Science.gov

Sample records for actual crop evapotranspiration

  1. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions

    NASA Astrophysics Data System (ADS)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Zhang, Jianhua; Du, Taisheng; Tong, Ling; Ding, Risheng

    2016-12-01

    Using potential evapotranspiration (PET) to estimate crop actual evapotranspiration (AET) is a critical approach in hydrological models. However, which PET model performs best and can be used to predict crop AET over the entire growth season in arid regions still remains unclear. The six frequently-used PET models, i.e. Blaney-Criddle (BC), Hargreaves (HA), Priestley-Taylor (PT), Dalton (DA), Penman (PE) and Shuttleworth (SW) models were considered and evaluated in the study. Five-year eddy covariance data over the maize field and vineyard in arid northwest China were used to examine the accuracy of PET models in estimating daily crop AET. Results indicate that the PE, SW and PT models underestimated daily ET by less than 6% with RMSE lower than 35 W m-2 during the four years, while the BC, HA and DA models under-predicted daily ET approximately by 10% with RMSE higher than 40 W m-2. Compared to BC, HA and DA models, PE, SW and PT models were more reliable and accurate for estimating crop PET and AET in arid regions. Thus the PE, SW and PT models were recommended for predicting crop evapotranspiration in hydrological models in arid regions.

  2. Determination of actual crop evapotranspiration (ETc) and dual crop coefficients (Kc) for cotton, wheat and maize in Fergana Valley: integration of the FAO-56 approach and BUDGET

    NASA Astrophysics Data System (ADS)

    Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina

    2014-05-01

    Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.

  3. Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Katerji, Nader; Rana, Gianfranco; Ferrara, Rossana Monica

    2016-05-01

    The study compares two formulas for calculating the daily evapotranspiration ET0 for a reference crop. The first formula was proposed by Allen et al. (AL), while the second one was proposed by Katerji and Perrier with the addition of the carbon dioxide (CO2) effect on evapotranspiration (KP). The study analyses the impact of the calculation by the two formulas on the irrigation requirement (IR). Both formulas are based on the Penman-Monteith equation but adopt different approaches for parameterising the canopy resistance r c . In the AL formula, r c is assumed constant and not sensitive to climate change, whereas in the KP formula, r c is first parameterised as a function of climatic variables, then ET0 is corrected for the air CO2 concentration. The two formulas were compared in two periods. The first period involves data from two sites in the Mediterranean region within a measured climate change period (1981-2006) when all the input climatic variables were measured. The second period (2070-2100) involves data from a future climate change period at one site when the input climatic variables were forecasted for two future climate scenarios (A2 and B2). The annual cumulated values of ET0 calculated by the AL formula are systematically lower than those determined by the KP formula. The differences between the ET0 estimation with the AL and KP formulas have a strong impact on the determination of the IR for the reference crop. In fact, for the two periods, the annual values of IR when ET0 is calculated by the AL formula are systematically lower than those calculated by the KP formula. For the actual measured climate change period, this reduction varied from 26 to 28 %, while for the future climate change period, it varied based on the scenario from 16 % (A2) to 20 % (B2).

  4. Simple weighing lysimeters for measuring reference and crop evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of cotton crop evapotranspiration is important in scheduling irrigations, optimizing crop production, and modeling evapotranspiration and crop growth. The ability to measure, estimate, and predict evapotranspiration and cotton crop water requirements can result in better satisfying the cr...

  5. Comment on 'Shang S. 2012. Calculating actual crop evapotranspiration under soil water stress conditions with appropriate numerical methods and time step. Hydrological Processes 26: 3338-3343. DOI: 10.1002/hyp.8405'

    NASA Technical Reports Server (NTRS)

    Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James

    2014-01-01

    A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.

  6. Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration

    USGS Publications Warehouse

    Barclay, Shoemaker W.; Sumner, D.M.

    2006-01-01

    Corrections can be used to estimate actual wetland evapotranspiration (AET) from potential evapotranspiration (PET) as a means to define the hydrology of wetland areas. Many alternate parameterizations for correction coefficients for three PET equations are presented, covering a wide range of possible data-availability scenarios. At nine sites in the wetland Everglades of south Florida, USA, the relatively complex PET Penman equation was corrected to daily total AET with smaller standard errors than the PET simple and Priestley-Taylor equations. The simpler equations, however, required less data (and thus less funding for instrumentation), with the possibility of being corrected to AET with slightly larger, comparable, or even smaller standard errors. Air temperature generally corrected PET simple most effectively to wetland AET, while wetland stage and humidity generally corrected PET Priestley-Taylor and Penman most effectively to wetland AET. Stage was identified for PET Priestley-Taylor and Penman as the data type with the most correction ability at sites that are dry part of each year or dry part of some years. Finally, although surface water generally was readily available at each monitoring site, AET was not occurring at potential rates, as conceptually expected under well-watered conditions. Apparently, factors other than water availability, such as atmospheric and stomata resistances to vapor transport, also were limiting the PET rate. ?? 2006, The Society of Wetland Scientists.

  7. Establishing seasonal chronicles of actual evapotranspiration under sloping conditions

    NASA Astrophysics Data System (ADS)

    Zitouna Chebbi, R.; Prévot, L.; Jacob, F.; Voltz, M.

    2012-04-01

    Estimation of daily and seasonal actual evapotranspiration (ETa) is strongly needed for hydrological and agricultural purposes. Although the eddy covariance method is well suited for such estimation of land surface fluxes, this method suffers from limitations when establishing long time series. Missing data are often encountered, resulting from bad meteorological conditions, rejection by quality control tests, power failures… Numerous gap fill techniques have been proposed in the literature but there applicability in sloping conditions is not well known. In order to estimate ETa over long periods (agricultural cycle) on crops cultivated in sloping areas, a pluri-annual experiment was conducted in the Kamech catchment, located in North-eastern Tunisia. This Mediterranean site is characterized by a large heterogeneity in topography, soils and crops. Land surface fluxes were measured using eddy covariance systems. Measurements were collected on the two opposite sides of the Kamech V-shaped catchment, within small fields having slopes steeper than 5%. During three different years, four crops were studied: durum wheat, oat, fava bean and pasture. The topography of the catchment and the wind regime induced upslope and downslope flows over the study fields. In this study, we showed that gap filling of the turbulent fluxes (sensible and latent heat) can be obtained through linear regressions against net radiation. To account for the effect of the topography, linear regressions were calibrated by distinguishing upslope and downslope flows. This significantly improved the quality of the reconstructed data over 30 minute intervals. This gap filling technique also improved the energy balance closure at the daily time scale. As a result, seasonal chronicles of daily ETa throughout the growth cycle of the study crops in the Kamech watershed were established, thus providing useful information about the water use of annual crops in a semi-arid rainfed and hilly area.

  8. Simulation of crop evapotranspiration and crop coefficient with data in weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  9. Crop evapotranspiration calculation using infrared thermometers aboard center pivots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling using remotely sensed surface temperature can result in equal or greater crop yield and crop water use efficiency compared with irrigation scheduling using in-situ soil water profile measurements. Crop evapotranspiration (ETc) is useful for irrigation scheduling, and can be cal...

  10. Methods to estimate irrigated reference crop evapotranspiration - a review.

    PubMed

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  11. A new DSSAT-CSM evapotranspiration module: ASCE standardized reference evapotranspiration with dual crop coefficient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the DSSAT-CSM series of crop models have been used for decades, new focus has been put on improving evapotranspiration (ET) simulation in crop models. A new ET module was added to the model code to calculate potential ET, which combines the ASCE Standardized Reference ET (both grass and alf...

  12. Remotely sensed actual evapotranspiration: implications for groundwater management in Botswana.

    NASA Astrophysics Data System (ADS)

    Timmermans, W. J.; Meijerink, A. M. J.

    In order to determine evapotranspiration losses from the groundwater of an aquifer in Botswana during the dry season, the multi-step Surface Energy Balance Algorithm for Land (SEBAL) was applied using sequential Landsat TM and NOAA-AVHRR data. During satellite overpasses, continuous data on surface temperatures and soil moisture were available from a meteorological tower and field observations for calibration and partial validation of the results. The SEBAL method yielded high actual evapotranspiration (E a) rates (1.5 - 3 mm/d), if relatively dense savannah vegetation was present, even when the water-table was over 30 m deep, as is the case in the upper part of the aquifer. No relationship between Ea and depth to water-table was found, except in the valleys, where riverine forests are fed by a system of discharging groundwater flow. The patterns on a vegetation map, based on a supervised classification using TM data, including thermal bands, showed similarity with the E a patterns. The spatial distributions of vegetation types and of E a have been interpreted as important uptake of water by deep roots; this is supported by increasing evidence from other parts of the world. Sap flow was measured in tall bushes near the tower site. The upper part (2 m) of the soil was dry. The results have implications for the groundwater recharge mechanism and the management of groundwater. Further validation studies have been initiated.

  13. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  14. Drought impacts and resilience on crops via evapotranspiration estimations

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Asadollahi Dolatabad, Saeid

    2015-04-01

    Currently, the global needs for food and water is at a critical level. It has been estimated that 12.5 % of the global population suffers from malnutrition and 768 million people still do not have access to clean drinking water. This need is increasing because of population growth but also by climate change. Changes in precipitation patterns will result either in flooding or droughts. Consequently availability, usability and affordability of water is becoming challenge and efficient use of water and water management is becoming more important, particularly during severe drought events. Drought monitoring for agricultural purposes is very hard. While meteorological drought can accurately be monitored using precipitation only, estimating agricultural drought is more difficult. This is because agricultural drought is dependent on the meteorological drought, the impacts on the vegetation, and the resilience of the crops. As such not only precipitation estimates are required but also evapotranspiration at plant/plot scale. Evapotranspiration (ET) describes the amount of water evaporated from soil and vegetation. As 65% of precipitation is lost by ET, drought severity is highly linked with this variable. In drought research, the precise quantification of ET and its spatio-temporal variability is therefore essential. In this view, remote sensing based models to estimate ET, such as SEBAL and SEBS, are of high value. However the resolution of current evapotranspiration products are not good enough for monitoring the impact of the droughts on the specific crops. This limitation originates because plot scales are in general smaller than the resolution of the available satellite ET products. As such remote sensing estimates of evapotranspiration are always a combination of different land surface types and cannot be used for plant health and drought resilience studies. The goal of this research is therefore to enable adequate resolutions of daily evapotranspiration estimates

  15. Using MODIS Thermal Data for Estimating Actual Evapotranspiration From Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Budde, M.; Verdin, J. P.

    2006-12-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Recently, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and to some extent relative production using satellite derived data and simulation models in Africa, Central America and Afghanistan where ground-based monitoring is limited due to a scarcity of weather stations. The commonly used crop monitoring models use a crop water balance algorithm with inputs from satellite-derived rainfall. While these models provide useful monitoring for rain-fed agriculture, they are ineffective for irrigated areas. This study has focused on Afghanistan where over 80 percent of the agricultural production comes from irrigated agriculture. We implemented a simplified energy balance approach to monitor and assess the performance of irrigated agriculture in Afghanistan using the combination of 1-km thermal data and 250-m NDVI from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Up to 19 cloud free thermal and NDVI images were used for each year to estimate seasonal actual evapotranspiration (AET) for two major irrigation river basins (Kabul and Helmand) over 6 years (2000- 2005). Seasonal AET estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the different irrigated basins was indicative of the cropping patterns specific to the region. The results were comparable to field reports and watershed-wide crop water balance based estimates in that the 2003 seasonal AET was the highest of all six years. The advantage of this method over crop water balance methods is that the energy balance approach also helps identify spatial extents of irrigated fields and their spatial variability as opposed to a lumped watershed-wide assessment that can be obtained from large-scale water-balance models.

  16. On the downscaling of actual evapotranspiration maps based on combination of MODIS and landsat-based actual evapotranspiration estimates

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Verdin, James P.

    2014-01-01

     Downscaling is one of the important ways of utilizing the combined benefits of the high temporal resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) images and fine spatial resolution of Landsat images. We have evaluated the output regression with intercept method and developed the Linear with Zero Intercept (LinZI) method for downscaling MODIS-based monthly actual evapotranspiration (AET) maps to the Landsat-scale monthly AET maps for the Colorado River Basin for 2010. We used the 8-day MODIS land surface temperature product (MOD11A2) and 328 cloud-free Landsat images for computing AET maps and downscaling. The regression with intercept method does have limitations in downscaling if the slope and intercept are computed over a large area. A good agreement was obtained between downscaled monthly AET using the LinZI method and the eddy covariance measurements from seven flux sites within the Colorado River Basin. The mean bias ranged from −16 mm (underestimation) to 22 mm (overestimation) per month, and the coefficient of determination varied from 0.52 to 0.88. Some discrepancies between measured and downscaled monthly AET at two flux sites were found to be due to the prevailing flux footprint. A reasonable comparison was also obtained between downscaled monthly AET using LinZI method and the gridded FLUXNET dataset. The downscaled monthly AET nicely captured the temporal variation in sampled land cover classes. The proposed LinZI method can be used at finer temporal resolution (such as 8 days) with further evaluation. The proposed downscaling method will be very useful in advancing the application of remotely sensed images in water resources planning and management.

  17. Comparison of Crop Evapotranspiration Estimates from Reference Evapotranspiration Equations and a Variational Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Bateni, S. M.; Michalik, T.; Multsch, S.; Breuer, L.

    2015-12-01

    Crop evapotranspiration (ETc) is a key component of water resources management in irrigation of farmlands as it determines the crop water consumption. Numerous methods have been used to estimate ETc for scheduling irrigation and evaluating the soil water balance. However, there is a significant difference in ETc estimates from various models, which leads to a large uncertainty in the soil water balance, crop water consumption, and irrigation scheduling. In this study, several commonly-used ETc equations (Turc, Priestley-Taylor, Hargreaves-Samani, Penman-Monteith) are compared with the variational data assimilation approach (VDA) of Bateni et al. (2013). The ETc equations initially estimate the reference evapotranspiration (ETo), which is the evapotranspiration from a healthy and actively-transpiring grass field with ample water in the soil. Thereafter, ETc is calculated by multiplying ETo by the crop coefficient (Kc), which accounts for the crop type and soil water stress. To properly apply the Kc to non-standard conditions, a daily water balance estimation for the root zone is required, which is done by two soil water budget models (Cropwat, Hydrus-1D) that compute incoming and outgoing water flows in the soil profile. In contrast to these methods that estimate ETc in two steps, the VDA approach directly predicts ETc by assimilating sequences of land surface temperature into the heat diffusion equation and thus it is expected to provide more accurate ETc estimates. All approaches are applied over three cropland sites namely, Bondville, Fermi, and Mead in the summer of 2006 and 2007. These sites are part of the AmeriFlux network and provide a wide variety of hydrological conditions. The results show that the variational data assimilation approach performs better compared to other equations.

  18. Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece.

    PubMed

    Tsouni, Alexia; Kontoes, Charalabos; Koutsoyiannis, Demetris; Elias, Panagiotis; Mamassis, Nikos

    2008-06-01

    Remote sensing can assist in improving the estimation of the geographical distribution of evapotranspiration, and consequently water demand in large cultivated areas for irrigation purposes and sustainable water resources management. In the direction of these objectives, the daily actual evapotranspiration was calculated in this study during the summer season of 2001 over the Thessaly plain in Greece, a wide irrigated area of great agricultural importance. Three different methods were adapted and applied: the remotesensing methods by Granger (2000) and Carlson and Buffum (1989) that use satellite data in conjunction with ground meteorological measurements and an adapted FAO (Food and Agriculture Organisation) Penman-Monteith method (Allen at al. 1998), which was selected to be the reference method. The satellite data were used in conjunction with ground data collected on the three closest meteorological stations. All three methods, exploit visible channels 1 and 2 and infrared channels 4 and 5 of NOAA-AVHRR (National Oceanic and Atmospheric Administration - Advanced Very High Resolution Radiometer) sensor images to calculate albedo and NDVI (Normalised Difference Vegetation Index), as well as surface temperatures. The FAO Penman-Monteith and the Granger method have used exclusively NOAA-15 satellite images to obtain mean surface temperatures. For the Carlson-Buffum method a combination of NOAA-14 and ΝΟΑΑ-15 satellite images was used, since the average rate of surface temperature rise during the morning was required. The resulting estimations show that both the Carlson-Buffum and Granger methods follow in general the variations of the reference FAO Penman-Monteith method. Both methods have potential for estimating the spatial distribution of evapotranspiration, whereby the degree of the relative agreement with the reference FAO Penman-Monteith method depends on the crop growth stage. In particular, the Carlson- Buffum method performed better during the first

  19. Towards an Operational Monitoring of Actual Evapotranspiration With Modis Imagery

    NASA Astrophysics Data System (ADS)

    Timmermans, W.; Gieske, A.; Bastiaanssen, W.; Holtslag, B.; Wolski, P.; Arneth, A.; Wohland, P.

    2002-12-01

    Estimation of regional scale evapotranspiration (ET) is of major importance in hydrological, meteorological and climatological modeling. The estimation of available energy and the partitioning into turbulent sensible and latent heat fluxes is crucial in this process. Despite closure problems, point-based measurements of these quantities are considered fairly accurate. However, in heterogeneous terrain these measurements are not representative for regional estimates, a reason to incorporate remotely sensed data. Nowadays, models quantifying the soil-vegetation water loss (ET) approach the level of uncertainty in ET measurements. Progress toward operational monitoring of ET at scales of interest, has been hampered until recently due to lack of suitable sensors. This changed with the late availability of multi-band imagery from MODIS, developed for monitoring global change. Its data are used by algorithms for analysis of biophysical and geophysical products and, in parallel, models that use these products are developed from currently available satellite data sets. The model we used to test this is the Surface Energy Balance Algorithm for Land (SEBAL) which needs remotely sensed inputs of surface temperature, reflection and vegetation density. The model, which has mainly been validated using NOAA-AVHRR and Landsat data, is suitable for a variety of resolutions to estimate regional ET for heterogeneous areas. Algorithms developed from AVHRR datasets are used on MODIS data without modifications, justified by the radiometric similarity of AVHRR channels 1, 2, 4, and 5 and MODIS channels 1, 2, 31, and 32. Solar radiation, windspeed and air temperature are the only ancillary data required. MODIS data from 13 and 29 September 2001 are applied to a study site at Maun, Botswana. The area of 300 by 400 kilometer is heterogeneous, comprising densely vegetated swamps, grasslands and savannah. Model output resulted in 1 km scale instantaneous estimates of Rn, G, H and LE as well

  20. Automated calculation of the evapotranspiration and crop coefficients for a large number of peatland sites using diurnal groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Maurer, Eike; Bechtold, Michel; Dettmann, Ullrich; Tiemeyer, Bärbel

    2014-05-01

    values were determined from precipitation events and the related water level increase. Parameter values in this routine were systematically varied to obtain the lowest standard error of Sy. Errors were obtained by bootstrapping. The resulting Sy-values correspond well to peatland type and soil properties. After rule-based filtering of the time series, in a third step, the actual evapotranspiration ETa is calculated by the original White-method and a modification by Hays (2003). Daily values of ETa and ET0 are used to derive crop coefficients, which are then aggregated to monthly and annual Kc-values. Applying the method to a large number of sites resulted in plausible crop coefficients which compare well to previously published values of peatland evapotranspiration, as far as information on similar vegetation is available.

  1. A drought index based on actual evapotranspiration from the Bouchet hypothesis

    NASA Astrophysics Data System (ADS)

    Kim, Daeha; Rhee, Jinyoung

    2016-10-01

    Global drought assessment has mainly depended on precipitation-based drought indices that may also take into account potential evapotranspiration (ETp). In this study, we combined the actual evapotranspiration (ETa) estimated from the Bouchet hypothesis and the structure of the Standardized Precipitation-Evapotranspiration Index to develop a fully ET-based drought index, the Standardized Evapotranspiration Deficit Index (SEDI). We found that SEDI, without using precipitation data, produces results that are consistent with the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Index (SPI) for drought identification in the South-Central United States. We also found a competitive performance of SEDI through comparisons between the Vegetation Health Index with SEDI, PDSI, and SPI. We suggest the high applicability of the SEDI based on the Bouchet hypothesis as an independent drought index for regions with strong land-atmosphere coupling or as an alternative drought index to fully precipitation-dependent indices for assessing agricultural droughts.

  2. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in more humid environments. We measured ET (ETEC) using Eddy Covariance (EC) towers a...

  3. Testing two temporal upscaling schemes for the estimation of the time variability of the actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.

    2015-10-01

    Temporal availability of grapes actual evapotranspiration is an emerging issue since vineyards farms are more and more converted from rainfed to irrigated agricultural systems. The manuscript aims to verify the accuracy of the actual evapotranspiration retrieval coupling a single source energy balance approach and two different temporal upscaling schemes. The first scheme tests the temporal upscaling of the main input variables, namely the NDVI, albedo and LST; the second scheme tests the temporal upscaling of the energy balance output, the actual evapotranspiration. The temporal upscaling schemes were implemented on: i) airborne remote sensing data acquired monthly during a whole irrigation season over a Sicilian vineyard; ii) low resolution MODIS products released daily or weekly; iii) meteorological data acquired by standard gauge stations. Daily MODIS LST products (MOD11A1) were disaggregated using the DisTrad model, 8-days black and white sky albedo products (MCD43A) allowed modeling the total albedo, and 8-days NDVI products (MOD13Q1) were modeled using the Fisher approach. Results were validated both in time and space. The temporal validation was carried out using the actual evapotranspiration measured in situ using data collected by a flux tower through the eddy covariance technique. The spatial validation involved airborne images acquired at different times from June to September 2008. Results aim to test whether the upscaling of the energy balance input or output data performed better.

  4. Microclimate and actual evapotranspiration in a humid coastal-plain environment

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1987-01-01

    Continuous hourly measurements of twelve meteorologic variables recorded during 1983 and 1984 were used to examine the microclimate and actual evapotranspiration at a low-level radioactive-waste burial site near Barnwell, South Carolina. The study area is in the Atlantic Coastal Plain of southwestern South Carolina. Monthly, daily, and hourly trends in net radiation, incoming and reflected short-wave radiation, incoming and emitted long-wave radiation, soil-heat flux, dry- and wet-bulb temperatures, soil temperatures, wind direction and speed, and precipitation were used to characterize the microclimate. Average daily air temperatures ranged from -9 to 32?? Celsius during the period of study. Net radiation varied from about -27 to 251 watts m-2 and was dominated by incoming short-wave radiation throughout the year. The peak net radiation during a summer day generally occurred 2-3h before the peak vapor pressure deficit. In the winter, these peaks occurred at about the same time of day. Monthly precipitation varied from 15 to 241 mm. The Bowen ratio method was used to estimate hourly evapotranspiration, which was summed to also give daily and monthly evapotranspiration. Actual evapotranspiration varied from 0.0 to 0.7 mm h-1, 0.8-5 mm d-1, and 20-140 mm month-1 during 1983 and 1984. The maximum rate of evapotranspiration generally occurred at the same time of day as maximum net radiation, suggesting net radiation was the main driving force for evapotranspiration. Precipitation exceeded evapotranspiration during 14 months of the 2yr study period. Late fall, winter, and early spring contained the majority of these months. The maximum excess precipitation was 115 mm in February 1983. ?? 1987.

  5. Using lysimeters to test the Penman Monteith actual evapotranspiration.

    NASA Astrophysics Data System (ADS)

    Ben Asher, Jiftah; Volinski, Roman; Zilberman, Arkadi; Bar Yosef, Beni; Silber, Avner

    2015-04-01

    Differences in actual transpiration (ETa) of banana plants were quantified in a lysimeter experiment. ETA was computed using instantaneous data from two weighing lysimeters and compared to PM (Penman-Monteith) model for ETa. Two critical problems were faced in this test. A) Estimating canopy and aerodynamic resistances ("rc" and "ra" respectively ) and B) converting the lysimeter changes in water volume ( LYv cm3 ) to ETa length units ( cm ). The two unknowns " rc" and "ra" were obtained from continuous measurements of the differences between canopy and air temperature (Tc - Ta). This difference was established by means of the infrared thermometry which was followed by numerical and analytical calculation of ETa using the modification suggested by R. Jackson to the PM model. The conversion of lysimeter volumetric units (LYv) to ETa length units was derived from the slope of cumulative LYv/ETa. This relationship was significantly linear (r2=0.97and 0.98.). Its slope was interpreted as "evaporating leaf area" which accounted for 1.8E4 cm2 in lysimeter 1 and 2.3E4 cm2.in lysimeter 2 . The comparison between LYv and PM model was acceptable even under very low ETa. The average of two lysimeters was 1.1mm/day (1.4 mm/day , LYv 1 and 0.8 LYv 2) while ETa calculated on the basis of PM model was 1.2 mm/day. It was concluded that although lysimeters are most accurate systems to measure ETa one of its disadvantages ( beside the high cost) is the volumetric output that in many cases should be supported by a one dimensional energy balance system. The PM model was found to be a reliable complementary tool to convert lysimeters volumetric output into conventional length units of ETa.

  6. Potential crop evapotranspiration and surface evaporation estimates via a gridded weather forcing dataset

    NASA Astrophysics Data System (ADS)

    Lewis, Clayton S.; Allen, L. Niel

    2017-03-01

    Absent local weather stations, a gridded weather dataset can provide information useful for water management in irrigated areas including potential crop evapotranspiration calculations. In estimating crop irrigation requirements and surface evaporation in Utah, United States of America, methodology and software were developed using the ASCE Standardized Penman-Monteith Reference Evapotranspiration equation with input climate drivers from the North American Land Data Assimilation System (NLDAS) gridded weather forcing dataset and a digital elevation model. A simple procedure was devised to correct bias in NLDAS relative humidity and air temperature data based on comparison to weather data from ground stations. Potential evapotranspiration was calculated for 18 crops (including turfgrass), wetlands (large and narrow), and open water evaporation (deep and shallow) by multiplying crop coefficient curves to reference evapotranspiration with annual curve dates set by summation of Hargreaves evapotranspiration, cumulative growing degree days, or number of days. Net potential evapotranspiration was calculated by subtracting effective precipitation estimates from the Daymet gridded precipitation dataset. Analysis of the results showed that daily estimated potential crop evapotranspiration from the model compared well with estimates from electronic weather stations (1980-2014) and with independently calculated potential crop evapotranspiration in adjacent states. Designed for this study but open sourced for other applications, software entitled GridET encapsulated the GIS-based model that provided data download and management, calculation of reference and potential crop evapotranspiration, and viewing and analysis tools. Flexible features in GridET allows a user to specify grid resolution, evapotranspiration equations, cropping information, and additional datasets with the output being transferable to other GIS software.

  7. Spatiotemporal Variations of Reference Crop Evapotranspiration in Northern Xinjiang, China

    PubMed Central

    Lv, Xin; Lin, Hai-rong

    2014-01-01

    To set up a reasonable crop irrigation system in the context of global climate change in Northern Xinjiang, China, reference crop evapotranspiration (ET0) was analyzed by means of spatiotemporal variations. The ET0 values from 1962 to 2010 were calculated by Penman-Monteith formula, based on meteorological data of 22 meteorological observation stations in the study area. The spatiotemporal variations of ET0 were analyzed by Mann-Kendall test, Morlet wavelet analysis, and ArcGIS spatial analysis. The results showed that regional average ET0 had a decreasing trend and there was an abrupt change around 1983. The trend of regional average ET0 had a primary period about 28 years, in which there were five alternating stages (high-low-high-low-high). From the standpoint of spatial scale, ET0 gradually increased from the northeast and southwest toward the middle; the southeast and west had slightly greater variation, with significant regional differences. From April to October, the ET0 distribution significantly influenced the distribution characteristic of annual ET0. Among them sunshine hours and wind speed were two of principal climate factors affecting ET0. PMID:25254259

  8. Spatiotemporal variations of reference crop evapotranspiration in Northern Xinjiang, China.

    PubMed

    Wang, Jian; Lv, Xin; Wang, Jiang-li; Lin, Hai-rong

    2014-01-01

    To set up a reasonable crop irrigation system in the context of global climate change in Northern Xinjiang, China, reference crop evapotranspiration (ET0) was analyzed by means of spatiotemporal variations. The ET0 values from 1962 to 2010 were calculated by Penman-Monteith formula, based on meteorological data of 22 meteorological observation stations in the study area. The spatiotemporal variations of ET0 were analyzed by Mann-Kendall test, Morlet wavelet analysis, and ArcGIS spatial analysis. The results showed that regional average ET0 had a decreasing trend and there was an abrupt change around 1983. The trend of regional average ET0 had a primary period about 28 years, in which there were five alternating stages (high-low-high-low-high). From the standpoint of spatial scale, ET0 gradually increased from the northeast and southwest toward the middle; the southeast and west had slightly greater variation, with significant regional differences. From April to October, the ET0 distribution significantly influenced the distribution characteristic of annual ET0. Among them sunshine hours and wind speed were two of principal climate factors affecting ET0.

  9. Estimating evapotranspiration of reference crops using the remote sensing approach

    NASA Astrophysics Data System (ADS)

    Payero, Jose Oscar

    For this study, seasonal meteorological and multispectral measurements were made over grass and alfalfa fields at Kimberly, Idaho, with the purpose of assessing the validity of the remote sensing method for the determination of evapotranspiration (ET) of reference crops and to establish relationships to derive ET calculation parameters from remotely sensed data. Meteorological data were obtained with the Bowen ratio method, and a new procedure was first developed to validate these data. Empirical equations were derived to estimate diurnal variation of soil heat flux. Relationships were also developed to estimate plant height from remotely sensed information. Also, a methodology to obtain surface albedo, using a variable (P/T) ratio, was described and applied. The (P/T) ratio is the fraction of the total reflected short wave radiation sensed by discrete radiometer bands. The effects of using remotely sensed aerodynamic temperature and wind-speed-corrected roughness length were evaluated. Also, different methods to correct for atmospheric stability, and to extrapolate daily ET values from instantaneous measurements were compared. It was found that the performance of the remote sensing method for estimating evapotranspiration was a function of the evaporative ratio (ER), which is the ratio of the latent heat flux to available energy. For ER ≤ 1.2, the instantaneous noon sensible and latent heat fluxes obtained with the remote sensing method compared very well with those obtained using the Bowen ratio method. On the other hand, for ER > 1.2 the method was not useful. Aerodynamic temperature corrections and the use of wind- corrected roughness lengths did not improve the results. Stability correction was only necessary when the aerodynamic resistance values were above 100 seconds per meter. None of several methods to extrapolate daily ET values from instantaneous measurements performed acceptably under the advective conditions of Kimberly.

  10. Nodal Network Modelling by Integrating Remote Sensing Derived Actual Evapotranspiration with Spatial Water Balance in a Demand Driven Irrigation System

    NASA Astrophysics Data System (ADS)

    Ullah, Kaleem; Hafeez, Mohsin; Sixsmith, Josh; Faux, Ralph

    2010-05-01

    The long-term sustainability of water for agriculture is in doubt in many regions of the world. The major withdrawals of water are for agriculture, industry, and domestic consumption. Irrigated agriculture is major consumer of fresh water, but a large part of the water devour for irrigation is wasted due to poor management of irrigation systems. Improving water management in irrigated areas and assessment of irrigation performance are critical activities for this endeavour. These activities are needed not only to improve water productivity, but also to increase the sustainability of irrigated agriculture and improving the irrigation efficiency. The improvement of the water use efficiency entail the complete understanding of various components of water balances such as rainfall, surface water, groundwater and evapotranspiration (ET). Evapotranspiration is the overriding aspect of water balance at farm to catchment scale. Many models have been used to measure the Evapotranspiration rate, either empirical or functional. The major disadvantage of this approach is that most methods generate only point values, resulting in estimates that are not representative of large areas. These methods are based on crop factors under ideal conditions and cannot therefore represent actual crop ET. Satellite remote sensing is a powerful mean to estimate ET over various spatial and temporal scales. The use of remote sensing techniques to estimate ET is achieved by solving the energy balance thermodynamics fluxes at the surface of the earth. For improved irrigation system management and operation, a holistic approach of integrating remote sensing derived ET from SAM-ET (spatial algorithm for mapping evapotranspiration) algorithm, for Australian agro-ecosystem with spatial water balance by using nodal network model was applied to evaluate agricultural water management in Coleambally Irrigation Area (CIA), New South Wales, Australia. It covers approximately 79,000 ha of intensive

  11. Evapotranspiration and crop coefficients for irrigated sunflower in the southern high plains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower (Helianthus annuus L.) is diverse crop grown for oil or confectionary uses in the Southern High Plains often under irrigation. Crop water use (evapotranspiration or ET) was measured in 2009 and 2011 in two 4-ha fields using two precision 9 m**2 weighing lysimeters containing 2.3-m deep mo...

  12. Spatio-temporal Characteristics of Actual Evapotranspiration Trends in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.; Funk, C. C.; Michaelsen, J.

    2010-12-01

    Actual evapotranspiration (AET) is an important moisture flux linking the Earth’s surface to the atmospheric hydrologic cycle. Global warming is expected to intensify this cycle, leading to moisture deficits over the sub-tropics, which will influence climate at higher latitudes. The spatio-temporal characterization of tropical AET is critical to understanding regional and global climate. To date, many studies on the temporal characteristics of AET across sub-Saharan Africa have employed vegetation-based indices derived from satellite imagery. Although these studies implicitly reflect trends in AET, they quantify the magnitude of change. In this study, we used the latest developments in remote sensing and land-surface modeling to characterize the magnitude and timing of AET in sub-Saharan Africa. We considered several models were evaluated from 1981-2000 using monthly discharge and precipitation from ten sub-basins representative of hydrology in sub-Saharan Africa. Discharge data was provided by the Global Runoff Data Centre, while precipitation data was comprised of ECMWF, NCAR, NOAA/GDAS, and CMAP reanalysis fields synthesized in the Global Land Data Assimilation System (GLDAS). The AET models included the Community Land Model, Variable Infiltration Capacity (VIC) model, Noah, and two hybrids that we developed driven by a dynamic vegetation component defined in Fisher et al. 2008. The dynamic canopy components in our hybrid models were driven by the LTDR AVHRR daily corrected reflectance data over the evaluation period. The evaluation revealed that VIC was superior to the other models in capturing the magnitude and variability of runoff in the sub-basins. A trend analysis was then performed on VIC AET from 1979-2009 using standard parametric and non-parametric techniques. Linear and median trend analysis was performed on seasonal and annual AET totals to measure the magnitude of change. The analysis revealed several alarming patterns, including large and

  13. Remote Sensing of Actual Evapotranspiration at Basin Scale in the Northern Tibetan Plateau Area

    NASA Astrophysics Data System (ADS)

    Zhong, Lei; Zou, Mijun; Ma, Yaoming; Su, Zhongbo; Ma, Weiqiang; Hu, Yuanyuan; Han, Cunbo; Wang, Binbin

    2016-08-01

    Evapotranspiration(ET), as one of the most uncertain components of the water cycle, was derived in the Nagqu river basin of the northern Tibetan Plateau based on multi-sensor remote sensing data and field observations under clear-sky condition. Improved land surface albedo, improved downward shortwave radiation flux and reconstructed normalized difference vegetation index (NDVI) were coupled into the topographical enhanced surface energy balance system (TESEBS) model to estimate actual ET. The model-estimated results were compared with those determined by the combinatory method which were treated as actual ET. The results indicated that the model-estimated ET agreed well with actual ET with correlation coefficient, mean bias error and root mean square error of 0.836, 0.087 and 0.140 respectively.

  14. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

    USGS Publications Warehouse

    Glenn, E.P.; Neale, C. M. U.; Hunsaker, D.J.; Nagler, P.L.

    2011-01-01

    Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by remotely sensed vegetation indices (VI) that measured the actual status of the crop on a field-by-field basis. VIs measure the density of green foliage based on the reflectance of visible and near infrared (NIR) light from the canopy, and are highly correlated with plant physiological processes that depend on light absorption by a canopy such as ET and photosynthesis. Reflectance-based crop coefficients have now been developed for numerous individual crops, including corn, wheat, alfalfa, cotton, potato, sugar beet, vegetables, grapes and orchard crops. Other research has shown that VIs can be used to predict ET over fields of mixed crops, allowing them to be used to monitor ET over entire irrigation districts. VI-based crop coefficients can help reduce agricultural water use by matching irrigation rates to the actual water needs of a crop as it grows instead of to a modeled crop growing under optimal conditions. Recently, the concept has been applied to natural ecosystems at the local, regional and continental scales of measurement, using time-series satellite data from the MODIS sensors on the Terra satellite. VIs or other visible-NIR band algorithms are combined with meteorological data to predict ET in numerous biome types, from deserts, to arctic tundra, to tropical rainforests. These methods often closely match ET measured on the ground at the global FluxNet array of eddy covariance moisture and carbon flux towers. The primary advantage of VI methods for estimating ET is that transpiration is closely related to radiation absorbed by the plant canopy, which is closely related to VIs. The primary disadvantage is that they cannot capture stress effects or soil

  15. Integration of Remote Sensing derived Actual Evapotranspiration with Meteorological Data for Real Time Demand Forecasting in Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Ullah, M. K.; Hafeez, M. M.; Chemin, Y.; Faux, R.; Sixsmith, J.

    2010-12-01

    Irrigated agriculture is major consumer of fresh water, but a large part of the water devour for irrigation is wasted due to poor management of irrigation systems. Improving water management in irrigated areas require the analysis of real time water demand in order to determine the possibilities in which it may be modified and rationalised. Real time water demand information in irrigated areas is a key for planning about sustainable use of irrigation water. These activities are needed not only to improve water productivity, but also to increase the sustainability of irrigated agriculture by saving irrigation water. Demand forecasting entail the complete understanding of spatial and expected temporal variability of metrological parameters and evapotranspiration (ET). ET is the overriding aspect for irrigation demand forecasting at farm to catchment scale. Many models have been used to measure the ET rate, either empirical or functional. The major disadvantage of this approach is that most methods generate only point values, resulting in estimates that are not representative of large areas. These methods are based on crop factors under ideal conditions and cannot therefore represent actual crop ET. Satellite remote sensing is a powerful mean to estimate ET over various spatial and temporal scales. For improved irrigation system management and operation, a holistic approach of integrating remote sensing derived ET from SAM-ET (spatial algorithm for mapping ET) algorithm, for Australian agro-ecosystem, with forecasted meteorological data and field application loss functions for major crops were used to forecast actual water demand in Coleambally Irrigation Area (CIA), New South Wales, Australia. It covers approximately 79,000 ha of intensive irrigation and comprise of number of secondary and tertiary canals. In order to capture the spatial variability, CIA has been divided into 22 nodes based on direction of flow and connectivity. All hydrological data of inflow (i

  16. Evaluation of SEBS for estimation of actual evapotranspiration using ASTER satellite data for irrigation areas of Australia

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Hafeez, Mohsin; Ishikawa, Hirohiko; Ma, Yaoming

    2013-05-01

    Spatial knowledge of land surface evapotranspiration (ET) is of prime interest for environmental applications, such as optimizing irrigation water use, irrigation system performance, crop water deficit, drought mitigation strategies, and accurate initialization of climate prediction models especially in arid and semiarid catchments where water shortage is a critical problem. The recent drought in Australia and concerns about climate change have highlighted the need to manage water resources more sustainably especially in the Murrumbidgee catchment which utilizes bulk water for food production. This study deals with the application of a Surface Energy Balance System (SEBS) algorithm based on Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data and field observations has been proposed and tested for deriving ET over Coleambally Irrigation Area, located in the southwest of NSW, Australia. We have used 12 ASTER scenes covering the time period of 2002, 2003, 2004, 2005, 2006, and 2009 for estimating the actual ET over the study area. To validate the proposed methodology, the ground-measured ET was compared to the ASTER-derived actual ET values for the study area. The derived ET value over the study area is much closer to the field measurement. From the remote sensing results and observations, the root mean square error is 0.89 and the mean absolute percentage difference is 2.87 %, which demonstrate the reasonability of SEBS ET estimation for the study area.

  17. Using eddy covariance and flux partitioning to assess basal, soil, and stress coefficients for crop evapotranspiration models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, indepe...

  18. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2016-06-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  19. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    USGS Publications Warehouse

    Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  20. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    PubMed Central

    Senay, Gabriel B.; Budde, Michael; Verdin, James P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  1. Vegetation-index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by r...

  2. Evapotranspiration and water use efficiency in maize-soybean crops in the US Midwest

    NASA Astrophysics Data System (ADS)

    Hussain, M. Z.; Hamilton, S. K.; Bhardwaj, A. K.; Basso, B.; Thelen, K.; Robertson, P.

    2015-12-01

    Evapotranspiration from maize and soybean crops is an important component of terrestrial water balance in the US Midwest. In this study we examine water use in continuous maize (corn) vs. maize-soybean rotations, with cover crops planted in some years. From 2010-14, we continuously measured growing season evapotranspiration (ET) based on daily drawdown of soil moisture content using TDR (time-domain reflectometry) probes installed throughout the root zone. Treatments included continuous maize (CM), continuous maize with cover crops (CMC) and maize-soybean rotation with cover crops (MSC), all grown without irrigation in a temperate humid climate (Michigan, USA). Cover crops were planted in the autumn after harvest of the main crop and harvested in spring prior to planting of the next main crop during 2012-2013 (2013) and 2013-2014 (2014). Four study years (2010, 2011, 2013 and 2014) had normal growing season rainfall (568, 555, 445, and 472 mm) while 2012 was an extreme drought season with a growing-season rainfall deficit of ~50% (210 mm below average). Growing season ET in CM, CMC and MSC during years of normal rainfall averaged 517, 433, and 443 mm, respectively, compared to 455, 374 and 304 mm in the 2012 drought year. Cover crop ET was inconsequential to the subsequent main crops due to abundant rainfall in the spring periods; soils held as much water as they could at the transition from cover crops to main crops. Grain yield in years of normal rainfall for CM, CMC and MSC averaged 12.6, 8.4 and 7.8 Mg ha-1, respectively, compared to 4.9, 4.0, and 4.0 Mg ha-1 in the 2012 drought year. Maximum biomass in years of normal rainfall averaged 38, 30 and 21 Mg ha-1 compared to 19, 13, and 13 Mg ha-1 in the drought year. Water use efficiencies, defined as ratio of maximum standing-stock biomass to growing season evapotranspiration, were 74, 69, and 47 kg ha-1 mm-1 for CM, CMC and MSC in years of normal rainfall, while values in the drought year were 41, 34 and 46 kg ha

  3. An Integrated Lysimeter and Satellite Imagery Approach for Estimating Crop Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Goorahoo, D.; Cassel-Sharma, F.; Johnson, L.; Melton, F. S.

    2014-12-01

    Accurate estimation of crop water requirement (CWR) is essential for the implementation efficient irrigation schedules in an effort to optimize water use efficiency. This is particularly important in the central San Joaquin Valley (SJV), California, USA, where severe droughts have accentuated the need to conserve water and improve on-farm water management. In the current study, we adopt an integrated approach for estimation of crop evapotranspiration (ETc) involving the use of weighing lysimeters and satellite imagery. In the first phase of the study with the crop lysimeter, conducted on a clay loam soil with processing tomatoes grown under sub-surface drip irrigation, observations of crop ground cover were conducted weekly and evapotranspiration (ET) data were collected daily to derive relationships between crop coefficients and fractional cover. Data collected during the first year of the study, indicted that the crop coefficients (Kc) obtained at peak season were relatively higher than those generally reported for tomatoes commonly grown in the central SJV. Overall, there was a good correlation between fractional cover and crop coefficients (r2 = 0.91), with the average peak ET and Kc values ranging from 6 to 7 mm per day and from 0.8 to 0.9, respectively. Data obtained from satellite imagery, representing relatively larger spatial measurements than the lysimeters, are being compared with the surface observations from the lysimeters and will also be discussed in our presentation.

  4. Effects of changing climate on reference crop evapotranspiration over 1961-2013 in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yao, Ning; Li, Yi; Sun, Changfeng

    2016-10-01

    To know the importance of different climate variables on reference crop evapotranspiration (ET o), a step-by-step sensitivity analysis of ET o to single, two, and multi-climate variables (C) was conducted. ET o in north, south, and entire Xinjiang Province, China, over 1961-2013 was estimated using the Penman-Monteith equation. Trends in the involved six Cs (i.e., minimum temperature—T min, average temperature—T ave, maximum temperature—T max, wind speed at 2 m—U 2, sunshine hour—n, and relative humidity—RH) were detected by the modified Mann-Kendall test. Nineteen scenarios of changed Cs were preset to obtain recalculated ET o values considering the actual trend in each C and the Pearson's correlation relationship between ET o and Cs. The results showed that ET o was mostly sensitive to T max, U 2, and n. Sensitivity of ET o to the two overlapped changes of T min and T max caused larger increases in ET o than T max and T ave, T ave and T max, T max and (-n), T max and RH, T max and (-U 2), and T min and T ave, but the overlapped changes (-U 2) and (-n) caused larger decreases in ET o than the other two C scenarios. The simultaneously increased T max, T min, T ave, and RH plus decreased U 2 and n had caused the actual decreases in ET o in Xinjiang. In general, the effects of decreased U 2 and n on decreasing ET o compensated the effects of increased T max on decreasing ET o in Xinjiang.

  5. Bowen ratio measurements above various vegetation covers and its comparison with actual evapotranspiration estimated by SoilClim model

    NASA Astrophysics Data System (ADS)

    Hlavinka, P.; Trnka, M.; Fischer, M.; Kucera, J.; Mozny, M.; Zalud, Z.

    2010-09-01

    The principle of Bowen ratio is one of the available techniques for measurements of actual evapotranspiration (ETa) as one of essential water balance fractions. The main aims of submitted study were: (i) to compare the water balance of selected crops, (ii) to compare outputs of SoilClim model with observed parameters (including ETa on Bowen ratio basis). The measurements were conducted at two experimental stations in the Czech Republic (Polkovice 49°23´ (N), 17°17´ (E), 205 m a.s.l.; Domanínek 49°32´ (N), 16°15´ (E), 544 m a.s.l.) during the years 2009 and 2010. Together with Bowen ratio the global solar radiation, radiation balance, soil heat flux, volumetric soil moisture and temperature within selected depths, precipitation and wind speed were measured. The measurements were conducted simultaneously above various covers within the same soil conditions: spring barley vs. winter wheat, spring barley vs. winter rape; grass vs. poplars; harvested field after tillage vs. harvested field after cereals without any tillage. The observed parameters from different covers were compared with SoilClim estimates. SoilClim model is modular software for water balance and soil temperature modelling and finally could be used for soil Hydric and Thermic regimes (according to USDA classification) identification. The core of SoilClim is based on modified FAO Penman-Monteith methodology. Submitted study proved the applicability of SoilClim model for ETa, soil moisture within two defined layers and soil temperature (in 0.5 m depth) estimates for various crops, covers, selected soil types and climatic conditions. Acknowledgement: We gratefully acknowledge the support of the Grant Agency of the Czech Republic (no. 521/09/P479) and the project NAZV QI91C054. The study was also supported by Research plan No. MSM6215648905 "Biological and technological aspects of sustainability of controlled ecosystems and their adaptability to climate change".

  6. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis

    NASA Astrophysics Data System (ADS)

    McMahon, T. A.; Peel, M. C.; Lowe, L.; Srikanthan, R.; McVicar, T. R.

    2013-04-01

    This guide to estimating daily and monthly actual, potential, reference crop and pan evaporation covers topics that are of interest to researchers, consulting hydrologists and practicing engineers. Topics include estimating actual evaporation from deep lakes and from farm dams and for catchment water balance studies, estimating potential evaporation as input to rainfall-runoff models, and reference crop evapotranspiration for small irrigation areas, and for irrigation within large irrigation districts. Inspiration for this guide arose in response to the authors' experiences in reviewing research papers and consulting reports where estimation of the actual evaporation component in catchment and water balance studies was often inadequately handled. Practical guides using consistent terminology that cover both theory and practice are not readily available. Here we provide such a guide, which is divided into three parts. The first part provides background theory and an outline of the conceptual models of potential evaporation of Penman, Penman-Monteith and Priestley-Taylor, as well as discussions of reference crop evapotranspiration and Class-A pan evaporation. The last two sub-sections in this first part include techniques to estimate actual evaporation from (i) open-surface water and (ii) landscapes and catchments (Morton and the advection-aridity models). The second part addresses topics confronting a practicing hydrologist, e.g. estimating actual evaporation for deep lakes, shallow lakes and farm dams, lakes covered with vegetation, catchments, irrigation areas and bare soil. The third part addresses six related issues: (i) automatic (hard wired) calculation of evaporation estimates in commercial weather stations, (ii) evaporation estimates without wind data, (iii) at-site meteorological data, (iv) dealing with evaporation in a climate change environment, (v) 24 h versus day-light hour estimation of meteorological variables, and (vi) uncertainty in evaporation

  7. Interannual covariability between actual evapotranspiration and PAL and GIMMS NDVIs of northern Asia

    USGS Publications Warehouse

    Suzuki, Rikie; Masuda, Kooiti; Dye, Dennis G.

    2007-01-01

    This study examined the covariability between interannual changes in the normalized difference vegetation index (NDVI) and actual evapotranspiration (ET). To reduce possible uncertainty in the NDVI time series, two NDVI datasets derived from Pathfinder AVHRR Land (PAL) data and the Global Inventory Monitoring and Modeling Studies (GIMMS) group were used. Analyses were conducted using data over northern Asia from 1982 to 2000. Interannual changes over 19 years in the PAL-NDVI and GIMMS-NDVI were compared with interannual changes in ET estimated from model-assimilated atmospheric data and gridded precipitation data. For both NDVI datasets, the annual maximum correlation with ET occurred in June, which is the beginning of the vegetation growing season. The PAL and GIMMS datasets showed a significant, positive correlation between interannual changes in the NDVI and ET over most of the vegetated land area in June. These results suggest that interannual changes in vegetation activity predominantly control interannual changes in ET in June. Based on analyses of interannual changes in temperature, precipitation, and the NDVI in June, the study area can be roughly divided into two regions, the warmth-dominated northernmost region and the wetness-dominated southern region, indicating that interannual changes in vegetation and the resultant interannual changes in ET are controlled by warmth and wetness in these two regions, respectively.

  8. Development and Validation of a MODIS-based Actual Evapotranspiration for Ecosystems in Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; Kim, J.

    2009-12-01

    Although remote sensing shows promise for estimating global or regional evapotranspiration (ET), direct measurement from satellite systems is still challenging due to the numerous variables required for many of the existing ET algorithms and models. However, remote sensing does provide reasonable estimates of the evaporative fraction (EF), which is defined as the ratio of ET to available energy. In the current study, spatially distributed estimates of actual evapotranspiration are pursued through estimation of EF using a simple remote sensing technique based on an Enhanced Vegetation Index (EVI) and diurnal changes in land surface temperature (LST) obtained from the MODIS AQUA platform. Combining the diurnal change in surface temperature with an interpretation of the triangular-shaped space (temperature-EVI) allows for a direct approximation of the evaporative fraction. A mean daytime potential evapotranspiration (PET) is estimated using a previously developed procedure based on the Priestley-Taylor’s equation and MODIS data products. Finally, regional estimates of actual evapotranspiration are made by combining the derived evaporative fraction and the MODIS-based PET estimates. Both estimated PET and actual ET are validated against flux tower observations in southern Arizona for 2004. Initial results show good approximation of ET in riparian zones using the satellite-based algorithms, but more uncertainty is observed in rangeland (upland) areas. Ongoing work includes improvement in the EF/ET estimation and investigating the factors controlling ET in the diverse landscapes in semi-arid regions.

  9. Soil water availability as controlling factor for actual evapotranspiration in urban soil-vegetation-systems

    NASA Astrophysics Data System (ADS)

    Thomsen, Simon; Reisdorff, Christoph; Gröngröft, Alexander; Jensen, Kai; Eschenbach, Annette

    2015-04-01

    The City of Hamburg is characterized by a large number of greens, parks and roadside trees: 600.000 trees cover about 14% of the city area, and moreover, 245.000 roadside trees can be found here. Urban vegetation is generally known to positively contribute to the urban micro-climate via cooling by evapotranspiration (ET). The water for ET is predominantly stored in the urban soils. Hence, the actual evapotranspiration (ETa) is - beside atmospheric drivers - determined by soil water availability at the soil surface and in the rooting zones of the respective vegetation. The overall aim of this study is to characterize soil water availability as a regulative factor for ETa in urban soil-vegetation systems. The specific questions addressed are: i) What is the spatio-temporal variation in soil water availability at the study sites? ii) Which soil depths are predominantly used for water uptake by the vegetation forms investigated? and iii) Which are the threshold values of soil water tension and soil water content (Θ), respectively, that limit ETa under dry conditions on both grass-dominated and tree-dominated sites? Three study areas were established in the urban region of Hamburg, Germany. We selected areas featuring both single tree stands and grass-dominated sites, both representing typical vegetation forms in Hamburg. The areas are characterized by relatively dry soil conditions. However, they differ in regard to soil water availability. At each area we selected one site dominated by Common Oak (Quercus ruber L.) with ages from 40 to 120 years, and paired each oak tree site with a neighboring grass-dominated site. All field measurements were performed during the years 2013 and 2014. At each site, we continuously measured soil water tension and Θ up to 160 cm depth, and xylem sap flux of each of three oak trees per site in a 15 min-resolution. Furthermore, we measured soil hydraulic properties as pF-curve, saturated and unsaturated conductivity at all sites

  10. A coupled remote sensing and the Surface Energy Balance based algorithms to estimate actual evapotranspiration over the western and southern regions of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mahmoud, Shereif H.; Alazba, A. A.

    2016-07-01

    In countries with absolute water scarcity such as the Kingdom of Saudi Arabia (KSA), large-scale actual evapotranspiration estimation is of great concern in water use practices. Herein, spatial and temporal distribution of actual evapotranspiration (AET) in the western and southern regions of KSA during 1992-2014 was estimated using the SEBAL model with field observations. Zonal statistics for each land use-cover type were also identified, in order to understand their effects on water consumption. In addition, daily and seasonal water consumption for major crops was computed. Results revealed a gradual increase in monthly AET values from January to April and subsequent decline from May to December. The maximum monthly AET values were observed for irrigated cropland in southwestern, central, and southeastern regions of Asir Province, central and southwestern regions of Al-Baha Province, central and the plains region of Jazan Province, southern portion of Makkah Province, and limited areas in the northern regions of Madinah Province. The annual AET ranged from 418.8 to 3442.3 mm yr-1. The normal distribution of mean annual AET values ranged from 717 to 1020 mm yr-1. Forty-two percent of the study area had an annual AET that ranged from 717 to 1020 mm yr-1. The second highest range of frequencies was concentrated around 1020-1322 mm yr-1, representing the majority of agricultural land. The consumptive water use of the different land cover types in study area indicated that irrigated cropland which occupied 14.6% of the study area had AET rates much higher than other land uses. Water bodies are the next highest, with forest and shrubland and sparse vegetation slightly lower, and very low AET rates from bare soil. Daily and seasonal water consumption of major cropping systems varied spatially depending on cropping practices and climatic conditions.

