized 29 bursts observed between 1991 April 19 and 1995 May 31. The average location accuracy of these events is 1.25 deg (1 sigma), including a systematic error of approx. 0.5 deg, which is verified through comparison with Interplanetary Network (IPN) timing annuli. The combination of COMPTEL and IPN measurements results in locations for 26 of the bursts with an average "error box" area of only approx. 0.3 deg (1 sigma). We find that the angular distribution of COMPTEL burst locations is consistent with large-scale isotropy and that there is no statistically significant evidence of small-angle autocorrelations. We conclude that there is no compelling evidence for burst repetition since no more than two of the events (or approx. 7% of the 29 bursts) could possibly have come from the same source. We also find that there is no significant correlation between the burst locations and either Abell clusters of galaxies or radio-quiet quasars. Agreement between individual COMPTEL locations and IPN annuli places a lower limit of approx. 100 AU (95% confidence) on the distance to the stronger bursts.

  11. 34 First Callisto solar burst spectrometer station in Greenland

    NASA Astrophysics Data System (ADS)

    Monstein, Christian

    2016-04-01

    In mid of March 2016 a new long wavelength station in Greenland was set into operation. It is a dual circular polarization, frequency agile solar radio burst spectrometer based on two Callisto spectrometers and the Long Wavelength Array antenna. During the commissioning phase several nice radio burst observations proved that the system works as expected.

  12. EGRET observations of bursts at MeV energies

    SciTech Connect

    Catelli, J. R.; Schneid, E. J.

    1998-05-16

    We present preliminary results from the analysis of 16 bright bursts that have been observed by the EGRET NaI calorimeter, or TASC. Seven bursts have been imaged in the EGRET spark chamber above 30 MeV, but in most cases the TASC data gives the highest energy spectra available for these bursts. The TASC can obtain spectral and rate information for bursts well outside the field of view of the EGRET spark chambers, and is sensitive in the energy range from 1 to 200 MeV. The spectra for these bursts are mostly consistent with a simple power law with spectral index in the range from 1.7 to 3.7, with several of the brighter bursts showing emission past 100 MeV. No high energy cutoff has been observed. These high energy photons offer important clues to the physical processes involved at the origin of burst emission. For bursts at cosmological distances extremely high bulk Lorentz factors are implied by the presence of MeV and GeV photons which have not been attenuated by pair production with the lower energy photons from the source.

  13. Gamma Ray Burst Follow-Ups with Bootes-4

    NASA Astrophysics Data System (ADS)

    Guziy, Sergey; Castro-Tirado, Guziy, Alberto J.; Jelinek, Martin; Gorosabel, Javier; Kubanek, Petr; Cunniffe, Ronan; Lara-Gil, Oscar; Tello, Juan C.; Jeong, Soomin; Oates, Samantha R.; Xu, Youdong; Perez-Ramirez, Dolores; Cui, Chenzou; Fan, Yufeng; Wan, Chuanjun; Bai, Jinming; Kheyfets, I.

    The Burst Observer and Optical Transient Exploring System (BOOTES), is a global robotic observatory network, which started in 1998 with Spanish leadership devoted to study optical emissions from gamma ray bursts (GRBs) that occur in the Universe. We present shot history and current status of BOOTES-4 telescope. Some details of 38 GRBs followed-up with BOOTES-4 are discussed.

  14. Gamma-Ray Bursts Analyses with Photographic Plates

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Krizek, M.

    2006-04-01

    The Optical Monitors, despite of lower detection limits, are still valuable for detection of prompt real-time and (hypothetical) pre-burst optical emission of Gamma-Ray Bursts. We refer on the ongoing project at the Astronomical Institute in Ondrejov based on digitized data from the photographic EN network.

  15. Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2015-04-01

    We are interested in noise-induced firings of subthreshold neurons which may be used for encoding environmental stimuli. Noise-induced population synchronization was previously studied only for the case of global coupling, unlike the case of subthreshold spiking neurons. Hence, we investigate the effect of complex network architecture on noise-induced synchronization in an inhibitory population of subthreshold bursting Hindmarsh-Rose neurons. For modeling complex synaptic connectivity, we consider the Watts-Strogatz small-world network which interpolates between regular lattice and random network via rewiring, and investigate the effect of small-world connectivity on emergence of noise-induced population synchronization. Thus, noise-induced burst synchronization (synchrony on the slow bursting time scale) and spike synchronization (synchrony on the fast spike time scale) are found to appear in a synchronized region of the [Formula: see text]-[Formula: see text] plane ([Formula: see text]: synaptic inhibition strength and [Formula: see text]: noise intensity). As the rewiring probability [Formula: see text] is decreased from 1 (random network) to 0 (regular lattice), the region of spike synchronization shrinks rapidly in the [Formula: see text]-[Formula: see text] plane, while the region of the burst synchronization decreases slowly. We separate the slow bursting and the fast spiking time scales via frequency filtering, and characterize the noise-induced burst and spike synchronizations by employing realistic order parameters and statistical-mechanical measures introduced in our recent work. Thus, the bursting and spiking thresholds for the burst and spike synchronization transitions are determined in terms of the bursting and spiking order parameters, respectively. Furthermore, we also measure the degrees of burst and spike synchronizations in terms of the statistical-mechanical bursting and spiking measures, respectively.

  16. 'Burst-Like' Slow Slip Propagation on Frictional Faults in the Laboratory

    NASA Astrophysics Data System (ADS)

    Parker, J.; Selvadurai, P. A.; Glaser, S. D.

    2015-12-01

    We present laboratory findings on burst-like premonitory slip propagation that leads to fault rupture. The experiments take place on a PMMA-PMMA interface in a direct shear configuration, where the effective strength heterogeneity is controlled by the non-uniform distribution of asperities throughout the fault. A pressure sensitive film was used to locate, size and measure normal stress on individual asperities. Prior to rapid sliding, we observed slow premonitory slip which accumulated non-uniformly along the fault. Slow displacement was measured using slip sensors placed at seven locations along the fault strike and showed intermittent, 'burst-like' increases in spectral power between the frequencies of 60 to 150 Hz. Each burst event lasted between 5 to 12 seconds, and a local increase in the extended fault slip rate was observed after its cessation. The 'burst-like' features migrated along the fault at speeds between Vprop ~ 1.3 mm/s to 9.3 mm/s. Propagation speed of the 'burst-like' front Vprop was dependent on the normal stress confining the fault σn- increased normal stress caused the rupture to move slower by increasing 'effective fault strength'. Finally, foreshocks were recorded using absolutely calibrated acoustic emission sensors and occurred at the later stages of the slow slip phase. The source radii of the foreshocks [Brune, 1970] ranged from 0.21 to 1.09 mm and their ruptures occurred over timescales ~5-7 orders of magnitude faster than the 'burst-like' slow slip signals. Observations of similar variations in time scales have been made between regular earthquakes and aseismic transients in the field [Ide, 2007]. These results will help develop a mechanistic understanding of the effective fault strength heterogeneity necessary for the development of slow earthquakes and tremor-like shaking. References: Ide, S., D. R. Beroza, G. C. Shelly & T. Uchide (2007), 'A scaling law for slow earthquakes', Nature 447, 76-79. Brune, J. N. (1970), 'Tectonic stress

  17. Type IIIb bursts and their fine structure in frequency band 18-30 MHz

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Rucker, H. O.; Konovalenko, A. A.; Shevchuk, N. V.; Abranin, E. P.; Dorovskyy, V. V.; Lecacheux, A.

    2010-01-01

    This paper deals with Type IIIb bursts, which were observed in the frequency band from 18 to 30 MHz. These bursts have fine frequency structures contrary to usual Type III bursts. The main properties of Type IIIb bursts such as number of striae in a burst, their frequency drift rates, durations, frequency widths of stria, emission fluxes are presented. It is also shown that parameters of stria bursts depend on the position of active areas on the solar disk.

  18. Post-Launch Analysis of Swift's Gamma-Ray Burst Detection Sensitivity

    NASA Technical Reports Server (NTRS)

    Band, David L.

    2005-01-01

    The dependence of Swift#s detection sensitivity on a burst#s temporal and spectral properties shapes the detected burst population. Using s implified models of the detector hardware and the burst trigger syste m I find that Swift is more sensitive to long, soft bursts than CGRO# s BATSE, a reference mission because of its large burst database. Thu s Swift has increased sensitivity in the parameter space region into which time dilation and spectral redshifting shift high redshift burs ts.

