Science.gov

Sample records for actual crop evapotranspiration

  1. Determination of actual crop evapotranspiration (ETc) and dual crop coefficients (Kc) for cotton, wheat and maize in Fergana Valley: integration of the FAO-56 approach and BUDGET

    NASA Astrophysics Data System (ADS)

    Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina

    2014-05-01

    Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.

  2. Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Katerji, Nader; Rana, Gianfranco; Ferrara, Rossana Monica

    2016-05-01

    The study compares two formulas for calculating the daily evapotranspiration ET0 for a reference crop. The first formula was proposed by Allen et al. (AL), while the second one was proposed by Katerji and Perrier with the addition of the carbon dioxide (CO2) effect on evapotranspiration (KP). The study analyses the impact of the calculation by the two formulas on the irrigation requirement (IR). Both formulas are based on the Penman-Monteith equation but adopt different approaches for parameterising the canopy resistance r c . In the AL formula, r c is assumed constant and not sensitive to climate change, whereas in the KP formula, r c is first parameterised as a function of climatic variables, then ET0 is corrected for the air CO2 concentration. The two formulas were compared in two periods. The first period involves data from two sites in the Mediterranean region within a measured climate change period (1981-2006) when all the input climatic variables were measured. The second period (2070-2100) involves data from a future climate change period at one site when the input climatic variables were forecasted for two future climate scenarios (A2 and B2). The annual cumulated values of ET0 calculated by the AL formula are systematically lower than those determined by the KP formula. The differences between the ET0 estimation with the AL and KP formulas have a strong impact on the determination of the IR for the reference crop. In fact, for the two periods, the annual values of IR when ET0 is calculated by the AL formula are systematically lower than those calculated by the KP formula. For the actual measured climate change period, this reduction varied from 26 to 28 %, while for the future climate change period, it varied based on the scenario from 16 % (A2) to 20 % (B2).

  3. A critical analysis of three remote sensing-based actual evapotranspiration assessment methods over sparse crops agricultural areas

    NASA Astrophysics Data System (ADS)

    Cammalleri, Carmelo; Ciraolo, Giuseppe; La Loggia, Goffredo; Minacapilli, Mario

    2010-10-01

    During last two decades the increasing availability of remotely sensed acquisitions in the thermal infrared part of the spectrum has encouraged hydrologist community to develop models and methodologies based on these kind of data. The aim of this paper is to compare three methods developed to assess the actual evapotranspiration spatial distribution by means of remote sensing data. The comparison was focused on the differences between the "single" (SEBAL) and "two" source (TSEB) surface energy balance approaches and the S-SEBI semi-empirical method. The first assumes a semiempirical internal calibration for the sensible heat flux assessment; the second uses a physically based approach in order to assess separately the soil and vegetation fluxes. Finally, the last one is based on the correlation between albedo and surface temperature for evaporative fraction estimations. The models were applied using 7 high resolution images, collected by an airborne platform between June and October 2008, approximately every 3 weeks. The acquired data include multi-spectral images (red, green and near infrared) and thermal infrared images for surface temperature estimation. The study area, located in the south-west cost of Sicily, Italy), is characterised by the presence of typical Mediterranean cultivations: olive, vineyard and citrus. Due to irrigation supplies and rainfall events, the water availability for the crops varies in time and this allowed to perform the comparison in a wide range of the modelled variables. Additionally, the availability of high spatial resolution images allowed the testing of the models performances at field scale despite the high vegetation fragmentation of the study area. The comparison of models performance highlights a good agreements of model estimations, analyzed by means of MAD (Mean Absolute Differences) and MAPD (Mean Absolute Percent Differences) indices, especially in terms of study area averaged fluxes. The analysis in correspondence of

  4. Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS Enhanced Vegetation Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in these districts. We developed a general algorithm for estimating actual evapotranspiration (ETa) based on the ...

  5. Comment on 'Shang S. 2012. Calculating actual crop evapotranspiration under soil water stress conditions with appropriate numerical methods and time step. Hydrological Processes 26: 3338-3343. DOI: 10.1002/hyp.8405'

    NASA Technical Reports Server (NTRS)

    Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James

    2014-01-01

    A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.

  6. Simulation of crop evapotranspiration and crop coefficient in weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  7. Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration

    USGS Publications Warehouse

    Barclay, Shoemaker W.; Sumner, D.M.

    2006-01-01

    Corrections can be used to estimate actual wetland evapotranspiration (AET) from potential evapotranspiration (PET) as a means to define the hydrology of wetland areas. Many alternate parameterizations for correction coefficients for three PET equations are presented, covering a wide range of possible data-availability scenarios. At nine sites in the wetland Everglades of south Florida, USA, the relatively complex PET Penman equation was corrected to daily total AET with smaller standard errors than the PET simple and Priestley-Taylor equations. The simpler equations, however, required less data (and thus less funding for instrumentation), with the possibility of being corrected to AET with slightly larger, comparable, or even smaller standard errors. Air temperature generally corrected PET simple most effectively to wetland AET, while wetland stage and humidity generally corrected PET Priestley-Taylor and Penman most effectively to wetland AET. Stage was identified for PET Priestley-Taylor and Penman as the data type with the most correction ability at sites that are dry part of each year or dry part of some years. Finally, although surface water generally was readily available at each monitoring site, AET was not occurring at potential rates, as conceptually expected under well-watered conditions. Apparently, factors other than water availability, such as atmospheric and stomata resistances to vapor transport, also were limiting the PET rate. ?? 2006, The Society of Wetland Scientists.

  8. Establishing seasonal chronicles of actual evapotranspiration under sloping conditions

    NASA Astrophysics Data System (ADS)

    Zitouna Chebbi, R.; Prévot, L.; Jacob, F.; Voltz, M.

    2012-04-01

    Estimation of daily and seasonal actual evapotranspiration (ETa) is strongly needed for hydrological and agricultural purposes. Although the eddy covariance method is well suited for such estimation of land surface fluxes, this method suffers from limitations when establishing long time series. Missing data are often encountered, resulting from bad meteorological conditions, rejection by quality control tests, power failures… Numerous gap fill techniques have been proposed in the literature but there applicability in sloping conditions is not well known. In order to estimate ETa over long periods (agricultural cycle) on crops cultivated in sloping areas, a pluri-annual experiment was conducted in the Kamech catchment, located in North-eastern Tunisia. This Mediterranean site is characterized by a large heterogeneity in topography, soils and crops. Land surface fluxes were measured using eddy covariance systems. Measurements were collected on the two opposite sides of the Kamech V-shaped catchment, within small fields having slopes steeper than 5%. During three different years, four crops were studied: durum wheat, oat, fava bean and pasture. The topography of the catchment and the wind regime induced upslope and downslope flows over the study fields. In this study, we showed that gap filling of the turbulent fluxes (sensible and latent heat) can be obtained through linear regressions against net radiation. To account for the effect of the topography, linear regressions were calibrated by distinguishing upslope and downslope flows. This significantly improved the quality of the reconstructed data over 30 minute intervals. This gap filling technique also improved the energy balance closure at the daily time scale. As a result, seasonal chronicles of daily ETa throughout the growth cycle of the study crops in the Kamech watershed were established, thus providing useful information about the water use of annual crops in a semi-arid rainfed and hilly area.

  9. Remote sensing estimates of actual evapotranspiration in an irrigation district

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimates of the spatial distribution of actual evapotranspiration (AET) are useful in hydrology, but can be difficult to obtain. Remote sensing provides a potential capability for routinely monitoring AET by combining remotely sensed surface temperature and vegetation cover observations w...

  10. Educational Software for Illustration of Drainage, Evapotranspiration, and Crop Yield.

    ERIC Educational Resources Information Center

    Khan, A. H.; And Others

    1996-01-01

    Describes a study that developed a software package for illustrating drainage, evapotranspiration, and crop yield as influenced by water conditions. The software is a tool for depicting water's influence on crop production in western Kansas. (DDR)

  11. Modelling bulk surface resistance from MODIS time series data to estimate actual regional evapotranspiration

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Minacapilli, Mario; Provenzano, Giuseppe

    2015-04-01

    Estimation of actual evapotraspiration by means of Penman-Monteith (P-M) equation requires the knowledge of the so-called 'bulk surface resistance', rc,act, representing the vapour flow resistance through the transpiring crop and evaporating soil surface. The accurate parameterization of rc,act still represents an unexploited topic, especially in the case of heterogeneous land surface. In agro-hydrological applications, the P-M equation commonly used to evaluate reference evapotranspiration (ET0) of a well-watered 'standardized crop' (grass or alfalfa), generally assumes for the bulk surface resistance a value of 70 s m-1. Moreover, specific crop coefficients have to be used to estimate maximum and/or actual evapotranspiration based on ET0. In this paper, a simple procedure for the indirect estimation of rc,act as function of a vegetation index computed from remote acquisition of Land Surface Temperature (LST), is proposed. An application was carried out in an irrigation district located near Castelvetrano, in South-West of Sicily, mainly cultivated with olive groves, in which actual evapotranspiration fluxes were measured during two years (2010-2011) by an Eddy Covariance flux tower (EC). Evapotranspiration measurements allowed evaluating rc,actbased on the numerical inversion of the P-M equation. In the same study area, a large time series of MODIS LST data, characterized by a spatial resolution of 1x1 km and a time step of 8-days, was also acquired for the period from 2000 to 2014. A simple Vegetation Index Temperatures (VTI), with values ranging from 0 to 1, was computed using normalized LST values. Evapotranspiration fluxes measured in 2010 were used to calibrate the relationship between rc,act and VTI, whereas data from 2011 were used for its validation. The preliminary results evidenced that, for the considered crop, an almost constant value of rc,act, corresponding to about 250 s m-1, can be considered typical of periods in which the crop is well

  12. Crop coefficient development and application to an evapotranspiration network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop coefficients derived from properly designed, operated, and maintained lysimeters provide the most accurate values throughout the growing season and are critical in the computation of hourly and daily,regionally based, crop evapotranspiration (ET) values. Multi-stage crop coefficients can be der...

  13. EVAPOTRANSPIRATION RATES AND CROP COEFFICIENTS FOR LOWBUSH BLUEBERRY (Vaccinium angustifolium)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lowbush blueberry (Vaccinium angustifolium) yield is strongly influenced by water availability; however, growers need more specific irrigation recommendations in order to optimize water use efficiency. Weighing lysimeters were used to determine actual evapotranspiration (ET) rates of lowbush bluebe...

  14. A new DSSAT-CSM evapotranspiration module: ASCE standardized reference evapotranspiration with dual crop coefficient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the DSSAT-CSM series of crop models have been used for decades, new focus has been put on improving evapotranspiration (ET) simulation in crop models. A new ET module was added to the model code to calculate potential ET, which combines the ASCE Standardized Reference ET (both grass and alf...

  15. Reference Crop Evapotranspiration obtained from the geostationary satellite MSG (METEOSAT).

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Trigo, I. F.; Lorite, I. J.; Cruz-Blanco, M.; Gavilán, P.

    2012-04-01

    Among others, the scope of the Land Surface Analysis Satellite Applications Facility (LSA SAF) is to increase benefit from the EUMETSAT geostationary Satellites MSG data related to land, land-atmosphere interactions and biophysical applications. This is achieved by developing techniques, products and algorithms that will allow an effective use of MSG data, if needed, combined with data from numerical weather prediction models (e.g., ECMWF). Although directly designed to improve the observation of meteorological systems, the spectral characteristics, time resolution and area coverage offered by MSG allow for their use in a broad spectrum of other applications, for instance in agro- and hydrometeorology. This study concerns a method to determine how much water is needed for irrigation. Note that this is complementary to the actual evapotranspiration LSA SAF product. The objective of this study is to present a novel semi-empirical method to determine the Reference Crop Evapotranspiration (ET0) from the down-welling shortwave radiation and air temperature obtained through LSF SAF. ET0 is defined in the FAO Irrigation and Drainage report 56 (FAO56) and it is used to determine water requirements of agricultural crops in irrigated regions. It is evaluated with a special version of the Penman-Monteith equation (PM_FAO56) using data of a weather station installed over non-stressed grass. Such stations are expensive and very labor consuming. We developed our method for semi-arid regions where appropriate weather stations needed for FAO56 ET0 are missing. This concerns huge areas in the world. High-quality FAO-grass station near Cordoba, Spain were used, where, besides all input for PM-FAO56, independent lysimeter data are collected. In addition, it will be shown that significant errors in ET0 can occur if meteorological gathered over dry terrain will be used as input of PM-FAO56. For this purpose data sets obtained in different semi-arid regions will be analyzed.

  16. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  17. Drought impacts and resilience on crops via evapotranspiration estimations

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Asadollahi Dolatabad, Saeid

    2015-04-01

    Currently, the global needs for food and water is at a critical level. It has been estimated that 12.5 % of the global population suffers from malnutrition and 768 million people still do not have access to clean drinking water. This need is increasing because of population growth but also by climate change. Changes in precipitation patterns will result either in flooding or droughts. Consequently availability, usability and affordability of water is becoming challenge and efficient use of water and water management is becoming more important, particularly during severe drought events. Drought monitoring for agricultural purposes is very hard. While meteorological drought can accurately be monitored using precipitation only, estimating agricultural drought is more difficult. This is because agricultural drought is dependent on the meteorological drought, the impacts on the vegetation, and the resilience of the crops. As such not only precipitation estimates are required but also evapotranspiration at plant/plot scale. Evapotranspiration (ET) describes the amount of water evaporated from soil and vegetation. As 65% of precipitation is lost by ET, drought severity is highly linked with this variable. In drought research, the precise quantification of ET and its spatio-temporal variability is therefore essential. In this view, remote sensing based models to estimate ET, such as SEBAL and SEBS, are of high value. However the resolution of current evapotranspiration products are not good enough for monitoring the impact of the droughts on the specific crops. This limitation originates because plot scales are in general smaller than the resolution of the available satellite ET products. As such remote sensing estimates of evapotranspiration are always a combination of different land surface types and cannot be used for plant health and drought resilience studies. The goal of this research is therefore to enable adequate resolutions of daily evapotranspiration estimates

  18. A field test of recursive calculation of crop evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous methods to calculate the evapotranspiration (ET) rate from field crops have been proposed, but few have convincingly demonstrated to be usefully accurate. The direct measurement of ET requires weighable lysimeters. However, the use of a surface energy balance to calculate ET requires a corr...

  19. EVAPOTRANSPIRATION OVER A CAMELINA CROP AT MARICOPA, ARIZONA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) over an oilseed crop, Camelina sativa, was evaluated for an experimental plot in Maricopa, Arizona between December 2006 and April 2007. Camelina (cv. Robinson) was grown in a 1.1 ha field in a randomized design containing 32 plots replicated for 4 levels of water depletion: ...

  20. On the downscaling of actual evapotranspiration maps based on combination of MODIS and landsat-based actual evapotranspiration estimates

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Verdin, James P.

    2014-01-01

     Downscaling is one of the important ways of utilizing the combined benefits of the high temporal resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) images and fine spatial resolution of Landsat images. We have evaluated the output regression with intercept method and developed the Linear with Zero Intercept (LinZI) method for downscaling MODIS-based monthly actual evapotranspiration (AET) maps to the Landsat-scale monthly AET maps for the Colorado River Basin for 2010. We used the 8-day MODIS land surface temperature product (MOD11A2) and 328 cloud-free Landsat images for computing AET maps and downscaling. The regression with intercept method does have limitations in downscaling if the slope and intercept are computed over a large area. A good agreement was obtained between downscaled monthly AET using the LinZI method and the eddy covariance measurements from seven flux sites within the Colorado River Basin. The mean bias ranged from −16 mm (underestimation) to 22 mm (overestimation) per month, and the coefficient of determination varied from 0.52 to 0.88. Some discrepancies between measured and downscaled monthly AET at two flux sites were found to be due to the prevailing flux footprint. A reasonable comparison was also obtained between downscaled monthly AET using LinZI method and the gridded FLUXNET dataset. The downscaled monthly AET nicely captured the temporal variation in sampled land cover classes. The proposed LinZI method can be used at finer temporal resolution (such as 8 days) with further evaluation. The proposed downscaling method will be very useful in advancing the application of remotely sensed images in water resources planning and management.

  1. Comparison of Crop Evapotranspiration Estimates from Reference Evapotranspiration Equations and a Variational Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Bateni, S. M.; Michalik, T.; Multsch, S.; Breuer, L.

    2015-12-01

    Crop evapotranspiration (ETc) is a key component of water resources management in irrigation of farmlands as it determines the crop water consumption. Numerous methods have been used to estimate ETc for scheduling irrigation and evaluating the soil water balance. However, there is a significant difference in ETc estimates from various models, which leads to a large uncertainty in the soil water balance, crop water consumption, and irrigation scheduling. In this study, several commonly-used ETc equations (Turc, Priestley-Taylor, Hargreaves-Samani, Penman-Monteith) are compared with the variational data assimilation approach (VDA) of Bateni et al. (2013). The ETc equations initially estimate the reference evapotranspiration (ETo), which is the evapotranspiration from a healthy and actively-transpiring grass field with ample water in the soil. Thereafter, ETc is calculated by multiplying ETo by the crop coefficient (Kc), which accounts for the crop type and soil water stress. To properly apply the Kc to non-standard conditions, a daily water balance estimation for the root zone is required, which is done by two soil water budget models (Cropwat, Hydrus-1D) that compute incoming and outgoing water flows in the soil profile. In contrast to these methods that estimate ETc in two steps, the VDA approach directly predicts ETc by assimilating sequences of land surface temperature into the heat diffusion equation and thus it is expected to provide more accurate ETc estimates. All approaches are applied over three cropland sites namely, Bondville, Fermi, and Mead in the summer of 2006 and 2007. These sites are part of the AmeriFlux network and provide a wide variety of hydrological conditions. The results show that the variational data assimilation approach performs better compared to other equations.

  2. Estimating seasonal crop ET using calendar and heat unit based crop coefficients in the Texas High Plains Evapotranspiration Network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Texas High Plains Evapotranspiration (TXHPET) network utilizes a heat unit-based approach (growing degree day concept) in the timing of various crop growth stages along with crop coefficients for computation of crop water use with the newly standardized ASCE/EWRI reference evapotranspiration (E...

  3. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2014-12-01

    This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and potential crop evapotranspiration according to FAO (ETc-FAO) for the Rollesbroich site in the Eifel (Western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (<8%) on monthly basis between both methods are found in summer. ETa was close to ETc-FAO, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter, ETc-FAO, and EC were mainly related to differences in grass height caused by harvesting management and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for high precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data show significant differences compared to the precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16% higher precipitation amount than the tipping bucket. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket in part related to the detection of rime and dew, which contributes 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total difference. Larger differences are also recorded for snow and sleet situations. During snowfall, the

  4. Automated calculation of the evapotranspiration and crop coefficients for a large number of peatland sites using diurnal groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Maurer, Eike; Bechtold, Michel; Dettmann, Ullrich; Tiemeyer, Bärbel

    2014-05-01

    values were determined from precipitation events and the related water level increase. Parameter values in this routine were systematically varied to obtain the lowest standard error of Sy. Errors were obtained by bootstrapping. The resulting Sy-values correspond well to peatland type and soil properties. After rule-based filtering of the time series, in a third step, the actual evapotranspiration ETa is calculated by the original White-method and a modification by Hays (2003). Daily values of ETa and ET0 are used to derive crop coefficients, which are then aggregated to monthly and annual Kc-values. Applying the method to a large number of sites resulted in plausible crop coefficients which compare well to previously published values of peatland evapotranspiration, as far as information on similar vegetation is available.

  5. Testing two temporal upscaling schemes for the estimation of the time variability of the actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.

    2015-10-01

    Temporal availability of grapes actual evapotranspiration is an emerging issue since vineyards farms are more and more converted from rainfed to irrigated agricultural systems. The manuscript aims to verify the accuracy of the actual evapotranspiration retrieval coupling a single source energy balance approach and two different temporal upscaling schemes. The first scheme tests the temporal upscaling of the main input variables, namely the NDVI, albedo and LST; the second scheme tests the temporal upscaling of the energy balance output, the actual evapotranspiration. The temporal upscaling schemes were implemented on: i) airborne remote sensing data acquired monthly during a whole irrigation season over a Sicilian vineyard; ii) low resolution MODIS products released daily or weekly; iii) meteorological data acquired by standard gauge stations. Daily MODIS LST products (MOD11A1) were disaggregated using the DisTrad model, 8-days black and white sky albedo products (MCD43A) allowed modeling the total albedo, and 8-days NDVI products (MOD13Q1) were modeled using the Fisher approach. Results were validated both in time and space. The temporal validation was carried out using the actual evapotranspiration measured in situ using data collected by a flux tower through the eddy covariance technique. The spatial validation involved airborne images acquired at different times from June to September 2008. Results aim to test whether the upscaling of the energy balance input or output data performed better.

  6. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in more humid environments. We measured ET (ETEC) using Eddy Covariance (EC) towers a...

  7. Using lysimeters to test the Penman Monteith actual evapotranspiration.

    NASA Astrophysics Data System (ADS)

    Ben Asher, Jiftah; Volinski, Roman; Zilberman, Arkadi; Bar Yosef, Beni; Silber, Avner

    2015-04-01

    Differences in actual transpiration (ETa) of banana plants were quantified in a lysimeter experiment. ETA was computed using instantaneous data from two weighing lysimeters and compared to PM (Penman-Monteith) model for ETa. Two critical problems were faced in this test. A) Estimating canopy and aerodynamic resistances ("rc" and "ra" respectively ) and B) converting the lysimeter changes in water volume ( LYv cm3 ) to ETa length units ( cm ). The two unknowns " rc" and "ra" were obtained from continuous measurements of the differences between canopy and air temperature (Tc - Ta). This difference was established by means of the infrared thermometry which was followed by numerical and analytical calculation of ETa using the modification suggested by R. Jackson to the PM model. The conversion of lysimeter volumetric units (LYv) to ETa length units was derived from the slope of cumulative LYv/ETa. This relationship was significantly linear (r2=0.97and 0.98.). Its slope was interpreted as "evaporating leaf area" which accounted for 1.8E4 cm2 in lysimeter 1 and 2.3E4 cm2.in lysimeter 2 . The comparison between LYv and PM model was acceptable even under very low ETa. The average of two lysimeters was 1.1mm/day (1.4 mm/day , LYv 1 and 0.8 LYv 2) while ETa calculated on the basis of PM model was 1.2 mm/day. It was concluded that although lysimeters are most accurate systems to measure ETa one of its disadvantages ( beside the high cost) is the volumetric output that in many cases should be supported by a one dimensional energy balance system. The PM model was found to be a reliable complementary tool to convert lysimeters volumetric output into conventional length units of ETa.