  11. A comparison of two downscaling procedures to increase the spatial resolution of mapping actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Mahour, Milad; Tolpekin, Valentyn; Stein, Alfred; Sharifi, Ali

    2017-04-01

    This research addressed the effects of downscaling cokriging Land Surface Temperature (LST) on estimation of Actual Evapotranspiration (AET) from remote sensing images. Two procedures were followed. We first applied downscaling cokriging to a coarse resolution LST product of MODIS at 1000 m. With its outcome, daily AET of a medium spatial resolution (250 m) was obtained using the Surface Energy Balance System (SEBS). Second, we downscaled a coarse AET map to medium spatial resolution (250 m). For both procedures, the 250 m resolution MODIS NDVI product was used as a co-variable. Validation was carried out using Landsat 8 images, from which LST was derived from the thermal bands. The two procedures were applied to an agricultural area with a traditional irrigation network in Iran. We obtained an average LST value of 305.8 K as compared to a downscaled LST value of 307.0 K. Reference AET estimated with SEBS using Landsat 8 data was equal to 5.756 mm day-1, as compared with a downscaled AET value of 5.571 mm day-1. The RMSE between reference AET and downscaled AET was equal to 1.26 mm day-1 (r = 0.49) and between reference and downscaled LST to 3.67 K (r = 0.48). The study showed that AET values obtained with the two downscaling procedures were similar to each other, but that AET showed a higher spatial variability if obtained with downscaled LST. We concluded that LST had a large effect on producing AET maps from Remote Sensing (RS) images, and that downscaling cokriging was helpful to provide daily AET maps at medium spatial resolution.

  12. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales

    USGS Publications Warehouse

    Stephenson, N.L.

    1998-01-01

    Correlative approaches to understanding the climatic controls of vegetation distribution have exhibited at least two important weaknesses: they have been conceptually divorced across spatial scales, and their climatic parameters have not necessarily represented aspects of climate of broad physiological importance to plants. Using examples from the literature and from the Sierra Nevada of California, I argue that two water balance parameters-actual evapotranspiration (AET) and deficit (D)-are biologically meaningful, are well correlated with the distribution of vegetation types, and exhibit these qualities over several orders of magnitude of spatial scale (continental to local). I reach four additional conclusions. (1) Some pairs of climatic parameters presently in use are functionally similar to AET and D; however, AET and D may be easier to interpret biologically. (2) Several well-known climatic parameters are biologically less meaningful or less important than AET and D, and consequently are poorer correlates of the distribution of vegetation types. Of particular interest, AET is a much better correlate of the distributions of coniferous and deciduous forests than minimum temperature. (3) The effects of evaporative demand and water availability on a site's water balance are intrinsically different. For example, the 'dry' experienced by plants on sunward slopes (high evaporative demand) is not comparable to the 'dry' experienced by plants on soils with low water-holding capacities (low water availability), and these differences are reflected in vegetation patterns. (4) Many traditional topographic moisture scalars-those that additively combine measures related to evaporative demand and water availability are not necessarily meaningful for describing site conditions as sensed by plants; the same holds for measured soil moisture. However, using AET and D in place of moisture scalars and measured soil moisture can solve these problems.

  13. Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ke, Yinghai; Im, Jungho; Park, Seonyoung; Gong, Huili

    2017-04-01

    Continuous monitoring of actual evapotranspiration (ET) is critical for water resources management at both regional and local scales. Although the MODIS ET product (MOD16A2) provides viable sources for ET monitoring at 8-day intervals, the spatial resolution (1 km) is too coarse for local scale applications. In this study, we propose a machine learning and spatial temporal fusion (STF)-integrated approach in order to generate 8-day 30 m ET based on both MOD16A2 and Landsat 8 data with three schemes. Random forest machine learning was used to downscale MODIS 1 km ET to 30 m resolution based on nine Landsat-derived indicators including vegetation indices (VIs) and land surface temperature (LST). STF-based models including Spatial and Temporal Adaptive Reflectance Fusion Model and Spatio-Temporal Image Fusion Model were used to derive synthetic Landsat surface reflectance (scheme 1)/VIs (scheme 2)/ET (scheme 3) on Landsat-unavailable dates. The approach was tested over two study sites in the United States. The results showed that fusion of Landsat VIs produced the best accuracy of predicted ET (R2 = 0.52-0.97, RMSE = 0.47-3.0 mm/8 days and rRMSE = 6.4-37%). High density of cloud-clear Landsat image acquisitions and low spatial heterogeneity of Landsat VIs benefit the ET prediction. The downscaled 30 m ET had good agreement with MODIS ET (RMSE = 0.42-3.4 mm/8 days, rRMSE = 3.2-26%). Comparison with the in situ ET measurements showed that the downscaled ET had higher accuracy than MODIS ET.

  14. Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the U.S. Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower (Helianthus annuus L.) is diverse crop grown for oil or confectionary uses in the Southern High Plains often under irrigation. Crop water use (evapotranspiration or ET) was measured in 2009 and 2011 in two 4-ha fields using two precision 9 m**2 weighing lysimeters containing 2.3-m deep mo...

  15. An operational model to estimate hourly and daily crop evapotranspiration in hilly terrain: validation on wheat and oat crops

    NASA Astrophysics Data System (ADS)

    Rana, Gianfranco; Katerji, Nader; Ferrara, Rossana M.; Martinelli, Nicola

    2011-03-01

    In this paper, we present an operational model to estimate the actual evapotranspiration (ET) of crops cultivated on hilly terrains. This new model has the following three characteristics: (1) ET modelling is based on a Penman-Monteith (PM) type equation (Monteith 1965) where canopy resistance is simulated by following an approach already illustrated by Katerji and Perrier (Agronomie 3(6):513-521, 1983); (2) the estimation of ET, by means of the PM equation, is made by using meteorological variables simulated on sloped sites as input; (3) these variables are simulated by using simple relationships linking the variables measured at a reference site on plane to the topographic characteristics of the site (slope, orientation, altitude as difference between reference, and sloped sites). This approach presents two advantages if compared with previously proposed models: Not only computation steps are greatly simplified but also error sources due to the simulation of climatic variables in sloped sites and the ET estimation are well distinguished. This model was validated at hourly and daily scales at four sites cultivated with wheat and oats offering a wide range of slope and orientation values: a reference site on plane, site 1 (9° sloping, NW orientation, 7 m from the reference site in plane), site 2 (6°, SE, 12 m) and site 3 (1°, SE, 18 m). At hourly scale, the new model performed well at all sites studied. The observed slope of the linear relationships between estimated and measured ET values ranged between 0.93 and 1.03, with coefficients of determination, r 2, between 0.80 and 0.98. At daily scale, the slopes of the linear relationships between measured and estimated ET for the sites on plane and the sloped sites were practically the same (0.98 ± 0.01); however, the coefficient of determination r 2 observed in the site on plane was clearly greater (0.98) than that observed in the sloped sites (0.83). The presented analysis does not show any significant

  16. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis

    NASA Astrophysics Data System (ADS)

    McMahon, T. A.; Peel, M. C.; Lowe, L.; Srikanthan, R.; McVicar, T. R.

    2012-10-01

    This guide to estimating daily and monthly actual, potential, reference crop and pan evaporation covers topics that are of interest to researchers, consulting hydrologists and practicing engineers. Topics include estimating actual evaporation from deep lakes and from farm dams and for catchment water balance studies, estimating potential evaporation as input to rainfall-runoff models, and reference crop evapotranspiration for small irrigation areas, and for irrigation within large irrigation districts. Inspiration for this guide arose in response to the authors' experiences in reviewing research papers and consulting reports where estimation of the actual evaporation component in catchment and water balance studies was often inadequately handled. Practical guides using consistent terminology that cover both theory and practice are not readily available. Here we provide such a guide, which is divided into three parts. The first part provides background theory and an outline of conceptual models of potential evaporation of Penman, Penman-Monteith and Priestley-Taylor, and discussions of reference crop evaporation and then Class-A pan evaporation. The last two sub-sections in this first part include techniques to estimate actual evaporation from (i) open-surface water and (ii) landscapes and catchments (Morton and the advection-aridity models). The second part addresses topics confronting a practicing hydrologist, e.g. estimating actual evaporation for deep lakes, shallow lakes and farm dams, lakes covered with vegetation, catchments, irrigation areas and bare soil. The third part addresses six related issues (i) hard-wired evaporation estimates, (ii) evaporation estimates without wind data, (iii) at-site meteorological data, (iv) dealing with evaporation in a climate change environment, (v) 24-h versus day-light hour estimation of meteorological variables, and (vi) uncertainty in evaporation estimates. This paper is supported by supplementary material that includes

  17. Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach

    USGS Publications Warehouse

    Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.

    2013-01-01

    Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0

  18. Time Series Analysis of Remote Sensing Observations for Citrus Crop Growth Stage and Evapotranspiration Estimation

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Chakraborty, M.; Suradhaniwar, S.; Adinarayana, J.; Durbha, S. S.

    2016-06-01

    Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (http://earthexplorer.usgs.gov/). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system

  19. Assessing the performance of two models on calculating maize actual evapotranspiration in a semi-humid and drought-prone region of China

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, J. L.; Zhao, C. X.; McGiffen, M. E.; Liu, J. B.; Wang, G. D.

    2017-01-01

    The two-step and one-step models for calculating evapotranspiration of maize were evaluated in a semi-humid and drought-prone region of northern China. Data were collected in the summers of 2013 and 2014 to determine relative model accuracy in calculating maize evaopotranspiration. The two-step model predicted daily evaoptranspiration with crop coefficients proposed by FAO and crop coefficient calibrated by local field data; the one-step model predicted daily evapotranspiration with coefficients derived by other researcher and coefficients calibrated by local field data. The predicted daily evapotranspiration in 2013 and 2014 growing seasons with the above two different models was both compared with the observed evapotranspiration with eddy covariance method. Furthermore, evapotranspiration in different growth stages of 2013 and 2014 maize growing seasons was predicted using the models with the local calibrated coefficients. The results indicated that calibration of models was necessary before using them to predict daily evapotranspiration. The model with the calibrated coefficients performed better with higher coefficient of determination and index of agreement and lower mean absolute error and root mean square error than before. And the two-step model better predicted daily evapotranspiration than the one-step model in our experimental field. Nevertheless, as to prediction ET of different growth stages, there still had some uncertainty when predicting evapotranspiration in different year. So the comparisons suggested that model prediction of crop evapotranspiration was practical, but requires calibration and validation with more data. Thus, considerable improvement is needed for these two models to be practical in predicting evapotranspiration for maize and other crops, more field data need to be measured, and an in-depth study still needs to be continued.

  20. Partitioning evapotranspiration via continuous sampling of water vapor isotopes over common row crops and candidate biofuel crops.

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; Black, C. K.; Bernacchi, C.

    2014-12-01

    Global demand for renewable energy is accelerating land conversion from common row crops such as maize and soybean to cellulosic biofuel crops such as miscanthus and switchgrass. This land conversion is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. A second approach to partitioning was accomplished by subtracting transpiration measurements, obtained through sap flow sensors, from total ET, measured via eddy covariance. Preliminary results reveal that both methods compare favorably and that transpiration dominates variations in ET in miscanthus fields more so than in fields of maize.

  1. Comparison of Satellite-based Basal and Adjusted Evapotranspiration for Several California Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Lund, C.; Melton, F. S.

    2013-12-01

    There is a continuing need to develop new sources of information on agricultural crop water consumption in the arid Western U.S. Pursuant to the California Water Conservation Act of 2009, for instance, the stakeholder community has developed a set of quantitative indicators involving measurement of evapotranspiration (ET) or crop consumptive use (Calif. Dept. Water Resources, 2012). Fraction of reference ET (or, crop coefficients) can be estimated from a biophysical description of the crop canopy involving green fractional cover (Fc) and height as per the FAO-56 practice standard of Allen et al. (1998). The current study involved 19 fields in California's San Joaquin Valley and Central Coast during 2011-12, growing a variety of specialty and commodity crops: lettuce, raisin, tomato, almond, melon, winegrape, garlic, peach, orange, cotton, corn and wheat. Most crops were on surface or subsurface drip, though micro-jet, sprinkler and flood were represented as well. Fc was retrospectively estimated every 8-16 days by optical satellite data and interpolated to a daily timestep. Crop height was derived as a capped linear function of Fc using published guideline maxima. These variables were used to generate daily basal crop coefficients (Kcb) per field through most or all of each respective growth cycle by the density coefficient approach of Allen & Pereira (2009). A soil water balance model for both topsoil and root zone, based on FAO-56 and using on-site measurements of applied irrigation and precipitation, was used to develop daily soil evaporation and crop water stress coefficients (Ke, Ks). Key meteorological variables (wind speed, relative humidity) were extracted from the California Irrigation Management Information System (CIMIS) for climate correction. Basal crop ET (ETcb) was then derived from Kcb using CIMIS reference ET. Adjusted crop ET (ETc_adj) was estimated by the dual coefficient approach involving Kcb, Ke, and incorporating Ks. Cumulative ETc

  2. Development of daily temperature scenarios and their impact on paddy crop evapotranspiration in Kangsabati command area

    NASA Astrophysics Data System (ADS)

    Dhage, P. M.; Raghuwanshi, N. S.; Singh, R.; Mishra, A.

    2016-02-01

    Production of the principal paddy crop in West Bengal state of India is vulnerable to climate change due to limited water resources and strong dependence on surface irrigation. Therefore, assessment of impact of temperature scenarios on crop evapotranspiration (ETc) is essential for irrigation management in Kangsabati command (West Bengal). In the present study, impact of the projected temperatures on ETc was studied under climate change scenarios. Further, the performance of the bias correction and spatial downscaling (BCSD) technique was compared with the two well-known downscaling techniques, namely, multiple linear regression (MLR) and Kernel regression (KR), for the projections of daily maximum and minimum air temperatures for four stations, namely, Purulia, Bankura, Jhargram, and Kharagpur. In National Centers for Environmental Prediction (NCEP) and General Circulation Model (GCM), 14 predictors were used in MLR and KR techniques, whereas maximum and minimum surface air temperature predictor of CanESM2 GCM was used in BCSD technique. The comparison results indicated that the performance of the BCSD technique was better than the MLR and KR techniques. Therefore, the BCSD technique was used to project the future temperatures of study locations with three Representative Concentration Pathway (RCP) scenarios for the period of 2006-2100. The warming tendencies of maximum and minimum temperatures over the Kangsabati command area were projected as 0.013 and 0.014 °C/year under RCP 2.6, 0.015 and 0.023 °C/year under RCP 4.5, and 0.056 and 0.061 °C/year under RCP 8.5 for 2011-2100 period, respectively. As a result, kharif (monsoon) crop evapotranspiration demand of Kangsabati reservoir command (project area) will increase by approximately 10, 8, and 18 % over historical demand under RCP 2.6, 4.5, and 8.5 scenarios, respectively.

  3. Evapotranspiration (ET) data at Immokalee row crop site, Collier County, Florida, September 22, 2008 - January 8, 2009

    USGS Publications Warehouse

    Swancar, Amy

    2017-01-01

    This U.S. Geological Survey (USGS) data release consists of evapotranspiration measurements made at the USGS Immokalee row crop climate station beginning September 22, 2008 and ending January 8, 2009. Daily evapotranspiration rates corrected to a near-surface energy-budget varied from 0.1 millimeter (9/28/2008) to 3.3 millimeters (9/24/2008). The eddy-covariance method was used, with high-frequency sensors installed above an experimental field planted in green peppers to measure sensible and latent heat fluxes. Ancillary meteorological data are also included in the data set: net radiation, soil temperature and moisture, air temperature, relative humidity, wind speed and direction, and ground-water level. Data were collected at 30-minute resolution, with evapotranspiration corrected to the near-surface energy-budget at that timescale. The study was conducted at an experimental field on the University of Florida Southwest Florida Research and Education Center (SWFREC) in Immokalee, Florida (Latitude 26 27 40 North Longitude 81 26 24 West, in degrees minutes seconds, North American Datum 83, Section 20, Township 46S, Range 29E). The full data release associated with this site consists of: 1.  Immokalee row crop evapotranspiration, 30-minute data, from September 22, 2008 through January 8, 2009 (comma delimited text format) 2. Immokalee row crop evapotranspiration, daily data, from September 23, 2008 through January 7, 2009 (comma delimited text format) including an ancillary file: Vegetation and equipment photographs (zipped jpeg files).

  4. A Simple method for reference crop evapotranspiration under non-advective conditions suitable for remote sensing applications

    NASA Astrophysics Data System (ADS)

    de Bruin, Henk A. R.; Trigo, Isabel F.; Bosveld, Fred C.; Fokke Meirink, Jan

    2015-04-01

    A method is presented to estimate daily reference crop evapotranspiration (ETo) under non-advective conditions from Meteosat Second Generation (MSG) imagery. For this purpose observations of Cabauw in the Netherlands have been analyzed. Due to the climatic conditions and the local water management at this site water stress is very rare, which makes this dataset ideal to assess ETo without advection. The findings of older studies are combined to arrive at a simple formula for ETo, requiring daily global radiation and air temperature as input only. The formula is validated against independent eddy-covariance measurements of actual evapotranspiration. The bias is 3 W m-2 and the root mean square error (RMSE) 7.6 W m-2. The applied Slob-de Bruin estimate of net radiation is tested separately, yielding a bias of 1.4 W m-2 and a RMSE of 9.6 W m-2. In a next step the measured global radiation has been replaced with MSG estimates. For ETo this resulted in a bias of 1.6 W m-2 and a RMSE of 11.7 W m-2. Based on arguments used by Schmidt (1915) a reasonably sound physical justification for the proposed ETo formula is presented. This justifies application of the results outside Cabauw. However, this applies to conditions where advection can be ignored. It is pointed out that in semi-arid regions local advection cannot be ignored. Finally, the ambiguousness of the formal definition of ETo given in the FAO Irrigation and Drainage Paper No. 56 is discussed.

  5. Evaluation of Water Stress Coefficient Methods to Estimate Actual Corn Evapotranspiration in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract for Kullberg Hydrology Days: Abstract. Increased competition for water resources is placing pressure on the agricultural sector to remain profitable while reducing water use. Remote sensing techniques have been developed to monitor crop water stress and produce information for evapotranspi...

  6. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.

    PubMed

    Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang

    2015-11-01

    In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods.

  7. Use of Sharpened Land Surface Temperature for Daily Evapotranspiration Estimation over Irrigated Crops in Arid Lands

    NASA Astrophysics Data System (ADS)

    Rosas Aguilar, J.; McCabe, M. F.; Houborg, R.; Gao, F.

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  8. Evaluation of a Modified Priestly-Taylor Model for Actual Evapotranspiration in sub- Saharan Africa

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.; Michaelsen, J.; Funk, C.; Artan, G.

    2008-12-01

    Climate change and the intensification of the water cycle is an important field of study, as global warming is expected to lead to dramatic increases in the frequency and magnitude of storms, floods, and droughts worldwide. In sub-tropical Africa, it is expected that the increase in evaporation and subsequent decrease in surface runoff will increase water demand in an already climate sensitive region. Studies also show that modeled soil moisture, a surrogate for evapotranspiration (ET), can improve rainfall and streamflow forecasts in these areas. Our objective, here therefore, is to evaluate a new ET model (Fisher et al., 2008) at inter- seasonal catchment scales. The Fisher et al. (2008) model uses functional eco-physiological relationships to adjust the Priestly-Taylor formulation of potential ET. It has performed well against several flux towers at tropical, sub-tropical, and temperate latitudes (R2=0.90). Although the model was extrapolated using remote sensing and climate reanalysis data, the validation was performed using site specific monthly average net radiation (Rn), monthly surface vapor pressure, and maximum monthly surface temperature. Two additional inputs are required for the model that can be acquired from remote sensing: the monthly average normalized difference vegetation index and soil-adjusted vegetation index. The vegetation indices will be calculated from a new atmospherically corrected AVHRR dataset of global daily reflectance at 0.05° resolution (NASA Land Long Term Data Record). The climate variables will be extracted from the bias-corrected European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset at 0.05° resolution. The model will be evaluated at a seasonal timestep from 1981-1999 using cumulative runoff and lagged precipitation for seven major catchments in sub-Saharan Africa. It is expected that the highest model performance will be in areas where Rn is the dominant control on ET and advection is relatively small

  9. Remote sensing applications for estimating changes on crop evapotranspiration of the most water intensive crops, due to climate change in Cyprus

    NASA Astrophysics Data System (ADS)

    Papadavid, G.; Neocleous, D.; Stylianou, A.; Markou, M.; Kountios, G.; Hadjimitsis, D.

    2016-08-01

    Water allocation to crops, and especially to the most water intensive ones, has always been of great importance in agricultural process. Deficit or excess water irrigation quantities could create either crop health related problems or water over-consumption situation which lead to stored water reduction and toxic material depletion to deeper ground layers, respectively. In this context, and under the current conditions, where Cyprus is facing effects of climate changes, purpose of this study is basically to estimate the needed crop water requirements of the past (1995-2004) and the corresponding ones of the present (2005-2015) in order to test if there were any significant changes regarding the crop water requirements of the most water intensive trees in Cyprus. Mediterranean region has been identified as the region that will suffer the most from climate change. Thus the paper refers to effects of climate changes on crop evapotranspiration (ETc) using remotely sensed data from Landsat TM/ ETM+ / OLI employing a sound methodology used worldwide, the Surface Energy Balance Algorithm for Land (SEBAL). Though the general feeling is that of changes on climate will consequently affect ETc, the results have indicated that there is no significant effect of climate change on crop evapotranspiration, despite the fact that some climatic factors have changed. Applying Student's T-test, the mean values for the most water intensive trees in Cyprus of the 1994-2004 decade have shown no statistical difference from the mean values of 2005-2015 decade's for all the cases, concluding that the climate change taking place the last decades in Cyprus have either not affected the crop evapotranspiration or the crops have manage to adapt into the new environmental conditions through time.

  10. Potential and actual uses of zeolites in crop protection.

    PubMed

    De Smedt, Caroline; Someus, Edward; Spanoghe, Pieter

    2015-10-01

    In this review, it is demonstrated that zeolites have a potential to be used as crop protection agents. Similarly to kaolin, zeolites can be applied as particle films against pests and diseases. Their honeycomb framework, together with their carbon dioxide sorption capacity and their heat stress reduction capacity, makes them suitable as a leaf coating product. Furthermore, their water sorption capacity and their smaller particle sizes make them effective against fungal diseases and insect pests. Finally, these properties also ensure that zeolites can act as carriers of different active substances, which makes it possible to use zeolites for slow-release applications. Based on the literature, a general overview is provided of the different basic properties of zeolites as promising products in crop protection.

  11. Comparing three gap filling methods for eddy covariance crop evapotranspiration measurements within a hilly agricultural catchment

    NASA Astrophysics Data System (ADS)

    Boudhina, Nissaf; Prévot, Laurent; Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Ben Mechlia, Netij; Masmoudi, Moncef

    2015-04-01

    Hilly watersheds are widespread throughout coastal areas around the Mediterranean Basin. They experience agricultural intensification since hilly topographies allow water-harvesting techniques that compensate for rainfall storage, water being a strong limiting factor for crop production. Their fragility is likely to increase with climate change and human pressure. Within semi-arid hilly watershed conditions, evapotranspiration (ETR) is a major term of both land surface energy and water balances. Several methods allow determining ETR, based either on direct measurements, or on estimations and forecast from weather and soil moisture data using simulation models. Among these methods, eddy covariance technique is based on high-frequency measurements of fluctuations of wind speed and air temperature / humidity, to directly determine the convective fluxes between land surface and atmosphere. In spite of experimental and instrumental progresses, datasets of eddy covariance measurements often experience large portions of missing data. The latter results from energy power failure, experimental maintenance, instrumental troubles such as krypton hygrometer malfunctioning because of air humidity, or quality assessment based filtering in relation to spatial homogeneity and temporal stationarity of turbulence within surface boundary layer. This last item is all the more important as hilly topography, when combined with strong winds, tends to increase turbulence within surface boundary layer. The main objective of this study is to establish gap-filling procedures to provide complete chronicles of eddy-covariance measurements of crop evapotranspiration (ETR) within a hilly agricultural watershed. We focus on the specific conditions induced by the combination of hilly topography and wind direction, by discriminating between upslope and downslope winds. The experiment was set for three field configurations within hilly conditions: two flux measurement stations (A, B) were installed

  12. [Spatiotemporal characteristics of reference crop evapotranspiration in inland river basins of Hexi region].

    PubMed

    Lü, Xiao-Dong; Wang, He-ling; Ma, Zhong-ming

    2010-12-01

    Based on the 1961-2008 daily observation data from 17 meteorological stations in the inland river basins in Hexi region, the daily reference crop evapotranspiration (ET0) in the basins was computed by Penman-Monteith equation, and the spatiotemporal characteristics of seasonal and annual ET0 were studied by GIS and IDW inverse-distance spatial interpolation. In 1961-2008, the mean annual ET0 (700-1330 mm) increased gradually from southeast to northwest across the basins. The high value of mean annual ET0 in Shule River basin and Heihe River basin declined significantly (P < 0.05), with the climatic trend rate ranged from -53 to -10 mm (10 a)(-1), while the low value of mean annual ET0 in Shiyang River basin ascended slightly. The ET0 in the basins had a significant annual fluctuation, which centralized in Linze and decreased toward northwest and southeast. The ET0 in summer and autumn contributed most of a year, and the highest value of ET0 all the year round always appeared in Shule River basin. The climatic trend rate was in the order of summer > spring > autumn > winter. Wind speed and maximum temperature were the primary factors affecting the ET0 in the basins. Furthermore, wind speed was the predominant factor of downward trend of ET0 in Shule and Heihe basins, while maximum temperature and sunshine hours played an important role in the upward trend of ET0 in Shiyang basin.

  13. Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter.

    PubMed

    Guidi, Werther; Piccioni, Emiliano; Bonari, Enrico

    2008-07-01

    Ten-day evapotranspiration (ETc) and crop coefficient (k(c)) of willow and poplar SRC used as vegetation filter and grown under fertilised (F) and unfertilised (NF) conditions, were determined for two successive growing seasons using volumetric lysimeters. During the first growing season, total ETc observed was, respectively, 620 (NF)-1190 (F)mm in willow and 590 (NF)-725 (F) in poplar. During the second growing season, ETc showed a general increase, mainly in fertilised lysimeters where it ranged between 890 (NF)-1790 mm (F) in willow and 710 (NF)-1100 mm (NF) in poplar. kc reached in both years its maximum between the end of August and the beginning of September. In 2004 maximum kc ranged from 1.25-2.84 in willow and 1.06-1.90 in poplar, whereas in 2005 it ranged from 1.97-5.30 in willow and 1.71-4.28 in poplar. ETc seemed to be strongly correlated to plant development and mainly dependent on its nutritional status rather than on the differences between the species.

  14. Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for Common reed, Cottonwood and Peach-leaf willow in the Platte River Basin, Nebraska-USA

    NASA Astrophysics Data System (ADS)

    Irmak, S.; Kabenge, I.; Rudnick, D.; Knezevic, S.; Woodward, D.; Moravek, M.

    2013-02-01

    SummaryApplication of two-step approach of evapotranspiration (ET) crop coefficients (Kc) to "approximate" a very complex process of actual evapotranspiration (ETa) for field crops has been practiced by water management community. However, the use of Kc, and in particular the concept of growing degree days (GDD) to estimate Kc, have not been sufficiently studied for estimation of evaporative losses from riparian vegetation. Our study is one of the first to develop evapotranspiration crop coefficient (KcET) curves for mixed riparian vegetation and transpiration (TRP) crop coefficients (KcTRP) for individual riparian species as a function GDD through extensive field campaigns conducted in 2009 and 2010 in the Platte River Basin in central Nebraska, USA. KcTRP values for individual riparian vegetation species [Common reed (Phragmites australis), Cottonwood (Populus deltoids) and Peach-leaf willow (Salix amygdaloides)] were quantified from the TRP rates obtained using scaled-up canopy resistance from measured leaf-level stomatal resistance and reference evapotranspiration. The KcET and KcTRP curves were developed for alfalfa-reference (KcrET and KcrTRP) surface. The seasonal average mixed riparian plant community KcrET was 0.89 in 2009 and 1.27 in 2010. In 2009, the seasonal average KcrTRP values for Common reed, Cottonwood and Peach-leaf willow were 0.57, 0.51 and 0.62, respectively. In 2010, the seasonal average KcrTRP were 0.69, 0.62 and 0.83 for the same species, respectively. In general, TRP crop coefficients had less interannual variability than the KcrET. Response of the vegetation to flooding in 2010 played an important role on the interannual variability of KcrET values. We demonstrated good performance and reliability of developed GDD-based KcrTRP curves by using the curves developed for 2009 to predict TRP rates of individual species in 2010. Using the KcrTRP curves developed during the 2009 season, we were able to predict the TRP rates for Common reed

  15. Estimation of crops biomass and evapotranspiration from high spatial and temporal resolutions remote sensing data

    NASA Astrophysics Data System (ADS)

    Claverie, Martin; Demarez, Valérie; Duchemin, Benoît.; Ceschia, Eric; Hagolle, Olivier; Ducrot, Danielle; Keravec, Pascal; Beziat, Pierre; Dedieu, Pierre

    2010-05-01

    Carbon and water cycles are closely related to agricultural activities. Agriculture has been indeed identified by IPCC 2007 report as one of the options to sequester carbon in soil. Concerning the water resources, their consumptions by irrigated crops are called into question in view of demographic pressure. In the prospect of an assessment of carbon production and water consumption, the use of crop models at a regional scale is a challenging issue. The recent availability of high spatial resolution (10 m) optical sensors associated to high temporal resolution (1 day) such as FORMOSAT-2 and, in the future, Venµs and SENTINEL-2 will offer new perspectives for agricultural monitoring. In this context, the objective of this work is to show how multi-temporal satellite observations acquired at high spatial resolution are useful for a regional monitoring of following crops biophysical variables: leaf area index (LAI), aboveground biomass (AGB) and evapotranspiration (ET). This study focuses on three summer crops dominant in South-West of France: maize, sunflower and soybean. A unique images data set (82 FORMOSAT-2 images over four consecutive years, 2006-2009) was acquired for this project. The experimental data set includes LAI and AGB measurements over eight agricultural fields. Two fields were intensively monitored where ET flux were measured with a 30 minutes time step using eddy correlation methods. The modelisation approach is based on FAO-56 method coupled with a vegetation functioning model based on Monteith theory: the SAFY model [5]. The model operates at a daily time step model to provide estimates of plant characteristics (LAI, AGB), soil conditions (soil water content) and water use (ET). As a key linking variable, LAI is deduced from FORMOSAT-2 reflectances images, and then introduced into the SAFY model to provide spatial and temporal estimates of these biophysical variables. Most of the SAFY parameters are crop related and have been fixed according to

  16. A One-Layer Satellite Surface Energy Balance for Estimating Evapotranspiration Rates and Crop Water Stress Indexes

    PubMed Central

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (rah) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (rs) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach “Kc reflectance-based”, which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations. PMID:22389585

  17. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    PubMed

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  18. Crop Evapotranspiration in San Joaquin Valley by Landsat Reflectance-based and Energy-balance Estimation Methods

    NASA Astrophysics Data System (ADS)

    Johnson, L.

    2011-12-01

    Evapotranspiration (ET) estimates are needed to support agricultural and natural resource management. Satellite based measurements offer the potential to efficiently monitor ET over large areas. In this study, two analysis methods were applied to Landsat-5 Thematic Mapper imagery to estimate crop evapotranspiration (ETc) in California's San Joaquin Valley. The Landsat L1T images (path 42, row 35) were collected monthly during the main growing season (Apr-Nov) in 2009. In the first method, the images were transformed to surface reflectance, and subsequently to NDVI. The NDVI was used to estimate mean fractional cover of several major crop types including almond, orange, grape, cotton, corn, alfalfa, and tomato across a total of 115 fields. Prior relationships developed by weighing lysimeter were used to convert fractional cover to a crop coefficient expressing ETc relative to grass reference evapotranspiration (ETo). Measurements of ETo by the California Irrigation Management Information System (CIMIS) were then used to calculate ETc on each overpass date. These reflectance-based estimates were compared with values retrieved by the Surface Energy Balance Algorithm for Land (SEBAL). SEBAL combined spectral radiances in Landsat optical and thermal bands with CIMIS meteorological data to derive ET as a surface energy budget residual by applying radiative, aerodynamic and energy balance physics in 25 computational steps. Reasonably strong agreement resulted, with mean absolute error (MAE) between the two approaches <1 mm/d, and coefficients of determination ranging from 0.78-0.90, for most of the crop types examined. Stronger agreement was found for fields deemed by SEBAL to contain unstressed crop (observed ET at-or-near potential) during satellite overpass, with MAE reductions averaging about 30 percent and coefficients of determination largely of range 0.90-0.94.

  19. Evapotranspiration Measurement and Crop Coefficient Estimation over a Spring Wheat Farmland Ecosystem in the Loess Plateau

    PubMed Central

    Yang, Fulin; Zhang, Qiang; Wang, Runyuan; Zhou, Jing

    2014-01-01

    Evapotranspiration (ET) is an important component of the surface energy balance and hydrological cycle. In this study, the eddy covariance technique was used to measure ET of the semi-arid farmland ecosystem in the Loess Plateau during 2010 growing season (April to September). The characteristics and environmental regulations of ET and crop coefficient (Kc) were investigated. The results showed that the diurnal variation of latent heat flux (LE) was similar to single-peak shape for each month, with the largest peak value of LE occurring in August (151.4 W m−2). The daily ET rate of the semi-arid farmland in the Loess Plateau also showed clear seasonal variation, with the maximum daily ET rate of 4.69 mm day−1. Cumulative ET during 2010 growing season was 252.4 mm, and lower than precipitation. Radiation was the main driver of farmland ET in the Loess Plateau, which explained 88% of the variances in daily ET (p<0.001). The farmland Kc values showed the obvious seasonal fluctuation, with the average of 0.46. The correlation analysis between daily Kc and its major environmental factors indicated that wind speed (Ws), relative humidity (RH), soil water content (SWC), and atmospheric vapor pressure deficit (VPD) were the major environmental regulations of daily Kc. The regression analysis results showed that Kc exponentially decreased with Ws increase, an exponentially increased with RH, SWC increase, and a linearly decreased with VPD increase. An experiential Kc model for the semi-arid farmland in the Loess Plateau, driven by Ws, RH, SWC and VPD, was developed, showing a good consistency between the simulated and the measured Kc values. PMID:24941017

  20. Sensitivity analysis of monthly reference crop evapotranspiration trends in Iran: a qualitative approach

    NASA Astrophysics Data System (ADS)

    Mosaedi, Abolfazl; Ghabaei Sough, Mohammad; Sadeghi, Sayed-Hossein; Mooshakhian, Yousof; Bannayan, Mohammad

    2016-02-01

    The main objective of this study was to analyze the sensitivity of the monthly reference crop evapotranspiration (ETo) trends to key climatic factors (minimum and maximum air temperature (T max and T min), relative humidity (RH), sunshine hours (t sun), and wind speed (U 2)) in Iran by applying a qualitative detrended method, rather than the historical mathematical approach. Meteorological data for the period of 1963-2007 from five synoptic stations with different climatic characteristics, including Mashhad (mountains), Tabriz (mountains), Tehran (semi-desert), Anzali (coastal wet), and Shiraz (semi-mountains) were used to address this objective. The Mann-Kendall test was employed to assess the trends of ETo and the climatic variables. The results indicated a significant increasing trend of the monthly ETo for Mashhad and Tabriz for most part of the year while the opposite conclusion was drawn for Tehran, Anzali, and Shiraz. Based on the detrended method, RH and U 2 were the two main variables enhancing the negative ETo trends in Tehran and Anzali stations whereas U 2 and temperature were responsible for this observation in Shiraz. On the other hand, the main meteorological variables affecting the significant positive trend of ETo were RH and t sun in Tabriz and T min, RH, and U 2 in Mashhad. Although a relative agreement was observed in terms of identifying one of the first two key climatic variables affecting the ETo trend, the qualitative and the quantitative sensitivity analysis solutions did never coincide. Further research is needed to evaluate this interesting finding for other geographic locations, and also to search for the major causes of this discrepancy.

  1. Evapotranspiration measurement and crop coefficient estimation over a spring wheat Farmland ecosystem in the Loess Plateau.

    PubMed

    Yang, Fulin; Zhang, Qiang; Wang, Runyuan; Zhou, Jing

    2014-01-01

    Evapotranspiration (ET) is an important component of the surface energy balance and hydrological cycle. In this study, the eddy covariance technique was used to measure ET of the semi-arid farmland ecosystem in the Loess Plateau during 2010 growing season (April to September). The characteristics and environmental regulations of ET and crop coefficient (Kc) were investigated. The results showed that the diurnal variation of latent heat flux (LE) was similar to single-peak shape for each month, with the largest peak value of LE occurring in August (151.4 W m(-2)). The daily ET rate of the semi-arid farmland in the Loess Plateau also showed clear seasonal variation, with the maximum daily ET rate of 4.69 mm day(-1). Cumulative ET during 2010 growing season was 252.4 mm, and lower than precipitation. Radiation was the main driver of farmland ET in the Loess Plateau, which explained 88% of the variances in daily ET (p<0.001). The farmland Kc values showed the obvious seasonal fluctuation, with the average of 0.46. The correlation analysis between daily Kc and its major environmental factors indicated that wind speed (Ws), relative humidity (RH), soil water content (SWC), and atmospheric vapor pressure deficit (VPD) were the major environmental regulations of daily Kc. The regression analysis results showed that Kc exponentially decreased with Ws increase, an exponentially increased with RH, SWC increase, and a linearly decreased with VPD increase. An experiential Kc model for the semi-arid farmland in the Loess Plateau, driven by Ws, RH, SWC and VPD, was developed, showing a good consistency between the simulated and the measured Kc values.

  2. Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Yinsheng; Xu, Chong-Yu; Szilagyi, Jozsef

    2015-08-01

    Quantitative estimation of actual evapotranspiration (ETa) by in situ measurements and mathematical modeling is a fundamental task for physical understanding of ETa as well as the feedback mechanisms between land and the ambient atmosphere. However, the ETa information in the Tibetan Plateau (TP) has been greatly impeded by the extremely sparse ground observation network in the region. Approaches for estimating ETa solely from routine meteorological variables are therefore important for investigating spatiotemporal variations of ETa in the data-scarce region of the TP. Motivated by this need, the complementary relationship (CR) and Penman-Monteith approaches were evaluated against in situ measurements of ETa on a daily basis in an alpine steppe region of the TP. The former includes the Nonlinear Complementary Relationship (Nonlinear-CR) as well as the Complementary Relationship Areal Evapotranspiration (CRAE) models, while the latter involves the Katerji-Perrier and the Todorovic models. Results indicate that the Nonlinear-CR, CRAE, and Katerji-Perrier models are all capable of efficiently simulating daily ETa, provided their parameter values were appropriately calibrated. The Katerji-Perrier model performed best since its site-specific parameters take the soil water status into account. The Nonlinear-CR model also performed well with the advantage of not requiring the user to choose between a symmetric and asymmetric CR. The CRAE model, even with a relatively low Nash-Sutcliffe efficiency (NSE) value, is also an acceptable approach in this data-scarce region as it does not need information of wind speed and ground surface conditions. In contrast, application of the Todorovic model was found to be inappropriate in the dry regions of the TP due to its significant overestimation of ETa as it neglects the effect of water stress on the bulk surface resistance. Sensitivity analysis of the parameter values demonstrated the relative importance of each parameter in the

  3. Drivers of actual evapotranspiration and runoff in East Africa during the mid-Holocene: assessments from an ecosystem model

    NASA Astrophysics Data System (ADS)

    Fer, Istem; Jeltsch, Florian; Tietjen, Britta; Trauth, Martin

    2014-05-01

    Understanding the evolution and response of the hydrological cycle under changing climate is of vital importance for human populations all around the world. Especially so in regions like East Africa, where society largely depends on the availability of water and the hydrologic conditions are highly sensitive to changes in the distribution and amount of precipitation. In this endeavor, studying past hydrological changes provides us realistic scenarios and data to better understand and predict the extent of the future hydrological changes. However while studying the past, paleovegetation, which plays a pivotal role in the paleo-hydrological cycle, is difficult to determine from fossil pollen records as pollen data can provide very limited information on spatial distribution and composition of the vegetation cover. Here ecosystem models driven by paleo-climate conditions can provide spatially-extensive information on the coupled dynamics of past vegetation and hydrological measures such as actual evapotranspiration (AET), potential evapotranspiration (PET) and runoff. In this study, we looked at AET and runoff estimates of an ecosystem model as these are important elements of water transfer in the hydrological cycle and critical for water balance calculations. We applied the ecosystem model, LPJ-GUESS, for present-day with data from Climatic Research Unit CRU TS3.20 climate dataset, and for mid-Holocene (6 kyrs BP) with data from an atmosphere-ocean coupled global climate model EC-Earth. Climate data for both periods were downscaled to a 10 arc min resolution in order to better resolve the impacts of the complex topography on vegetation distribution, AET and runoff. Comparison of the simulated AET and runoff values for East Africa, show similar patterns as annual AET estimates for the period 1961-1990 by Food and Agriculture Organization of the United Nations (FAO), and with the observed runoff data from Cogley (1998), respectively. Comparison of simulated present

  4. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Muys, B.; Feyen, J.; Veroustraete, F.; Minnaert, M.; Meiresonne, L.; de Schrijver, A.

    2005-09-01

    This paper focuses on the quantification of the green - vegetation related - water flux of forest stands in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The tested approach for calculating the water use by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU) components - transpiration, soil and interception evaporation - between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000-August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L.), but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.). A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time series. With an average annual rainfall of 819 mm, the results reveal that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively). Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  5. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Muys, B.; Feyen, J.; Veroustraete, F.; Minnaert, M.; Meiresonne, L.; de Schrijver, A.

    2005-05-01

    This paper focuses on the quantification of the green - vegetation related - water flux of a forest stand in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The approach tested for calculating the water consumption by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU) components - transpiration, soil and interception evaporation - between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000-August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L.), but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.). A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time-series. With an average annual rainfall of 819 mm, the results show that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively). Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  6. Impacts of Reprojection and Sampling of MODIS Satellite Images on Estimating Crop Evapotranspiration Using METRIC model

    NASA Astrophysics Data System (ADS)

    Pun, M.; Kilic, A.; Allen, R.

    2014-12-01

    Landsat satellite images have been used frequently to map evapotranspiration (ET) andbiophysical variables at the field scale with surface energy balance algorithms. Although Landsat images have high spatial resolution with 30m cell size, it has limitations for real time monitoring of crop ET by providing only two to four images per month for an area, which, when encountered with cloudy days, further deteriorates the availability of images and snapshots of ET behavior. Therefore real time monitoring essentially has to include near-daily thermal satellites such as MODIS/VIIRS into the time series. However, the challenge with field scale monitoring with these systems is the large size of the thermal band which is 375 m with VIIRS and 1000 meter with MODIS. To maximize the accuracy of ET estimates during infusion of MODIS products into land surface models for monitoring field scale ET, it is important to assess the geometric accuracy of the various MODIS products, for example, spatial correspondence among the 250 m red and near-infrared bands, the 500 m reflectance bands; and the 1000 m thermal bands and associated products. METRIC model was used with MODIS images to estimate ET from irrigated and rainfed fields in Nebraska. Our objective was to assess geometric accuracy of MODIS image layers and how to correctly handle these data for highest accuracy of estimated ET at the individual field scale during the extensive drought of 2012. For example, the particular tool used to subset and reproject MODIS swath images from level-1 and level-2 products (e.g., using the MRTSwath and other tools), the initial starting location (upper left hand corner), and the projection system all effect how pixel corners of the various resolution bands align. Depending on the approach used, origin of pixel corners can vary from image to image date and therefore impacts the pairing of ET information from multiple dates the consistency and accuracy of sampling ET from within field interiors

  7. On the impact of the choice of the evapotranspiration equation in a crop model : climate data error propagation and climate change impact projection

    NASA Astrophysics Data System (ADS)

    Ramarohetra, J.; Sultan, B.

    2013-12-01

    As it enables the understanding and the quantification of the transfer of water in ecosystems and from ecosystems to the atmosphere, evapotranspiration is a key component to assess climate impact on hydrology and agriculture. In crop models, the estimation of the evapotranspiration rate requires first calculating potential or reference evapotranspiration from climate data. To compute reference evapotranspiration different formulas requiring more or less climate data are used. The choice of the formulation of this key process is very likely to have an impact on calculated crop yield. The FAO recommends using the Penman-Monteith (PM) equation if all the climate data required for this equation are available and using Hargreaves (H) equation when climate data, especially net radiation, are missing. The Priestley-Taylor equation is also widely used in crop models. Which of these equations is the most accurate when all the climate data required are available but contain errors ? Does the choice of the evapotranspiration equation have an impact on crop yield projection in a context of climate change ? Does the use of some equations induce more pessimistic crop yield projection ? We studied the impact of the reference evapotranspiration equations on simulated crop yield using climate data with errors. 4 equations (PM, H and 2 versions of the Priestley-Taylor equation - PT) were tested simulating pearl millet over 12 stations in Senegal. In this case, we found that the use of a PT equation may introduce a percent mean bias error of more than -35% on simulated crop yield while it is limited to 2% when using the H equation. The influence of the evapotranspiration equation on the quantification of climate change impact on crop yield is examined applying the AgMIP C3MP protocol over the 12 stations in Senegal then analyzing ISI-AgMIP GGCM Intercomparison fast-track project outputs over the world. Our preliminary results show that crop yields computed using a PT equation are

  8. Spatial Trends in Evapotranspiration Components over Africa between 1979 and 2012 and Their Relative Influence on Crop Water Use

    NASA Astrophysics Data System (ADS)

    Estes, L. D.; Chaney, N.; Herrera-Estrada, J.; Caylor, K. K.; Sheffield, J.; Wood, E. F.

    2013-12-01

    Understanding how climate change will affect crop water use (evapotranspiration) is fundamental to understanding food security. This is particularly true in sub-Saharan Africa, where crops are largely grown in dryland systems, and agricultural production is expected to expand dramatically this century. Yet analyzing how climate change has impacted crop evapotranspiration (ET) has been hampered by the lack of long-term and spatially continuous meteorological data. Here we use a newly developed, spatio-temporally corrected meteorological dataset to 1) identify trends in individual ET components [rainfall (RF), temperature (T), specific humidity (SH), windspeed (WS), long- and shortwave radiation (LWR, SWR)] in Africa since 1979 and 2) determine the impact of these trends on crop water use. The meteorological data was developed from the Princeton University global meteorological dataset (PGF), which merges gridded station data, satellite retrievals and reanalysis to create a 1.0° resolution, 3-hourly weather dataset for the years 1948-2012. The PGF was downscaled to 0.25° resolution using bilinear interpolation, correcting T, SH, and LWR for elevation, and then merged (using state-space estimation) with meteorological station data (~1000, obtained from the Global Summary of Day database) and corrected for temporal inhomogeneities (due to instrument changes, etc) and gap-filled for missing days. This resulted in a bias-corrected gridded set of daily observations for the variables of interest over southern, East, and West Africa (Central Africa was excluded because of insufficient station observations) for the period 1979-2012, focusing on the satellite period. Using Kendall-Theil Robust line and Mann-Kendall tests, we identify and map significant (p<0.05) trends in ET components in each 0.25° cell over the time period. To estimate the crop water use impact of significant changes in ET components, we undertook a series of crop modeling experiments to isolate the

  9. Estimating Crop Water use From Remotely Sensed NDVI, Crop Models and Reference ET

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop water use can be estimated from reference evapotranspiration, ETo, calculated from weather station data, and estimated crop coefficients, Kc. However, because Kc varies with crop growth rate, planting density, and management practices, generic Kc curves often don’t match actual crop water use....

  10. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed data such as spectral reflectance and infrared canopy temperature can be used to quantify crop canopy cover and/or crop water stress, often through the use of vegetation indices calculated from the near-infrared and red bands, and stress indices calculated from the thermal wavelength...

  11. Actual evapotranspiration estimation in a Mediterranean mountain region by means of Landsat-5 TM and TERRA/AQUA MODIS imagery and Sap Flow measurements in Pinus sylvestris forest stands.

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Pons, X.; Llorens, P.

    2009-04-01

    Evapotranspiration monitoring has important implications on global and regional climate modelling, as well as in the knowledge of the hydrological cycle and in the assessment of environmental stress that affects forest and agricultural ecosystems. An increase of evapotranspiration while precipitation remains constant, or is reduced, could decrease water availability for natural and agricultural systems and human needs. Consequently, water balance methods, as the evapotranspiration modelling, have been widely used to estimate crop and forest water needs, as well as the global change effects. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute evapotranspiration at regional scales in a feasible way. Currently, the 38% of Catalonia (NE of the Iberian Peninsula) is covered by forests, and one of the most important forest species is Scots Pine (Pinus sylvestris) which represents the 18.4% of the area occupied by forests. The aim of this work is to model actual evapotranspiration in Pinus sylvestris forest stands, in a Mediterranean mountain region, using remote sensing data, and compare it with stand-scale sap flow measurements measured in the Vallcebre research area (42° 12' N, 1° 49' E), in the Eastern Pyrenees. To perform this study a set of 30 cloud-free TERRA-MODIS images and 10 Landsat-5 TM images of path 198 and rows 31 and 32 from June 2003 to January 2005 have been selected to perform evapotranspiration modelling in Pinus sylvestris forest stands. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected two different types of products which contain the remote sensing data we have used to model daily evapotranspiration, daily LST product and daily calibrated reflectances product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital

  12. [Relationships between row crop evapotranspiration and two sources- energy partition and exchange under non-water stress condition].

    PubMed

    Yu, Chan; Chaolunbagen; Gao, Ruizhong; Chai, Jianhua

    2006-05-01

    With the maize harvested for green fodder and grown at the Hunshandake sand area as test row crop,and by combining two sources- energy balance model with dual crop coefficient approach presented in FAO-56,this paper estimated the available energy partitioned into two sources, canopy and soil surface (Ac and As), and the latent and sensible heat fluxes, lambdaEc, lambdaEs, Hc and Hs. The results showed that under non-water stress condition, the interaction between Hc and lambdaEc made canopy absorbed a micro-advection to enhance transpiration expressed by latent heat flux,with the value of (lambdaE(i)c-A(i)c). The greatest enhancement of transpiration occurred at the crop development stage with leaf area index between 0.6 and 2.4, and the average of the enhancement was 4.32 MJ x m(-2) x d(-1). Soil evaporation was in progress with a rate below the available energy of soil, due to the interaction between Hc and lambdaEc under non-water stress condition, except a few days immediately after heavy rain. The evaporation rate depended on the percentage of soil available energy dissipated as latent heat flux. The average value of minimum percentage, 11.5%, occurred at mid-season stage,while that of maximum percentages,51.9%, occurred at initial stage. Latent heat fluxes were the important components of energy exchange during the process of evapotranspiration. The available energy dissipated as latent heat fluxes of the two sources during crop development, mid-season, and late season stages accounted for over 83% of the total energy.

  13. Testing an Energy Balance Model for Estimating Actual Evapotranspiration Using Remotely Sensed Data. [Hannover, West Germany barley and wheat fields

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Camillo, P. J.

    1985-01-01

    An energy-balance model is used to estimate daily evapotranspiration for 3 days for a barley field and a wheat field near Hannover, Federal Republic of Germany. The model was calibrated using once-daily estimates of surface temperatures, which may be remotely sensed. The evaporation estimates were within the 95% error bounds of independent eddy correlation estimates for the daytime periods for all three days for both sites, but the energy-balance estimates are generally higher; it is unclear which estimate is biassed. Soil moisture in the top 2 cm of soil, which may be remotely sensed, may be used to improve these evaporation estimates under partial ground cover. Sensitivity studies indicate the amount of ground data required is not excessive.

  14. Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Calvet, J. C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Buis, S.; Desfonds, V.; Bertrand, N.; Renard, D.

    2015-07-01

    Evapotranspiration has been recognized as one of the most uncertain terms in the surface water balance simulated by land surface models. In this study, the SURFEX/ISBA-A-gs (Interaction Sol-Biosphere-Atmosphere) simulations of evapotranspiration are assessed at the field scale over a 12-year Mediterranean crop succession. The model is evaluated in its standard implementation which relies on the use of the ISBA pedotransfer estimates of the soil properties. The originality of this work consists in explicitly representing the succession of crop cycles and inter-crop bare soil periods in the simulations and assessing its impact on the dynamics of simulated and measured evapotranspiration over a long period of time. The analysis focuses on key parameters which drive the simulation of ET, namely the rooting depth, the soil moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting point. A sensitivity analysis is first conducted to quantify the relative contribution of each parameter on ET simulation over 12 years. The impact of the estimation method used to retrieve the soil parameters (pedotransfer function, laboratory and field methods) on ET is then analysed. The benefit of representing the variations in time of the rooting depth and wilting point is evaluated. Finally, the propagation of uncertainties in the soil parameters on ET simulations is quantified through a Monte Carlo analysis and compared with the uncertainties triggered by the mesophyll conductance which is a key above-ground driver of the stomatal conductance. This work shows that evapotranspiration mainly results from the soil evaporation when it is continuously simulated over a Mediterranean crop succession. This results in a high sensitivity of simulated evapotranspiration to uncertainties in the soil moisture at field capacity and the soil moisture at saturation, both of which drive the simulation of soil evaporation. Field capacity was proved to be the most

  15. Sensitivity of annual and seasonal reference crop evapotranspiration to principal climatic variables

    NASA Astrophysics Data System (ADS)

    Patle, G. T.; Singh, D. K.

    2015-06-01

    Reference evapotranspiration (ET0) represents the evaporative demand of the atmosphere and depends on climatic parameters such as radiation, air temperature, humidity, and wind speed. Relative role of climatic parameter of ET0 varies from one climate to another and within the climate, and depends on the location and time. Sensitivity analysis was conducted and sensitivity coefficients were determined to evaluate the impact of principal climatic parameters on ET0 in Karnal district of India. Mean monthly ET0 and yearly ET0 from 1981 to 2011 were estimated from FAO-56 Penman-Monteith equation using the daily climate data collected from Central Soil Salinity Research Institute, Karnal. Results showed that seasonal and annual ET0 were most sensitive to maximum temperature followed by sunshine hours. However, wind speed, relative humidity, and minimum temperature had varying effect on mean ET0. After maximum temperature and sunshine hours, ET0 was more sensitive to wind speed followed by relative humidity and minimum temperature in summer. In monsoon, after maximum temperature and sunshine hours, ET0 was more sensitive to minimum temperature followed by relative humidity and wind speed. However, in winter, after maximum temperature and sunshine hours, ET0 was more sensitive to relative humidity followed by wind speed and minimum temperature. The study suggests that the climate variability would affect reference ET0; however, its impact on ET0 would be different for different parameters.

  16. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  17. Evaluation of a simple method for crop evapotranspiration partitioning and comparison of different water use efficiency approaches

    NASA Astrophysics Data System (ADS)

    Tallec, T.; Rivalland, V.; Jarosz, N.; Boulet, G.; Gentine, P.; Ceschia, E.