  19. Burst behavior at a capillary tip: Effect of low and high surface tension.

    PubMed

    Agonafer, Damena D; Lopez, Ken; Palko, James W; Won, Yoonjin; Santiago, Juan G; Goodson, Kenneth E

    2015-10-01

    Liquid retention in micron and millimeter scale devices is important for maintaining stable interfaces in various processes including bimolecular separation, phase change heat transfer, and water desalination. There have been several studies of re-entrant geometries, and very few studies on retaining low surface tension liquids such as fluorocarbon-based dielectric liquids. Here, we study retention of a liquid with very low contact angles using borosilicate glass capillary tips. We analyzed capillary tips with outer diameters ranging from 250 to 840 μm and measured Laplace pressures up to 2.9 kPa. Experimental results agree well with a numerical model that predicts burst pressure (the maximum Laplace pressure for liquid retention), which is a function of the outer diameter (D) and capillary exit edge radius of curvature (r).

  20. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  1. Statistical Properties of SGR J1550-5418 Bursts

    NASA Technical Reports Server (NTRS)

    Gorgone, Nicholas M.

    2010-01-01

    Magnetars are slowly rotating neutron stars with extreme magnetic fields, over 10(exp 15) Gauss. Only few have been discovered in the last 30 years. These sources are dormant most of their lifetimes and become randomly active emitting multiple soft gamma-ray bursts. We present here our results on the temporal analysis of 300 bursts from Soft Gamma Repeater SGR J1550-5418 recorded with the Gamma-ray Burst Monitor (GBM) onboard the Fermi Observatory during its activation on January 22-29, 2009. We employed an un-triggered burst search in the energy range 8-100keV to collect all events from the source, besides the ones that triggered GBM. For the entire sample of bursts we determined their durations, rise and decay times. We study here the statistical properties of these characteristics and discuss how these may help us better understand the physical characteristics of the magnetar model.

  2. Amplitude sorting of oscillatory burst signals by sampling

    DOEpatents

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  3. Taming desynchronized bursting with delays in the Macaque cortical network

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Yun; Murks, Aleksandra; Perc, Matjaž; Lu, Qi-Shao

    2011-04-01

    Inhibitory coupled bursting Hindmarsh—Rose neurons are considered as constitutive units of the Macaque cortical network. In the absence of information transmission delay the bursting activity is desynchronized, giving rise to spatiotemporally disordered dynamics. This paper shows that the introduction of finite delays can lead to the synchronization of bursting and thus to the emergence of coherent propagating fronts of excitation in the space-time domain. Moreover, it shows that the type of synchronous bursting is uniquely determined by the delay length, with the transitions from one type to the other occurring in a step-like manner depending on the delay. Interestingly, as the delay is tuned close to the transition points, the synchronization deteriorates, which implies the coexistence of different bursting attractors. These phenomena can be observed by different but fixed coupling strengths, thus indicating a new role for information transmission delays in realistic neuronal networks.

  4. Measuring Neutron-Star Spins via Burst Oscillations (core Program)

    NASA Astrophysics Data System (ADS)

    Measuring the spin of neutron stars in low-mass X-ray binaries is one of the great strengths and highest priorities for RXTE. We propose targeted observations of known thermonuclear burst sources which do not have confirmed burst oscillations, as well as previously unknown sources, in order to detect new examples of burst oscillations and thus add to the sample of neutron star spins. We will target sources in states of frequent, bright bursts by triggering on the detection of bursts by INTEGRAL and/or Swift. Detection of neutron stars spinning beyond the present maximum will allow us to significantly constrain the neutron-star equation of state, presently an area of major uncertainty.

  5. Observing gamma-ray bursts with the INTEGRAL spectrometer SPI

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Connell, P. H.; Naya, J. E.; Seifert, H.; Teegarden, B. J.

    1997-01-01

    The spectrometer for INTEGRAL (SPI) is a germanium spectrometer with a wide field of view and will provide the International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission with the opportunity of studying gamma ray bursts. Simulations carried out to assess the response of the instrument using data from real burst data as input are reported on. It is shown that, despite the angular resolution of 3 deg, it is possible to locate the direction of bursts with an accuracy of a few arcmin, while offering the high spectral resolution of the germanium detectors. It is remarked that the SPI field of view is similar to the size of the halo of bursts expected around M 31 on galactic models. The detectability of bursts with such a halo is discussed.

  6. Cosmology and the Subgroups of Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Mészáros, A.; Řípa, J.; Balázs, L. G.; Bagoly, Z.; Veres, P.; Horváth, I.

    Both short and intermediate gamma-ray bursts are distributed anisotropically in the sky (Mészáros, A. et al. ApJ, 539, 98 (2000), Vavrek, R. et al. MNRAS, 391, 1 741 (2008)). Hence, in the redshift range, where these bursts take place, the cosmological principle is in doubt. It has already been noted that short bursts should be mainly at redshifts smaller than one (Mészáros, A. et al. Gamma-ray burst: Sixth Huntsville Symp., AIP, Vol. 1 133, 483 (2009); Mészáros, A. et al. Baltic Astron., 18, 293 (2009)). Here we show that intermediate bursts should be at redshifts up to three.

  7. High-Frequency Cutoff in Type III Bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.; Koval, A. A.

    In this article we report about a group of solar bursts with high-frequency cutoff, observed on 19 August of 2012 near 8:23 UT, simultaneously by three different radio telescopes: the Ukrainian decameter radio telescope (8-33 MHz), the French Nancay Decametric Array (10-70 MHz) and the Italian San Vito Solar Observatory of RSTN (25-180 MHz). Morphologically the bursts are very similar to the type III bursts. The solar activity is connected with the emergency of a new group of solar spots on the far side of the Sun with respect to observers on Earth. The solar bursts accompany many moderate flares over eastern limb. The refraction of the behind-limb radio bursts towards the Earth is favorable, if CMEs generate low-density cavities in solar corona.

  8. Imprints of coronal temperature disturbances on type III bursts

    NASA Astrophysics Data System (ADS)

    Li, Bo; Robinson, Peter

    The electron temperature Te and ion temperature Ti in the corona vary with time and loca-tion, due to transient and persistent activity on the Sun. The effects of spatially localized disturbances in Te and Ti on coronal type III radio bursts are simulated. The disturbances are superimposed on monotonically varying temperature backgrounds and arise from spatially confined solar activity. Qualitatively and quantitatively different imprints are found on the curve of the maximum flux versus frequency of type III bursts, because of the disturbances in Te and Ti . The results indicate that nonthermal coronal type III bursts offer a new tool to probe and distinguish between spatially localized structures of Te and Ti along the paths of type III beams. Furthermore, localized temperature disturbances may be responsible for some fine structures in type III bursts, e.g., striae in type IIIb bursts in the presence of multiple, localized temperature disturbances.

  9. Ablation of silicon with bursts of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  10. Interplanetary Shocks Lacking Type 2 Radio Bursts

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Maekela, P.; Akiyama, S.; Yashiro, S.; Kaiser, M. L.; Howard, R. A.; Bougeret, J.-L.

    2010-01-01

    We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks (approximately 34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed approximately 535 km/s) and only approximately 40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km/s and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration approximately +6.8 m/s (exp 2)), while those associated with RL shocks were decelerating (average acceleration approximately 3.5 m/s (exp 2)). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is

  11. INTERPLANETARY SHOCKS LACKING TYPE II RADIO BURSTS

    SciTech Connect

    Gopalswamy, N.; Kaiser, M. L.; Xie, H.; Maekelae, P.; Akiyama, S.; Yashiro, S.; Howard, R. A.; Bougeret, J.-L.

    2010-02-20

    We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks ({approx}34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed {approx}535 km s{sup -1}) and only {approx}40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km s{sup -1} and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration {approx}+6.8 m s{sup -2}), while those associated with RL shocks were decelerating (average acceleration {approx}-3.5 m s{sup -2}). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is predominant

  12. Short Gamma-Ray Bursts with Extended Emission

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.

    2005-01-01

    The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike- like emission comprising an otherwise short burst. Using the large BATSE sample with time-tagged event (TTE) data, we show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above approx. 25 keV. This is behavior is nearly ubiquitous for the 260 bursts with T(sub 90) less than 2s where the BATSE TTE data type completely included the initial spike: Their spectral lags measured between the 25-50 keV and 100-300 energy ranges are consistent with zero in 90-95% of the cases, with most outliers probably representing the tail of the long burst class. We also analyze a small sample of "short" BATSE bursts - those with the most fluent, intense extended emission. The same lack of evolution on the pulse timescale obtains for the extended emission in the brighter bursts where significant measurements can be made. One possible inference is that both emission components may arise in the same region. We also show that the dynamic range in the ratio of peak intensities, spike : extended, is at least approx. l0(exp 3), and that for some bursts, the extended emission is only a factor of 2-5 lower. However, for our whole sample the total counts fluence of the extended component equals or exceeds that in the spike by a factor of several.

  13. ARBIS 3: A Software Package for Automated Radio Burst Identification

    NASA Astrophysics Data System (ADS)

    Lobzin, V.; Cairns, I. H.; Robinson, P. A.; Steward, G.; Patterson, G.