  8. Spatiotemporal Variations of Reference Crop Evapotranspiration in Northern Xinjiang, China

    PubMed Central

    Lv, Xin; Lin, Hai-rong

    2014-01-01

    To set up a reasonable crop irrigation system in the context of global climate change in Northern Xinjiang, China, reference crop evapotranspiration (ET0) was analyzed by means of spatiotemporal variations. The ET0 values from 1962 to 2010 were calculated by Penman-Monteith formula, based on meteorological data of 22 meteorological observation stations in the study area. The spatiotemporal variations of ET0 were analyzed by Mann-Kendall test, Morlet wavelet analysis, and ArcGIS spatial analysis. The results showed that regional average ET0 had a decreasing trend and there was an abrupt change around 1983. The trend of regional average ET0 had a primary period about 28 years, in which there were five alternating stages (high-low-high-low-high). From the standpoint of spatial scale, ET0 gradually increased from the northeast and southwest toward the middle; the southeast and west had slightly greater variation, with significant regional differences. From April to October, the ET0 distribution significantly influenced the distribution characteristic of annual ET0. Among them sunshine hours and wind speed were two of principal climate factors affecting ET0. PMID:25254259

  9. Merging raster meteorological data with low resolution satellite images for improved estimation of actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Cherif, Ines; Alexandridis, Thomas; Chambel Leitao, Pedro; Jauch, Eduardo; Stavridou, Domna; Iordanidis, Charalampos; Silleos, Nikolaos; Misopolinos, Nikolaos; Neves, Ramiro; Safara Araujo, Antonio

    2013-04-01

    Actual evapotranspiration (ETa) can be estimated using Energy Balance models and remotely sensed data. In particular, satellite images acquired in visible, near and thermal infrared parts of the spectrum have been used with the Surface Energy Balance Algorithm for Land (SEBAL) to estimate actual evapotranspiration. This algorithm is solving the Energy Balance Equation using data from a meteorological station present in the vicinity, and assumes the meteorological conditions homogeneous over the study area. Most often, data from a representative weather station are used. This assumption may lead to substantial errors in areas with high spatial variability in weather parameters. In this paper, the ITA-MyWater algorithms (Integrated Thermodynamic Algorithms for MyWater project), an adaptation of SEBAL was merged together with spatially distributed meteorological data to increase the accuracy of ETa estimations at regional scale using MODIS satellite images. The major changes introduced to migrate from point to raster are that (i) air temperature and relative humidity maps are used for the estimation of the Energy Balance terms, including instantaneous net radiation and soil heat flux and (ii) the variability of wind speed is taken into account to generate maps of the aerodynamic resistance, sensible heat flux and difference between soil and air temperature at the boundary conditions (at dry and wet pixels). The approach was applied in the river basin of Tamega in Portugal, where actual evapotranspiration was estimated for several MODIS 8-day periods from spring to winter of the same year. The raster meteorological maps were produced by the MM5 weather forecast model. Daily reference evapotranspiration was calculated with MOHID LAND model. Using a temporal integration technique and the daily reference evapotranspiration maps, the cumulative evapotranspiration over the MODIS 8-day period was estimated and compared to the global evapotranspiration MODIS product (MOD16A2

  10. Simultaneous estimation of precipitation and actual evapotranspiration by lysimeters - Comparison with tipping bucket and eddy covariance

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H. J.; Gebler, S.; Puetz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2014-12-01

    Although precipitation and actual evapotranspiration measurements have a long tradition, accurate estimates of precipitation (P) and actual evapotranspiration (ETa) remain a challenge. Our study compares actual evapotranspiration estimates acquired with the Eddy-Covariance (EC) method and ETa measurements by a set of six redundant weighable lysimeters for a managed grassland site at Rollesbroich (Eifel, Western Germany). The comparison of ETa measured by EC (accounting for energy balance deficit correction) and by lysimeters is hardly reported in literature and gains more insight into the performance of both techniques. The evaluation of ETa estimates by both methods for the year 2012 shows a good agreement with a total difference of ca. 4 %, which is mainly related to variations in grass height at the lysimeters and in the EC footprint. We also used the lysimeter records to estimate precipitation amounts in combination with the AWAT filter algorithm. The estimated precipitation volumes of the lysimeter measurements show significant differences compared to the precipitation data of the Hellman type tipping bucket rain gauge at the test site. For the entire year 2012 the lysimeter measurements exhibit a 16 % higher precipitation amount than the tipping bucket data. With help of an on-site video surveillance system the precipitation data of the lysimeters were investigated in more detail. It was found that the precipitation surplus in lysimeter records in part is related to the detection of rime and dew, which contributes 17 % to the yearly difference between both methods. We concluded that weighable lysimeter data can be used to simultaneously estimate precipitation and actual evapotranspiration in a reliable fashion. Furthermore, lysimeter allow a plausible detection of rime and dew in contrast to standard rain gauges.

  11. Evapotranspiration dynamics of biofuel crops with different land use histories

    NASA Astrophysics Data System (ADS)

    Abraha, M. G.; Chen, J.; Chu, H.; Hamilton, S. K.; Zenone, T.; John, R.; Su, Y.; Robertson, G. P.

    2013-12-01

    Land use is increasingly being converted for biofuel crop production, both globally and nationally. Previous studies have focused on the dynamics and changes in carbon fluxes following land conversion, but few have studied water fluxes. We employ eddy covariance methods to examine the long-term dynamics (2009-2012) of evapotranspiration (ET) in response to land use conversion and management practices in cellulosic and grain biofuel crops in the Midwest US. Four of the converted fields had been managed under the USDA Conservation Reserve Program (CRP) for 22 years and three had been in conventional agriculture (AGR) soybean/corn rotation prior to conversion. In 2009, all sites were planted to no-till soybean except one CRP grassland that was left undisturbed as a reference site, and in 2010 three of the former CRP sites and the three former AGR sites were planted to corn, switchgrass and prairie. Daily ET responded to seasonal changes in weather variables, soil water content, canopy structure and management practices. During the initial land conversion period following herbicide application, a larger dip in ET was observed at the CRP sites than at the AGR sites because the CRP sites had a larger aboveground biomass that stopped contributing to ET after herbicide application. ET of the AGR fields (482 mm yr-1) was much greater than that of the CRP fields (399 mm yr-1) in the first two years after conversion. This was attributed to the mulch effect of preexisting grass thatch and the aboveground biomass that was killed by herbicide application on the CRP fields. However, as the crop residue and killed aboveground biomass were depleted through decomposition in the following two years, the ET of the CRP fields (467 mm yr-1) became slightly higher than that of the AGR fields (456 mm yr-1). ET at the reference grassland was significantly greater than at both the converted CRP and AGR fields in all four years. This study showed how the response of ET to land use conversion

  12. Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology - Part 2: The event driven phenology model

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2011-05-01

    Evapotranspiration (ET) flux constitutes a major component of both the water and energy balances at the land surface. Among the many factors that control evapotranspiration, phenology poses a major source of uncertainty in attempts to predict ET. Contemporary approaches to ET modeling and monitoring frequently summarize the complexity of the seasonal development of vegetation cover into static phenological trajectories (or climatologies) that lack sensitivity to changing environmental conditions. The Event Driven Phenology Model (EDPM) offers an alternative, interactive approach to representing phenology. This study presents the results of an experiment designed to illustrate the differences in ET arising from various techniques used to mimic phenology in models of land surface processes. The experiment compares and contrasts two realizations of static phenologies derived from long-term satellite observations of the Normalized Difference Vegetation Index (NDVI) against canopy trajectories produced by the interactive EDPM trained on flux tower observations. The assessment was carried out through validation of predicted ET against records collected by flux tower instruments. The VegET model (Senay, 2008) was used as a framework to estimate daily actual evapotranspiration and supplied with seasonal canopy trajectories produced by the EDPM and traditional techniques. The interactive approach presented the following advantages over phenology modeled with static climatologies: (a) lower prediction bias in crops; (b) smaller root mean square error in daily ET - 0.5 mm per day on average; (c) stable level of errors throughout the season similar among different land cover types and locations; and (d) better estimation of season duration and total seasonal ET.

  13. Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology - Part 2: The event driven phenology model

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2012-01-01

    Evapotranspiration (ET) flux constitutes a major component of both the water and energy balances at the land surface. Among the many factors that control evapotranspiration, phenology poses a major source of uncertainty in attempts to predict ET. Contemporary approaches to ET modeling and monitoring frequently summarize the complexity of the seasonal development of vegetation cover into static phenological trajectories (or climatologies) that lack sensitivity to changing environmental conditions. The Event Driven Phenology Model (EDPM) offers an alternative, interactive approach to representing phenology. This study presents the results of an experiment designed to illustrate the differences in ET arising from various techniques used to mimic phenology in models of land surface processes. The experiment compares and contrasts two realizations of static phenologies derived from long-term satellite observations of the Normalized Difference Vegetation Index (NDVI) against canopy trajectories produced by the interactive EDPM trained on flux tower observations. The assessment was carried out through validation of predicted ET against records collected by flux tower instruments. The VegET model (Senay, 2008) was used as a framework to estimate daily actual evapotranspiration and supplied with seasonal canopy trajectories produced by the EDPM and traditional techniques. The interactive approach presented the following advantages over phenology modeled with static climatologies: (a) lower prediction bias in crops; (b) smaller root mean square error in daily ET - 0.5 mm per day on average; (c) stable level of errors throughout the season similar among different land cover types and locations; and (d) better estimation of season duration and total seasonal ET.

  14. Actual Evapotranspiration using a two source energy balance model and gridded reference ET0

    NASA Astrophysics Data System (ADS)

    Geli, H. M.; Neale, C. M.; Verdin, J. P.; Senay, G. B.; Hobbins, M.

    2013-12-01

    In an ongoing effort to provide estimates of actual evapotranspiration (ETa) at different spatial scales from local to regional this study investigate the use of a newly under development gridded reference ET0 product. This study is conducted within the context of a USGS project aimed to provide a standardized framework for the remote sensing of ETa that can be followed in the implementation of the WaterSMART program. Most thermal remote sensing based models provide instantaneous estimates of latent heat flux which then can be extrapolated to daily ETa. In many cases extrapolation is achieved using the ETref method. At field scales reference ET0, daily and instantaneous values, are obtained from point-based/local scale measurements. When considering regional scale this local scale estimates of ET0 might not be appropriate to account for the corresponding spatial variability. This analysis provides a comparison of ETa estimates based on a two source energy balance approach using point-based and gridded reference ET0 data. The two source energy balance SEBS (Norman et al. 1995) is used to calculate surface energy fluxes and ETa. Data from Palo Verdi Irrigation District (PVID), CA is used during the analysis. The area which extends over 500 km2 covered mostly with alfalfa, cotton and vegetable crops. Ground-based hydrometeorological data including reference ET0 are provided from a nearby weather stations. CONUS wide gridded reference ET0 which being developed by NOAA using NLDAS-phase 2 weather forcing are used. Both estimates of ETa_point and ETa_NLDAS based on ground and gridded ET0 data, respectively, are compared to ground-based measurement. Preliminary results of the comparison will be presented to highlight on the potential use of such gridded ET0 data in the use of remote sensing of ETa at regional scales application. References Norman, J. M., W. P. Kustas, & K. S. Humes, 1995: A two-source approach for estimating soil and vegetation energy fluxes in

  15. Spatio-temporal Characteristics of Actual Evapotranspiration Trends in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.; Funk, C. C.; Michaelsen, J.

    2010-12-01

    Actual evapotranspiration (AET) is an important moisture flux linking the Earth’s surface to the atmospheric hydrologic cycle. Global warming is expected to intensify this cycle, leading to moisture deficits over the sub-tropics, which will influence climate at higher latitudes. The spatio-temporal characterization of tropical AET is critical to understanding regional and global climate. To date, many studies on the temporal characteristics of AET across sub-Saharan Africa have employed vegetation-based indices derived from satellite imagery. Although these studies implicitly reflect trends in AET, they quantify the magnitude of change. In this study, we used the latest developments in remote sensing and land-surface modeling to characterize the magnitude and timing of AET in sub-Saharan Africa. We considered several models were evaluated from 1981-2000 using monthly discharge and precipitation from ten sub-basins representative of hydrology in sub-Saharan Africa. Discharge data was provided by the Global Runoff Data Centre, while precipitation data was comprised of ECMWF, NCAR, NOAA/GDAS, and CMAP reanalysis fields synthesized in the Global Land Data Assimilation System (GLDAS). The AET models included the Community Land Model, Variable Infiltration Capacity (VIC) model, Noah, and two hybrids that we developed driven by a dynamic vegetation component defined in Fisher et al. 2008. The dynamic canopy components in our hybrid models were driven by the LTDR AVHRR daily corrected reflectance data over the evaluation period. The evaluation revealed that VIC was superior to the other models in capturing the magnitude and variability of runoff in the sub-basins. A trend analysis was then performed on VIC AET from 1979-2009 using standard parametric and non-parametric techniques. Linear and median trend analysis was performed on seasonal and annual AET totals to measure the magnitude of change. The analysis revealed several alarming patterns, including large and

  16. Potential of remote sensing derived soil moisture for the estimation of actual evapotranspiration in cotton ecosystems of Middle Asia

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher; Dech, Stefan

    2013-04-01

    Actual evapotranspiration (ETact) is an essential component of the water balance and its determination for larger areas is difficult on regional scale. Here, remote sensing provides a powerful tool to estimate regional actual evapotranspiration to support regional water management. Particularly, in irrigation agriculture of Middle Asia decision makers have to handle limited water availability and to improve the efficiency of their regional water management systems. The growing interest in quantifying regional actual ET for water resource and irrigation management led to the development of numerous methods to estimate ET from remote sensing data. The study is primarily concerned with the irrigation farming of cotton ecosystems in Middle Asia, in particular with the situation within Khorezm Oblast in Uzbekistan. Regional problems of Khorezm Oblast are e.g. high groundwater levels, soil salinity, and non-sustainable use of land and water. The water for irrigation is taken from the Amu Darya River and then canalled to the agricultural fields. The available water in Khorezm depends on the water demand in the upstream regions. Because of this variation and the historical annual shortage of available irrigation water a sustainable use of water is highly important for the regional water management in Khorezm. Cotton is the major crop in Khorezm region. About 46% of the agricultural area was covered with cotton in 2010 and 2011, among the other main crops winter wheat (30%) and rice (5%). The objective of this study was to investigate the potential of satellite derived surface soil moisture for the optimization of the estimated ETact. Actual evapotranspiration in this study is indirectly derived by solving the surface energy balance equation using the surface energy balance algorithm for land (SEBAL). Due to its high temporal resolution MODIS (1km) data is used to provide the input information to solve the equation. The results were compared with measurements of an eddy

  17. Actual evapotranspiration estimation by means of airborne and satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Ciraolo, Giuseppe; D'Urso, Guido; Minacapilli, Mario

    2006-09-01

    During the last the two decades, the scientific community developed detailed mathematical models for simulating land surface energy fluxes and crop evapotranspiration rates by means of a energy balance approach. These models can be applied in large areas and with a spatial distributed approach using surface brightness temperature and some ancillary data retrieved from satellite/airborne remote sensed imagery. In this paper a district scale application in combination with multispectral (LandaSat 7 TM data) and hyperspectral airborne MIVIS data has been carried out to test the potentialities of two different energy balance models to estimate evapotranspiration fluxes from a set of typical Mediterranean crops (wine, olive, citrus). The impact of different spatial and radiometric resolutions of MIVIS (3m x 3m) and LandSat (60m x 60m) on models-derived fluxes has been investigated to understand the roles and the main conceptual differences between the two models which respectively use a "single-layer" (SEBAL) and a "two-layer" (TS) schematisation.

  18. Effects of precipitation and potential evaporation on actual evapotranspiration over the Laohahe basin, northern China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Ren, L.; Yang, X.; Ma, M.; Yuan, F.; Jiang, S.

    2015-06-01

    Problems associated with water scarcity are facing new challenges under the climate change. As one of main consumptions in water cycle on the Earth, evapotranspiration plays a crucial role in regional water budget. In this paper, we employ two methods, i.e. hydrological sensitivity analysis and hydrological model simulation, to investigate the effect of climate variability and climatic change on actual evapotranspiration (Ea) within the Laohahe basin during 1964-2009. Calibrations of the two methods are firstly conducted during the baseline period (1964-1979), then with the two benchmarked models, simulations in climatic change duration (1980-2009) are further conducted and quantitative assessments on climatic change-induced variation of Ea are analysed accordingly. The results show that affected by combined impacts of decreased precipitation and potential evapotranspiration, variation of annual Ea in most sub-catchments suffer a downward trend during 1980-2009, with a higher descending rate in northern catchments. At decadal scale, Ea shows significant oscillation in accordance with precipitation patterns. Northern catchments generally suffer more decadal Ea changes than southern catchments, implying the impact of climatic change on decadal Ea is more intense in semi-arid areas than that in semi-humid regions. For whole changed durations, a general 0-20 mm reduction of Ea is found in most parts of studied region. For this water-limited region, Ea shows higher sensitivity to precipitation than to potential evaporation, which confirms the significant role of precipitation in controlling Ea patterns, whereas the impact of potential evapotranspiration variation would be negligible.

  19. Evapotranspiration and crop coefficients for irrigated sunflower in the southern high plains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower (Helianthus annuus L.) is diverse crop grown for oil or confectionary uses in the Southern High Plains often under irrigation. Crop water use (evapotranspiration or ET) was measured in 2009 and 2011 in two 4-ha fields using two precision 9 m**2 weighing lysimeters containing 2.3-m deep mo...

  20. Improved Evapotranspiration Simulation In the CERES-Maize Crop Model Under Limited Irrigation Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increasingly considered alternative to full irrigation practices is limited irrigation, where the crop is intentionally stressed during specific growth stages in an effort to maximize yield per unit water consumed, or evapotranspiration (ET). Recent studies have shown that CERES-Maize crop model...

  1. [Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the Hun-Taizi River Basin, Northeast China].

    PubMed

    Feng, Xue; Cai, Yan-Cong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Yuan, Feng-Hui

    2014-10-01

    Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis. The results showed that the empirical parameter value of 0.75 of AA model was suitable for the Hun-Taizi River Basin with an error of 11.4%. In the Hun-Taizi River Basin, the average annual actual evapotranspiration was 347.4 mm, which had a slightly upward trend with a rate of 1.58 mm · (10 a(-1)), but did not change significantly. It also indicated that the annual actual evapotranspiration presented a single-peaked pattern and its peak value occurred in July; the evapotranspiration in summer was higher than in spring and autumn, and it was the smallest in winter. The annual average evapotranspiration showed a decreasing trend from the northwest to the southeast in the Hun-Taizi River Basin from 1970 to 2006 with minor differences. Net radiation was largely responsible for the change of actual evapotranspiration in the Hun-Taizi River Basin. PMID:25796880

  2. Evaluating the performance of reference evapotranspiration equations with scintillometer measurements under Mediterranean climate and effects on olive grove actual evapotranspiration estimated with FAO-56 water balance model

    NASA Astrophysics Data System (ADS)

    Minacapilli, Mario; Cammalleri, Carmelo; Ciraolo, Giuseppe; Provenzano, Giuseppe; Rallo, Giovanni

    2014-05-01

    The concept of reference evapotranspiration (ETo) is widely used to support water resource management in agriculture and for irrigation scheduling, especially under arid and semi-arid conditions. The Penman-Monteith standardized formulations, as suggested by ASCE and FAO-56 papers, are generally applied for accurate estimations of ETo, at hourly and daily scale. When detailed meteorological information are not available, several alternative and simplified equations, using a limited number of variables, have been proposed (Blaney-Criddle, Hargreaves-Samani, Turc, Makkinen and Pristley-Taylor). In this paper, scintillometer measurements collected for six month in 2005, on an experimental plot under "reference" conditions, were used to validate different ETo equations at hourly and daily scale. Experimental plot is located in a typical agricultural Mediterranean environment (Sicily, Italy), where olive groves is the dominant crop. As proved by other researches, the comparison confirmed the best agreement between estimated and measured fluxes corresponds to FAO-56 Penman-Monteith standardized equation, that was characterized by both the lowest average error and the minimum bias. However, the analysis also evidenced a quite good performance of Pristley-Taylor equation, that can be considered as a valid alternative to the more sophisticated Penman-Monteith method. The different ETo series, obtained by the considered simplified equations, were then used as input in the FAO-56 water balance model, in order to evaluate, for olive groves, the errors on estimated actual evapotranspiration ET. To this aim soil and crop model input parameters were settled by considering previous experimental researches already used to calibrate and validate the FAO-56 water balance model on olive groves, for the same study area. Also in this case, assuming as the true values of ET those obtained using the water balance coupled with Penman-Monteith ETo input values, the Priestley-Taylor equation

  3. Estimation of actual evapotranspiration through model coupling and data assimilation with remotely sensed land surface properties

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G.

    2009-05-01

    We report on preliminary results from the coupling of two models and satellite observations to track evapotranspiration (ET) dynamics in Northern Great Plains of the USA. The approach takes advantage of high- quality microclimate and irradiance/radiance measurements in a data assimilation scheme to estimate actual ET through a stepwise simulation of foliage dynamics, corrected by remotely sensed land surface properties. We used a recently developed VegET model that uses water balance principles and phenological constraints (Senay 2008) coupled with an event driven phenology model (EDPM) to simulate canopy dynamics unfolding in response to changing environmental conditions and disturbance events. We used NDVI derived from MODIS Collection 5 Nadir BRDF Adjusted Reflectance (NBAR; MCD43B4V5) to amend the outputs of the EDPM using one-dimensional Kalman filtering to achieve a better representation of changing canopy conditions. The model was trained on level 1 flux tower data from cropland sites at Mead, Nebraska and refined using similar records from Bondville, Illinois. Results from the test runs demonstrated the ability of EDPM to drive the phenological constrains of VegET with reasonable accuracy (RMSE 0.03-0.10 at Nebraska sites). Filtered and unfiltered results from the coupled model were compared with actual evapotranspiration recorded on flux towers and with tower NDVI (Wittich and Kraft 2008). Depending on vegetation type and location, Pearson correlation coefficients between model estimates and observed values ranged between 0.8 and 0.9.