    2012-04-01

    In the current context of climate change, intra- and inter-annual variability of precipitation can lead to major modifications of water budgets and water use efficiencies (WUE). Obtaining greater insight into how climatic variability and agricultural practices affect water budgets and their components in croplands is, thus, important for adapting crop management and limiting water losses. The principal aims of this study were 1) to assess the contribution of different components to the agro-ecosystem water budget and 2) to analyze and compare the WUE calculated from ecophysiological (WUEplt), environmental (WUEeco) and agronomical (WUEagro) points of view for various crops during the growing season and for the annual time scale. Eddy covariance (EC) measurements of CO2 and water flux were performed on winter wheat, maize and sunflower crops at two sites in southwest France: Auradé and Lamasquère. To infer WUEplt, an estimation of plant transpiration (TR) is needed. We then tested a new method for partitioning evapotranspiration (ETR), measured by means of the EC method, into soil evaporation (E) and plant transpiration (TR) based on marginal distribution sampling (MDS). We compared these estimations with calibrated simulations of the ICARE-SVAT double source mechanistic model. The two partitioning methods showed good agreement, demonstrating that MDS is a convenient, simple and robust tool for estimating E with reasonable associated uncertainties. During the growing season, the proportion of E in ETR was approximately one-third and varied mainly with crop leaf area. When calculated on an annual time scale, the proportion of E in ETR reached more than 50%, depending on crop leaf area and the duration and distribution of bare soil within the year. WUEplt values ranged between -4.1 and -5.6 g C kg-1 H2O for maize and winter wheat, respectively, and were strongly dependent on meteorological conditions at the half-hourly, daily and seasonal time scales. When

  18. Assessment of RCM output from the ENSEMBLES RT3 project in AMMA-region: focus on Senegal actual climate reproduction and effects on simulated crop yields

    NASA Astrophysics Data System (ADS)

    Oettli, Pascal; Sultan, Benjamin; Baron, Christian; Vrac, Mathieu

    2010-05-01

    In West-Africa countries, most economies and people depend on rainfed agriculture. In this area, rainfall is highly variable and, from the period 1931-1960 to 1968-1990, the annual rainfall has decreased 15 to 40%. Since the mid 1990's, an increase in rainfall is detected, but only to reach the level of 1970's rainfall. The aim of this study is to determine if large-scale fields, interpolated at local-scale are able (i) to reproduce observed climate at station and (ii) to simulate observed crop yields. Another objective of this study is to see if a combination of dynamical and statistical downscaling methods is useful to correct biases due to scale change. For that, we use data from some synoptic stations in Senegal and simulated data provided by the European project ENSEMBLES. Among research themes (RT) of this project, one (RT3) had the responsibility for providing improved climate model tools developed in the context of regional climate models (RCMs), at spatial scales of 50km at AMMA-region. RT3 provides 15-year experiments over West Africa driven by the ERA-INTERIM reanalysis of the ECMWF. A statistical method (CDF-transform), developed to generate local cumulative distribution functions of surface climate variables from large-scale fields is used to correct biases in RCM output, due to large-scale information basically interpolated at local-scale. In the present study, a deterministic crop model, SARRA-H, is used to simulate sorghum yields for the actual period, at local scale. This crop model simulates yield attainable under water-limited conditions by simulating the soil water balance, potential and actual evapotranspiration, phenology, potential and water-limited carbon assimilation, and biomass partitioning. SARRA-H model is driven by 4 meteorological datasets, at synoptic station scale: - observations, - ERA-INTERIM, - original RCM output, - corrected RCM output.

  19. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956-2015

    NASA Astrophysics Data System (ADS)

    Fan, Junliang; Wu, Lifeng; Zhang, Fucang; Xiang, Youzhen; Zheng, Jing

    2016-11-01

    Global climate change has been an increasing challenge to agricultural ecosystems, which will significantly affect the reference crop evapotranspiration (ET0) and subsequently crop water requirements. In this study, the temporal trends and magnitudes of key climatic variables and the accompanying effects on ET0 during 1956-2015 were evaluated at 200 meteorological stations across the temperate continental zone (TCZ), temperate monsoon zone (TMZ), mountain plateau zone (MPZ), and subtropical monsoon zone (SMZ) of China. Results show that maximum and minimum temperatures have increased significantly over the past 60 years, whilst relative humidity, wind speed and sunshine hour exhibited significant decreasing trends across all climatic zones. The overall decreasing trends in annual ET0 were more pronounced than the increasing trends, whereas more increasing trends were found in spring and winter. Abrupt changes for climatic variables and ET0 series were detected in 1990s in the MPZ, while in 1980s in the other climatic zones mainly due to the aggregated emission of greenhouse gases and air pollution from energy consumption in recent decades. Relative humidity was the most sensitive climatic variable in all climatic zones except for the MPZ where ET0 was most sensitive to sunshine hour. However, ET0 had different responses to changing climatic variables in different regions and climatic conditions. The negative contribution of wind speed to the decrease in ET0 was greater than the other climatic variables in the TCZ and the TMZ, whilst the significant increase in minimum temperature and the decrease in sunshine hour contributed most to increasing ET0 in the MPZ and to decreasing ET0 in the SMZ, respectively. Although ET0 displayed a generally decreasing trend during 1956-2015, there was a significantly increasing trend from 1985 to 2015 across China except for the SMZ, especially in the arid and semi-arid zones of China during dry seasons (spring and winter). This may

  20. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison

    NASA Astrophysics Data System (ADS)

    Biggs, Trent W.; Marshall, Michael; Messina, Alex

    2016-09-01

    The surface energy balance algorithm for land (SEBAL) estimates land surface evapotranspiration (ET) from radiometric surface temperature (TR), but requires manual selection of calibration pixels, which can be impractical for mapping seasonal ET. Here pixel selection is automated and SEBAL implemented using global climate grids and satellite imagery. SEBAL is compared with the MOD16 algorithm, which uses remotely sensed data on vegetation condition to constrain reference ET from the Penman-Monteith equation. The difference between the evaporative fraction (Λ, range 0-1) from SEBAL and six eddy flux correlation towers was less than 0.10 for three of six towers, and less than 0.24 for all towers. SEBAL ET was moderately sensitive to surface roughness length and implementation over regions smaller than ˜10,000 km2 provided lower error than larger regions. Pixel selection based on TR had similar errors as those based on a vegetation index. For maize, MOD16 had lower error in mean seasonal evaporative fraction (-0.02) compared to SEBAL Λ (0.23), but MOD16 significantly underestimated the evaporative fraction from rice (-0.52) and cotton fields (-0.67) compared with SEBAL (-0.09 rice, -0.09 cotton). MOD16 had the largest error over short crops in the early growing season when vegetation cover was low but land surface was wet. Temperature-based methods like SEBAL can be automated and likely outperform vegetation-based methods in irrigated areas, especially under conditions of low vegetation cover and high soil evaporation.

  1. Airborne and ground-based remote sensing for the estimation of evapotranspiration and yield of bean, potato, and sugar beet crops

    NASA Astrophysics Data System (ADS)

    Jayanthi, Harikishan

    The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were

  2. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation)

    USGS Publications Warehouse

    Marshall, Michael T.; Thenkabail, Prasad S.; Biggs, Trent; Post, Kirk

    2016-01-01

    Evapotranspiration (ET) is an important component of micro- and macro-scale climatic processes. In agriculture, estimates of ET are frequently used to monitor droughts, schedule irrigation, and assess crop water productivity over large areas. Currently, in situ measurements of ET are difficult to scale up for regional applications, so remote sensing technology has been increasingly used to estimate crop ET. Ratio-based vegetation indices retrieved from optical remote sensing, like the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index, and Enhanced Vegetation Index are critical components of these models, particularly for the partitioning of ET into transpiration and soil evaporation. These indices have their limitations, however, and can induce large model bias and error. In this study, micrometeorological and spectroradiometric data collected over two growing seasons in cotton, maize, and rice fields in the Central Valley of California were used to identify spectral wavelengths from 428 to 2295 nm that produced the highest correlation to and lowest error with ET, transpiration, and soil evaporation. The analysis was performed with hyperspectral narrowbands (HNBs) at 10 nm intervals and multispectral broadbands (MSBBs) commonly retrieved by Earth observation platforms. The study revealed that (1) HNB indices consistently explained more variability in ET (ΔR2 = 0.12), transpiration (ΔR2 = 0.17), and soil evaporation (ΔR2 = 0.14) than MSBB indices; (2) the relationship between transpiration using the ratio-based index most commonly used for ET modeling, NDVI, was strong (R2 = 0.51), but the hyperspectral equivalent was superior (R2 = 0.68); and (3) soil evaporation was not estimated well using ratio-based indices from the literature (highest R2 = 0.37), but could be after further evaluation, using ratio-based indices centered on 743 and 953 nm (R2 = 0.72) or 428 and 1518 nm (R2 = 0.69).

  3. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    NASA Astrophysics Data System (ADS)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-08-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia's cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop

  4. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Calvet, J.-C.; Martin, E.; Moulin, S.; Marloie, O.

    2015-10-01

    Generic land surface models are generally driven by large-scale data sets to describe the climate, the soil properties, the vegetation dynamic and the cropland management (irrigation). This paper investigates the uncertainties in these drivers and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12-year Mediterranean crop succession. We evaluate the forcing data sets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN (Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie) high spatial resolution atmospheric reanalysis, the leaf area index (LAI) time courses derived from the ECOCLIMAP-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional data sets which include the ERA-Interim (ERA-I) low spatial resolution reanalysis, the Global Precipitation Climatology Centre data set (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for ERA-I (2.5 W m-2) compared to the negative biases found for SAFRAN (-10 W m-2) and the MSG satellite (-12 W m-2). Both SAFRAN and ERA-I underestimate downwelling longwave radiations by -12 and -16 W m-2, respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve Mediterranean crop phenology and underestimates the bare soil period which leads to an overall overestimation of LAI over the crop succession. The

  5. AgRISTARS: Early warning and crop condition assessment. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator); Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J.

    1981-01-01

    Emissive (10.5 to 12.5 microns) and reflective (0.55 to 1.1 microns) data for ten day scenes and infrared data for six night scenes of southern Texas were analyzed for plant cover, soil temperature, freeze, water stress, and evapotranspiration. Heat capacity mapping mission radiometric temperatures were: within 2 C of dewpoint temperatures, significantly correlated with variables important in evapotranspiration, and related to freeze severity and planting depth soil temperatures.

  6. Crop coefficients specific to multiple phenological stages for evapotranspiration-based irrigation management of onion and spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weighing lysimeters are used to measure crop water use during the growing season. By relating the water use of a specific crop to a well-watered reference crop such as grass, crop coefficients (KC) can be developed to assist in predicting crop needs using meteorological data available from weather s...

  7. Satellite-based assessment of crop coefficient for sugarcane in Maui, Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability is one of the limiting factors for sustainable production of biofuel crops. A common method for determining crop water requirement is to multiply daily potential evapotranspiration (ETo) calculated from meteorological parameters by a crop coefficient (Kc) to obtain actual crop eva...

  8. Spatial and temporal trends of reference crop evapotranspiration and its influential variables in Yangtze River Delta, eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Xu, Youpeng; Wang, Yuefeng; Wu, Lei; Li, Guang; Song, Song

    2016-09-01

    Reference crop evapotranspiration (ETo) is one of the most important links in hydrologic circulation and greatly affects regional agricultural production and water resource management. Its variation has drawn more and more attention in the context of global warming. We used the Penman-Monteith method of the Food and Agriculture Organization, based on meteorological factors such as air temperature, sunshine duration, wind speed, and relative humidity to calculate the ETo over 46 meteorological stations located in the Yangtze River Delta, eastern China, from 1957 to 2014. The spatial distributions and temporal trends in ETo were analyzed based on the modified Mann-Kendall trend test and linear regression method, while ArcGIS software was employed to produce the distribution maps. The multiple stepwise regression method was applied in the analysis of the meteorological variable time series to identify the causes of any observed trends in ETo. The results indicated that annual ETo showed an obvious spatial pattern of higher values in the north than in the south. Annual increasing trends were found at 34 meteorological stations (73.91 % of the total), which were mainly located in the southeast. Among them, 12 (26.09 % of the total) stations showed significant trends. We saw a dominance of increasing trends in the monthly ETo except for January, February, and August. The high value zone of monthly ETo appeared in the northwest from February to June, mid-south area from July to August, and southeast coastal area from September to January. The research period was divided into two stages—stage I (1957-1989) and stage II (1990-2014)—to investigate the long-term temporal ETo variation. In stage I, almost 85 % of the total stations experienced decreasing trends, while more than half of the meteorological stations showed significant increasing trends in annual ETo during stage II except in February and September. Relative humidity, wind speed, and sunshine duration were

  9. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Martin, E.; Calvet, J.-C.; Moulin, S.; Marloie, O.

    2015-02-01

    Generic land surface models are generally driven by large-scale forcing datasets to describe the climate, the surface characteristics (soil texture, vegetation dynamic) and the cropland management (irrigation). This paper investigates the errors in these forcing variables and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12 year Mediterranean crop succession. We evaluate the forcing datasets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN high spatial resolution atmospheric reanalysis, the Leaf Area Index (LAI) cycles derived from the Ecoclimap-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional datasets which includes the ERA-Interim low spatial resolution reanalysis, the Global Precipitation Climatology Centre dataset (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The methodology consists in comparing the simulation achieved using large-scale forcing datasets with the simulation achieved using local observations for each forcing variable. The relative impacts of the forcing variables on simulated ET are compared with each other and with the model uncertainties triggered by errors in soil parameters. LAI and the lack of irrigation in the simulation generate the largest mean deviations in ET between the large-scale and the local-scale simulations (equivalent to 24 and 19 months of ET over 12 yr). The climate induces smaller mean deviations equivalent to 7-8 months of ET over 12 yr. The soil texture has the lowest impact (equivalent to 3 months of ET). However, the impact of errors in the forcing variables is smaller than the impact triggered by errors in the soil parameters (equivalent to 27 months of ET). The absence of

  10. Vegetation monitoring and estimation of evapotranspiration using remote sensing-based models in heterogeneous areas with patchy natural vegetation and crops

    NASA Astrophysics Data System (ADS)

    Carpintero, Elisabet; Andreu, Ana; Gonzalez-Dugo, Maria P.

    2015-04-01

    The integration of remotely sensed data into models for estimating evapotranspiration (ET) has increased significantly in recent years, allowing the extension of these models application from point to regional scale. Remote sensors provide distributed information about the status of vegetation and allow for a regular monitoring of water consumption. Currently, there are two types of approaches for estimating ET based either on the soil water balance, or surface energy balance. The first one uses the reflectance of vegetated surfaces in the visible and near infrared regions of the electromagnetic spectrum (VIS / NIR) to characterize the vegetation and its role in the water balance (Gonzalez-Dugo and Mateos, 2008). On the other hand, thermal-based energy balance models use the radiometric surface temperature registered by the sensor on thermal infrared (TIR) bands as the primary boundary condition for estimating ET (Kustas and Norman, 1996). The aim of this work is to carry out, using Landsat-8 satellite images, a continuous monitoring of growth and evapotranspiration of the different vegetation types, both natural and cultivated, in a region located in Southern Spain during the season August 2013 / September 2014. The region, with about 13800 ha, is marked by strong contrasts in the physical environment, with significant altitudinal gradient combined with a great variety of soil types and vegetation. It is characterized by a variation of grassland, scrubs, conifers, oaks and irrigated crops. In this work, a daily soil water balance has been applied using the vegetation index-basal crop coefficient approach (RSWB). This model is based on FAO-56 methodology (Allen et al., 1998), which determines the evapotranspiration of vegetation with the concepts of crop coefficient and reference ET. The crop coefficient accounts for the influence of the plants on the evapotranspiration, considering the effect of changes in canopy biophysical properties throughout the growth cycle

  11. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational simplified surface energy balance model

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Russell L, Scott; Verdin, James P.

    2014-01-01

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. We have developed a first-ever basin-wide actual evapotranspiration (ETa) map of the CRB at the Landsat scale for water use assessment at the field level. We used the operational Simplified Surface Energy Balance (SSEBop) model for estimating ETa using 328 cloud-free Landsat images acquired during 2010. Our results show that cropland had the highest ETa among all land cover classes except for water. Validation using eddy covariance measured ETa showed that the SSEBop model nicely captured the variability in annual ETa with an overall R2 of 0.78 and a mean bias error of about 10%. Comparison with water balance-based ETa showed good agreement (R2 = 0.85) at the sub-basin level. Though there was good correlation (R2 = 0.79) between Moderate Resolution Imaging Spectroradiometer (MODIS)-based ETa (1 km spatial resolution) and Landsat-based ETa (30 m spatial resolution), the spatial distribution of MODIS-based ETa was not suitable for water use assessment at the field level. In contrast, Landsat-based ETa has good potential to be used at the field level for water management. With further validation using multiple years and sites, our methodology can be applied for regular production of ETa maps of larger areas such as the conterminous United States.

  12. Estimation of total available water in the soil layer by integrating actual evapotranspiration data in a remote sensing-driven soil water balance

    NASA Astrophysics Data System (ADS)

    Campos, Isidro; González-Piqueras, Jose; Carrara, Arnaud; Villodre, Julio; Calera, Alfonso

    2016-03-01

    The total available water (τ) by plants that could be stored in its root soil layer is a key parameter when applying soil water balance models. Since the transpiration rate of a vegetation stand could be the best proxy about the soil water content into the root soil layer, we propose a methodology for estimating τ by using as basic inputs the evapotranspiration rate of the stand and time series of multispectral imagery. This methodology is based on the inverted formulation of the soil water balance model. The inversion of the model was addressed by using an iterative approach, which optimizes the τ parameter to minimize the difference between measured and modeled ET. This methodology was tested for a Mediterranean holm oak savanna (dehesa) for which eddy covariance measurements of actual ET were available. The optimization procedure was performed by using a continuous dataset (in 2004) of daily ET measurements and 16 sets of 8 daily ET measurements, resulting in τ values of 325 and 305 mm, respectively. The use of these τ values in the RSWB model for the validation period (2005-2008) allowed us to estimate dehesa ET with a RMSE = 0.48 mm/day. The model satisfactorily reproduces the water stress process. The sensitivity of τ estimates was evaluated regarding two of the more uncertain parameters in the RSWB model. These parameters are the average fraction of τ that can be depleted from the root zone without producing moisture stress (pτ) and the soil evaporation component. The results of this analysis indicated relatively little influence from the evaporation component and the need for adequate knowledge about pτ for estimating τ.

  13. Assessing evapotranspiration, basal crop coefficient, and irrigation efficiency in production peach orchard in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate field scale observations of crop water use are necessary to maximize crop productivity with limited water resources and to parameterize regional and continental satellite models to estimate near real-time crop water use. However, rapid, continuous observations of field-scale water use in Ca...

  14. A 3-D Generalization of the Budyko Framework Captures the Mutual Interdependence Between Long-Term Mean Annual Precipitation, Actual and Potential Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Carmona, A. M.; Poveda, G.

    2012-12-01

    We study the behavior of the 3-D parameter space defined by Φ =PET/P (so-called Aridity Index), Ψ =AET/P, and Ω =AET/PET, where P denotes mean annual precipitation, and PET and AET denote mean annual potential and actual evapotranspiration, respectively. Using information from the CLIMWAT 2.0 database (www.fao.org/nr/water/infores_databases_climwat.html) for P and PET, we estimate AET using both Budyko's and Turc's equations. Our results indicate that the well-known Budyko function that relates Φ vs.Ψ corresponds to a particular bi-dimensional cross-section of a broader coupling existing between Φ, Ψ and Ω (Figure 1a), and in turn of the mutual interdependence between P, PET and AET. The behavior of the three bi-dimensional projections are clearly parameterized by the remaining ortogonal parameter, such that: (i) the relation Φ vs. Ψ is defined by physically consistent varying values of Ω (Figure 1b); (ii) the relation Ω vs. Ψ is defined by physically consistent varying values of the Aridity Index,Φ (Figure 1c), and (iii) the relation Ω vs. Φ is defined by physically consistent varying values of Ψ (Figure 1d). Interestingly, we show that Φ and Ω are related by a power law, Φ~Ω-θ, with scaling exponent θ=1.15 (R2=0.91, n=3420) for the whole world (Figure 1d). Mathematical functions that model the three bi-dimensional projections and the surface defining the interdependence between Φ, Ψ and Ω will be presented. Our results provide a new framework to understand the coupling between the long-term mean annual water and energy balances in river basins, and the hydrological effects brought about by climate change, while taking into account the mutual interdependence between the three non-dimensional parameters Φ, Ψ and Ω, and in turn between P, PET and AET. Figure 1. (a) Three-dimensional rendering of sample values of Φ =PET/P (so-called Aridity Index), Ψ =AET/P, and Ω=AET/PET. Bi-dimensional projections of: (b) relation Φ vs.

  15. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  16. Influences of removing linear and nonlinear trends from climatic variables on temporal variations of annual reference crop evapotranspiration in Xinjiang, China.

    PubMed

    Li, Yi; Yao, Ning; Chau, Henry Wai

    2017-08-15

    Reference crop evapotranspiration (ETo) is a key parameter in field irrigation scheduling, drought assessment and climate change research. ETo uses key prescribed (or fixed or reference) land surface parameters for crops. The linear and nonlinear trends in different climatic variables (CVs) affect ETo change. This research aims to reveal how ETo responds after the related CVs were linearly and nonlinearly detrended over 1961-2013 in Xinjiang, China. The ETo-related CVs included minimum (Tmin), average (Tave), and maximum air temperatures (Tmax), wind speed at 2m (U2), relative humidity (RH) and sunshine hour (n). ETo was calculated using the Penman-Monteith equation. A total of 29 ETo scenarios, including the original scenario, 14 scenarios in Group I (ETo was recalculated after removing linear trends from single or more CVs) and 14 scenarios in Group II (ETo was recalculated after removing nonlinear trends from the CVs), were generated. The influence of U2 was stronger than influences of the other CVs on ETo for both Groups I and II either in northern, southern or the entirety of Xinjiang. The weak influences of increased Tmin, Tave and Tmax on increasing ETo were masked by the strong effects of decreased U2 &n and increased RH on decreasing ETo. The effects of the trends in CVs, especially U2, on changing ETo were clearly shown. Without the general decreases of U2, ETo would have increased in the past 53years. Due to the non-monotone variations of the CVs and ETo, the results of nonlinearly detrending CVs on changing ETo in Group II should be more plausible than the results of linearly detrending CVs in Group I. The decreasing ETo led to a general relief in drought, which was indicated by the recalculated aridity index. Therefore, there would be a slightly lower risk of water utilization in Xinjiang, China.

  17. [Evaluating the response of yield and evapotranspiration of winter wheat and the adaptation by adjusting crop variety to climate change in Huang-Huai-Hai Plain].

    PubMed

    Hu, Shi; Mo, Xing-guo; Lin, Zhong-hui

    2015-04-01

    Based on the multi-model datasets of three representative concentration pathway (RCP) emission scenarios from IPCC5, the response of yield and accumulative evapotranspiration (ET) of winter wheat to climate change in the future were assessed by VIP model. The results showed that if effects of CO2 enrichment were excluded, temperature rise would lead to a reduction in the length of the growing period for wheat under the three climate change scenarios, and the wheat yield and ET presented a decrease tendency. The positive effect of atmospheric CO2 enrichment could offset most negative effect introduced by temperature rising, indicating that atmospheric CO2 enrichment would be the prime reason of the wheat yield rising in future. In 2050s, wheat yield would increase 14.8% (decrease 2.5% without CO2 fertilization) , and ET would decrease 2.1% under RCP4.5. By adoption of new crop variety with enhanced requirement on accumulative temperature, the wheat yield would increase more significantly with CO2 fertilization, but the water consumption would also increase. Therefore, cultivar breeding new irrigation techniques and agronomical management should be explored under the challenges of climate change in the future.

  18. Evapotranspiration Modeling and Measurements at Ecosystem Level

    NASA Astrophysics Data System (ADS)

    Sirca, C.; Snyder, R. L.; Mereu, S.; Kovács-Láng, E.; Ónodi, G.; Spano, D.

    2012-12-01

    In recent years, the availability of reference evapotranspiration (ETo) data is greatly increased. ETo, in conjunction with coefficients accounting for the difference between the vegetation and the reference surface, provides estimation of the actual evapotranspiration (ETa). The coefficients approach was applied in the past mainly for crops, due the lack of experimental data and difficulties to account for terrain and vegetation variability in natural ecosystems. Moreover, the assessment of ETa over large spatial scale by measurements is often time consuming, and requires several measurement points with relatively expensive and sophisticated instrumentation and techniques (e.g. eddy covariance). The Ecosystem Water Program (ECOWAT) was recently developed to help estimates of ETa of ecosystems by accounting for microclimate, vegetation type, plant density, and water stress. ETa on natural and semi-natural ecosystems has several applications, e.g. water status assessment, fire danger estimation, and ecosystem management practices. In this work, results obtained using ECOWAT to assess ETa of a forest ecosystem located in Hungary are reported. The site is a part of the EU-FP7 INCREASE project, which aims to study the effects of climate change on European shrubland ecosystems. In the site, a climate manipulation experiment was setted up to have a warming and a drought treatment (besides the control). Each treatment was replicated three times We show how the ECOWAT model performed when the predicted actual evapotranspiration is compared with actual evapotranspiration obtained from Surface Renewal method and with soil moisture measurements. ECOWAT was able to capture the differences in the water balance at treatment level, confirming its potential as a tool for water status assessment. For the Surface Renewal method, high frequency temperature data were collected to estimate the sensible heat flux (H'). The net radiation (Rn) and soil heat flux density (G) were also

  19. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  20. Using Satellite-based Evapotranspiration Estimation to Characterize Agricultural Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Myint, S. W.; Hendrickx, J. M. H.

    2014-12-01

    The satellite-based evapotranspiration (ET) model permits estimation of water consumption across space and time in a systematic way. Developing tools to monitor water availability and water use is critical to meet future water shortage challenges in the American West. This study applied METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) to 2001 Landsat imagery to estimate ET of various crop types in Phoenix. The total annual ET estimates are correlated well with the actual water use at the irrigation district level (r=0.99). We further incorporated a crop type map to estimate annual ET for the major crop types in the region, and to examine variability in crop water use among different irrigation districts. Our results show that alfalfa and double crops consume more water than other crop types with mean annual ET estimations of 1300 to 1580 mm/year, and that cotton uses more water (1162 mm/year) than corn (838 mm/year) and sorghum (829 mm/year) as expected. Crop water use varies from one irrigation district to another due to differences in soil quality, water quality, and farming practices. Results from our study suggest that the ET maps derived from METRIC can be used to quantify the spatial distribution of ET and to characterize agricultural water use by crop types at different spatial scales.

  1. Water Footprint of a Super-intensive Olive Grove Under Mediterranean Climate using Ground-based Evapotranspiration Measurements and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Nogueira, A. M.; Paço, T. A.; Silvestre, J. C.; Gonzalez, L. F.; Santos, F. L.; Pereira, L. S.

    2012-04-01

    measurements were used to calculate water footprint instead of the common procedure (using evapotranspiration estimates), this might have also introduced some differences. The potential of using remote sensing techniques for the assessment of water footprint of crops has been discussed in recent literature. It can provide estimates of actual evapotranspiration, of precipitation, of surface runoff and of irrigation needs when associated with modelling. In this study we further compare the water footprint estimates using in situ evapotranspiration measurements and water footprint estimates using remote sensing techniques. A comparison with the irrigation records for this particular olive orchard will be used to validate the approaches.

  2. Evapotranspiration Calculator Desktop Tool

    EPA Pesticide Factsheets

    The Evapotranspiration Calculator estimates evapotranspiration time series data for hydrological and water quality models for the Hydrologic Simulation Program - Fortran (HSPF) and the Stormwater Management Model (SWMM).

  3. Estimation of Evapotranspiration of Almond orchards using Remote Sensing based SEBAL model in Central Valley, California

    NASA Astrophysics Data System (ADS)

    Roy, S.; Ustin, S.; Kefauver, S. C.

    2009-12-01

    Evapotranspiration is one of the main components of the hydrologic cycle and its impact to hydrology, agriculture,forestry and environmental studies is very crucial. SEBAL (Surface Energy Balance Algorithm for Land) is an image-processing model comprised of twenty-five computational sub-models that computes actual evapotranspiration (ETa) and other energy exchanges as a component of energy balance which is used to derive the surface radiation balance equation for the net surface radiation flux (Rn) on a pixel-by-pixel basis. For this study, SEBAL method is applied to Level 1B dataset of visible, near-infrared and thermal infrared radiation channels of MASTER instrument on-board NASA-DC 8 flight. This paper uses the SEBAL method to (1) investigate the spatial distribution property of land surface temperature (Ls), NDVI, and ETa over the San Joaquin valley. (2) Estimate actual evapotranspiration of almond class on pixel-by-pixel basis in the Central valley, California. (3) Comparison of actual Evapotranspiration obtained from SEBAL model with reference evapotranspiration (Eto) using Penman Monteiths method based on the procedures and available data from California Irrigation Management Information System (CIMIS) stations. The results of the regression between extracted land surface temperature, NDVI and, evapotranspiration show negative (-) correlation. On the other hand Ls possessed a slightly stronger negative correlation with the ETa than with NDVI for Almond class. The correlation coefficient of actual ETa estimates from remote sensing with Reference ETo from Penmann Monteith are 0.8571. ETa estimated for almond crop from SEBAL were found to be almost same with the CIMIS_Penman Monteith method with bias of 0.77 mm and mean percentage difference is 0.10%. These results indicate that combination of MASTER data with surface meteorological data could provide an efficient tool for the estimation of regional actual ET used for water resources and irrigation scheduling

  4. Evapotranspiration information reporting: I. Factors governing measurement accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More and more evapotranspiration (ET) models, ET crop coefficients, and associated measurements of ET are being reported in the literature and used to develop, calibrate, and test important ET process models. Evapotranspiration data are derived from a range of measurement systems including lysimeter...

  5. The influence of cover crops and tillage on actual and potential soil erosion in an olive grove

    NASA Astrophysics Data System (ADS)

    Sastre, Blanca; Bienes, Ramón; García-Díaz, Andrés; Panagopoulos, Thomas; José Marqués, Maria

    2014-05-01

    The study was carried out in an olive grove in central Spain (South of Madrid; Tagus River Basin). In this semi-arid zone, the annual mean temperature is 13.8 ºC and the annual precipitation is 395 mm. Olive groves are planted in an erosion prone area due to steep slopes up to 15%. Soil is classified as Typic Haploxerept with clay loam texture. The land studied was formerly a vineyard, but it was replaced by the studied olive grove in 2004. It covers approximately 3 ha and olive trees are planted every 6 x 7 metres. They were usually managed by tillage to decrease weed competition. This conventional practice results in a wide surface of bare soil prone to erosion processes. In the long term soil degradation may lead to increase the desertification risk in the area. Storms have important consequences in this shallow and vulnerable soil, as more than 90 Mg ha-1 have been measured after one day with 40 mm of rainfall. In order to avoid this situation, cover crops between the olive trees were planted three years ago: sainfoin (Onobrychis viciifolia), barley (Hordeum vulgare), and purple false brome (Brachypodium distachyon), and they were compared with annual spontaneous vegetation after a minimum tillage treatment (ASV). The results regarding erosion control were positive. We observed (Oct. 2012/Sept. 2013) annual soil loss up to 11 Mg ha-1 in ASV, but this figure was reduced in the sown covers, being 8 Mg ha-1 in sainfoin treatment, 3,7 Mg ha-1 in barley treatment, and only 1,5 Mg ha-1 in false brome treatment. Those results are used to predict the risk of erosion in long term. Moreover, soil organic carbon (SOC) increased with treatments, this is significant as it reduces soil erodibility. The increases were found both in topsoil (up to 5 cm) and more in depth, in the root zone (from 5 to 10 cm depth). From higher to lower SOC values we found the false brome (1.05%), barley (0.92%), ASV (0.79%) and sainfoin (0.71%) regarding topsoil. In the root zone (5-10 cm depth

  6. Divergence of reference evapotranspiration estimates under advective tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standardized reference evapotranspiration (ET) and crop specific coefficients are frequently used to assess crop water use in irrigated agriculture. However, equations for calculating reference ET have not been well validated in more humid environments where optimal crop yields can depend on supplem...

  7. Long-term lysimeter data on evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long term crop evapotranspiration (ET) data measured using large weighing lysimeters have only been gathered in a few places in the world, yet are of great importance for ground truthing of many models of plant water use, mesoscale climate, remote sensing estimation of ET, climate change and climate...

  8. Spatial and temporal variation in evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial and temporal variation in evapotranspiration occurs at multiple scales as the result of several different spatial and temporal patterns in precipitation, soil water holding capacity, cloudiness (available energy), types of crops, and residue and tillage management practices. We have often as...

  9. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    USGS Publications Warehouse

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  10. Use of the Aquacrop model for the simulation of wheat evapotranspiration in north-eastern Tunisia

    NASA Astrophysics Data System (ADS)

    Aloui, A.; Masmoudi, M.; Jacob, F.; Ben Mechlia, N.

    2012-04-01

    Improvement of rainfed cropping systems is based on the use of rainfall water for crop transpiration. This could be achieved by the appropriate partitioning of rainfall between green water and blue water. Under semiarid conditions, the AquaCrop model which has a driving engine based on the direct link between dry matter production and crop evapotranspiration, seems to be a powerful tool to perform this task. For this purposes, an experimental work was conducted on the wheat crop, grown under various farming conditions, to determine how simulation modeling could be used to monitor canopy changes and actual crop evapotranspiration. The study area -CapBon- is located in north eastern Tunisia where rainfall is about 500 mm and ET0 around 1200mm Field monitoring consisted in regular measurements of the leaf area index (LAI), vegetation cover changes (CC) and soil moisture content profiles over the cropping season December 2009-April 2010. The usefulness of using hemispherical and standard images to determine LAI and CC was also investigated for their adoption as a standard methods for the assessment of these important parameter as input data. Results show that good estimates of LAI and CC could be obtained from digital images. Fairly reliable linear relationships were obtained between measurements on samples using a leaf area meter and indirect assessments (r2 = 0.78) Aqua-Crop simulations where also mostly accurate in estimating soil moisture temporal variations and soil water content of well textured soils. However for soils with high clay content, important differences were observed between simulation outputs and direct gravimetric measurements.

  11. Study of evapotranspiration and evaporation beneath the canopy in a buckwheat field

    NASA Astrophysics Data System (ADS)

    Yan, Haofang; Zhang, Chuan; Oue, Hiroki; Wang, Guoqing; He, Bin

    2015-11-01

    The determination of evaporation and transpiration separately is very important in improving water use efficiency and developing exact irrigation scheduling. Hourly crop evapotranspiration ( ET c) and soil evaporation ( E g) beneath the buckwheat canopy were measured using Bowen ratio energy balance method and micro-lysimeters, respectively. The total ET c and E g in the whole growth season of buckwheat were 187.4 and 72.1 mm, respectively. Crop coefficient of buckwheat plant was simulated by days after sowing (DAS) and leaf area index (LAI), the average values for four growth stages were 0.58, 0.59, 1.10, and 0.74; and soil evaporation coefficient (the ratio of soil evaporation to reference evapotranspiration) was modeled by soil water content at 5-cm depth by dividing the LAI into two stages. The relationship between the ratio of soil evaporation to actual evapotranspiration ( E g/ ET c) and LAI was decided. It was found that E g/ ET c decreased from 1 to 0.3 with the increase in LAI.

  12. The Role of Evapotranspiration on Soil Moisture Depletion in a Small Alaskan Subarctic Farm

    NASA Astrophysics Data System (ADS)

    Ruairuen, W.; Fochesatto, G. J.; Sparrow, E. B.; Schnabel, W.; Zhang, M.

    2013-12-01

    At high latitudes the period for agriculture production is very short (110 frost-free days) and strongly depends on the availability of soil water content for vegetables to grow. In this context the evapotranspiration (ET) cycle is key variable underpinning mass and energy balance modulating therefore moisture gradients and soil dryness. Evapotranspiration (ET) from field-grown crops water stress is virtually unknown in the subarctic region. Understanding ET cycles in high latitude agricultural ecosystem is essential in terms of water management and sustainability and projection of agricultural activity. To investigate the ET cycle in farming soils a field experiment was conducted in the summer of 2012 and 2013 at the University of Alaska Fairbanks Agricultural and Forestry Experiment Station combining micrometeorological and hydrological measurements. In this case experimental plots of lettuce (Lactuca sativa) plants were grown. The experiment evaluated several components of the ET cycle such as actual evapotranspiration, reference evaporation, pan evaporation as well as soil water content and temperature profiles to link them to the vegetable growing functions. We investigated the relationship of soil moisture content and crop water use across the growing season as a function of the ET cycle. Soil water depletion was compared to daily estimates of water loss by ET during dry and wet periods. We also investigated the dependence of ET on the atmospheric boundary layer flow patterns set by the synoptic large scale weather patterns.

  13. Estimation evapotranspiration over the large landscape by using remote sensing data

    NASA Astrophysics Data System (ADS)

    Guo, Jianmao; Liu, Ronghua; Guo, Qile; Fei, Dunyue; Wang, Qian; Liu, Junwei

    2014-11-01

    Evapotranspiration is the important process of plant physiological and ecological, estimating and monitoring evapotranspiration are very useful for evaluation of the influence on the crop growth situation. Determination evapotranspiration over natural surface, the utilization of satellite remote sensing is indispensable. In this paper, a new method is established based on high resolution remote sensing data(TM/ETM) combination Penman-Monteith regional daily evapotranspiration calculation model. The key of the algorithm is used to calculate the Temperature-Vegetation Coverage Index (TVCI) based on an empirical parameterisation of the relationship between surface temperature (Ts) and vegetation index (NDVI), Ts and NDVI in combination can provide information on vegetation and moisture conditions at the surface. Two methods used to calculate the TVCI. The "Universal triangle" method was used to estimate TVCI according to Carlson et al. (1995). Using a trapezoid (triangle) correlation between surface temperature and fractional vegetation cover, we constructed an improved `Actual triangle' method to estimate TVCI, then coupling the Penman- Monteith equation (1998) to estimate daily ET. Daily ET based on the `Actual triangle' methods was compared well with methods by the `soil water lost method', while daily ET based on the `Universal triangle' methods was underestimated. So, it is suitable to use `Actual triangle' method to estimate TVCI instead of `Universal triangle' method in the North China Plain even if the method was applied under different climate conditions. These results indicate that the method is feasible, and VTCI is a close real-time drought monitoring approach. It is based on satellite derived information and combination with the meteorology data, and the potential for operational application of the method is therefore large.

  14. Validating HYLARSMET: a Hydrologically Consistent Land Surface Model for Soil Moisture and Evapotranspiration Modelling over Southern Africa using Remote Sensing and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Sinclair, Scott; Pegram, Geoff; Mengitsu, Michael; Everson, Colin

    2015-04-01

    Timeous knowledge of the spatial distribution of soil moisture and evapotranspiration over a large region in fine detail has great value for coping with two weather extremes: flash floods and droughts, since the state of the wetness of the land surface has a major impact on runoff response. Also, the ability to monitor the wetness of the soil and the actual evapotranspiration over large regions, without having to laboriously take expensive samples, is a bonus for agricultural managers who need to predict crop yields. We present samples of the daily national Soil Moisture and Evapotranspiration estimates on a grid of 7300 locations centred in 12 km squares, then move on to the results of a validation study for soil moisture and evapotranspiration estimated using the PyTOPKAPI hydrological model in Land Surface Modelling mode, a system called HYLARSMET. The HYLARSMET estimates are compared with detailed evapotranspiration and soil moisture measurements made at the Baynesfield experimental farm in the KwaZulu-Natal province of South Africa, run by the University of KZN. The HYLARSMET evapotranspiration estimates compared very well with the measured estimates for the two chosen crop types, in spite of the fact that the HYLARSMET estimates were not designed to explicitly account for the crop types at each site. The same seasonality effects were evident in all 3 estimates, and there was a stronger ET relationship between HYLARSMET and the Soybean site (Pearson r = 0.81) than for Maize, (r = 0.59). The soil moisture relationship was stronger between the two in situ measured estimates (r = 0.98 at 0.5 m depth) than it was between HYLARSMET and the field estimates (r about 0.52 in both cases). Overall there was a reasonably good relationship between HYLARSMET and the in situ measurements of ET and SM at each site, indicating the value of the modelling procedure.

  15. Measuring Evapotranspiration in Urban Irrigated Lawns in Two Kansas Cities

    NASA Astrophysics Data System (ADS)

    Shonkwiler, K. B.; Bremer, D.; Ham, J. M.

    2011-12-01

    Conservation of water is becoming increasingly critical in many metropolitan areas. The use of automated irrigation systems for the maintenance of lawns and landscapes is rising and these systems are typically maladjusted to apply more water than necessary, resulting in water wastage. Provision of accurate estimates of actual lawn water use may assist urbanites in conserving water through better adjustment of automatic irrigation systems. Micrometeorological methods may help determine actual lawn water use by measuring evapotranspiration (ET) from urban lawns. From April - August of 2011, four small tripod-mounted weather stations (tripods, five total) were deployed in twelve residential landscapes in the Kansas cities of Manhattan (MHK) and Wichita (ICT) in the USA (six properties in each city). Each tripod was instrumented to estimate reference crop evapotranspiration (ETo) via the FAO-56 method. During tripod deployment in residential lawns, actual evapotranspiration (ETactual) was measured nearby using a stationary, trailer-mounted eddy covariance (EC) station. The EC station sampled well-watered turf at the K-State Rocky Ford Turfgrass Center within 5 km of the study properties in MHK, and was also deployed at a commercial sod farm 15 - 40 km from the study residences in the greater ICT metro area. The fifth tripod was deployed in the source area of the EC station to estimate ETo in conjunction with tripods in the lawns (i.e., to serve as a reference). Data from EC allowed for computation of a so-called lawn coefficient (Kc) by determining the ratio of ETo from the tripods in residential lawns to ETo from the EC station (ETo,EC); hence, Kc = ETo,tripod / ETo,EC. Using this method, ETactual can be estimated for individual tripods within a lawn. Data suggests that it may be more accurate to quantify ET within individual lawns by microclimate (i.e., determine coefficients for "shaded" and "open/unshaded" portions of a lawn). By finding microclimate coefficients

  16. Potential evapotranspiration and continental drying

    NASA Astrophysics Data System (ADS)

    Milly, P. C. D.; Dunne, K. A.

    2016-10-01

    By various measures (drought area and intensity, climatic aridity index, and climatic water deficits), some observational analyses have suggested that much of the Earth’s land has been drying during recent decades, but such drying seems inconsistent with observations of dryland greening and decreasing pan evaporation. `Offline’ analyses of climate-model outputs from anthropogenic climate change (ACC) experiments portend continuation of putative drying through the twenty-first century, despite an expected increase in global land precipitation. A ubiquitous increase in estimates of potential evapotranspiration (PET), driven by atmospheric warming, underlies the drying trends, but may be a methodological artefact. Here we show that the PET estimator commonly used (the Penman-Monteith PET for either an open-water surface or a reference crop) severely overpredicts the changes in non-water-stressed evapotranspiration computed in the climate models themselves in ACC experiments. This overprediction is partially due to neglect of stomatal conductance reductions commonly induced by increasing atmospheric CO2 concentrations in climate models. Our findings imply that historical and future tendencies towards continental drying, as characterized by offline-computed runoff, as well as other PET-dependent metrics, may be considerably weaker and less extensive than previously thought.

  17. Potential evapotranspiration and continental drying

    USGS Publications Warehouse

    Milly, Paul C.D.; Dunne, Krista A.

    2016-01-01

    By various measures (drought area and intensity, climatic aridity index, and climatic water deficits), some observational analyses have suggested that much of the Earth’s land has been drying during recent decades, but such drying seems inconsistent with observations of dryland greening and decreasing pan evaporation. ‘Offline’ analyses of climate-model outputs from anthropogenic climate change (ACC) experiments portend continuation of putative drying through the twenty-first century, despite an expected increase in global land precipitation. A ubiquitous increase in estimates of potential evapotranspiration (PET), driven by atmospheric warming, underlies the drying trends, but may be a methodological artefact. Here we show that the PET estimator commonly used (the Penman–Monteith PET for either an open-water surface or a reference crop) severely overpredicts the changes in non-water-stressed evapotranspiration computed in the climate models themselves in ACC experiments. This overprediction is partially due to neglect of stomatal conductance reductions commonly induced by increasing atmospheric CO2 concentrations in climate models. Our findings imply that historical and future tendencies towards continental drying, as characterized by offline-computed runoff, as well as other PET-dependent metrics, may be considerably weaker and less extensive than previously thought.

  18. Crop evapotranspiration and irrigation scheduling in blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are currently 139,000 ha of blueberry worldwide, including 66,000 ha of highbush [comprises northern highbush (Vaccinium corymbosum), southern highbush (Vaccinium sp.), and rabbiteye (V. virgatum formerly V. asheii) cultivars] and 73,000 ha of lowbush blueberry (V. angustifolium). The majority...

  19. Satellite-based monitoring of cotton evapotranspiration

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  20. Crop Coefficients of Some Selected Crops of Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Reddy, K. Chandrasekhar; Arunajyothy, S.; Mallikarjuna, P.

    2015-06-01

    Precise information on crop coefficients for estimating crop evapotranspiration (ETc) for regional scale irrigation planning is a major impediment in many regions. Crop coefficients suggested based on lysimeter data by earlier investigators have to be locally calibrated to account for the differences in the crop canopy under given climatic conditions. In the present study crop coefficients were derived based on reference crop evapotranspiration (ET0) estimated from Penman-Monteith equation and lysimeter measured ETc for groundnut, paddy, tobacco, sugarcane and castor crops at Tirupati, Nellore, Rajahmundry, Anakapalli and Rajendranagar centers of Andhra Pradesh respectively. Crop coefficients derived were compared with those recommended by FAO-56. The mean crop coefficients at different stages of growth were significantly different from those of FAO-56 curve though a similar trend was observed. A third order polynomial crop coefficient model has therefore been developed as a function of time (days after sowing the crop) for deriving suitable crop coefficients. The crop coefficient models suggested may be adopted to estimate crop evapotranspiration in the study area with reasonable degree of accuracy.

  1. A new remote sensing procedure for the estimation of crop water requirements

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, M.; Loukas, A.; Mylopoulos, N.

    2015-06-01

    The objective of this work is the development of a new approach for the estimation of water requirements for the most important crops located at Karla Watershed, central Greece. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used as a basis for the derivation of actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat ETM+ imagery. MODIS imagery has been also used, and a spatial downscaling procedure is followed between the two sensors for the derivation of a new NDVI product with a spatial resolution of 30 m x 30 m. GER 1500 spectro-radiometric measurements are additionally conducted during 2012 growing season. Cotton, alfalfa, corn and sugar beets fields are utilized, based on land use maps derived from previous Landsat 7 ETM+ images. A filtering process is then applied to derive NDVI values after acquiring Landsat ETM+ based reflectance values from the GER 1500 device. ETrF vs NDVI relationships are produced and then applied to the previous satellite based downscaled product in order to finally derive a 30 m x 30 m daily ETrF map for the study area. CropWat model (FAO) is then applied, taking as an input the new crop coefficient values with a spatial resolution of 30 m x 30 m available for every crop. CropWat finally returns daily crop water requirements (mm) for every crop and the results are analyzed and discussed.

  2. Cotton Evapotranspiration and Yield Variations With Canopy Temperature and Irrigation Deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton evapotranspiration and yield vary greatly with irrigation deficit, but indirectly due to cotton's indeterminant phenology. Canopy temperature can be related to yield through the crop water stress index (CWSI); and evapotranspiration can be modeled if the relationship between stress level and ...

  3. Determination of growth-state specific crop coefficients (Kc) of maize and sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ratio of crop evapotranspiration (ETC) to reference evapotranspiration (ETO) determines a crop coefficient (Kc) value, which is related to specific crop phenological development to improve transferability of the Kc values. Development of Kc can assist in predicting crop irrigation needs using mete...

  4. Determination of growth-stage specific crop coefficients (Kc) of cotton and wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of crop coefficient (Kc), the ratio of crop evapotranspiration (ETc) to reference evapotranspiration (ETo), can enhance ETc estimates in relation to specific crop phenological development. This research was conducted to determine growth-stage-specific Kc and crop water use for cotton (Go...

  5. A global sensitivity analysis of crop virtual water content

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for

  6. Evapotranspiration measurement and modeling in Mid-South irrigated rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly 75% of US rice is grown in the humid mid-South. Rice requires more water to produce than other crops (corn, soybean, and cotton). The identification of rice evapotranspiration and irrigation demand is paramount to understand regional water use and water allocation. Drill-seeded, commercial si...

  7. The effect of different evapotranspiration methods on portraying soil water dynamics and ET partitioning in a semi-arid environment in Northwest China

    NASA Astrophysics Data System (ADS)

    Yu, Lianyu; Zeng, Yijian; Su, Zhongbo; Cai, Huanjie; Zheng, Zhen

    2016-03-01

    Different methods for assessing evapotranspiration (ET) can significantly affect the performance of land surface models in portraying soil water dynamics and ET partitioning. An accurate understanding of the impact a method has is crucial to determining the effectiveness of an irrigation scheme. Two ET methods are discussed: one is based on reference crop evapotranspiration (ET0) theory, uses leaf area index (LAI) for partitioning into soil evaporation and transpiration, and is denoted as the ETind method; the other is a one-step calculation of actual soil evaporation and potential transpiration by incorporating canopy minimum resistance and actual soil resistance into the Penman-Monteith model, and is denoted as the ETdir method. In this study, a soil water model, considering the coupled transfer of water, vapor, and heat in the soil, was used to investigate how different ET methods could affect the calculation of the soil water dynamics and ET partitioning in a crop field. Results indicate that for two different ET methods this model varied concerning the simulation of soil water content and crop evapotranspiration components, but the simulation of soil temperature agreed well with lysimeter observations, considering aerodynamic and surface resistance terms improved the ETdir method regarding simulating soil evaporation, especially after irrigation. Furthermore, the results of different crop growth scenarios indicate that the uncertainty in LAI played an important role in estimating the relative transpiration and evaporation fraction. The impact of maximum rooting depth and root growth rate on calculating ET components might increase in drying soil. The influence of maximum rooting depth was larger late in the growing season, while the influence of root growth rate dominated early in the growing season.

  8. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  9. Spatial Root Zone Soil Moisture Estimation and Forecasting Using the METRIC Evapotranspiration Product and Multivariate Relevance Vector Machines

    NASA Astrophysics Data System (ADS)

    Ticlavilca, A. M.; Torres-Rua, A. F.; Bachour, R.; McKee, M.

    2013-12-01

    Limited access to spatial root zone soil moisture (SM) estimation in agricultural areas restricts enhanced water balance and irrigation scheduling estimations by irrigators and water managers, as well as other possible uses of these soil moisture estimates. Herein, we propose a methodology that allows for spatial SM estimation and forecasts at depths of 0.05, 0.30 and 0.60 m in agricultural areas at a temporal resolution ranging from the present to eight and sixteen days ahead. This methodology is based on a statistical learning model called the Multivariate Relevance Vector Machine (MVRVM). This model is known for its robustness, efficiency, and sparseness. It provides a statistically sound approach to learn from the input-output response patterns contained in the training dataset, and has proven to be superior to traditional algorithms such as Artificial Neural Networks. The MVRVM is used to build a methodology that spatially estimates and predicts current and future soil moisture state based upon historical records of soil moisture and actual crop evapotranspiration. Soil moisture measurements at three different depths acquired by the Utah Water Research Laboratory (UWRL) for agricultural lands in the Lower Sevier River Basin, Utah, are used for this study. The methodology combines the SM data at different depths along with estimates of actual crop evapotranspiration using the Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) algorithm which uses Landsat TM and ETM+ imagery records. The MVRVM produces good results at current, eight and sixteen days with a reduced computational complexity and suitable real-time implementation. Additionally, spatial bootstrapping analysis is used to evaluate over- and under-fitting and uncertainty in model estimates.

  10. Comparison of NOAA Experimental Forecasted Reference Evapotranspiration and Observed CIMIS Reference Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Krone-Davis, P.; Melton, F. S.; Snell, H. D.; Palmer, C.; Rosevelt, C.

    2012-12-01

    Consumptive use of water through evapotranspiration from irrigated agricultural crops is one of the primary uses of water resources in California and other states in the western U.S. Information on reference evapotranspiration from agricultural weather networks is currently used by water managers and agricultural producers in water use planning and irrigation scheduling. The development of forecasts of reference evapotranspiration (ETo) offers promise for improving agricultural water management and scheduling of water deliveries, especially during the warmer summer months. The NOAA National Weather Service has developed an experimental daily Forecasted Reference Evapotranspiration (FRET) data product, which provides forecasts of ETo at lead times of up to 8-days. We present a comparison between the FRET data over the California Central Valley and observations of ETo from the California Irrigation Management Information System (CIMIS), a network of 139 agricultural weather stations in California. We also present results from a comparison between FRET and the 2 km daily interpolated ETo data products from the Spatial CIMIS model over the period from September 1, 2011 to August 31, 2012.

  11. Characteristics of the complementary relationship-based evapotranspiration models

    NASA Astrophysics Data System (ADS)

    Moroizumi, T.; Nakamichi, T.; Miura, T.

    2010-12-01

    Three complementary relationship-based evapotranspiration models were applied in six urban areas of Japan. The models are the CRAE model by Morton, the AA model by Brutsaert and Stricker, and the MAA model by Otsuki et al. The characteristics of these models and the validity of their use in urban areas were evaluated by a comparison with the estimation results from rural areas located near each urban area and with the results of previous measurement studies. The main findings are as follows: 1) the amounts of estimated evapotranspiration in urban areas differed significantly, whereas the difference in the amounts in rural areas was relatively small. 2) all three models underestimated the actual evapotranspiration in urban areas from humid surfaces, like water and green spaces. 3) when evaluated comprehensively on a daily basis, however, the three models overestimated the actual evapotranspiration in urban areas. 4) the MAA model was able to estimate the actual evapotranspiration reasonably well in urban areas with errors of 30-230 mm per year. Moreover, it was found that Priestley and Taylor’s coefficient and ground heat storage flux estimation for urban areas are necessary for obtaining reliable estimations.

  12. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration’s Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ∼100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world

  13. Estimating crop water requirements of a command area using multispectral video imagery and geographic information systems

    NASA Astrophysics Data System (ADS)

    Ahmed, Rashid Hassan

    This research focused on the potential use of multispectral video remote sensing for irrigation water management. Two methods for estimating crop evapotranspiration were investigated, the energy balance estimation from multispectral video imagery and use of reflectance-based crop coefficients from multitemporal multispectral video imagery. The energy balance method was based on estimating net radiation, and soil and sensible heat fluxes, using input from the multispectral video imagery. The latent heat flux was estimated as a residual. The results were compared to surface heat fluxes measured on the ground. The net radiation was estimated within 5% of the measured values. However, the estimates of sensible and soil heat fluxes were not consistent with the measured values. This discrepancy was attributed to the methods for estimating the two fluxes. The degree of uncertainty in the parameters used in the methods made their application too limited for extrapolation to large agricultural areas. The second method used reflectance-based crop coefficients developed from the multispectral video imagery using alfalfa as a reference crop. The daily evapotranspiration from alfalfa was estimated using a nearby weather station. With the crop coefficients known for a canal command area, irrigation scheduling was simulated using the soil moisture balance method. The estimated soil moisture matched the actual soil moisture measured using the neutron probe method. Also, the overall water requirement estimated by this method was found to be in close agreement with the canal water deliveries. The crop coefficient method has great potential for irrigation management of large agricultural areas.

  14. Physically-based Methods for the Estimation of Crop Water Requirements from E.O. Optical Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The estimation of evapotranspiration (ET) represent the basic information for the evaluation of crop water requirements. A widely used method to compute ET is based on the so-called "crop coefficient" (Kc), defined as the ratio of total evapotranspiration by reference evapotranspiration ET0. The val...

  15. Riparian evapotranspiration in Nebraska

    USGS Publications Warehouse

    Hall, Brent M.; Rus, David L.

    2013-01-01

    With increasing demands being placed on the water resources of Nebraska, characterizing evapotranspiration (ET) from riparian vegetation has gained importance to water users and managers. This report summarizes and compares the results from several studies of the ET from cottonwood-dominated riparian forests, riparian grasslands, and common reed, Phragmites australis, in Nebraska. Reported results show that the highest seasonal ET amounts were associated with Phragmites australis, followed by riparian forests, with riparian grasslands experiencing the lowest total ET of the studied vegetation communities.