    2010-12-01

    The major drivers of space weather are closely related to complicated explosion-like events on the Sun, i.e., solar flares and coronal mass ejections (CME). They are usually accompanied by type II and III solar radio bursts. Both type II and III solar radio bursts are assumed to be generated by fast electrons, the emission being at the local plasma frequency and/or its second harmonic. Type II radio bursts are associated with shock waves moving through the corona and solar wind with a typical speed of ~1000 km/s. These bursts have dynamic spectra with frequency gradually falling with time (~0.25 MHz/s), the duration of the coronal burst being several minutes. The speed of electrons responsible for type III bursts is much higher, ~c/3, where c is the speed of light, and typical duration of coronal type III events is 1-3 s. This paper describes an implementation of ARBIS 3, an extended version of Automated Radio Burst Identification System. ARBIS 3 detects coronal type II and type III radio bursts in near-real-time radio spectra from two observatories: Learmonth and Culgoora. The performance of the current implementation is quite high: ~84% for type III events observed at Learmonth and ~80% for type II bursts for both observatories. The probability of false type II events is reasonably low, 0.004-0.010 false positives per hour. The speeds of shocks associated with detected type II bursts are automatically estimated from radio data. For comparison, ARBIS 3 also shows information about CMEs detected by CACTUS in images from LASCO, as well as X-ray fluxes measured by GOES. Comparison of radio-derived results with information about CMEs and X-ray flares facilitates interpretation of radio data and space weather forecasting. Prospects for further improvements are discussed.

  14. X-ray Bursts and Oscillations: Prospects with NICER

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod E.; Mahmoodifar, Simin

    2016-04-01

    X-ray bursts (Type I) are produced by thermonuclear flashes in the accreted surface layers of some neutron stars in Low Mass X-ray Binaries (LMXBs). High frequency oscillations are observed during some of these bursts. These "burst oscillations" result from rotational modulation of an inhomogeneous temperature distribution on the neutron star surface induced by ignition and subsequent spreading of the thermonuclear flash. They provide a means to measure the spin rates of accreting neutron stars and since the burst emission arises from the neutron star surface, a unique probe of neutron star structure. To date, virtually all observations of such oscillations have been made with NASA's Rossi X-ray Timing Explorer (RXTE). We have developed a burst model employing the Schwarzschild + Doppler approximation for surface emission coupled with realistic flame spreading geometries and burst cooling to compute light curves and oscillation amplitudes for both the rising and cooling phases of X-ray bursts. We use this model to explore the capabilities for the Neutron star Interior Composition ExploreR (NICER) to detect and study burst oscillations, particularly in the energy band below 3 keV. NICER is an International Space Station attached payload (X-ray telescope) with capabilities optimized for fast timing of neutron stars in the 0.2-10 keV band. It has large collecting area (twice that of the XMM-Newton EPIC-pn camera), CCD-quality spectral resolution, and high-precision time tagging referenced to UTC through an onboard GPS receiver. NICER will begin its 18-month prime mission around the end of 2016. We will present results of simulated X-ray bursts with NICER that explore its burst oscillation detection capabilities and prospects for inferring neutron star properties from phase-resolved spectra.

  15. Automatic recognition of type III solar radio bursts: Automated Radio Burst Identification System method and first observations

    NASA Astrophysics Data System (ADS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2009-04-01

    Because of the rapidly increasing role of technology, including complicated electronic systems, spacecraft, etc., modern society has become more vulnerable to a set of extraterrestrial influences (space weather) and requires continuous observation and forecasts of space weather. The major space weather events like solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can be used for a real-time space weather forecast. Coronal type III radio bursts are produced near the local electron plasma frequency and near its harmonic by fast electrons ejected from the solar active regions and moving through the corona and solar wind. These bursts have dynamic spectra with frequency rapidly falling with time, the typical duration of the coronal burst being about 1-3 s. This paper presents a new method developed to detect coronal type III bursts automatically and its implementation in a new Automated Radio Burst Identification System. The central idea of the implementation is to use the Radon transform for more objective detection of the bursts as approximately straight lines in dynamic spectra. Preliminary tests of the method with the use of the spectra obtained during 13 days show that the performance of the current implementation is quite high, ˜84%, while no false positives are observed and 23 events not listed previously are found. Prospects for improvements are discussed. The first automatically detected coronal type III radio bursts are presented.

  16. Ligament Rupture Pressure of Fretted SG Tubes of PWRs

    SciTech Connect

    Seong Sik Hwang; Man Kyo Jung; Hong Pyo Kim; Joung Soo Kim

    2006-07-01

    A fretting/wear degradation at the tube support in the U-bend region of a steam generator (SG) of a pressurized water reactor (PWR) has been reported. Simulated fretted flaws were machined on SG tubes of 195 mm in length. A pressure test was carried out with the tubes at room temperature by using a high pressure test facility which consisted of a water pressurizing pump, a test specimen section and a control unit. Water leak rates just after a ligament rupture or a burst were measured. Tubes degraded by up to 70% of the tube wall (TW) showed a high safety margin in terms of the burst pressure during normal operating conditions. Tubes degraded by up to 50% of the TW did not show a burst. Burst pressure depended on the defect depths rather than on the wrap angles. The tube with a wrap angle of 0 deg. showed a fish mouth fracture, whereas the tube with a 45 deg. wrap angle showed a three way fracture. (authors)

  17. A POSSIBLE CONNECTION BETWEEN FAST RADIO BURSTS AND GAMMA-RAY BURSTS

    SciTech Connect

    Zhang, Bing

    2014-01-10

    The physical nature of fast radio bursts (FRBs), a new type of cosmological transient discovered recently, is not known. It has been suggested that FRBs can be produced when a spinning supra-massive neutron star loses centrifugal support and collapses to a black hole. Here, we suggest that such implosions can happen in supra-massive neutron stars shortly (hundreds to thousands of seconds) after their births, and an observational signature of such implosions may have been observed in the X-ray afterglows of some long and short gamma-ray bursts (GRBs). Within this picture, a small fraction of FRBs would be physically connected to GRBs. We discuss possible multi-wavelength electromagnetic signals and gravitational wave signals that might be associated with FRBs, and propose an observational campaign to unveil the physical nature of FRBs. In particular, we strongly encourage a rapid radio follow-up observation of GRBs starting from 100 s after a GRB trigger.

  18. The Swift Burst and Transient Telescope (BAT)

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2008-01-01

    The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 kev sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6324 atms/sq cm) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.

  19. Source mechanism of Saturn drifting bursts

    NASA Astrophysics Data System (ADS)

    Taubenschuss, U.; Schippers, P.; Leisner, J. S.; Fischer, G.; Gurnett, D. A.; Persoon, A. M.; Faden, J. B.

    2011-12-01

    Saturn drifting bursts (SDBs) are a new class of Kronian radio emission detected by the Cassini spacecraft in the lower kHz frequency range (< 50 kHz). Their bursty nature and slow drift in the time-frequency spectrogram clearly distinguish them from other types of radio emissions which are observed around Saturn. A statistical analysis of more than 5 years of data (mid 2004 - 2010) constrains source regions to the middle magnetosphere (6 - 15 Rs; 1 Rs = 60268 km). For this region, we show observational evidence of mode conversion, i.e. a conversion from electrostatic upper hybrid resonance oscillations to the electromagnetic O-mode and/or Z-mode. Mode conversion is suggested to be the source for SDBs. Furthermore, the special beaming pattern of the radiation is investigated with ray-tracing studies in the frame of the cold plasma theory.

  20. The Euclidean distribution of fast radio bursts

    NASA Astrophysics Data System (ADS)

    Oppermann, Niels; Connor, Liam D.; Pen, Ue-Li

    2016-09-01

    We investigate whether current data on the distribution of observed flux densities of fast radio bursts (FRBs) are consistent with a constant source density in Euclidean space. We use the number of FRBs detected in two surveys with different characteristics along with the observed signal-to-noise ratios of the detected FRBs in a formalism similar to a V/Vmax-test to constrain the distribution of flux densities. We find consistency between the data and a Euclidean distribution. Any extension of this model is therefore not data-driven and needs to be motivated separately. As a byproduct we also obtain new improved limits for the FRB rate at 1.4 GHz, which had not been constrained in this way before.

  1. Soap Films Burst Like Flapping Flags

    NASA Astrophysics Data System (ADS)

    Lhuissier, Henri; Villermaux, Emmanuel

    2009-07-01

    When punctured, a flat soap film bursts by opening a hole driven by liquid surface tension. The hole rim does not, however, remain smooth but soon develops indentations at the tip of which ligaments form, ultimately breaking and leaving the initially connex film into a mist of disjointed drops. We report on original observations showing that these indentations result from a flaglike instability between the film and the surrounding atmosphere inducing an oscillatory motion out of its plane. Just like a flag edge flaps in the wind, the film is successively accelerated on both sides perpendicularly to its plane, inducing film thickness modulations and centrifuging liquid ligaments that finally pinch off to form the observed spray. This effect exemplifies how the dynamics of fragile objects such as thin liquid films is sensitive to their embedding medium.