  4. Crop biomass and evapotranspiration estimation using SPOT and Formosat-2 Data

    NASA Astrophysics Data System (ADS)

    Veloso, Amanda; Demarez, Valérie; Ceschia, Eric; Claverie, Martin

    2013-04-01

    The use of crop models allows simulating plant development, growth and yield under different environmental and management conditions. When combined with high spatial and temporal resolution remote sensing data, these models provide new perspectives for crop monitoring at regional scale. We propose here an approach to estimate time courses of dry aboveground biomass, yield and evapotranspiration (ETR) for summer (maize, sunflower) and winter crops (wheat) by assimilating Green Area Index (GAI) data, obtained from satellite observations, into a simple crop model. Only high spatial resolution and gap-free satellite time series can provide enough information for efficient crop monitoring applications. The potential of remote sensing data is often limited by cloud cover and/or gaps in observation. Data from different sensor systems need then to be combined. For this work, we employed a unique set of Formosat-2 and SPOT images (164 images) and in-situ measurements, acquired from 2006 to 2010 in southwest France. Among the several land surface biophysical variables accessible from satellite observations, the GAI is the one that has a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Many methods have been developed to relate GAI to optical remote sensing signal. Here, seasonal dynamics of remotely sensed GAI were estimated by applying a method based on the inversion of a radiative transfer model using artificial neural networks. The modelling approach is based on the Simple Algorithm for Yield and Evapotranspiration estimate (SAFYE) model, which couples the FAO-56 model with an agro-meteorological model, based on Monteith's light-use efficiency theory. The SAFYE model is a daily time step crop model that simulates time series of GAI, dry aboveground biomass, grain yield and ETR. Crop and soil model parameters were determined using both in-situ measurements and values found in the literature. Phenological parameters were calibrated by the

  5. Evaluation of SEBS for estimation of actual evapotranspiration using ASTER satellite data for irrigation areas of Australia

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Hafeez, Mohsin; Ishikawa, Hirohiko; Ma, Yaoming

    2013-05-01

    Spatial knowledge of land surface evapotranspiration (ET) is of prime interest for environmental applications, such as optimizing irrigation water use, irrigation system performance, crop water deficit, drought mitigation strategies, and accurate initialization of climate prediction models especially in arid and semiarid catchments where water shortage is a critical problem. The recent drought in Australia and concerns about climate change have highlighted the need to manage water resources more sustainably especially in the Murrumbidgee catchment which utilizes bulk water for food production. This study deals with the application of a Surface Energy Balance System (SEBS) algorithm based on Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data and field observations has been proposed and tested for deriving ET over Coleambally Irrigation Area, located in the southwest of NSW, Australia. We have used 12 ASTER scenes covering the time period of 2002, 2003, 2004, 2005, 2006, and 2009 for estimating the actual ET over the study area. To validate the proposed methodology, the ground-measured ET was compared to the ASTER-derived actual ET values for the study area. The derived ET value over the study area is much closer to the field measurement. From the remote sensing results and observations, the root mean square error is 0.89 and the mean absolute percentage difference is 2.87 %, which demonstrate the reasonability of SEBS ET estimation for the study area.

  6. Estimation of Regional-Scale Actual Evapotranspiration in Okayama prefecture in Japan using Complementary Relationship

    NASA Astrophysics Data System (ADS)

    Moroizumi, T.; Yamamoto, M.; Miura, T.

    2008-12-01

    It is important to estimate accurately a water balance in watershed for proposing a reuse of water resources and a proper settlement of water utilization. Evapotranspiration (ET) is an important factor of water balance. Therefore, it is needed to estimate accurately the actual ET. The objective of this study is to estimate accurately monthly actual ET in Yoshii, Asahi, and Takahashi River watersheds in Okayama prefecture from 1999 to 2000. The monthly actual ET was calculated by a Morton and a modified Brutsaert and Stricker (B&S) method, using Automated Meteorological Data Acquisition Systems (AMeDAS) in the basin. The actual ET was estimated using land covers which were classified in 11 categories. The land covers includes the effects of albedo. The actual ET was related to the elevation at each AMeDAS station. Using this relationship, the actual ET at the 1 or 5 km grid-interval mesh in the basin was calculated, and finally, the distribution of actual ET was mapped. The monthly ET estimated by the modified B&S method were smaller than that by Morton method which showed a same tendency as the Penman potential ET (PET). The annual values of Morton"fs ET, modified B&S"fs ET, and PET were estimated as 796, 645, and 800 mm, respectively. The ET by the modified B&S was larger in hilly and mountainous areas than in settlement or city. In general, it was a reasonable result because city or settlement areas were covered with concrete and asphalt and the ET was controlled.

  7. Single and dual crop coefficients and crop evapotranspiration for wheat and maize in a semi-arid region

    NASA Astrophysics Data System (ADS)

    Shahrokhnia, M. H.; Sepaskhah, A. R.

    2013-11-01

    In this study, weighing lysimeters were used to investigate the daily crop coefficient and evapotranspiration of wheat and maize in the Fars province, Iran. The locally calibrated Food and Agriculture Organization (FAO) Penman-Monteith equation was used to calculate the reference crop evapotranspiration (ETo). Micro-lysimetry was used to measure soil evaporation ( E). Transpiration ( T) was estimated by the difference between crop evapotranspiration (ETc) and E. The single crop coefficient ( K c) was calculated by the ratio of ETc to ETo. Furthermore, the dual crop coefficient is composed of the soil evaporation coefficient ( K e) and the basal crop coefficients ( K cb) calculated from the ratio of E and T to ETo, respectively. The maximum measured evapotranspiration rate for wheat was 9.9 mm day-1 and for maize was 10 mm day-1. The total evaporation from the soil surface was about 30 % of the total wheat ETc and 29.8 % of total maize ETc. The single crop coefficient ( K c) values for the initial, mid-, and end-season growth stages of maize were 0.48, 1.40, and 0.31 and those of wheat were 0.77, 1.35, and 0.26, respectively. The measured K c values for the initial and mid-season stages were different from the FAO recommended values. Therefore, the FAO standard equation for K c-mid was calibrated locally for wheat and maize. The K cb values for the initial, mid-, and end-season growth stages were 0.23, 1.14, and 0.13 for wheat and 0.10, 1.07, and 0.06 for maize, respectively. Furthermore, the FAO procedure for single crop coefficient showed better predictions on a daily basis, although the dual crop coefficient method was more accurate on seasonal scale.

  8. Operational actual wetland evapotranspiration estimation for the Everglades using MODIS imagery

    NASA Astrophysics Data System (ADS)

    Melesse, Assefa; Cereon, Cristobal

    2014-05-01

    Wetlands are one of the most important ecosystems with varied functions and structures. Humans have drained wetlands and altered the structure and functions of wetlands for various uses. Wetland restoration efforts require assessment of the level of ecohydrological restoration for the intended functions. Among the various indicators of success in wetland restoration, achieving the desired water level (hydrology) is the most important, faster to achieve and easier to monitor than the establishment of the hydric soils and wetland vegetation. Monitoring wetland hydrology using remote sensing based evapotranspiration (ET) is a useful tool and approach since point measurements for understanding the temporal (before and after restoration) and spatial (impacted and restored) parts of the wetland are not effective for large areas. Evapotranspiration accounts over 80% of the water budget of the wetlands necessitating the need for spatiotemporal monitoring of ET flux. A study employing remotely sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and modeling tools was conducted for a weekly spatial estimation of Everglades ET. Weekly surface temperature data were generated from the MODIS thermal band and evaporative fraction was estimated using the simplified surface energy balance (SSEB) approach. Based on the Simple Method, potential ET (PET) was estimated. Actual weekly wetland ET was computed as the (product of the PET and evaporative fraction). The ET product will be useful information for environmental restoration and wetland hydrology managers. The on-going restoration and monitoring work in the Everglades will benefit from this product and assist in evaluating progress and success in the restoration.

  9. Impacts of phenology on estimation of actual evapotranspiration with VegET model

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2009-12-01

    The VegET model provides spatially explicit estimation of actual evapotranspiration (AET). Currently, it uses a climatology based on AVHRR NDVI image time series to modulate fluxes during growing seasons (Senay 2008). This step simplifies the model formulation, but it also introduces errors by ignoring the interannual variation in phenology. We report on a study to evaluate the effects of using an NDVI climatology in VegET rather than current season values. Using flux tower data from three sites across the US Corn Belt, we found that currently the model overestimates the duration of season. With the standard deviation of more than one week, the model results in an additional 50 to 70 mm of AET per season, which can account for about 10% of seasonal AET in drier western sites. The model showed only modest sensitivity to variation in growing season weather. This lack of sensitivity greatly decreased model accuracy during drought years: Pearson correlation coefficients between model estimates and observed values dropped from about 0.7 to 0.5, depending on vegetation type. We also evaluated an alternative approach to drive the canopy component of evapotranspiration, the Event Driven Phenology Model (EDPM). The parameterization of VegET with EDPM-simulated canopy dynamics improved the correlation by 0.1 or more and reduced the RMSE on daily AET estimates by 0.3 mm. By accounting for the progress of phenology during a particular growing season, the EDPM improves AET estimation over an NDVI climatology.

  10. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    PubMed Central

    Senay, Gabriel B.; Budde, Michael; Verdin, James P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  11. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    USGS Publications Warehouse

    Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  12. Controls over spatial and temporal variations in annual actual evapotranspiration in snow-free California watersheds

    NASA Astrophysics Data System (ADS)

    Clark, Allison Marie

    Actual evapotranspiration (Eta) is one of the largest components of the hydrologic budget and accounts for a majority of water lost from a watershed. It is primarily controlled by soil water availability, which is largely controlled by rainfall, and atmospheric demand (potential evapotranspiration). Consequently, Eta is sensitive to changes in meteorologic conditions. Understanding the relationship between Et a and controlling meteorologic variables across time and space is important for future predictions of Eta under a changing climate, especially in California where demand for surface and groundwater is high. A regression modeling approach was used to (1) determine the relative control of rainfall, rainfall intensity, and potential evapotranspiration (Etp) over annual and long-term mean annual Eta across watersheds in western California, and (2) quantify the sensitivity of watershed annual Eta to changes in these variables. Annual Eta data for 20 snow-free California watersheds was derived using the water balance method for hydrologic years 1982-2011. Independent variables examined in this study were annual rainfall, rainfall intensity, and potential evapotranspiration. These quantities were obtained or calculated from daily PRISM rainfall and temperature datasets. Results indicated that rainfall was the dominant control over variations in mean annual Eta across the study region (Adj. R2 0.935) and was the primary control over interannual variations in Et a for 15 out of 17 study watersheds. Rainfall intensity was a significant but weaker predictor of mean annual Eta (adj. R2 0.833) and was a significant predictor of annual variations in Eta for 12 out of 17 watersheds. A weak relationship between Etp and Eta was observed across the study region (adj. R2 = 0.660) and the relationship was found to be negative. Etp was a significant, though weak, predictor of annual Eta for 8 out of 17 watersheds. The amount of variance in annual Eta explained by rainfall

  13. Using eddy covariance and flux partitioning to assess basal, soil, and stress coefficients for crop evapotranspiration models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, indepe...

  14. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis

    NASA Astrophysics Data System (ADS)

    McMahon, T. A.; Peel, M. C.; Lowe, L.; Srikanthan, R.; McVicar, T. R.

    2013-04-01

    This guide to estimating daily and monthly actual, potential, reference crop and pan evaporation covers topics that are of interest to researchers, consulting hydrologists and practicing engineers. Topics include estimating actual evaporation from deep lakes and from farm dams and for catchment water balance studies, estimating potential evaporation as input to rainfall-runoff models, and reference crop evapotranspiration for small irrigation areas, and for irrigation within large irrigation districts. Inspiration for this guide arose in response to the authors' experiences in reviewing research papers and consulting reports where estimation of the actual evaporation component in catchment and water balance studies was often inadequately handled. Practical guides using consistent terminology that cover both theory and practice are not readily available. Here we provide such a guide, which is divided into three parts. The first part provides background theory and an outline of the conceptual models of potential evaporation of Penman, Penman-Monteith and Priestley-Taylor, as well as discussions of reference crop evapotranspiration and Class-A pan evaporation. The last two sub-sections in this first part include techniques to estimate actual evaporation from (i) open-surface water and (ii) landscapes and catchments (Morton and the advection-aridity models). The second part addresses topics confronting a practicing hydrologist, e.g. estimating actual evaporation for deep lakes, shallow lakes and farm dams, lakes covered with vegetation, catchments, irrigation areas and bare soil. The third part addresses six related issues: (i) automatic (hard wired) calculation of evaporation estimates in commercial weather stations, (ii) evaporation estimates without wind data, (iii) at-site meteorological data, (iv) dealing with evaporation in a climate change environment, (v) 24 h versus day-light hour estimation of meteorological variables, and (vi) uncertainty in evaporation

  15. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2016-06-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  16. Remote sensing of evapotranspiration over crops using combined airborne and ground-based observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing of evapotranspiration (ET) over crops could be valuable for managing scarce water resources, especially for irrigated lands. In the past decade remote sensing techniques have advanced to allow frequent estimation of ET at spatial scales useful for many farms. These techniques include ...

  17. Satellite-assisted monitoring of vegetable crop evapotranspiration in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reflective bands of Landsat-5 Thematic Mapper satellite imagery were used to facilitate the estimation of basal crop evapotranspiration (ETcb), or productive water use, in San Joaquin Valley during 2008. A ground-based digital camera measured green fractional cover (Fc) of 49 commercial fields plan...

  18. Vegetation-index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by r...

  19. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2015-05-01

    This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and evapotranspiration calculated with the full-form Penman-Monteith equation (ETPM) for the Rollesbroich site in the Eifel (western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in the literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (< 8%) on a monthly basis between both methods are found in summer. ETa was close to ETPM, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter and EC were mainly related to differences in grass height caused by harvest and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for the high-precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data differ significantly from precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16 % higher precipitation amount than the tipping bucket. After a correction of the tipping bucket measurements by the method of Richter (1995) this amount was reduced to 3%. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket, in part related to the detection of rime and dew, which contribute 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total

  20. Bowen ratio measurements above various vegetation covers and its comparison with actual evapotranspiration estimated by SoilClim model

    NASA Astrophysics Data System (ADS)

    Hlavinka, P.; Trnka, M.; Fischer, M.; Kucera, J.; Mozny, M.; Zalud, Z.

    2010-09-01

    The principle of Bowen ratio is one of the available techniques for measurements of actual evapotranspiration (ETa) as one of essential water balance fractions. The main aims of submitted study were: (i) to compare the water balance of selected crops, (ii) to compare outputs of SoilClim model with observed parameters (including ETa on Bowen ratio basis). The measurements were conducted at two experimental stations in the Czech Republic (Polkovice 49°23´ (N), 17°17´ (E), 205 m a.s.l.; Domanínek 49°32´ (N), 16°15´ (E), 544 m a.s.l.) during the years 2009 and 2010. Together with Bowen ratio the global solar radiation, radiation balance, soil heat flux, volumetric soil moisture and temperature within selected depths, precipitation and wind speed were measured. The measurements were conducted simultaneously above various covers within the same soil conditions: spring barley vs. winter wheat, spring barley vs. winter rape; grass vs. poplars; harvested field after tillage vs. harvested field after cereals without any tillage. The observed parameters from different covers were compared with SoilClim estimates. SoilClim model is modular software for water balance and soil temperature modelling and finally could be used for soil Hydric and Thermic regimes (according to USDA classification) identification. The core of SoilClim is based on modified FAO Penman-Monteith methodology. Submitted study proved the applicability of SoilClim model for ETa, soil moisture within two defined layers and soil temperature (in 0.5 m depth) estimates for various crops, covers, selected soil types and climatic conditions. Acknowledgement: We gratefully acknowledge the support of the Grant Agency of the Czech Republic (no. 521/09/P479) and the project NAZV QI91C054. The study was also supported by Research plan No. MSM6215648905 "Biological and technological aspects of sustainability of controlled ecosystems and their adaptability to climate change".

  1. Integrating MODIS and Landsat Data Using the Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration at Multiple Scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating actual evapotranspiration (ETa) in space and time is critical for developing useful basin water balance models and for monitoring vegetation water use and drought severity analysis. In this study, we combined MODIS and Landsat thermal data using a 'time-limited' stable fractional relation...

  2. Evapotranspiration and water use efficiency in maize-soybean crops in the US Midwest

    NASA Astrophysics Data System (ADS)

    Hussain, M. Z.; Hamilton, S. K.; Bhardwaj, A. K.; Basso, B.; Thelen, K.; Robertson, P.

    2015-12-01

    Evapotranspiration from maize and soybean crops is an important component of terrestrial water balance in the US Midwest. In this study we examine water use in continuous maize (corn) vs. maize-soybean rotations, with cover crops planted in some years. From 2010-14, we continuously measured growing season evapotranspiration (ET) based on daily drawdown of soil moisture content using TDR (time-domain reflectometry) probes installed throughout the root zone. Treatments included continuous maize (CM), continuous maize with cover crops (CMC) and maize-soybean rotation with cover crops (MSC), all grown without irrigation in a temperate humid climate (Michigan, USA). Cover crops were planted in the autumn after harvest of the main crop and harvested in spring prior to planting of the next main crop during 2012-2013 (2013) and 2013-2014 (2014). Four study years (2010, 2011, 2013 and 2014) had normal growing season rainfall (568, 555, 445, and 472 mm) while 2012 was an extreme drought season with a growing-season rainfall deficit of ~50% (210 mm below average). Growing season ET in CM, CMC and MSC during years of normal rainfall averaged 517, 433, and 443 mm, respectively, compared to 455, 374 and 304 mm in the 2012 drought year. Cover crop ET was inconsequential to the subsequent main crops due to abundant rainfall in the spring periods; soils held as much water as they could at the transition from cover crops to main crops. Grain yield in years of normal rainfall for CM, CMC and MSC averaged 12.6, 8.4 and 7.8 Mg ha-1, respectively, compared to 4.9, 4.0, and 4.0 Mg ha-1 in the 2012 drought year. Maximum biomass in years of normal rainfall averaged 38, 30 and 21 Mg ha-1 compared to 19, 13, and 13 Mg ha-1 in the drought year. Water use efficiencies, defined as ratio of maximum standing-stock biomass to growing season evapotranspiration, were 74, 69, and 47 kg ha-1 mm-1 for CM, CMC and MSC in years of normal rainfall, while values in the drought year were 41, 34 and 46 kg ha

  3. A comparison of operational remote sensing-based models for estimating crop evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integration of remotely sensed data into models of actual evapotranspiration has allowed for the estimation of water consumption across agricultural regions. Two modeling approaches have been successfully applied. The first approach computes a surface energy balance using the radiometric surface...

  4. An Integrated Lysimeter and Satellite Imagery Approach for Estimating Crop Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Goorahoo, D.; Cassel-Sharma, F.; Johnson, L.; Melton, F. S.

    2014-12-01

    Accurate estimation of crop water requirement (CWR) is essential for the implementation efficient irrigation schedules in an effort to optimize water use efficiency. This is particularly important in the central San Joaquin Valley (SJV), California, USA, where severe droughts have accentuated the need to conserve water and improve on-farm water management. In the current study, we adopt an integrated approach for estimation of crop evapotranspiration (ETc) involving the use of weighing lysimeters and satellite imagery. In the first phase of the study with the crop lysimeter, conducted on a clay loam soil with processing tomatoes grown under sub-surface drip irrigation, observations of crop ground cover were conducted weekly and evapotranspiration (ET) data were collected daily to derive relationships between crop coefficients and fractional cover. Data collected during the first year of the study, indicted that the crop coefficients (Kc) obtained at peak season were relatively higher than those generally reported for tomatoes commonly grown in the central SJV. Overall, there was a good correlation between fractional cover and crop coefficients (r2 = 0.91), with the average peak ET and Kc values ranging from 6 to 7 mm per day and from 0.8 to 0.9, respectively. Data obtained from satellite imagery, representing relatively larger spatial measurements than the lysimeters, are being compared with the surface observations from the lysimeters and will also be discussed in our presentation.

  5. Crop Evapotranspiration Estimates using Canopy Reflectance and Canopy Temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainability of irrigated agriculture with declining water supplies is a critical agricultural issue in the US Great Plains. Imposing water deficits on crops during non-critical growth periods must be implemented to maximize net economic output per unit of water consumed by the plant. An irrigat...

  6. Soil water availability as controlling factor for actual evapotranspiration in urban soil-vegetation-systems

    NASA Astrophysics Data System (ADS)

    Thomsen, Simon; Reisdorff, Christoph; Gröngröft, Alexander; Jensen, Kai; Eschenbach, Annette

    2015-04-01

    The City of Hamburg is characterized by a large number of greens, parks and roadside trees: 600.000 trees cover about 14% of the city area, and moreover, 245.000 roadside trees can be found here. Urban vegetation is generally known to positively contribute to the urban micro-climate via cooling by evapotranspiration (ET). The water for ET is predominantly stored in the urban soils. Hence, the actual evapotranspiration (ETa) is - beside atmospheric drivers - determined by soil water availability at the soil surface and in the rooting zones of the respective vegetation. The overall aim of this study is to characterize soil water availability as a regulative factor for ETa in urban soil-vegetation systems. The specific questions addressed are: i) What is the spatio-temporal variation in soil water availability at the study sites? ii) Which soil depths are predominantly used for water uptake by the vegetation forms investigated? and iii) Which are the threshold values of soil water tension and soil water content (Θ), respectively, that limit ETa under dry conditions on both grass-dominated and tree-dominated sites? Three study areas were established in the urban region of Hamburg, Germany. We selected areas featuring both single tree stands and grass-dominated sites, both representing typical vegetation forms in Hamburg. The areas are characterized by relatively dry soil conditions. However, they differ in regard to soil water availability. At each area we selected one site dominated by Common Oak (Quercus ruber L.) with ages from 40 to 120 years, and paired each oak tree site with a neighboring grass-dominated site. All field measurements were performed during the years 2013 and 2014. At each site, we continuously measured soil water tension and Θ up to 160 cm depth, and xylem sap flux of each of three oak trees per site in a 15 min-resolution. Furthermore, we measured soil hydraulic properties as pF-curve, saturated and unsaturated conductivity at all sites

  7. Assessing daily actual evapotranspiration through energy balance: an experiment to evaluate the selfpreservation hypothesis with acquisition time

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.; Rallo, G.

    2013-10-01

    An operational use of the actual evapotranspiration estimates requires the integration from instantaneous to daily values. This can commonly be achieved under the hypothesis of daytime self-preservation of the evaporative fraction. In this study, it has been evaluated the effect of this assumption on the assessment of daily evapotranspiration from proximity sensing images acquired at hourly intervals over a homogeneous olive groove. Results have been validated by comparison with observations made by a micrometeorological (EC-flux tower) and an eco-physiological (sap flux) sensor. SEBAL model has been applied to thermal and multispectral images acquired during a clear day on August 2009 trough a FLIR A320G thermal camera and a Tetracam MCA II multispectral camera, installed on a tethered helium balloon. Thermal and multispectral images were characterized by very high spatial resolution. This experiment aims to analyze two effects: 1) the consistency of the self-preservation hypothesis for daily estimates of the actual evapotranspiration from hourly assessments at different times of the day; 2) the effects of the spatial resolution on the performances of the energy balance model. To evaluate the effects of the spatial resolution, semi-hourly observations made by a flux tower and sap-flow measures were compared to the evapotranspiration estimates performed using downscaled images at resolutions close to canopy sizes (2, 5 and 10 m). Results show that the best estimates are obtained with a spatial resolution comparable to the average size of the canopy with images taken approximately at 10 UTC.

  8. A coupled remote sensing and the Surface Energy Balance based algorithms to estimate actual evapotranspiration over the western and southern regions of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mahmoud, Shereif H.; Alazba, A. A.