  16. Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains.

    PubMed

    Gowda, Prasanna H; Chávez, José L; Howell, Terry A; Marek, Thomas H; New, Leon L

    2008-08-28

    Agriculture on the Texas High Plains (THP) uses approximately 89% of groundwater withdrawals from the Ogallala Aquifer. Consequently, groundwater levels are declining faster than the recharge rate. Therefore, efficient agricultural water use is essential for economic viability and sustainability of the THP. Accurate regional evapotranspiration (ET) maps would provide valuable information on actual crop water use. In this study, METRIC (Mapping Evapotranspiration at High Resolution using Internalized Calibration), a remote sensing based ET algorithm, was evaluated for mapping ET in the THP. Two Landsat 5 Thematic Mapper images acquired on 27 June (DOY 178) and 29 July (DOY 210) 2005 were used for this purpose. The performance of the ET model was evaluated by comparing the predicted daily ET with values derived from soil moisture budget at four commercial agricultural fields. Daily ET estimates resulted with a prediction error of 12.7±8.1% (mean bias error ± root mean square error) on DOY 178 and -4.7±9.4% on DOY 210 when compared with ET derived from measured soil moisture through the soil water balance. These results are good considering the prevailing advective conditions in the THP. METRIC have the potential to be used for mapping regional ET in the THP region. However, more evaluation is needed under different agroclimatological conditions.

  17. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    USGS Publications Warehouse

    Moorhead, Jerry; Gowda, Prasanna H.; Hobbins, Michael; Senay, Gabriel; Paul, George; Marek, Thomas; Porter, Dana

    2015-01-01

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETrefmaps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.

  18. Comparing SEBAL and METRIC: Evapotranspiration Models Applied to Paramount Farms Almond Orchards

    NASA Astrophysics Data System (ADS)

    Furey, B. J.; Kefauver, S. C.

    2011-12-01

    Two evapotranspiration models were applied to almond and pistachio orchards in California. The SEBAL model, developed by W.G.M. Bastiaanssen, was programmed in MatLab for direct comparison to the METRIC model, developed by R.G. Allen and the IDWR. Remote sensing data from the NASA SARP 2011 Airborne Research Program was used in the application of these models. An evaluation of the models showed that they both followed the same pattern in evapotranspiration (ET) rates for different types of ground cover. The models exhibited a slightly different range of values and appeared to be related (non-linearly). The models both underestimated the actual ET at the CIMIS weather station. However, SEBAL overestimated the ET of the almond orchards by 0.16 mm/hr when applying its crop coefficient to the reference ET. This is compared to METRIC, which underestimated the ET of the almond orchards by only 0.10 mm/hr. Other types of ground cover were similarly compared. Temporal variability in ET rates between the morning and afternoon were also observed.

  19. Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains

    PubMed Central

    Gowda, Prasanna H.; Chávez, José L.; Howell, Terry A.; Marek, Thomas H.; New, Leon L.

    2008-01-01

    Agriculture on the Texas High Plains (THP) uses approximately 89% of groundwater withdrawals from the Ogallala Aquifer. Consequently, groundwater levels are declining faster than the recharge rate. Therefore, efficient agricultural water use is essential for economic viability and sustainability of the THP. Accurate regional evapotranspiration (ET) maps would provide valuable information on actual crop water use. In this study, METRIC (Mapping Evapotranspiration at High Resolution using Internalized Calibration), a remote sensing based ET algorithm, was evaluated for mapping ET in the THP. Two Landsat 5 Thematic Mapper images acquired on 27 June (DOY 178) and 29 July (DOY 210) 2005 were used for this purpose. The performance of the ET model was evaluated by comparing the predicted daily ET with values derived from soil moisture budget at four commercial agricultural fields. Daily ET estimates resulted with a prediction error of 12.7±8.1% (mean bias error ± root mean square error) on DOY 178 and -4.7±9.4% on DOY 210 when compared with ET derived from measured soil moisture through the soil water balance. These results are good considering the prevailing advective conditions in the THP. METRIC have the potential to be used for mapping regional ET in the THP region. However, more evaluation is needed under different agroclimatological conditions. PMID:27873809

  20. Evaluating the crop coefficient using spectral reflectance

    USGS Publications Warehouse

    Heilman, J. L.; Heilman, W. E.; Moore, Donald G.

    1982-01-01

    Significant linear relationships were found between PVI and percent cover (r2 = 0.911), and between Kc and percent cover (r2 = 0.815). In addition, the position of the PVl intersection on the soil background line changed as a result of soil moisture increases following irrigation, even at high percent cover. Thus, once experimental relationships between Kc and crop growth are established, a mean Kc can be determined from spectral estimates of stage of development and the soil background component of PVI can be used to adjust the mean K, for increased evaporation following irrigation because the ratio of actual to potential evapotranspiration will approach 1 when the soil surface is wet.

  1. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  2. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  3. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  4. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  5. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  6. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation

    NASA Astrophysics Data System (ADS)

    Siebert, Stefan; Döll, Petra

    2010-04-01

    SummaryCrop production requires large amounts of green and blue water. We developed the new global crop water model GCWM to compute consumptive water use (evapotranspiration) and virtual water content (evapotranspiration per harvested biomass) of crops at a spatial resolution of 5' by 5', distinguishing 26 crop classes, and blue versus green water. GCWM is based on the global land use data set MIRCA2000 that provides monthly growing areas for 26 crop classes under rainfed and irrigated conditions for the period 1998-2002 and represents multi-cropping. By computing daily soil water balances, GCWM determines evapotranspiration of blue and green water for each crop and grid cell. Cell-specific crop production under both rainfed and irrigated conditions is computed by downscaling average crop yields reported for 402 national and sub-national statistical units, relating rainfed and irrigated crop yields reported in census statistics to simulated ratios of actual to potential crop evapotranspiration for rainfed crops. By restricting water use of irrigated crops to green water only, the potential production loss without any irrigation was computed. For the period 1998-2002, the global value of total crop water use was 6685 km 3 yr -1, of which blue water use was 1180 km 3 yr -1, green water use of irrigated crops was 919 km 3 yr -1 and green water use of rainfed crops was 4586 km 3 yr -1. Total crop water use was largest for rice (941 km 3 yr -1), wheat (858 km 3 yr -1) and maize (722 km 3 yr -1). The largest amounts of blue water were used for rice (307 km 3 yr -1) and wheat (208 km 3 yr -1). Blue water use as percentage of total crop water use was highest for date palms (85%), cotton (39%), citrus fruits (33%), rice (33%) and sugar beets (32%), while for cassava, oil palm and cocoa, almost no blue water was used. Average crop yield of irrigated cereals was 442 Mg km -2 while average yield of rainfed cereals was only 266 Mg km -2. Average virtual water content of cereal

  7. Estimating seasonal evapotranspiration from temporal satellite images

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.

  8. Investigation of spatial relationships between crop coefficients and specific ground based vegetation indices for Karla watershed, Greece

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, M.; Loukas, A.; Mylopoulos, N.; Toulios, L.; Stancalie, G.

    2014-08-01

    The objective of this work is the investigation of the specific relationships between actual evapotranspiration based crop coefficients and vegetation indices adapted to Karla Watershed, central Greece. Surface Energy Balance Algorithm for Land (SEBAL) was used to derive monthly actual evapotranspiration (ET) and ETrF values during the growing season of 2012. The methodology was developed using medium resolution Landsat 7 ETM+ images. Meteorological data from the archive of the Institute for Research and Technology, Thessaly (I.RE.TE.TH) have also been used. Fields with cotton, wheat, alfalfa, corn and sugar beets are utilized. During the same period, in-situ radiometric measurements were generated with the use of the field spectro-radiometer GER1500 giving specific spectral signatures for each crop. Filtering of reflectance values with the use of relative spectral responses (RSR) gives the opportunity to match the spectral measurements with Landsat ETM+ bands and compute VI like NDVI, SAVI, EVI and EVI2 using the same remote sensing formulas as the ETM+ conventional procedures. New relationships are derived and NDVI, SAVI, EVI and EVI2 are tested separately for each crop. Special attention is given to the constant L inside the SAVI relationship. The main advantage of the new approach is that is more crop specific and it less time consuming because there is no need for atmospheric correction.

  9. Application of a CROPWAT Model to Analyze Crop Yields in Nicaragua

    NASA Astrophysics Data System (ADS)

    Doria, R.; Byrne, J. M.

    2013-12-01

    ABSTRACT Changes in climate are likely to influence crop yields due to varying evapotranspiration and precipitation over agricultural regions. In Nicaragua, agriculture is extensive, with new areas of land brought into production as the population increases. Nicaraguan staple food items (maize and beans) are produced mostly by small scale farmers with less than 10 hectares, but they are critical for income generation and food security for rural communities. Given that the majority of these farmers are dependent on rain for crop irrigation, and that maize and beans are sensitive to variations in temperature and rainfall patterns, the present study was undertaken to assess the impact of climate change on these crop yields. Climate data were generated per municipio representing the three major climatic zones of the country: the wet Pacific lowland, the cooler Central highland, and the Caribbean lowland. Historical normal climate data from 1970-2000 (baseline period) were used as input to CROPWAT model to analyze the potential and actual evapotranspiration (ETo and ETa, respectively) that affects crop yields. Further, generated local climatic data of future years (2030-2099) under various scenarios were inputted to the CROPWAT to determine changes in ETo and ETa from the baseline period. Spatial variability maps of both ETo and ETa as well as crop yields were created. Results indicated significant variation in seasonal rainfall depth during the baseline period and predicted decreasing trend in the future years that eventually affects yields. These maps enable us to generate appropriate adaptation measures and best management practices for small scale farmers under future climate change scenarios. KEY WORDS: Climate change, evapotranspiration, CROPWAT, yield, Nicaragua

  10. An investigation of spectral change as influenced by irrigation and evapotranspiration volume estimation in western Nebraska

    USGS Publications Warehouse

    Seevers, P.M.; Sadowski, F.C.; Lauer, D.T.

    1990-01-01

    Retrospective satellite image data were evaluated for their ability to demonstrate the influence of center-pivot irrigation development in western Nebraska on spectral change and climate-related factors for the region. Periodic images of an albedo index and a normalized difference vegetation index (NDVI) were generated from calibrated Landsat multispectral scanner (MSS) data and used to monitor spectral changes associated with irrigation development from 1972 through 1986. The albedo index was not useful for monitoring irrigation development. For the NDVI, it was found that proportions of counties in irrigated agriculture, as discriminated by a threshold, were more highly correlated with reported ground estimates of irrigated agriculture than were county mean greenness values. A similar result was achieved when using coarse resolution Advanced Very High Resolution Radiometer (AVHRR) image data for estimating irrigated agriculture. The NDVI images were used to evaluate a procedure for making areal estimates of actual evapotranspiration (ET) volumes. Estimates of ET volumes for test counties, using reported ground acreages and corresponding standard crop coefficients, were correlated with the estimates of ET volume using crop coefficients scaled to NDVI values and pixel counts of crop areas. These county estimates were made under the assumption that soil water availability was unlimited. For nonirrigated vegetation, this may result in over-estimation of ET volumes. Ground information regarding crop types and acreages are required to derive the NDVI scaling factor. Potential ET, estimated with the Jensen-Haise model, is common to both methods. These results, achieved with both MSS and AVHRR data, show promise for providing climatologically important land surface information for regional and global climate models. ?? 1990 Kluwer Academic Publishers.

  11. Global Terrestrial Evapotranspiration from Optical and Microwave Satellite Observations

    NASA Astrophysics Data System (ADS)

    Jia, Li; Zhang, Chaolei; Hu, Guangcheng; Zhou, Jie; Cui, Yaokui; Lu, Jing; Wang, Kun; Liu, Qinhuo; Menenti, Massimo

    2016-08-01

    Terrestrial actual evapotranspiration (ET) is an important component of the terrestrial water cycle and links the hydrological, energy, and carbon cycles. Considering the diverse landscapes and multi-climatic features, a hybrid remotely sensed ET estimation model named ETMonitor was developed to estimate the daily actual evapotranspiration globally at a spatial resolution of 1 km. The ETMonitor model uses a variety of biophysical parameters derived from microwave and optical remote sensing observations as input data to estimate the daily ET for all sky conditions. This dataset provides important support to the large-scale evaluation of the environment, and some preliminary applications were conducted for regional- to global-scale mapping and monitoring of water consumption and drought severity.

  12. Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, determi...

  13. Assessing reference evapotranspiration in a subhumid climate in NE Austria

    NASA Astrophysics Data System (ADS)

    Nolz, Reinhard; Eitzinger, Josef; Cepuder, Peter

    2015-04-01

    Computing reference evapotranspiration and multiplying it with a specific crop coefficient as recommended by the Food and Agriculture Organization of the United Nations (FAO) is the most widely accepted approach to estimate plant water requirements. The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on local environmental conditions. Consequently, it seems advisable to evaluate the model under local environmental conditions. Evapotranspiration was determined at a subhumid site in Austria (48°12'N, 16°34'E; 157 m asl) using a large weighing lysimeter operated at (limited) reference conditions and compared with calculations according to ASCE-EWRI. The lysimeter had an inner diameter of 1.9 m and a hemispherical bottom with a maximum depth of 2.5 m. Seepage water was measured at a free draining outlet using a tipping bucket. Lysimeter mass changes were sensed by a weighing facility with an accuracy of ±0.1 mm. Both rainfall and evapotranspiration were determined directly from lysimeter data using a simple water balance equation. Meteorological data for the ASCE-EWRI model were obtained from a weather station of the Central Institute for Meteorology and Geodynamics, Austria (ZAMG). The study period was from 2005 to 2010, analyses were based upon daily time steps. Daily calculated reference evapotranspiration was generally overestimated at small values, whereas it was rather underestimated when evapotranspiration was large, which is supported also by other studies. In the given case, advection of sensible heat proved

  14. A Citizen's Guide to Evapotranspiration Covers

    EPA Pesticide Factsheets

    This guide explains Evapotranspiration Covers which are Evapotranspiration (ET) covers are a type of cap placed over contaminated material, such as soil, landfill waste, or mining tailings, to prevent water from reaching it.

  15. Evapotranspiration studies for protective barriers: Experimental plans

    SciTech Connect

    Link, S.O.; Waugh, W.J.

    1989-11-01

    This document describes a general theory and experimental plans for predicting evapotranspiration in support of the Protective Barrier Program. Evapotranspiration is the combined loss of water from plants and soil surfaces to the atmosphere. 45 refs., 1 fig., 4 tabs.

  16. Evapotranspiration (ET) covers.

    PubMed

    Rock, Steve; Myers, Bill; Fiedler, Linda

    2012-01-01

    Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information

  17. Potential Evapotranspiration on Tutuila, American Samoa

    USGS Publications Warehouse

    Izuka, Scott K.; Giambelluca, Thomas W.; Nullet, Michael A.

    2005-01-01

    Data from nine widely distributed climate stations were used to assess the distribution of potential evapotranspiration on the tropical South Pacific island of Tutuila, American Samoa. Seasonal patterns of climate data in this study differed in detail from available long-term data because the monitoring period of each station in this study was only 1 to 5 years, but overall climate conditions during the monitoring period (1999-2004) are representative of normal conditions. Potential evapotranspiration shows a diurnal pattern. On average, potential evapotranspiration in the daytime, when net radiation is the dominant controlling factor, constitutes 90 percent or more of the total daily potential evapotranspiration at each station. Positive heat advection from the ocean contributes to potential evapotranspiration at at least one station, and possibly other stations, in this study. Seasonal variation of potential evapotranspiration is linked to seasonal daylight duration. Spatial variation of potential evapotranspiration, however, is linked primarily to orographic cloud cover. Potential evapotranspiration on Tutuila is lowest in the interior of the island, where rainfall is higher, cloud cover is more frequent, and net radiation is lower than along the coasts. Potential evapotranspiration is highest along the southern and eastern coasts of the island, where rainfall is lower and cloud cover less frequent. The gradient from areas of high to low potential evapotranspiration is steepest in November and December, when island-wide potential evapotranspiration is highest, and less steep in June and July, when island-wide potential evapotranspiration is lowest. Comparison of potential evapotranspiration to rainfall indicates that evapotranspiration processes on Tutuila have the potential to remove from 23 to 61 percent of the water brought by rainfall. In lower-rainfall coastal locations, potential evapotranspiration can be 50 percent or more of rainfall, whereas in higher

  18. Evapotranspiration from selected fallowed agricultural fields on the Tule Lake National Wildlife Refuge, California, during May to October 2000

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    An investigation of evapotranspiration, vegetation quantity and composition, and depth to the water table below the land surface was made at three sites in two fallowed agricultural lots on the 15,800-hectare Tule Lake National Wildlife Refuge in northern California during the 2000 growing season. All three sites had been farmed during 1999, but were not irrigated since the 1999 growing season. Vegetation at the lot C1B and lot 6 stubble sites included weedy species and small grain plants. The lot 6 cover crop site supported a crop of cereal rye that had been planted during the previous winter. Percentage of coverage by live vegetation ranged from 0 to 43.2 percent at the lot C1B site, from approximately 0 to 63.2 percent at the lot 6 stubble site, and it was estimated to range from 0 to greater than 90 percent at the lot 6 cover crop site. Evapotranspiration was measured using the Bowen ratio energy balance technique and it was estimated using a model that was based on the Priestley-Taylor equation and a model that was based on reference evapotranspiration with grass as the reference crop. Total evapotranspiration during May to October varied little among the three evapotranspiration measurement sites, although the timing of evapotranspiration losses did vary among the sites. Total evapotranspiration from the lot C1B site was 426 millimeters, total evapotranspiration from the lot 6 stubble site was 444 millimeters, and total evapotranspiration from the lot 6 cover crop site was 435 millimeters. The months of May to July accounted for approximately 78 percent of the total evapotranspiration from the lot C1B site, approximately 63 percent of the evapotranspiration from the lot 6 stubble site, and approximately 86 percent of the total evapotranspiration from the lot 6 cover crop site. Estimated growing season precipitation accounted for 16 percent of the growing-season evapotranspiration at the lot C1B site and for 17 percent of the growing-season evapotranspiration

  19. Correlation between satellite vegetation indices and crop coefficients

    NASA Astrophysics Data System (ADS)

    Russo, A. L.; Simoniello, T.; Greco, M.; Squicciarrino, G.; Lanfredi, M.; Macchiato, M.

    2010-05-01

    for each cultivation highlighted that NDVI provided quite high correlation for all the investigated cultivation with maximum values for wheat (R2 = 0.89) and vineyards (R2 = 0.83). For the cultivation with more homogeneous canopy, e.g. kiwifruit, the best performing index was the WDVI showing a determination coefficient of 0.90; whereas its performances for vineyards and mixed olive cultivations were not satisfactory (R2 < 0.40). The EVI showed a behaviour similar to WDVI with slightly lower correlation values. The obtained results highlight the capability of medium resolution satellites for dynamically estimating crop coefficients and so for improving water balance assessment by taking into account the actual status of vegetation instead of expected and tabulated Kc-values. Ayenew, T., 2003. Evapotranspiration estimation using thematic mapper spectral satellite data in the Ethiopian rift and adjacent highlands, Journal of Hydrology, 279: 83-93 Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., Holstlag, A.A.M., 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, Journal of Hydrology, 212-213: 198-212. Calera A., Jochum A., Cuesta Garcia A., Montoro Rodriguez A., Lopez Fuster P., 2005. Irrigation management from space: Towards user-friendly products, Irrigation and Drainage Systems, 19: 337-353. Gonzalez-Dugo M.P. and Mateos L., 2008. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops, Agricultural Water Management, 95: 48-58.

  20. An Updated Decision Support Interface: A Tool for Remote Monitoring of Crop Growing Conditions

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Budde, M. E.; Rowland, J.; Verdin, J. P.; Funk, C. C.; Landsfeld, M. F.

    2014-12-01

    Remote sensing of agroclimatological variables to monitor food production conditions is a critical component of the Famine Early Warning Systems Network portfolio of tools for assessing food security in the developing world. The Decision Support Interface (DSI) seeks to integrate a number of remotely sensed and modeled variables to create a single, simplified portal for analysis of crop growing conditions. The DSI has been reformulated to incorporate more variables and give the user more freedom in exploring the available data. This refinement seeks to transition the DSI from a "first glance" agroclimatic indicator to one better suited for the differentiation of drought events. The DSI performs analysis of variables over primary agricultural zones at the first sub-national administrative level. It uses the spatially averaged rainfall, normalized difference vegetation index (NDVI), water requirement satisfaction index (WRSI), and actual evapotranspiration (ETa) to identify potential hazards to food security. Presenting this information in a web-based client gives food security analysts and decision makers a lightweight portal for information on crop growing conditions in the region. The crop zones used for the aggregation contain timing information which is critical to the DSI presentation. Rainfall and ETa are accumulated from different points in the crop phenology to identify season-long deficits in rainfall or transpiration that adversely affect the crop-growing conditions. Furthermore, the NDVI and WRSI serve as their own seasonal accumulated measures of growing conditions by capturing vegetation vigor or actual evapotranspiration deficits. The DSI is currently active for major growing regions of sub-Saharan Africa, with intention of expanding to other areas over the coming years.

  1. Estimating the spatial distribution of evapotranspiration using the water balance model WAVE and fine spatial resolution airborne remote sensing images from the DAIS-sensor: Experimental set-up

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Veroustraete, F.; Feyen, J.

    2003-04-01

    Actual evapotranspiration (ET) of agricultural land and forestland surfaces play an important role in the redistribution of water on the Earth's surface. Any change in evapotranspiration, either through change in vegetation or climate change, directly effects the available water resources. For quantifying these effects physical models need to be constructed. Most hydrological models have to deal with a lack of good spatial resolution, despite their good temporal information. Remote sensing techniques on the contrary determine the spatial pattern of landscape features and hence are very useful on large scales. The main objective of this research is the combination of the spatial pattern of remote sensing (using visible and thermal infrared spectrum) with the temporal pattern of the water balance model WAVE (Vanclooster et al., 1994 and 1996). To realise this, the following objectives are formulated: (i) relate soil and vegetation surface temperatures to actual evapotranspiration of forest and crops simulated with the water balance model WAVE using remote sensing derived parameters. Three methods will be used and mutually compared. Both airborne and satellite imagery will be implemented; (1) compare the spatial pattern of evapotranspiration, as a result of the three methods, with the energy balance model SEBAL (Bastiaanssen et al., 1998) and finally; (2) subject the up-scaled WAVE and SEBAL models to an uncertainty analysis using the GLUE-approach (Generalised Likelihood Uncertainty Estimate) (Beven en Binley, 1992). To study the behaviour of the model beyond the field-scale (micro-scale), a meso-scale study was conducted at the test-site of DURAS (50°50'38"N, 5°08'50"W, Sint-Truiden). Airborne imagery from the DAIS/ROSIS sensor are available. For the determination of the spatial pattern of actual evapotranspiration the next two methods are considered: (1) relations between surface temperature, surface albedo and vegetation indices are linked with field

  2. Climate Change Impact on Evapotranspiration, Heat Stress and Chill Requirements

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Marras, S.; Spano, D.

    2013-12-01

    Carbon dioxide concentration scenarios project an increase in CO2 from 372 ppm to between 500 and 950 ppm by the year 2100, and the potential effect on temperature, humidity, and plant responses to environmental factors are complex and concerning. For 2100, mean daily temperature increase projections range from 1.2oC to 6.8oC depending on greenhouse gas emissions. On the bad side, higher temperatures are often associated with increases in evapotranspiration (ET), heat stress, and pest infestations. On the good side, increased temperature is commonly related to less frost damage, faster growth, and higher production in some cases. One misconception is that global warming will increase evapotranspiration and, hence, agricultural water demand. As the oceans and other water bodies warm, evaporation and humidity are likely to increase globally, but higher humidity tends to reduce plant transpiration and hence ET. Higher CO2 concentrations also tend to reduce ET, and, in the end, the increase in ET due to higher temperature is likely to be offset by a decrease in ET due to higher humidity and CO2. With a decrease in daytime evapotranspiration, the canopy temperature is likely to rise relative to the air temperature, and this implies that heat stress could be worse than predicted by increased air temperature. Daily minimum temperatures are generally increasing about twice as fast as maximum temperatures presumably because of the increasing dew point temperatures as more water vapor is added to the atmosphere. This could present a serious problem to meet the chill requirement for fruit and nut crops. Growing seasons, i.e., from the last spring to the first fall frost, are likely to increase, but the crop growth period is likely to shorten due to higher temperature. Thus, spring frost damage is unlikely to change but there should be fewer damaging fall frost events. In this paper, we will present some ideas on the possible impact of climate change on evapotranspiration and

  3. Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semi-arid agriculture

    NASA Astrophysics Data System (ADS)

    Kozak, Joseph A.; Ahuja, Lajpat R.; Green, Timothy R.; Ma, Liwang

    2007-01-01

    Crop canopies and residues have been shown to intercept a significant amount of rainfall. However, rainfall or irrigation interception by crops and residues has often been overlooked in hydrologic modelling. Crop canopy interception is controlled by canopy density and rainfall intensity and duration. Crop residue interception is a function of crop residue type, residue density and cover, and rainfall intensity and duration. We account for these controlling factors and present a model for both interception components based on Merriam's approach. The modified Merriam model and the current modelling approaches were examined and compared with two field studies and one laboratory study. The Merriam model is shown to agree well with measurements and was implemented within the Agricultural Research Service's Root Zone Water Quality Model (RZWQM). Using this enhanced version of RZWQM, three simulation studies were performed to examine the quantitative effects of rainfall interception by corn and wheat canopies and residues on soil hydrological components. Study I consisted of 10 separate hypothetical growing seasons (1991-2000) for canopy effects and 10 separate non-growing seasons (1991-2000) for residue effects for eastern Colorado conditions. For actual management practices in a no-till wheat-corn-fallow cropping sequence at Akron, Colorado (study II), a continuous 10-year RZWQM simulation was performed to examine the cumulative changes on water balance components and crop growth caused by canopy and residue rainfall interception. Finally, to examine a higher precipitation environment, a hypothetical, no-till wheat-corn-fallow rotation scenario at Corvallis, Oregon, was simulated (study III). For all studies, interception was shown to decrease infiltration, runoff, evapotranspiration from soil, deep seepage of water and chemical transport, macropore flow, leaf area index, and crop/grain yield. Because interception decreased both infiltration and soil evapotranspiration

  4. Application of remote sensing for multi-scale monitoring of evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating water loss from vegetation and soil or evapotranspiration (ET) at field to regional scales is critical information for many water resource and agricultural management applications as well as weather and climate forecasting and research. Water availability is strongly tied to crop product...

  5. Sensitivity of grass and alfalfa reference evapotranspiration to weather station sensor accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1991 to 2008 from an autom...

  6. Infrared thermometry and stress monitoring of corn, and sensitivity analysis of reference evapotranspiration to sensor accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract for SOCR seminar: The USDA-ARS Water Management Research Unit in Fort Collins, CO is tasked with maintaining high crop yields under limited water. One focus of this project is to quantify evapotranspiration (ET) and water stress. Canopy temperature methods have been used for decades to quan...

  7. Spatial variability insensitivity coefficient of grass and alfalfa reference evapotranspiration in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is a major component of the agricultural water budget and accurate ET estimations are essential for effective irrigation scheduling. Therefore, it is an important aspect of production agriculture and agricultural research. Potential ET of a crop can be calculated by multiply...

  8. Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, six extrapolation methods have been compared for their ability to estimate daily crop evapotranspiration (ETd) from instantaneous latent heat flux estimates derived from digital airborne multispectral remote sensing imagery. Data used in this study were collected during an experiment...

  9. Recommended documentation of evapotranspiration measurements and associated weather data and a review of requirements for accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More and more evapotranspiration (ET) models, ET crop coefficients, and associated measurements of ET are reported in the literature. These measurements base from a range of measurement systems including lysimeters, eddy covariance, Bowen ratio, water balance (gravimetric, neutron meter, other soil ...

  10. Estimating evapotranspiration from a reed bed using the Bowen ratio energy balance method

    NASA Astrophysics Data System (ADS)

    Peacock, C. E.; Hess, T. M.

    2004-02-01

    An increase in demand for water for agricultural and domestic use, combined with new legislation regarding the water needs of natural habitats, has led to an increased requirement for accurate calculations of hydrological fluxes through wetlands. Evapotranspiration is one of the most important but least well understood fluxes in wetland hydrology. Research has been carried out on Stodmarsh National Nature Reserve in Kent, UK, a Ramsar site containing the largest reed beds in southern England. The objective was to quantify water loss through evapotranspiration on the site to allow more effective management of water levels and maintenance of maximum conservation potential for bird life. The Bowen ratio energy balance approach was employed, which is one of the most accurate ways of measuring evapotranspiration but has been rarely used on reed beds. These measurements were used with Penman-Monteith reference evapotranspiration in order to create crop coefficients. It was found that crop coefficients were inconsistent from day to day but were generally less than unity. The inconsistency was thought to be caused by variations in meteorological conditions: e.g. significant differences in crop coefficients were found between days with high radiation and a dry canopy, compared with days with low radiation and a wet canopy. Canopy interception of precipitation was particularly important, with crop coefficients being significantly higher on wet days, possibly due to the higher rates of evaporation of intercepted water due to the lack of stomatal resistance.

  11. Daily evapotranspiration over cotton by assimilating remotely sensed data with ground-based radiometers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of spatially distributed evapotranspiration (ET) with remote sensing could be especially valuable for developing water management tools in arid lands. For decision support over irrigated crops, these spatial ET estimates also depend upon good spatial resolution ($<$30 m)at timely interval...

  12. Comparison of evapotranspiration rates for flatwoods and ridge citrus

    USGS Publications Warehouse

    Jia, X.; Swancar, A.; Jacobs, J.M.; Dukes, M.D.; Morgan, K.

    2007-01-01

    Florida citrus groves are typically grown in two regions of the state: flatwoods and ridge. The southern flatwoods citrus area has poorly drained fine textured sands with low organic matter in the shallow root zone. Ridge citrus is located in the northern ridge citrus zone and has fine to coarse textured sands with low water-holding capacity. Two commercial citrus groves, selected from each region, were studied from 15 July 2004 to 14 July 2005. The flatwoods citrus (FC) grove had a grass cover and used drainage ditches to remove excess water from the root zone. The ridge citrus (RC) grove had a bare soil surface with weeds periodically eliminated by tillage. Citrus crop evapotranspiration (ETc) rates at the two citrus groves were measured by the eddy correlation method, and components in the energy balance were also examined and compared. The study period had higher than average rainfall, and as a result, the two locations had similar annual ETc rates (1069 and 1044 mm for RC and FC, respectively). The ETc rates were 59% (RC) and 47% (FC) of the rainfall amounts during the study period. The annual reference crop evapotranspiration (ETo) rates were 1180 mm for RC and 1419 mm for FC, estimated using the standardized reference evapotranspiration equation. The citrus crop coefficients (Kc, ratio of ETc to ET o) were different between the two locations because of differences in latitude, ground cover, and rainfall amounts. The Kc values ranged from 0.70 between December and March to 1.05 between July and November for RC, and from 0.65 between November and May to 0.85 between June and October for FC. The results are consistent with other Kc values reported from field studies on citrus in both Florida and elsewhere using these and alternate methods.

  13. Comparison of two simple tools (TSEB and FAO-56) to retrieve evapotranspiration of irrigated agriculture in semi-arid areas.

    NASA Astrophysics Data System (ADS)

    Diarra, Alhousseine; Jarlan, Lionel; Er-Raki, Salah; Le Page, Michel; Khabba, Said; Boulet, Gilles

    2016-04-01

    In a context of climate change and an increasing water demand, the semi-arid climate region face heightened pressure on the availability of water resources. About 85% of available water is used for irrigation in these regions. There is thus a crucial need to develop tools for a better management of irrigation through accurate estimates of crop water requirement. The objective of this study was to adapt and evaluate two parsimonious modeling approaches feeded by remote sensing observations, which have potential for the operational monitoring of evapotranspiration (ET): the two-source surface energy balance (TSEB) model developed by Norman et al. (1995) and the FAO-56 dual crop coefficient method (Allen et al., 1998), through the SAMIR tool (Simonneaux et al., 2009). At the field scale, both models were evaluated on four sites located in the Haouz plain (Marrakech, Morocco) during two agricultural seasons: wheat and sugar beet in 2012 and two other wheat crops in 2013; all belonging to an irrigated perimeter of 2800 ha. A time series of 12 high spatial resolution images acquired by SPOT-5 and ASTER images was collected during the growing seasons of wheat and sugar beet. The simulation results showed that both models offer fair performances of ET compared to measured one by eddy covariance with an average root mean square error (RMSE) lower than 1 mm/day for the sugar beet where the simulation are lower by the FAO-56 approach due to water inputs are uncertain. By contrast, the TSEB model, which not needs the water supply as input, offers smoother performances in all cases. At the scale of the perimeter, both approaches show similar spatial patterns because of homogeneous water conditions at the date of remote sensing image acquisitions. The partition of evapotranspiration between soil evaporation and transpiration from vegetation is estimated indirectly by confrontation between simulated soil evaporation and surface (0-5 cm) soil moisture acquired spatially with Theta

  14. Remote sensing in precision farming: real-time monitoring of water and fertilizer requirements of agricultural crops

    NASA Astrophysics Data System (ADS)

    Zilberman, Arkadi; Ben Asher, Jiftah; Kopeika, Norman S.

    2016-10-01

    The advancements in remote sensing in combination with sensor technology (both passive and active) enable growers to analyze an entire crop field as well as its local features. In particular, changes of actual evapo-transpiration (ET) as a function of water availability can be measured remotely with infrared radiometers. Detection of crop water stress and ET and combining it with the soil water flow model enable rational irrigation timing and application amounts. Nutrient deficiency, and in particular nitrogen deficiency, causes substantial crop losses. This deficiency needs to be identified immediately. A faster the detection and correction, a lesser the damage to the crop yield. In the present work, to retrieve ET a novel deterministic approach was used which is based on the remote sensing data. The algorithm can automatically provide timely valuable information on plant and soil water status, which can improve the management of irrigated crops. The solution is capable of bridging between Penman-Monteith ET model and Richards soil water flow model. This bridging can serve as a preliminary tool for expert irrigation system. To support decisions regarding fertilizers the greenness of plant canopies is assessed and quantified by using the spectral reflectance sensors and digital color imaging. Fertilization management can be provided on the basis of sampling and monitoring of crop nitrogen conditions using RS technique and translating measured N concentration in crop to kg/ha N application in the field.

  15. Estimation of land surface evapotranspiration with A satellite remote sensing procedure

    USGS Publications Warehouse

    Irmak, A.; Ratcliffe, I.; Ranade, P.; Hubbard, K.G.; Singh, R.K.; Kamble, B.; Kjaersgaard, J.

    2011-01-01

    There are various methods available for estimating magnitude and trends of evapotranspiration. Bowen ratio energy balance system and eddy correlation techniques offer powerful alternatives for measuring land surface evapotranspiration. In spite of the elegance, high accuracy, and theoretical attractions of these techniques for measuring evapotranspiration, their practical use over large areas can be limited due to the number of sites needed and the related expense. Application of evapotranspiration mapping from satellite measurements can overcome the limitations. The objective of this study was to utilize the METRICTM (Mapping Evapotranspiration at High Resolution using Internalized Calibration) model in Great Plains environmental settings to understand water use in managed ecosystems on a regional scale. We investigated spatiotemporal distribution of a fraction of reference evapotranspiration (ETrF) using eight Landsat 5 images during the 2005 and 2006 growing season for path 29, row 32. The ETrF maps generated by METRICTM allowed us to follow the magnitude and trend in ETrF for major land-use classes during the growing season. The ETrF was lower early in the growing season for agricultural crops and gradually increased as the normalized difference vegetation index of crops increased, thus presenting more surface area over which water could transpire toward the midseason. Comparison of predictions with Bowen ratio energy balance system measurements at Clay Center, NE, showed that METRICTM performed well at the field scale for predicting evapotranspiration from a cornfield. If calibrated properly, the model could be a viable tool to estimate water use in managed ecosystems in subhumid climates at a large scale.

  16. Comparison of sap flux, moisture flux tower and MODIS enhanced vegetation index methods for estimating riparian evapotranspiration

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Morino, Kiyomi; Neale, Christopher M.U; Cosh, Michael H.

    2010-01-01

    Riparian evapotranspiration (ET) was measured on a salt cedar (Tamarix spp.) dominated river terrace on the Lower Colorado River from 2007 to 2009 using tissue-heat-balance sap flux sensors at six sites representing very dense, medium dense, and sparse stands of plants. Salt cedar ET varied markedly across sites, and sap flux sensors showed that plants were subject to various degrees of stress, detected as mid-day depression of transpiration and stomatal conductance. Sap flux results were scaled from the leaf level of measurement to the stand level by measuring plant-specific leaf area index and fractional ground cover at each site. Results were compared to Bowen ratio moisture tower data available for three of the sites. Sap flux sensors and flux tower results ranked the sites the same and had similar estimates of ET. A regression equation, relating measured ET of salt cedar and other riparian plants and crops on the Lower Colorado River to the Enhanced Vegetation Index from the MODIS sensor on the Terra satellite and reference crop ET measured at meteorological stations, was able to predict actual ET with an accuracy or uncertainty of about 20%, despite between-site differences for salt cedar. Peak summer salt cedar ET averaged about 6 mm d-1 across sites and methods of measurement.

  17. Comparisons of satellite-based models for estimating evapotranspiration fluxes

    NASA Astrophysics Data System (ADS)

    Consoli, S.; Vanella, D.

    2014-05-01

    Two different types of remote sensing-based techniques were applied to assess the mass and energy exchange process within the continuum soil-plant-atmosphere of a typical Mediterranean crop. The first approach computes a surface energy balance using the radiometric surface temperature (Ts) for estimating the sensible heat flux (H), and obtaining the evapotranspiration fluxes (ET) as a residual of the energy balance. In the paper, the performance of two different surface energy balance approaches (i.e. one-source and two-source (soil + vegetation)) was compared. The second approach uses vegetation indices (VIs), derived from the canopy reflectance, within the FAO-based soil water balance approach to estimate basal crop coefficients to adjust reference ET0 and compute crop ET. Outputs from these models were compared to fluxes of sensible (H) and latent (LE) heat directly measured by the Eddy Covariance method, through a long micrometeorological monitoring campaign carried out in the area of interest. The two-source (2S) model gave the best performance in terms of surface energy fluxes and ET rate estimation, although the overall performance of the three approaches was appreciable. The reflectance-based crop coefficient model has the advantages to do not require any upscaling of the instantaneous ET fluxes from the energy balance models to daily integrated ET. However, its results may be less sensitive to detect crop water stress conditions respect to approaches based on the radiometric surface temperature detection.

  18. The Impact of Climate and Its Variability on Crop Yield and Irrigation

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T.

    2014-12-01

    As the global population grows and the climate changes, having a secure food supply is increasingly important especially under water stressed-conditions. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources. It is therefore important to understand how crop yields due to irrigation are affected by climate variability and how irrigation may buffer against climate, allowing for more resilient agricultural systems. Efforts to solve these barely exposed questions can benefit from comprehending the influence of climate variability on crop yield and irrigation water use in the past. To do this, we use historical climate data,irrigation water use data and rainfed and irrigated crop yields over the US to analyze the relationship among climate, irrigation and delta crop yields, gained by subtracting rainfed yield from irrigated yield since 1970. We find that the increase in delta crop yield due to irrigation is larger for certain climate conditions, such that there are optimal climate conditions where irrigation provides a benefit and other conditions where irrigation proves to have marginal benefits when temperature increased to certain degrees. We find that crop water requirements are linked to potential evapotranspiration, yet actual irrigation water use is largely decoupled from the climate conditions but related with other causes. This has important implications for agricultural and water resource system planning, as it implies there are optimal climate zones where irrigation is productive and that changes in water use, both temporally and spatially, could lead to increased water availability without negative impacts on crop yields. Furthermore, based on the exposed relationship between crop yield gained by irrigation and climate variability, those models predicting the global harvest will be redress to estimate crop production in the future more accurately.

  19. Comparison of estimates of evapotranspiration and consumptive use in Palo Verde Valley, California

    USGS Publications Warehouse

    Raymond, Lee H.; Owen-Joyce, Sandra J.

    1987-01-01

    Estimates of evapotranspiration and consumptive use by vegetation in Palo Verde Valley, California, were compared for calendar years 1981 to 1984. Vegetation types were classified, and the areas covered by each type were computed from Landsat satellite digital-image analysis. Evapotranspiration was calculated by multiplying the area of each vegetation type by a corresponding water use rate adjusted for year-to-year variations in climate. The vegetation classification slightly underestimates the total vegetated area when compared to crop reports, because not all multiple cropping could be identified. The accuracy of evapotranspiration calculated from vegetation classification depends primarily on the correct classification of alfalfa and cotton because alfalfa and cotton have larger acreages and use more water/acre than the other crops in the valley. Consumptive use was calculated using a water budget for each of the 4 years. Estimates of evapotranspiration and consumptive use by vegetation, respectively, were: (1) 439,400 and 483,500 acre-ft in 1981, (2) 430,700 and 452,700 acre-ft in 1982, (3) 402,000 and 364,400 acre-ft in 1983, and (4) 406,700 and 373,800 acre-ft in 1984. Evapotranspiration estimates were lower than consumptive use estimates in 1981 and 1982 and higher in 1983 and 1984. Both estimates were lower in 1983 and 1984 than in 1981 and 1982. Yearly differences in estimates correspond most closely to significant changes in stage of the lower Colorado River caused by flood control releases in 1983 and 1984 and to changes in cropping practices. (Author 's abstract)

  20. Mapping Seasonal Evapotranspiration and Root Zone Soil Moisture using a Hybrid Modeling Approach over Vineyards

    NASA Astrophysics Data System (ADS)

    Geli, H. M. E.

    2015-12-01

    Estimates of actual crop evapotranspiration (ETa) at field scale over the growing season are required for improving agricultural water management, particularly in water limited and drought prone regions. Remote sensing data from multiple platforms such as airborne and Landsat-based sensors can be used to provide these estimates. Combining these data with surface energy balance models can provide ETa estimates at sub- field scale as well as information on vegetation stress and soil moisture conditions. However, the temporal resolution of airborne and Landsat data does not allow for a continuous ETa monitoring over the course of the growing season. This study presents the application of a hybrid ETa modeling approach developed for monitoring daily ETa and root zone available water at high spatial resolutions. The hybrid ETa modeling approach couples a thermal-based energy balance model with a water balance-based scheme using data assimilation. The two source energy balance (TSEB) model is used to estimate instantaneous ETa which can be extrapolated to daily ETa using a water balance model modified to use the reflectance-based basal crop coefficient for interpolating ETa in between airborne and/or Landsat overpass dates. Moreover, since it is a water balance model, the soil moisture profile is also estimated. The hybrid ETa approach is applied over vineyard fields in central California. High resolution airborne and Landsat imagery were used to drive the hybrid model. These images were collected during periods that represented different vine phonological stages in 2013 growing season. Estimates of daily ETa and surface energy balance fluxes will be compared with ground-based eddy covariance tower measurements. Estimates of soil moisture at multiple depths will be compared with measurements.

  1. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    NASA Astrophysics Data System (ADS)

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr-1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  2. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

    PubMed

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-15

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  3. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    PubMed Central

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-01-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12–23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51–98 vs. 7–8 mm yr−1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373

  4. Evaluation of Pan Coefficients for Estimating Reference Evapotranspiration in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, H.

    2006-12-01

    Evapotranspiration is an important process of water transfer in the hydrosphere and atmosphere, which plays an active role in the hydrological cycle. Evaporation pan (Epan) data are often used to estimate reference evapotranspiration (ETref) for use in water resource planning. Generally, ETref is estimated as the product of the Epan data and a pan coefficient (Kpan). However, reliable estimation of ETref using Epan depends on the accurate determination of pan coefficients Kpan. Many different methods for estimating ETref have been developed, among which the Penman-Monteith method is demonstrated to be especially excellent by the Food and Agriculture Organization (FAO). In this study, the Penman-Monteith reference evapotranspiration, pan evaporation, and pan coefficient are calculated, compared and regionally mapped at nine meteorological stations during 1990-2004 in Southern Taiwan. The results show the reference evapotranspiration and pan evaporation have similar regional distribution patterns in the southern Taiwan both with the highest values being in the lower region and the lowest values being in the upper region. In addition, the pan coefficient, Kpan, varies both regionally and seasonally. Smallest Kpan values are found in the upper reach of the southern Taiwan, meaning that the relative difference between the reference evapotranspiration and pan evaporation is the biggest in the region, the largest Kpan values are obtained in the western area of southern Taiwan. This distribution pattern provides valuable information for regional hydrological studies since it is one of the most important factors determining regional actual evapotranspiration.

  5. Assessing Macroscopic Evapotranspiration Function Response to Climate

    NASA Astrophysics Data System (ADS)

    Gharun, M.; Vervoort, R. W.; Turnbull, T.; Henry, J.; Adams, M.

    2012-12-01

    Evapotranspiration (ET) by forests can reach up to 100% of rainfall in Australia, and is a substantial component of the water balance. Transpiration is a major part of the ET and it is well-known that transpiration depends on a combination of physiological and environmental controls. As a consequence of well-ventilated canopies of eucalypt forests and close decoupling to the atmosphere, atmospheric conditions exert a large control over transpiration. We measured a suit of environmental variables including temperature, humidity, radiation, and soil moisture concurrently with transpiration in a range of eucalypt forests. We observed that atmospheric demand (VPD) exerts the strongest control over transpiration. Experimental evidence also showed a strong dependency of the control on soil moisture abundance in the top soil layer. In many eco-hydrological models actual ET is represented with a linear transformation of potential ET based on the soil moisture condition, a so-called macroscopic approach. Such ET functions lump various soil and plant factors, are not experimentally supported and therefore quite poorly validated. Different combinations of atmospheric demand and soil moisture availability lead to diverse behaviour of the macroscopic ET function. Based on our observations in this study, we propose a novel approach that improves portray of transpiration, evaporation, drainage and hence the loss of water from the root zone. We used a modified version of the Norwegian HBV model to test our approach over a medium size catchment (150 km2) in south east Australia.

  6. NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.

    1989-01-01

    NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.

  7. Influence of potential evapotranspiration on the water balance of sugarcane fields in Maui, Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The year-long warm temperatures and other climatic characteristics of the Pacific Ocean Islands have made Hawaii an optimum place for growing sugarcane; however, irrigation is essential to satisfy the large water demand of sugarcane. Under the Hawaiian tropical weather, actual evapotranspiration (A...

  8. Variation of Evapotranspiration as Function of Surface Type

    NASA Astrophysics Data System (ADS)

    Ringgaard, R.; Herbst, M.; Friborg, T.; Soegaard, H.

    2009-12-01

    Evapotranspiration is tightly coupled with vegetation type and coverage. Many studies examining the partitioning of evapotranspiration into soil evaporation and plant transpiration have found that transpiration may account for up to 90% of total evapotranspiration depending on leaf area index and stomatal conductance. This is especially true in temperate humid climates, where conditions favor development of high-LAI vegetation and a large soil moisture pool from which the plants can draw water during most of the growing season. This makes explicit treatment of surface type/evapotranspiration relationships an important part of large-scale water balance and hydrological studies. The present study is part of the catchment-scale hydrological observatory “HOBE” situated on the west coast of Denmark. The main goals of the observatory is to better the scientific understating of large scale hydrological processes and to examine in detail the issue of scaling plot measurements to catchment scale. To estimate actual evapotranspiration, eddy-covariance systems have been installed on the most important surface types in the catchment - at an agricultural site (68% of the total area), over a spruce plantation (16%) and over wet grassland (7%). This presentation will introduce the first full-year time series of evapotranspiration from the three sites, with special emphasis on the difference in evaporative response through the seasons from the different surface types. The catchment covers about 2500km2 extending inland ca. 65 km. The landscape is very flat throughout the catchment, rising to only about 80 meters furthest inland. The geology is dominated by loose glacial and melt water deposits, with soils being comprised mostly of coarse sand. The climate can be characterized as maritime with winter temperatures around 1°C and summer temperatures around 16°C. Mean annual precipitation is around 800 mm. The weather is dominated by the prevailing westerlies from the Atlantic

  9. Crop coefficients parametrization using remote sensing in basin-scale hydrological modelling

    NASA Astrophysics Data System (ADS)

    Hunink, Johannes E.; Eekhout, Joris P. C.; de Vente, Joris; Contreras, Sergio; Droogers, Peter

    2016-04-01

    Satellite-based vegetation indices as Normalized Difference Vegetation Index (NDVI) are increasingly used to derive crop coefficients (kc) for field-scale soil water balance modelling, and for operational monitoring of evapotranspiration (ET). However, for basin-scale hydrological modelling, kc values are traditionally based on literature values, crop and management specific (e.g. FAO-56). For basin-scale analysis, these tabular kc-values are prone to misinterpretations, such as, site specific crop seasons and climate variability within the catchment. Compared to the traditional approach, the advantage of using an NDVI-based method is that observed information on current vegetative status is captured, from which "real" crop coefficients may be derived. However, for future scenario analysis, no satellite-based data are available, hence, crop coefficients need to be estimated either from literature values that are not site-specific, or based on historic NDVI observations. The aim of this study is to evaluate the impacts of various crop coefficient parameterization methods on the performance of a basin-scale hydrological model. We assume actual NDVI as the best available proxy for the crop coefficient and calibrate a hydrological model (SPHY) with monthly reservoir inflows: the reference model. Then, we change the crop coefficient parameterizations of this model with three different parameterizations and compare outputs for a validation period. The study is performed in the sub-humid to semi-arid Upper Segura basin (2592 km2) in SE Spain. The three parameterization methods we evaluate are: (1) land-cover specific kc values using traditional approach from reference tables (FAO-56), (2) land-cover specific kc values obtained from seasonal trajectories of NDVI, (3) pixel-specific seasonal kc values from NDVI trajectories of each pixel. To evaluate the performance of the three methods, spatial and temporal patterns of simulated streamflow, evapotranspiration, and soil

  10. Recharge and Evapotranspiration Assessment In Kalahari

    NASA Astrophysics Data System (ADS)

    Lubczynski, M.; Obakeng, O.

    2006-12-01

    Sustainability of groundwater resources in Kalahri is constrained not only by recharge to the aquifers but also by discharge from them. Natural groundwater discharge takes place in 3 different ways, as aquifer groundwater outflow, direct tree root water uptake called groundwater transpiration (Tg) and as upward vapor-liquid water movement called groundwater evaporation (Eg), the latter two called groundwater evapotranspiration (ETg). The evaluation of ETg and recharge was the main goal of this study. Due to generally large depth of groundwater table in Kalahari, >60 m, Eg was assumed as negligible component of groundwater balances while in contrast Tg has been considered significant already since 90-ties. This was because of fragments of tree roots of Boscia albitrunca and Acacia erioloba found in borehole cores at depth of >60 m. Some of those roots reach groundwater, which allow them to remain green throughout dry seasons. This study was carried out using hydrological monitoring consisting of 10 multi-sensor towers and 17 groundwater monitoring points. Soil moisture movement was investigated by profile monitoring. The deepest profile was down to 76 m depth. The soil moisture results revealed complicated pattern characterized by a combination of diffuse and preferential flow. The actual evapotranspiration was estimated by the Bowen-ratio and temperature-profile methods which provided overestimated results as compared with rainfall so the recharge could not be deduced directly. Therefore recharge was derived indirectly, through 1D lumped parameter model that used rainfall and PET as input and heads as calibration reference. That model indicated recharge 0-50 mm/yr. For understanding tree impact upon groundwater recharge, tree sap velocity was monitored for 2 years using the Granier method on 41 trees of 9 species in 8 plots of 30x30m. The estimated plot transpirations showed large spatio-temporal variability, 3-71 mm/yr and occasionally exceeded recharge. In order

  11. A comparison of methods for determining field evapotranspiration: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H.; Yang, P.

    2014-03-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: a photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationship between leaf areas and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance showed reasonable consistency during the cotton's open-boll growth stage, during which soil evaporation can be neglected. The results indicate that the proposed upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed for a cotton field under mulched drip irrigation. During the two analyzed sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 m day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above the drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.

  12. A comparison of methods for determining field evapotranspiration: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H. C.; Hu, H. P.

    2013-11-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between leaf area and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance shown reasonable consistency during the cotton open boll growth stage when soil evaporation can be neglected. The results indicate that the upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed under mulched drip irrigation. During the two analysis sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 mm day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.

  13. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion.

    PubMed

    Bernacchi, Carl J; Leakey, Andrew D B; Kimball, Bruce A; Ort, Donald R

    2011-06-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O₃]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O₃] on crop ecosystem energy fluxes and water use. Elevated [O₃] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C.

  14. A thermal-based remote sensing modeling system for estimating daily evapotranspiration from field to global scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal-infrared (TIR) remote sensing of land surface temperature (LST) provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition as well as providing useful information for constraining prognostic land surface models. This presentation d...

  15. A decade of remote sensing and evapotranspiration research at USDA-ARS Conservation and Production Research Laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is widely recognized that image-based remote sensing can provide spatially and temporally distributed information on soil and crop characteristics including tillage and evapotranspiration (ET) from plot to regional scales. ET is an important component of the water balance and the major consumptiv...

  16. Daily stand-scale evapotranspiration estimation over a managed pine plantation in North Carolina, USA, using multisatellite data fusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) over agricultural land surfaces represents the rate at which soil water is consumed in growing crops. Maps of ET,produced at high spatial and temporal resolution using satellite imagery, can provide detailed information about daily vegetation water use and soil moisture statu...

  17. Trend analysis and forecast of precipitation, reference evapotranspiration and rainfall deficit in the Blackland Prairie of eastern Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trend analysis and estimation of monthly and annual precipitation, reference evapotranspiration (ETo) and rainfall deficit are essential for water resources management and cropping system design. Rainfall, ETo, and water deficit patterns and trends in eastern Mississippi USA for a 120-year period (1...

  18. Evapotranspiration estimation in heterogeneous urban vegetation

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Nouri, H.; Beecham, S.; Anderson, S.; Sutton, P.; Chavoshi, S.

    2015-12-01

    Finding a valid approach to measure the water requirements of mixed urban vegetation is a challenge. Evapotranspiration (ET) is the main component of a plant's water requirement. A better understanding of the ET of urban vegetation is essential for sustainable urbanisation. Increased implementation of green infrastructure will be informed by this work. Despite promising technologies and sophisticated facilities, ET estimation of urban vegetation remains insufficiently characterized. We reviewed the common field, laboratory and modelling techniques for ET estimation, mostly agriculture and forestry applications. We opted for 3 approaches of ET estimation: 1) an observational-based method using adjustment factors applied to reference ET, 2) a field-based method of Soil Water Balance (SWB) and 3) a Remote Sensing (RS)-based method. These approaches were applied to an experimental site to evaluate the most suitable ET estimation approach for an urban parkland. To determine in-situ ET, 2 lysimeters and 4 Neutron Moisture Meter probes were installed. Based on SWB principles, all input water (irrigation, precipitation and upward groundwater movements) and output water (ET, drainage, soil moisture and runoff) were measured monthly for 14 months. The observation based approach and the ground-based approach (SWB) were compared. Our predictions were compared to the actual irrigation rates (data provided by the City Council). Results suggest the observational-based method is the most appropriate urban ET estimation. We examined the capability of RS to estimate ET for urban vegetation. Image processing of 5 WorldView2 satellite images enabled modelling of the relationship between urban vegetation and vegetation indices derived from high resolution images. Our results indicate that an ETobservational-based -NDVI modelling approach is a reliable method of ET estimation for mixed urban vegetation. It also has the advantage of not depending on extensive field data collection.