  2. A Different Cone: Bursting Drops in Solids

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    2013-03-01

    Drops in fluids tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nano-fibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops but also suggest a new failure mechanism of high-energy-density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  3. The ``Christmas burst'' GRB 101225A revisited

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; de Ugarte Postigo, A.; Fryer, C. L.; Kann, D. A.

    2015-03-01

    Long GRBs are related to the death of massive stars and reveal themselves through synchrotron emission from highly relativistic jets. The `Christmas Burst' GRB 101225A was an exceptionally long GRB with a thermal afterglow, very different from the standard GRB. Initially, no spectroscopic redshift could be obtained and SED modeling yielded z=0.33. A plausible model was a He-NS star merger where the He-star had ejected part of its envelope in the common envelope phase during inspiral. The interaction between the jet and the previously ejected shell can explains the thermal emission. We obtained deep spectroscopy of the host galaxy which leads to a correction of the redshift to z=0.847. Despite the higher redshift, our model is still valid and theoretically better justified than the alternative suggestion of a blue supergiant progenitor proposed by Levan et al. (2014) for several ``ultra-long'' GRBs.

  4. Bursts of active transport in living cells.

    PubMed

    Wang, Bo; Kuo, James; Granick, Steve

    2013-11-15

    We show, using a large new data set, that the temporally resolved speed of active cargo transport in living cells follows a scaling law over several decades of time and length. The statistical regularities display a time-averaged shape that we interpret to reflect stress buildup, followed by rapid release. The scaling power law agrees quantitatively with those reported in inanimate systems (jammed colloids and granular media, and magnetic Barkhausen noise), suggesting a common origin in pushing through a crowded environment in a weak force regime. The implied regulation of the speed of active cellular transport due to environmental obstruction results in bursts of speed and acceleration. These findings extend the classical notion of molecular crowding.

  5. mPing: The bursting transposon

    PubMed Central

    Naito, Ken; Monden, Yuki; Yasuda, Kanako; Saito, Hiroki; Okumoto, Yutaka

    2014-01-01

    Though transposable elements (TEs) have been considered as an efficient source of evolution, it has never been possible to test this hypothesis because most of TE insertions had occurred millions of years ago, or because currently active TEs have very few copies in a host genome. However, mPing, the first active DNA transposon in rice, was revealed to hold a key to answer this question. mPing has attained high copy numbers and still retained very high activity in a traditional rice strain, which enabled direct observation of behavior and impact of a bursting TE. A comprehensive analysis of mPing insertion sites has revealed it avoids exons but prefers promoter regions and thus moderately affects transcription of neighboring genes. Some of the mPing insertions have introduced possibly useful expression profile to adjacent genes that indicated TE’s potential in de novo formation of gene regulatory network. PMID:25053919

  6. SuperAGILE and Gamma Ray Bursts

    SciTech Connect

    Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco; Barbiellini, Guido; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo

    2006-05-19

    The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

  7. Emission model of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Liang, E. P.

    1983-01-01

    The emission mechanisms of cosmic gamma-ray bursts are reviewed. In particular, the thermal synchrotron model is discussed as the most viable mechanism for the majority of the continuum emission. Within this framework various information about the source region can be extracted. The picture that emerges is that of a hot (kT = .2 - 1.0 sq mc), thin sheet of dense pair-dominated plasma emitting via cyclo-synchrotron radiation in a strong magnetic field (B approximately one-hundred billion to one trillion gauss). Speculations on the origin and structure of this sheet are attempted. The problem of high-energy photons above pair production threshold escaping from the source is also considered.

  8. Gamma Ray Bursts and recent Swift Results .

    NASA Astrophysics Data System (ADS)

    Chincarini, G.

    Due to the large activity we had during these last months with the Swift satellite I started the writing of the presentation I gave at the SAIt Catania meeting only in the middle of September. The Swift satellite, however, never rested. Since then and in addition to the results I showed at the meeting in relation to the early and steep light curves observed with the XRT telescope in the 0.2 - 10 keV band, we had fundamental discoveries among which the detection and localization of short bursts and the detection of the largest redshift ever. It obviously would be improper to discuss here the most recent results but it would also be silly in such a fast evolving topics where the day by day observations show excellent results and the observer is far ahead of the theoretician, to write an article that, from the observational point of view, would be completely obsolete. The best approach here seems to be a brief description of what was presented during the meeting briefly mentioning also some of the most recent results. We remind the reader, however, that a copious literature written, and in preparation, exists so that we urge the reader to refer to the specialized articles. This brief article will touch on the basic characteristics of the Gamma Ray Bursts (GRBs) in the Introduction (section 1) and illustrate the basic characteristics of the Swift mission in section 2. Preliminary science results will be discussed in section 3 and finally we will mention one, among many, of the main goal we plan to achieve in Cosmology via the observations of very distant GRBs.

  9. Bayes Analysis and Reliability Implications of Stress-Rupture Testing a Kevlar/Epoxy COPV using Temperature and Pressure Acceleration

    NASA Technical Reports Server (NTRS)

    Phoenix, S. Leigh; Kezirian, Michael T.; Murthy, Pappu L. N.

    2009-01-01

    Composite Overwrapped Pressure Vessel (COPVs) that have survived a long service time under pressure generally must be recertified before service is extended. Sometimes lifetime testing is performed on an actual COPV in service in an effort to validate the reliability model that is the basis for certifying the continued flight worthiness of its sisters. Currently, testing of such a Kevlar49(registered TradeMark)/epoxy COPV is nearing completion. The present paper focuses on a Bayesian statistical approach to analyze the possible failure time results of this test and to assess the implications in choosing between possible model parameter values that in the past have had significant uncertainty. The key uncertain parameters in this case are the actual fiber stress ratio at operating pressure, and the Weibull shape parameter for lifetime; the former has been uncertain due to ambiguities in interpreting the original and a duplicate burst test. The latter has been uncertain due to major differences between COPVs in the data base and the actual COPVs in service. Any information obtained that clarifies and eliminates uncertainty in these parameters will have a major effect on the predicted reliability of the service COPVs going forward. The key result is that the longer the vessel survives, the more likely the more optimistic stress ratio is correct. At the time of writing, the resulting effect on predicted future reliability is dramatic, increasing it by about one nine , that is, reducing the probability of failure by an order of magnitude. However, testing one vessel does not change the uncertainty on the Weibull shape parameter for lifetime since testing several would be necessary.

  10. Closest Gamma Ray Burst Providing Scientists With Crucial Test for Burst Physics

    NASA Astrophysics Data System (ADS)

    2003-05-01

    The closest Gamma Ray Burst (GRB) yet known is providing astronomers with a rare opportunity to gain information vital to understanding these powerful cosmic explosions. Extremely precise radio-telescope observations already have ruled out one proposed mechanism for the bursts. "This is the closest and brightest GRB we've ever seen, and we can use it to decipher the physics of how these bursts work," said Greg Taylor of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Taylor worked with Dale Frail, also of the NRAO, along with Prof. Shri Kulkarni and graduate student Edo Berger of Caltech in studying a GRB detected on March 29, 2003. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. VLBA image of GRB 030329 VLBA IMAGE of GRB 030329 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) Taylor and Frail used the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and other radio telescopes to study the burst, known as GRB 030329. In a series of observations from April 1 to May 19, they determined the size of the expanding "fireball" from the burst and measured its position in the sky with great precision. At a distance of about 2.6 billion light-years, GRB 030329 is hardly next door. However, compared to other GRBs at typical distances of 8-10 billion light-years, it presents an easier target for study. "We only expect to see one burst per decade this close," said Frail. The precise measurement of the object's position allowed the scientists to show that one theoretical model for GRBs can be ruled out. This model, proposed in 2000, says that the radio-wave energy emitted by the GRB comes from "cannonballs" of material shot from the explosion at extremely high speeds. "The 'cannonball model' predicted that we should see the radio-emitting object move across the sky by a specific amount. We have not seen that motion," Taylor said. The currently standard "fireball model" of GRBs

  11. SGR J1550-5418 BURSTS DETECTED WITH THE FERMI GAMMA-RAY BURST MONITOR DURING ITS MOST PROLIFIC ACTIVITY

    SciTech Connect

    Van der Horst, A. J.; Finger, M. H.; Kouveliotou, C.; Kaneko, Y.; Goegues, E.; Lin, L.; Baring, M. G.; Guiriec, S.; Bhat, P. N.; Chaplin, V. L.; Goldstein, A.; Granot, J.; Watts, A. L.; Bissaldi, E.; Gruber, D.; Gehrels, N.; Harding, A. K.; Gibby, M. H.; Giles, M. M.; and others

    2012-04-20

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E{sub peak} and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  12. SGR J1550-5418 Bursts Detected with the Fermi Gamma-Ray Burst Monitor during Its Most Prolific Activity

    NASA Technical Reports Server (NTRS)

    vanderHorst, A. J.; Kouveliotou, C.; Gorgone, N. M.; Kaneko, Y.; Baring, M. G.; Guiriec, S.; Gogus, E,; Granot, J.; Watts, A. L.; Lin, L.; Bhat, P. N.; Bissaldi, E.; Chaplin, V. L.; Finger, M. H.; Gehrels, N.; Gibby, M. H.; Giles, M. M.; Goldstein, A.; Gruber, D.; Harding, A. K.; McEnery, J.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C.