    2016-07-01

    In countries with absolute water scarcity such as the Kingdom of Saudi Arabia (KSA), large-scale actual evapotranspiration estimation is of great concern in water use practices. Herein, spatial and temporal distribution of actual evapotranspiration (AET) in the western and southern regions of KSA during 1992-2014 was estimated using the SEBAL model with field observations. Zonal statistics for each land use-cover type were also identified, in order to understand their effects on water consumption. In addition, daily and seasonal water consumption for major crops was computed. Results revealed a gradual increase in monthly AET values from January to April and subsequent decline from May to December. The maximum monthly AET values were observed for irrigated cropland in southwestern, central, and southeastern regions of Asir Province, central and southwestern regions of Al-Baha Province, central and the plains region of Jazan Province, southern portion of Makkah Province, and limited areas in the northern regions of Madinah Province. The annual AET ranged from 418.8 to 3442.3 mm yr-1. The normal distribution of mean annual AET values ranged from 717 to 1020 mm yr-1. Forty-two percent of the study area had an annual AET that ranged from 717 to 1020 mm yr-1. The second highest range of frequencies was concentrated around 1020-1322 mm yr-1, representing the majority of agricultural land. The consumptive water use of the different land cover types in study area indicated that irrigated cropland which occupied 14.6% of the study area had AET rates much higher than other land uses. Water bodies are the next highest, with forest and shrubland and sparse vegetation slightly lower, and very low AET rates from bare soil. Daily and seasonal water consumption of major cropping systems varied spatially depending on cropping practices and climatic conditions.

  9. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales

    USGS Publications Warehouse

    Stephenson, N.L.

    1998-01-01

    Correlative approaches to understanding the climatic controls of vegetation distribution have exhibited at least two important weaknesses: they have been conceptually divorced across spatial scales, and their climatic parameters have not necessarily represented aspects of climate of broad physiological importance to plants. Using examples from the literature and from the Sierra Nevada of California, I argue that two water balance parameters-actual evapotranspiration (AET) and deficit (D)-are biologically meaningful, are well correlated with the distribution of vegetation types, and exhibit these qualities over several orders of magnitude of spatial scale (continental to local). I reach four additional conclusions. (1) Some pairs of climatic parameters presently in use are functionally similar to AET and D; however, AET and D may be easier to interpret biologically. (2) Several well-known climatic parameters are biologically less meaningful or less important than AET and D, and consequently are poorer correlates of the distribution of vegetation types. Of particular interest, AET is a much better correlate of the distributions of coniferous and deciduous forests than minimum temperature. (3) The effects of evaporative demand and water availability on a site's water balance are intrinsically different. For example, the 'dry' experienced by plants on sunward slopes (high evaporative demand) is not comparable to the 'dry' experienced by plants on soils with low water-holding capacities (low water availability), and these differences are reflected in vegetation patterns. (4) Many traditional topographic moisture scalars-those that additively combine measures related to evaporative demand and water availability are not necessarily meaningful for describing site conditions as sensed by plants; the same holds for measured soil moisture. However, using AET and D in place of moisture scalars and measured soil moisture can solve these problems.

  10. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Wang, D.; Tirado-Corbalá, R.; Zhang, H.; Ayars, J. E.

    2015-01-01

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ETEC) using eddy covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET0) and tall (ETr) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley-Taylor ET (ETPT) and ETEC. Reference ET from the ASCE approaches exceeded ETEC during the mid-period (when vegetation coefficients suggest ETEC should exceed reference ET). At the windier tower site, cumulative ETr exceeded ETEC by 854 mm over the course of the mid-period (267 days). At the less windy site, mid-period ETr still exceeded ETEC, but the difference was smaller (443 mm). At both sites, ETPT approximated mid-period ETEC more closely than the ASCE equations ((ETPT-ETEC) < 170 mm). Analysis of applied water and precipitation, soil moisture, leaf stomatal resistance, and canopy cover suggest that the lower observed ETEC was not the result of water stress or reduced vegetation cover. Use of a custom-calibrated bulk canopy resistance improved the reference ET estimate and reduced seasonal ET discrepancy relative to ETPT and ETEC in the less windy field and had mixed performance in the windier field. These divergences suggest that modifications to reference ET equations may be warranted in some tropical regions.

  11. Validation of an improved energy balance model to estimate actual evapotranspiration in irrigated cotton ecosystems of Central Asia

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher; Falk, Ulrike; Bauer-Marschallinger, Bernhard

    2014-05-01

    The understanding of the hydrological and the energy cycles are essential in order to describe the complex interactions within the climate system of the earth. Being recognized as an essential component of both the water and the energy cycle, reliable estimation of actual evapotranspiration and its spatial distribution is one outstanding challenge in this context. For instance, in irrigation systems of arid regions, artificial locations of evapotranspiration have been created. An in-depth process understanding is of paramount importance, as irrigated agriculture consumes about 70 % of the available freshwater resources worldwide, with a significant but unsatisfyingly quantified impact on the water cycle, especially on regional scale. Moreover, an exact quantification of ET inside these artificial ecosystems enables assessments of crop water consumptions and hence about water use efficiency (WUE). The withdrawal of water for agricultural use in the countries of Central Asia is more than 90%. Khorezm region in Uzbekistan is a case study region for the problems of irrigated agriculture in CA. For Khorezm the seasonal actual ET was calculated for the years 2003 - 2010 using the partly modified surface energy balance algorithm for land (SEBAL). SEBAL was implemented based on MODIS time series to calculate the energy balance components like net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G). Whilst SEBAL is using an empirical equation for estimating G, a more physically based method was introduced in this study. This method uses microwave soil moisture products (ASAR-SSM and ASCAT-SSM) as additional input information. The modelled energy balance components were intensively validated by field measurements with an eddy covariance system and soil sensors. For turbulent heat fluxes the RMSE is about 40 W/m² for H and 80 W/m² for LE with a coefficient of determination (r²) of 0.64 for H and 0.52 for LE. Soil heat flux estimation could be

  12. Using the Priestley-Taylor expression for estimating actual evapotranspiration from satellite Landsat ETM + data

    NASA Astrophysics Data System (ADS)

    Khaldi, A.; Khaldi, A.; Hamimed, A.

    2014-09-01

    The quantification of evapotranspiration from irrigated areas is important for agriculture water management, especially in arid and semi-arid regions where water deficiency is becoming a major constraint in economic welfare and sustainable development. Conventional methods that use point measurements to estimate evapotranspiration are representative only of local areas and cannot be extended to large areas because of landscape heterogeneity. Remote sensing-based energy balance models are presently most suited for estimating evapotranspiration at both field and regional scales. In this study, we aim to develop a methodology based on the triangle concept, allowing estimation of evapotranspiration through the classical equation of Priestley and Taylor (1972) where the proportional coefficient α in this equation is ranged using a linear interpolation between surface temperature and Normalized Difference Vegetation Index (NDVI) values. Preliminary results using remotely sensed data sets from Landsat ETM+ over the Habra Plains in west Algeria are in good agreement with ground measurements. The proposed approach appears to be more reliable and easily applicable for operational estimation of evapotranspiration over large areas.

  13. Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach

    USGS Publications Warehouse

    Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.

    2013-01-01

    Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0

  14. Time Series Analysis of Remote Sensing Observations for Citrus Crop Growth Stage and Evapotranspiration Estimation

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Chakraborty, M.; Suradhaniwar, S.; Adinarayana, J.; Durbha, S. S.

    2016-06-01

    Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (http://earthexplorer.usgs.gov/). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system

  15. Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model

    NASA Astrophysics Data System (ADS)

    Consoli, Simona; Vanella, Daniela

    2015-04-01

    The approach combines the basal crop coefficient (Kcb) derived from vegetation indices (VIs) with the daily soil water balance, as proposed in the FAO-56 paper, to estimate daily crop evapotranspiration (ETc) rates of orange trees. The reliability of the approach to detect water stress was also assessed. VIs were simultaneously retrieved from WorldView-2 imagery and hyper-spectral data collected in the field for comparison. ETc estimated were analysed at the light of independent measurements of the same fluxes by an eddy covariance (EC) system located in the study area. The soil water depletion in the root zone of the crop simulated by the model was also validated by using an in situ soil water monitoring. Average overestimate of daily ETc of 6% was obtained from the proposed approach with respect to EC measurements, evidencing a quite satisfactory agreement between data. The model also detected several periods of light stress for the crop under study, corresponding to an increase of the root zone water deficit matching quite well the in situ soil water monitoring. The overall outcomes of this study showed that the FAO-56 approach with remote sensing-derived basal crop coefficient can have the potential to be applied for estimating crop water requirements and enhancing water management strategies in agricultural contexts.

  16. Partitioning evapotranspiration via continuous sampling of water vapor isotopes over common row crops and candidate biofuel crops.

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; Black, C. K.; Bernacchi, C.

    2014-12-01

    Global demand for renewable energy is accelerating land conversion from common row crops such as maize and soybean to cellulosic biofuel crops such as miscanthus and switchgrass. This land conversion is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. A second approach to partitioning was accomplished by subtracting transpiration measurements, obtained through sap flow sensors, from total ET, measured via eddy covariance. Preliminary results reveal that both methods compare favorably and that transpiration dominates variations in ET in miscanthus fields more so than in fields of maize.

  17. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    PubMed

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China. PMID:26439928

  18. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China

    PubMed Central

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P.

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China. PMID:26439928

  19. Calibration of mass transfer-based models to predict reference crop evapotranspiration

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-03-01

    The present study aims to compare mass transfer-based models to determine the best model under different weather conditions. The results showed that the Penman model estimates reference crop evapotranspiration better than other models in most provinces of Iran (15 provinces). However, the values of R 2 were less than 0.90 for 24 provinces of Iran. Therefore, the models were calibrated, and precision of estimation was increased (the values of R 2 were less than 0.90 for only ten provinces in the modified models). The mass transfer-based models estimated reference crop evapotranspiration in the northern (near the Caspian Sea) and southern (near the Persian Gulf) Iran (annual relative humidity more than 65 %) better than other provinces. The best values of R 2 were 0.96 and 0.98 for the Trabert and Rohwer models in Ardabil (AR) and Mazandaran (MZ) provinces before and after calibration, respectively. Finally, a list of the best performances of each model was presented to use other regions and next studies according to values of mean, maximum, and minimum temperature, relative humidity, and wind speed. The best weather conditions to use mass transfer-based equations are 8-18 °C (with the exception of Ivanov), <25.5 °C, <15 °C, >55 % for mean, maximum, and minimum temperature, and relative humidity, respectively.

  20. Comparison of Satellite-based Basal and Adjusted Evapotranspiration for Several California Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Lund, C.; Melton, F. S.

    2013-12-01

    There is a continuing need to develop new sources of information on agricultural crop water consumption in the arid Western U.S. Pursuant to the California Water Conservation Act of 2009, for instance, the stakeholder community has developed a set of quantitative indicators involving measurement of evapotranspiration (ET) or crop consumptive use (Calif. Dept. Water Resources, 2012). Fraction of reference ET (or, crop coefficients) can be estimated from a biophysical description of the crop canopy involving green fractional cover (Fc) and height as per the FAO-56 practice standard of Allen et al. (1998). The current study involved 19 fields in California's San Joaquin Valley and Central Coast during 2011-12, growing a variety of specialty and commodity crops: lettuce, raisin, tomato, almond, melon, winegrape, garlic, peach, orange, cotton, corn and wheat. Most crops were on surface or subsurface drip, though micro-jet, sprinkler and flood were represented as well. Fc was retrospectively estimated every 8-16 days by optical satellite data and interpolated to a daily timestep. Crop height was derived as a capped linear function of Fc using published guideline maxima. These variables were used to generate daily basal crop coefficients (Kcb) per field through most or all of each respective growth cycle by the density coefficient approach of Allen & Pereira (2009). A soil water balance model for both topsoil and root zone, based on FAO-56 and using on-site measurements of applied irrigation and precipitation, was used to develop daily soil evaporation and crop water stress coefficients (Ke, Ks). Key meteorological variables (wind speed, relative humidity) were extracted from the California Irrigation Management Information System (CIMIS) for climate correction. Basal crop ET (ETcb) was then derived from Kcb using CIMIS reference ET. Adjusted crop ET (ETc_adj) was estimated by the dual coefficient approach involving Kcb, Ke, and incorporating Ks. Cumulative ETc

  1. Evaluation of land surface model simulations of evapotranspiration over a 12 year crop succession: impact of the soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Calvet, J.-C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Desfonds, V.; Bertrand, N.; Renard, D.

    2014-10-01

    Evapotranspiration has been recognized as one of the most uncertain term in the surface water balance simulated by land surface models. In this study, the SURFEX/ISBA-A-gs simulations of evapotranspiration are assessed at local scale over a 12 year Mediterranean crop succession. The model is evaluated in its standard implementation which relies on the use of the ISBA pedotransfer estimates of the soil properties. The originality of this work consists in explicitly representing the succession of crop cycles and inter-crop bare soil periods in the simulations and assessing its impact on the dynamic of simulated and measured evapotranspiration over a long period of time. The analysis focuses on key soil parameters which drive the simulation of evapotranspiration, namely the rooting depth, the soil moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting point. The simulations achieved with the standard values of these parameters are compared to those achieved with the in situ values. The portability of the ISBA pedotransfer functions is evaluated over a typical Mediterranean crop site. Various in situ estimates of the soil parameters are considered and distinct parametrization strategies are tested to represent the evapotranspiration dynamic over the crop succession. This work shows that evapotranspiration mainly results from the soil evaporation when it is continuously simulated over a Mediterranean crop succession. The evapotranspiration simulated with the standard surface and soil parameters of the model is largely underestimated. The deficit in cumulative evapotranspiration amounts to 24% over 12 years. The bias in daily daytime evapotranspiration is -0.24 mm day-1. The ISBA pedotransfer estimates of the soil moisture at saturation and at wilting point are overestimated which explains most of the evapotranspiration underestimation. The overestimation of the soil moisture at wilting point causes the underestimation of

  2. Development of daily temperature scenarios and their impact on paddy crop evapotranspiration in Kangsabati command area

    NASA Astrophysics Data System (ADS)

    Dhage, P. M.; Raghuwanshi, N. S.; Singh, R.; Mishra, A.

    2016-02-01

    Production of the principal paddy crop in West Bengal state of India is vulnerable to climate change due to limited water resources and strong dependence on surface irrigation. Therefore, assessment of impact of temperature scenarios on crop evapotranspiration (ETc) is essential for irrigation management in Kangsabati command (West Bengal). In the present study, impact of the projected temperatures on ETc was studied under climate change scenarios. Further, the performance of the bias correction and spatial downscaling (BCSD) technique was compared with the two well-known downscaling techniques, namely, multiple linear regression (MLR) and Kernel regression (KR), for the projections of daily maximum and minimum air temperatures for four stations, namely, Purulia, Bankura, Jhargram, and Kharagpur. In National Centers for Environmental Prediction (NCEP) and General Circulation Model (GCM), 14 predictors were used in MLR and KR techniques, whereas maximum and minimum surface air temperature predictor of CanESM2 GCM was used in BCSD technique. The comparison results indicated that the performance of the BCSD technique was better than the MLR and KR techniques. Therefore, the BCSD technique was used to project the future temperatures of study locations with three Representative Concentration Pathway (RCP) scenarios for the period of 2006-2100. The warming tendencies of maximum and minimum temperatures over the Kangsabati command area were projected as 0.013 and 0.014 °C/year under RCP 2.6, 0.015 and 0.023 °C/year under RCP 4.5, and 0.056 and 0.061 °C/year under RCP 8.5 for 2011-2100 period, respectively. As a result, kharif (monsoon) crop evapotranspiration demand of Kangsabati reservoir command (project area) will increase by approximately 10, 8, and 18 % over historical demand under RCP 2.6, 4.5, and 8.5 scenarios, respectively.

  3. Kohonen self-organizing map estimator for the reference crop evapotranspiration

    NASA Astrophysics Data System (ADS)

    Adeloye, Adebayo J.; Rustum, Rabee; Kariyama, Ibrahim D.

    2011-08-01

    Reference crop evapotranspiration (ETo) estimation is of importance in irrigation water management for the calculation of crop water requirements and its scheduling, in rainfall-runoff modeling and in numerous other water resources studies. Due to its importance, several direct and indirect methods have been employed to determine the reference crop evapotranspiration but success has been limited because the direct measurement methods lack in precision and accuracy due to scale issues and other problems, while some of the more accurate indirect methods, e.g., the Penman-Monteith benchmark model, are time-consuming and require weather input data that are not routinely monitored. This paper has used the Kohonen self-organizing map (KSOM), unsupervised artificial neural networks, to predict the ETo. based on observed daily weather data at two climatically diverse basins: a small experimental catchment in temperate Edinburgh, UK and a semiarid lake basin in Udaipur, India. This was achieved by using the powerful clustering capability of the KSOM to analyze the multidimensional data array comprising the estimated ETo (based on the Food and Agricultural Organization (FAO) Penman-Monteith model) and different subsets of climatic variables known to affect it. The findings indicate that the KSOM-based ETo estimates even with fewer input variables were in good agreement with those obtained using the conventional FAO Penman-Monteith formulation employing the full complement of weather data at the two locations. More crucially, the KSOM-based estimates were also found to be significantly superior to those estimated using currently recommended empirical ETo methods for data scarce situations such as those in developing countries.

  4. A Simple method for reference crop evapotranspiration under non-advective conditions suitable for remote sensing applications

    NASA Astrophysics Data System (ADS)

    de Bruin, Henk A. R.; Trigo, Isabel F.; Bosveld, Fred C.; Fokke Meirink, Jan

    2015-04-01

    A method is presented to estimate daily reference crop evapotranspiration (ETo) under non-advective conditions from Meteosat Second Generation (MSG) imagery. For this purpose observations of Cabauw in the Netherlands have been analyzed. Due to the climatic conditions and the local water management at this site water stress is very rare, which makes this dataset ideal to assess ETo without advection. The findings of older studies are combined to arrive at a simple formula for ETo, requiring daily global radiation and air temperature as input only. The formula is validated against independent eddy-covariance measurements of actual evapotranspiration. The bias is 3 W m-2 and the root mean square error (RMSE) 7.6 W m-2. The applied Slob-de Bruin estimate of net radiation is tested separately, yielding a bias of 1.4 W m-2 and a RMSE of 9.6 W m-2. In a next step the measured global radiation has been replaced with MSG estimates. For ETo this resulted in a bias of 1.6 W m-2 and a RMSE of 11.7 W m-2. Based on arguments used by Schmidt (1915) a reasonably sound physical justification for the proposed ETo formula is presented. This justifies application of the results outside Cabauw. However, this applies to conditions where advection can be ignored. It is pointed out that in semi-arid regions local advection cannot be ignored. Finally, the ambiguousness of the formal definition of ETo given in the FAO Irrigation and Drainage Paper No. 56 is discussed.

  5. Evaluation of Water Stress Coefficient Methods to Estimate Actual Corn Evapotranspiration in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract for Kullberg Hydrology Days: Abstract. Increased competition for water resources is placing pressure on the agricultural sector to remain profitable while reducing water use. Remote sensing techniques have been developed to monitor crop water stress and produce information for evapotranspi...

  6. Potential and actual uses of zeolites in crop protection.

    PubMed

    De Smedt, Caroline; Someus, Edward; Spanoghe, Pieter

    2015-10-01

    In this review, it is demonstrated that zeolites have a potential to be used as crop protection agents. Similarly to kaolin, zeolites can be applied as particle films against pests and diseases. Their honeycomb framework, together with their carbon dioxide sorption capacity and their heat stress reduction capacity, makes them suitable as a leaf coating product. Furthermore, their water sorption capacity and their smaller particle sizes make them effective against fungal diseases and insect pests. Finally, these properties also ensure that zeolites can act as carriers of different active substances, which makes it possible to use zeolites for slow-release applications. Based on the literature, a general overview is provided of the different basic properties of zeolites as promising products in crop protection. PMID:25727795

  7. Modeling evapotranspiration and energy balance in a wheat-maize cropping system using the revised RZ-SHAW model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Correctly simulating evapotranspiration (ET) and surface energy balance is essential to estimating crop growth under water and heat stress conditions in agricultural systems. The revised hybrid model (RZ-SHAW), combining the Root Zone Water Quality Model (RZWQM) and Simultaneous Heat and Water (SHAW...

  8. Comparison of the Carbon Budget, Evapotranspiration, and Albedo Effect between the Biofuel Crops Switchgrass and Corn

    NASA Astrophysics Data System (ADS)

    Eichelmann, E.; Wagner-Riddle, C.; Warland, J. S.; Deen, B.; Voroney, P.

    2015-12-01

    Switching from annual cropping systems to perennial crops like switchgrass (Panicum virgatum L.) for biofuel feedstock production will have implications on carbon and water cycling as well as biophysical parameters, such as surface albedo.We conducted eddy covariance measurements of carbon dioxide and water fluxes over a mature (>5 years) switchgrass field over three years (2012 to 2014) and a continuous corn field during the year 2014. Both fields were located in Southern Ontario, Canada. Results for carbon and water cycling were compared between the two crops for the year 2014. Differences in surface albedo between the two biofuel cropping systems were compared for the years 2012, 2013, and 2014. In 2014 switchgrass was a carbon sink with a net ecosystem carbon balance (NECB) of -66±59 g C m-2, while corn was a carbon source with an NECB of 328±30 g C m-2 for a scenario where corn grain only is harvested and 634±34 g C m-2 for a scenario where both grain and stover are harvested. Annual evapotranspiration in 2014 was higher for the corn field (608.7±12 mm) than for the switchgrass field (517.0±8 mm). Albedo measurements showed an average annual negative radiative forcing effect for the switchgrass field compared to corn. Differences in albedo were largest in spring and fall when radiative forcing values of -10.2 and -5.5 W m-2 were observed, respectively.Comparing carbon cycling results from previous years, the switchgrass field was a source of carbon in 2012 (NEBC 106±45 g C m-2), but a small sink of carbon in 2013 (NEBC -59±45) and 2014. On average over the three measurement years, the switchgrass field was carbon neutral.Qualitative analysis of the carbon budget, evapotranspiration, and albedo results from this study suggest that biofuel produced from switchgrass can have more climate benefits than biofuel from continuous corn. This study provides important data for improvement of Life Cycle Analysis of switchgrass biofuel.

  9. Evaluation of a Modified Priestly-Taylor Model for Actual Evapotranspiration in sub- Saharan Africa

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.; Michaelsen, J.; Funk, C.; Artan, G.