  19. Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Sheng; Zhou, Yangxiao

    2016-09-01

    The Budyko framework represents the general relationship between the evapotranspiration ratio (F) and the aridity index (φ) for the mean annual steady-state water balance at the catchment scale. It is interesting to investigate whether this standard F - φ space can also be applied to capture the shift of annual water balance in catchments with varying dryness. Previous studies have made significant progress in incorporating the storage effect into the Budyko framework for the non-steady conditions, whereas the role of groundwater-dependent evapotranspiration was not investigated. This study investigates how groundwater-dependent evapotranspiration causes the shift of the annual water balance in the standard Budyko space. A widely used monthly hydrological model, the ABCD model, is modified to incorporate groundwater-dependent evapotranspiration into the zone with a shallow water table and delayed groundwater recharge into the zone with a deep water table. This model is applied in six catchments in the Erdos Plateau, China, to estimate the actual annual evapotranspiration. Results show that the variations in the annual F value with the aridity index do not satisfy the standard Budyko formulas. The shift of the annual water balance in the standard Budyko space is a combination of the Budyko-type response in the deep groundwater zone and the quasi-energy limited condition in the shallow groundwater zone. Excess evapotranspiration (F > 1) could occur in dry years, which is contributed by the significant supply of groundwater for evapotranspiration. Use of groundwater for irrigation can increase the frequency of the F > 1 cases.

  20. First insights into disassembled "evapotranspiration"

    NASA Astrophysics Data System (ADS)

    Chormański, Jarosław; Kleniewska, Małgorzata; Berezowski, Tomasz; Szporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatyłowicz, Jan; Batelaan, Okke

    2015-04-01

    In this work we present an initial data analysis obtained from a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them fromthe total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its component transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project

  1. Evapotranspiration from the Lower Walker River Basin, West-Central Nevada, Water Years 2005-07

    USGS Publications Warehouse

    Allander, Kip K.; Smith, J. LaRue; Johnson, Michael J.

    2009-01-01

    evapotranspiration station in a saltcedar grove, measurements indicated a possible decrease in evapotranspiration of about 50 percent due to defoliation of the saltcedar by the saltcedar leaf beetle. Total evapotranspiration from the evapotranspiration units identified in the Lower Walker River basin was about 231,000 acre-feet per year (acre-ft/yr). Of this amount, about 45,000 acre-ft/yr originated from direct precipitation, resulting in net evapotranspiration of about 186,000 acre-ft/yr. More than 80 percent of net evapotranspiration in the Lower Walker River basin was through evaporation from Walker Lake. Total evaporation from Walker Lake was about 161,000 acre-ft/yr and net evaporation was about 149,000 acre-ft/yr. Some previous estimates of evaporation from Walker Lake based on water-budget analysis actually represent total evaporation minus ground-water inflow to the lake. Historical evaporation rates determined on the basis of water budget analysis were less than the evaporation rate measured directly during this study. The difference could represent ground-water inflow to Walker Lake of 16,000 to 26,000 acre-ft/yr or could indicate that ground-water inflow to Walker Lake is decreasing over time as the lake perimeter recedes.

  2. Evapotranspiration information reporting: II. Recommended documentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and journal authors, reviewers, and readers can benefit from more complete documentation of published evapotranspiration (ET) information, including a description of field procedures, instrumentation, data filtering, model parameterization, and site review. This information is important ...

  3. Estimating potential evapotranspiration with improved radiation estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential evapotranspiration (PET) is of great importance to estimation of surface energy budget and water balance calculation. The accurate estimation of PET will facilitate efficient irrigation scheduling, drainage design, and other agricultural and meteorological applications. However, accuracy o...

  4. Remote Sensing of Snow and Evapotranspiration

    NASA Technical Reports Server (NTRS)

    Schmugge, T. (Editor)

    1985-01-01

    The use of snowmelt runoff models from both the U.S. and Japan for simulating discharge on basins in both countries is discussed as well as research in snowpack properties and evapotranspiration using remotely sensed data.

  5. Evapotranspiration and Dual Crop Coefficients Sonisa Sharma1, Ayse Irmak12, Anne Parkhurst3, Elizabeth walter-Shea1 and Kenneth G. Hubbard1 1School of Natural Resources, 2Civil Engineering, 3Departments of Statistics, University of Nebraska-Lincoln

    NASA Astrophysics Data System (ADS)

    Sharma, S.

    2012-12-01

    Accurate estimation of water content in the crop root zone is most important for water conservation and management practices like irrigation. The objective of this study is to use the FA0-56 dual crop cefficients: basal crop coefficient Kcb and the soil evaporation coefficient Ke for a large corn/soybean field in the year 2005 at the Mead Turf Farm in the state of Nebraska, USA..Dual crop coefficients can be used to estimate both transpiration from crops and evaporation from soil. The Kcb has a low value of 0.15(K cb, in) during the initial period, increases rapidly to a maximum of 1.14 (K cb, mid) for the entire midseason and decreases rapidly to 0.5 at the end of the corn growing season (K cb,end). When examined together with precipitation, the dual crop coefficient was higher following rainfall or irrigation, as expected. The data suggests that the dual crop coefficient approach is a good estimation of water loss from well-watered crops. Irrigation can be scheduled to replace the loss of water from the crop/soil system. Similarly, when we compared the measured daily ET and the ET calculated from dual crop coefficients, it gives 98 % R2.; Comparision of calculated ET from dual crop coefficient appraoch with Weather Station ET

  6. Evapotranspiration estimates using remote-sensing data, Parker and Palo Verde valleys, Arizona and California

    USGS Publications Warehouse

    Raymond, Lee H.; Rezin, Kelly V.

    1989-01-01

    In 1981 the U.S. Geological Survey established an experimental project to assess the possible and practical use of remote-sensing data to estimate evapotranspiration as an approximation of consumptive use of water in the lower Colorado River flood plain. The project area was in Parker Valley, Arizona. The approach selected was to measure the areas covered by each type of vegetation, using remote-sensing data in various types of analyses, and to multiply each area by a predetermined water-use rate. Two calibration and six remote-sensing methods of classifying crop types were compared for cost, accuracy, consistency, and labor requirements. Included were one method each for field reconnaissance using 1982 data, low-altitude (less than 5,000 feet) aerial photography using 1982 data, and visual photointerpretation of Landsat satellite images using 1981 and 1982 data; two methods for medium-altitude (15,000-18,000 feet) aerial photography using 1982 data; and three methods for digital Landsat satellite images using 1981 data. A test of the most promising digital-processing method, which used three image dates, was made in part of Palo Verde Valley, California, where 1981 crop data were more complete than in Parker Valley. Of the eight methods studied, the two-date digital-processing method was the most consistent and least labor intensive for identifying two or three major crops; visual photointerpretation of Landsat images was the least expensive. Evapotranspiration estimates from crop classifications by all methods differed by a maximum of 6 percent. Total evapotranspiration calculated from crop data and phreatophyte maps in 1981 ranged from 11 percent lower in Palo Verde Valley to 17 percent lower in Parker Valley than consumptive use calculated by water budgets. The difference was greater in Parker Valley because the winter crop data were not included.

  7. Evapotranspiration of applied water, Central Valley, California, 1957-78

    USGS Publications Warehouse

    Williamson, Alex K.

    1982-01-01

    In the Central Valley, Calif., where 57% of the 20,000 square miles of land is irrigated, ground-water recharge from agricultural lands is an important input to digital simulation models of ground-water flow. Several methods of calculating recharge were explored for the Central Valley Aquifer Project and a simplified water budget was designed where net recharge (recharge minus pumpage) equals net surface water diverted minus evapotranspiration of applied water (ETAW). This equation eliminates the need to determine pumpage from the water-table aquifer, assuming that the time lag for infiltration is not longer than the time intervals of interest for modeling. This study evaluates only the evapotranspiration of applied water. Future reports will describe the other components of the water budget. ETAW was calculated by summing the products of ETAW coefficients and respective crop areas for each 7 1/2-minute quadrangle area in the valley, for each of three land-use surveys between 1957 and 1978. In 1975 total ETAW was 15.2 million acre-feet, a 43% increase since 1959. The largest increases were in the south, especially Kern County, which had a sixfold increase, which was caused by the import of surface water in the California Aqueduct. (USGS)

  8. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  9. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1981-01-01

    Emissive and reflective data for 10 days, and IR data for 6 nights in south Texas scenes were analyzed after procedures were developed for removing cloud-affected data. HCMM radiometric temperatures were: within 2 C of dewpoint temperatures on nights when air temperature approached dewpoint temperatures; significantly correlated with variables important in evapotranspiration; and, related to freeze severity and planting depth soil temperatures. Vegetation greenness indexes calculated from visible and reflective IR bands of NOAA-6 to -9 meteorological satellites will be useful in the AgRISTARS program for seasonal crop development, crop condition, and drought applications.

  10. Estimating the actual ET from a pecan farm using the OPEC energy-balance and Penman- Monteith methods

    NASA Astrophysics Data System (ADS)

    Debele, B.; Bawazir, S. A.

    2006-12-01

    Accurate estimation of ET from field crops/orchards is the basis for better irrigation water management. In areas like Mesilla Valley, NM, where water is scarce, it is even more important to precisely determine the crop ET. An OPEC energy balance system was run for 117 days (June 22 October 14, 2001) in a matured pecan farm at Mesilla Valley, NM. The actual evapotranspiration (ET) from pecan orchards was determined from the surface energy balance as a residual, having measured the net radiation, soil heat flux, and sensible heat components using the OPEC method. Since pecans are large trees, we have also examined the effect of including thermal energies stored in the air (Ga) and plant canopy (Gc), on top of the commonly used thermal energy stored in the soil (Gs), on surface energy balance, and hence ET. The results indicate that incorporating thermal energies stored in the air and canopy has a significant effect on total energy storage for shorter temporal resolutions, such as 30-minutes and an hour. Conversely, for longer temporal resolutions (e.g., diurnal and monthly averages), the effect of including thermal energies stored in the air and vegetation on total thermal energy storage is negligible. Our results also showed that the bulk of the total thermal energy storage (G = Gs + Ga + Gc) in the surface energy balance was stored in the soil (Gs). In addition, we have also determined the crop coefficient (Kc) of pecan by combining the actual ET obtained from the OPEC method and potential ET (ET0) calculated using weather data in the surrounding area. Our average pecan Kc values were comparable with the ones reported by other researchers using different methods. We conclude that the OPEC energy balance method can be used to calculate Kc values for pecan whereby farmers and extension agents use the calculated Kc values in combination with ET0 to determine the consumptive use of pecan trees.

  11. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  12. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  13. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  14. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  15. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  16. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    NASA Astrophysics Data System (ADS)

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan

    2017-01-01

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed

  17. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role

    PubMed Central

    Ruairuen, Watcharee

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  18. Evapotranspiration estimates using remote-sensing data, Parker and Palo Verde valleys, Arizona and California

    USGS Publications Warehouse

    Raymond, L.H.; Rezin, K.V.

    1986-01-01

    In 1981 the U.S. Geological Survey established an experimental project to assess the possible and practical use of remote sensing data to estimate evapotranspiration as an approximation of consumptive use in the lower Colorado River flood plain. The project area was in Parker Valley, Arizona. The approach selected was to measure the areas covered by each type of vegetation using remote sensing data in various types of analyses and to multiply each area by a predetermined water use rate. Two calibration and six remote sensing methods of classifying crop types were compared for cost, accuracy, consistency, and labor requirements. Included were one method each for field reconnaissance using 1982 data, low altitude (< than 5,000 ft) aerial photography using 1982 data, and visual photointerpretation of Landsat satellite images using 1981 and 1982 data; two methods for medium-altitude (15,000-18,000 ft) aerial photography using 1982 data; and three methods for digital Landsat satellite images using 1981 data. A test of the most promising digital processing method, which used three image dates, was made in part of Palo Verde Valley, California, where 1981 crop data were more complete than in Parker Valley. Of the eight methods studied, the three-date digital processing method was the most consistent and least labor-intensive; visual photointerpretation of Landsat images was the least expensive. Evapotranspiration estimates from crop classifications by all methods differed by a maximum of 6%. Total evapotranspiration calculated from crop data and phreatophyte maps in 1981 ranged from 12% lower in Palo Verde Valley to 17% lower in Parker Valley than consumptive use calculated by water budgets. The difference was greater in Parker Valley because the winter crop data were not included. (Author 's abstract)

  19. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.

    2015-03-01

    Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.

  20. Concerning the relationship between evapotranspiration and soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1987-01-01

    The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.

  1. Drought monitoring over the Horn of Africa using remotely sensed evapotranspiration, soil moisture and vegetation parameters

    NASA Astrophysics Data System (ADS)

    Timmermans, J.; Gokmen, M.; Eden, U.; Abou Ali, M.; Vekerdy, Z.; Su, Z.

    2012-04-01

    The need to good drought monitoring and management for the Horn of Africa has never been greater. This ongoing drought is the largest in the past sixty years and is effecting the life of around 10 million people, according to the United Nations. The impact of drought is most apparent in food security and health. In addition secondary problems arise related to the drought such as large migration; more than 15000 Somalia have fled to neighboring countries to escape the problems caused by the drought. These problems will only grow in the future to larger areas due to increase in extreme weather patterns due to global climate change. Monitoring drought impact and managing the drought effects are therefore of critical importance. The impact of a drought is hard to characterize as drought depends on several parameters, like precipitation, land use, irrigation. Consequently the effects of the drought vary spatially and range from short-term to long-term. For this reason a drought event can be characterized into four categories: meteorological, agricultural, hydrological and socio-economical. In terms of food production the agricultural drought, or short term dryness near the surface layer, is most important. This drought is usually characterized by low soil moisture content in the root zone, decreased evapotranspiration, and changes in vegetation vigor. All of these parameters can be detected with good accuracy from space. The advantage of remote sensing in Drought monitoring is evident. Drought monitoring is usually performed using drought indices, like the Palmer Index (PDSI), Crop Moisture Index (CMI), Standard Precipitation Index (SPI). With the introduction of remote sensing several indices of these have shown great potential for large scale application. These indices however all incorporate precipitation as the main surface parameter neglecting the response of the surface to the dryness. More recently two agricultural drought indices, the EvapoTranspiration Deficit

  2. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (α=0

  3. Partitioning evapotranspiration into green and blue water sources in the conterminous United States

    USGS Publications Warehouse

    Velpuri, Naga Manohar; Senay, Gabriel

    2017-01-01

    In this study, we combined two actual evapotranspiration datasets (ET), one obtained from a root zone water balance model and another from an energy balance model, to partition annual ET into green (rainfall-based) and blue (surface/groundwater) water sources. Time series maps of green water ET (GWET) and blue water ET (BWET) are produced for the conterminous United States (CONUS) over 2001–2015.

  4. Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are great tools to improve soil quality and health, and great tools to increase carbon sequestration. They are nutrient management tools that can help scavenge nitrate, cycle nitrogen to the following crop, mine NO3 from groundwater, and increase nitrogen use efficiency of cropping syste...

  5. Estimation of regional evapotranspiration for clear sky days over the North China Plain

    NASA Astrophysics Data System (ADS)

    Shu, Y.; Stisen, S.; Sandholt, I.; Jensen, K. H.

    2009-04-01

    The triangle method combined with thermal inertia for estimation of regional evapotranspiration based on Feng Yun-2C(FY-2C) satellite data and MODIS products over the North China Plain is presented. FY-2C, China's first operational geostationary meteorological satellite which features 5 spectral bands (1 VIS and 4 IR), can acquire one full disc image of China (60° N - 60° S ,45° E - 165° E) per hour every day. Two thermal red channels (IR1: 10.3-11.3 μm) and (IR2:11.5-12.5 μm) were used for surface temperature estimation using a split window algorithm originally proposed for the MSG-SEVIRI sensor assuming the channel response function range of the two split-window channels for MSG SEVIRI and FY-2C are similar and that the center of channels are the same. For application of the improved triangle method taking thermal inertia into account, the surface-air temperature gradient in the Ts-NDVI space, was replaced by the surface temperature temporal change estimated from the Land Surface Temperature at hours 8:00 and 12:00 in local time (ΔTs). Combined with the 16 days composite MODIS Vegetation Indices product (MOD 13) at spatial resolution of 5 km, evaporative fraction was estimated by interpolation in the ΔTs-NDVI triangular-shaped parameter space. Subsequently, regional actual evapotranspiration was estimated based on the derived evaporative fraction and available energy estimated from satellite data. In the piedmont plain with high NDVI and low ΔTs, evapotranspiration rate is high because of irrigation of winter wheat. In the coastal plain NDVI is low and also ΔTs is low as high evapotranspiration rates are sustained water supply from shallow water table. Ground-based measurements of evapotranspiration were retrieved from a lysimeter at the Luancheng eco-agricultural station of China Academy of Sciences. These data are representative for evapotranspiration in the piedmont plain and were used for validation of the actual evapotranspiration retrievals from

  6. A review of approaches for evapotranspiration partitioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partitioning of evapotranspiration (ET) into evaporation from the soil surface (E) and transpiration (T) is challenging but important in order to assess biomass production and the allocation of increasingly scarce water resources. Generally T is the desired component with the water being used to enh...

  7. Field measurement of cotton seedling evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on cotton evapotranspiration (ET) during the seedling growth stage and under field conditions is scarce because ET is a difficult parameter to measure. Our objective was to use weighable lysimeters to measure daily values of cotton seedling ET. We designed and built plastic weighable mic...

  8. Evapotranspiration, biomass production and water productivity acquired from Landsat 8 images in the northwestern side of the São Paulo state, Brazil

    NASA Astrophysics Data System (ADS)

    de C. Teixeira, Antônio H.; Leivas, Janice F.; T. Hernandez, Fernando B.; Franco, Renato A. M.; Nuñez, Daniel N. C.

    2016-10-01

    In the northwestern side of the São Paulo state, Brazil, irrigated areas are expanding, because rainfall is not enough to supply the crop water requirements. Under the actual climate and land-use change scenarios, large-scale evapotranspiration (ET) and biomass production (BIO) acquirements are relevant. Eleven Landsat 8 images, from May 2013 to October 2014, were used together with a net of eight agrometeorological stations for modelling these water productivity (WP) parameters in the main agricultural growing irrigated areas inside three hydrological basins in this region. Some of these areas inside of each basin were highlighted for more in-depth WP analyses. The SAFER algorithm estimated the ratio of actual (ET) to reference (ET0) evapotranspiration and this ratio was used for both, to calculate ET and to include the soil moisture effects in the Monteith's Radiation Use Efficiency (RUE) model. The highlighted agricultural growing regions were Paranapuã, Populina and Santa Rita d'Oeste in the Turvo/Grande basin; Rubinéia, Santa Fé do Sul, Suzanópolis and Ilha Solteira, in the São José dos Dourados basin; and Pereira Barreto and Sud Mennucci, in the Baixo Tietê basin. The highest averages of both ET (1.7 +/- 0.9 mm d-1) and BIO (47 +/- 31 kg ha-1 d-1) were for Ilha Solteira, while the lowest ones happened in Sud Mennucci (1.3 +/- 0.7 mm d-1 and 40 +/- 27). These ET and BIO ranges returned WP values varying from 2.2 +/- 0.6 to 2.6 +/- 0.8 kg m-3, with the higher end of this range happening in the Turvo/Grande hydrological basin. Considering the annual time-scale, crops will consume around 770, 828 and 786 mm yr-1 with the corresponding BIO values of 27, 26 and 25 t ha-1 yr-1, respectively in Turvo/Grande, São José do Dourados and Baixo Tietê. It was concluded that increments in agricultural irrigated areas should be stimulated in the northwestern side of the state, mainly in the first basin, to retrieve good yield with less water use.

  9. The Bushland weighing lysimeters: A quarter century of crop ET investigations to advance sustainable irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1987-1989, the first irrigated crops were grown on the four large, precision weighing lysimeters at the USDA-ARS Laboratory at Bushland, Texas, on the Southern High Plains (SHP). Thus began >25-years of full- and deficit-irrigated crop growth, energy and water balance, evapotranspiration (ET), yi...

  10. An energy balance approach for mapping crop waterstress and yield impacts over the Czech Republic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a growing demand for timely, spatially distributed information regarding crop condition and water use to inform agricultural decision making and yield forecasting efforts. Remote sensing of land-surface temperature has proven valuable for mapping evapotranspiration (ET) and crop stress from...

  11. Estimation of actual evapotranspiration using measured and calculated values of bulk surface resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently the United Nations-Food and Agriculture Organization (FAO) recommends using the Penman-Monteith method for estimating ET over all other meteorological methods. The principal limitation of using the generalized form of the Penman-Monteith equation is in obtaining accurate values for the bu...

  12. Daily potential evapotranspiration and diurnal climate forcings: influence on the numerical modelling of soil water dynamics and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Liu, Siqing; Graham, Wendy D.; Jacobs, Jennifer M.

    2005-07-01

    A physically based, variably saturated flow model was developed to predict soil water dynamics, evapotranspiration (ET) from the vadose zone, and recharge to (or exfiltration from) the saturated zone using mean daily atmospheric forcings and to identify the value of diurnal climate forcings on those predictions. The vadose zone flow is modelled using the Galerkin finite element technique to solve Richards' equation in one-dimension. The model was able to accurately predict measured soil moisture, water table elevation and actual ET at Paynes Prairie State Preserve in Florida. The forecast Nash-Sutcliffe efficiencies of actual ET, water table and average soil moisture content increased modestly, from 0.605-0.653, 0.888-0.916 to 0.902-0.913, respectively, when the average daily ET forcing was replaced with a diurnal evaporation cycle. Several additional numerical experiments were conducted to evaluate the influence of the evaporation cycle disaggregation approach on modelled ET and soil moisture content for different soil textures, vegetation surfaces, and water table depth. The results show that the enhanced predictive value of the diurnal ET cycle increases with decreasing vegetation, decreasing clay content, and increasing water table depth. Using numerical studies, actual evaporation is shown to be higher for daily average evaporation as compared to the diurnal cycle evaporation for specific ranges of shallow water table depth. For clay soils, this range occurs from approximately 40 to 300 cm below land surface for bare soils and from approximately 40 to well below 300 cm below land surface for vegetated soils. The range for sandy soils is approximately 80-200 cm below land surface for both bare and vegetated soils. Within this range, the maximum difference of the actual to potential evapotranspiration ratio for the clay soil, resulting from using different forcing methods, is 20 and 10% for bare soil and vegetated conditions, respectively. The forcing method

  13. Estimating evapotranspiration with thermal UAV data and two source energy balance models

    NASA Astrophysics Data System (ADS)

    Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P. J.; Friborg, T.

    2015-08-01

    Estimating evapotranspiration is important when managing water resources and cultivating crops. Evapotranspiration can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST) which recently have become obtainable in very high resolution using Unmanned Aerial Vehicles (UAVs). Very high resolution LST can give insight into e.g. distributed crop conditions within cultivated fields. In this study evapotranspiration is estimated using LST retrieved with a UAV and the physically-based, two source energy balance models: the Priestley-Taylor TSEB (TSEB-PT) and the Dual-Temperature-Difference (DTD). A fixed-wing UAV was flown over a barley field in western Denmark during the spring and summer in 2014 and retrieved images of LST is successfully processed into thermal mosaics which serve as model input for both TSEB-PT and DTD. The aim is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to obtain high spatial and temporal resolution surface energy heat fluxes. Furthermore, this study evaluates the performance of the two source energy balance (TSEB) model scheme during cloudy and overcast weather conditions. This is feasible due to the low data retrieval altitude compared to satellite thermal data that are only available during clear skies and sunny conditions. Flux estimates from TSEB-PT and DTD are compared and validated against field data collected using an eddy covariance system located at same site at which the UAV flights were conducted. Furthermore, spatially distributed evapotranspiration patterns are evaluated using known irrigation patterns. Evapotranspiration is well estimated by both TSEB-PT and DTD with DTD as the best predictor. The DTD model provides results comparable to studies estimating evapotranspiration with satellite retrieved LST and physical land-surface models. This study shows that the UAV platform and the lightweight thermal camera provide high

  14. A calibration-free evapotranspiration mapping technique

    NASA Astrophysics Data System (ADS)

    Szilagyi, J.

    2010-12-01

    With the availability of Moderate Resolution Imaging Spectroradiometer (MODIS) data the spatial distribution of the resulting daytime land surface temperature (Ts) can be tracked at a resolution of about 1-km. A simple, self-calibrating linear transformation of the Ts values into evapotranspiration (ET) rates is possible if the following criteria are met: a) the vertical gradient of the air temperature near the surface is directly proportional to Ts; b) net energy available for sensible and latent heat transfer at the surface is quasi-constant in space; c) heat conduction into the soil is negligible, and; d) land-surface properties do not change drastically over space. The validity of a) has been proved by such models as SEBAL and METRIC. Requirement b) is fulfilled over a flat or rolling terrain provided the probability distribution of the surface albedo values of the MODIS cells has a narrow spread, which is the case for the two study areas (Hungary and Nebraska) with a characteristic vegetation-period mean of about 16% and a standard deviation of 1.4%. Heat conduction into the soil can be considered negligible for periods longer than a day, thus the 8-day composited Ts values employed in the present study comply with this requirement. Finally, for periods longer than a day, the assumption of near-neutral atmospheric conditions is justified which entails that spatial variations in surface properties have a significantly dampened effect on the flux-transfer coefficient (i.e., aerodynamic resistance) value which therefore can be considered as quasi-constant in space. The linear transformation of the Ts values into ET rates in this study has been performed on a monthly basis. The transformation requires specifying two anchor points in the Ts - ET plane with the help of standard atmospheric variables, such as air temperature and humidity, as well as incident global radiation, or in lieu of it, sunshine duration. From March to November ET has been mapped for Hungary

  15. Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Roy, Tirthankar; Gupta, Hoshin V.; Serrat-Capdevila, Aleix; Valdes, Juan B.

    2017-02-01

    Daily, quasi-global (50° N-S and 180° W-E), satellite-based estimates of actual evapotranspiration at 0.25° spatial resolution have recently become available, generated by the Global Land Evaporation Amsterdam Model (GLEAM). We investigate the use of these data to improve the performance of a simple lumped catchment-scale hydrologic model driven by satellite-based precipitation estimates to generate streamflow simulations for a poorly gauged basin in Africa. In one approach, we use GLEAM to constrain the evapotranspiration estimates generated by the model, thereby modifying daily water balance and improving model performance. In an alternative approach, we instead change the structure of the model to improve its ability to simulate actual evapotranspiration (as estimated by GLEAM). Finally, we test whether the GLEAM product is able to further improve the performance of the structurally modified model. Results indicate that while both approaches can provide improved simulations of streamflow, the second approach also improves the simulation of actual evapotranspiration significantly, which substantiates the importance of making diagnostic structural improvements to hydrologic models whenever possible.

  16. The Course of Actualization

    ERIC Educational Resources Information Center

    De Smet, Hendrik

    2012-01-01

    Actualization is traditionally seen as the process following syntactic reanalysis whereby an item's new syntactic status manifests itself in new syntactic behavior. The process is gradual in that some new uses of the reanalyzed item appear earlier or more readily than others. This article accounts for the order in which new uses appear during…

  17. A Maize Yield Model Based on the Land Surface Temperature and Evapotranspiration Derived from Landsat Satellite Data

    NASA Astrophysics Data System (ADS)

    Boken, Vijednra K.; Martin, Chelsea; Nigro, Joseph; Tucker, Compton J.; Levell, Ryan; Volpe, Nickolas; Stroup, Jamie

    2011-01-01

    This study presents a preliminary analysis based on the data collected for 2008 and 2009 for predicting yield of maize, the main crop of Nebraska and an important crop of the several other nearby states in United States. The main focus of this study was to estimate land surface temperature and evapotranspiration and to examine the potential of these variables in predicting maize yield. In addition, other previously used variables relating to Normalized Difference Vegetation Index (NDVI), and other weather variables (temperature, precipitation, and humidity). Among weather variables, humidity was found a potential variable to predict yield in addition to evapotranspiration. Air temperature or land surface temperature were not as consistently related to yield as normalized difference vegetation index. These inferences are however based on a limited length of datasets. Further analysis is underway to expand the length of datasets to enhance the reliability of statistical inferences and to attempt a multiple regression analysis to develop a maize yield model.

  18. Drought trends indicated by evapotranspiration deficit over the contiguous United States during 1896-2013

    NASA Astrophysics Data System (ADS)

    Kim, Daeha; Rhee, Jinyoung

    2016-04-01

    Evapotranspiration (ET) has received a great attention in drought assessment as it is closely related to atmospheric water demand. The hypothetical potential ET (ETp) has been predominantly used, nonetheless it does not actually exist in the hydrologic cycle. In this work, we used a complementary method for ET estimation to obtain wet-environment ET (ETw) and actual ET (ETa) from routinely observed climatic data. By combining ET deficits (ETw minus ETa) and the structure of the Standardized Precipitation-Evapotranspiration Index (SPEI), we proposed a novel ET-based drought index, the Standardized Evapotranspiration Deficit Index (SEDI). We carried out historical drought identification for the contiguous United States using temperature datasets of the PRISM Climate Group. SEDI presented spatial distributions of drought areas similar to the Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI) for major drought events. It indicates that SEDI can be used for validating other drought indices. Using the non-parametric Mann-Kendall test, we found a significant decreasing trend of SEDI (increasing drought risk) similar to PDSI and SPI in the western United States. This study suggests a potential of ET-based indices for drought quantification even with no involvement of precipitation data.

  19. Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Xingwang; Huo, Zailin; Feng, Shaoyuan; Guo, Ping; Guan, Huade

    2016-12-01

    Estimating evapotranspiration from groundwater (ETg) is of importance to understanding water cycle and agricultural water management. Traditional ETg estimation was developed for regional steady condition and is difficult to be used for cropland where ETg changes with crop growth and irrigation schemes. In the present study, a new method estimating daily ETg during the crop growing season was developed. In this model, the effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is in good agreement with the measured data for four soil profiles and different depths to groundwater table. Coefficient of determination (R2) and coefficient of efficiency (NSE) are mostly larger than 0.85 and 0.70, respectively. This result suggests that the new method incorporating both soil texture and moisture dynamics can be used to estimate average daily groundwater evapotranspiration in cropland and contribute to quantifying the field water cycle.

  20. Simple analytical model of evapotranspiration in the presence of roots

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare M.; Hough, L. A.; Castaing, Jean-Christophe; Frétigny, Christian; Dreyfus, Rémi

    2014-10-01

    Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer. Water is pumped by the roots, channeled to the leaf surface, and released into the surrounding air by a process called transpiration. Prediction of the evapotranspiration of water over time in the presence of roots helps keep track of the amount of water that remains in the soil. Using a controlled visual setup of a two-dimensional model soil consisting of monodisperse glass beads, we perform experiments on actual roots grown under different relative humidity conditions. We record the total water mass loss in the medium and the position of the evaporating front that forms within the medium. We then develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation fluxes and includes empirical assumptions on the quantity of open stomata in the leaves, where water transpiration occurs. Comparison between the model and experimental results shows excellent prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of roots. The model also provides a way to predict the lifetime of a plant.

  1. Modeling soybean canopy resistance from micrometeorological and plant variables for estimating evapotranspiration using one-step Penman-Monteith approach

    NASA Astrophysics Data System (ADS)

    Irmak, Suat; Mutiibwa, Denis; Payero, Jose; Marek, Thomas; Porter, Dana

    2013-12-01

    Canopy resistance (rc) is one of the most important variables in evapotranspiration, agronomy, hydrology and climate change studies that link vegetation response to changing environmental and climatic variables. This study investigates the concept of generalized nonlinear/linear modeling approach of rc from micrometeorological and plant variables for soybean [Glycine max (L.) Merr.] canopy at different climatic zones in Nebraska, USA (Clay Center, Geneva, Holdrege and North Platte). Eight models estimating rc as a function of different combination of micrometeorological and plant variables are presented. The models integrated the linear and non-linear effects of regulating variables (net radiation, Rn; relative humidity, RH; wind speed, U3; air temperature, Ta; vapor pressure deficit, VPD; leaf area index, LAI; aerodynamic resistance, ra; and solar zenith angle, Za) to predict hourly rc. The most complex rc model has all regulating variables and the simplest model has only Rn, Ta and RH. The rc models were developed at Clay Center in the growing season of 2007 and applied to other independent sites and years. The predicted rc for the growing seasons at four locations were then used to estimate actual crop evapotranspiration (ETc) as a one-step process using the Penman-Monteith model and compared to the measured data at all locations. The models were able to account for 66-93% of the variability in measured hourly ETc across locations. Models without LAI generally underperformed and underestimated due to overestimation of rc, especially during full canopy cover stage. Using vapor pressure deficit or relative humidity in the models had similar effect on estimating rc. The root squared error (RSE) between measured and estimated ETc was about 0.07 mm h-1 for most of the models at Clay Center, Geneva and Holdrege. At North Platte, RSE was above 0.10 mm h-1. The results at different sites and different growing seasons demonstrate the robustness and consistency of the

  2. Effects of rising atmospheric CO 2 on evapotranspiration and soil moisture: A practical approach for the Netherlands

    NASA Astrophysics Data System (ADS)

    Kruijt, Bart; Witte, Jan-Philip M.; Jacobs, Cor M. J.; Kroon, Timo

    2008-02-01

    SummaryThe extent to which climate change will affect evapotranspiration and water deficits is still uncertain. Temperature increase was recently shown to lead to enhanced drought in the Netherlands. In contrast, experimental evidence shows that elevated atmospheric CO2 concentrations tend to reduce stomatal opening in plants. This leads to lower transpiration rates, although models of atmospheric and soil water feedback show that reductions may be smaller than expected from stomatal closure. We combined the various effects and feedbacks. First, we inferred partial corrections on 'crop factors' used in simple evaporation equations such as Makkink's, for a range of crops and vegetation types in the Netherlands. Second, we applied these corrected factors to infer the likely effects on water deficits in the Netherlands, using a coupled set of hydrological models and national climate scenarios. The combined effects of CO2 on evapotranspiration are generally modest, between a reduction of a few percent for short crops to about 15% for tall, rough vegetation. These reductions are, however, of comparable but opposite magnitude to predicted temperature-induced increases in evapotranspiration. We show that, if combined within the coupled hydrological model, the CO2-effect would lead to a much-reduced desiccating effect of climate change. In general, it is argued that, especially for sub-regional spatial scales and seasonal time-scales, CO2 is likely to be a significant factor in the water balance even of relatively wet regions.

  3. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration

    USGS Publications Warehouse

    Sumner, D.M.; Jacobs, J.M.

    2005-01-01

    Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

  4. Improving Spectral Crop Coefficient Approach with Raw Image Digital Count Data to Estimate Crop Water Use

    NASA Astrophysics Data System (ADS)

    Shafian, S.; Maas, S. J.; Rajan, N.

    2014-12-01

    Water resources and agricultural applications require knowledge of crop water use (CWU) over a range of spatial and temporal scales. Due to the spatial density of meteorological stations, the resolution of CWU estimates based on these data is fairly coarse and not particularly suitable or reliable for water resources planning, irrigation scheduling and decision making. Various methods have been developed for quantifying CWU of agricultural crops. In this study, an improved version of the spectral crop coefficient which includes the effects of stomatal closure is applied. Raw digital count (DC) data in the red, near-infrared, and thermal infrared (TIR) spectral bands of Landsat-7 and Landsat-8 imaging sensors are used to construct the TIR-ground cover (GC) pixel data distribution and estimate the effects of stomatal closure. CWU is then estimated by combining results of the spectral crop coefficient approach and the stomatal closer effect. To test this approach, evapotranspiration was measured in 5 agricultural fields in the semi-arid Texas High Plains during the 2013 and 2014 growing seasons and compared to corresponding estimated values of CWU determined using this approach. The results showed that the estimated CWU from this approach was strongly correlated (R2 = 0.79) with observed evapotranspiration. In addition, the results showed that considering the stomatal closer effect in the proposed approach can improve the accuracy of the spectral crop coefficient method. These results suggest that the proposed approach is suitable for operational estimation of evapotranspiration and irrigation scheduling where irrigation is used to replace the daily CWU of a crop.

  5. Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system

    NASA Astrophysics Data System (ADS)

    Serrat-Capdevila, Aleix; Scott, Russell L.; James Shuttleworth, W.; Valdés, Juan B.

    2011-03-01

    SummaryThis paper presents an approach to quantify evapotranspiration under changing climates, using field observations, theoretical evaporation models and meteorological predictions from global climate models. We analyzed evaporation and meteorological data from three riparian sites located in a semi-arid watershed in southern Arizona USA and found that the surface resistance to water vapor transport was closely related to the vapor pressure deficit. From this, we developed a relatively simple daily conductance model and included a growing season index to accurately replicate the onset and the end of the growing season. After the model was calibrated with observations from January 2003 to December 2007, it was used to predict daily evapotranspiration rates from 2000 to 2100 using Penman-Monteith equation and meteorological projections from the IPCC fourth assessment report climate model runs. Results indicate that atmospheric demand will be greater and lead to increased reference crop evaporation, but evapotranspiration rates at the studied field sites will remain largely unchanged due to stomatal regulation. However, the length of the growing season will increase leading to a greater annual riparian water use. These findings of increased riparian water use and atmospheric demand, likely affecting recharge processes, will lead to greater groundwater deficits and decreased streamflow and have important implications for water management in semi-arid regions.

  6. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.

    PubMed

    Maes, W H; Steppe, K

    2012-08-01

    As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.

  7. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, Alex M.

    1989-01-01

    From July 1982 through June 1984, a study was made of the evapotranspiration and microclimate at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily awnless brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy budget with the Bowen ratio, (2) an aerodynamic profile, and (3) a soil-based water budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data and then summed by days and months. Yearly estimates (for March through November) by these methods were in close agreement: 648 and 626 millimeters, respectively. Daily estimates reach a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of total precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soilmoisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) at the Sheffield site were virtually identical to long-term averages from nearby National Weather Service

  8. The Artificial Neural Network Estimation for Daily and Hourly Rice Evapotranspiration in the Region of Red Soil, South China

    NASA Astrophysics Data System (ADS)

    Jing, Yuanshu; Ruthaikarn, Buaphean; Jin, Xinyi; Pang, Bo

    The evapotranspiration estimation is a key item for irrigation program. It has the important practical significance for high stable yield and water-saving in the region of red soil, South China. Penman-Monteith equation, recommended by FAO, is verified to be the most effective calculation to actual evaporation in many regions of the world. The only default is it has to use complete meteorological factors. To solve this problem, we are trying to find out a artificial neural network model (ANN) which can easily get its information and easy to calculate as well as guaranteed accuracy. A Bowen ratio energy balance (BREB) system and automatic weather station were employed for simultaneous measurement of actual evapotranspiration above the rice field. The frequency of 20-min recording provided the possibility for the estimation of daily and hourly evapotranspiration. The determined coefficient from the artificial neural network model on daily scale R2 is 0.9642, while hourly scale R2 is 0.9880. The reason was that the hourly scale training samples was greater than the daily scale measures. In general, the model gives an effective and feasible way for the evaluation of paddy rice evapotranspiration by the conventional parameters.

  9. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  10. Investigating Landsat-derived forest evapotranspiration in the Amazon

    NASA Astrophysics Data System (ADS)

    Khand, K. B.; Numata, I.; Kjaersgaard, J.; Cochrane, M. A.

    2015-12-01

    Nearly half of annual rainfall in the Amazon rainforest region is returned to the atmosphere through evapotranspiration (ET). However, this land-atmosphere water vapor feedback in Amazonia has been continuously disturbed by anthropogenic influence and climate change such as severe drought events. While forest ET dynamics in the Amazon have been studied from both point estimates (or in-situ measurements) and regional land-surface models as well as coarse-spatial satellite data, finer spatial data is required to address the spatial variability of forest ET associated with both forest disturbances and extreme climate events. We use Landsat-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model to generate high-resolution (30 m) ET products and investigate its potential to characterize local and regional ET behavior by comparison to ET calculated from flux tower data. METRIC estimates actual ET as residual of the surface energy balance and is applied to capture the spatial variability of forest ET. The flux tower data were collected at two sites with different forest types: Para with wet equatorial forest and Rondônia with seasonally dry tropical forest. Our study was conducted on the dry season of the years 2003 and 2005 for Para, and 2000 through 2002 for Rondônia as a function of data availability of both cloud-free Landsat images and meteorological data for METRIC processing. Daily gridded actual ET estimates from METRIC during the dry season were obtained using a cubic spline interpolation of ETrF (fraction of reference ET) values between the satellite image dates and multiplying by daily reference ET. Across the all study years, differences between the daily ET estimates for the selected image dates from METRIC and the flux towers were less than 1.2 mm/day, while on monthly basis, these averaged daily ET differences were much lower (< 0.5 mm). At Para, the correlation (R2) between the daily ET rates from METRIC and the

  11. Spatial Observation and Models for Crop Water Use in Australia (Invited)

    NASA Astrophysics Data System (ADS)

    Hafeez, M. M.; Chemin, Y.; Rabbani, U.

    2009-12-01

    Recent drought in Australia and concerns about climate change have highlighted the need to manage agricultural water resources more sustainably, especially in the Murray Darling Basin which accounts for more than 70% of water for crop production. For Australian continent, approximately 90% of the precipitation that falls on the land is returned back to the atmosphere through actual evapotranspiration (ET) process. However, despite its significance nationally, it is almost impossible to measure or observe it directly at a meaningful scale in space and time through traditional point-based methods. Since late 1990's, the optical-thermal remote sensing satellite data has been extensively used for mapping of actual ET from farm to catchment scales in Australia. Numerous ET algorithms have been developed to make use of remote sensing data acquired by optical-thermal sensors mounted on airborne and satellite platforms. This article concentrates on the Murrumbidgee catchment, where ground truth data has been collected on a fortnightly basis since 2007 using two Eddy Covariance Systems (ECS) and two Large Aperture Scintillometers (LAS). Their setup absorbed variability in the landscape to measure ET-related fluxes. The ground truthing measurement data includes leaf area index (LAI) from LICOR 2000, soil heat fluxes from HuskeFlux, crop reflectance data from CROPScan and from a thermal radiometer. UAV drone equipped with multispectral scanner and thermal imager was used to get very high spatial resolution NDVI and surface temperature maps over the selected farms. This large array of high technology instruments have been used to collect specific measurements within various micro-ecosystems available in our study area. This article starts by an overview of common ET estimation algorithms based on satellite remote sensing data. The algorithms are SEBAL, METRIC, Simplified Surface Energy Balance, Two Source Energy Balance and SEBS. They are used in Australia at both regional and

  12. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  13. Using Satellite Imagery with ET Weather Station Networks to Map Crop Water Use for Irrigation Scheduling: TOPS-SIMS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration estimates for scheduling irrigation must be field specific and real time. Weather station networks provide daily reference ET values, but users need to select crop coefficients for their particular crop and field. A prototype system has been developed that combines satellite image...

  14. Rainfall as proxy for evapotranspiration predictions

    NASA Astrophysics Data System (ADS)

    Collischonn, Bruno; Collischonn, Walter

    2016-10-01

    In this work, we evaluated the relationship between evapotranspiration and precipitation, based on the data recently made available by the Brazilian Meteorological Institute. ETP tend to be lower in rainy periods and vice-versa. This relationship was assessed both in physical and statistical ways, identifying the contribution of each explaining variable of ETP. We derived regression equations between monthly rainfall and ETP, which can be useful in studies where ETP time series are not available, such as reservoir design, irrigation management and flow forecast.

  15. Nitrogen Controls on Climate Model Evapotranspiration.

    NASA Astrophysics Data System (ADS)

    Dickinson, Robert E.; Berry, Joseph A.; Bonan, Gordon B.; Collatz, G. James; Field, Christopher B.; Fung, Inez Y.; Goulden, Michael; Hoffmann, William A.; Jackson, Robert B.; Myneni, Ranga; Sellers, Piers J.; Shaikh, Muhammad

    2002-02-01

    Most evapotranspiration over land occurs through vegetation. The fraction of net radiation balanced by evapotranspiration depends on stomatal controls. Stomates transpire water for the leaf to assimilate carbon, depending on the canopy carbon demand, and on root uptake, if it is limiting. Canopy carbon demand in turn depends on the balancing between visible photon-driven and enzyme-driven steps in the leaf carbon physiology. The enzyme-driven component is here represented by a Rubisco-related nitrogen reservoir that interacts with plant-soil nitrogen cycling and other components of a climate model. Previous canopy carbon models included in GCMs have assumed either fixed leaf nitrogen, that is, prescribed photosynthetic capacities, or an optimization between leaf nitrogen and light levels so that in either case stomatal conductance varied only with light levels and temperature.A nitrogen model is coupled to a previously derived but here modified carbon model and includes, besides the enzyme reservoir, additional plant stores for leaf structure and roots. It also includes organic and mineral reservoirs in the soil; the latter are generated, exchanged, and lost by biological fixation, deposition and fertilization, mineralization, nitrification, root uptake, denitrification, and leaching. The root nutrient uptake model is a novel and simple, but rigorous, treatment of soil transport and root physiological uptake. The other soil components are largely derived from previously published parameterizations and global budget constraints.The feasibility of applying the derived biogeochemical cycling model to climate model calculations of evapotranspiration is demonstrated through its incorporation in the Biosphere-Atmosphere Transfer Scheme land model and a 17-yr Atmospheric Model Inter comparison Project II integration with the NCAR CCM3 GCM. The derived global budgets show land net primary production (NPP), fine root carbon, and various aspects of the nitrogen cycling are

  16. Remote sensing of evapotranspiration using automated calibration: Development and testing in the state of Florida

    NASA Astrophysics Data System (ADS)

    Evans, Aaron H.

    Thermal remote sensing is a powerful tool for measuring the spatial variability of evapotranspiration due to the cooling effect of vaporization. The residual method is a popular technique which calculates evapotranspiration by subtracting sensible heat from available energy. Estimating sensible heat requires aerodynamic surface temperature which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for this problem by calibrating the relationship between sensible heat and retrieved surface temperature. Disadvantage of these calibrations are 1) user must manually identify extremely dry and wet pixels in image 2) each calibration is only applicable over limited spatial extent. Producing larger maps is operationally limited due to time required to manually calibrate multiple spatial extents over multiple days. This dissertation develops techniques which automatically detect dry and wet pixels. LANDSAT imagery is used because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet pixels are developed. Snapshots of retrieved evaporative fraction and actual evapotranspiration are compared to eddy covariance measurements for five study areas in Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available energy, roughness length and wind speed is tested. A technique for temporally interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and tested. The automated algorithm is successful at detecting wet and dry pixels (if they exist). Including wet pixels in calibration and assuming constant atmospheric conductance significantly improved results for all but Big Cypress and Gainesville. Evaporative fraction is not very sensitive to instantaneous available energy but it is sensitive to temperature when wet pixels are included because temperature is required for estimating wet pixel

  17. Adequacy of selected evapotranspiration approximations for hydrologic simulation

    USGS Publications Warehouse

    Sumner, D.M.

    2006-01-01

    Evapotranspiration (ET) approximations, usually based on computed potential ET (PET) and diverse PET-to-ET conceptualizations, are routinely used in hydrologic analyses. This study presents an approach to incorporate measured (actual) ET data, increasingly available using micrometeorological methods, to define the adequacy of ET approximations for hydrologic simulation. The approach is demonstrated at a site where eddy correlation-measured ET values were available. A baseline hydrologic model incorporating measured ET values was used to evaluate the sensitivity of simulated water levels, subsurface recharge, and surface runoff to error in four ET approximations. An annually invariant pattern of mean monthly vegetation coefficients was shown to be most effective, despite the substantial year-to-year variation in measured vegetation coefficients. The temporal variability of available water (precipitation minus ET) at the humid, subtropical site was largely controlled by the relatively high temporal variability of precipitation, benefiting the effectiveness of coarse ET approximations, a result that is likely to prevail at other humid sites.

  18. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    USGS Publications Warehouse

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.

    2012-01-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  19. Annual evapotranspiration retrieved solely from satellites' vegetation indices

    NASA Astrophysics Data System (ADS)

    Helman, David; Lensky, Itamar; Givati, Amir

    2015-04-01

    We present a simple model to retrieve annual actual evapotranspiration (ETannual) solely from satellites. The model is based on empirical relationships between vegetation indices (NDVI & EVI from MODIS) and ETannual from 16 fluxnet sites. These sites represent a wide range of plant functional types and ETannual. A multiple regression model is applied separately for (a) annuals vegetation systems (i.e., croplands and grasslands), and (b) combined annuals and perennials vegetation systems (i.e., woodlands, forests, savanna and shrublands). It explained 80% of the variance in ETannual for annuals, and 91% for combined annuals and perennials systems. We used this model to retrieve ETannual at 250 m spatial resolution for the Eastern Mediterranean from 2000 to 2013. The models estimates were highly correlated (R = 0.96, N = 7) with ETannual calculated from water catchments balances along the rainfall gradient of Israel. Models estimates were also comparable to the coarser resolution ET products of MSG (LSA-SAF MSG ETA, 3.1 km) and MODIS (MOD16, 1 km) in 148 Eastern Mediterranean basins, with a correlation coefficient (R) of 0.79 (N = 148), for both.

  20. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History...

  1. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History...

  2. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History...

  3. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, A.M.

    1987-01-01

    From July 1982 through June 1984, a study was made of the microclimate and evapotranspiration at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy-budget with the Bowen ratio, (2) an aerodynamic-profile, and (3) a soil-based water-budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data, then summed by days and months. Yearly estimates for March through November, by these methods, were quite close--648 and 626 millimeters, respectively. Daily estimates range up to a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soil-moisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) were virtually identical to long-term averages from nearby National Weather Service stations. Solar radiation averaged 65

  4. Seasonal evapotranspiration patterns in mangrove forests

    NASA Astrophysics Data System (ADS)

    Barr, Jordan G.; DeLonge, Marcia S.; Fuentes, Jose D.

    2014-04-01

    Diurnal and seasonal controls on water vapor fluxes were investigated in a subtropical mangrove forest in Everglades National Park, Florida. Energy partitioning between sensible and latent heat fluxes was highly variable during the 2004-2005 study period. During the dry season, the mangrove forest behaved akin to a semiarid ecosystem as most of the available energy was partitioned into sensible heat, which gave Bowen ratio values exceeding 1.0 and minimum latent heat fluxes of 5 MJ d-1. In contrast, during the wet season the mangrove forest acted as a well-watered, broadleaved deciduous forest, with Bowen ratio values of 0.25 and latent heat fluxes reaching 18 MJ d-1. During the dry season, high salinity levels (> 30 parts per thousand, ppt) caused evapotranspiration to decline and correspondingly resulted in reduced canopy conductance. From multiple linear regression, daily average canopy conductance to water vapor declined with increasing salinity, vapor pressure deficit, and daily sums of solar irradiance but increased with air temperature and friction velocity. Using these relationships, appropriately modified Penman-Monteith and Priestley-Taylor models reliably reproduced seasonal trends in daily evapotranspiration. Such numerical models, using site-specific parameters, are crucial for constructing seasonal water budgets, constraining hydrological models, and driving regional climate models over mangrove forests.

  5. National Weather Service Forecast Reference Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Osborne, H. D.; Palmer, C. K.; Krone-Davis, P.; Melton, F. S.; Hobbins, M.

    2013-12-01

    The National Weather Service (NWS), Weather Forecasting Offices (WFOs) are producing daily reference evapotranspiration (ETrc) forecasts or FRET across the Western Region and in other selected locations since 2009, using the Penman - Monteith Reference Evapotranspiration equation for a short canopy (12 cm grasses), adopted by the Environmental Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI, 2004). The sensitivity of these daily calculations to fluctuations in temperatures, humidity, winds, and sky cover allows forecasters with knowledge of local terrain and weather patterns to better forecast in the ETrc inputs. The daily FRET product then evolved into a suite of products, including a weekly ETrc forecast for better water planning and a tabular point forecast for easy ingest into local water management-models. The ETrc forecast product suite allows water managers, the agricultural community, and the public to make more informed water-use decisions. These products permit operational planning, especially with the impending drought across much of the West. For example, the California Department of Water Resources not only ingests the FRET into their soil moisture models, but uses the FRET calculations when determining the reservoir releases in the Sacramento and American Rivers. We will also focus on the expansion of FRET verification, which compares the daily FRET to the observations of ETo from the California Irrigation Management Information System (CIMIS) across California's Central Valley for the 2012 water year.

  6. Albedo Accuracy Impact On Evapotranspiration Estimation

    NASA Astrophysics Data System (ADS)

    Mattar, C.; Franch, B.; Sobrino, J. A.; Corbari, C.; Jimenez-Munoz, J. C.; Olivera, L.; Skerbaba, D.; Soria, G.; Oltra-Carrio, R.; Julien, Y.; Manchini, M.

    2013-12-01

    In this work, we analyze the influence of estimating the land surface albedo directly from the surface reflectance or through the BRDF integration in the estimation of energy balance components such as the net radiation, latent and heat flux and consequently in the land surface evapotranspiration. To this end, we processed remote sensing and in-situ meteorological data measured at the agricultural test site of Barrax in the framework of Earth Observation: optical Data calibration and Information eXtraction (EODIX) project. Remote sensing images were acquisitioned for different View Zenith Angles (VZA) by the Airborne Hyperspectral Images (AHS). Results have shown that albedo estimations derived from BRDF model present stability through every image while albedo estimations using single reflectance presented high variation depending on the VZA. The highest difference was observed in the backward scattering direction along the hot spot region obtaining a RMSE of 0.11 through the AHS image which implied a relative error of 65%. This work has analyzed the error committed by many evapotranspiration studies that assume the surface as Lambertian and estimate the albedo from a surface reflectance weighted average.

  7. Dynamic Modeling of an Evapotranspiration Cap

    SciTech Connect

    Jacob J. Jacobson; Steven Piet; Rafael Soto; Gerald Sehlke; Harold Heydt; John Visser

    2005-10-01

    The U.S. Department of Energy is scheduled to design and install hundreds of landfill caps/barriers over the next several decades and these caps will have a design life expectancy of up to 1,000 years. Other landfill caps with 30 year design lifetimes are reaching the end of their original design life; the changes to these caps need to be understood to provide a basis for lifetime extension. Defining the attributes that make a successful cap (one that isolates the waste from the environment) is crucial to these efforts. Because cap systems such as landfill caps are dynamic in nature, it is impossible to understand, monitor, and update lifetime predictions without understanding the dynamics of cap degradation, which is most often due to multiple interdependent factors rather than isolated independent events. In an attempt to understand the dynamics of cap degradation, a computer model using system dynamics is being developed to capture the complex behavior of an evapotranspiration cap. The specific objectives of this project are to capture the dynamic, nonlinear feedback loop structures underlying an evapotranspiration cap and, through computer simulation, gain a better understanding of long-term behavior, influencing factors, and, ultimately, long-term cap performance.

  8. Landfill Gas Effects on Evapotranspirative Landfill Covers

    NASA Astrophysics Data System (ADS)

    Plummer, M. A.; Mattson, E.; Ankeny, M.; Kelsey, J.