    2012-01-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties.We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J15505418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E(sub peak) and the burst fluence and average flux. For the BB+BBfits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature.We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  13. Azimuthal flow bursts in the inner plasma sheet and possible connection with SAPS and plasma sheet earthward flow bursts

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Nishimura, Y.; Gallardo-Lacourt, B.; Nicolls, M. J.; Chen, S.; Hampton, D. L.; Bristow, W. A.; Ruohoniemi, J. M.; Nishitani, N.; Donovan, E. F.; Angelopoulos, V.

    2015-06-01

    We have combined radar observations and auroral images obtained during the Poker Flat Incoherent Scatter Radar Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the subauroral polarization stream (SAPS) region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the azimuthally moving flow bursts often connect to earthward (equatorward in the ionosphere) plasma sheet flow bursts. This indicates that rather than stopping or bouncing, some flow bursts turn azimuthally after reaching the inner plasma sheet and lead to the bursts of strong azimuthal flow. Evidence is also seen for a general guiding of the flow bursts by the large-scale convection pattern, flow bursts within the duskside convection being azimuthally turned to the west, and those within the dawn cell being turned toward the east. The possibility that the SAPS region flow structures considered here may be connected to localized flow enhancements from the polar cap that cross the nightside auroral poleward boundary and lead to flow bursts within the plasma sheet warrants further consideration.

  14. SGR J1550-5418 Bursts Detected with the Fermi Gamma-Ray Burst Monitor during its Most Prolific Activity

    NASA Astrophysics Data System (ADS)

    van der Horst, A. J.; Kouveliotou, C.; Gorgone, N. M.; Kaneko, Y.; Baring, M. G.; Guiriec, S.; Göǧüş, E.; Granot, J.; Watts, A. L.; Lin, L.; Bhat, P. N.; Bissaldi, E.; Chaplin, V. L.; Finger, M. H.; Gehrels, N.; Gibby, M. H.; Giles, M. M.; Goldstein, A.; Gruber, D.; Harding, A. K.; Kaper, L.; von Kienlin, A.; van der Klis, M.; McBreen, S.; Mcenery, J.; Meegan, C. A.; Paciesas, W. S.; Pe'er, A.; Preece, R. D.; Ramirez-Ruiz, E.; Rau, A.; Wachter, S.; Wilson-Hodge, C.; Woods, P. M.; Wijers, R. A. M. J.

    2012-04-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E peak and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  15. Large aerial bursts: an important class of terrestrial accretionary events.

    PubMed

    Wasson, John T

    2003-01-01

    Large aerial bursts similar to the 1908 Tunguska bolide but much larger in magnitude have surely been responsible for many catastrophic events in the history of the Earth. Because aerial bursts produce shallow (or even negligible) craters, their existence is difficult to document in the geological record. Even aerial bursts as small as Tunguska deposit enough energy to melt approximately 1mm of dry soil. Silica-rich glass formed in such melts has the potential to survive in the soil for many Ma, thus a potential indicator of large aerial bursts is glass that was formed as thick regions within silicate melt sheets. The layered tektites from Southeast Asia and the Libyan desert glass may have formed by a combination of sedimentation and downslope flow of silicate melt heated by radiation from large aerial bursts. The alternative, formation of layered tektites as crater ejecta, cannot account for observations such as uniformly high 10Be contents, the orientation of the magnetic remanence field, and the absence of splash-form (e.g., teardrop or dumbbell) tektites in regions where layered tektites are common. The largest asteroids or comets make craters no matter what their strength. Recent reviews suggest that, for events in the energy range up to 10(19)-10(20) J (about two orders of magnitude larger than the Meteor Crater impact), aerial bursts are more likely than cratering events, and the layered tektites of Southeast Asia imply the existence of aerial bursts one to two orders of magnitude larger still. PMID:12809134

  16. Gamma Ray Bursts and the Birth of Black Holes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2009-01-01

    Black holes have been predicted since the 1940's from solutions of Einstein's general relativity field equation. There is strong evidence of their existence from astronomical observations, but their origin has remained an open question of great interest. Gamma-ray bursts may the clue. They are powerful explosions, visible to high redshift, and appear to be the birth cries of black holes. The Swift and Fermi missions are two powerful NASA observatories currently in orbit that are discovering how gamma-ray bursts work. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are tremendously luminous and are providing a new tool to study the high redshift universe. One Swift burst at z=8.3 is the most distant object known in the universe. The talk will present the latest gamma-ray burst results from Swift and Fermi and will highlight what they are teaching us about black holes and jet outflows.

  17. Large Aerial Bursts: An Important Class of Terrestrial Accretionary Events

    NASA Astrophysics Data System (ADS)

    Wasson, John T.

    2003-01-01

    Large aerial bursts similar to the 1908 Tunguska bolide but much larger in magnitude have surely been responsible for many catastrophic events in the history of the Earth. Because aerial bursts produce shallow (or even negligible) craters, their existence is difficult to document in the geological record. Even aerial bursts as small as Tunguska deposit enough energy to melt ~1mm of dry soil. Silica-rich glass formed in such melts has the potential to survive in the soil for many Ma, thus a potential indicator of large aerial bursts is glass that was formed as thick regions within silicate melt sheets. The layered tektites from Southeast Asia and the Libyan desert glass may have formed by a combination of sedimentation and downslope flow of silicate melt heated by radiation from large aerial bursts. The alternative, formation of layered tektites as crater ejecta, cannot account for observations such as uniformly high 10Be contents, the orientation of the magnetic remanence field, and the absence of splash-form (e.g., teardrop or dumbbell) tektites in regions where layered tektites are common. The largest asteroids or comets make craters no matter what their strength. Recent reviews suggest that, for events in the energy range up to 1019-1020 J (about two orders of magnitude larger than the Meteor Crater impact), aerial bursts are more likely than cratering events, and the layered tektites of Southeast Asia imply the existence of aerial bursts one to two orders of magnitude larger still.

  18. Observation of a Metric Type N Solar Radio Burst

    NASA Astrophysics Data System (ADS)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei; Du, Guohui; Li, Chuanyang; Koval, Artem; Vasanth, V.; Wang, Bing; Guo, Fan; Li, Gang

    2016-10-01

    Type III and type-III-like radio bursts are produced by energetic electron beams guided along coronal magnetic fields. As a variant of type III bursts, Type N bursts appear as the letter “N” in the radio dynamic spectrum and reveal a magnetic mirror effect in coronal loops. Here, we report a well-observed N-shaped burst consisting of three successive branches at metric wavelength with both fundamental and harmonic components and a high brightness temperature (>109 K). We verify the burst as a true type N burst generated by the same electron beam from three aspects of the data. First, durations of the three branches at a given frequency increase gradually and may be due to the dispersion of the beam along its path. Second, the flare site, as the only possible source of non-thermal electrons, is near the western feet of large-scale closed loops. Third, the first branch and the following two branches are localized at different legs of the loops with opposite senses of polarization. We also find that the sense of polarization of the radio burst is in contradiction to the O-mode and there exists a fairly large time delay (∼3–5 s) between the fundamental and harmonic components. Possible explanations accounting for these observations are presented. Assuming the classical plasma emission mechanism, we can infer coronal parameters such as electron density and magnetic field near the radio source and make diagnostics on the magnetic mirror process.

  19. Recent Results from the Swift Burst Alert Telescope

    NASA Technical Reports Server (NTRS)

    Krimm, Hans

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift Gamma-Ray Burst MIDEX mission has detected more than 125 gamma-ray bursts (GRBs), nearly all of which have been followed up by the narrow-field instruments on Swift through automatic repointing, and by ground and other satellite telescopes after rapid notification. Within seconds of a trigger the BAT produces and relays to the ground a position good to three arc minutes and a four channel light curve. An overview of the properties of BAT bursts and BAT'S performance as a burst monitor will be presented in this talk. BAT is a coded aperture imaging system with a wide (approx.2 sr) field of view consisting of a large coded mask located 1 m above a 5200 sq cm array of 32.768 CdZnTe detectors. All electronics and other hardware systems on the BAT have been operating well since commissioning and there is no sign of any degradation on orbit. The flight and ground software have proven similarly robust and allow the real time localization of all bursts and the rapid derivation of burst light curves, spectra and spectral fits on the ground.