    2008-12-01

    Climate change and the intensification of the water cycle is an important field of study, as global warming is expected to lead to dramatic increases in the frequency and magnitude of storms, floods, and droughts worldwide. In sub-tropical Africa, it is expected that the increase in evaporation and subsequent decrease in surface runoff will increase water demand in an already climate sensitive region. Studies also show that modeled soil moisture, a surrogate for evapotranspiration (ET), can improve rainfall and streamflow forecasts in these areas. Our objective, here therefore, is to evaluate a new ET model (Fisher et al., 2008) at inter- seasonal catchment scales. The Fisher et al. (2008) model uses functional eco-physiological relationships to adjust the Priestly-Taylor formulation of potential ET. It has performed well against several flux towers at tropical, sub-tropical, and temperate latitudes (R2=0.90). Although the model was extrapolated using remote sensing and climate reanalysis data, the validation was performed using site specific monthly average net radiation (Rn), monthly surface vapor pressure, and maximum monthly surface temperature. Two additional inputs are required for the model that can be acquired from remote sensing: the monthly average normalized difference vegetation index and soil-adjusted vegetation index. The vegetation indices will be calculated from a new atmospherically corrected AVHRR dataset of global daily reflectance at 0.05° resolution (NASA Land Long Term Data Record). The climate variables will be extracted from the bias-corrected European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset at 0.05° resolution. The model will be evaluated at a seasonal timestep from 1981-1999 using cumulative runoff and lagged precipitation for seven major catchments in sub-Saharan Africa. It is expected that the highest model performance will be in areas where Rn is the dominant control on ET and advection is relatively small

  10. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.

    PubMed

    Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang

    2015-11-01

    In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods. PMID:26497559

  11. Use of Sharpened Land Surface Temperature for Daily Evapotranspiration Estimation over Irrigated Crops in Arid Lands

    NASA Astrophysics Data System (ADS)

    Rosas Aguilar, J.; McCabe, M. F.; Houborg, R.; Gao, F.

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  12. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G. M.; Cheema, M. J. M.; Immerzeel, W. W.; Miltenburg, I. J.; Pelgrum, H.

    2012-11-01

    The surface energy fluxes and related evapotranspiration processes across the Indus Basin were estimated for the hydrological year 2007 using satellite measurements. The new ETLook remote sensing model (version 1) infers information on actual Evaporation (E) and actual Transpiration (T) from combined optical and passive microwave sensors, which can observe the land-surface even under persistent overcast conditions. A two-layer Penman-Monteith equation was applied for quantifying soil and canopy evaporation. The novelty of the paper is the computation of E and T across a vast area (116.2 million ha) by using public domain microwave data that can be applied under all weather conditions, and for which no advanced input data are required. The average net radiation for the basin was estimated as being 112 Wm-2. The basin average sensible, latent and soil heat fluxes were estimated to be 80, 32, and 0 Wm-2, respectively. The average evapotranspiration (ET) and evaporative fraction were 1.2 mm d-1 and 0.28, respectively. The basin wide ET was 496 ± 16.8 km3 yr-1. Monte Carlo analysis have indicated 3.4% error at 95% confidence interval for a dominant land use class. Results compared well with previously conducted soil moisture, lysimeter and Bowen ratio measurements at field scale (R2 = 0.70; RMSE = 0.45 mm d-1; RE = -11.5% for annual ET). ET results were also compared against earlier remote sensing and modeling studies for various regions and provinces in Pakistan (R2 = 0.76; RMSE = 0.29 mmd-1; RE = 6.5% for annual ET). The water balance for all irrigated areas together as one total system in Pakistan and India (26.02 million ha) show a total ET value that is congruent with the ET value from the ETLook surface energy balance computations. An unpublished validation of the same ETLook model for 23 jurisdictional areas covering the entire Australian continent showed satisfactory results given the quality of the watershed data and the diverging physiographic and climatic

  13. Combining Remote Sensing imagery of both fine and coarse spatial resolution to Estimate Crop Evapotranspiration and quantifying its Influence on Crop Growth Monitoring.

    NASA Astrophysics Data System (ADS)

    Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre

    2010-05-01

    This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize

  14. Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for Common reed, Cottonwood and Peach-leaf willow in the Platte River Basin, Nebraska-USA

    NASA Astrophysics Data System (ADS)

    Irmak, S.; Kabenge, I.; Rudnick, D.; Knezevic, S.; Woodward, D.; Moravek, M.

    2013-02-01

    SummaryApplication of two-step approach of evapotranspiration (ET) crop coefficients (Kc) to "approximate" a very complex process of actual evapotranspiration (ETa) for field crops has been practiced by water management community. However, the use of Kc, and in particular the concept of growing degree days (GDD) to estimate Kc, have not been sufficiently studied for estimation of evaporative losses from riparian vegetation. Our study is one of the first to develop evapotranspiration crop coefficient (KcET) curves for mixed riparian vegetation and transpiration (TRP) crop coefficients (KcTRP) for individual riparian species as a function GDD through extensive field campaigns conducted in 2009 and 2010 in the Platte River Basin in central Nebraska, USA. KcTRP values for individual riparian vegetation species [Common reed (Phragmites australis), Cottonwood (Populus deltoids) and Peach-leaf willow (Salix amygdaloides)] were quantified from the TRP rates obtained using scaled-up canopy resistance from measured leaf-level stomatal resistance and reference evapotranspiration. The KcET and KcTRP curves were developed for alfalfa-reference (KcrET and KcrTRP) surface. The seasonal average mixed riparian plant community KcrET was 0.89 in 2009 and 1.27 in 2010. In 2009, the seasonal average KcrTRP values for Common reed, Cottonwood and Peach-leaf willow were 0.57, 0.51 and 0.62, respectively. In 2010, the seasonal average KcrTRP were 0.69, 0.62 and 0.83 for the same species, respectively. In general, TRP crop coefficients had less interannual variability than the KcrET. Response of the vegetation to flooding in 2010 played an important role on the interannual variability of KcrET values. We demonstrated good performance and reliability of developed GDD-based KcrTRP curves by using the curves developed for 2009 to predict TRP rates of individual species in 2010. Using the KcrTRP curves developed during the 2009 season, we were able to predict the TRP rates for Common reed

  15. Comparing three gap filling methods for eddy covariance crop evapotranspiration measurements within a hilly agricultural catchment

    NASA Astrophysics Data System (ADS)

    Boudhina, Nissaf; Prévot, Laurent; Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Ben Mechlia, Netij; Masmoudi, Moncef

    2015-04-01

    Hilly watersheds are widespread throughout coastal areas around the Mediterranean Basin. They experience agricultural intensification since hilly topographies allow water-harvesting techniques that compensate for rainfall storage, water being a strong limiting factor for crop production. Their fragility is likely to increase with climate change and human pressure. Within semi-arid hilly watershed conditions, evapotranspiration (ETR) is a major term of both land surface energy and water balances. Several methods allow determining ETR, based either on direct measurements, or on estimations and forecast from weather and soil moisture data using simulation models. Among these methods, eddy covariance technique is based on high-frequency measurements of fluctuations of wind speed and air temperature / humidity, to directly determine the convective fluxes between land surface and atmosphere. In spite of experimental and instrumental progresses, datasets of eddy covariance measurements often experience large portions of missing data. The latter results from energy power failure, experimental maintenance, instrumental troubles such as krypton hygrometer malfunctioning because of air humidity, or quality assessment based filtering in relation to spatial homogeneity and temporal stationarity of turbulence within surface boundary layer. This last item is all the more important as hilly topography, when combined with strong winds, tends to increase turbulence within surface boundary layer. The main objective of this study is to establish gap-filling procedures to provide complete chronicles of eddy-covariance measurements of crop evapotranspiration (ETR) within a hilly agricultural watershed. We focus on the specific conditions induced by the combination of hilly topography and wind direction, by discriminating between upslope and downslope winds. The experiment was set for three field configurations within hilly conditions: two flux measurement stations (A, B) were installed

  16. [Spatiotemporal characteristics of reference crop evapotranspiration in inland river basins of Hexi region].

    PubMed

    Lü, Xiao-Dong; Wang, He-ling; Ma, Zhong-ming

    2010-12-01

    Based on the 1961-2008 daily observation data from 17 meteorological stations in the inland river basins in Hexi region, the daily reference crop evapotranspiration (ET0) in the basins was computed by Penman-Monteith equation, and the spatiotemporal characteristics of seasonal and annual ET0 were studied by GIS and IDW inverse-distance spatial interpolation. In 1961-2008, the mean annual ET0 (700-1330 mm) increased gradually from southeast to northwest across the basins. The high value of mean annual ET0 in Shule River basin and Heihe River basin declined significantly (P < 0.05), with the climatic trend rate ranged from -53 to -10 mm (10 a)(-1), while the low value of mean annual ET0 in Shiyang River basin ascended slightly. The ET0 in the basins had a significant annual fluctuation, which centralized in Linze and decreased toward northwest and southeast. The ET0 in summer and autumn contributed most of a year, and the highest value of ET0 all the year round always appeared in Shule River basin. The climatic trend rate was in the order of summer > spring > autumn > winter. Wind speed and maximum temperature were the primary factors affecting the ET0 in the basins. Furthermore, wind speed was the predominant factor of downward trend of ET0 in Shule and Heihe basins, while maximum temperature and sunshine hours played an important role in the upward trend of ET0 in Shiyang basin. PMID:21443004

  17. Estimation of crops biomass and evapotranspiration from high spatial and temporal resolutions remote sensing data

    NASA Astrophysics Data System (ADS)

    Claverie, Martin; Demarez, Valérie; Duchemin, Benoît.; Ceschia, Eric; Hagolle, Olivier; Ducrot, Danielle; Keravec, Pascal; Beziat, Pierre; Dedieu, Pierre

    2010-05-01

    Carbon and water cycles are closely related to agricultural activities. Agriculture has been indeed identified by IPCC 2007 report as one of the options to sequester carbon in soil. Concerning the water resources, their consumptions by irrigated crops are called into question in view of demographic pressure. In the prospect of an assessment of carbon production and water consumption, the use of crop models at a regional scale is a challenging issue. The recent availability of high spatial resolution (10 m) optical sensors associated to high temporal resolution (1 day) such as FORMOSAT-2 and, in the future, Venµs and SENTINEL-2 will offer new perspectives for agricultural monitoring. In this context, the objective of this work is to show how multi-temporal satellite observations acquired at high spatial resolution are useful for a regional monitoring of following crops biophysical variables: leaf area index (LAI), aboveground biomass (AGB) and evapotranspiration (ET). This study focuses on three summer crops dominant in South-West of France: maize, sunflower and soybean. A unique images data set (82 FORMOSAT-2 images over four consecutive years, 2006-2009) was acquired for this project. The experimental data set includes LAI and AGB measurements over eight agricultural fields. Two fields were intensively monitored where ET flux were measured with a 30 minutes time step using eddy correlation methods. The modelisation approach is based on FAO-56 method coupled with a vegetation functioning model based on Monteith theory: the SAFY model [5]. The model operates at a daily time step model to provide estimates of plant characteristics (LAI, AGB), soil conditions (soil water content) and water use (ET). As a key linking variable, LAI is deduced from FORMOSAT-2 reflectances images, and then introduced into the SAFY model to provide spatial and temporal estimates of these biophysical variables. Most of the SAFY parameters are crop related and have been fixed according to

  18. A One-Layer Satellite Surface Energy Balance for Estimating Evapotranspiration Rates and Crop Water Stress Indexes

    PubMed Central

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (rah) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (rs) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach “Kc reflectance-based”, which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations. PMID:22389585

  19. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    PubMed

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations. PMID:22389585

  20. Drivers of actual evapotranspiration and runoff in East Africa during the mid-Holocene: assessments from an ecosystem model

    NASA Astrophysics Data System (ADS)

    Fer, Istem; Jeltsch, Florian; Tietjen, Britta; Trauth, Martin

    2014-05-01

    Understanding the evolution and response of the hydrological cycle under changing climate is of vital importance for human populations all around the world. Especially so in regions like East Africa, where society largely depends on the availability of water and the hydrologic conditions are highly sensitive to changes in the distribution and amount of precipitation. In this endeavor, studying past hydrological changes provides us realistic scenarios and data to better understand and predict the extent of the future hydrological changes. However while studying the past, paleovegetation, which plays a pivotal role in the paleo-hydrological cycle, is difficult to determine from fossil pollen records as pollen data can provide very limited information on spatial distribution and composition of the vegetation cover. Here ecosystem models driven by paleo-climate conditions can provide spatially-extensive information on the coupled dynamics of past vegetation and hydrological measures such as actual evapotranspiration (AET), potential evapotranspiration (PET) and runoff. In this study, we looked at AET and runoff estimates of an ecosystem model as these are important elements of water transfer in the hydrological cycle and critical for water balance calculations. We applied the ecosystem model, LPJ-GUESS, for present-day with data from Climatic Research Unit CRU TS3.20 climate dataset, and for mid-Holocene (6 kyrs BP) with data from an atmosphere-ocean coupled global climate model EC-Earth. Climate data for both periods were downscaled to a 10 arc min resolution in order to better resolve the impacts of the complex topography on vegetation distribution, AET and runoff. Comparison of the simulated AET and runoff values for East Africa, show similar patterns as annual AET estimates for the period 1961-1990 by Food and Agriculture Organization of the United Nations (FAO), and with the observed runoff data from Cogley (1998), respectively. Comparison of simulated present

  1. Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Yinsheng; Xu, Chong-Yu; Szilagyi, Jozsef

    2015-08-01

    Quantitative estimation of actual evapotranspiration (ETa) by in situ measurements and mathematical modeling is a fundamental task for physical understanding of ETa as well as the feedback mechanisms between land and the ambient atmosphere. However, the ETa information in the Tibetan Plateau (TP) has been greatly impeded by the extremely sparse ground observation network in the region. Approaches for estimating ETa solely from routine meteorological variables are therefore important for investigating spatiotemporal variations of ETa in the data-scarce region of the TP. Motivated by this need, the complementary relationship (CR) and Penman-Monteith approaches were evaluated against in situ measurements of ETa on a daily basis in an alpine steppe region of the TP. The former includes the Nonlinear Complementary Relationship (Nonlinear-CR) as well as the Complementary Relationship Areal Evapotranspiration (CRAE) models, while the latter involves the Katerji-Perrier and the Todorovic models. Results indicate that the Nonlinear-CR, CRAE, and Katerji-Perrier models are all capable of efficiently simulating daily ETa, provided their parameter values were appropriately calibrated. The Katerji-Perrier model performed best since its site-specific parameters take the soil water status into account. The Nonlinear-CR model also performed well with the advantage of not requiring the user to choose between a symmetric and asymmetric CR. The CRAE model, even with a relatively low Nash-Sutcliffe efficiency (NSE) value, is also an acceptable approach in this data-scarce region as it does not need information of wind speed and ground surface conditions. In contrast, application of the Todorovic model was found to be inappropriate in the dry regions of the TP due to its significant overestimation of ETa as it neglects the effect of water stress on the bulk surface resistance. Sensitivity analysis of the parameter values demonstrated the relative importance of each parameter in the

  2. Crop Evapotranspiration in San Joaquin Valley by Landsat Reflectance-based and Energy-balance Estimation Methods

    NASA Astrophysics Data System (ADS)

    Johnson, L.

    2011-12-01

    Evapotranspiration (ET) estimates are needed to support agricultural and natural resource management. Satellite based measurements offer the potential to efficiently monitor ET over large areas. In this study, two analysis methods were applied to Landsat-5 Thematic Mapper imagery to estimate crop evapotranspiration (ETc) in California's San Joaquin Valley. The Landsat L1T images (path 42, row 35) were collected monthly during the main growing season (Apr-Nov) in 2009. In the first method, the images were transformed to surface reflectance, and subsequently to NDVI. The NDVI was used to estimate mean fractional cover of several major crop types including almond, orange, grape, cotton, corn, alfalfa, and tomato across a total of 115 fields. Prior relationships developed by weighing lysimeter were used to convert fractional cover to a crop coefficient expressing ETc relative to grass reference evapotranspiration (ETo). Measurements of ETo by the California Irrigation Management Information System (CIMIS) were then used to calculate ETc on each overpass date. These reflectance-based estimates were compared with values retrieved by the Surface Energy Balance Algorithm for Land (SEBAL). SEBAL combined spectral radiances in Landsat optical and thermal bands with CIMIS meteorological data to derive ET as a surface energy budget residual by applying radiative, aerodynamic and energy balance physics in 25 computational steps. Reasonably strong agreement resulted, with mean absolute error (MAE) between the two approaches <1 mm/d, and coefficients of determination ranging from 0.78-0.90, for most of the crop types examined. Stronger agreement was found for fields deemed by SEBAL to contain unstressed crop (observed ET at-or-near potential) during satellite overpass, with MAE reductions averaging about 30 percent and coefficients of determination largely of range 0.90-0.94.

  3. Spatiotemporal variations of actual evapotranspiration over the Lake Selin Co Basin (Tibetan Plateau) during 2003-2012

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Wang, Lei

    2016-04-01

    Actual evapotranspiration (ETa) over the Tibetan Plateau (TP) is an important component of the water cycle, and greatly influences the water budgets of the TP lake basins. Quantitative estimation of ETa within lake basins is fundamental to physically understanding ETa changes, and thus will improve the understanding of the hydrological processes and energy balance throughout the lake basins. In this study, the spatiotemporal dynamic changes of ETa within the Lake Selin Co Basin (the TP's largest lake basin) during 2003-2012 are examined at the basin scale. This was carried out using the previously calibrated and validated Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) for the land area, the Penman-Monteith method for the water area when unfrozen, and a simple sublimation estimation approach for the water area when frozen. The relationship between ETa changes and controlling factors is also discussed. Results indicate that the simulated land ETa from the WEB-DHM reasonably agrees with the estimated ETa values from the nonlinear complementary relationship model using appropriately calibrated parameter values at a point scale. Land ETa displayed an insignificant increase of 7.03 mm/y, and largely depends on precipitation. For the water area, the combined effects of reduced wind speed and net radiation offset the effect of rising temperature and vapor pressure deficit, and contributed to an insignificant decrease in evaporation of 4.17 mm/y. Sensitivity analysis shows that vapor pressure deficit and wind speed are the most sensitive variables to the changes of evaporation from the water area.

  4. Evapotranspiration Measurement and Crop Coefficient Estimation over a Spring Wheat Farmland Ecosystem in the Loess Plateau

    PubMed Central

    Yang, Fulin; Zhang, Qiang; Wang, Runyuan; Zhou, Jing

    2014-01-01

    Evapotranspiration (ET) is an important component of the surface energy balance and hydrological cycle. In this study, the eddy covariance technique was used to measure ET of the semi-arid farmland ecosystem in the Loess Plateau during 2010 growing season (April to September). The characteristics and environmental regulations of ET and crop coefficient (Kc) were investigated. The results showed that the diurnal variation of latent heat flux (LE) was similar to single-peak shape for each month, with the largest peak value of LE occurring in August (151.4 W m−2). The daily ET rate of the semi-arid farmland in the Loess Plateau also showed clear seasonal variation, with the maximum daily ET rate of 4.69 mm day−1. Cumulative ET during 2010 growing season was 252.4 mm, and lower than precipitation. Radiation was the main driver of farmland ET in the Loess Plateau, which explained 88% of the variances in daily ET (p<0.001). The farmland Kc values showed the obvious seasonal fluctuation, with the average of 0.46. The correlation analysis between daily Kc and its major environmental factors indicated that wind speed (Ws), relative humidity (RH), soil water content (SWC), and atmospheric vapor pressure deficit (VPD) were the major environmental regulations of daily Kc. The regression analysis results showed that Kc exponentially decreased with Ws increase, an exponentially increased with RH, SWC increase, and a linearly decreased with VPD increase. An experiential Kc model for the semi-arid farmland in the Loess Plateau, driven by Ws, RH, SWC and VPD, was developed, showing a good consistency between the simulated and the measured Kc values. PMID:24941017

  5. Sensitivity study of reference crop evapotranspiration during growing season in the West Liao River basin, China

    NASA Astrophysics Data System (ADS)

    Gao, Zhendong; He, Junshi; Dong, Kebao; Bian, Xiaodong; Li, Xiang

    2016-05-01

    We have analyzed the trends of reference crop evapotranspiration (ET0) through the Penman-Monteith model and climate factors in the West Liao River basin using the Mann-Kendall test after removing the effect of significant lag-1 serial correlation from the time series of the data by trend-free pre-whitening. The changing characteristics of the sensitivity coefficients and the spatial distribution during growing season are investigated, and the correlation between the sensitivity coefficients with elevation and the key climate factors by relative contribution and stepwise regression methods are evaluated. A significant overall increase in air temperature, and a significant decrease in wind speed, solar radiation, sunshine duration, relative humidity, and a slight decrease in ET0 are observed. Sensitivity analysis shows that ET0 is most sensitive to solar radiation, followed by relative humidity. In contrast, ET0 is least sensitive to the average air temperature. The sensitivity coefficients for the maximum and minimum air temperature and relative humidity have a significant negative correlation with elevation, while the coefficients for other variables are not strongly correlated with elevation. The spatial distribution of the sensitivity coefficients for wind speed and solar radiation is opposite, i.e., in regions where the sensitivity coefficients for wind speed are high; the sensitivity coefficients for solar radiation are low and vice versa. The sensitivity for relative humidity and average air temperature is region specific in the plain area. However, ET0 is most sensitive to the climate change in regions of high elevation. Wind speed is the most dominant contributor followed by solar radiation. Average air temperature contributes the least. The stepwise regression analysis indicates that wind speed is the foremost dominant variable influencing ET0. Relative contribution and stepwise regression analysis can be used to determine the main variables affecting ET0

  6. Sensitivity analysis of monthly reference crop evapotranspiration trends in Iran: a qualitative approach

    NASA Astrophysics Data System (ADS)

    Mosaedi, Abolfazl; Ghabaei Sough, Mohammad; Sadeghi, Sayed-Hossein; Mooshakhian, Yousof; Bannayan, Mohammad

    2016-02-01

    The main objective of this study was to analyze the sensitivity of the monthly reference crop evapotranspiration (ETo) trends to key climatic factors (minimum and maximum air temperature (T max and T min), relative humidity (RH), sunshine hours (t sun), and wind speed (U 2)) in Iran by applying a qualitative detrended method, rather than the historical mathematical approach. Meteorological data for the period of 1963-2007 from five synoptic stations with different climatic characteristics, including Mashhad (mountains), Tabriz (mountains), Tehran (semi-desert), Anzali (coastal wet), and Shiraz (semi-mountains) were used to address this objective. The Mann-Kendall test was employed to assess the trends of ETo and the climatic variables. The results indicated a significant increasing trend of the monthly ETo for Mashhad and Tabriz for most part of the year while the opposite conclusion was drawn for Tehran, Anzali, and Shiraz. Based on the detrended method, RH and U 2 were the two main variables enhancing the negative ETo trends in Tehran and Anzali stations whereas U 2 and temperature were responsible for this observation in Shiraz. On the other hand, the main meteorological variables affecting the significant positive trend of ETo were RH and t sun in Tabriz and T min, RH, and U 2 in Mashhad. Although a relative agreement was observed in terms of identifying one of the first two key climatic variables affecting the ETo trend, the qualitative and the quantitative sensitivity analysis solutions did never coincide. Further research is needed to evaluate this interesting finding for other geographic locations, and also to search for the major causes of this discrepancy.

  7. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Muys, B.; Feyen, J.; Veroustraete, F.; Minnaert, M.; Meiresonne, L.; de Schrijver, A.