    2005-05-01

    The performance of an evapotranspirative landfill cover can be adversely affected by transport of landfill gases to the plant root zone. Healthy plant communities are critical to the success and effectiveness of these vegetated landfill covers. Poor vegetative cover can result in reduced transpiration, increased percolation, and increased erosion regardless of the thickness of the cover. Visual inspections of landfill covers indicate that vegetation-free areas are not uncommon at municipal waste landfills. Data from soil profiles beneath these areas suggest that anaerobic conditions in the plant-rooting zone are controlling plant distribution. On the same landfill, aerobic conditions exist at similar depths beneath well-vegetated areas. The movement of methane and carbon dioxide, generated by degradation of organic wastes, into the overlying soil cover displaces oxygen in the root zone. Monitoring data from landfills in semi-arid areas indicate that barometric pumping can result in hours of anaerobic conditions in the root zone. Microbial consumption of oxygen in the root zone reduces the amount of oxygen available for plant root respiration but consumption of oxygen and methane also produce water as a reaction byproduct. This biogenic water production can be on the order of centimeters of water per year which, while increasing water availability, also has a negative feedback on transport of landfill gases through the cover. Accounting for these processes can improve evapotranspirative landfill cover design at other sites.

  9. Estimating crop yields by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data

    NASA Astrophysics Data System (ADS)

    Reynolds, Curt Andrew

    The broad objective of this research was to develop a spatial model which provides both timely and quantitative regional maize yield estimates for real-time Early Warning Systems (EWS) by integrating satellite data with ground-based ancillary data. The Food and Agriculture Organization (FAO) Crop Specific Water Balance (CSWB) model was modified by using the real-time spatial data that include: dekad (ten-day) estimated rainfall (RFE) and Normalized Difference Vegetation Index (NDVI) composites derived from the METEOSAT and NOAA-AVHRR satellites, respectively; ground-based dekad potential evapo-transpiration (PET) data and seasonal estimated area-planted data provided by the Government of Kenya (GoK). A Geographical Information System (GIS) software was utilized to: drive the crop yield model; manage the spatial and temporal variability of the satellite images; interpolate between ground-based potential evapo-transpiration and rainfall measurements; and import ancillary data such as soil maps, administrative boundaries, etc. In addition, agro-ecological zones, length of growing season, and crop production functions, as defined by the FAO, were utilized to estimate quantitative maize yields. The GIS-based CSWB model was developed for three different resolutions: agro-ecological zone (AEZ) polygons; 7.6-kilometer pixels; and 1.1-kilometer pixels. The model was validated by comparing model production estimates from archived satellite and agro-meteorological data to historical district maize production reports from two Kenya government agencies, the Ministry of Agriculture (MoA) and the Department of Resource Surveys and Remote Sensing (DRSRS). For the AEZ analysis, comparison of model district maize production results and district maize production estimates from the MoA (1989-1997) and the DRSRS (1989-1993) revealed correlation coefficients of 0.94 and 0.93, respectively. The comparison for the 7.6-kilometer analysis showed correlation coefficients of 0.95 and 0

  10. Evaluation of different methods to estimate daily reference evapotranspiration in ungauged basins in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Fontoura, Jessica; Allasia, Daniel; Herbstrith Froemming, Gabriel; Freitas Ferreira, Pedro; Tassi, Rutineia

    2016-04-01

    Evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance. Due to the higher information requirements of the Penman-Monteith method and the existing data uncertainty, simplified empirical methods for calculating potential and actual evapotranspiration are widely used in hydrological models. This is especially important in Brazil, where the monitoring of meteorological data is precarious. In this study were compared different methods for estimating evapotranspiration for Rio Grande do Sul, the Southernmost State of Brazil, aiming to suggest alternatives to the recommended method (Penman-Monteith-FAO 56) for estimate daily reference evapotranspiration (ETo) when meteorological data is missing or not available. The input dataset included daily and hourly-observed data from conventional and automatic weather stations respectively maintained by the National Weather Institute of Brazil (INMET) from the period of 1 January 2007 to 31 January 2010. Dataset included maximum temperature (Tmax, °C), minimum temperature (Tmin, °C), mean relative humidity (%), wind speed at 2 m height (u2, m s-1), daily solar radiation (Rs, MJ m- 2) and atmospheric pressure (kPa) that were grouped at daily time-step. Was tested the Food and Agriculture Organization of the United Nations (FAO) Penman-Monteith method (PM) at its full form, against PM assuming missing several variables not normally available in Brazil in order to calculate daily reference ETo. Missing variables were estimated as suggested in FAO56 publication or from climatological means. Furthermore, PM was also compared against the following simplified empirical methods: Hargreaves-Samani, Priestley-Taylor, Mccloud, McGuiness-Bordne, Romanenko, Radiation-Temperature, Tanner-Pelton. The statistical analysis indicates that even if just Tmin and Tmax are available, it is better to use PM estimating missing variables from syntetic data than

  11. Evaluation of alternative methods for estimating reference evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration is an important component in water-balance and irrigation scheduling models. While the FAO-56 Penman-Monteith method has become the de facto standard for estimating reference evapotranspiration (ETo), it is a complex method requiring several weather parameters. Required weather ...

  12. Prediction of the Reference Evapotranspiration Using a Chaotic Approach

    PubMed Central

    Wang, Wei-guang; Zou, Shan; Luo, Zhao-hui; Zhang, Wei; Kong, Jun

    2014-01-01

    Evapotranspiration is one of the most important hydrological variables in the context of water resources management. An attempt was made to understand and predict the dynamics of reference evapotranspiration from a nonlinear dynamical perspective in this study. The reference evapotranspiration data was calculated using the FAO Penman-Monteith equation with the observed daily meteorological data for the period 1966–2005 at four meteorological stations (i.e., Baotou, Zhangbei, Kaifeng, and Shaoguan) representing a wide range of climatic conditions of China. The correlation dimension method was employed to investigate the chaotic behavior of the reference evapotranspiration series. The existence of chaos in the reference evapotranspiration series at the four different locations was proved by the finite and low correlation dimension. A local approximation approach was employed to forecast the daily reference evapotranspiration series. Low root mean square error (RSME) and mean absolute error (MAE) (for all locations lower than 0.31 and 0.24, resp.), high correlation coefficient (CC), and modified coefficient of efficiency (for all locations larger than 0.97 and 0.8, resp.) indicate that the predicted reference evapotranspiration agrees well with the observed one. The encouraging results indicate the suitableness of chaotic approach for understanding and predicting the dynamics of the reference evapotranspiration. PMID:25133221

  13. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  14. Sunflower crop

    SciTech Connect

    Beard, B.H.

    1981-05-01

    A review of the sunflower as a major commercial crop, including its history, cultivation, hybridization and uses. It is grown principally for its oil which is high in polyunsaturated fatty acids and used in a variety of foods. Recently it has been tested in diesel engines and a high protein meal is produced from the seed residues.

  15. Seasonal contributions of vegetation types to suburban evapotranspiration

    NASA Astrophysics Data System (ADS)

    Peters, Emily B.; Hiller, Rebecca V.; McFadden, Joseph P.

    2011-03-01

    Evapotranspiration is an important term of energy and water budgets in urban areas and is responsible for multiple ecosystem services provided by urban vegetation. The spatial heterogeneity of urban surface types with different seasonal water use patterns (e.g., trees and turfgrass lawns) complicates efforts to predict and manage urban evapotranspiration rates, necessitating a surface type, or component-based, approach. In a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, United States, we simultaneously measured ecosystem evapotranspiration and its main component fluxes using eddy covariance and heat dissipation sap flux techniques to assess the relative contribution of plant functional types (evergreen needleleaf tree, deciduous broadleaf tree, cool season turfgrass) to seasonal and spatial variations in evapotranspiration. Component-based evapotranspiration estimates agreed well with measured water vapor fluxes, although the imbalance between methods varied seasonally from a 20% overestimate in spring to an 11% underestimate in summer. Turfgrasses represented the largest contribution to annual evapotranspiration in recreational and residential land use types (87% and 64%, respectively), followed by trees (10% and 31%, respectively), with the relative contribution of plant functional types dependent on their fractional cover and daily water use. Recreational areas had higher annual evapotranspiration than residential areas (467 versus 324 mm yr-1, respectively) and altered seasonal patterns of evapotranspiration due to greater turfgrass cover (74% versus 34%, respectively). Our results suggest that plant functional types capture much of the variability required to predict the seasonal patterns of evapotranspiration among cities, as well as differences in evapotranspiration that could result from changes in climate, land use, or vegetation composition.

  16. Measuring and modeling maize evapotranspiration under plastic film-mulching condition

    NASA Astrophysics Data System (ADS)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Ortega-Farias, Samuel; Li, Fusheng; Du, Taisheng; Tong, Ling; Wang, Sufen; Ingman, Mark; Guo, Weihua

    2013-10-01

    Plastic film-mulching techniques have been widely used over a variety of agricultural crops for saving water and improving yield. Accurate estimation of crop evapotranspiration (ET) under the film-mulching condition is critical for optimizing crop water management. After taking the mulching effect on soil evaporation (Es) into account, our study adjusted the original Shuttleworth-Wallace model (MSW) in estimating maize ET and Es under the film-mulching condition. Maize ET and Es respectively measured by eddy covariance and micro-lysimeter methods during 2007 and 2008 were used to validate the performance of the Penman-Monteith (PM), the original Shuttleworth-Wallace (SW) and the MSW models in arid northwest China. Results indicate that all three models significantly overestimated ET during the initial crop stage in the both years, which may be due to the underestimation of canopy resistance induced by the Jarvis model for the drought stress in the stage. For the entire experimental period, the SW model overestimated half-hourly maize ET by 17% compared with the eddy covariance method (ETEC) and overestimated daily Es by 241% compared with the micro-lysimeter measurements (EL), while the PM model only underestimated daily maize ET by 6%, and the MSW model only underestimated half-hourly maize ET by 2% and Es by 7% during the whole period. Thus the PM and MSW models significantly improved the accuracy against the original SW model and can be used to estimate ET and Es under the film-mulching condition.

  17. Regional fuzzy chain model for evapotranspiration estimation

    NASA Astrophysics Data System (ADS)

    Güçlü, Yavuz Selim; Subyani, Ali M.; Şen, Zekai

    2017-01-01

    Evapotranspiration (ET) is one of the main hydrological cycle components that has extreme importance for water resources management and agriculture especially in arid and semi-arid regions. In this study, regional ET estimation models based on the fuzzy logic (FL) principles are suggested, where the first stage includes the ET calculation via Penman-Monteith equation, which produces reliable results. In the second phase, ET estimations are produced according to the conventional FL inference system model. In this paper, regional fuzzy model (RFM) and regional fuzzy chain model (RFCM) are proposed through the use of adjacent stations' data in order to fill the missing ones. The application of the two models produces reliable and satisfactory results for mountainous and sea region locations in the Kingdom of Saudi Arabia, but comparatively RFCM estimations have more accuracy. In general, the mean absolute percentage error is less than 10%, which is acceptable in practical applications.

  18. Estimating evapotranspiration in natural and constructed wetlands

    USGS Publications Warehouse

    Lott, R. Brandon; Hunt, Randall J.

    2001-01-01

    Difficulties in accurately calculating evapotranspiration (ET) in wetlands can lead to inaccurate water balances—information important for many compensatory mitigation projects. Simple meteorological methods or off-site ET data often are used to estimate ET, but these approaches do not include potentially important site-specific factors such as plant community, root-zone water levels, and soil properties. The objective of this study was to compare a commonly used meterological estimate of potential evapotranspiration (PET) with direct measurements of ET (lysimeters and water-table fluctuations) and small-scale root-zone geochemistry in a natural and constructed wetland system. Unlike what has been commonly noted, the results of the study demonstrated that the commonly used Penman combination method of estimating PET underestimated the ET that was measured directly in the natural wetland over most of the growing season. This result is likely due to surface heterogeneity and related roughness efffects not included in the simple PET estimate. The meterological method more closely approximated season-long measured ET rates in the constructed wetland but may overestimate the ET rate late in the growing season. ET rates also were temporally variable in wetlands over a range of time scales because they can be influenced by the relation of the water table to the root zone and the timing of plant senescence. Small-scale geochemical sampling of the shallow root zone was able to provide an independent evaluation of ET rates, supporting the identification of higher ET rates in the natural wetlands and differences in temporal ET rates due to the timing of senescence. These discrepancies illustrate potential problems with extrapolating off-site estimates of ET or single measurements of ET from a site over space or time.

  19. Mapping Evapotranspiration in Hawai';i

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Shuai, X.; Barnes, M.; Longman, R. J.; Miura, T.; Chen, Q.; Alliss, R. J.; Frazier, A. G.

    2013-12-01

    The hydrological cycle in Hawai';i determines the timing and amount of water flows that affect aquatic and near-shore marine ecosystems, and provides water for domestic and industrial uses. Rainfall and fog interception are the principal water sources, while evaporation and transpiration reduce the amount available for streamflow and groundwater recharge. Evapotranspiration (ET) is controlled by climate, vegetation, soil, and water availability, and hence is highly variable in space and time. Understanding of the magnitude and variability of ET is essential for protecting Hawai';i's ecosystems and planning for water resource development and utilization. In this study, ET was estimated at high spatial resolution (250 m), for each hour of the mean diurnal cycle of each month, using the Penman-Monteith approach. Soil evaporation, wet canopy evaporation, and transpiration were estimated separately and summed to get ET. Solar and net radiation were estimated using cloudiness and surface characteristics from satellite remote sensing, clear-sky radiation simulations, and ground-based observations. Other spatial data sets developed or acquired for use in estimating ET included air temperature, relative humidity, wind speed, soil moisture, fractional canopy wetness, fractional vegetation cover, vegetation height, leaf area index, land cover type, and maximum stomatal conductance. More than 12,000 digital maps were produced of climate and hydrological variables in including evapotranspiration and its components. Results show that across the State of Hawai';i mean annual solar radiation varies from 130 to 296 W m-2. Low solar radiation is found along cloudy windward slopes below the trade-wind inversion level and in terrain-shaded valleys, while the highest values occur at the high mountain summits of Mauna Kea and Mauna Loa. ET has a complex spatial pattern reflecting variations in net radiation, moisture availability, and vegetation characteristics. With a few exceptions

  20. Operative Approaches To Determine Crop Water Requirements From Earth Observation Data: Methodologies And Applications

    NASA Astrophysics Data System (ADS)

    D'Urso, G.; Calera Belmonte, A.

    2006-08-01

    The estimation of evapotranspiration ET represent the basic information for the evaluation of crop water requirements. A widely used method to compute ET is based on the so-called "crop coefficient" Kc, defined as the ratio of total evapotranspiration by reference evapotranspiration ET0. As confirmed by recent standard procedures of F.A.O., under given climatic conditions, the value of crop coefficient is related to canopy variables representing the crop growth stage such as canopy height, fractional vegetation cover and Leaf Area Index. Considering that these canopy variables influence the spectral response of vegetated surfaces, a direct correspondence between Kc and reflectance measurements can be established. On this baseline, two approaches have been considered in Demeter for the operative estimation of crop water requirements: a first one, based on the correlation between the Near Difference Vegetation Index and the value of basal crop coefficient; a second one, where Kc is calculated by using reflectance-based estimates of canopy variables. A comparative analysis of the proposed methodologies is presented with reference to the investigations carried out for the implementation of DEMETER project in Italy and Spain on different types of crops.

  1. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  2. On the Global Water Productivity Distribution for Major Cereal Crops: some First Results from Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G.; Verstegen, J. A.; Steduto, P.; Goudriaan, R.; Wada, Y.

    2014-12-01

    Feeding the world requires 70 percent more food for an additional 2.3 billion people by 2050. The increasing competition for water resources prompts the modern consumer society to become more efficient with scarce water resources. The water footprint of agriculture is hundred times more than the footprint for domestic water use, yet we do not fully know how much water is used in relation to the amount of food being produced. Water Productivity describes the crop yield per unit of water consumed and is the ultimate indicator for the efficiency of water use in agriculture. Our basic understanding of actual and benchmark values for Water Productivity is limited, partially because operational measurements and guidelines for Water Productivity do not currently exist. Remote sensing algorithms have been developed over the last 20 years to compute crop yield Y and evapotranspiration ET, often in an independent manner. The new WatPro and GlobWat algorithms are based on directly solving the Y/ET ratio. Several biophysical parameter and processes such as solar radiation, Leaf Area Index, stomatal aperture and soil moisture affect biomass production and crop transpiration simultaneously, and this enabled us to simplify the schematization of a Y/ET model. Global maps of wheat, rice and maize were prepared from various open-access data sources, and Y/ET was computed across a period of 10 years. The global distribution demonstrates that 66 percent of the world's agricultural land cultivated with wheat, rice and corn performs below average. Furthermore, Water Productivity in most countries exhibits a significant spatial variability. Therefore, there is significant scope to produce the same food - or more food - from less water resources if packages with good practices are locally implemented. The global maps of water productivity will be demonstrated, along with some country examples.

  3. Prediction of evapotranspiration and grain yield of rice ( Oryza sativa L. cv Thriveni) in a humid tropical climate

    NASA Astrophysics Data System (ADS)

    Rao, A. S.; Alexander, D.

    1988-06-01

    In a humid tropical climate at Pattambi (10° 48' N, 76° 12' E), the evapotranspiration (ET) rates of rice ( Oryza sativa L. cv. Thriveni) were 2.8 5.7 mm/day during the first crop season (May September) and 6.2 9.1 mm/day during the second crop season (September January). The crop was grown at the Station in the irrigated lowlands on sandy soils with average yields of 3025 and 2925 kg/ha in the first and second cropping seasons, respectively. The seasonal ET, water requirements, water use efficiency and field water use efficiency of the crop were 400 mm, 1150 mm, 7.56 and 2.63 kg/ha per mm in the first crop season and 650 mm, 1500 mm, 4.50 and 1.95 kg/ha per millimetre in the second crop season. Using the reference crop ET computed by Blaney-Criddle, Radiation, and Penman methods and measured evaporation from class A pan, Colorado and GGI 3000 pans, the crop coefficients were worked out. Correlations between weather parameters and the biomass of rice were obtained. The grain yield (Y, in kg/ha) of the crop was predicted using the equation Y=1.71 Y 0-56 S+85 F-2430 ( N=8, r=0.920), where Y 0 is the sample of biomass of the rice at flowering in kg/ha, S and F are the duration of sunshine hours and maximum air temperatures (°C) between the 46th day of transplanting and maturity.

  4. Study of Climate effect on evapotranspiration change procedure

    NASA Astrophysics Data System (ADS)

    Asady, A.; Sharifan, H.

    2009-04-01

    Evapotranspiration (ET) is one of the most important of parameters in water cycle. This parameter changes in climate different conditions. In this manner the probability of ET is important for design of irrigation systems. This study investigated climate effect on evapotranspiration changes procedure. Thus ET was estimated by Hargreaves-Samani (H-S) method in the some of regions: Gorgan(semi wet,), Gonbad (semi dry) , Maraveh-Tappeh (semi dry to dry). Then diagrams of ET were drawn for different probabilities. Investigation shown that if climate was drier, irrigation periods increased and difference of ET averages decreased. Keyword : Evapotranspiration, Probability, Hargreave-Samani method, Climate, water use.

  5. Evapotranspiration studies for protective barriers: FY 1988 status report

    SciTech Connect

    Link, S.O.; Thiede, M.E.; Evans, R.D.; Downs, J.L.; Waugh, W.J.

    1990-05-01

    In FY 1988, evapotranspiration studies in support of the Protective Barrier Development Program focused on developing instruments to measure evapotranspiration and on conducting natural analog studies. This report describes a has exchange chamber being developed that will control internal temperature and relative humidity to simulate outdoor conditions. This device will measure evapotranspiration rates unambiguously from any surface and measure carbon dioxide exchange rates, which will provide information on plant growth processes. The report also describes ecophysiological experiments that were conducted to determine water and carbon dynamics of shrubs. 5 refs., 24 figs.

  6. Crop yield gaps in Cameroon.

    PubMed

    Yengoh, Genesis T; Ardö, Jonas

    2014-03-01

    Although food crop yields per hectare have generally been increasing in Cameroon since 1961, the food price crisis of 2008 and the ensuing social unrest and fatalities raised concerns about the country's ability to meet the food needs of its population. This study examines the country's potential for increasing crop yields and food production to meet this food security challenge. Fuzzy set theory is used to develop a biophysical spatial suitability model for different crops, which in turn is employed to ascertain whether crop production is carried out in biophysically suited areas. We use linear regression to examine the trend of yield development over the last half century. On the basis of yield data from experimental stations and farmers' fields we assess the yield gap for major food crops. We find that yields have generally been increasing over the last half century and that agricultural policies can have significant effects on them. To a large extent, food crops are cultivated in areas that are biophysically suited for their cultivation, meaning that the yield gap is not a problem of biophysical suitability. Notwithstanding, there are significantly large yield gaps between actual yields on farmers' farms and maximum attainable yields from research stations. We conclude that agronomy and policies are likely to be the reasons for these large yield gaps. A key challenge to be addressed in closing the yield gaps is that of replenishing and properly managing soil nutrients.

  7. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal

    NASA Astrophysics Data System (ADS)

    Paulo, A. A.; Rosa, R. D.; Pereira, L. S.

    2012-05-01

    Distinction between drought and aridity is crucial to understand water scarcity processes. Drought indices are used for drought identification and drought severity characterisation. The Standardised Precipitation Index (SPI) and the Palmer Drought Severity Index (PDSI) are the most known drought indices. In this study, they are compared with the modified PDSI for Mediterranean conditions (MedPDSI) and the Standardised Precipitation Evapotranspiration Index (SPEI). MedPDSI results from the soil water balance of an olive crop, thus real evapotranspiration is considered, while SPEI uses potential (climatic) evapotranspiration. Similarly to the SPI, SPEI can be computed at various time scales. Aiming at understanding possible impacts of climate change, prior to compare the drought indices, a trend analysis relative to precipitation and temperature in 27 weather stations of Portugal was performed for the period 1941 to 2006. A trend for temperature increase was observed for some weather stations and trends for decreasing precipitation in March and increasing in October were also observed for some locations. Comparisons of the SPI and SPEI at 9- and 12-month time scales, the PDSI and MedPDSI were performed for the same stations and period. SPI and SPEI produce similar results for the same time scales concerning drought occurrence and severity. PDSI and MedPDSI correlate well between them and the same happened for SPI and SPEI. PDSI and MedPDSI identify more severe droughts than SPI or SPEI and identify drought occurrence earlier than these indices. This behaviour is likely to be related with the fact that a water balance is performed with PDSI and MedPDSI, which better approaches the supply-demand balance.

  8. Evapotranspiration estimate in the Mediterranean: the comparison between different methods and possible impacts of climate change

    NASA Astrophysics Data System (ADS)

    Todorovic, Mladen; Karic, Biljana; Santos Pereira, Luis; Lionello, Piero

    2015-04-01

    This work focused on the performances of different methods to estimate evapotranspiration (ET) across the Mediterranean climates. Two types of monthly weather data were used in the analysis: CLIMWAT historical database for 577 meteorological stations located in the Mediterranean countries and data derived from the ENSEMBLES project (EC-FP6-ENV) Regional Circulation Model (RCM) simulations. The performance of two temperature based approaches for the estimation of reference evapotranspiration (Hargreaves-Samani - HS and the FAO Penman-Monteith with temperature data only - PMT) was assessed against the Penman-Monteith approach (PM) using a full input climate data. Data were grouped according to climate: hyper-arid, arid, semi-arid, dry sub-humid, moist sub-humid and humid zones. For almost all zones, the statistical parameters indicate slightly better performance of PMT than HS method. Both methods tend to underestimate ETo in hyper arid areas and to overestimate ETo in humid areas. The reduction of either minimum air temperature or dew temperature by 2°C under arid conditions (when the ratio between precipitation and ETo is smaller than 0.4) improves ETo estimation especially for interior locations and in hyper-arid and arid regions. The analysis performed for the future referred to the A1B SRES scenario for the period 2036-2065 using the results of RACMO2 driven by ECHAM5. The overall results indicated the redistribution of climatic zone over the Mediterranean with the further extension of arid zones towards higher altitudes. Accordingly, the variation in the performances of ET models was observed. Moreover, the climate change had an impact of the peak monthly evapotranspiration of Mediterranean crops which, in turn, affected the climatic water balance over the whole region.

  9. Potential Evapotranspiration Trends over South America

    NASA Astrophysics Data System (ADS)

    Maske, B. B.; Goncalves, L.

    2013-05-01

    Evapotranspiration (ET) is a key variable for energy and mass flux estimation from the land surface, and consequent water balance over regional to global scales. It also affects the atmosphere dynamics from weather to climate scales due to its link between the hydrological and energy cycles. Many studies investigating global ET trends have found a consistently positive signal in the period between 1982-1997 followed by a decline until 2008, which proved consistent with the acceleration of the hydrological cycle, caused by the global increase of temperature and radiative forcing. The large El nino in 1998, for instance, resulted in a negative trend of ET due in part to the limitation of soil moisture availability. However some researchers emphasize the importance of treating ET trends regionally and thus already found two distinct scenarios with inclusion of the regional dimension of evapotranspiration drivers for global studies: one where ET decreases following decreasing in pan evaporation in regions with ample supply of water and, the other scenario with a positive trend in observed ET following decreasing in pan evaporation, with indication of the latter being induced only by the tendency of precipitation. Studies about ET trend in the western United States, using data from the hydrologic model Variable Infiltration Capacity (VIC), also found significant seasonal variations associated with changes of temperature, snow accumulation and melting. Moreover, Canada researchers indicate strong correlation between ET variations and temperature, although temperature alone can not be related to changes of ET, since it not considers the heat flux in soil and cycles of freezing and melting of snow. Considering the importance of understanding variations of ET regionally, this study aims to analyze ET trends over South America. The data used are potential evapotranspiration estimated by the Penman-Monteith method, computed using data from meteorological stations for the

  10. Evapotranspiration parameterizations at a grass site in Florida, USA

    USGS Publications Warehouse

    Rizou, M.; Sumner, David M.; Nnadi, F.

    2007-01-01

    In spite of the fact that grasslands account for about 40% of the ice-free global terrestrial land cover, their contribution to the surface exchanges of energy and water in local and regional scale is so far uncertain. In this study, the sensitivity of evapotranspiration (ET) and other energy fluxes to wetness variables, namely the volumetric Soil Water Content (SWC) and Antecedent Precipitation Index (API), over a non-irrigated grass site in Central Florida, USA (28.049 N, 81.400 W) were investigated. Eddy correlation and soil water content measurements were taken by USGS (U.S. Geological Survey) at the grass study site, within 100 m of a SFWMD (South Florida Water Management District) weather station. The soil is composed of fine sands and it is mainly covered by Paspalum notatum (bahia grass). Variable soil wetness conditions with API bounds of about 2 to 160 mm and water table levels of 0.03 to 1.22 m below ground surface, respectively, were observed throughout the year 2004. The Bowen ratio exhibited an average of 1 and values larger than 2 during few dry days. The daytime average ET was classified into two stages, first stage (energy-limited) and second stage (water- limited) based on the water availability. The critical values of API and SWC were found to be about 56 mm and 0.17 respectively, with the second one being approximately 33% of the SWC at saturation. The ET values estimated by the simple Priestley-Taylor (PT) method were compared to the actual values. The PT coefficient varied from a low bound of approximately 0.4 to a peak of 1.21. Simple relationships for the PT empirical factor were employed in terms of SWC and API to improve the accuracy of the second stage observations. The results of the ET parameterizations closely match eddy-covariance flux values on daily and longer time steps.

  11. Vegetation index methods for estimating evapotranspiration by remote sensing

    USGS Publications Warehouse

    Glenn, Edward P.; Nagler, Pamela L.; Huete, Alfredo R.

    2010-01-01

    Evapotranspiration (ET) is the largest term after precipitation in terrestrial water budgets. Accurate estimates of ET are needed for numerous agricultural and natural resource management tasks and to project changes in hydrological cycles due to potential climate change. We explore recent methods that combine vegetation indices (VI) from satellites with ground measurements of actual ET (ETa) and meteorological data to project ETa over a wide range of biome types and scales of measurement, from local to global estimates. The majority of these use time-series imagery from the Moderate Resolution Imaging Spectrometer on the Terra satellite to project ET over seasons and years. The review explores the theoretical basis for the methods, the types of ancillary data needed, and their accuracy and limitations. Coefficients of determination between modeled ETa and measured ETa are in the range of 0.45–0.95, and root mean square errors are in the range of 10–30% of mean ETa values across biomes, similar to methods that use thermal infrared bands to estimate ETa and within the range of accuracy of the ground measurements by which they are calibrated or validated. The advent of frequent-return satellites such as Terra and planed replacement platforms, and the increasing number of moisture and carbon flux tower sites over the globe, have made these methods feasible. Examples of operational algorithms for ET in agricultural and natural ecosystems are presented. The goal of the review is to enable potential end-users from different disciplines to adapt these methods to new applications that require spatially-distributed ET estimates.

  12. Spatially distributed evapotranspiration and recharge estimation for sand regions of Hungary in the context of climate change

    NASA Astrophysics Data System (ADS)

    Csáki, Péter; Kalicz, Péter; Gribovszki, Zoltán

    2016-04-01

    Water balance of sand regions of Hungary was analysed using remote-sensing based evapotranspiration (ET) maps (1*1 km spatial resolution) by CREMAP model over the 2000-2008 period. The mean annual (2000-2008) net groundwater recharge (R) estimated as the difference in mean annual precipitation (P) and ET, taking advantage that for sand regions the surface runoff is commonly negligible. For the examined nine-year period (2000-2008) the ET and R were about 90 percent and 10 percent of the P. The mean annual ET and R were analysed in the context of land cover types. A Budyko-model was used in spatially-distributed mode for the climate change impact analysis. The parameters of the Budyko-model (α) was calculated for pixels without surplus water. For the extra-water affected pixels a linear model with β-parameters (actual evapotranspiration / pan-evapotranspiration) was used. These parameter maps can be used for evaluating future ET and R in spatially-distributed mode (1*1 km resolution). By using the two parameter maps (α and β) and data of regional climate models (mean annual temperature and precipitation) evapotranspiration and net groundwater recharge projections have been done for three future periods (2011-2040, 2041-2070, 2071-2100). The expected ET and R changes have been determined relative to a reference period (1981-2010). According to the projections, by the end of the 21th century, ET may increase while in case of R a heavy decrease can be detected for the sand regions of Hungary. This research has been supported by Agroclimate.2 VKSZ_12-1-2013-0034 project. Keywords: evapotranspiration, net groundwater recharge, climate change, Budyko-model

  13. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China.

    PubMed

    Li, C; Wu, P T; Li, X L; Zhou, T W; Sun, S K; Wang, Y B; Luan, X B; Yu, X

    2017-07-01

    Agriculture is very sensitive to climate change, and correct forecasting of climate change is a great help to accurate allocation of irrigation water. The use of irrigation water is influenced by crop water demand and precipitation. Potential evapotranspiration (ET0) is a measure of the ability of the atmosphere to remove water from the surface through the processes of evaporation and transpiration, assuming no control on water supply. It plays an important role in assessing crop water requirements, regional dry-wet conditions, and other factors of water resource management. This study analyzed the spatial and temporal evolution processes and characteristics of major meteorological parameters at 10 stations in the Loess Plateau of northern Shaanxi (LPNS). By using the Mann-Kendall trend test with trend-free pre-whitening and the ArcGIS platform, the potential evapotranspiration of each station was quantified by using the Penman-Monteith equation, and the effects of climatic factors on potential evapotranspiration were assessed by analyzing the contribution rate and sensitivity of the climatic factors. The results showed that the climate in LPNS has become warmer and drier. In terms of the sensitivity of ET0 to the variation of each climatic factor in LPNS, relative humidity (0.65) had the highest sensitivity, followed by daily maximum temperature, wind speed, sunshine hours, and daily minimum temperature (-0.05). In terms of the contribution rate of each factor to ET0, daily maximum temperature (5.16%) had the highest value, followed by daily minimum temperature, sunshine hours, relative humidity, and wind speed (1.14%). This study provides a reference for the management of agricultural water resources and for countermeasures to climate change. According to the climate change and the characteristics of the study area, farmers in the region should increase irrigation to guarantee crop water demand.

  14. The hysteretic evapotranspiration - vapor pressure deficit relation

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Manzoni, S.; Katul, G. G.; Porporato, A. M.; Yang, D.

    2013-12-01

    Diurnal hysteresis between evapotranspiration (ET) and vapor pressure deficit (VPD) was reported in many ecosystems but justification for its onset and magnitude remain incomplete with biotic and abiotic factors invoked as possible explanations. To place these explanations within a mathematical framework, ';rate-dependent' hysteresis originating from a phase angle difference between periodic input and output time series is first considered. Lysimeter evaporation (E) measurements from wet bare soils and model calculations using the Penman equation demonstrate that the E-VPD hysteresis emerges without any biotic effects due to a phase angle difference (or time lag) between net radiation the main driver of E, and VPD. Modulations originating from biotic effects on the ET-VPD hysteresis were then considered. The phase angle difference representation earlier employed was mathematically transformed into a storage problem and applied to the soil-plant system. The transformed system shows that soil moisture storage within the root zone can produce an ET-VPD hysteresis prototypical of those generated by phase-angle differences. To explore the interplay between all the lags in the soil-plant-atmosphere system and phase angle differences among forcing and response variables, a detailed soil-plant-atmosphere continuum (SPAC) model was developed and applied to a grassland ecosystem. The results of the SPAC model suggest that the hysteresis magnitude depends on the radiation-VPD lag. The soil moisture dry-down simulations also suggest that modeled root water potential and leaf water potential are both better indicators of the hysteresis magnitude than soil moisture, suggesting that plant water status is the main factor regulating the hysteretic relation between ET and VPD. Hence, the genesis and magnitude of the ET-VPD hysteresis are controlled directly by both biotic factors and abiotic factors such as time lag between radiation and VPD originating from boundary layer processes

  15. Remote sensing for evaluating crop water stress at field scale using infrared thermography: Potentials and limitations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past few decades, the competition for freshwater resources has substantially increased in arid/semi-arid areas, exacerbating the pressure on the largest user of water, namely agriculture, to consume less water. However, reducing crop consumptive water use or evapotranspiration through water...

  16. Use of crop-specific drought indices for determining irrigation demand in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a highly destructive natural phenomenon that affects portions of the U.S. almost every year. Severe water deficiencies can become catastrophic for agriculture and crop yields. Evapotranspiration (ET) is an important component in the agricultural water budget; thus, it is strongly preferre...

  17. Use of crop specific drought indices for determining irrigation demand in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a highly destructive natural phenomenon that affects portions of the U.S. almost every year. Severe water deficiencies can become catastrophic for agriculture and crop yields. Evapotranspiration (ET) is an important component in the agricultural water budget; thus, it is strongly preferre...

  18. Soil sorptivity enhancement with crop residue accumulation in simiarid dryland no-till agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water capture and precipitation use efficiency are of great importance in dryland cropping systems because the world’s dependence on food produced in dryland areas continues to increase. Growing season evapotranspiration potential greatly exceeds growing season precipitation rates in dryland areas,...

  19. Fact Sheet on Evapotranspiration Cover Systems for Waste Containment

    EPA Pesticide Factsheets

    This Fact Sheet updates the 2003 Fact Sheet on Evapotranspiration Covers and provides information on the regulatory setting for ET covers, general considerations in their design, performance, and monitoring, and status at the time of writing (2011).

  20. Catchments' hedging strategy on evapotranspiration for climatic variability

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Ding, Wei; Li, Yu; Tang, Yin; Wang, Dingbao

    2016-11-01

    In this paper, we test the hypothesis that natural catchments utilize hedging strategy for evapotranspiration and water storage carryover with uncertain future precipitation. The hedging strategy for evapotranspiration in catchments under different levels of water availability is analytically derived with marginal utility principle. It is found that there exists hedging between evapotranspiration for present and future only with a portion of water availability. Observation data sets of 160 catchments in the United States covering the period from 1983 to 2003 demonstrate the existence of hedging in catchment hydrology and validate the proposed hedging strategy. We also find that more water is allocated to carryover storage for hedging against the future evapotranspiration deficit in the catchments with larger aridity indexes or with larger variability in future precipitation, i.e., long-term climate and precipitation variability control the degree of hedging.

  1. Value of using remotely sensed evapotranspiration for SWAT model calibration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic models are useful management tools for assessing water resources solutions and estimating the potential impact of climate variation scenarios. A comprehensive understanding of the water budget components and especially the evapotranspiration (ET) is critical and often overlooked for adeq...

  2. Evaluation of the Event Driven Phenology Model Coupled with the VegET Evapotranspiration Model Through Comparisons with Reference Datasets in a Spatially Explicit Manner

    NASA Technical Reports Server (NTRS)

    Kovalskyy, V.; Henebry, G. M.; Adusei, B.; Hansen, M.; Roy, D. P.; Senay, G.; Mocko, D. M.

    2011-01-01

    A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme represents a mix of the VegET, a physically based model to estimate ET from a water balance, and an event driven phenology model (EDPM), where the EDPM is an empirically derived crop specific model capable of producing seasonal trajectories of canopy attributes. In this experiment, the scheme was deployed in a spatially explicit manner within the croplands of the Northern Great Plains. The evaluation was carried out using 2007-2009 land surface forcing data from the North American Land Data Assimilation System (NLDAS) and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the canopy parameters produced by the phenology model with normalized difference vegetation index (NDVI) data derived from the MODIS nadir bi-directional reflectance distribution function (BRDF) adjusted reflectance (NBAR) product. The expectations of the EDPM performance in prognostic mode were met, producing determination coefficient (r2) of 0.8 +/-.0.15. Model estimates of NDVI yielded root mean square error (RMSE) of 0.1 +/-.0.035 for the entire study area. Retrospective correction of canopy dynamics with MODIS NDVI brought the errors down to just below 10% of observed data range. The ET estimates produced by the coupled scheme were compared with ones from the MODIS land product suite. The expected r2=0.7 +/-.15 and RMSE = 11.2 +/-.4 mm per 8 days were met and even exceeded by the coupling scheme0 functioning in both prognostic and retrospective modes. Minor setbacks of the EDPM and VegET performance (r2 about 0.5 and additional 30 % of RMSR) were found on the peripheries of the study area and attributed to the insufficient EDPM training and to spatially varying accuracy of crop maps. Overall the experiment provided sufficient evidence of soundness and robustness of the EDPM and

  3. Evapotranspiration and runoff in a forest watershed, western Japan

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Shimizu, T.; Miyabuchi, Y.; Ogawa, Y.

    2003-10-01

    Both water and heat balances were studied in a conifer plantation watershed in south-west Japan, within the warm-temperate East Asia monsoon area. Forest cover in the watershed consists mainly of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) plantations. Precipitation and runoff have been observed since 1991, so evapotranspiration can be compared with the water balance. Two meteorological observation towers were built to monitor evapotranspiration in the watershed. The annual average precipitation, amount of runoff and losses were 2166, 1243 and 923 mm, respectively. The evapotranspiration (latent heat flux) agreed well with the water balance losses. The average annual evapotranspiration at the tower built in the centre of the watershed was 902 mm; evapotranspiration at the other tower, further upslope, was 875 mm. The observed evapotranspiration was 39% to 40% of the average precipitation (2166 mm). The mean net radiation was c. 2·6 GJ m-2 year-1, and is considered a representative value of the net radiation (Rn) in coniferous plantations in this region. This region is classified in the humid zone based on the ratio of net radiation (Rn) to the energy required to evaporate the rainfall (R). The mean annual evaporation of canopy-intercepted water was 356 mm or about 15% of the average precipitation. Copyright

  4. NASA GLDAS Evapotranspiration Data and Climatology

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko Kato; Teng, William L.; Vollmer, Bruce; Rodell, Matthew

    2012-01-01

    Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.

  5. Estimating Evapotranspiration with Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, C. D.; Kumar, S. V.; Mocko, D. M.; Tian, Y.

    2011-01-01

    Advancements in both land surface models (LSM) and land surface data assimilation, especially over the last decade, have substantially advanced the ability of land data assimilation systems (LDAS) to estimate evapotranspiration (ET). This article provides a historical perspective on international LSM intercomparison efforts and the development of LDAS systems, both of which have improved LSM ET skill. In addition, an assessment of ET estimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 (NLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.

  6. Using FAO-56 model to estimate soil and crop water status: Application to a citrus orchard under regulated deficit irrigation

    NASA Astrophysics Data System (ADS)

    Provenzano, Giuseppe; Gonzàles-Altozano, Pablo; Manzano-Juàrez, Juan; Rallo, Giovanni

    2015-04-01

    treatments were considered: in the first (control, T0-100%), irrigation doses (Id) were determined according to evapotranspiration and precipitation data obtained from a meteorological station installed nearby the plot, whereas in the other two, water application was reduced to 40%Id (T1-40%) and 60%Id (T2-60%) only during the initial fruit enlargement phase (July-August), being the plots irrigated at 100%Id for the remaining periods of the year. In each plot, soil water status was monitored along a soil profile with an Enviroscan probe (Sentek Sensor Technologies), whereas MSWPs with a Sholander chamber (Solfranc SF-Pres-35), on leaves wrapped in bags at least 2 hours before the measurements. At the end of each season, crop yield was determined on each treatment, by weighting the total production of at least 8 trees. It was observed that FAO-56 model simulates with a reasonable accuracy, acceptable for practical applications, the average soil water content in the root zone, with estimation errors lower than about 2.0%. On the other hand, relative transpiration simulated by the model follows the general seasonal trend of midday stem water potential, allowing therefore to identify the actual crop water status as recognized in the field.

  7. Technical Note: On the Matt-Shuttleworth approach to estimate crop water requirements

    NASA Astrophysics Data System (ADS)

    Lhomme, J. P.; Boudhina, N.; Masmoudi, M. M.

    2014-11-01

    The Matt-Shuttleworth method provides a way to make a one-step estimate of crop water requirements with the Penman-Monteith equation by translating the crop coefficients, commonly available in United Nations Food and Agriculture Organization (FAO) publications, into equivalent surface resistances. The methodology is based upon the theoretical relationship linking crop surface resistance to a crop coefficient and involves the simplifying assumption that the reference crop evapotranspiration (ET0) is equal to the Priestley-Taylor estimate with a fixed coefficient of 1.26. This assumption, used to eliminate the dependence of surface resistance on certain weather variables, is questionable; numerical simulations show that it can lead to substantial differences between the true value of surface resistance and its estimate. Consequently, the basic relationship between surface resistance and crop coefficient, without any assumption, appears to be more appropriate for inferring crop surface resistance, despite the interference of weather variables.

  8. Modeling bulk canopy resistance from climatic variables for predicting hourly evapotranspiration of maize and buckwheat

    NASA Astrophysics Data System (ADS)

    Yan, Haofang; Shi, Haibin; Hiroki, Oue; Zhang, Chuan; Xue, Zhu; Cai, Bin; Wang, Guoqing

    2015-06-01

    This study presents models for predicting hourly canopy resistance ( r c) and evapotranspiration (ETc) based on Penman-Monteith approach. The micrometeorological data and ET c were observed during maize and buckwheat growing seasons in 2006 and 2009 in China and Japan, respectively. The proposed models of r c were developed by a climatic resistance ( r *) that depends on climatic variables. Non-linear relationships between r c and r * were applied. The measured ETc using Bowen ratio energy balance method was applied for model validation. The statistical analysis showed that there were no significant differences between predicted ETc by proposed models and measured ETc for both maize and buckwheat crops. The model for predicting ETc at maize field showed better performance than predicting ETc at buckwheat field, the coefficients of determination were 0.92 and 0.84, respectively. The study provided an easy way for the application of Penman-Monteith equation with only general available meteorological database.

  9. Application of remote sensing in estimating evapotranspiration in the Platte river basin

    NASA Technical Reports Server (NTRS)

    Blad, B. L.; Rosenberg, N. J.

    1976-01-01

    A 'resistance model' and a mass transport model for estimating evapotranspiration (ET) were tested on large fields of naturally subirrigated alfalfa. Both models make use of crop canopy temperature data. Temperature data were obtained with an IR thermometer and with leaf thermocouples. A Bowen ratio-energy balance (BREB) model, adjusted to account for underestimation of ET during periods of strong sensible heat advection, was used as the standard against which the resistance and mass transport models were compared. Daily estimates by the resistance model were within 10% of estimates made by the BREB model. Daily estimates by the mass transport model did not agree quite as well. Performance was good on clear and cloudy days and also during periods of non-advection and strong advection of sensible heat. The performance of the mass transport and resistance models was less satisfactory for estimation of fluxes of latent heat for short term periods. Both models tended to overestimate at low LE fluxes.

  10. Testing an Irrigation Decision Support Tool for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  11. Watershed-scale Evapotranspiration Changed Little over 50 years of Agricultural Land Abandonment in Southern Michigan

    NASA Astrophysics Data System (ADS)

    Hamilton, S. K.; Hussain, M. Z.; Lowrie, C. J.

    2015-12-01

    The difference between precipitation and stream discharge over annual periods provides an indication of the total water loss to evaporation and evapotranspiration. The response of evaporative water loss to land cover change affects groundwater recharge, stream flow, and lake levels. This study examined the watershed water balance for Augusta Creek, which drains a 95-km2 glacial landscape in southwestern Michigan covered by cropland, grassland, forest, and wetlands. The climate is humid and temperate; between 1964-2014 the water-year precipitation averaged 948 mm and ranged from 695-1386 mm with no temporal trend. Over the study period the percentage of land in agriculture has decreased to about a third of its original extent, with abandoned lands gradually transitioning from old fields to woody vegetation. Comparison of precipitation on the upland watershed to baseflow discharge (USGS data; baseflow estimation by WHAT model) across the 50-year record shows that total evaporative water loss averaged 563 + 103 mm and ranged from 385-897 mm, with no apparent trend over the record. The evaporative water loss accounts for a mean + s.d. of 59 + 6% of precipitation (range, 48-70%). Evaporative water loss was positively related to total precipitation (r2 = 0.74. These results are interpreted using a Budyko plot framework to facilitate comparison with other settings. This water balance approach to infer evaporative water loss compares well with direct measurements in the same watershed since 2009 using eddy covariance (grasslands and crops) and soil moisture monitoring by time-domain reflectometry (grasslands, crops, and forest). Thus the evaporative water loss, which is predominantly by evapotranspiration, has been remarkably similar across a period of changing land cover, leaving a relatively consistent proportion for groundwater recharge and streamflow.

  12. Evaluation of evapotranspiration estimation methods for sweet cherry trees (Prunus avium) in sub-humid climate.

    PubMed

    Denmirtas, Cigdem; Buyukcangaz, Hakan; Yazgan, Senih; Candogan, Burak Nazmi

    2007-02-01

    This study was carried out in the summer of 2001 in a 3 year old and in the summer of 2002 in a 4 year old sweet cherry trees (Prunus avium, variety Z-900) on Mazzard rootstocks in Bayramic-Canakkale which is located in the west part of Turkey. Micro-sprinkler irrigation was selected as the irrigation method. The trees were subjected to four micro-sprinkler irrigation treatments (T-1, T-2, T-3 and T-4). The water applied in treatment T-3 was considered sufficient to satisfy fully needs of the crop (100% of ETc) and to allow good rooting and tree growth. The water balance relationship was used in estimating ETc. A total of 4 climatological methods were selected for estimating reference crop evapotranspiration on a daily basis. Some of these methods are based on combination theory and others are empirical methods based primarily on solar radiation, temperature ans relative humidity. An attempt was made in the current study to develop regional relationship between the evapotranspiration measured and that estimated by the climatological methods, such as FAO-Penman, Penman-Monteith, FAO-Radiation and FAO-Blaney-Criddle. Performance of the climatological methods in estimating the ETo values as compared to the measured values was evaluated on the basis of root mean square error (RMSE). In 2001, the Penman-Monteith equation gave the best results followed by FAO-Penman, FAO-Radiation and FAO-Blaney-Criddle. In 2002, the Penman-Monteith and FAO-Blaney-Criddle equations gave same results.

  13. A comparison of methods for determining the cotton field evapotranspiration and its components under mulched drip irrigation conditions: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H.

    2013-12-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. For upscaling the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. For upscaling the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between the leaf area and the stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling is slightly higher (18%) than that obtained by sap flow. At the field scale, the estimate of the transpiration obtained by upscaling the estimate based on sap flow measurements is also systematically higher (10%) compared to that obtained through eddy covariance during the cotton open boll growth stage when soil evaporation can be neglected. Nevertheless, the results derived from these three distinct methods show reasonable consistency at the field scale, which indicates that the upscaling approaches are reasonable and valid. Based on the measurements and the upscaling approaches, the evapotranspiration components were analyzed under mulched drip irrigation. During the cotton flower and bolling stages in July and August, the evapotranspiration are 3.94 and 4.53 mm day-1, respectively. The proportion of transpiration to evapotranspiration reaches 87.1% before drip irrigation and 82.3% after irrigation. The high water use efficiency is principally due to the mulched film above the drip pipe, the low soil water content in the inter

  14. Evapotranspiration of rubber ( Hevea brasiliensis ) cultivated at two plantation sites in Southeast Asia: RUBBER EVAPOTRANSPIRATION IN SE ASIA

    SciTech Connect

    Giambelluca, Thomas W.; Mudd, Ryan G.; Liu, Wen; Ziegler, Alan D.; Kobayashi, Nakako; Kumagai, Tomo'omi; Miyazawa, Yoshiyuki; Lim, Tiva Khan; Huang, Maoyi; Fox, Jefferson; Yin, Song; Mak, Sophea Veasna; Kasemsap, Poonpipope

    2016-02-01

    The expansion of rubber (Hevea brasiliensis) cultivation to higher latitudes and higher elevations in southeast Asia is part of a dramatic shift in the direction of rural land cover change in the region toward more tree covered landscapes. To investigate the possible effects of increasing rubber cultivation in the region on ecosystem services including water cycling, eddy covariance towers were established to measure ecosystem fluxes within two rubber plantations, one each in Bueng Kan, northeastern Thailand, and Kampong Cham, central Cambodia. The results show that evapotranspiration (ET) at both sites is strongly related to variations in available energy and leaf area, and moderately controlled by soil moisture. Measured mean annual ET was 1128 and 1272 mm for the Thailand and Cambodia sites, respectively. After adjustment for energy closure, mean annual was estimated to be 1211 and 1459 mm yr at the Thailand and Cambodia sites, respectively. Based on these estimates and that of another site in Xishuangbanna, southwestern China, it appears that of rubber is higher than that of other tree dominated land covers in the region, including forest. While measurements by others in non rubber tropical ecosystems indicate that at high net radiation sites is at most only slightly higher than for sites with lower net radiation, mean annual rubber increases strongl with increasing net radiation across the three available rubber plantation observation sites. With the continued expansion of tree dominated land covers, including rubber cultivation, in southeast Asia, the possible association between commercially viable, fast growing tree crop species Giambelluca et al. Evapotranspiration of rubber (Havea brasiliensis) cultivated at two sites in southeast Asia and their relatively high water use raises concerns about potential effects on water and food security.

  15. Evaluating the SSEBop approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid Texas High Plains

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Gowda, P. H.; Bohms, S.; Howell, T. A.; Friedrichs, M.; Marek, T. H.; Verdin, J. P.

    2014-01-01

    The operational Simplified Surface Energy Balance (SSEBop) approach was applied on 14 Landsat 5 thermal infrared images for mapping daily actual evapotranspiration (ETa) fluxes during the spring and summer seasons (March-October) in 2006 and 2007. Data from four large lysimeters, managed by the USDA-ARS Conservation and Production Research Laboratory were used for evaluating the SSEBop estimated ETa. Lysimeter fields are arranged in a 2 × 2 block pattern with two fields each managed under irrigated and dryland cropping systems. The modeled and observed daily ETa values were grouped as "irrigated" and "dryland" at four different aggregation periods (1-day, 2-day, 3 day and "seasonal") for evaluation. There was a strong linear relationship between observed and modeled ETa with R2 values ranging from 0.87 to 0.97. The root mean square error (RMSE), as percent of their respective mean values, were reduced progressively with 28, 24, 16 and 12% at 1-day, 2-day, 3-day, and seasonal aggregation periods, respectively. With a further correction of the underestimation bias (-11%), the seasonal RMSE reduced from 12 to 6%. The random error contribution to the total error was reduced from 86 to 20% while the bias' contribution increased from 14 to 80% when aggregated from daily to seasonal scale, respectively. This study shows the reliable performance of the SSEBop approach on the Landsat data stream with a transferable approach for use with the recently launched LDCM (Landsat Data Continuity Mission) Thermal InfraRed Sensor (TIRS) data. Thus, SSEBop can produce quick, reliable and useful ET estimations at various time scales with higher seasonal accuracy for use in regional water management decisions.

  16. Mapping Evapotranspiration on Vineyards: The SENTINEL-2 Potentiality

    NASA Astrophysics Data System (ADS)

    Ciraolo, Giuseppe; Capodici, Fulvio; D'Urso, Guido; La Loggia, Goffredo; Maltese, Antonino

    2012-04-01

    Estimation of actual evapotranspiration in Sicilian vineyards, is an emerging issue since these agricultural systems. Indeed unlike other agricultural species (Vitis vinifera L.) are generally cultivated under mild water stress, in order to enhance quality (Guadillère et al., 2002. This has significant impacts on the management of the scarce water resources of the region. The choice of the most appropriate methodology for assessing water use in these systems is still an issue of debating, due to the complexity of canopy and root systems and for their high spatial fragmentation. In vineyards, quality and quantity of the final product are dependent on the controlled stress conditions to be set trough irrigation. This paper reports an application of the well-known Penman-Monteith approach, applied in a distributed way, using high resolution remote sensing data to map the potential evapotranspiration (ETp). In 2008 a series of airborne multispectral images were acquired on the "Tenute Rapitalà", a wine farm located in the northwest of Sicily. Five airborne remote sensing scenes were collected using a SKY ARROW 351 650 TC/TCNS aircraft, at a height of about 1000 m a.g.l.. The acquisitions encompassed almost a whole phenological period, between June and September 2008 (approximately one each three weeks). The platform had on board a multi-spectral camera with 3 spectral bands in the green (G, 530-570 nm), red (R, 650-690 nm) and near infrared (NIR, 767-832 nm) wavelengths, and a thermal camera with a broad band in the range 7.5-13 μm. The nominal pixel resolution was approximately 0.7 m for VIS/NIR acquisitions, and 1.7 m for the thermal-IR data. Field data were acquired simultaneously to airborne acquisitions. The former include spectral reflectance in visible, near infrared, middle infrared (VIS, NIR, MIR) regions of the spectrum, leaf area index (LAI), soil moisture at different depths (both in row and below plants). Moreover, meteorological variables and fluxes

  17. Sources of variability of evapotranspiration in California

    USGS Publications Warehouse

    Hidalgo, H.G.; Cayan, D.R.; Dettinger, M.D.

    2005-01-01

    The variability (1990-2002) of potential evapotranspiration estimates (ETo) and related meteorological variables from a set of stations from the California Irrigation Management System (CIMIS) is studied. Data from the National Climatic Data Center (NCDC) and from the Department of Energy from 1950 to 2001 were used to validate the results. The objective is to determine the characteristics of climatological ETo and to identify factors controlling its variability (including associated atmospheric circulations). Daily ETo anomalies are strongly correlated with net radiation (Rn) anomalies, relative humidity (RH), and cloud cover, and less with average daily temperature (Tavg). The highest intraseasonal variability of ETo daily anomalies occurs during the spring, mainly caused by anomalies below the high ETo seasonal values during cloudy days. A characteristic circulation pattern is associated with anomalies of ETo and its driving meteorological inputs, Rn, RH, and Tavg, at daily to seasonal time scales. This circulation pattern is dominated by 700-hPa geopotential height (Z700) anomalies over a region off the west coast of North America, approximately between 32?? and 44?? latitude, referred to as the California Pressure Anomaly (CPA). High cloudiness and lower than normal ETo are associated with the lowheight (pressure) phase of the CPA pattern. Higher than normal ETo anomalies are associated with clear skies maintained through anomalously high Z700 anomalies offshore of the North American coast. Spring CPA, cloudiness, maximum temperature (Tmax), pan evaporation (Epan), and ETo conditions have not trended significantly or consistently during the second half of the twentieth century in California. Because it is not known how cloud cover and humidity will respond to climate change, the response of ETo in California to increased greenhouse-gas concentrations is essentially unknown; however, to retain the levels of ETo in the current climate, a decline of Rn by about 6

  18. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    NASA Astrophysics Data System (ADS)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  19. Bryophyte Evapotranspiration in a Boreal Forest Chronosequence

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Ewers, B.; Angstmann, J.; Gower, S.