  20. Behaviorally relevant burst coding in primary sensory neurons.

    PubMed

    Sabourin, Patrick; Pollack, Gerald S

    2009-08-01

    Bursts of action potentials in sensory interneurons are believed to signal the occurrence of particularly salient stimulus features. Previous work showed that bursts in an identified, ultrasound-tuned interneuron (AN2) of the cricket Teleogryllus oceanicus code for conspicuous increases in amplitude of an ultrasound stimulus, resulting in behavioral responses that are interpreted as avoidance of echolocating bats. We show that the primary sensory neurons that inform AN2 about high-frequency acoustic stimuli also produce bursts. As is the case for AN2, bursts in sensory neurons perform better as feature detectors than isolated, nonburst, spikes. Bursting is temporally correlated between sensory neurons, suggesting that on occurrence of a salient stimulus feature, AN2 will receive strong synaptic input in the form of coincident bursts, from several sensory neurons, and that this might result in bursting in AN2. Our results show that an important feature of the temporal structure of interneuron spike trains can be established at the earliest possible level of sensory processing, i.e., that of the primary sensory neuron.

  1. Device for testing closure disks at high rates of change of pressure

    DOEpatents

    Merten, Jr., Charles W.

    1993-11-09

    A device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston.

  2. "Short, Hard Gamma-Ray Bursts - Mystery Solved?????"

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2006-01-01

    After over a decade of speculation about the nature of short-duration hard-spectrum gamma-ray bursts (GRBs), the recent detection of afterglow emission from a small number of short bursts has provided the first physical constraints on possible progenitor models. While the discovery of afterglow emission from long GRBs was a real breakthrough linking their origin to star forming galaxies, and hence the death of massive stars, the progenitors, energetics, and environments for short gamma-ray burst events remain elusive despite a few recent localizations. Thus far, the nature of the host galaxies measured indicates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors. On the other hand, some of the short burst afterglow observations cannot be easily explained in the coalescence scenario. These observations raise the possibility that short GRBs may have different or multiple progenitors systems. The study of the short-hard GRB afterglows has been made possible by the Swift Gamma-ray Burst Explorer, launched in November of 2004. Swift is equipped with a coded aperture gamma-ray telescope that can observe up to 2 steradians of the sky and can compute the position of a gamma-ray burst to within 2-3 arcmin in less than 10 seconds. The Swift spacecraft can slew on to this burst position without human intervention, allowing its on-board x ray and optical telescopes to study the afterglow within 2 minutes of the original GRB trigger. More Swift short burst detections and afterglow measurements are needed before we can declare that the mystery of short gamma-ray burst is solved.

  3. Broadband Spectral Investigations of SGR J1550-5418 Bursts

    NASA Technical Reports Server (NTRS)

    Lin, Lin; Goegues, Ersin; Baring, Matthew G.; Granot, Jonathan; Kouveliotou, Chryssa; Kaneko, Yuki; van der Horst, Alexander; Gruber, David; von Kienlin, Andreas; Younes, George; Watts, Anna L.; Gehrels, Neil

    2012-01-01

    We present the results of our broadband spectral analysis of 42 SGR J1550-5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. The unique spectral and temporal capabilities of the XRT windowed timing mode have allowed us to extend the GBM spectral coverage for these events down to the X-ray domain (0.5-10 keV). Our earlier analysis of the GBM data found that the SGR J1550-5418 burst spectra were described equally well with either a Comptonized model or with two blackbody functions; the two models were statistically indistinguishable. Our new broadband (0.5-200 keV) spectral fits show that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT-GBM analysis clearly shows for the first time that the SGR J1550-5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbody or even a multi-blackbody signal. Using the Swift and RXTE timing ephemeris for SGR J1550-5418 we construct the distribution of the XRT burst counts with spin phase and find that it is not correlated with the persistent X-ray emission pulse phase from SGR J1550-5418. These results indicate that the burst emitting sites on the neutron star need not to be co-located with hot spots emitting the bulk of the persistent X-ray emission. Finally, we show that there is a significant pulse phase dependence of the XRT burst counts, likely demonstrating that the surface magnetic field of SGR J1550-5418 is not uniform over the emission zones, since it is anticipated that regions with stronger surface magnetic field could trigger bursts more efficiently.

  4. Broadband Spectral Investigations of SGR J1550-5418 Bursts

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Göǧüş, Ersin; Baring, Matthew G.; Granot, Jonathan; Kouveliotou, Chryssa; Kaneko, Yuki; van der Horst, Alexander; Gruber, David; von Kienlin, Andreas; Younes, George; Watts, Anna L.; Gehrels, Neil

    2012-09-01

    We present the results of our broadband spectral analysis of 42 SGR J1550-5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. The unique spectral and temporal capabilities of the XRT windowed timing mode have allowed us to extend the GBM spectral coverage for these events down to the X-ray domain (0.5-10 keV). Our earlier analysis of the GBM data found that the SGR J1550-5418 burst spectra were described equally well with either a Comptonized model or with two blackbody functions; the two models were statistically indistinguishable. Our new broadband (0.5-200 keV) spectral fits show that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT-GBM analysis clearly shows for the first time that the SGR J1550-5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbody or even a multi-blackbody signal. Using the Swift and RXTE timing ephemeris for SGR J1550-5418 we construct the distribution of the XRT burst counts with spin phase and find that it is not correlated with the persistent X-ray emission pulse phase from SGR J1550-5418. These results indicate that the burst emitting sites on the neutron star need not to be co-located with hot spots emitting the bulk of the persistent X-ray emission. Finally, we show that there is a significant pulse phase dependence of the XRT burst counts, likely demonstrating that the surface magnetic field of SGR J1550-5418 is not uniform over the emission zones, since it is anticipated that regions with stronger surface magnetic field could trigger bursts more efficiently.

  5. Burst suppression electroencephalogram pattern in the newborn: predicting the outcome.

    PubMed

    Douglass, Laurie M; Wu, Joyce Y; Rosman, N Paul; Stafstrom, Carl E

    2002-06-01

    A neonatal burst suppression electroencephalogram (EEG) is usually associated with an ominous prognosis. It is controversial whether a reactive burst suppression pattern (ie, a burst suppression pattern that can be interrupted by stimulation) is predictive of a better outcome. We retrospectively studied 22 full-term newborns with burst suppression EEGs to examine their functional outcome. Follow-up (3 to 9 years) was by record review and telephone interview. On the basis of initial EEG pattern and prognosis, three groups were identified post hoc: group 1 (n = 16) had initially nonreactive burst suppression EEGs that remained abnormal; 11 patients died, 4 remained profoundly impaired (nonambulatory, nonverbal), and 1 was moderately impaired (unassisted ambulation, limited speech). Group 2 (n = 3) had initially nonreactive burst suppression EEGs that later improved substantially (within a mean of 7 weeks). At follow-up (3 to 8 1/2 years), each child was waLking (one with braces), talking, and enrolled in special education. Group 3 (n = 3) had reactive burst suppression EEGs initially. At follow-up (ages 3 1/2 to 9 years), each child was walking unassisted and speaking in sentences. Two children in group 3 were of preschool age, and the third was in a special needs program. Although most newborns with nonreactive burst suppression EEGs have a dire neurologic outcome, of those in whom the EEG improves early, the prognosis may be slightly more favorable. Infants with reactive burst suppression EEGs during the acute phase of illness appear to have the best prognosis.

  6. Relationship between perceived and actual motor competence among college students.

    PubMed

    Wang, Jianyu; Liu, Wenhao; Bian, Wei

    2013-02-01

    The relationship between perceived and actual motor competence was examined among college students. Participants were 114 college students (55 men, 59 women; M age = 22.3 yr., SD = 3.9). All participants completed a short survey on perception of motor competence in basketball and took a Control Basketball Dribble Test to assess their actual motor skill. Perceived motor competence in basketball was significantly related to basketball dribbling performance. Given the positive relationship between actual motor competence and perceived competence, enhancing an individual's actual motor competence may contribute to their perceived competence, which may improve an individual's physical activity participation.

  7. Afterglows of Elusive Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    2005-12-01

    An international team of astronomers1 has for the first time observed the visible light from a short gamma-ray burst (GRB). Using the 1.5-m Danish telescope at La Silla (Chile), they showed that these short, intense bursts of gamma-ray emission most likely originate from the violent collision of two merging neutron stars. The same team has also used the VLT to constrain the birthplace of the first ever short burst whose position could be pinpointed with high precision. The results were published in the October 6 issue of the journal Nature.

  8. GRO: Black hole models for gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1994-01-01

    The possibility of creating gamma ray bursts (GRB's) from accretion flows on to black holes is investigated. The mechanism of initial energy release in the form of a burst is not understood yet. The typical time scales involved in this energy release and the initial distribution of photons as a function of energy are studied. As a first step the problem is formulated in the Minkowski spacetime for a homogeneous and isotropic burst. For an arbitrary initial distribution of photons, the equations of relativistic kinetic theory are formulated for nonequilibrium plasmas which can take into account various particle creation and annihilation processes and various scattering processes.