    2005-05-01

    This paper focuses on the quantification of the green - vegetation related - water flux of a forest stand in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The approach tested for calculating the water consumption by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU) components - transpiration, soil and interception evaporation - between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000-August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L.), but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.). A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time-series. With an average annual rainfall of 819 mm, the results show that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively). Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  8. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Muys, B.; Feyen, J.; Veroustraete, F.; Minnaert, M.; Meiresonne, L.; de Schrijver, A.

    2005-09-01

    This paper focuses on the quantification of the green - vegetation related - water flux of forest stands in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The tested approach for calculating the water use by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU) components - transpiration, soil and interception evaporation - between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000-August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L.), but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.). A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time series. With an average annual rainfall of 819 mm, the results reveal that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively). Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  9. Quantifying the impact of changes in crop area on evapotranspiration regimes in the US corn and soybean belts through phenological modeling and data assimilation

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2010-12-01

    In recent years, fluctuations in food, feed, and fuel prices have led to shifts in the area of cropland dedicated to maize and soybean cultivation in the Northern Great Plains. We report here on a modeling experiment that compares three different simulated scenarios for actual evapotranspiration (ETa) from maize-soybean dominated areas in North Dakota, South Dakota, Nebraska, Iowa, and Minnesota during the 2000-2009 growing seasons. Scenario 1 relies on MODIS-derived crop maps to provide a baseline of subpixel crop proportions; Scenario 2 increases the proportion of maize by to 100 percent; Scenario 3 substitutes grassland for half the maize. We use a simple soil water balance model of ETa linked to an empirically derived crop specific phenology model also capable of producing seasonal trajectories of canopy attributes. This coupled model has been successfully deployed using flux tower records from multiple locations in the central US. Forcing the coupled model using data from NLDAS, we derive seasonal trajectories of daily NDVI and ETa as well as phenological transition points for maize, soybean, and grassland for each scenario. Seasonal differences in ETa among the three scenarios underscore the importance of how land use modulates land surface phenologies and, in turn, water and energy balances.

  10. Method for automatic determination of soybean actual evapotranspiration under open top chambers (OTC) subjected to effects of water stress and air ozone concentration.

    PubMed

    Rana, Gianfranco; Katerji, Nader; Mastrorilli, Marcello

    2012-10-01

    The present study describes an operational method, based on the Katerji et al. (Eur J Agron 33:218-230, 2010) model, for determining the daily evapotranspiration (ET) for soybean inside open top chambers (OTCs). It includes two functions, calculated day par day, making it possible to separately take into account the effects of concentrations of air ozone and plant water stress. This last function was calibrated in function of the daily values of actual water reserve in the soil. The input variables of the method are (a) the diurnal values of global radiation and temperature, usually measured routinely in a standard weather station; (b) the daily values of the AOT40 index accumulated (accumulated ozone over a threshold of 40 ppb during daylight hours, when global radiation exceeds 50 Wm(-2)) determined inside the OTC; and (c) the actual water reserve in the soil, at the beginning of the trial. The ensemble of these input variables can be automatable; thus, the proposed method could be applied in routine. The ability of the method to take into account contrasting conditions of ozone air concentration and water stress was evaluated over three successive years, for 513 days, in ten crop growth cycles, excluding the days employed to calibrate the method. Tests were carried out in several chambers for each year and take into account the intra- and inter-year variability of ET measured inside the OTCs. On the daily scale, the slope of the linear regression between the ET measured by the soil water balance and that calculated by the proposed method, under different water conditions, are 0.98 and 1.05 for the filtered and unfiltered (or enriched) OTCs with root mean square error (RMSE) equal to 0.77 and 1.07 mm, respectively. On the seasonal scale, the mean difference between measured and calculated ET is equal to +5% and +11% for the filtered and unfiltered OTCs, respectively. The ability of the proposed method to estimate the daily and seasonal ET inside the OTCs is

  11. Global patterns of annual actual evapotranspiration with land-cover type: knowledge gained from a new observation-based database

    NASA Astrophysics Data System (ADS)

    Ambrose, S. M.; Sterling, S. M.

    2014-10-01

    The process of evapotranspiration (ET) plays a critical role in the earth system, driving key land-surface processes in the energy, water and carbon cycles. Land-cover (LC) exerts multiple controls on ET, yet the global distribution of ET by LC and the related physical variables are poorly understood. The lack of quantitative understanding of global ET variation with LC begets considerable uncertainties regarding how ET and key land-surface processes will change alongside ongoing anthropogenic LC transformations. Here we apply statistical analysis and models to a new global ET database to advance our understanding of how annual actual ET varies with LC type. We derive global fields for each LC using linear mixed effect models (LMMs) that use geographical and meteorological variables as possible independent regression variables. Our inventory of ET observations reveals important gaps in spatial coverage that overlie hotpots of global change. There is a spatial bias of observations towards the mid latitudes, and LCs with large areas in the high latitudes (lakes, wetlands and barren land) are poorly represented. From the distribution of points as well as the uncertainty analysis completed by bootstrapping we identify high priority regions in need of more data collection. Our analysis of the new database provides new insights into how ET varies globally, providing more robust estimates of global ET rates for a broad range of LC types. Results reveal that different LC types have distinct global patterns of ET. Furthermore, zonal ET means among LCs reveal new patterns: ET rates in low latitudinal bands are more sensitive to LC change than in higher latitude bands; LCs with a higher evaporation component show higher variability of ET at the global scale; and LCs with dispersed rather than contiguous global locations have a higher variability of ET at the global scale. Results from this study indicate two major advancements are required to improve our ability to predict

  12. Impacts of Reprojection and Sampling of MODIS Satellite Images on Estimating Crop Evapotranspiration Using METRIC model

    NASA Astrophysics Data System (ADS)

    Pun, M.; Kilic, A.; Allen, R.

    2014-12-01

    Landsat satellite images have been used frequently to map evapotranspiration (ET) andbiophysical variables at the field scale with surface energy balance algorithms. Although Landsat images have high spatial resolution with 30m cell size, it has limitations for real time monitoring of crop ET by providing only two to four images per month for an area, which, when encountered with cloudy days, further deteriorates the availability of images and snapshots of ET behavior. Therefore real time monitoring essentially has to include near-daily thermal satellites such as MODIS/VIIRS into the time series. However, the challenge with field scale monitoring with these systems is the large size of the thermal band which is 375 m with VIIRS and 1000 meter with MODIS. To maximize the accuracy of ET estimates during infusion of MODIS products into land surface models for monitoring field scale ET, it is important to assess the geometric accuracy of the various MODIS products, for example, spatial correspondence among the 250 m red and near-infrared bands, the 500 m reflectance bands; and the 1000 m thermal bands and associated products. METRIC model was used with MODIS images to estimate ET from irrigated and rainfed fields in Nebraska. Our objective was to assess geometric accuracy of MODIS image layers and how to correctly handle these data for highest accuracy of estimated ET at the individual field scale during the extensive drought of 2012. For example, the particular tool used to subset and reproject MODIS swath images from level-1 and level-2 products (e.g., using the MRTSwath and other tools), the initial starting location (upper left hand corner), and the projection system all effect how pixel corners of the various resolution bands align. Depending on the approach used, origin of pixel corners can vary from image to image date and therefore impacts the pairing of ET information from multiple dates the consistency and accuracy of sampling ET from within field interiors

  13. Scaling Up Stomatal Conductance from Leaf to Canopy Using a Dual-Leaf Model for Estimating Crop Evapotranspiration

    PubMed Central

    Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun

    2014-01-01

    The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called “big-leaf” model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s−1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  14. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    PubMed

    Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun

    2014-01-01

    The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning

  15. Estimating Crop Water use From Remotely Sensed NDVI, Crop Models and Reference ET

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop water use can be estimated from reference evapotranspiration, ETo, calculated from weather station data, and estimated crop coefficients, Kc. However, because Kc varies with crop growth rate, planting density, and management practices, generic Kc curves often don’t match actual crop water use....

  16. Fully-automated estimation of actual to potential evapotranspiration in the Everglades using Landsat and air temperature data as inputs to the Vegetation Index-Temperature Trapezoid method

    NASA Astrophysics Data System (ADS)

    Yagci, A. L.; Jones, J. W.

    2014-12-01

    While the greater Everglades contains a vast wetland, evapotranspiration (ET) is a major source of water "loss" from the system. Like other ecosystems, the Everglades is vulnerable to drought. Everglades restoration science and resource management requires information on the spatial and temporal distribution of ET. We developed a fully-automated ET model using the Vegetation Index-Temperature Trapezoid concept. The model was tested and evaluated against in-situ ET observations collected at the Shark River Slough Mangrove Forest eddy-covariance tower in Everglades National Park (Sitename / FLUXNET ID: Florida Everglades Shark River Slough Mangrove Forest / US-Skr). It uses Landsat Surface Reflectance Climate Data from Landsat 5, and Landsat 5 thermal and air temperature data from the Daily Gridded Surface Dataset to output the ratio of actual evapotranspiration (AET) and potential evapotranspiration (PET). When multiplied with a PET estimate, this output can be used to estimate ET at high spatial resolution. Furthermore, it can be used to downscale coarse resolution ET and PET products. Two example outputs covering the agricultural lands north of the major Everglades wetlands extracted from two different dates are shown below along with a National Land Cover Database image from 2011. The irrigated and non-irrigated farms are easily distinguishable from the background (i.e., natural land covers). Open water retained the highest AET/PET ratio. Wetlands had a higher AET/PET ratio than farmlands. The main challenge in this study area is prolonged cloudiness during the growing season.

  17. Spatial Trends in Evapotranspiration Components over Africa between 1979 and 2012 and Their Relative Influence on Crop Water Use

    NASA Astrophysics Data System (ADS)

    Estes, L. D.; Chaney, N.; Herrera-Estrada, J.; Caylor, K. K.; Sheffield, J.; Wood, E. F.

    2013-12-01

    Understanding how climate change will affect crop water use (evapotranspiration) is fundamental to understanding food security. This is particularly true in sub-Saharan Africa, where crops are largely grown in dryland systems, and agricultural production is expected to expand dramatically this century. Yet analyzing how climate change has impacted crop evapotranspiration (ET) has been hampered by the lack of long-term and spatially continuous meteorological data. Here we use a newly developed, spatio-temporally corrected meteorological dataset to 1) identify trends in individual ET components [rainfall (RF), temperature (T), specific humidity (SH), windspeed (WS), long- and shortwave radiation (LWR, SWR)] in Africa since 1979 and 2) determine the impact of these trends on crop water use. The meteorological data was developed from the Princeton University global meteorological dataset (PGF), which merges gridded station data, satellite retrievals and reanalysis to create a 1.0° resolution, 3-hourly weather dataset for the years 1948-2012. The PGF was downscaled to 0.25° resolution using bilinear interpolation, correcting T, SH, and LWR for elevation, and then merged (using state-space estimation) with meteorological station data (~1000, obtained from the Global Summary of Day database) and corrected for temporal inhomogeneities (due to instrument changes, etc) and gap-filled for missing days. This resulted in a bias-corrected gridded set of daily observations for the variables of interest over southern, East, and West Africa (Central Africa was excluded because of insufficient station observations) for the period 1979-2012, focusing on the satellite period. Using Kendall-Theil Robust line and Mann-Kendall tests, we identify and map significant (p<0.05) trends in ET components in each 0.25° cell over the time period. To estimate the crop water use impact of significant changes in ET components, we undertook a series of crop modeling experiments to isolate the

  18. Actual evapotranspiration estimation in a Mediterranean mountain region by means of Landsat-5 TM and TERRA/AQUA MODIS imagery and Sap Flow measurements in Pinus sylvestris forest stands.

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Pons, X.; Llorens, P.

    2009-04-01

    Evapotranspiration monitoring has important implications on global and regional climate modelling, as well as in the knowledge of the hydrological cycle and in the assessment of environmental stress that affects forest and agricultural ecosystems. An increase of evapotranspiration while precipitation remains constant, or is reduced, could decrease water availability for natural and agricultural systems and human needs. Consequently, water balance methods, as the evapotranspiration modelling, have been widely used to estimate crop and forest water needs, as well as the global change effects. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute evapotranspiration at regional scales in a feasible way. Currently, the 38% of Catalonia (NE of the Iberian Peninsula) is covered by forests, and one of the most important forest species is Scots Pine (Pinus sylvestris) which represents the 18.4% of the area occupied by forests. The aim of this work is to model actual evapotranspiration in Pinus sylvestris forest stands, in a Mediterranean mountain region, using remote sensing data, and compare it with stand-scale sap flow measurements measured in the Vallcebre research area (42° 12' N, 1° 49' E), in the Eastern Pyrenees. To perform this study a set of 30 cloud-free TERRA-MODIS images and 10 Landsat-5 TM images of path 198 and rows 31 and 32 from June 2003 to January 2005 have been selected to perform evapotranspiration modelling in Pinus sylvestris forest stands. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected two different types of products which contain the remote sensing data we have used to model daily evapotranspiration, daily LST product and daily calibrated reflectances product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital

  19. Penman-Monteith approaches for estimating crop evapotranspiration in screenhouses—a case study with table-grape

    NASA Astrophysics Data System (ADS)

    Pirkner, Moran; Dicken, Uri; Tanny, Josef

    2014-07-01

    In arid and semi-arid regions many crops are grown under screens or in screenhouses to protect them from excessive radiation, strong winds, hailstorms and insects, and to reduce crop water requirements. Screens modify the crop microclimate, which means that it is necessary to accurately estimate crop water use under screens in order to improve the irrigation management and thereby increase water-use efficiency. The goal of the present study was to develop a set of calibrated relationships between inside and outside climatic variables, which would enable growers to predict crop water use under screens, based on standard external meteorological measurements and evapotranspiration (ET) models. Experiments were carried out in the Jordan Valley region of eastern Israel in a table-grape vineyard that was covered with a transparent screen providing 10 % shading. An eddy covariance system was deployed in the middle of the vineyard and meteorological variables were measured inside and outside the screenhouse. Two ET models were evaluated: a classical Penman-Monteith model (PM) and a Penman-Monteith model modified for screenhouse conditions by the inclusion of an additional boundary-layer resistance (PMsc). Energy-balance closure analysis, presented as a linear relation between half-hourly values of available and consumed energy (1,344 data points), yielded the regression Y = 1.05X-9.93 (W m-2), in which Y = sum of latent and sensible heat fluxes, and X = net radiation minus soil heat flux, with R 2 = 0.81. To compensate for overestimation of the eddy fluxes, ET was corrected by forcing the energy balance closure. Average daily ET under the screen was 5.4 ± 0.54 mm day-1, in general agreement with the model estimates and the applied irrigation. The results showed that measured ET under the screen was, on average, 34 % lower than that estimated outside, indicating significant potential water saving through screening irrigated vineyards. The PM model was somewhat more

  20. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed data such as spectral reflectance and infrared canopy temperature can be used to quantify crop canopy cover and/or crop water stress, often through the use of vegetation indices calculated from the near-infrared and red bands, and stress indices calculated from the thermal wavelength...

  1. Testing an Energy Balance Model for Estimating Actual Evapotranspiration Using Remotely Sensed Data. [Hannover, West Germany barley and wheat fields

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Camillo, P. J.

    1985-01-01

    An energy-balance model is used to estimate daily evapotranspiration for 3 days for a barley field and a wheat field near Hannover, Federal Republic of Germany. The model was calibrated using once-daily estimates of surface temperatures, which may be remotely sensed. The evaporation estimates were within the 95% error bounds of independent eddy correlation estimates for the daytime periods for all three days for both sites, but the energy-balance estimates are generally higher; it is unclear which estimate is biassed. Soil moisture in the top 2 cm of soil, which may be remotely sensed, may be used to improve these evaporation estimates under partial ground cover. Sensitivity studies indicate the amount of ground data required is not excessive.

  2. [Relationships between row crop evapotranspiration and two sources- energy partition and exchange under non-water stress condition].

    PubMed

    Yu, Chan; Chaolunbagen; Gao, Ruizhong; Chai, Jianhua

    2006-05-01

    With the maize harvested for green fodder and grown at the Hunshandake sand area as test row crop,and by combining two sources- energy balance model with dual crop coefficient approach presented in FAO-56,this paper estimated the available energy partitioned into two sources, canopy and soil surface (Ac and As), and the latent and sensible heat fluxes, lambdaEc, lambdaEs, Hc and Hs. The results showed that under non-water stress condition, the interaction between Hc and lambdaEc made canopy absorbed a micro-advection to enhance transpiration expressed by latent heat flux,with the value of (lambdaE(i)c-A(i)c). The greatest enhancement of transpiration occurred at the crop development stage with leaf area index between 0.6 and 2.4, and the average of the enhancement was 4.32 MJ x m(-2) x d(-1). Soil evaporation was in progress with a rate below the available energy of soil, due to the interaction between Hc and lambdaEc under non-water stress condition, except a few days immediately after heavy rain. The evaporation rate depended on the percentage of soil available energy dissipated as latent heat flux. The average value of minimum percentage, 11.5%, occurred at mid-season stage,while that of maximum percentages,51.9%, occurred at initial stage. Latent heat fluxes were the important components of energy exchange during the process of evapotranspiration. The available energy dissipated as latent heat fluxes of the two sources during crop development, mid-season, and late season stages accounted for over 83% of the total energy. PMID:16883812

  3. Actual evapotranspiration estimation in a Mediterranean mountain region by means of Landsat-5 TM and TERRA/AQUA MODIS imagery and Sap Flow measurements in Pinus sylvestris forest stands.

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Pons, X.; Llorens, P.

    2009-04-01

    Evapotranspiration monitoring has important implications on global and regional climate modelling, as well as in the knowledge of the hydrological cycle and in the assessment of environmental stress that affects forest and agricultural ecosystems. An increase of evapotranspiration while precipitation remains constant, or is reduced, could decrease water availability for natural and agricultural systems and human needs. Consequently, water balance methods, as the evapotranspiration modelling, have been widely used to estimate crop and forest water needs, as well as the global change effects. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute evapotranspiration at regional scales in a feasible way. Currently, the 38% of Catalonia (NE of the Iberian Peninsula) is covered by forests, and one of the most important forest species is Scots Pine (Pinus sylvestris) which represents the 18.4% of the area occupied by forests. The aim of this work is to model actual evapotranspiration in Pinus sylvestris forest stands, in a Mediterranean mountain region, using remote sensing data, and compare it with stand-scale sap flow measurements measured in the Vallcebre research area (42° 12' N, 1° 49' E), in the Eastern Pyrenees. To perform this study a set of 30 cloud-free TERRA-MODIS images and 10 Landsat-5 TM images of path 198 and rows 31 and 32 from June 2003 to January 2005 have been selected to perform evapotranspiration modelling in Pinus sylvestris forest stands. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected two different types of products which contain the remote sensing data we have used to model daily evapotranspiration, daily LST product and daily calibrated reflectances product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital

  4. Evapotranspiration rates and crop coefficients for a restored marsh in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, J.Z.; Anderson, F.E.; Snyder, R.L.

    2008-01-01

    The surface renewal method was used to estimate evapotranspiration (ET) for a restored marsh on Twitchell Island in the Sacramento-San Joaquin Delta, California, USA. ET estimates for the marsh, together with reference ET measurements from a nearby climate station, were used to determine crop coefficients over a 3-year period during the growing season. The mean ET rate for the study period was 6 mm day-1, which is high compared with other marshes with similar vegetation. High ET rates at the marsh may be due to the windy, semi-arid Mediterranean climate of the region, and the permanently flooded nature of the marsh, which results in very low surface resistance of the vegetation. Crop coefficient (Kc) values for the marsh ranged from 0.73 to 1.18. The mean Kc value over the entire study period was 0-95. The daily Kc values for any given month varied from year to year, and the standard deviation of daily Kc values varied between months. Although several climate variables were undoubtedly responsible for this variation, our analysis revealed that wind direction and the temperature of standing water in the wetland were of particular importance in determining ET rates and Kc values.

  5. Estimating long-term changes in actual evapotranspiration and water storage using a one-parameter model

    NASA Astrophysics Data System (ADS)

    Sharma, Asha N.; Walter, M. Todd

    2014-11-01

    Estimations of long-term regional trends in evapotranspiration (E) and water storage are key to our understanding of hydrology in a changing environment. Yet they are difficult to make due to the lack of long-term measurements of these quantities. Here we use a simple one-parameter model in conjunction with Gravity Recovery and Climate Experiment (GRACE) data to estimate long-term E and storage trends in the Missouri River Basin. We find that E has increased in the river basin over the period 1929-2012, consistent with other studies that have suggested increases in E with a warming climate. The increase in E appears to be driven by an increase in precipitation and water storage because potential E has not changed substantially. The simplicity of the method and its minimal data requirements provide a transparent approach to assessing long-term changes in hydrological fluxes and storages, and may be applicable to regions where meteorological and hydrological data are scarce.

  6. Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States

    NASA Astrophysics Data System (ADS)

    Wan, Zhanming; Zhang, Ke; Xue, Xianwu; Hong, Zhen; Hong, Yang; Gourley, Jonathan J.

    2015-08-01

    The objective of this study is to produce an observationally based monthly evapotranspiration (ET) product using the simple water balance equation across the conterminous United States (CONUS). We adopted the best quality ground and satellite-based observations of the water budget components, i.e., precipitation, runoff, and water storage change, while ET is computed as the residual. Precipitation data are provided by the bias-corrected PRISM observation-based precipitation data set, while runoff comes from observed monthly streamflow values at 592 USGS stream gauging stations that have been screened by strict quality controls. We developed a land surface model-based downscaling approach to disaggregate the monthly GRACE equivalent water thickness data to daily, 0.125° values. The derived ET computed as the residual from the water balance equation is evaluated against three sets of existing ET products. The similar spatial patterns and small differences between the reconstructed ET in this study and the other three products show the reliability of the observationally based approach. The new ET product and the disaggregated GRACE data provide a unique, important hydro-meteorological data set that can be used to evaluate the other ET products as a benchmark data set, assess recent hydrological and climatological changes, and terrestrial water and energy cycle dynamics across the CONUS. These products will also be valuable for studies and applications in drought assessment, water resources management, and climate change evaluation.

  7. Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Calvet, J. C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Buis, S.; Desfonds, V.; Bertrand, N.; Renard, D.