    2008-12-01

    Forest water fluxes, in particular evapotranspiration (ET), are less well constrained than are carbon fluxes, and the effect of changing stand age on forest ET is not well understood. We combined field and lab measurements to estimate the bryophyte contribution to ET in a black spruce-dominated boreal chronosequence in Manitoba, Canada. Site ages were 17, 42, 76 and 156 years, and each site contained separate well- and poorly-drained stands (bogs). Field plots (N=4) were surveyed for moss diversity and microtopography; meteorological variables were recorded continuously. Field measurements were made 3-4 times during the growing season using a custom chamber attached to a LI-COR 6400. In addition, large tubs of moss were incubated in a controlled-environment chamber and water loss rates measured via weighing; these tubs were also measured using the same protocol as performed in the field. In the lab, fully-saturated feathermoss and Sphagnum lost water at rates as high as 1.5 and 4.5 mm day-1, respectively, at 25 °C. Over the entire year, modeled bryophyte ET ranged from 0.2-0.3 and 0.2-0.5 mm day-1 in the well- and poorly-drained stands, respectively. During the growing season, these rates were 0.7-0.8 and 0.6- 1.4 mm day-1. Ignoring bog microtopography would have resulted in underestimation of fluxes by ~10%. There was no clear trend of moss ET flux with stand age, except at the very youngest stands, where bryophyte spatial coverage was low. Our results emphasize the important contribution that bryophytes make to the ET flux of boreal forests.

  20. Evapotranspiration of tropical peat swamp forests.

    PubMed

    Hirano, Takashi; Kusin, Kitso; Limin, Suwido; Osaki, Mitsuru

    2015-05-01

    In Southeast Asia, peatland is widely distributed and has accumulated a massive amount of soil carbon, coexisting with peat swamp forest (PSF). The peatland, however, has been rapidly degraded by deforestation, fires, and drainage for the last two decades. Such disturbances change hydrological conditions, typically groundwater level (GWL), and accelerate oxidative peat decomposition. Evapotranspiration (ET) is a major determinant of GWL, whereas information on the ET of PSF is limited. Therefore, we measured ET using the eddy covariance technique for 4-6 years between 2002 and 2009, including El Niño and La Niña events, at three sites in Central Kalimantan, Indonesia. The sites were different in disturbance degree: a PSF with little drainage (UF), a heavily drained PSF (DF), and a drained burnt ex-PSF (DB); GWL was significantly lowered at DF, especially in the dry season. The ET showed a clear seasonal variation with a peak in the mid-dry season and a large decrease in the late dry season, mainly following seasonal variation in net radiation (Rn ). The Rn drastically decreased with dense smoke from peat fires in the late dry season. Annual ET forced to close energy balance for 4 years was 1636 ± 53, 1553 ± 117, and 1374 ± 75 mm yr(-1) (mean ± 1 standard deviation), respectively, at UF, DF, and DB. The undrained PSF (UF) had high and rather stable annual ET, independently of El Niño and La Niña events, in comparison with other tropical rainforests. The minimum monthly-mean GWL explained 80% of interannual variation in ET for the forest sites (UF and DF); the positive relationship between ET and GWL indicates that drainage by a canal decreased ET at DF through lowering GWL. In addition, ET was decreased by 16% at DB in comparison with UF chiefly because of vegetation loss through fires.

  1. A hydrometeorological model for basin-wide seasonal evapotranspiration

    NASA Astrophysics Data System (ADS)

    Dias, Nelson LuíS.; Kan, Akemi

    1999-11-01

    A new methodology is proposed to capture the seasonal behavior of evapotranspiration from precipitation and streamflow data and to develop hydrometeorological evapotranspiration models tailored for each basin. The water budget method for determining evapotranspiration is downscaled to periods between 15 and 160 days that occur between well-marked hydrological recessions. Using these uneven time periods, the error associated with the unknown soil moisture storage is minimized, whereas groundwater storage changes are estimated by means of a classical linear groundwater reservoir whose time constant is obtained by recession analysis. This seasonal water budget (SWB) method is able to reproduce the seasonal signal of evapotranspiration even when it is absent from the precipitation and streamflow records. The estimates are also compatible with calculated monthly net radiation. By selecting short enough water budget periods it is possible to check the relationship between SWB evapotranspiration estimates and net radiation, Penman and Priestley-Taylor potential evaporation, precipitation minus outflow, water vapor deficit, and basin storage. The ratio of SWB evapotranspiration to an upper limit value represented by either net radiation or potential evaporation is well correlated with precipitation minus outflow, water vapor deficit, or both but is very poorly related to basin storage. The calculated regressions lead to a family of hydrometeorological evapotranspiration monthly (HEM) models fitted to the basins in question, in a way analogous to the calibration of rainfall-runoff models. In the two watersheds where the methodology was applied the HEM models were able to preserve mass, with total accumulated differences no larger than 0.25 mm d-1 and root-mean-square errors of the order of 0.7 mm d-1.

  2. Combining eddy-covariance measurements and Penman-Monteith type models to estimate evapotranspiration of flooded and aerobic rice

    NASA Astrophysics Data System (ADS)

    Facchi, Arianna; Masseroni, Daniele; Gharsallah, Olfa; Gandolfi, Claudio

    2014-05-01

    Rice is of great importance both from a food supply point of view, since it represents the main food in the diet of over half the world's population, and from a water resources point of view, since it consumes almost 40% of the water amount used for irrigation. About 90% of global production takes place in Asia, while European production is quantitatively modest (about 3 million tons). However, Italy is the Europe's leading producer, with over half of total production, almost totally concentrated in a large traditional paddy rice area between the Lombardy and Piedmont regions, in the north-western part of the country. In this area, irrigation of rice is traditionally carried out by continuous flooding. The high water requirement of this irrigation regime encourages the introduction of water saving irrigation practices, as flood irrigation after sowing in dry soil and intermittent irrigation (aerobic rice). In the agricultural season 2013 an intense monitoring activity was conducted on three experimental fields located in the Padana plain (northern Italy) and characterized by different irrigation regimes (traditional flood irrigation, flood irrigation after sowing in dry soil, intermittent irrigation), with the aim of comparing the water balance terms for the three irrigation treatments. Actual evapotranspiration (ET) is one of the terms, but, unlike others water balance components, its field monitoring requires expensive instrumentation. This work explores the possibility of using only one eddy covariance system and Penman-Monteith (PM) type models for the determination of ET fluxes for the three irrigation regimes. An eddy covariance station was installed on the levee between the traditional flooded and the aerobic rice fields, to contemporaneously monitor the ET fluxes from this two treatments as a function of the wind direction. A detailed footprint analysis was conducted - through the application of three different analytical models - to determine the position

  3. Effect of soil type patterns on the variability of bare soil evaporation within a field: comparison of eddy covariance measurements with potential and actual evaporation calculations

    NASA Astrophysics Data System (ADS)

    Vanderborght, J.; Graf, A.; Steenpass, C.; Scharnagl, B.; Prolingheuer, N.; Herbst, M.; Vereecken, H.

    2009-12-01

    Bare soil evaporation was measured with the eddy-covariance method at the Selhausen field site. The site has a distinct gradient in soil texture with a considerably higher stone content at the upper part of the field. Because of this gradient, a spatial variation in evaporation fluxes in the field is expected. Because of the higher stone content at the upper part of the field, it is expected that the water that is stored in the soil surface layer and can be evaporated at a maximal evaporation rate, which is determined by the energy that is available for evaporation, is considerable smaller in the upper than in the lower part of the field. We investigated whether this hypothesis is supported by eddy covariance (EC) measurements of the evaporation fluxes at the field site. The EC measurements were combined with a footprint model that predicts the location of the soil surface that contributes to the measured evaporation flux. In this way, evaporation measurements of the two parts of the field site could be distinguished. However, since only one EC station was available, simultaneous evaporation measurements for the two field parts were not available. As a consequence, the datasets of measurements had to be interpreted and put into context of the meteorological and soil hydrological conditions. The potential evapotranspiration was calculated using the FAO method (Allen et al., 1998) to represent the meteorological conditions whereas a simple soil evaporation model (Boesten and Stroosnijder, 1986) was used to represent the influence of the precipitation and soil hydrological conditions on the actual evaporation rate. Since different soil parameters were required to describe the evaporation measurements for the upper and lower part of the plot, our starting hypothesis that more water is evaporated in the lower part of the field could be confirmed. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration: Guidelines for computing crop water

  4. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH... identified in this section in those areas where the Actuarial Table provides coverage. Except when...

  5. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH... identified in this section in those areas where the Actuarial Table provides coverage. Except when...

  6. Mapping crop coefficients in irrigated areas from Landsat TM images

    NASA Astrophysics Data System (ADS)

    D'Urso, Guido; Menenti, Massimo

    1995-11-01

    It is well known that reflectance of Earth surface largely depends upon amount of biomass, crop type, development stage, ground coverage. The knowledge of these parameters -- together with groundbased meteorological data -- allows for the estimate of crop water requirements and their spatial distribution. Recent research has shown the possibility of using multispectral satellite images in combination with other information for mapping crop coefficients in irrigated areas. This approach is based on the assumption that crop coefficients (Kc) are greatly influenced by canopy development and vegetation fractional ground cover; since these parameters directly affect the reflectance of cropped areas, it is possible to establish a correlation between multispectral measurements of canopies reflectance and the corresponding Kc values. Within this frame, two different approaches may be applied: (1) definition of spectral classes corresponding to different crop coefficient values and successive supervised classification for the derivation of crop coefficients maps; (2) use of analytical relationships between the surface reflectance and the corresponding values of vegetation parameters, i.e., the leaf area index, the albedo and the surface roughness, needed for the calculation of the potential evapotranspiration according to the combination type equation. The two different techniques are discussed with reference to the results of their application to specific case-studies. The aim of this report is to illustrate the suitability of remote sensing techniques as an operational tool for assessing crop water demand at regional scale.

  7. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Provisions and Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation... Provisions and applicable Crop Provisions, including the Cotton Crop Insurance Provisions. In addition, FCIC revised various Crop Provisions, including the Macadamia Nut Crop Insurance Provisions, to...

  8. Surface and Groundwater Contribution in Convening with High Crop Water Demand in Indus Basin

    NASA Astrophysics Data System (ADS)

    Hafeez, Mohsin; Ullah, Kaleem; Hanjra, Munir Ahmad; Ullah Bodla, Habib; Niaz Ahmad, Rai

    2010-05-01

    approach and water balance. Also, crop water demands, rainfall, and surface water are calculated to estimate the groundwater abstraction in different districts of Lower Chenb Canal East to understand its usage patterns in year 2008-09. Crop water demand has been estimated using SAM-ET (spatial algorithm for mapping evapotranspiration) algorithm which is based on surface energy balance. Landsat 5 TM satellite images are used to estimate actual crop water demand and the results are compared with Penman Monteith method. The irrigation supplies are calculated from real time data collected by Project Monitoring and Implementation Unit (PMIU), Punjab Irrigation Department. The PMIU envisaged for efficient and optimal canal operations oriented towards equity and transparency. Initial results from nodal network water balance model also provide the spatial variation in crop water demand for each node in LCC East. This work is also aimed at evaluating surface water availability and the assessment of spatial distribution of groundwater abstractions by considering the present crop water demand.

  9. Statistical Analysis of Meteorological Data to Assess Evapotranspiration and Infiltration at the Rifle Site, CO, USA

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Long, P. E.; Tokunaga, T. K.; Christensen, J. N.

    2015-12-01

    Net infiltration to the vadose zone, especially in arid or semi-arid climates, is an important control on microbial activity and solute and green house gas fluxes. To assess net infiltration, we performed a statistical analysis of meteorological data as the basis for hydrological and climatic investigations and predictions for the Rifle site, Colorado, USA, located within a floodplain in a mountainous region along the Colorado River, with a semi-arid climate. We carried out a statistical analysis of meteorological 30-year time series data (1985-2015), including: (1) precipitation data, taking into account the evaluation of the snowmelt, (2) evaluation of the evapotranspiration (reference and actual), (3) estimation of the multi-time-scalar Standardized Precipitation-Evapotranspiration Index (SPEI), (4) evaluation of the net infiltration rate, and (5) corroborative analysis of calculated net infiltration rate and groundwater recharge from radioisotopic measurements from samples collected in 2013. We determined that annual net infiltration percentage of precipitation varies from 4.7% to ~18%, with a mean of ~10%, and concluded that calculations of net infiltration based on long-term meteorological data are comparable with those from strontium isotopic investigations. The evaluation of the SPEI showed the intermittent pattern of droughts and wet periods over the past 30 years, with a detectable decreasein the duration of droughts with time. Local measurements within the floodplain indicate a recharge gradient with increased recharge closer to the Colorado River.

  10. Spatial and temporal variation in evapotranspiration using Raman lidar

    NASA Astrophysics Data System (ADS)

    Eichinger, W. E.; Cooper, D. I.; Hipps, L. E.; Kustas, W. P.; Neale, C. M. U.; Prueger, J. H.

    2006-02-01

    The Los Alamos Raman lidar has been used to make high resolution (25 m) estimates of the evapotranspiration rate over adjacent corn and soybean canopies. The lidar makes three-dimensional measurements of the water vapor content of the atmosphere directly above the canopy that are inverted using Monin-Obukhov similarity theory. This may be used to examine the relationship between evapotranspiration and surface moisture/soil type. Lidar estimates of evapotranspiration reveal a high degree of spatial variability over corn and soybean fields that may be associated with small elevation changes in the area. The spatial structure of the variability is characterized using a structure function and correlation function approach. The power law relationship found by other investigators for soil moisture is not clear in the data for evapotranspiration, nor is the data a straight line over the measured lags. The magnitude of the structure function and the slope changes with time of day, with a probable connection to the amount of evapotranspiration and the spatial variability of the water vapor source. The data used was taken during the soil moisture-atmosphere coupling experiment (SMACEX) conducted in the Walnut Creek Watershed near Ames, Iowa in June and July 2002.

  11. Simulating Stochastic Crop Management in Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  12. Measurement of Wetland Evapotranspiration in Southern Florida

    NASA Astrophysics Data System (ADS)

    Bernier, T.; Lopez, C.; Shoemaker, W. B.

    2009-12-01

    Evapotranspiration (ET) is defined as a composite flux of surface water directly evaporated by solar energy, and ground water transpired by plants. Factors limiting ET include the available energy, available water, and the vapor transport resistance offered by the atmosphere and vegetation. ET is surprisingly understudied considering its dominance in the hydrologic cycle transporting as much as 80% to over 100% of rainfall back into the atmosphere as water vapor. Uncertainties in spatial and temporal ET estimates limit the reliability of hydrologic water budgets and therefore can complicate development of sustainable water-use strategies and resolution of conflicts over water. In response to ET uncertainties, a monitoring station was constructed over a wet-prairie wetland in Big Cypress National Preserve in southern Florida to measure latent heat flux (the energy equivalent of ET), rainfall, air and water temperature, wind speed and direction, wind gusts, solar radiation, net radiation, soil-heat flux, relative humidity, and depth-of-water above or below land surface. The monitoring station was located on a 12' tower for atmospheric sampling at distances roughly 6' to 8' above the wet prairie canopy. Data are presented for a full year; specifically, June 16th, 2007 to June 16th, 2008. The eddy covariance method was applied to measure ET. The mean daily ET total was about 2.8 millimeters per day. Maximum values of about 3.5 to 5 millimeters per day were measured during the summer months (April to September) when solar radiation was greatest. Minimum values of 0 to about 2.5 millimeters per day were measured during the winter months (October to March) when solar radiation was relatively small. Sub-daily ET variations were explained mostly by available energy; formulated as the difference between net radiation, the soil-heat flux, and changes in heat-energy stored in the soil and surface-water. The annual ET total was about 1050 millimeters per year (41 inches per

  13. Evaporation and reference evapotranspiration trends in Spain

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Vicente-Serrano, Sergio M.; Wild, Martin; Azorin-Molina, Cesar; Calbó, Josep; Revuelto, Jesús; López-Moreno, Juan I.; Moran-Tejeda, Enrique; Martín-Hernández, Natalia; Peñuelas, Josep

    2015-04-01

    Interest is growing in the trends of atmospheric evaporation demand, increasing the need for long-term time series. In this study, we first describe the development of a dataset on evaporation in Spain based on long-term series of Piché and pan measurement records. Piché measurements have been reported for >50 stations since the 1960s. Measurements of pan evaporation, which is a much more widely studied variable in the literature, are also available, but only since 1984 for 21 stations. Particular emphasis was placed on the homogenization of this dataset (for more details, we refer to Sanchez-Lorenzo et al., 2014, Clim Res, 61: 269-280). Both the mean annual Piché and pan series over Spain showed evaporative increases during the common study period (1985-2011). Furthermore, using the annual Piché records since the 1960s, an evaporation decline was detected from the 1960s to the mid-1980s, which resulted in a non-significant trend over the entire 1961-2011 period. Our results indicate agreement between the decadal variability of reference evapotranspiration (Vicente-Serrano et al., 2014, Glob Planet Chang, 121: 26-40) and surface solar radiation (Sanchez-Lorenzo et al., 2013, Glob Planet Chang, 100: 343-352) and the evaporation from Piché and pan measurements since the mid-1980s, especially during summer. Nevertheless, this agreement needs attention, as Piché evaporimeters are inside meteorological screens and not directly exposed to radiation. Thus, as Piché readings are mainly affected by the aerodynamic term in Penman's evaporation equation and pan records are affected by both the heat balance and aerodynamic terms, the results suggest that both terms must be highly and positively correlated in Spain. In order to check this hypothesis, the radiative and aerodynamic components were estimated using the Penman's equation. The results show that the relationship with the radiative components is weaker than that with the aerodynamic component for both pan and

  14. Evapotranspiration and energy balance components spatial distribution in the north region of Minas Gerais, Brazil, using the SEBAL model and Landsat 5 TM images

    NASA Astrophysics Data System (ADS)

    Gomide, Reinaldo L.; de Paula Boratto, Isa Maria

    2014-10-01

    The determination of crop evapotranspiration (ETc) values is very useful information for planning irrigation, water supply estimation, regulation of water rights and river basins hydrologic studies. Values of ETc in the North region of Minas Gerais state, Brazil, were estimated in this research from the multispectral images of the Landsat 5 TM by means of the model Surface Energy Balance Algorithm for Land- SEBAL, based on the simplified energy balance equation of a surface covered by vegetation, using a few daily surface climatological parameters (wind speed, rainfall, air temperature and relative humidity, solar radiation). The aim of this study was to estimate the regional spatial distribution of the energy balance components and evapotranspiration in the study area, covering the irrigated perimeter of Gorutuba, involving the cities of Nova Porteirinha, Janaúba, Porteirinha, Verdelândia and Pai Pedro. Thematic maps of regional evapotranspiration and energy balance components were generated from spectral analyzes of the images obtained, associated with the used weather data. The ability of SEBAL to provide the spatial variability of energy balance components, including evapotranspiration, demonstrated its sensitivity to different occupation of the soil surface vegetation, and to high data temporal and spatial resolutions data, indicating that the SEBAL model can be used in scales and operational routine for north region of Minas Gerais.

  15. Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity

    PubMed Central

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917

  16. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    PubMed

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  17. NOAA Introduces its First-Generation Reference Evapotranspiration Product

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.

    2013-12-01

    NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally

  18. Direct measurement of evapotranspiration from a forest using a superconducting gravimeter

    NASA Astrophysics Data System (ADS)

    Van Camp, Michel; Viron, Olivier; Pajot-Métivier, Gwendoline; Casenave, Fabien; Watlet, Arnaud; Dassargues, Alain; Vanclooster, Marnik

    2016-10-01

    Evapotranspiration (ET) controls the flux between the land surface and the atmosphere. Assessing the ET ecosystems remains a key challenge in hydrology. We have found that the ET water mass loss can be directly inferred from continuous gravity measurements: as water evaporates and transpires from terrestrial ecosystems, the mass distribution of water decreases, changing the gravity field. Using continuous superconducting gravity measurements, we were able to identify daily gravity changes at the level of, or smaller than, 10-9 nm s-2 (or 10-10 g) per day. This corresponds to 1.7 mm of water over an area of 50 ha. The strength of this method is its ability to enable a direct, traceable and continuous monitoring of actual ET for years at the mesoscale with a high accuracy.

  19. Urban heat island-induced increases in evapotranspirative demand

    NASA Astrophysics Data System (ADS)

    Zipper, Samuel C.; Schatz, Jason; Kucharik, Christopher J.; Loheide, Steven P.

    2017-01-01

    Although the importance of vegetation in mitigating the urban heat island (UHI) is known, the impacts of UHI-induced changes in micrometeorological conditions on vegetation are not well understood. Here we show that plant water requirements are significantly higher in urban areas compared to rural areas surrounding Madison, WI, driven by increased air temperature with minimal effects of decreased air moisture content. Local increases in impervious cover are strongly associated with increased evapotranspirative demand in a consistent manner across years, with most increases caused by elevated temperatures during the growing season rather than changes in changes in growing season length. Potential evapotranspiration is up to 10% higher due to the UHI, potentially mitigating changes to the water and energy balances caused by urbanization. Our results indicate that local-scale land cover decisions (increases in impervious cover) can significantly impact evapotranspirative demand, with likely implications for water and carbon cycling in urban ecosystems.

  20. Regional evaluation of evapotranspiration in the Everglades

    USGS Publications Warehouse

    German, E.R.

    2000-01-01

    Nine sites in the Florida Everglades were selected and instrumented for collection of data necessary for evapotranspiration-determination using the Bowen-ratio energy-budget method. The sites were selected to represent the sawgrass or cattail marshes, wet prairie, and open-water areas that constitute most of the natural Everglades system. At each site, measurements necessary for evapotranspiration (ET) calculation and modeling were automatically made and stored on-site at 15- or 30-minute intervals. Data collected included air temperature and humidity at two heights, wind speed and direction, incoming solar radiation, net solar radiation, water level and temperature, soil moisture content, soil temperature, soil heat flux, and rainfall. Data summarized in this report were collected from January 1996 through December 1997, and the development of site-specific and regional models of ET for this period is described. Latent heat flux is the energy flux density equivalent of the ET rate. Modified Priestley-Taylor models of latent heat flux as a function of selected independent variables were developed at each site. These models were used to fill in periods of missing latent heat flux measurement, and to develop regional models of the entire Everglades region. The regional models may be used to estimate ET in wet prairie, sawgrass or cattail marsh, and open-water portions of the natural Everglades system. The models are not applicable to forested areas or to the brackish areas adjacent to Florida Bay. Two types of regional models were developed. One type of model uses measurements of available energy at a site, together with incoming solar energy and water depth, to estimate hourly ET. This available-energy model requires site data for net radiation, water heat storage, and soil heat flux, as well as data for incoming solar radiation and water depth. The other type of model requires only incoming solar energy, air temperature, and water depth data to provide estimates of

  1. Evapotranspiration from marsh and open-water sites at Upper Klamath Lake, Oregon, 2008--2010

    USGS Publications Warehouse

    Stannard, David I.; Gannett, Marshall W.; Polette, Danial J.; Cameron, Jason M.; Waibel, M. Scott; Spears, J. Mark

    2013-01-01

    begins each growing season submerged, emerges from the dead litter mat around late May or early June, reaches a maximum height of about 2.2 meters (m) during summer, senesces in October, and subsequently lodges over, contributing to the dead litter mat from previous years. Hydroperiods last about 5 to 6 months, typically beginning in January or February and ending in July or August, and have a minor influence on the annual ET cycle. These hydroperiods result from lake levels that typically vary about 1.3 m, from around 0.6 to 0.9 m above the wetland surface, to around 0.4 to 0.7 m below the wetland surface. An estimate of 3-year annual wetland ET, made by substituting early- and late-season data measured during 2009 for the missing periods in early 2008 and late 2010, is 0.938 meter per year (m/yr). Daily values of alfalfa-based reference ET (ETr) were retrieved from the Bureau of Reclamation AgriMet Web site (http://www.usbr.gov/pn/agrimet/index.html) and are aggregated into biweekly, annual, and 3-year values (for consistency, the 3-year values are also computed using substitute data from 2009 for early 2008 and late 2010). These ETr values are computed from weather data measured at the nearby Agency Lake weather station (AGKO), and are based on the assumption that the alfalfa crop is green and vigorous year-round. The 3-year value of ETr is 1.145 m/yr, about 22 percent greater than wetland ET. A comparison of 2008–2010 alfalfa and pasture growing season actual ET with wetland ET is made using data from the more distant Klamath Falls AgriMet weather station (KFLO) because actual alfalfa and pasture ET are not computed for the AGKO site. During the 190-day average alfalfa growing season, wetland ET (0.779 m) is about 7 percent less than alfalfa ET (0.838 m). During the 195-day average pasture growing season, wetland ET (0.789 m) is about 18 percent greater than pasture ET (0.671 m). Assuming alfalfa and pasture ET are equal to wetland ET during the non-growing season

  2. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central…

  3. Modeling uncertainty of evapotranspiration measurements from multiple eddy covariance towers over a crop canopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All measurements have random error associated with them. With fluxes in an eddy covariance system, measurement error can been modelled in several ways, often involving a statistical description of turbulence at its core. Using a field experiment with four towers, we generated four replicates of meas...

  4. A satellite-based drought index describing anomalies in evapotranspiration for global crop monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility and reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, precipitation-based indices only reflect one component of the surface hydrologic cycle, ...

  5. Estimating evapotranspiration for dryland cropping systems in the semiarid Texas High Plains using SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Water Assessment Tool (SWAT) is a widely used watershed model for simulating stream flow, overland flow, sediment, pesticide, and bacterial loading in response to management practices. All SWAT processes are directly dependent upon the accurate representation of hydrology. Evapotranspiratio...

  6. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Ma, Jinzhu; Zhu, Gaofeng; Ma, Ting; Han, Tuo; Feng, Li Li

    2017-01-01

    Global and regional estimates of daily evapotranspiration are essential to our understanding of the hydrologic cycle and climate change. In this study, we selected the radiation-based Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) model and assessed it at a daily time scale by using 44 flux towers. These towers distributed in a wide range of ecological systems: croplands, deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, grasslands, mixed forests, savannas, and shrublands. A regional land surface evapotranspiration model with a relatively simple structure, the PT-JPL model largely uses ecophysiologically-based formulation and parameters to relate potential evapotranspiration to actual evapotranspiration. The results using the original model indicate that the model always overestimates evapotranspiration in arid regions. This likely results from the misrepresentation of water limitation and energy partition in the model. By analyzing physiological processes and determining the sensitive parameters, we identified a series of parameter sets that can increase model performance. The model with optimized parameters showed better performance (R2 = 0.2-0.87; Nash-Sutcliffe efficiency (NSE) = 0.1-0.87) at each site than the original model (R2 = 0.19-0.87; NSE = -12.14-0.85). The results of the optimization indicated that the parameter β (water control of soil evaporation) was much lower in arid regions than in relatively humid regions. Furthermore, the optimized value of parameter m1 (plant control of canopy transpiration) was mostly between 1 to 1.3, slightly lower than the original value. Also, the optimized parameter Topt correlated well to the actual environmental temperature at each site. We suggest that using optimized parameters with the PT-JPL model could provide an efficient way to improve the model performance.

  7. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  8. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    PubMed Central

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-01-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater. PMID:28220874

  9. Predicting the Affects of Climate Change on Evapotranspiration and Agricultural Productivity of Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Peri, L.; Tyler, S. W.; Zheng, C.; Pohll, G. M.; Yao, Y.

    2013-12-01

    Many arid and semi-arid regions around the world are experiencing water shortages that have become increasingly problematic. Since the late 1800s, upstream diversions in Nevada's Walker River have delivered irrigation supply to the surrounding agricultural fields resulting in a dramatic water level decline of the terminal Walker Lake. Salinity has also increased because the only outflow from the lake is evaporation from the lake surface. The Heihe River basin of northwestern China, a similar semi-arid catchment, is also facing losses from evaporation of terminal locations, agricultural diversions and evapotranspiration (ET) of crops. Irrigated agriculture is now experiencing increased competition for use of diminishing water resources while a demand for ecological conservation continues to grow. It is important to understand how the existing agriculture in these regions will respond as climate changes. Predicting the affects of climate change on groundwater flow, surface water flow, ET and agricultural productivity of the Walker and Heihe River basins is essential for future conservation of water resources. ET estimates from remote sensing techniques can provide estimates of crop water consumption. By determining similarities of both hydrologic cycles, critical components missing in both systems can be determined and predictions of impacts of climate change and human management strategies can be assessed.

  10. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-02-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.

  11. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area.

    PubMed

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S

    2017-02-21

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m(3). The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.

  12. Alcohol co-production from tree crops

    SciTech Connect

    Seibert, M.; Folger, G.; Milne, T.

    1982-06-01

    A concept for the sustainable production of alcohol from fermentable substrates produced on an annual basis by the reproductive organs (pods, fruits, nuts, berries, etc.) of tree crops is presented. The advantages of tree-crop systems include suitability for use on marginal land, potential productivity equivalent to row crops, minimal maintenance and energy-input requirements, environmental compatibility, and the possibility of co-product production. Honeylocust, mesquite, and persimmon are examined as potential US tree-crop species. Other species not previously considered, including osage orange and breadfruit, are suggested as tree-crop candidates for North America and the tropical developing world, respectively. Fermentation of tree-crop organs and the economics of tree-crop systems are also discussed. Currently the greatest area of uncertainty lies in actual pod or fruit yields one can expect from large tree farms under real life conditions. However, ballpark ethanol yield estimates of from 880 to 3470 l hectare/sup -1/ (94 to 400 gal acre/sup -1/) justify further consideration of tree crop systems.

  13. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia.

    PubMed

    Headley, T R; Davison, L; Huett, D O; Müller, R

    2012-02-01

    The balance between evapotranspiration (ET) loss and rainfall ingress in treatment wetlands (TWs) can affect their suitability for certain applications. The aim of this paper was to investigate the water balance and seasonal dynamics in ET of subsurface horizontal flow (HF) TWs in a sub-tropical climate. Monthly water balances were compiled for four pilot-scale HF TWs receiving horticultural runoff over a two year period (Sep. 1999-Aug. 2001) on the sub-tropical east-coast of Australia. The mean annual wetland ET rate increased from 7.0 mm/day in the first year to 10.6 mm/day in the second, in response to the development of the reed (Phragmites australis) population. Consequently, the annual crop coefficients (ratio of wetland ET to pan evaporation) increased from 1.9 in the first year to 2.6 in the second. The mean monthly ET rates were generally greater and more variable than the Class-A pan evaporation rates, indicating that transpiration is an important contributor to ET in HF TWs. Evapotranspiration rates were generally highest in the summer and autumn months, and corresponded with the times of peak standing biomass of P. australis. It is likely that ET from the relatively small 1 m wide by 4 m long HF TWs was enhanced by advection through so-called "clothesline" and "oasis" effects, which contributed to the high crop coefficients. For the second year, when the reed population was well established, the annual net loss to the atmosphere (taking into account rainfall inputs) accounted for 6.1-9.6 % of the influent hydraulic load, which is considered negligible. However, the net loss is likely to be higher in arid regions with lower rainfall. The Water Use Efficiency (WUE) of the wetlands in the second year of operation was 1.3 g of above-ground biomass produced per kilogram of water consumed, which is low compared to agricultural crops. It is proposed that system level WUE provides a useful metric for selecting wetland plant species and TW design alternatives to

  14. Sub-canopy evapotranspiration from floating vegetation and open water in a swamp forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among previous studies, there are large discrepancies in the difference between evapotranspiration from wetland vegetation and evaporation from open water. In this study, we investigate evapotranspiration differences between water and vegetation in a scenario that has otherwise not been extensively ...

  15. Cover crop water use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are being widely promoted because of soil health benefits. However, semi-arid dryland production systems, chronically short of water for crop production, may not be able to profitably withstand the yield reduction that follows cover crops because of cover crop water use. Some studies sug...

  16. Operational evapotranspiration based on Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  17. Utility of multi temporal satellite images for crop water requirements estimation and irrigation management in the Jordan Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying the spatial and temporal distribution of crop water requirements is a key for successful management of water resources in the dry areas. Climatic data were obtained from three automated weather stations to estimate reference evapotranspiration (ETO) in the Jordan Valley according to the...

  18. Advances in the two-source energy balance model: Partioning of evaporation and transpiration for row crops for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  19. Advances in the two-source energy balance model:Partioning of evaporation and transpiration for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  20. Spatial variability in sensitivity of reference crop ET to accuracy of climate data in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1995 to 2008, fro...

  1. A thermal-based remote sensing modelling system for estimating crop water use and stress from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...

  2. Recent advances in the two source energy balance model to calculate E.T. and ET for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calculation of evaporation (E), transpiration (T), and evapotranspiration (ET) are fundamental to assess strategies and tactics that might improve crop water productivity in both irrigated and dryland production systems. One approach to calculate E, T, and ET is by a two-source energy balance model ...

  3. Evapotranspiration from areas of native vegetation in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Woodham, W.M.; Lopez, Miguel Angel

    1996-01-01

    The micrometeorological methods of energy-balance Bowen ratio and eddy correlation probably are suitable for determining evapotranspiration from unforested sites, but the aerodynamic effects of tall tree canopies need to be considered when the methods are used for forested sites. Potential evapotranspiration methods might not yield reliable estimates of evapotranspiration for all areas of native vegetation. Estimates of annual evapotranspiration ranged from 970 millimeters for a cypress swamp site to 1,060 millimeters for a pine flatwood site.

  4. Use of Land Surface Temperature Observations in a Two-Source Energy Balance Model Towards Improved Monitoring of Evapotranspiration and Drought

    NASA Astrophysics Data System (ADS)

    Hain, C.; Anderson, M. C.; Otkin, J.; Semmens, K. A.; Zhan, X.; Fang, L.; Li, Z.

    2014-12-01

    As the world's water resources come under increasing tension due to the dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. However, direct validation of ET models is challenging due to lack of available observations that are sufficiently representative at the model grid scale (10-100 km). Prognostic land-surface models require accurate information about observed precipitation, soil moisture storage, groundwater, and artificial controls on water supply (e.g., irrigation, dams, etc.) to reliably link rainfall to evaporative fluxes. In contrast, diagnostic estimates of ET can be generated, with no prior knowledge of the surface moisture state, by energy balance models using thermal-infrared remote sensing of land-surface temperature (LST) as a boundary condition. One such method, the Atmosphere Land Exchange Inverse (ALEXI) model provides estimates of surface energy fluxes through the use of mid-morning change in LST and radiation inputs. The LST inputs carry valuable proxy information regarding soil moisture and its effect on soil evaporation and canopy transpiration. Additionally, the Evaporative Stress Index (ESI) representing anomalies in the ratio of actual-to-potential ET has shown to be a reliable indicator of drought. ESI maps over the continental US show good correspondence with standard drought metrics and with patterns of precipitation, but can be generated at significantly higher spatial resolution due to a limited reliance on ground observations. Furthermore, ESI is a measure of actual stress rather than potential for stress, and has physical relevance to projected crop development. Because precipitation is not used in construction of the ESI, it provides an independent assessment of drought conditions and has particular utility for real-time monitoring in regions with sparse rainfall data or

  5. Ecosystem evapotranspiration: Challenges in measurements, estimates, and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) processes at the leaf-to-landscape scales in multiple land uses have important controls and feedbacks for the local, regional and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and cro...

  6. Bushland evapotranspiration and agricultural remote sensing system (BEARS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution daily evapotranspiration (ET) maps would greatly assist irrigation scheduling and hydrologic modeling. Numerous remote sensing-based ET algorithms that vary in complexity are available for estimating spatially and temporally variable daily ET at a regional scale. However, implementat...

  7. Remote sensing estimation of evapotranspiration for SWAT Model Calibration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrological models are used to assess many water resource problems from water quantity to water quality issues. The accurate assessment of the water budget, primarily the influence of precipitation and evapotranspiration (ET), is a critical first-step evaluation, which is often overlooked in hydro...

  8. Utility of thermal remote sensing for determining evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) from thermal remote sensing is a surface boundary condition that is strongly linked to the partitioning of the available energy between latent (evapotranspiration) and sensible heat flux. Numerous modeling approaches have been developed ranging in level of complexity ...

  9. Determining the oxygen isotope composition of evapotranspiration with eddy covariance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oxygen isotope componsition of evapotranspiration (dF) represents an important tracer in the study of biosphere-atmosphere interactions, hydrology, paleoclimate, and carbon cycling. Here we demonstrate direct measurement of dF based on eddy covariance (EC) and tunable diode laser (EC-TDL) techni...

  10. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  11. Daily time series evapotranspiration maps for Oklahoma and Texas panhandle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...

  12. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    NASA Astrophysics Data System (ADS)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  13. Partitioning evapotranspiration into evaporation and transpiration in a corn field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is a main component of the hydrology cycle. It consists of soil water evaporation (E) and plant transpiration (T). Accurate partitioning of ET into E and T is challenging. We measured soil water E using heat pulse sensors and a micro-Bowen ratio system, T using stem flow gaug...

  14. Seasonal energy and evapotranspiration partitioning in a desert vineyard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The challenge of partitioning energy and evapotranspiration (ET) components was addressed over a season (bud break till harvest) in a wine grape vineyard located in an extreme arid region. A below canopy energy balance approach was applied to continuously estimate evaporation from the soil (E) while...

  15. Multi-scale indicators in CropWatch

    NASA Astrophysics Data System (ADS)

    Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zhang, N.; Zou, W.; Chang, S.; Liu, G.

    2013-12-01

    CropWatch is a crop monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information, mostly for Chinese users. In its 15th year of operation, CropWatch uses remote sensing data combined with selected field data to determine key crop descriptors: acreage, yield and production, condition, cropping intensity, planting proportion, total food availability, and the status and severity of droughts. Currently, CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite 3 (FY-3A) and geostationary meteorological satellites (FY-2). The new indicators can be assigned to three different scales: (1) global, (2) regional/Agro-ecological Zone (AEZ), and (3) National/sub-national level. At the global scale, CropWatch focuses on the growing environment including precipitation (R), soil moisture (SM), land surface temperature accumulation (LSTA) and photosynthetically active radiation (PAR). National values of these four descriptors of the current season and their departure from long term average (LTA) will be determined by spatial average weighted by the production potential. At regional/AEZ scale, CropWatch will use three indicators (biomass, fallow land ratio and cropping intensity) to represent crop condition. At the national/sub-national scale, CropWatch will focus on 30 countries plus China, covering 80% of exports and 80% of production, plus some additional countries. Indicators at global and AEZ scale will also be used for the 30 countries plus China but at a high resolution. Normalized difference vegetation index (NDVI) as well as Evapotranspiration (ET) will be incorporated to determine the crop condition and water stress. All these national/sub-national indicators will be analyzed by irrigated and rain-fed areas

  16. Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment.

    PubMed

    Milani, Mirco; Toscano, Attilio

    2013-01-01

    This article reports the results of evapotranspiration (ET) experiments carried out in Southern Italy (Sicily) in a pilot-scale constructed wetland (CW) made of a combination of vegetated (Phragmites australis) and unvegetated sub-surface flow beds. Domestic wastewater from a conventional wastewater treatment plant was used to fill the beds. Microclimate data was gathered from an automatic weather station close to the experimental plant. From June to November 2009 and from April to November 2010, ET values were measured as the amount of water needed to restore the initial volume in the beds after a certain period. Cumulative reference evapotranspiration (ET(0)) was similar to the cumulative ET measured in the beds without vegetation (ET(con)), while the Phragmites ET (ET (phr) ) was significantly higher underlining the effect of the vegetation. The plant coefficient of P. australis (K(p)) was very high (up to 8.5 in August 2009) compared to the typical K(c) for agricultural crops suggesting that the wetland environment was subjected to strong "clothesline" and "oasis" effects. According to the FAO 56 approach, K(p) shows different patterns and values in relation to growth stages correlating significantly to stem density, plant height and total leaves. The mean Water Use Efficiency (WUE) value of P. australis was quite low, about 2.27 g L(-1), probably due to the unlimited water availability and the lack of the plant's physiological adaptations to water conservation. The results provide useful and valid information for estimating ET rates in small-scale constructed wetlands since ET is a relevant issue in arid and semiarid regions. In these areas CW feasibility for wastewater treatment and reuse should also be carefully evaluated for macrophytes in relation to their WUE values.

  17. A Comparison of Methods for Estimating Evapotranspiration (ET) in a Semi-Arid Agricultural System

    NASA Astrophysics Data System (ADS)

    Gordon, B. L.; Claes, N.; Miller, S. N.; Paige, G. B.; Parsekian, A.; Beverly, D.

    2015-12-01

    In the intermountain West, much like the rest of the world, agriculture is the oldest and largest water consumer. Particularly in the arid headwaters states of the intermountain west changing water demands are highlighting the importance of water use efficiency in agriculture. In flood irrigation an area is irrigated until saturation is achieved although crops only consume a portion of the total water applied. The remaining water eventually returns to streams or aquifers. Accurately quantifying the portion of applied water that is consumptively used—and its corollary in the form of return flows—represents an important avenue for potential water use reduction in the face of increasing demands from sundry downstream users. Consumptive use has historically been understood as the difference between the irrigation water applied and irrigation water returned to adjacent surface waters via quick or delayed return flow as well as overland flow. Penman-derived models, which calculate evapotranspiration based on meteorological data, are another widely recognized method for estimating consumptive use. We determined consumptive use on an agricultural field in northeastern Wyoming using both of these two traditional methods as well as a quantitative scintillometer-based estimate, which couples meteorological data with the latent heat flux across a field to measure evapotranspiration for a given area. Since the wider application of the scintillometer is limited by the instrument's complexity and cost, a comparison of the resulting data with these two more customary methods provides critical insight in to where certain methods might under or overestimate consumptive use. The purpose of this comparison is twofold. First, the comparison of these three methods allows for the optimization of a reach-scale water budget that aims to better characterize and quantify return flow processes. Second, the addition of information that couples hydrology, meteorology, geophysics, and heat

  18. Irrigation and fertigation scheduling under drip irrigation for maize crop in sandy soil

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; El-Baroudy, Ahmed A.; Taha, Ahmed M.

    2016-01-01

    Field experiments was conducted to determine the best irrigation scheduling and the proper period for injecting fertilizers through drip irrigation water in a sandy soil to optimize maize yield and water productivity. Four irrigation levels (0.6, 0.8, 1.0 and 1.2) of the crop evapotranspiration and two fertigation periods (applying the recommended fertilizer dose in 60 and 80% of the irrigation time) were applied in a split-plot design, in addition to a control treatment which represented conventional irrigation and fertilization of maize in the studied area. The results showed that increasing the irrigation water amount and the fertilizer application period increased vegetative growth and yield. The highest grain yield and the lowest one were obtained under the treatment at 1.2 and of 0.6 crop evapotranspiration, respectively. The treatment at 0.8 crop evapotranspiration with fertilizer application in 80% of the irrigation time gave the highest water productivity (1.631 kg m-3) and saved 27% of the irrigation water compared to the control treatment. Therefore, this treatment is recommended to irrigate maize crops because of the water scarcity conditions of the studied area.

  19. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  20. TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses

    PubMed Central

    Janik, Grzegorz; Wolski, Karol; Daniel, Anna; Albert, Małgorzata; Skierucha, Wojciech; Wilczek, Andrzej; Szyszkowski, Paweł; Walczak, Amadeusz

    2015-01-01

    The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form ETR(θ2.5 cm, T2.5 cm) = A/(1 + B · e−C·(θ2.5 cm · T2.5 cm)), where: ETR(θ2.5 cm, T2.5 cm) is evapotranspiration [mm·h−1], θ2.5 cm is volumetric moisture of soil at the depth of 2.5 cm [m3·m−3], T2.5 cm is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm·h1], and [—], [(m3·m−3·°C)−1]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards. PMID:26448964

  1. Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2016-11-01

    Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF), and the consumption of irrigation water (blue WF) over the crop growing period varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961-2008, for rain-fed vs. irrigated croplands, for wet vs. dry years, for warm vs. cold years, for four different soil classes, and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arcmin resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961-2008, (ii) the WF benchmarks for irrigated winter wheat are 8-10 % larger than those for rain-fed winter wheat, (iii) WF benchmarks for wet years are 1-3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7-8 % smaller than for cold years, (v) WF benchmarks differ by about 10-12 % across different soil texture classes, and (vi) WF benchmarks for the humid zone are 26-31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If

  2. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  3. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals} (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51

  4. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  5. Actual ET modelling based on the Budyko framework and the sustainability of vegetation water use in the loess plateau.

    PubMed

    Gao, Xuerui; Sun, Miao; Zhao, Qi; Wu, Pute; Zhao, Xining; Pan, Wenxiang; Wang, Yubao

    2017-02-01

    Jointly influenced by the natural factors and the artificial protection measures, the ecological environment of Loess Plateau has been significantly improved in recent years, but which has already brought about some water-related problems. To maintain the balance between precipitation and water consumption is an important foundation for sustainable development of the ecology remediation. This study used Budyko Framework to simulate the actual water consumption of 161 sub-basins from 1990 to 2014. Based on the simulation results, the research also analyzed the evolution characteristics of water balance in Loess Plateau from 1990 to 2014. Results show that, with the increase of vegetation coverage, the regional precipitation and actual evapotranspiration were both showing a significant increasing trend, and the increasing rate of precipitation was 1.91mm/a on average, which was greater than the increasing rate of actual evapotranspiration of 1.34mm/a. To further demonstrate the water balance regime in Loess Plateau, the evapotranspiration coefficient (ECC) was used to quantitatively indicate the ratio of the vegetation water consumption and the total precipitation. The average values of ECC were 0.868, 0.863, 0.851 and 0.837 respectively in four sub-periods of 1990-1999, 2000-2004, 2005-2009 and 2010-2014. The above analyses indicate that with the vegetation recovery and ecological restoration, the percentage of evapotranspiration in the total precipitation is keeping decreasing and in turn the percentage of water yield in the total precipitation is keeping increasing. Consequently, it seems more sustainable for vegetation water use in most areas of Loess Plateau currently.

  6. METRIC model for the estimation and mapping of evapotranspiration in a super intensive olive orchard in Southern Portugal

    NASA Astrophysics Data System (ADS)

    Pôças, Isabel; Nogueira, António; Paço, Teresa A.; Sousa, Adélia; Valente, Fernanda; Silvestre, José; Andrade, José A.; Santos, Francisco L.; Pereira, Luís S.; Allen, Richard G.

    2013-04-01

    Satellite-based surface energy balance models have been successfully applied to estimate and map evapotranspiration (ET). The METRICtm model, Mapping EvapoTranspiration at high Resolution using Internalized Calibration, is one of such models. METRIC has been widely used over an extensive range of vegetation types and applications, mostly focusing annual crops. In the current study, the single-layer-blended METRIC model was applied to Landsat5 TM and Landsat7 ETM+ images to produce estimates of evapotranspiration (ET) in a super intensive olive orchard in Southern Portugal. In sparse woody canopies as in olive orchards, some adjustments in METRIC application related to the estimation of vegetation temperature and of momentum roughness length and sensible heat flux (H) for tall vegetation must be considered. To minimize biases in H estimates due to uncertainties in the definition of momentum roughness length, the Perrier function based on leaf area index and tree canopy architecture, associated with an adjusted estimation of crop height, was used to obtain momentum roughness length estimates. Additionally, to minimize the biases in surface temperature simulations, due to soil and shadow effects, the computation of radiometric temperature considered a three-source condition, where Ts=fcTc+fshadowTshadow+fsunlitTsunlit. As such, the surface temperature (Ts), derived from the thermal band of the Landsat images, integrates the temperature of the canopy (Tc), the temperature of the shaded ground surface (Tshadow), and the temperature of the sunlit ground surface (Tsunlit), according to the relative fraction of vegetation (fc), shadow (fshadow) and sunlit (fsunlit) ground surface, respectively. As the sunlit canopies are the primary source of energy exchange, the effective temperature for the canopy was estimated by solving the three-source condition equation for Tc. To evaluate METRIC performance to estimate ET over the olive grove, several parameters derived from the

  7. RIP-ET: A riparian evapotranspiration package for MODFLOW-2005

    USGS Publications Warehouse

    Maddock, Thomas; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori

    2012-01-01

    A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting

  8. [Effects of marshland reclamation on evapotranspiration in the Sanjiang Plain].

    PubMed

    Jia, Zhi-jun; Zhang, Wen; Huang, Yao; Zhao, Xiao-song; Song, Chang-chun

    2010-04-01

    Extensive reclamation of marshland into cropland has had tremendous effects on the ecological environment in the Sanjiang Plain. Observations over marshland, rice paddy and soybean field were made with eddy covariance measuring systems from May to October in 2005, 2006 and 2007. The objective of this study was to identify the effects of the conversion of marshland to cropland on evapotranspiration in the Sanjiang Plain. The results showed that the diurnal variation curves of latent heat flux were single peaked in marshland, rice paddy and soybean field. The daily maximum latent heat flux increased by 14%-130% in rice paddy in the three measuring years, however, in soybean field, it increased by 3%-77% in 2006 but decreased by 25%-40% in 2005 and 2007 by comparison with that in marshland. This difference was due to the change of leaf area index when marshland was reclaimed into cropland. Seasonal change of latent heat flux was identical for the three land use types. Daily averaged latent heat flux of rice paddy, from May to October, showed 38%-53% increase compared with that of marshland, which resulted from the increase in net radiation and leaf area index. When marshland was reclaimed into soybean field, the variation of daily averaged latent heat flux depended primarily on precipitation. Precipitation was the main factor that controlled evapotranspiration over soybean field which was usually in condition of soil water deficit. Drought caused 11%-17% decrease of daily averaged latent heat flux over soybean field in 2005 and 2007, while sufficient precipitation caused 22% increase in 2006, comparing to marshland. Similarly, during the growing season from June to September, total evapotranspiration of rice paddy increased by 24%-51% compared with that of marshland, and the total evapotranspiration of soybean field decreased by 19%-23% in 2005 and 2007 and increased by 19% in 2006. It is concluded that the evapotranspiration changes significantly when the marshland

  9. Wind Turbines Benefit Crops

    SciTech Connect

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  10. Wind Turbines Benefit Crops

    ScienceCinema

    Takle, Gene

    2016-07-12

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  11. Evaluation of Physically and Empirically Based Models for the Estimation of Green Roof Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Digiovanni, K. A.; Montalto, F. A.; Gaffin, S.; Rosenzweig, C.

    2010-12-01

    Green roofs and other urban green spaces can provide a variety of valuable benefits including reduction of the urban heat island effect, reduction of stormwater runoff, carbon sequestration, oxygen generation, air pollution mitigation etc. As many of these benefits are directly linked to the processes of evaporation and transpiration, accurate and representative estimation of urban evapotranspiration (ET) is a necessary tool for predicting and quantifying such benefits. However, many common ET estimation procedures were developed for agricultural applications, and thus carry inherent assumptions that may only be rarely applicable to urban green spaces. Various researchers have identified the estimation of expected urban ET rates as critical, yet poorly studied components of urban green space performance prediction and cite that further evaluation is needed to reconcile differences in predictions from varying ET modeling approaches. A small scale green roof lysimeter setup situated on the green roof of the Ethical Culture Fieldston School in the Bronx, NY has been the focus of ongoing monitoring initiated in June 2009. The experimental setup includes a 0.6 m by 1.2 m Lysimeter replicating the anatomy of the 500 m2 green roof of the building, with a roof membrane, drainage layer, 10 cm media depth, and planted with a variety of Sedum species. Soil moisture sensors and qualitative runoff measurements are also recorded in the Lysimeter, while a weather station situated on the rooftop records climatologic data. Direct quantification of actual evapotranspiration (AET) from the green roof weighing lysimeter was achieved through a mass balance approaches during periods absent of precipitation and drainage. A comparison of AET to estimates of potential evapotranspiration (PET) calculated from empirically and physically based ET models was performed in order to evaluate the applicability of conventional ET equations for the estimation of ET from green roofs. Results have

  12. Investigation on the Reference Evapotranspiration Distribution at Regional Scale By Alternative Methods to Compute the FAO Penman-Monteith Equation

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Mancosu, N.; Spano, D.

    2014-12-01

    This study derived the summer (June-August) reference evapotranspiration distribution map for Sardinia (Italy) based on weather station data and use of the geographic information system (GIS). A modified daily Penman-Monteith equation from the Food and Agriculture Organization of the United Nations (UN-FAO) and the American Society of Civil Engineers Environmental and Water Resources Institute (ASCE-EWRI) was used to calculate the Standardized Reference Evapotranspiration (ETos) for all weather stations having a "full" set of required data for the calculations. For stations having only temperature data (partial stations), the Hargreaves-Samani equation was used to estimate the reference evapotranspiration for a grass surface (ETo). The ETos and ETo results were different depending on the local climate, so two methods to estimate ETos from the ETo were tested. Substitution of missing solar radiation, wind speed, and humidity data from a nearby station within a similar microclimate was found to give better results than using a calibration factor that related ETos and ETo. Therefore, the substitution method was used to estimate ETos at "partial" stations having only temperature data. The combination of 63 full and partial stations was sufficient to use GIS to map ETos for Sardinia. Three interpolation methods were studied, and the ordinary kriging model fitted the observed data better than a radial basis function or the inverse distance weighting method. Using station data points to create a regional map simplified the zonation of ETos when large scale computations were needed. Making a distinction based on ETos classes allows the simulation of crop water requirements for large areas and it can potentially lead to improved irrigation management and water savings. It also provides a baseline to investigate possible impact of climate change.

  13. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign

    NASA Astrophysics Data System (ADS)

    Anderson, Martha C.; Kustas, William P.; Alfieri, Joseph G.; Gao, Feng; Hain, Christopher; Prueger, John H.; Evett, Steven; Colaizzi, Paul; Howell, Terry; Chávez, José L.

    2012-12-01

    Robust spatial information about environmental water use at field scales and daily to seasonal timesteps will benefit many applications in agriculture and water resource management. This information is particularly critical in arid climates where freshwater resources are limited or expensive, and groundwater supplies are being depleted at unsustainable rates to support irrigated agriculture as well as municipal and industrial uses. Gridded evapotranspiration (ET) information at field scales can be obtained periodically using land-surface temperature-based surface energy balance algorithms applied to moderate resolution satellite data from systems like Landsat, which collects thermal-band imagery every 16 days at a resolution of approximately 100 m. The challenge is in finding methods for interpolating between ET snapshots developed at the time of a clear-sky Landsat overpass to provide complete daily time-series over a growing season. This study examines the efficacy of a simple gap-filling algorithm designed for applications in data-sparse regions, which does not require local ground measurements of weather or rainfall, or estimates of soil texture. The algorithm relies on general conservation of the ratio between actual ET and a reference ET, generated from satellite insolation data and standard meteorological fields from a mesoscale model. The algorithm was tested with ET retrievals from the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance model and associated DisALEXI flux disaggregation technique, which uses Landsat-scale thermal imagery to reduce regional ALEXI maps to a finer spatial resolution. Daily ET at the Landsat scale was compared with lysimeter and eddy covariance flux measurements collected during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment of 2008 (BEAREX08), conducted in an irrigated agricultural area in the Texas Panhandle under highly advective conditions. The simple gap-filling algorithm performed

  14. Sensitivity of the projected hydroclimatic environment of the Delaware River basin to formulation of potential evapotranspiration

    USGS Publications Warehouse

    Williamson, Tanja N.; Nystrom, Elizabeth A.; Milly, Paul C.D.