  9. Q-bursts from various distances on the Earth

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Komatsu, Masayuki

    2009-02-01

    The mechanism of the Q-burst is investigated in the time and frequency domains. Electric fields in the ELF (extremely low frequency) to VLF (very low frequency) range have been observed with a ball antenna since 2003 in Kochi City, Japan (latitude 33.3°north, longitude 133.4°east). Source-to-observer distances (SODs) of Q-bursts are estimated by analyzing the waveforms. It is found as a result that the Q-burst is produced by combination of direct and antipodal pulses from a source lightning stroke occurring all over the world.

  10. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  11. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  12. Bursting of a fluid film in a viscous environment

    NASA Astrophysics Data System (ADS)

    Reyssat, Etienne

    2005-11-01

    Owing to its high surface area, a fluid sheet is not stable. The nucleation of a hole in such a film leads to its bursting. We present experimental results about the bursting of fluid sheets in a viscous atmosphere (as it occurs as drops of water coalesce in a water/oil emulsion). Contrasting with the explosion of a soap film in air, the environment plays a dominant role in the dynamics of the opening of a hole in the sheet. A simple model is provided to explain the observed bursting speeds. We also describe different hydrodynamic instabilities that occur in such a process.

  13. Hard X-ray imaging observation of fluctuating bursts

    NASA Technical Reports Server (NTRS)

    Ohki, K.; Harada, M.

    1986-01-01

    Measurements were done to obtain the one-dimensional sizes of rapidly fluctuating bursts with fast spikes whose rise times are typically about one second, and in some extreme cases less than 0.1 second. The results of two bursts with fast spikes are presented. One has a soft spectrum, and the other has a very hard spectrum. The measured one-dimensional size of both events indicates relatively a small size and simple structure. It can be said, however, that the source size is not so small as expected from its rapid time variations. Therefore, a thermal explanation of these bursts seems to be excluded.

  14. Spectral evolution of a long X-ray burst

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Serlemitsos, P. J.

    1976-01-01

    An X-ray burst-like event with a peak intensity 1 1/2 times that of the Crab and a decay time of approximately 100s was observed. Significant spectral changes occurred during the burst. The spectra were best fit by the black form with kT ranging from .87 keV to 2.3 keV. They suggest a source with smaller dimensions than a massive black hole. A weak source was observed after the burst with a 10 keV thermal spectrum and an indication of iron line emission.

  15. Observations and interpretation of solar decameter type IIIb radio bursts

    NASA Astrophysics Data System (ADS)

    Krishan, V.; Subramanian, K. R.; Sastry, C. V.

    1980-06-01

    Observations on the time structure of short duration, narrow band solar decameter type IIIb radio bursts are presented along with a theoretical model accounting for various features of the bursts. In contrast to the theory of Smith and de la Noe (1976), the electromagnetic modes of the plasma are immersed in the electric and magnetic fields in the presented theory, and the electric field enters at the single particle level and thus is accounted for in a more exact manner. In addition, the direction of propagation of the type IIIb radio burst is more clearly indicated by this theory than by Smith and de la Noe (1976).

  16. Ulysses/BATSE observations of cosmic gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Boer, M.; Sommer, M.; Fishman, G.; Meegan, C.; Paciesas, W.; Wilson, R.; Kouveliotou, C.; Cline, T.

    1992-01-01

    The gamma ray burst detector aboard the ESA-NASA Ulysses spacecraft, in operation since Nov. 1990, has detected numerous gamma bursts in conjunction with the BATSE experiment aboard the Compton Observatory. Initial results are presented on burst locations for three events (21 April, 2 May, and 3 May, 1991) obtained by arrival time analysis, and they are compared with the BATSE locations. The arrival time analysis annuli have typical widths of 5'. The preliminary analysis indicates that both experiments are likely to have unresolved systematic errors, but that further work will improve the location accuracy substantially.

  17. Beaked whales respond to simulated and actual navy sonar.

    PubMed

    Tyack, Peter L; Zimmer, Walter M X; Moretti, David; Southall, Brandon L; Claridge, Diane E; Durban, John W; Clark, Christopher W; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L

    2011-03-14

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2-3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2-3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define

  18. Beaked Whales Respond to Simulated and Actual Navy Sonar

    PubMed Central

    Tyack, Peter L.; Zimmer, Walter M. X.; Moretti, David; Southall, Brandon L.; Claridge, Diane E.; Durban, John W.; Clark, Christopher W.; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L.

    2011-01-01

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define

  19. Time-dependent response of filamentary composite spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Dozier, J. D.

    1983-01-01

    A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.

  20. A search for pre- and post-burst emission from well-localized gamma-ray burst locations

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1994-01-01

    We present the results from the first long-term search for nonburst gamma-ray emission from the positions of 70 intense, well-localized bursts. Using the BATSE occultation technique, designed for monitoring of discrete sources, these burst positions were measured in the energy range of approximately 15 keV to 1.8 MeV over a 112 day interval during 1991. None of these 70 locations exhibited detectable emission at or above the level of approximately 5 x 10(exp -9) ergs cm(exp -2) s(exp -1) during the 112 day interval. This level is approximately 1000 times less than the typical intensity of the burst associated with the given location. In addition, 35 intense gamma-ray bursts detected by BATSE were examined in a five day interval centered on the time of detection. We find no compelling evidence that these bursts emit preburst emission or display prompt postburst emission at a level of approximately 5 x 10(exp -9) ergs cm(exp 2) s(exp -1) on timescales of approximately 1 hr or longer. The lack of detectable long-term emission or preburst and postburst emission from the positions of gamma-ray bursts has important consequences for a variety of burst production models.

  1. Closest Gamma Ray Burst Providing Scientists With Crucial Test for Burst Physics

    NASA Astrophysics Data System (ADS)

    2003-05-01

    The closest Gamma Ray Burst (GRB) yet known is providing astronomers with a rare opportunity to gain information vital to understanding these powerful cosmic explosions. Extremely precise radio-telescope observations already have ruled out one proposed mechanism for the bursts. "This is the closest and brightest GRB we've ever seen, and we can use it to decipher the physics of how these bursts work," said Greg Taylor of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Taylor worked with Dale Frail, also of the NRAO, along with Prof. Shri Kulkarni and graduate student Edo Berger of Caltech in studying a GRB detected on March 29, 2003. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. VLBA image of GRB 030329 VLBA IMAGE of GRB 030329 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) Taylor and Frail used the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and other radio telescopes to study the burst, known as GRB 030329. In a series of observations from April 1 to May 19, they determined the size of the expanding "fireball" from the burst and measured its position in the sky with great precision. At a distance of about 2.6 billion light-years, GRB 030329 is hardly next door. However, compared to other GRBs at typical distances of 8-10 billion light-years, it presents an easier target for study. "We only expect to see one burst per decade this close," said Frail. The precise measurement of the object's position allowed the scientists to show that one theoretical model for GRBs can be ruled out. This model, proposed in 2000, says that the radio-wave energy emitted by the GRB comes from "cannonballs" of material shot from the explosion at extremely high speeds. "The 'cannonball model' predicted that we should see the radio-emitting object move across the sky by a specific amount. We have not seen that motion," Taylor said. The currently standard "fireball model" of GRBs

  2. Shaping bursting by electrical coupling and noise.

    PubMed

    Medvedev, Georgi S; Zhuravytska, Svitlana

    2012-02-01

    Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic β-cells, which in isolation are known to exhibit irregular spiking (Sherman and Rinzel, Biophys J 54:411-425, 1988; Sherman and Rinzel, Biophys J 59:547-559, 1991). At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, building on an earlier analysis of denoising in networks of integrate-and-fire neurons (Medvedev, Neural Comput 21 (11):3057-3078, 2009) and our recent study of spontaneous activity in a closely related model of the Locus Coeruleus network (Medvedev and Zhuravytska, The geometry of spontaneous spiking in neuronal networks, submitted, 2012), we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity (Fiedler, Czech Math J 23(98):298-305, 1973) or small total effective resistance (Bollobas, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer, New York, 1998) are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to

  3. Gamma-Ray Bursts 2012 Conference

    NASA Astrophysics Data System (ADS)