    2015-07-01

    Evapotranspiration has been recognized as one of the most uncertain terms in the surface water balance simulated by land surface models. In this study, the SURFEX/ISBA-A-gs (Interaction Sol-Biosphere-Atmosphere) simulations of evapotranspiration are assessed at the field scale over a 12-year Mediterranean crop succession. The model is evaluated in its standard implementation which relies on the use of the ISBA pedotransfer estimates of the soil properties. The originality of this work consists in explicitly representing the succession of crop cycles and inter-crop bare soil periods in the simulations and assessing its impact on the dynamics of simulated and measured evapotranspiration over a long period of time. The analysis focuses on key parameters which drive the simulation of ET, namely the rooting depth, the soil moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting point. A sensitivity analysis is first conducted to quantify the relative contribution of each parameter on ET simulation over 12 years. The impact of the estimation method used to retrieve the soil parameters (pedotransfer function, laboratory and field methods) on ET is then analysed. The benefit of representing the variations in time of the rooting depth and wilting point is evaluated. Finally, the propagation of uncertainties in the soil parameters on ET simulations is quantified through a Monte Carlo analysis and compared with the uncertainties triggered by the mesophyll conductance which is a key above-ground driver of the stomatal conductance. This work shows that evapotranspiration mainly results from the soil evaporation when it is continuously simulated over a Mediterranean crop succession. This results in a high sensitivity of simulated evapotranspiration to uncertainties in the soil moisture at field capacity and the soil moisture at saturation, both of which drive the simulation of soil evaporation. Field capacity was proved to be the most

  8. Improving evapotranspiration simulations under water stress with the CERES-Maize crop model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limitations on fresh water resources in Colorado, USA, have caused farmers to consider limited irrigation as an alternative to full irrigation practices, where the crop is intentionally stressed during specific growth stages in an effort to maximize yield per unit water consumed, or evapotranspirati...

  9. Evaluation of Crop Water Stress Based On Soil Moisture, Evapotranspiration, and Canopy Temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prediction of plant water status is a key issue of water management. Water stress on crop may alter energy balance at the soil-atmosphere interface, and the change in canopy temperature, which in turn affects transpiration and photosynthesis. An experiment was conducted at the Yucheng Integrated...

  10. The Direct Effects of Atmospheric Change on Evapotranspiration from Corn and Soybean Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric concentrations of carbon dioxide ([CO2]) and ozone ([O3]) are increasing as a result of land-use changes and fossil fuel combustion. These changes are hypothesized to have a large effect on water use for crops. While leaf-level responses to elevated [CO2] and [O3] are well documented,...

  11. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration under complex terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N. B.

    2010-07-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial scales. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at varying temporal and spatial scales under complex terrain. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can fully account for the dynamic impacts of complex terrain and changing land cover in concert with some varying kinetic parameters (i.e., roughness and zero-plane displacement) over time. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  12. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N.-B.

    2011-01-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement). Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  13. Crop evapotranspiration partitioning and comparison of different water use efficiency approaches

    NASA Astrophysics Data System (ADS)

    Béziat, Pierre; Rivalland, Vincent; Jarosz, Nathalie; Ceschia, Eric; Boulet, Gilles; Gentine, Pierre

    2010-05-01

    In the context of climate change and water resource limitations for agriculture, agro-ecosystems water use efficiency (WUE) assessment and improvement is essential. The principal aims of this study are 1) to assess the different components of the agro-ecosystem water budget and 2) to analyse and compare the WUE calculated for plants (WUEplt), for the ecosystem (WUEeco) and from an agronomical point of view (WUEagro) for several crops during the growing season and at the annual time scale, as well as to evaluate the environmental impact of crop rotations and intercrop on WUEeco and WUEagro. To achieve this goal, EC measurements of CO2 and water fluxes were performed above winter wheat, maize and sunflower at Auradé and Lamasquère sites in south west France. To infer WUEplt, an estimation of plant transpiration (TR) is needed, therefore a new methodology of ETR partitioning between soil evaporation (E) and TR based on marginal distribution sampling (MDS) was tested and evaluated against the ICARE-SVAT double source mechanistic model. Results showed good agreement between both partitioning methods and MDS proved to be a convenient and robust tool with reasonable associated uncertainties for estimating E. During the growing season, the proportion of E in ETR was around one third, varying mainly with crop leaf area. When calculated at the annual time scale, the proportion of E in ETR reached more than 50 %, depending on both crop leaf area and bare soil duration and distribution within the year. WUEplt values ranged between -4.3 g C kg-1 H2O for maize and -5.8 g C kg-1 H2O for winter wheat. It was strongly dependant on meteorological conditions (mainly vapour pressure deficit) at both daily and seasonal time scale. When normalised by vapour pressure deficit to reduce the effect of climatic variability on WUEplt, maize (C4 photosynthesis crop) had the highest efficiency. WUE values were lower at the ecosystem level than at the plant level because of water loss through

  14. Sensitivity of annual and seasonal reference crop evapotranspiration to principal climatic variables

    NASA Astrophysics Data System (ADS)

    Patle, G. T.; Singh, D. K.

    2015-06-01

    Reference evapotranspiration (ET0) represents the evaporative demand of the atmosphere and depends on climatic parameters such as radiation, air temperature, humidity, and wind speed. Relative role of climatic parameter of ET0 varies from one climate to another and within the climate, and depends on the location and time. Sensitivity analysis was conducted and sensitivity coefficients were determined to evaluate the impact of principal climatic parameters on ET0 in Karnal district of India. Mean monthly ET0 and yearly ET0 from 1981 to 2011 were estimated from FAO-56 Penman-Monteith equation using the daily climate data collected from Central Soil Salinity Research Institute, Karnal. Results showed that seasonal and annual ET0 were most sensitive to maximum temperature followed by sunshine hours. However, wind speed, relative humidity, and minimum temperature had varying effect on mean ET0. After maximum temperature and sunshine hours, ET0 was more sensitive to wind speed followed by relative humidity and minimum temperature in summer. In monsoon, after maximum temperature and sunshine hours, ET0 was more sensitive to minimum temperature followed by relative humidity and wind speed. However, in winter, after maximum temperature and sunshine hours, ET0 was more sensitive to relative humidity followed by wind speed and minimum temperature. The study suggests that the climate variability would affect reference ET0; however, its impact on ET0 would be different for different parameters.

  15. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  16. Evaluation of a simple method for crop evapotranspiration partitioning and comparison of different water use efficiency approaches

    NASA Astrophysics Data System (ADS)

    Tallec, T.; Rivalland, V.; Jarosz, N.; Boulet, G.; Gentine, P.; Ceschia, E.

    2012-04-01

    In the current context of climate change, intra- and inter-annual variability of precipitation can lead to major modifications of water budgets and water use efficiencies (WUE). Obtaining greater insight into how climatic variability and agricultural practices affect water budgets and their components in croplands is, thus, important for adapting crop management and limiting water losses. The principal aims of this study were 1) to assess the contribution of different components to the agro-ecosystem water budget and 2) to analyze and compare the WUE calculated from ecophysiological (WUEplt), environmental (WUEeco) and agronomical (WUEagro) points of view for various crops during the growing season and for the annual time scale. Eddy covariance (EC) measurements of CO2 and water flux were performed on winter wheat, maize and sunflower crops at two sites in southwest France: Auradé and Lamasquère. To infer WUEplt, an estimation of plant transpiration (TR) is needed. We then tested a new method for partitioning evapotranspiration (ETR), measured by means of the EC method, into soil evaporation (E) and plant transpiration (TR) based on marginal distribution sampling (MDS). We compared these estimations with calibrated simulations of the ICARE-SVAT double source mechanistic model. The two partitioning methods showed good agreement, demonstrating that MDS is a convenient, simple and robust tool for estimating E with reasonable associated uncertainties. During the growing season, the proportion of E in ETR was approximately one-third and varied mainly with crop leaf area. When calculated on an annual time scale, the proportion of E in ETR reached more than 50%, depending on crop leaf area and the duration and distribution of bare soil within the year. WUEplt values ranged between -4.1 and -5.6 g C kg-1 H2O for maize and winter wheat, respectively, and were strongly dependent on meteorological conditions at the half-hourly, daily and seasonal time scales. When

  17. Satellite-based assessment of crop coefficient for sugarcane in Maui, Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability is one of the limiting factors for sustainable production of biofuel crops. A common method for determining crop water requirement is to multiply daily potential evapotranspiration (ETo) calculated from meteorological parameters by a crop coefficient (Kc) to obtain actual crop eva...

  18. Airborne and ground-based remote sensing for the estimation of evapotranspiration and yield of bean, potato, and sugar beet crops

    NASA Astrophysics Data System (ADS)

    Jayanthi, Harikishan

    The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were

  19. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation)

    USGS Publications Warehouse

    Marshall, Michael T.; Thenkabail, Prasad S.; Biggs, Trent; Post, Kirk

    2016-01-01

    Evapotranspiration (ET) is an important component of micro- and macro-scale climatic processes. In agriculture, estimates of ET are frequently used to monitor droughts, schedule irrigation, and assess crop water productivity over large areas. Currently, in situ measurements of ET are difficult to scale up for regional applications, so remote sensing technology has been increasingly used to estimate crop ET. Ratio-based vegetation indices retrieved from optical remote sensing, like the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index, and Enhanced Vegetation Index are critical components of these models, particularly for the partitioning of ET into transpiration and soil evaporation. These indices have their limitations, however, and can induce large model bias and error. In this study, micrometeorological and spectroradiometric data collected over two growing seasons in cotton, maize, and rice fields in the Central Valley of California were used to identify spectral wavelengths from 428 to 2295 nm that produced the highest correlation to and lowest error with ET, transpiration, and soil evaporation. The analysis was performed with hyperspectral narrowbands (HNBs) at 10 nm intervals and multispectral broadbands (MSBBs) commonly retrieved by Earth observation platforms. The study revealed that (1) HNB indices consistently explained more variability in ET (ΔR2 = 0.12), transpiration (ΔR2 = 0.17), and soil evaporation (ΔR2 = 0.14) than MSBB indices; (2) the relationship between transpiration using the ratio-based index most commonly used for ET modeling, NDVI, was strong (R2 = 0.51), but the hyperspectral equivalent was superior (R2 = 0.68); and (3) soil evaporation was not estimated well using ratio-based indices from the literature (highest R2 = 0.37), but could be after further evaluation, using ratio-based indices centered on 743 and 953 nm (R2 = 0.72) or 428 and 1518 nm (R2 = 0.69).

  20. Assessing spatiotemporal variation in actual evapotranspiration for semi-arid watersheds in northwest China: Evaluation of two complementary-based methods

    NASA Astrophysics Data System (ADS)

    Matin, Mir A.; Bourque, Charles P.-A.

    2013-04-01

    SummaryWater vapor generated locally by actual evapotranspiration (AET) is important both to the recycling of water regionally and to the long term sustainability of desert-oases in the semi-arid-to-arid region of northwest (NW) China. An accurate assessment of AET is central to describing the hydrologic status of watersheds. Conventional methods of estimating AET from meteorological point data are generally not appropriate for regions with high spatial variability, particularly with respect to landcover and topography. Insufficient monitoring stations make it particularly difficult to estimate AET that is spatially representative of large areas. The objective of this study was to estimate spatially-distributed monthly AET for a complex landscape, consisting of deserts, oases, and mountains, with climate and landcover data generated primarily from remote sensing (RS) data. In this study, we used two complementary relationship (CR)-based methods to estimate monthly reference evapotranspiration (ETo) and AET over a 10-year period (2000-2009) for two large watersheds in NW China. In evaluating the performance of CR-based methods, we compared point-estimates of ETo and AET generated with the two methods (generated either by using climate-station data or by extracting point-estimates from end products produced from RS-data) against (i) climate-station-based estimates of ETo calculated with the FAO Penman-Monteith (P-M) equation and from pan-evaporation data, and (ii) geographically-corresponding point-estimates of AET extracted from the MODIS global product of AET (MOD16) recently developed by Mu et al. (2011, Remote Sensing of Environment, 115, 1781-1800). Point-extractions of AET from MOD16-products were the least representative, when compared to ETo and AET calculated with the other methods. Between CR-based methods, the Venturini et al. (2008, Remote Sensing of Environment, 112, 132-141) method provided the best comparison with ETo calculated with the P-M equation

  1. Assessing the impact of end-member selection on the accuracy of satellite-based spatial variability models for actual evapotranspiration estimation

    NASA Astrophysics Data System (ADS)

    Long, Di; Singh, Vijay P.

    2013-05-01

    This study examines the impact of end-member (i.e., hot and cold extremes) selection on the performance and mechanisms of error propagation in satellite-based spatial variability models for estimating actual evapotranspiration, using the triangle, surface energy balance algorithm for land (SEBAL), and mapping evapotranspiration with high resolution and internalized calibration (METRIC) models. These models were applied to the soil moisture-atmosphere coupling experiment site in central Iowa on two Landsat Thematic Mapper/Enhanced Thematic Mapper Plus acquisition dates in 2002. Evaporative fraction (EF, defined as the ratio of latent heat flux to availability energy) estimates from the three models at field and watershed scales were examined using varying end-members. Results show that the end-members fundamentally determine the magnitudes of EF retrievals at both field and watershed scales. The hot and cold extremes exercise a similar impact on the discrepancy between the EF estimates and the ground-based measurements, i.e., given a hot (cold) extreme, the EF estimates tend to increase with increasing temperature of cold (hot) extreme, and decrease with decreasing temperature of cold (hot) extreme. The coefficient of determination between the EF estimates and the ground-based measurements depends principally on the capability of remotely sensed surface temperature (Ts) to capture EF (i.e., depending on the correlation between Ts and EF measurements), being slightly influenced by the end-members. Varying the end-members does not substantially affect the standard deviation and skewness of the EF frequency distributions from the same model at the watershed scale. However, different models generate markedly different EF frequency distributions due to differing model physics, especially the limiting edges of EF defined in the remotely sensed vegetation fraction (fc) and Ts space. In general, the end-members cannot be properly determined because (1) they do not

  2. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    NASA Astrophysics Data System (ADS)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-08-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia's cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop

  3. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Calvet, J.-C.; Martin, E.; Moulin, S.; Marloie, O.

    2015-10-01

    Generic land surface models are generally driven by large-scale data sets to describe the climate, the soil properties, the vegetation dynamic and the cropland management (irrigation). This paper investigates the uncertainties in these drivers and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12-year Mediterranean crop succession. We evaluate the forcing data sets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN (Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie) high spatial resolution atmospheric reanalysis, the leaf area index (LAI) time courses derived from the ECOCLIMAP-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional data sets which include the ERA-Interim (ERA-I) low spatial resolution reanalysis, the Global Precipitation Climatology Centre data set (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for ERA-I (2.5 W m-2) compared to the negative biases found for SAFRAN (-10 W m-2) and the MSG satellite (-12 W m-2). Both SAFRAN and ERA-I underestimate downwelling longwave radiations by -12 and -16 W m-2, respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve Mediterranean crop phenology and underestimates the bare soil period which leads to an overall overestimation of LAI over the crop succession. The

  4. Crop coefficients specific to multiple phenological stages for evapotranspiration-based irrigation management of onion and spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weighing lysimeters are used to measure crop water use during the growing season. By relating the water use of a specific crop to a well-watered reference crop such as grass, crop coefficients (KC) can be developed to assist in predicting crop needs using meteorological data available from weather s...

  5. AgRISTARS: Early warning and crop condition assessment. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator); Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J.

    1981-01-01

    Emissive (10.5 to 12.5 microns) and reflective (0.55 to 1.1 microns) data for ten day scenes and infrared data for six night scenes of southern Texas were analyzed for plant cover, soil temperature, freeze, water stress, and evapotranspiration. Heat capacity mapping mission radiometric temperatures were: within 2 C of dewpoint temperatures, significantly correlated with variables important in evapotranspiration, and related to freeze severity and planting depth soil temperatures.

  6. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational simplified surface energy balance model

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Russell L, Scott; Verdin, James P.

    2014-01-01

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. We have developed a first-ever basin-wide actual evapotranspiration (ETa) map of the CRB at the Landsat scale for water use assessment at the field level. We used the operational Simplified Surface Energy Balance (SSEBop) model for estimating ETa using 328 cloud-free Landsat images acquired during 2010. Our results show that cropland had the highest ETa among all land cover classes except for water. Validation using eddy covariance measured ETa showed that the SSEBop model nicely captured the variability in annual ETa with an overall R2 of 0.78 and a mean bias error of about 10%. Comparison with water balance-based ETa showed good agreement (R2 = 0.85) at the sub-basin level. Though there was good correlation (R2 = 0.79) between Moderate Resolution Imaging Spectroradiometer (MODIS)-based ETa (1 km spatial resolution) and Landsat-based ETa (30 m spatial resolution), the spatial distribution of MODIS-based ETa was not suitable for water use assessment at the field level. In contrast, Landsat-based ETa has good potential to be used at the field level for water management. With further validation using multiple years and sites, our methodology can be applied for regular production of ETa maps of larger areas such as the conterminous United States.

  7. Estimation of total available water in the soil layer by integrating actual evapotranspiration data in a remote sensing-driven soil water balance

    NASA Astrophysics Data System (ADS)

    Campos, Isidro; González-Piqueras, Jose; Carrara, Arnaud; Villodre, Julio; Calera, Alfonso

    2016-03-01

    The total available water (τ) by plants that could be stored in its root soil layer is a key parameter when applying soil water balance models. Since the transpiration rate of a vegetation stand could be the best proxy about the soil water content into the root soil layer, we propose a methodology for estimating τ by using as basic inputs the evapotranspiration rate of the stand and time series of multispectral imagery. This methodology is based on the inverted formulation of the soil water balance model. The inversion of the model was addressed by using an iterative approach, which optimizes the τ parameter to minimize the difference between measured and modeled ET. This methodology was tested for a Mediterranean holm oak savanna (dehesa) for which eddy covariance measurements of actual ET were available. The optimization procedure was performed by using a continuous dataset (in 2004) of daily ET measurements and 16 sets of 8 daily ET measurements, resulting in τ values of 325 and 305 mm, respectively. The use of these τ values in the RSWB model for the validation period (2005-2008) allowed us to estimate dehesa ET with a RMSE = 0.48 mm/day. The model satisfactorily reproduces the water stress process. The sensitivity of τ estimates was evaluated regarding two of the more uncertain parameters in the RSWB model. These parameters are the average fraction of τ that can be depleted from the root zone without producing moisture stress (pτ) and the soil evaporation component. The results of this analysis indicated relatively little influence from the evaporation component and the need for adequate knowledge about pτ for estimating τ.

  8. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Martin, E.; Calvet, J.-C.; Moulin, S.; Marloie, O.

    2015-02-01

    Generic land surface models are generally driven by large-scale forcing datasets to describe the climate, the surface characteristics (soil texture, vegetation dynamic) and the cropland management (irrigation). This paper investigates the errors in these forcing variables and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12 year Mediterranean crop succession. We evaluate the forcing datasets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN high spatial resolution atmospheric reanalysis, the Leaf Area Index (LAI) cycles derived from the Ecoclimap-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional datasets which includes the ERA-Interim low spatial resolution reanalysis, the Global Precipitation Climatology Centre dataset (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The methodology consists in comparing the simulation achieved using large-scale forcing datasets with the simulation achieved using local observations for each forcing variable. The relative impacts of the forcing variables on simulated ET are compared with each other and with the model uncertainties triggered by errors in soil parameters. LAI and the lack of irrigation in the simulation generate the largest mean deviations in ET between the large-scale and the local-scale simulations (equivalent to 24 and 19 months of ET over 12 yr). The climate induces smaller mean deviations equivalent to 7-8 months of ET over 12 yr. The soil texture has the lowest impact (equivalent to 3 months of ET). However, the impact of errors in the forcing variables is smaller than the impact triggered by errors in the soil parameters (equivalent to 27 months of ET). The absence of

  9. Vegetation monitoring and estimation of evapotranspiration using remote sensing-based models in heterogeneous areas with patchy natural vegetation and crops

    NASA Astrophysics Data System (ADS)

    Carpintero, Elisabet; Andreu, Ana; Gonzalez-Dugo, Maria P.

    2015-04-01

    The integration of remotely sensed data into models for estimating evapotranspiration (ET) has increased significantly in recent years, allowing the extension of these models application from point to regional scale. Remote sensors provide distributed information about the status of vegetation and allow for a regular monitoring of water consumption. Currently, there are two types of approaches for estimating ET based either on the soil water balance, or surface energy balance. The first one uses the reflectance of vegetated surfaces in the visible and near infrared regions of the electromagnetic spectrum (VIS / NIR) to characterize the vegetation and its role in the water balance (Gonzalez-Dugo and Mateos, 2008). On the other hand, thermal-based energy balance models use the radiometric surface temperature registered by the sensor on thermal infrared (TIR) bands as the primary boundary condition for estimating ET (Kustas and Norman, 1996). The aim of this work is to carry out, using Landsat-8 satellite images, a continuous monitoring of growth and evapotranspiration of the different vegetation types, both natural and cultivated, in a region located in Southern Spain during the season August 2013 / September 2014. The region, with about 13800 ha, is marked by strong contrasts in the physical environment, with significant altitudinal gradient combined with a great variety of soil types and vegetation. It is characterized by a variation of grassland, scrubs, conifers, oaks and irrigated crops. In this work, a daily soil water balance has been applied using the vegetation index-basal crop coefficient approach (RSWB). This model is based on FAO-56 methodology (Allen et al., 1998), which determines the evapotranspiration of vegetation with the concepts of crop coefficient and reference ET. The crop coefficient accounts for the influence of the plants on the evapotranspiration, considering the effect of changes in canopy biophysical properties throughout the growth cycle

  10. A 3-D Generalization of the Budyko Framework Captures the Mutual Interdependence Between Long-Term Mean Annual Precipitation, Actual and Potential Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Carmona, A. M.; Poveda, G.

    2012-12-01

    We study the behavior of the 3-D parameter space defined by Φ =PET/P (so-called Aridity Index), Ψ =AET/P, and Ω =AET/PET, where P denotes mean annual precipitation, and PET and AET denote mean annual potential and actual evapotranspiration, respectively. Using information from the CLIMWAT 2.0 database (www.fao.org/nr/water/infores_databases_climwat.html) for P and PET, we estimate AET using both Budyko's and Turc's equations. Our results indicate that the well-known Budyko function that relates Φ vs.Ψ corresponds to a particular bi-dimensional cross-section of a broader coupling existing between Φ, Ψ and Ω (Figure 1a), and in turn of the mutual interdependence between P, PET and AET. The behavior of the three bi-dimensional projections are clearly parameterized by the remaining ortogonal parameter, such that: (i) the relation Φ vs. Ψ is defined by physically consistent varying values of Ω (Figure 1b); (ii) the relation Ω vs. Ψ is defined by physically consistent varying values of the Aridity Index,Φ (Figure 1c), and (iii) the relation Ω vs. Φ is defined by physically consistent varying values of Ψ (Figure 1d). Interestingly, we show that Φ and Ω are related by a power law, Φ~Ω-θ, with scaling exponent θ=1.15 (R2=0.91, n=3420) for the whole world (Figure 1d). Mathematical functions that model the three bi-dimensional projections and the surface defining the interdependence between Φ, Ψ and Ω will be presented. Our results provide a new framework to understand the coupling between the long-term mean annual water and energy balances in river basins, and the hydrological effects brought about by climate change, while taking into account the mutual interdependence between the three non-dimensional parameters Φ, Ψ and Ω, and in turn between P, PET and AET. Figure 1. (a) Three-dimensional rendering of sample values of Φ =PET/P (so-called Aridity Index), Ψ =AET/P, and Ω=AET/PET. Bi-dimensional projections of: (b) relation Φ vs.