    2016-01-01

    The Delaware River Basin (DRB) encompasses approximately 0.4 % of the area of the United States (U.S.), but supplies water to 5 % of the population. We studied three forested tributaries to quantify the potential climate-driven change in hydrologic budget for two 25-year time periods centered on 2030 and 2060, focusing on sensitivity to the method of estimating potential evapotranspiration (PET) change. Hydrology was simulated using the Water Availability Tool for Environmental Resources (Williamson et al. 2015). Climate-change scenarios for four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) and two Representative Concentration Pathways (RCPs) were used to derive monthly change factors for temperature (T), precipitation (PPT), and PET according to the energy-based method of Priestley and Taylor (1972). Hydrologic simulations indicate a general increase in annual (especially winter) streamflow (Q) as early as 2030 across the DRB, with a larger increase by 2060. This increase in Q is the result of (1) higher winter PPT, which outweighs an annual actual evapotranspiration (AET) increase and (2) (for winter) a major shift away from storage of PPT as snow pack. However, when PET change is evaluated instead using the simpler T-based method of Hamon (1963), the increases in Q are small or even negative. In fact, the change of Q depends as much on PET method as on time period or RCP. This large sensitivity and associated uncertainty underscore the importance of exercising caution in the selection of a PET method for use in climate-change analyses.

  15. Vapor pressure deficit is as important as soil moisture in determining limitations to evapotranspiration during drought

    NASA Astrophysics Data System (ADS)

    Novick, K. A.; Williams, C. A.; Phillips, R.; Oishi, A. C.; Sulman, B. N.; Bohrer, G.; Ficklin, D. L.

    2015-12-01

    The decoupling between potential evapotranspiration (PET) and actual evapotranspiration (AET) is a useful metric to characterize ecosystem hydrologic stress. As hydrologic stress evolves, PET increases following increases in incident radiation and vapor pressure deficit (VPD). AET, on the other hand, remains stationary or decreases due to declines in surface conductance imposed by decreasing soil water and stomatal closure under high VPD. Historically, it has been difficult to quantify the extent to which soil moisture as compared to VPD ultimately limits AET during hydrologic stress. Part of this difficulty relates to the strong correlation between soil moisture and VPD at timescales over which hydrologic stress evolves (weekly to monthly). Further, while it is relatively easy to manipulate soil moisture in experimental settings, manipulating VPD is much more difficult. Recently, the proliferation of eddy covariance flux sites has produced a rich collection of AET observations at fine timescales (i.e. hourly to daily) over which VPD and soil moisture are more decoupled. In this study, we leverage such data to quantify the extent to which soil moisture versus VPD constrains AET in more than 25 Ameriflux sites spanning a wide climate gradient. We found that AET was most significantly limited by soil moisture in dry sites where the annual PET was much higher than precipitation. VPD limitations to AET dominated in wetter sites, but even among the driest sites, they were of similar magnitude to soil moisture limitations. Our results highlight the critical, if at time underappreciated, role of VPD in determining ecohydrological functioning during periods of hydrologic stress. We also leverage these results together with future projections for VPD, soil moisture, and other relevant meteorological drivers to explore the extent to which the coherence between VPD and soil moisture, and their relative importance for limiting AET, may shift under future climate conditions.

  16. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Yinsheng; Guo, Yanhong; Gao, Haifeng; Zhang, Hongbo; Wang, Yefan

    2015-10-01

    Characterizing the water and energy flux in the alpine steppe ecosystem in Tibetan Plateau (TP) is of particular importance for elucidating hydrological cycle mechanisms in high altitude areas. In the present study, two years of actual evapotranspiration (ET) values from a semi-arid alpine steppe region (4947 m above sea level) and their environmental and biophysical controls were investigated using the energy balance Bowen ratio energy balance (BREB) method. Seasonally, ET was much lower in frozen soil period and transition period mainly because of low soil water availability. However, ample soil water supplied by rainfall during the rainy period substantially increased ET. The available energy played an important role in controlling ET in the rainy period. Also, the leaf-level stomata closure and plant leaf development could impact the ET through changing bulk surface conductance (Gs) in rainy period. Similarly, the land-atmosphere energy exchange was dominated by latent heat flux (λE) in July, but was dominated by sensible heat flux (H) in December and May. Annual ET (plus sublimation) were 362.9 mm and 353.4 mm in the first and second observation year, respectively, which were close to the annual precipitation. On annual scale, the low Gs (3.30-3.62 mm s-1), decoupling factor (Ω, 0.25-0.27) and the ratio of ET to equilibrium evapotranspiration (ET/ETeq, 0.34-0.35) corroborated the overall water-limited conditions for the high-altitude alpine steppe. This research provides not only the ground truth data for future hydrological modeling in the data scarce region of TP but also the insights for elucidating how the environmental and biophysical stress factors control the land surface ET in high-altitude region.

  17. Cover crops for Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are grown to benefit the following crop as well as to improve the soil, but they are normally not intended for harvest. Selecting the right cover crops for farming operations can improve yields, soil and water conservation and quality, and economic productivity. Properly managed cover ...

  18. Sorghums as energy crops

    SciTech Connect

    Lipinsky, E. S.; Kresovich, S.

    1980-01-01

    The botanical, physiological, and agronomic characteristics of sorghum are described. Integration concepts to improve sorghum prospects are discussed as follows: multiple sweet sorghum crops each year, integration with sugarcane, integration with sugar beets, integration with starch crops, sweet stemmed grain sorghum, and integration with lignocellulosic crops. (MHR)

  19. Cucurbitaceae (Vine Crops)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cucurbitaceae or vine crop family is a distinct family without any close relatives. The Cucurbitaceae or vine crop family includes many important vegetables collectively referred to as cucurbits. Cucumber, melon, and watermelon are major crop species originally from the Old World (cucumber fro...

  20. Soil moisture and evapotranspiration predictions using Skylab data

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Moore, D. G.; Horton, M. L.; Russell, M. J.

    1975-01-01

    The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling.

  1. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    SciTech Connect

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.

  2. Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California

    SciTech Connect

    1990-12-01

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab.

  3. Harmonizing multiple methods for reconstructing historical potential and reference evapotranspiration

    USGS Publications Warehouse

    Belaineh, Getachew; Sumner, David; Carter, Edward; Clapp, David

    2013-01-01

    Potential evapotranspiration (PET) and reference evapotranspiration (RET) data are usually critical components of hydrologic analysis. Many different equations are available to estimate PET and RET. Most of these equations, such as the Priestley-Taylor and Penman- Monteith methods, rely on detailed meteorological data collected at ground-based weather stations. Few weather stations collect enough data to estimate PET or RET using one of the more complex evapotranspiration equations. Currently, satellite data integrated with ground meteorological data are used with one of these evapotranspiration equations to accurately estimate PET and RET. However, earlier than the last few decades, historical reconstructions of PET and RET needed for many hydrologic analyses are limited by the paucity of satellite data and of some types of ground data. Air temperature stands out as the most generally available meteorological ground data type over the last century. Temperature-based approaches used with readily available historical temperature data offer the potential for long period-of-record PET and RET historical reconstructions. A challenge is the inconsistency between the more accurate, but more data intensive, methods appropriate for more recent periods and the less accurate, but less data intensive, methods appropriate to the more distant past. In this study, multiple methods are harmonized in a seamless reconstruction of historical PET and RET by quantifying and eliminating the biases of the simple Hargreaves-Samani method relative to the more complex and accurate Priestley-Taylor and Penman-Monteith methods. This harmonization process is used to generate long-term, internally consistent, spatiotemporal databases of PET and RET.

  4. Using Flux Data at a Range of Time-scales to Characterise the Role of the Land Surface in Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Blyth, E.; Robinson, E.

    2015-12-01

    Flux data gives information at a range of scales: from hourly to interannual (and in some cases decadal). By analysing different timescales and using some different sampling strategies, it is possible to diagnose different aspects of the land surface that affect the energy partition into sensible and latent heat (evapotranspiration). For instance, the night to day time ratio tells us about the aerodynamic roughness of the surface, the seasonality of the partition tells us about the phenology of the vegetation and the speed of dry down after a rainfall event tells us about the sizes of the stores of moisture both held within the canopy of the vegetation and in the root zone below the ground. This study analyses a range of flux data at sites across the world in varying climate conditions, with carrying land cover attributes: trees, grasses and crops, deciduous and evergreen, broadleaf and needleleaf. The method designed to characterise the surface's control of the evapotranspiration is quantified. Ultimately the data is needed for model validation. In this case, the characterisation of the surface is used to inform a land surface model (JULES) which is used in global climate, weather and water resource applications.

  5. Evapotranspiration studies for protective barriers: FY 1990 status report

    SciTech Connect

    Link, S.O.; Downs, J.L.; Thiede, M.E.; Lettau, D.J.; Twaddell, T.R. ); Black, R.A. )

    1992-05-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (Westinghouse Hanford) are working together to develop for the US Department of Energy (DOE) protective barriers for the near-surface disposal of hazardous waste at the Hanford Site. The proposed barrier design consists of a layer of fine-textured soil overlying a series of layers grading from sand to basalt riprap. A multiyear research program is being conducted to assess the long-term performance of barrier configurations in restricting plants, animals, and water from contacting buried wastes. The purpose of this report is to review work done up to July 31 in FY 1990 on the evapotranspiration subtask of the water infiltration task. As stated in the test plan, specific objectives of PNL's evapotranspiration work were to (1) develop and test an environmentally controlled whole-plant gas exchange system, (2) collect evapotranspiration data at the whole-plant level on the small-tube lysimeters, (3) collect transpiration data on the shrubs at McGee Ranch, (4) collect data necessary to parameterize the plant component of the UNSAT-H code.

  6. Evapotranspiration studies for protective barriers: FY 1990 status report

    SciTech Connect

    Link, S.O.; Downs, J.L.; Thiede, M.E.; Lettau, D.J.; Twaddell, T.R.; Black, R.A.

    1992-05-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (Westinghouse Hanford) are working together to develop for the US Department of Energy (DOE) protective barriers for the near-surface disposal of hazardous waste at the Hanford Site. The proposed barrier design consists of a layer of fine-textured soil overlying a series of layers grading from sand to basalt riprap. A multiyear research program is being conducted to assess the long-term performance of barrier configurations in restricting plants, animals, and water from contacting buried wastes. The purpose of this report is to review work done up to July 31 in FY 1990 on the evapotranspiration subtask of the water infiltration task. As stated in the test plan, specific objectives of PNL`s evapotranspiration work were to (1) develop and test an environmentally controlled whole-plant gas exchange system, (2) collect evapotranspiration data at the whole-plant level on the small-tube lysimeters, (3) collect transpiration data on the shrubs at McGee Ranch, (4) collect data necessary to parameterize the plant component of the UNSAT-H code.

  7. Estimation of Some Bio-Physical Indicators for Sustainable Crop Production in the Eastern Nile Basin of Sudan Using Landsat-8 Imagery and SEBAL Model

    NASA Astrophysics Data System (ADS)

    Guma Biro Turk, Khalid

    2016-07-01

    Crop production under modern irrigation systems require unique management at field level and hence better utilization of agricultural inputs and water resources. This study aims to make use of remote sensing (RS) data and the surface energy balance algorithm for land (SEBAL) to improve the on-farm management. The study area is located in the Eastern part of the Blue Nile River about 60 km south of Khartoum, Sudan. Landsat-8 data were used to estimate a number of bio-physical indicators during the growing season of the year 2014/2015. Accordingly, in-situ weather data and SEBAL model were applied to calculate: the reference (ET0), actual (ETa) and potential (ETp) evapotranspiration, soil moisture (SM), crop factor (kc), nitrogen (N), biomass production (BP) and crop water productivity (CWP). Results revealed that ET0 showed steady variation throughout the year, varying from 5 to 7 mm/day. However, ETa and ETp showed clear temporal variation attributed to frequent cutting of the alfalfa, almost monthly. The BP of the alfalfa was observed to be high when there is no cutting activates were made before the image acquisition date. Nevertheless the CWP trends are following the biomass production ones, low when there is no biomass and high when the biomass is high. The application of SEBAL model within the study area using the Landsat-8 imagery indicates that it's possible to produce field-based bio-physical indicators, which can be useful in monitoring and managing the field during the growing season. However, a cross-calibration with the in-situ data should be considered in order to maintain the spatial variability within the field. Keywords: Bio-physical Indicators; Remote Sensing; SEBAL; Landsat-8; Eastern Nile Basin

  8. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 1: Measurement of Evapotranspiration at the Environmental Research Center and Determination of Priestley-taylor Parameter

    NASA Technical Reports Server (NTRS)

    Kotada, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In order to study the distribution of evapotranspiration in the humid region using remote sensing technology, the parameter (alpha) in the Priestley-Taylor model was determined. The daily means of the parameter alpha = 1.14 can be available from summer to autumn and alpha = to approximately 2.0 in winter. The results of the satellite and the airborne sensing done on 21st and 22nd January, 1983, are described. Using the vegetation distribution in the Tsukuba Academic New Town, as well as the radiation temperature obtained by remote sensing and the radiation data observed at the ground surface, the evapotranspiration was calculated for each vegetation type by the Priestley-Taylor method. The daily mean evapotranspiration on 22nd January, 1983, was approximately 0.4 mm/day. The differences in evapotranspiration between the vegetation types were not detectable, because the magnitude of evapotranspiration is very little in winter.

  9. Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: a case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Mo, Xingguo; Chen, Xuejuan; Hu, Shi; Liu, Suxia; Xia, Jun

    2017-01-01

    Attributing changes in evapotranspiration (ET) and gross primary productivity (GPP) is crucial for impact and adaptation assessment of the agro-ecosystems to climate change. Simulations with the VIP model revealed that annual ET and GPP slightly increased from 1981 to 2013 over the North China Plain. The tendencies of both ET and GPP were upward in the spring season, while they were weak and downward in the summer season. A complete factor analysis illustrated that the relative contributions of climatic change, CO2 fertilization, and management to the ET (GPP) trend were 56 (-32) %, -28 (25) %, and 68 (108) %, respectively. The decline of global radiation resulted from deteriorated aerosol and air pollution was the principal cause of GPP decline in summer, while air warming intensified the water cycle and advanced the plant productivity in the spring season. Generally, agronomic improvements were the principal drivers of crop productivity enhancement.

  10. Precipitation and evapotranspiration at the mountain lysimeter station Stoderzinken

    NASA Astrophysics Data System (ADS)

    Herndl, Markus; Winkler, Gerfried; Birk, Steffen

    2014-05-01

    Alpine water resources are highly important for the Austrian drinking water supply. In particular, the Northern Calcareous Alps contribute substantially to both the regional and the national drinking water supply. To analyse water balance, runoff and recharge in a representative mountain pasture area in the Northern Calcareous Alps a lysimeter station was established at the mountain Stoderzinken (1830 m a.s.l.) in 2005. This work examines the water balance at the lysimeter station during one summer period. Precipitation and evapotranspiration are determined using various approaches in order to identify potential errors in the measurement or interpretation of the data and thus to assess the uncertainties in the water balance components. For this purpose, data of rain gauges and a distrometer was compared with the precipitation calculated from the water balance of the lysimeter. Furthermore evapotranspiration was calculated using the HAUDE and PENMAN-MONTEITH equations for comparison. Already in previous seasons the distrometer was found to be prone to errors, which was confirmed when compared to the rain gauge data. In contrast, precipitation rates calculated from the lysimeter data were found to agree better with the rain gauge data but showed a trend to higher values. However, the approach to calculate precipitation from the lysimeter data turned out to be unsuitable for time periods with significant contribution of snow melt. Evapotranspiration calculated from lysimeter data are in good agreement with the results from the above-mentioned (semi-)empirical equations during dry periods. Furthermore the differences to the evapotranspiration calculated from the climate data correlate with the amount of precipitation. These results suggest that in alpine catchments the uncertainty in the precipitation data constitutes the major source of error in the calculation of evapotranspiration from the water balance of the lysimeter. However, it should be noted that these

  11. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    NASA Technical Reports Server (NTRS)

    Johnson, Lee; Cahn, Michael; Rosevelt, Carolyn; Guzman, Alberto; Farrara, Barry; Melton, Forrest S.

    2016-01-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  12. Observational and Modeling Constraints on Evapotranspiration and Water Vapor in the Upper Midwest, United States

    NASA Astrophysics Data System (ADS)

    Griffis, T. J.

    2014-12-01

    Increases in atmospheric water vapor concentrations and convective precipitation over land provide evidence of intensification of the global hydrologic cycle in response to surface warming. The extent to which terrestrial ecosystems modulate these two components of the hydrologic cycle is important to understanding biophysical feedbacks in the climate system and the availability of water resources. Here, we use a multi-year oxygen-18 and deuterium isotope record of liquid water (precipitation, soil, and plants), atmospheric vapor, tall tower flux measurements, and Stochastic Time-Inverted Lagrangian (STILT) modeling to constrain the importance of evapotranspiration, and other source terms, in the humidification of the planetary boundary layer (PBL). Using an isotope tracer approach we estimated that mid-continental water vapor in the PBL can be derived from as much as 75% local evaporation during the growing season. This result is supported using an inverse modeling approach for cases of extreme dew-point events that have a strong agricultural fingerprint. The isotope observations of water vapor and precipitation were combined with a Monte-Carlo simulation to help constrain a mixing model to estimate the fraction of evaporated terrestrial water in precipitation. The results indicate that growing season precipitation has a median recycling signature of about 30% and is used to help diagnose recycling ratios in mesoscale models. Our land surface modeling results highlight that regional evaporation has changed little over the last 50 years and that the expansion of agricultural crops in the US Midwest has likely reduced the local annual contribution to atmospheric water vapor. These findings are consistent with observed increases in the regional stream-flow data. The compressed growing season of agricultural crops and their high transpiration rates may amplify precipitation intensity and runoff.

  13. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System

    NASA Astrophysics Data System (ADS)

    Lu, X.; Liang, L.; Wang, L.; Jenerette, D.; Grantz, D. A.

    2015-12-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent the irrigation water is transpired by crops relative to being lost through evaporation will contribute to better management of increasingly limited agricultural water resources. In this study, we examined the evapotranspiration (ET) partitioning over a field of forage sorghum (S. bicolor) during a growing season with several irrigation cycles. In several field campaigns we used continuous measurements of near-surface variations in the stable isotopic composition of water vapor (δ2H). We employed custom built transparent chambers coupled with a laser-based isotope analyzer and used Keeling plot and mass balance methods for surface flux partitioning. The preliminary results show that δT is more enriched than δE in the early growing season, and becomes less enriched than δE later in the season as canopy cover increases. There is an increase in the contribution of transpiration to ET as (1) leaf area index increases, and (2) as soil surface moisture declines. These results are consistent with theory, and extend these measurements to an environment that experiences extreme soil surface temperatures. The data further support the use of chamber based methods with stable isotopic analysis for characterization of ET partitioning in challenging field environments.

  14. Field note: comparative efficacy of a woody evapotranspiration landfill cover following the removal of aboveground biomass.

    PubMed

    Schnabel, William; Munk, Jens; Byrd, Amanda

    2015-01-01

    Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.

  15. Investigation of the Impacts of Measured and Calculated Radiation Balance Components on Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Akataş, Nilcan; Yeşilköy, Serhan; Şaylan, Levent

    2016-04-01

    Determination of surface energy balance over agricultural lands plays a crucial role to better investigation of sustainable agriculture and food security which are related to evapotranspiration. Surface energy balance components that include net shortwave and longwave radiation depend on surface conditions like surface albedo and climate of a region. Surface albedo is ratio between reflected longwave radiation and incoming shortwave radiation. There are many different crops in agriculture ecosystem. Thus, surface energy balance components vary by vegetation surfaces. Net radiation is most important component of surface energy balance which is difference between net shortwave and longwave radiation. These are calculated by commonly used equations and applied to the FAO Penman& Monteith equation using meteorological stations' data located in cities. However, there are differences between urban areas and agricultural ecosystems. This situation causes to the calculation errors. In this research, it is aimed to investigate the changes between estimated and measured surface energy balance components which are estimated by meteorological stations' data in the urban area and measurements from an rural area over winter wheat surface 2014-2015 growing season in Thrace Region located in the Northwestern part of Turkey, Kırklareli city. Keywords: Surface energy balance, winter wheat, FAO Penman-Monteith, Kırklareli/Turkey

  16. Monitoring Seasonal Evapotranspiration in Vulnerable Agriculture using Time Series VHSR Satellite Data

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.

    2015-04-01

    The research work stems from the hypothesis that it is possible to perform an estimation of seasonal water needs of olive tree farms under drought periods by cross correlating high spatial, spectral and temporal resolution (~monthly) of satellite data, acquired at well defined time intervals of the phenological cycle of crops, with ground-truth information simultaneously applied during the image acquisitions. The present research is for the first time, demonstrating the coordinated efforts of space engineers, satellite mission control planners, remote sensing scientists and ground teams to record at specific time intervals of the phenological cycle of trees from ground "zero" and from 770 km above the Earth's surface, the status of plants for subsequent cross correlation and analysis regarding the estimation of the seasonal evapotranspiration in vulnerable agricultural environment. The ETo and ETc derived by Penman-Montieth equation and reference Kc tables, compared with new ETd using the Kc extracted from the time series satellite data. Several vegetation indices were also used especially the RedEdge and the chlorophyll one based on WorldView-2 RedEdge and second NIR bands to relate the tree status with water and nutrition needs. Keywords: Evapotransipration, Very High Spatial Resolution - VHSR, time series, remote sensing, vulnerability, agriculture, vegetation indeces.

  17. Accelerated global warming after 1998 is caused by decrease in terrestrial evapotranspiration

    NASA Astrophysics Data System (ADS)

    Qiu, GuoYu; Yang, Bing

    2016-04-01

    Over the last 50 years, the global temperature has increased an average of 0.180K per decade. However, the increase has accelerated since 1998 at a rate of 0.334K per decade. No satisfactory explanation has been offered by any past research concerning the accelerated global warming after 1998. In this hypothesis-driven study, we proposed that accelerated global warming since 1998 is mainly caused by a significant reduction of global terrestrial evapotranspiration (ET). This is because global annual terrestrial ET increased on average by 7.1 mm per year per decade between 1982 and 1997 and has decreased on average by 7.9 mm per year per decade since 1998. To verify this hypothesis, we analyzed terrestrial ET energy consumption data and the effects of terrestrial ET change on global warming. Results show that the global warming rate by including the effect of terrestrial ET reduction is 0.349K per decade, which is very close to the observed global warming rate of 0.334K per decade. Our study also shows that global warming can be alleviated by increasing terrestrial ET. The global temperature can be reduced by 0.129K per decade by increasing 1 W/m2, which can be achieved by a combination of land use management measures (such as increasing natural vegetation rehabilitation, crop land irrigation) and appropriate water management for biofuel production.

  18. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  19. Two-source energy balance model to calculate row crop E.T. and ET:Advances at ARS, Bushland, TX 2010-2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two-source energy balance (TSEB) model has undergone several advances recently that improved its accuracy in calculating evaporation (E), transpiration (T), and evapotranspiration (ET) for row crops. These advances were tested using microlysimeter, sap flow, and large weighing lysimeter measurem...

  20. Use of evapotranspiration model based on energy balance in the Ebinur Lake Wetland Nature Reserve

    NASA Astrophysics Data System (ADS)

    Shi, Qingsan; Shi, Qingdong; Wang, Zhi; Gao, Wei; Chang, Shunli

    2009-06-01

    An evapotranspiration model based on the energy balance for different vegetation types in arid area was built in the study, and applied to the natural ecological system of Lake Ebinur wetland nature reserve in Xinjiang. The spatial-temporal dynamic change of the vegetation evapotranspiration in the study area was computed, and the evapotranspiration of three typical vegetations was analyzed and compared. The ground meteorological data were used to test the model. The results show that the evapotranspiration of all the natural system is about 10mm/d, and the maximum is over 20mm/d and occurs between May and August. The evapotranspiration of three typical arid vegetations was estimated in sequence of Populus euphratica Oliv. Tamarix chinensis Lour. Haloxylon ammodendron (Meye)Bge. Finally, it is suggested that the ground surface vegetation types and arid characteristics are most important in the establishment of the evapotranspiration model of natural ecological system based on energy balance in arid areas.

  1. Irrigation management of crops rotations in a changing climate

    NASA Astrophysics Data System (ADS)

    Rolim, J.; Teixeira, J.; Catalão, J.

    2012-04-01

    , the crops rotations can decrease the water deficit of the rainfed crops cultivated after the irrigated crops. This is due to the storage of water in the deepest soil layers during the irrigated crops with shallow roots that increase the available soil water at the planting date of the wheat crop. For the soils with small water storage capacity and small depth, such as the Évora silt-clay-sandy soil, it was not observed the benefic effects of crops rotation in the reduction of the water deficit of the rainfed crops. The results obtained for the several climate change scenarios (2071-2100) show an increase in irrigation requirements between 13% and 70%, with the higher values corresponding to the Autumn-Winter crops (sugar beet), due to the combined effect of an increased evapotranspiration and a reduced precipitation during the crop cycle. The irrigation requirements for the peak period increased between 10% to 46%. For the climate change scenarios it was also found an increased risk of crop failure for the rainfed crops, with a water deficit value for the wheat ranging between 32% to 59%, and for the barley ranging between 34% to 45%. Keywords: Crops Rotation, Soil water balance, Irrigation, Climate change, Model

  2. The observed evapotranspiration combining the energy and water balance for different land use under semiarid Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Masmoudi, Moncef; Prévot, Laurent; Ben Mechlia, Netij; Voltz, Marc; Albergel, Jean

    2014-05-01

    The Mediterranean semiarid cultivated catchments are affected by global and climate change and are characterized by very complex hydrological systems. The improvement of their management requires a best understanding of the hydrological processes and developing reliable means for characterizing the temporal dynamics of soil water balance in a spatially distributed manner. The main objective of this study is: i) to analyze the observed evapotranspiration in relation to natural drivers (i.e. rainfall and soil properties) and anthropogenic forcing (i.e. land use and crop successions), and ) ii to assess the differences in both energy and water balances. We focus on a hilly semiarid Mediterranean catchment devoted to rainfed agriculture, so-called the Kamech catchment, which is located in the Cap Bon Peninsula, north-eastern Tunisia. The site belongs to the OMERE observatory for environmental research and it is monitored for the different hydrological cycle components under influence of anthropogenic forcing. The analysis is based on in-situ data measured under the common cereals/legumes/pasture cropping systems within the Kamech catchment. Energy and water balance components and vegetation parameters were collected in different fields and during various crop growth cycles. The results showed the highly variable response of energy and water balances depending on soil types, land use, and climatic conditions. The annual rainfall is mainly converted into evapotranspiration during the growing cycle for different land uses. The runoff amounts, for most of the sites, correspond to less than 10% of the rainfall amount. The evapotransipration ratios differed significantly across site and season in relation to soil properties and cumulated rainfall. We observe large differences in soil water dynamics among the legumes (fababean and chickpea) and cereals (wheat, oat, and triticale). Soil water is larger for legume crops, despite substantial plant growth during winter

  3. [Spatiotemporal changes of potential evapotranspiration in Songnen Plain of Northeast China].

    PubMed

    Zhang, Yong-fang; Deng, Jun-li; Guan, De-xin; Jin, Chang-jie; Wang, An-zhi; Wu, Jia-bing; Yuan, Feng-hui

    2011-07-01

    Based on the daily meteorological data from 72 weather stations from 1961-2003, a quantitative analysis was conducted on the spatiotemporal changes of the potential evapotranspiration in the Plain. The Penman-Monteith model was applied to calculate the potential evapotranspiration; the Mann-Kendall test, accumulative departure curve, and climatic change rate were adopted to analyze the change trend of the evapotranspiration; and the spatial analysis function of ArcGIS was used to detect the spatial distribution of the evapotranspiration. In 1961-2003, the mean annual potential evapotranspiration in the Plain was 330 - 860 mm, and presented an overall decreasing trend, with the high value appeared in southwest region, low value in surrounding areas of southwest region, and a ring-belt increasing southwestward. The climatic change rate of the annual potential evapotranspiration was -0.21 mm x a(-1). The annual potential evapotranspiration was the highest in 1982, the lowest in 1995, and increased thereafter. Seasonally, the climatic change rate of the potential evapotranspiration in spring, summer, autumn, and winter was -0.19, 0.01, -0.05, and 0.03 mm x a(-1), respectively, suggesting that the potential evapotranspiration had a weak increase in winter and summer and a slight decrease in spring and autumn.

  4. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    NASA Astrophysics Data System (ADS)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  5. Evapotranspiration (ET) at Blue Cypress marsh site, daily data, Indian River County, Florida, June 1, 1995 – October 20, 2014

    USGS Publications Warehouse

    Sumner, David M.

    2017-01-01

    This U.S. Geological Survey (USGS) data release consists of daily evapotranspiration (ET) measurements/estimates for the time period June 1, 1995 to October 2014. These data are derived from (1) measurements of actual ET conducted at the USGS Blue Cypress marsh station (USGS station number 274143080424100) and (2) estimates of actual ET inferred from statistical regressions between the measurements of actual ET and potential ET. The station is located at a nearly flat wetlands site (27 degrees 41 minutes 43 seconds North / 080 degrees 42 minutes 41 seconds West) within the Blue Cypress Marsh Conservation Area, Indian River County, Florida. The dominant plant cover at the study site is sawgrass (Cladium jamaicense), with secondary amounts of other wetland plant species. Sawgrass height generally varies from 1.8 to 2.4 meters. The canopy can be temporarily removed through fire, followed by rapid re-growth. The soils at the site are peats. The water-table generally is above land surface but can be greater than a meter below land surface during droughts. Actual ET measurements derived using the eddy-covariance method are available for January 1, 2000 to September 1, 2005; and December 11, 2009 to October 20, 2014. The contribution of the present Data Release is dissemination of a dataset of actual ET estimates for a period prior to the first period of actual ET measurements (June 1, 1995 to December 31, 1999) and for the time interval between the two periods of actual ET measurement (September 2, 2005 to December 10, 2009). Estimates of actual ET during periods of missing actual ET measurements were obtained using regression-determined, monthly vegetation coefficient multipliers applied to potential ET data. The source of potential ET data was an existing Statewide database developed through an assimilation of satellite- and field-based meterological data. A seamless time series of measured and estimated actual ET for the period June 1, 1999 to December 10, 2014 is

  6. Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe

    NASA Astrophysics Data System (ADS)

    Webber, Heidi; Gaiser, Thomas; Oomen, Roelof; Teixeira, Edmar; Zhao, Gang; Wallach, Daniel; Zimmermann, Andrea; Ewert, Frank

    2016-07-01

    While crop models are widely used to assess the change in crop productivity with climate change, their skill in assessing irrigation water demand or the risk of crop failure in large area impact assessments is relatively unknown. The objective of this study is to investigate which aspects of modeling crop water use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance and root growth) contributes most to the variability in estimates of maize crop water use and the risk of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe. The SIMPLACE crop modeling framework was used to couple the LINTUL5 crop model in factorial combinations of 2-3 different approaches for simulating the 5 aspects of crop water use, resulting in 51 modeling approaches. Using experiments in France and New Zeland, analysis of total sensitivity revealed that ET0 explained the most variability in both irrigated maize water use and rainfed grain yield levels, with soil evaporation also imporatant in the French experiment. In the European impact study, net irrigation requirement differed by 36% between the Penman and Hargreaves ET0 methods in the baseline period. Average EU grain yields were similar between models, but differences approached 1-2 tonnes in parts of France and Southern Europe. EU wide esimates of crop failure in the historical period ranged between 5.4 years for Priestley-Taylor to every 7.9 years for the Penman ET0 methods. While the uncertainty in absolute values between models was significant, estimates of relative changes were similar between models, confirming the utility of crop models in assessing climate change impacts. If ET0 estimates in crop models can be improved, through the use of appropriate methods, uncertainty in irrigation water demand as well as in yield estimates under drought can be reduced.

  7. On groundwater fluctuations, evapotranspiration, and understory removal in riparian corridors

    NASA Astrophysics Data System (ADS)

    Martinet, Maceo C.; Vivoni, Enrique R.; Cleverly, James R.; Thibault, James R.; Schuetz, Jennifer F.; Dahm, Clifford N.

    2009-05-01

    This study utilizes 7 years of continuously monitored groundwater-level data from four sites along the Río Grande riparian corridor in central New Mexico to calculate evapotranspiration from groundwater and assess impacts of understory vegetation removal during a restoration project. Diurnal groundwater fluctuation measurements were used to compare the well-known White method for estimating evapotranspiration from groundwater (ETg) to colocated measurements of total riparian evapotranspiration (ET) measured using the eddy covariance method. On average, the two methods were linearly correlated and had similar variability, but groundwater hydrograph estimates of ETg tended to be larger than tower ET estimates. Average ETg estimates for two wells at one site ranged from 91.45% to 164.77% of measured tower ET estimates, but were also shown to range from 57.35% to 254.34% at another site. Comparisons between the methods improved with deeper water tables, reduced groundwater and river connectivity, and where soil profiles were dominated by coarse-sized particles. Using a range of texture-based estimates of specific yield (Sy) with water table position improves the field application of the White method. River-induced fluctuations in groundwater increased the variability of ETg measurements. Removal of understory vegetation at one site resulted in a small but significant reduction in diel groundwater fluctuation amplitude of 19-21%. Caution is required when understory vegetation removal is used as a means to decrease overall riparian ET. Diel groundwater fluctuation amplitudes can be useful in gauging the hydrological effects of vegetation removal. Riparian groundwater hydrographs are critical to investigating the hydrologic connectivity between river and shallow groundwater, the temporal patterns of vegetative consumption, and monitoring changes to the vegetation community.

  8. Determination of crop coefficients (Kc) for irrigation management of crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weighing lysimeters are used to measure crop water use during the growing season. By relating the water use of a specific crop to a well-watered reference crop such as grass, crop coefficients (Kc) can be developed to assist in predicting crop needs using meteorological data available from weather ...

  9. Spatiotemporal Variability in Potential Evapotranspiration across an Urban Monitoring Network

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; Long, M. R.; Fipps, G.; Swanson, C.; Traore, S.

    2015-12-01

    Evapotranspiration in urban and peri-urban environments is difficult to measure and predict. Barriers to accurate assessment include: the wide range of microclimates caused by urban canyons, heat islands, and park cooling; limited instrument fetch; and the patchwork of native soils, engineered soils, and hardscape. These issues combine to make an accurate assessment of the urban water balance difficult, as evapotranspiration calculations require accurate meteorological data. This study examines nearly three years of data collected by a network of 18 weather stations in Dallas, Texas, designed to measure potential evapotranspiration (ETo) in support of the WaterMyYard conservation program (http://WaterMyYard.org). Variability amongst stations peaked during the summer irrigation months, with a maximum standard deviation of 0.3 mm/hr and 4 mm/d. However, we found a significant degree of information overlap in the network. Most stations had a high correlation (>0.75) with at least one other station in the network, and many had a high correlation with at least 10 others. Correlation strength between station ETo measurements did not necessarily decrease with Euclidean distance, as expected, but was more closely related to differences in station elevation and longitude. Stations that had low correlations with others in the network typically had siting and fetch issues. ETo showed a strong temporal persistence; average station autocorrelation was 0.79 at a 1-hour lag and 0.70 at a 24-hour lag. To supplement the larger-scale network data, we deployed a mobile, vehicle-mounted weather station to quantify deviations present in the atmospheric drivers of evapotranspiration: temperature, humidity, wind, and solar radiation. Data were collected at mid-day during the irrigation season. We found differences in mobile and station ETo predictions up to 0.2 mm/hr, primarily driven by wind speed variations. These results suggest that ETo variation at the neighborhood to municipality

  10. A comparison of canopy evapotranspiration between perennial rhizomatous grasses and Zea mays

    NASA Astrophysics Data System (ADS)

    Hickman, G.; Bernacchi, C.; Dohleman, F.

    2008-12-01

    Perennial rhizomatous C4 grasses are currently considered one of the most promising vegetation types to accommodate a cellulosic feedstock based liquid fuel economy. The current focus on using these vegetation types as a source of renewable fuel has sparked numerous concerns associated with environmental impacts. Of particular interest is the impact that altering the composition of vegetation at the landscape scale would have on local and regional hydrological cycles. We hypothesize that evapotranspiration, ET, will be higher for perennial grasses relative to maize as a result higher leaf area, higher above-ground biomass and prolonged growing seasons. To test this hypothesis, a technique in which ET is estimated as the residual in the energy balance equation from measurements of net radiation and sensible and latent heat fluxes was employed. Measurements were made during the 2007 growing season for three replicate plots of the perennial rhizomatous grasses Miscanthus giganteus and Panicum virgatum, as well as for Zea mays planted at the University of Illinois South Farms. When averaged across the entire growing season, ET for M. giganteus was double relative to Z. mays, and 130% of P. virgatum ET. When compared over the periods in which all three species experienced mature and closed canopies (from day of year 200 to 250), M. giganteus still showed higher rates of ET compared with Z. mays, however, the increase was only ~15%. We conclude that ET associated with perennial alternative energy crops are higher relative to annual row crop; with most ET disparity, particularly for P. virgatum, being driven by phenology, quicker canopy closure and a prolonged growing season. Physiological rates of ET were highest for M. giganteus, followed by Z. mays, followed P. virgatum. Differences in phenology were more important than those of physiology for ET overshadowing effects from increased biomass associated with M. giganteus and/or a physiological difference between these

  11. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures

    NASA Astrophysics Data System (ADS)

    Colaizzi, Paul D.; Kustas, William P.; Anderson, Martha C.; Agam, Nurit; Tolk, Judy A.; Evett, Steven R.; Howell, Terry A.; Gowda, Prasanna H.; O'Shaughnessy, Susan A.

    2012-12-01

    The two source energy balance model (TSEB) can estimate evaporation (E), transpiration (T), and evapotranspiration (ET) of vegetated surfaces, which has important applications in water resources management for irrigated crops. The TSEB requires soil (TS) and canopy (TC) surface temperatures to solve the energy budgets of these layers separately. Operationally, usually only composite surface temperature (TR) measurements are available at a single view angle. For surfaces with nonrandom spatial distribution of vegetation such as row crops, TR often includes both soil and vegetation, which may have vastly different temperatures. Therefore, TS and TC must be derived from a single TR measurement using simple linear mixing, where an initial estimate of TC is calculated, and the temperature - resistance network is solved iteratively until energy balance closure is reached. Two versions of the TSEB were evaluated, where a single TR measurement was used (TSEB-TR) and separate measurements of TS and TC were used (TSEB-TC-TS). All surface temperatures (TS, TC, and TR) were measured by stationary infrared thermometers that viewed an irrigated cotton (Gossypium hirsutum L.) crop. The TSEB-TR version used a Penman-Monteith approximation for TC, rather than the Priestley-Taylor-based formulation used in the original TSEB version, because this has been found to result in more accurate partitioning of E and T under conditions of strong advection. Calculations of E, T, and ET by both model versions were compared with measurements using microlysimeters, sap flow gauges, and large monolythic weighing lysimeters, respectively. The TSEB-TR version resulted in similar overall agreement with the TSEB-TC-TS version for calculated and measured E (RMSE = 0.7 mm d-1) and better overall agreement for T (RMSE = 0.9 vs. 1.9 mm d-1), and ET (RMSE = 0.6 vs. 1.1 mm d-1). The TSEB-TC-TS version calculated daily ET up to 1.6 mm d-1 (15%) less early in the season and up to 2.0 mm d-1 (44%) greater

  12. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  13. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    USGS Publications Warehouse

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  14. [An operational remote sensing algorithm of land surface evapotranspiration based on NOAA PAL dataset].

    PubMed

    Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang

    2009-10-01

    Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images.

  15. Waves and Crops

    ERIC Educational Resources Information Center

    Bennett, J.

    1973-01-01

    Discusses wave patterns on the surfaces of ripening wheat and barley crops when the wind is moderately strong. Examines the structure of the turbulence over such natural surfaces and conditions under which the crop may be damaged by the wind. (JR)

  16. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  17. Crop Sequence Economics in Dynamic Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till production systems allow more intensified and diversified production in the northern Great Plains; however, this has increased the need for information on improving economic returns through crop sequence selection. Field research was conducted 6 km southwest of Mandan ND to determine the inf...

  18. Global sensitivity of high-resolution estimates of crop water footprint

    NASA Astrophysics Data System (ADS)

    Tuninetti, Marta; Tamea, Stefania; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2015-10-01

    Most of the human appropriation of freshwater resources is for agriculture. Water availability is a major constraint to mankind's ability to produce food. The notion of virtual water content (VWC), also known as crop water footprint, provides an effective tool to investigate the linkage between food and water resources as a function of climate, soil, and agricultural practices. The spatial variability in the virtual water content of crops is here explored, disentangling its dependency on climate and crop yields and assessing the sensitivity of VWC estimates to parameter variability and uncertainty. Here we calculate the virtual water content of four staple crops (i.e., wheat, rice, maize, and soybean) for the entire world developing a high-resolution (5 × 5 arc min) model, and we evaluate the VWC sensitivity to input parameters. We find that food production almost entirely depends on green water (>90%), but, when applied, irrigation makes crop production more water efficient, thus requiring less water. The spatial variability of the VWC is mostly controlled by the spatial patterns of crop yields with an average correlation coefficient of 0.83. The results of the sensitivity analysis show that wheat is most sensitive to the length of the growing period, rice to reference evapotranspiration, maize and soybean to the crop planting date. The VWC sensitivity varies not only among crops, but also across the harvested areas of the world, even at the subnational scale.

  19. Effect of elevation resolution on evapotranspiration simulations using MODFLOW.

    PubMed

    Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J

    2012-01-01

    Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth.

  20. Evapotranspiration and turbulent transport in an irrigated desert orchard

    NASA Astrophysics Data System (ADS)

    Stoughton, Thomas E.; Miller, David R.; Huddleston, Ellis W.; Ross, James B.

    2002-10-01

    Micrometeorological measurements were recorded in an irrigated pecan orchard for 2 weeks in the summer of 1996 near Las Cruces, NM. A vertical array of five sonic anemometers recorded three-dimensional wind and temperature data within and above the orchard. The measured energy budget closure error was only 3.2% of net radiation, indicating freedom from local edge advection. The effects of regional (oasis) advection and unsteady winds on evapotranspiration (ET) were considered by comparing the observed latent heat flux values to estimates of ET using the Penman-Monteith and Advection-Aridity approaches. Penman-Monteith underestimated observed ET values by 82%. The Advection-Aridity modifications of potential evapotranspiration (PET) underestimated ET by 11%. Profiles of turbulence statistics demonstrated vertical heterogeneity of turbulence within the canopy. Directly above the canopy, momentum flux profiles showed little divergence. However, at a level of two times the tree heights, sensible heat flux profiles did show divergence, confirming the presence of "oasis" advection resulting from warm, dry air moving above the internal boundary layer. Upward convection from the hot soil surface between the trees diluted the oasis condition to the point where a weak upward sensible heat flux was observed during the midday periods when the soil was not shaded. Convection ratios, and exuberance ratios, generated from quadrant analyses of the heat and momentum flux events, showed that turbulent motions moved freely up and down within this canopy with little attenuation due to the open spaces between the trees.

  1. Variability of Precipitation and Evapotranspiration across an Andean Paramo

    NASA Astrophysics Data System (ADS)

    Jaimes, J. C.; Riveros-Iregui, D.; Avery, W. A.; Gaviria, S.; Peña-Quemba, C.; Herran, G.

    2012-12-01

    Paramos are alpine grasslands that occur mostly in the Andes Mountains of South America. Typically soils in the paramo have a volcanic origin, which leads to high permeability and high water yield and makes the paramo a reliable drinking water supply for many highland cities. Because hydrological measurements in these humid systems are rare, current understanding of the hydrologic behavior of paramos relies on modeling studies with little validation against ground observations. We present measurements of evapotranspiration (ET) and precipitation (P) across Chingaza Paramo, near Bogotá, Colombia. This paramo supplies water for ~80% of Bogotá's population (a total of 8 million people). Meteorological variables such us air temperature, relative humidity, wind speed, precipitation, and solar radiation were monitored using five weather stations located at various elevations from 3000m to 3600m. Our results show that ET varies from 500 to 700 mm y-1 as a function of elevation, whereas precipitation commonly exceeds ET, ranging between 1500 and 1800 mm y-1. These spatial differences between P and ET make water yield highly variable across this mountainous environment. Our results demonstrate that while paramos play an important role in the hydrologic cycle of tropical environments, understanding their hydrologic behavior requires characterization and monitoring of the pronounced spatial gradients of precipitation and evapotranspiration.

  2. Remote Sensing of Evapotranspiration and Carbon Uptake at Harvard Forest

    NASA Technical Reports Server (NTRS)

    Min, Qilong; Lin, Bing

    2005-01-01

    A land surface vegetation index, defined as the difference of microwave land surface emissivity at 19 and 37 GHz, was calculated for a heavily forested area in north central Massachusetts. The microwave emissivity difference vegetation index (EDVI) was estimated from satellite SSM/I measurements at the defined wavelengths and used to estimate land surface turbulent fluxes. Narrowband visible and infrared measurements and broadband solar radiation observations were used in the EDVI retrievals and turbulent flux estimations. The EDVI values represent physical properties of crown vegetation such as vegetation water content of crown canopies. The collocated land surface turbulent and radiative fluxes were empirically linked together by the EDVI values. The EDVI values are statistically sensitive to evapotranspiration fractions (EF) with a correlation coefficient (R) greater than 0.79 under all-sky conditions. For clear skies, EDVI estimates exhibit a stronger relationship with EF than normalized difference vegetation index (NDVI). Furthermore, the products of EDVI and input energy (solar and photosynthetically-active radiation) are statistically significantly correlated to evapotranspiration (R=0.95) and CO2 uptake flux (R=0.74), respectively.

  3. Projected Changes in Evapotranspiration Rates over Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Costa, Alexandre; Guimarães, Sullyandro; Vasconcelos, Francisco, Jr.; Sales, Domingo; da Silva, Emerson

    2015-04-01

    Climate simulations were performed using a regional model (Regional Atmospheric Modeling System, RAMS 6.0) driven by data from one of the CMIP5 models (Hadley Centre Global Environmental Model, version 2 - Earth System, HadGEM2-ES) over two CORDEX domains (South America and Central America) for the heavy-emission scenario (RCP8.5). Potential evapotranspiraion data from the RCM and from the CMIP5 global models were analyzed over Northeast Brazil, a semiarid region with a short rainy season (usually February to May in its northern portion due to the seasonal shift of the Intertropical Convergence Zone) and over which droughts are frequent. Significant changes in the potential evapotranspiration were found, with most models showing a increasing trend along the 21st century, which are expected to alter the surface water budget, increasing the current water deficit (precipitation is currently much smaller than potential evapotranspiration). Based on the projections from the majority of the models, we expect important impacts over local agriculture and water resources over Northeast Brazil.

  4. Noah-MP-CROP: an integrated atmosphere-crop-soil modeling system for regional agro-climatic assessments.

    NASA Astrophysics Data System (ADS)

    Liu, X.; Barlage, M. J.; Chen, F.; Niyogi, D. S.; Zhou, G.

    2014-12-01

    Cropland plays an important role in land-atmosphere interactions. Integrating advanced regional-scale crop-growth modeling capabilities into a land surface model (LSM) is not only crucial for assessing potential impacts of climate change and climate variability on crop yields, but also can help to improve the representation of crop-atmosphere interactions in the Weather Research and Forecasting (WRF) Model. Therefore, the objectives of developing Noah-MP-CROP are: 1) provide high-spatial and high-temporal resolution regional agro-climatic related products; 2) enhance the simulations of cropland surface-fluxes in the WRF model for numerical weather prediction and regional climate modeling. Noah-MP is a new-generation of LSM that uses multiple parameterizations for land hydrology and energy processes. In this study, we couple species-specific crop phenology and carbon allocation schemes with Noah-MP-based complex simulations of canopy photosynthesis and soil moisture. The Noah-MP-CROP can be executed at field-scales or grid-scales of different spatial resolution and it also can be applied at multiple temporal scales. The major agriculture-related outputs include: grain mass, leaf mass, leaf area index, crop yield, growth primary production, growing degree days, soil temperature, soil moisture, and evapotranspiration. The model also allows us to conduct different assessments by using either historical, real-time, short-term forecast or future projected weather input data. In this study, we focus on evaluating the Noah-MP-CROP for the regional agro-climatic assessments in the U.S. Corn Belt. Model simulations are conducted at both field-scale (Bondville, IL and Mead, NE) and grid-scale (4km-resolution). At both field sites, model outputs of crop yield (grain mass), leaf area index and surface fluxes show strong agreement with observations. Also incorporating crop-growth models in Noah-MP improves the simulated latent heat and sensible heat fluxes during the crop

  5. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  6. Evaluation of different interpolation schemes for precipitation and reference evapotranspiration and the impact on simulated large-scale water balance in Slovenia

    NASA Astrophysics Data System (ADS)

    He, Qianwen; Molkenthin, Frank; Wendland, Frank; Herrmann, Frank

    2016-04-01

    Precipitation and reference evapotranspiration (ET0) are two main climate input components for hydrological models, which are often recorded or calculated based on measuring stations. Interpolation schemes are implemented to regionalize data from measuring stations for distributed hydrological models. This study had been conducted for 5 months, with the aim of: (1) evaluating three interpolation schemes for precipitation and reference evapotranspiration (ET0); (2) assessing the impact of the interpolation schemes on actual evapotranspiration and total runoff simulated by a distributed large-scale water balance model - mGROWA. The study case was the Republic of Slovenia, including a high variability in topography and climatic conditions, with daily meteorological data measured in 20 stations for a period of 44 years. ET0 were computed by both FAO Penman-Monteith equation and Hargreaves equation. The former equation is recommended as the standard equation, while the ET0 calculated by the latter one for Slovenia had a certain deviation (+150 mm/a) from it. Ordinary Kriging, Regression Kriging and Linear Regression were selected to regionalize precipitation and ET0. Reliability of the three interpolation schemes had been assessed based on the residual obtained from cross-validation. Monthly regionalized precipitation and ET0 were subsequently used as climate input for mGROWA model simulation. Evaluation of the interpolation schemes showed that the application of Regression Kriging and Linear Regression led to an acceptable interpolation result for reference evapotranspiration, especially in case the FAO Penman-Monteith equation was used. On the other hand, Regression Kriging also provided a more convincing interpolated result for precipitation. Meanwhile, mGROWA simulation results were affected by climate input data sets generated by applying difference interpolation schemes. Therefore, it is essential to select an appropriate interpolation scheme, in order to generate

  7. Evapotranspiration from areas of native vegetation in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Woodham, W.M.; Lopez, M.A.

    1993-01-01

    A study was made to examine the suitability of three different micrometeorological methods for estimating evapotranspiration from selected areas of native vegetation in west-central Florida and to estimate annual evapotranspiration from those areas. Evapotranspiration was estimated using the energy- balance Bowen ratio and eddy correlation methods. Potential evapotranspiration was computed using the Penman equation. The energy-balance Bowen ratio method was used to estimate diurnal evapotrans- piration at unforested sites and yielded reasonable results; however, measurements indicated that the magnitudes of air temperature and vapor-pressure gradients above the forested sites were too small to obtain reliable evapotranspiration measurements with the energy balance Bowen ratio system. Analysis of the surface energy-balance indicated that sensible and latent heat fluxes computed using standard eddy correlation computation methods did not adequately account for available energy. Eddy correlation data were combined with the equation for the surface energy balance to yield two additional estimates of evapotranspiration. Daily potential evapotranspiration and evapotranspira- tion estimated using the energy-balance Bowen ratio method were not correlated at a unforested, dry prairie site, but they were correlated at a marsh site. Estimates of annual evapotranspiration for sites within the four vegetation types, which were based on energy-balance Bowen ratio and eddy correlation measurements, were 1,010 millimeters for dry prairie sites, 990 millimeters for marsh sites, 1,060 millimeters for pine flatwood sites, and 970 millimeters for a cypress swamp site.

  8. Diurnal patterns of canopy photosynthesis, evapotranspiration and water use efficiency in chickpea (Cicer arietinum L.) under field conditions.

    PubMed

    Singh, D P; Peters, D B; Singh, P; Singh, M

    1987-01-01

    Diurnal changes in net photosynthetic rate (PN), evapotranspiration rate (ET) and water use efficiency (WUE=PN/ET) of field grown chickpea (Cicer arietinum) L. cv. H-355 were studied from the vegetative phase through maturirty at Haryana Agricultural University Farm, Hissar, India. The maximum photosynthetic rate (PN max) increased from the initial vegetative phase to pod formation and declined at a rapid rate from pod filling to maturity. The response of PN to photosynthetic photon flux density (PPFD) (400-700 nm) was temperature-dependent during the day, i.e. on cool days the PN rates were lower for certain quanta of PPFD during the first half than during the second half of day, and vice versa on warm days. ET was affected both by crop cover and evaporative demand up to flowering, but thereafter it was independent of crop cover and followed the course of evaporative demand. ET was related to air temperature during the day while PN was related to PPFD. There was a lag of two to three hours between PNmax (around noon) and ETmax (around 2 p.m.). WUE increased from the vegetative stage through flowering but decreased thereafter to maturity.

  9. Evapotranspiration from successional vegetation in a deforested area of the Lake Wales Ridge, Florida

    USGS Publications Warehouse

    Sumner, D.M.

    1996-01-01

    The suitability of three evapotranspiration models (Penman-Monteith, Penman, and a modified Priestley-Taylor) was evaluated at a site ofsuccessional vegetation in a deforested area of theLake Wales Ridge, Florida. Eddy correlation mea surements of evapotranspiration made during 22approximately 1-day periods at a temporal resolu tion of 20 minutes from September 1993 to August 1994 were used to calibrate the evapotranspiration models. Three variants of the eddy correlation method that ascribe measurement error to three different sources were considered in the analysis. The Penman-Monteith and modified Priestley- Taylor models were successful in approximating measured 20-minute values of evapotranspiration (r2  0.918). The most suc cessful approaches were the modified Priestley-Taylor model (r2 = 0.972) and a nontraditional and simplified form of the Penman-Monteith model (r2 = 0.967). The Penman approach was unsuccessful as a predictor of evapotranspiration. The evapotranspiration models were used to estimate evapotranspiration between measure ments. When evapotranspiration values measured with a Bowen ratio variant of the eddy correlation method were used for model calibration, estimated daily evapotranspiration rates varied sea sonally ranging from 0.2 millimeters per day (0.008 inch per day) in late December 1993 to5 millimeter per day (0.2 inch per day) in mid-July 1994. Annual evapotranspiration (September 15, 1993, to September 15, 1994) was estimated to be about 680 millimeters (27 inches).Evapotranspiration models calibrated to the stan dard eddy correlation method and to an energy- balance residual variant provided estimates ofannual evapotranspiration that were about 10 per cent lower and higher, respectively. These dataindicate that of the 1,320 millimeters (52 inches)of precipitation during the 1-year period, about 570 to 700 millimeters (22 to 28 inches) recharged the surficial aquifer. Evapotranspiration at this study site probably defines the lower