    It is a pleasure to announce the next combined Fermi/Swift GRB conference covering recent advances in all aspects of gamma-ray burst observations and theory. This conference will be held in Munich, Germany, on 7-11 May 2012, and follows similar previous combined Fermi/Swift meetings in Huntsville (Oct. 2008) and Annapolis (Nov. 2010). Gamma-ray bursts are the most energetic explosions in the Universe and are thought to be the birth signatures of black holes. This is an exciting time in the GRB field as various missions provide a wealth of new data on this still puzzling phenomenon. The Fermi misson provides unprecedented spectral coverage over 7 decades in energy, and among others discovered new spectral components which challenge our standard picture of the prompt emission. The Swift mission continuous to swiftly monitor and locate GRBs in multiple wavebands, providing the basis for all ground-based follow-up observations towards redshift measurements and afterglow and host property investigations. AGILE, INTEGRAL, Suzaku and Konus continue to provide crucial information on GRB properties, and the MAXI mission provides an all sky X-ray monitoring of transients. There is also growing capability for follow-up observations by ground-based telescopes at basically all wavelengths. Besides the classical optical/infrared/radio observations, searches are underway for TeV emission, neutrinos and gravitational waves. Moreover, new experiments are expected to have returned first data, among others POGO on the prompt polarization properties, UFFO on very early optical emission, or ALMA on sub-millimeter properties. And last but not least, the unexpected is bringing us child-like astonishments at least once per year with a "GRB-trigger" which turns out to be not related to GRBs. Complementing all these new observational results, a huge theoretical effort is underway to understand the GRB phenomenon and keep up with the constant new puzzles coming from the data. This conference

  4. A New Variability Parameter for Gamma-Ray Burst Time Profiles

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1994-01-01

    We present a parameter that measures the structure of gamma-ray burst time profiles. This parameter is based on the statistics of runs and is a good measure of time profile variability. It is shown to be independent of burst duration and less sensitive to burst distance than algorithms that depend directly on the intensity of a burst.

  5. The effect of beam-driven return current instability on solar hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Cromwell, D.; Mcquillan, P.; Brown, J. C.

    1986-01-01

    The problem of electrostatic wave generation by a return current driven by a small area electron beam during solar hard X-ray bursts is discussed. The marginal stability method is used to solve numerically the electron and ion heating equations for a prescribed beam current evolution. When ion-acoustic waves are considered, the method appears satisfactory and, following an initial phase of Coulomb resistivity in which T sub e/T sub i rise, predicts a rapid heating of substantial plasma volumes by anomalous ohmic dissipation. This hot plasma emits so much thermal bremsstrahlung that, contrary to previous expectations, the unstable beam-plasma system actually emits more hard X-rays than does the beam in the purely collisional thick target regime relevant to larger injection areas. Inclusion of ion-cyclotron waves results in ion-acoustic wave onset at lower T sub e/T sub i and a marginal stability treatment yields unphysical results.

  6. Spectral split in a prompt supernova neutrino burst: Analytic three-flavor treatment

    SciTech Connect

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg G.

    2008-06-01

    The prompt {nu}{sub e} burst from a core-collapse supernova is subject to both matter-induced flavor conversions and strong neutrino-neutrino refractive effects. For the lowest-mass progenitors, leading to O-Ne-Mg core supernovae, the matter density profile can be so steep that the usual Mikheyev-Smirnov-Wolfenstein matter effects occur within the dense-neutrino region close to the neutrino sphere. In this case a 'split' occurs in the emerging spectrum, i.e., the {nu}{sub e} flavor survival probability shows a steplike feature. We explain this feature analytically as a spectral split prepared by the Mikheyev-Smirnov-Wolfenstein effect. In a three-flavor treatment, the steplike feature actually consists of two narrowly spaced splits. They are determined by two combinations of flavor-lepton numbers that are conserved under collective oscillations.

  7. Self-Actualization Effects Of A Marathon Growth Group

    ERIC Educational Resources Information Center

    Jones, Dorothy S.; Medvene, Arnold M.

    1975-01-01

    This study examined the effects of a marathon group experience on university student's level of self-actualization two days and six weeks after the experience. Gains in self-actualization as a result of marathon group participation depended upon an individual's level of ego strength upon entering the group. (Author)

  8. The Self-Actualization of Polk Community College Students.

    ERIC Educational Resources Information Center

    Pearsall, Howard E.; Thompson, Paul V., Jr.

    This article investigates the concept of self-actualization introduced by Abraham Maslow (1954). A summary of Maslow's Needs Hierarchy, along with a description of the characteristics of the self-actualized person, is presented. An analysis of humanistic education reveals it has much to offer as a means of promoting the principles of…

  9. Depression and Self-Actualization in Gifted Adolescents.

    ERIC Educational Resources Information Center

    Berndt, David J.; And Others

    1982-01-01

    Investigated the relationship between depressive affect and self-actualization in gifted adolescents (N=248). Found that gifted students who were not self-actualizing types were more depressed; and guilt, low self-esteem, learned helplessness, and cognitive difficulty were important symptoms. Gifted adolescents tended to be more socially…

  10. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Endorsement Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Certificates of actual cost....

  11. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Endorsement Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Certificates of actual cost....

  12. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Endorsement Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Certificates of actual cost....

  13. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Endorsement Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Certificates of actual cost....

  14. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Endorsement Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Certificates of actual cost....

  15. SELF-ACTUALIZATION AND THE UTILIZATION OF TALENT.

    ERIC Educational Resources Information Center

    FRENCH, JOHN R.P.; MILLER, DANIEL R.

    THIS STUDY ATTEMPTED (1) TO DEVELOP A THEORY OF THE CAUSES AND CONSEQUENCES OF SELF-ACTUALIZATION AS RELATED TO THE UTILIZATION OF TALENT, (2) TO FIT THE THEORY TO EXISTING DATA, AND (3) TO PLAN ONE OR MORE RESEARCH PROJECTS TO TEST THE THEORY. TWO ARTICLES ON IDENTITY AND MOTIVATION AND SELF-ACTUALIZATION AND SELF-IDENTITY THEORY REPORTED THE…

  16. Facebook as a Library Tool: Perceived vs. Actual Use

    ERIC Educational Resources Information Center

    Jacobson, Terra B.

    2011-01-01

    As Facebook has come to dominate the social networking site arena, more libraries have created their own library pages on Facebook to create library awareness and to function as a marketing tool. This paper examines reported versus actual use of Facebook in libraries to identify discrepancies between intended goals and actual use. The results of a…

  17. A Study of Self-Actualization and Facilitative Communication.

    ERIC Educational Resources Information Center

    Omizo, Michael M.

    1981-01-01

    Examined the relationship between self-actualization measures and ability in facilitative communication of trainees from counseling, social work, and psychology programs to determine if differences existed between the three groups. Self-actualization indexes were significantly correlated with ability in facilitative communication. (RC)

  18. 26 CFR 1.962-3 - Treatment of actual distributions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 10 2013-04-01 2013-04-01 false Treatment of actual distributions. 1.962-3... TAX (CONTINUED) INCOME TAXES (CONTINUED) Controlled Foreign Corporations § 1.962-3 Treatment of actual... a foreign corporation. (ii) Treatment of section 962 earnings and profits under § 1.959-3....

  19. Information coding in vasopressin neurons—The role of asynchronous bistable burst firing

    PubMed Central

    MacGregor, D.J.; Clayton, T.F.; Leng, G.

    2013-01-01

    The task of the vasopressin system is homeostasis, a type of process which is fundamental to the brain's regulation of the body, exists in many different systems, and is vital to health and survival. Many illnesses are related to the dysfunction of homeostatic systems, including high blood pressure, obesity and diabetes. Beyond the vasopressin system's own importance, in regulating osmotic pressure, it presents an accessible model where we can learn how the features of homeostatic systems generally relate to their function, and potentially develop treatments. The vasopressin system is an important model system in neuroscience because it presents an accessible system in which to investigate the function and importance of, for example, dendritic release and burst firing, both of which are found in many systems of the brain. We have only recently begun to understand the contribution of dendritic release to neuronal function and information processing. Burst firing has most commonly been associated with rhythm generation; in this system it clearly plays a different role, still to be understood fully. PMID:23499814

  20. FLARE-GENERATED TYPE II BURST WITHOUT ASSOCIATED CORONAL MASS EJECTION

    SciTech Connect

    Magdalenic, J.; Marque, C.; Zhukov, A. N.; Vrsnak, B.; Veronig, A.

    2012-02-20

    We present a study of the solar coronal shock wave on 2005 November 14 associated with the GOES M3.9 flare that occurred close to the east limb (S06 Degree-Sign E60 Degree-Sign ). The shock signature, a type II radio burst, had an unusually high starting frequency of about 800 MHz, indicating that the shock was formed at a rather low height. The position of the radio source, the direction of the shock wave propagation, and the coronal electron density were estimated using Nancay Radioheliograph observations and the dynamic spectrum of the Green Bank Solar Radio Burst Spectrometer. The soft X-ray, H{alpha}, and Reuven Ramaty High Energy Solar Spectroscopic Imager observations show that the flare was compact, very impulsive, and of a rather high density and temperature, indicating a strong and impulsive increase of pressure in a small flare loop. The close association of the shock wave initiation with the impulsive energy release suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. This is supported by the fact that, contrary to the majority of events studied previously, no coronal mass ejection was detected in association with the shock wave, although the corresponding flare occurred close to the limb.