  11. Assessing evapotranspiration, basal crop coefficient, and irrigation efficiency in production peach orchard in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate field scale observations of crop water use are necessary to maximize crop productivity with limited water resources and to parameterize regional and continental satellite models to estimate near real-time crop water use. However, rapid, continuous observations of field-scale water use in Ca...

  12. Evaluation of a Modified SEBAL Algorithm to Estimate Actual Evapotranspiration in Cotton Ecosystems of Central Asia using Microwave and Optical Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher

    2015-04-01

    Being recognized as an essential component of both the water and the energy cycle, actual evapotranspiration (ETa) plays in important role in order to describe the complex interactions within the climate system of the Earth. Here, remote sensing is a powerful tool to estimate regional ETa to support the regional water management. For instance, the water withdrawal of the agricultural sector in OECD countries is on average about 44 %, but in the states of Central Asia it achieves more than 90 %. This fact is identified as one of the main reasons for the increasing water scarcity in this region. An accuracy assessment of the methods used for determining ETa is necessary concerning an appropriate use of the model results to support agriculture and irrigation management. Within Central Asia the Khorezm region in Uzbekistan is a case study region for the problems of irrigated agriculture. For Khorezm the seasonal ETa based on MODIS data was calculated for the years 2009 - 2011 using a partly modified surface energy balance algorithm for land (SEBAL). SEBAL was implemented based on MODIS time series to calculate the energy balance components like net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G). Whilst SEBAL is using an empirical equation for the estimation of G, a more physically based method was introduced in this study. This method uses microwave soil moisture products (ASAR and ASCAT-SSM) as an additional model input. The input parameters and the model results of all energy balance components (Rn, H, LE, and G) were intensively validated by field measurements with an eddy covariance system and soil sensors. The model shows very good performance for Rn with average model efficiency (NSE) of 0.68 and small relative errors (rRMSE) of about 10%. For turbulent heat fluxes good results can be achieved with NSE of 0.31 for H and 0.55 for LE, the rRMSE are about 21% (H) and 18% (LE). Soil heat flux estimation could be improved using the

  13. Study of crop coefficient and the ratio of soil evaporation to evapotranspiration in an irrigated maize field in an arid area of Yellow River Basin in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan; Yan, Haofang; Shi, Haibin; Sugimoto, Hideki

    2013-08-01

    A field experiment was conducted in a maize field in 2006 in an arid area of the Yellow River Basin in China. The daytime evapotranspiration (ETc) and soil evaporation beneath the maize canopy ( E g) were measured by Bowen ratio energy balance method and micro-lysimeters, respectively. The results showed that the total ETc during maize growth season was 696 mm, and the maximum values occurred at about 90-140 days after sowing. The crop coefficient ( K c), which was calculated from the ratio of ETc to reference evapotranspiration (ET0), was quite different from the values reported by other researchers in similar climate areas, with average values of 0.34, 0.47, 1.0 and 0.9 for initial, development, mid-season and late-season stages, respectively. High correlations between leaf area index (LAI) and average K c for every 4 days were obtained. The total E g was 201.4 mm with average values ranged from 0.92 to 2.05 for four growth stages of maize; and accounted for around 28.9 % of ETc. The ratio E g/ETc showed high negative relationship with LAI. These results were very important in precise management of irrigation for maize in Yellow River Basin areas.

  14. Exploring the use of multi-sensor data fusion for daily evapotranspiration mapping at field scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern practices of water management in agriculture can significantly benefit from accurate mapping of crop water consumption at field scale. Assuming that actual evapotranspiration (ET) is the main water loss in land hydrological balance, remote sensing data represent an invaluable tool for water u...

  15. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  16. A Comparison of Canopy Evapotranspiration for Maize and Two Perennial Grass Species Identified as Potential Bioenergy Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial rhizomatous grasses (PRGs) that utilize the C4 photosynthetic pathway are considered one of the most promising vegetation types to accommodate a cellulosic feedstock for renewable energy production. The potential widespread use of biomass crops for renewable energy production has sparked n...

  17. Reference crop evapotranspiration derived from geo-stationary satellite imagery: a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Trigo, I. F.; Jitan, M. A.; Temesgen Enku, N.; van der Tol, C.; Gieske, A. S. M.

    2010-11-01

    First results are shown of a project aiming to estimate daily values of reference crop evapotranspiration ET0 from geo-stationary satellite imagery. In particular, for Woreta, a site in the Ethiopian highland at an elevation of about 1800 m, we tested a radiation-temperature based approximate formula proposed by Makkink (MAK), adopting ET0 evaluated with the version of the Penman-Monteith equation described in the FAO Irrigation and Drainage paper 56 as the most accurate estimate. More precisely we used the latter with measured daily solar radiation as input (denoted by PMFAO-Rs). Our data set for Woreta concerns a period where the surface was fully covered with short green non-stressed vegetation. Our project was carried out in the context of the Satellite Application Facility on Land Surface Analysis (LANDSAF) facility. Among others, the scope of LANDSAF is to increase benefit from the EUMETSAT Satellite Meteosat Second Generation (MSG). In this study we applied daily values of downward solar radiation at the surface obtained from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer. In addition, air temperature at 2 m was obtained from 3-hourly forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Both MAK and PMFAO-Rs contain the psychrometric "constant", which is proportional to air pressure, which, in turn, decreases with elevation. In order to test elevation effects we tested MAK and its LANDSAF input data for 2 sites in the Jordan Valley located about 250 m b.s.l. Except for a small underestimation of air temperature at the Ethiopian site at 1800 m, the first results of our LANDSAF-ET0 project are promising. If our approach to derive ET0 proves successfully, then the LANDSAF will be able to initiate nearly real time free distribution of ET0 for the full MSG disk.

  18. Reference crop evapotranspiration derived from geo-stationary satellite imagery - a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Trigo, I. F.; Jitan, M. A.; Temesgen Enku, N.; van der Tol, C.; Gieske, A. S. M.

    2010-07-01

    First results are shown of a project aiming to estimate daily values of reference crop evapotranspiration ET0 from geo-stationary satellite imagery. In particular, for Woreta, a site in the Ethiopian highland at an elevation of about 1800 m, we tested a radiation-temperature based approximate formula proposed by Makkink (MAK) adopting ET0 evaluated with the version of the Penman-Monteith equation described in the FAO Irrigation and Drainage paper 56 as the most accurate estimate. More precisely we used the latter with measured daily solar radiation as input (denoted by PMFAO-Rs). Our data set for Woreta concerns a period where the surface was fully covered with short green non-stressed vegetation. Our project was carried out in the context of the Satellite Application Facility on Land Surface Analysis (LANDSAF) facility. Among others, the scope of LANDSAF is to increase benefit from the EUMETSAT Satellite Meteosat Second Generation (MSG). In this study we applied daily values of downward solar radiation at the surface obtained from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer. In addition, air temperature at 2 m was obtained from 3-hourly forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Both MAK and PMFAO-Rs contain the psychrometric "constant", which is proportional to air pressure, which, in turn, decreases with elevation. In order to test elevation effects we tested MAK and its LANDSAF input data for 2 sites in the Jordan Valley located about 250 m b.s.l. Except for a small underestimation of air temperature at the Ethiopian site at 1800 m, the first results of our LANDSAF-ET0 project are promising. If our approach to derive ET0 proves successfully, then the LANDSAF will be able to initiate nearly real time free distribution of ET0 for the full MSG disk.

  19. Weighing Lysimeters for Developing Crop Coefficients and Efficient Irrigation Practices for Vegetable Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large weighing lysimeters are expensive but invaluable tools for measuring crop evapotranspiration and developing crop coefficients for horticultural crops. Crop coefficients are used by both growers and researchers to estimate crop water use and accurately schedule irrigations. Two lysimeters of ...

  20. Evapotranspiration Modeling and Measurements at Ecosystem Level

    NASA Astrophysics Data System (ADS)

    Sirca, C.; Snyder, R. L.; Mereu, S.; Kovács-Láng, E.; Ónodi, G.; Spano, D.

    2012-12-01

    In recent years, the availability of reference evapotranspiration (ETo) data is greatly increased. ETo, in conjunction with coefficients accounting for the difference between the vegetation and the reference surface, provides estimation of the actual evapotranspiration (ETa). The coefficients approach was applied in the past mainly for crops, due the lack of experimental data and difficulties to account for terrain and vegetation variability in natural ecosystems. Moreover, the assessment of ETa over large spatial scale by measurements is often time consuming, and requires several measurement points with relatively expensive and sophisticated instrumentation and techniques (e.g. eddy covariance). The Ecosystem Water Program (ECOWAT) was recently developed to help estimates of ETa of ecosystems by accounting for microclimate, vegetation type, plant density, and water stress. ETa on natural and semi-natural ecosystems has several applications, e.g. water status assessment, fire danger estimation, and ecosystem management practices. In this work, results obtained using ECOWAT to assess ETa of a forest ecosystem located in Hungary are reported. The site is a part of the EU-FP7 INCREASE project, which aims to study the effects of climate change on European shrubland ecosystems. In the site, a climate manipulation experiment was setted up to have a warming and a drought treatment (besides the control). Each treatment was replicated three times We show how the ECOWAT model performed when the predicted actual evapotranspiration is compared with actual evapotranspiration obtained from Surface Renewal method and with soil moisture measurements. ECOWAT was able to capture the differences in the water balance at treatment level, confirming its potential as a tool for water status assessment. For the Surface Renewal method, high frequency temperature data were collected to estimate the sensible heat flux (H'). The net radiation (Rn) and soil heat flux density (G) were also

  1. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  2. Using Satellite-based Evapotranspiration Estimation to Characterize Agricultural Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Myint, S. W.; Hendrickx, J. M. H.

    2014-12-01

    The satellite-based evapotranspiration (ET) model permits estimation of water consumption across space and time in a systematic way. Developing tools to monitor water availability and water use is critical to meet future water shortage challenges in the American West. This study applied METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) to 2001 Landsat imagery to estimate ET of various crop types in Phoenix. The total annual ET estimates are correlated well with the actual water use at the irrigation district level (r=0.99). We further incorporated a crop type map to estimate annual ET for the major crop types in the region, and to examine variability in crop water use among different irrigation districts. Our results show that alfalfa and double crops consume more water than other crop types with mean annual ET estimations of 1300 to 1580 mm/year, and that cotton uses more water (1162 mm/year) than corn (838 mm/year) and sorghum (829 mm/year) as expected. Crop water use varies from one irrigation district to another due to differences in soil quality, water quality, and farming practices. Results from our study suggest that the ET maps derived from METRIC can be used to quantify the spatial distribution of ET and to characterize agricultural water use by crop types at different spatial scales.

  3. Water Footprint of a Super-intensive Olive Grove Under Mediterranean Climate using Ground-based Evapotranspiration Measurements and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Nogueira, A. M.; Paço, T. A.; Silvestre, J. C.; Gonzalez, L. F.; Santos, F. L.; Pereira, L. S.

    2012-04-01

    measurements were used to calculate water footprint instead of the common procedure (using evapotranspiration estimates), this might have also introduced some differences. The potential of using remote sensing techniques for the assessment of water footprint of crops has been discussed in recent literature. It can provide estimates of actual evapotranspiration, of precipitation, of surface runoff and of irrigation needs when associated with modelling. In this study we further compare the water footprint estimates using in situ evapotranspiration measurements and water footprint estimates using remote sensing techniques. A comparison with the irrigation records for this particular olive orchard will be used to validate the approaches.

  4. Assessment of actual transpiration rate in olive tree field combining sap-flow, leaf area index and scintillometer measurements

    NASA Astrophysics Data System (ADS)

    Agnese, C.; Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G.; Rallo, G.; de Bruin, H. A. R.

    2009-09-01

    Models to estimate the actual evapotranspiration (ET) in sparse vegetation area can be fundamental for agricultural water managements, especially when water availability is a limiting factor. Models validation must be carried out by considering in situ measurements referred to the field scale, which is the relevant scale of the modelled variables. Moreover, a particular relevance assumes to consider separately the components of plant transpiration (T) and soil evaporation (E), because only the first is actually related to the crop stress conditions. Objective of the paper was to assess a procedure aimed to estimate olive trees actual transpiration by combining sap flow measurements with the scintillometer technique at field scale. The study area, located in Western Sicily (Italy), is mainly cultivated with olive crop and is characterized by typical Mediterranean semi-arid climate. Measurements of sap flow and crop actual evapotranspiration rate were carried out during 2008 irrigation season. Crop transpiration fluxes, measured on some plants by means of sap flow sensors, were upscaled considering the leaf area index (LAI). The comparison between evapotranspiration values, derived by displaced-beam small-aperture scintillometer (DBSAS-SLS20, Scintec AG), with the transpiration fluxes obtained by the sap flow sensors, also allowed to evaluate the contribute of soil evaporation in an area characterized by low vegetation coverage.

  5. The influence of cover crops and tillage on actual and potential soil erosion in an olive grove

    NASA Astrophysics Data System (ADS)

    Sastre, Blanca; Bienes, Ramón; García-Díaz, Andrés; Panagopoulos, Thomas; José Marqués, Maria

    2014-05-01

    The study was carried out in an olive grove in central Spain (South of Madrid; Tagus River Basin). In this semi-arid zone, the annual mean temperature is 13.8 ºC and the annual precipitation is 395 mm. Olive groves are planted in an erosion prone area due to steep slopes up to 15%. Soil is classified as Typic Haploxerept with clay loam texture. The land studied was formerly a vineyard, but it was replaced by the studied olive grove in 2004. It covers approximately 3 ha and olive trees are planted every 6 x 7 metres. They were usually managed by tillage to decrease weed competition. This conventional practice results in a wide surface of bare soil prone to erosion processes. In the long term soil degradation may lead to increase the desertification risk in the area. Storms have important consequences in this shallow and vulnerable soil, as more than 90 Mg ha-1 have been measured after one day with 40 mm of rainfall. In order to avoid this situation, cover crops between the olive trees were planted three years ago: sainfoin (Onobrychis viciifolia), barley (Hordeum vulgare), and purple false brome (Brachypodium distachyon), and they were compared with annual spontaneous vegetation after a minimum tillage treatment (ASV). The results regarding erosion control were positive. We observed (Oct. 2012/Sept. 2013) annual soil loss up to 11 Mg ha-1 in ASV, but this figure was reduced in the sown covers, being 8 Mg ha-1 in sainfoin treatment, 3,7 Mg ha-1 in barley treatment, and only 1,5 Mg ha-1 in false brome treatment. Those results are used to predict the risk of erosion in long term. Moreover, soil organic carbon (SOC) increased with treatments, this is significant as it reduces soil erodibility. The increases were found both in topsoil (up to 5 cm) and more in depth, in the root zone (from 5 to 10 cm depth). From higher to lower SOC values we found the false brome (1.05%), barley (0.92%), ASV (0.79%) and sainfoin (0.71%) regarding topsoil. In the root zone (5-10 cm depth

  6. Estimation of Evapotranspiration of Almond orchards using Remote Sensing based SEBAL model in Central Valley, California

    NASA Astrophysics Data System (ADS)

    Roy, S.; Ustin, S.; Kefauver, S. C.

    2009-12-01

    Evapotranspiration is one of the main components of the hydrologic cycle and its impact to hydrology, agriculture,forestry and environmental studies is very crucial. SEBAL (Surface Energy Balance Algorithm for Land) is an image-processing model comprised of twenty-five computational sub-models that computes actual evapotranspiration (ETa) and other energy exchanges as a component of energy balance which is used to derive the surface radiation balance equation for the net surface radiation flux (Rn) on a pixel-by-pixel basis. For this study, SEBAL method is applied to Level 1B dataset of visible, near-infrared and thermal infrared radiation channels of MASTER instrument on-board NASA-DC 8 flight. This paper uses the SEBAL method to (1) investigate the spatial distribution property of land surface temperature (Ls), NDVI, and ETa over the San Joaquin valley. (2) Estimate actual evapotranspiration of almond class on pixel-by-pixel basis in the Central valley, California. (3) Comparison of actual Evapotranspiration obtained from SEBAL model with reference evapotranspiration (Eto) using Penman Monteiths method based on the procedures and available data from California Irrigation Management Information System (CIMIS) stations. The results of the regression between extracted land surface temperature, NDVI and, evapotranspiration show negative (-) correlation. On the other hand Ls possessed a slightly stronger negative correlation with the ETa than with NDVI for Almond class. The correlation coefficient of actual ETa estimates from remote sensing with Reference ETo from Penmann Monteith are 0.8571. ETa estimated for almond crop from SEBAL were found to be almost same with the CIMIS_Penman Monteith method with bias of 0.77 mm and mean percentage difference is 0.10%. These results indicate that combination of MASTER data with surface meteorological data could provide an efficient tool for the estimation of regional actual ET used for water resources and irrigation scheduling

  7. Investigation of the Large-Scale Atmospheric Moisture Field over the Midwestern United States in Relation to Summer Precipitation. Part II: Recycling of Local Evapotranspiration and Association with Soil Moisture and Crop Yields.

    NASA Astrophysics Data System (ADS)

    Zangvil, Abraham; Portis, Diane H.; Lamb, Peter J.

    2004-09-01

    The relative contributions of locally evapotranspired (i.e., recycled) moisture versus externally advected water vapor for the growing-season precipitation of the U.S. Corn Belt and surrounding areas (1.23 × 106 km2) are estimated in this paper. Four May August seasons with highly contrasting precipitation and crop yields (1975, 1976, 1979, and 1988) are investigated. A simple recycling equation—developed from the traditional atmospheric moisture budget and involving regional evapotranspiration and atmospheric water vapor inflow—is applied on daily, monthly, and seasonal time scales. Several atmospheric moisture budget components {moisture flux divergence [MFD], storage change [or change in precipitable water (dPW)], and inflow [IF]} are evaluated for 24-h periods using standard finite difference and line integral methods applied to objectively analyzed U.S. and Canadian rawinsonde data (50-hPa vertical resolution, surface to 300 hPa) for 0000 and 1200 UTC. Daily area-averaged precipitation (P) totals are derived from approximately 600 evenly distributed (but ungridded) recording rain gauges. Evapotranspiration (E) is estimated as the residual of the moisture budget equation for 24-h periods; values compare favorably with the few existing observations.Traditional budget results show the following: E is weakly related to P on monthly and seasonal time scales; there is surprising interannual constancy of seasonal E cycles and averages given the large variation in resulting crop yields; and monthly and seasonal variability of the export of the E - P surplus is determined largely by the horizontal velocity divergence component of MFD. New recycling analyses suggest that the contribution of local E to P (i.e., PE/P) is relatively small and remarkably consistent (largely 0.19 0.24) for monthly and seasonal periods, despite large P and crop yield variations. However, the monthly/seasonal averaging process is found to completely mask a striking decrease of daily PE

  8. Trends in Crop Management and Phenology in the U.S. Corn Belt, and Effects on Yields, Evapotranspiration and Energy Balance

    NASA Astrophysics Data System (ADS)

    Sacks, W. J.; Kucharik, C. J.

    2010-12-01

    Two important factors that can affect crop yields are planting dates and the length of the crop growth period. We analyzed 25 years of data collected by the USDA in order to document trends in planting dates, lengths of the vegetative and reproductive growth periods, and the length of time between maturity and harvest for corn and soybeans across the U.S. We then used these observations to drive the Agro-IBIS model, in order to investigate the effects of changing planting dates and crop cultivars on crop yields and fluxes of water and energy. Averaged across the U.S., corn planting dates advanced about 10 days from 1981 to 2005, and soybean planting dates about 12 days. For both crops, but especially for corn, this has been accompanied by a lengthening of the growth period. The period from corn planting to maturity was about 12 days longer around 2005 than it was around 1981. A large driver of this change was a 14% increase in the number of growing degree days needed for corn to progress through the grainfill period, probably reflecting an adoption of longer-season cultivars. This trend to longer-season cultivars was responsible for a 12.6 bu ac-1 yield increase across the U.S. Corn Belt over this 25-year period, according to our simulations. Thus, the adoption of longer-season cultivars can account for 26% of the observed yield trend. These changes in crop phenology, together with a shortening of the time from maturity to harvest, have also modified the surface water and energy balance. Earlier planting has led to an increase in the latent heat flux and a decrease in the sensible heat flux in June, while a shorter time from maturity to harvest has meant an increase in net radiation in October.

  9. Hourly and daily evapotranspiration of alfalfa under regional advection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regional advection often affects the evapotranspiration rates of irrigated crops in the Southern High Plains. In 1998, during a 10-day period (13-22 June) of unusually strong advection, high evapotranspiration (ET) rates for unstressed, irrigated alfalfa (Medicago sativa) were measured with two prec...

  10. Evapotranspiration information reporting: I. Factors governing measurement accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More and more evapotranspiration (ET) models, ET crop coefficients, and associated measurements of ET are being reported in the literature and used to develop, calibrate, and test important ET process models. Evapotranspiration data are derived from a range of measurement systems including lysimeter...

  11. Using daily field-scale evapotranspiration (ET) derived with multi-sensor data fusion for monitoring crop condition and yield in central Iowa, United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought has significant impacts over broad spatial and temporal scales, and information about the timing and extent of such conditions is of critical importance to many end users in the agricultural and water resource management communities. The ability to accurately monitor effects on crops and pr...

  12. ADVECTION INFLUENCES ON EVAPOTRANSPIRATION OF ALFALFA IN A SEMIARID ENVIRONMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advective enhancement of crop evapotranspiration (ET) occurs when drier, hotter air is transported into the crop by wind and can be an important factor in the water balance of irrigated crops in a semiarid climate. Thirteen days of moderate to extremely high ET rates of irrigated alfalfa (Medicago ...

  13. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    USGS Publications Warehouse

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  14. Spatial and temporal variation in evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial and temporal variation in evapotranspiration occurs at multiple scales as the result of several different spatial and temporal patterns in precipitation, soil water holding capacity, cloudiness (available energy), types of crops, and residue and tillage management practices. We have often as...

  15. Use of the Aquacrop model for the simulation of wheat evapotranspiration in north-eastern Tunisia

    NASA Astrophysics Data System (ADS)

    Aloui, A.; Masmoudi, M.; Jacob, F.; Ben Mechlia, N.

    2012-04-01

    Improvement of rainfed cropping systems is based on the use of rainfall water for crop transpiration. This could be achieved by the appropriate partitioning of rainfall between green water and blue water. Under semiarid conditions, the AquaCrop model which has a driving engine based on the direct link between dry matter production and crop evapotranspiration, seems to be a powerful tool to perform this task. For this purposes, an experimental work was conducted on the wheat crop, grown under various farming conditions, to determine how simulation modeling could be used to monitor canopy changes and actual crop evapotranspiration. The study area -CapBon- is located in north eastern Tunisia where rainfall is about 500 mm and ET0 around 1200mm Field monitoring consisted in regular measurements of the leaf area index (LAI), vegetation cover changes (CC) and soil moisture content profiles over the cropping season December 2009-April 2010. The usefulness of using hemispherical and standard images to determine LAI and CC was also investigated for their adoption as a standard methods for the assessment of these important parameter as input data. Results show that good estimates of LAI and CC could be obtained from digital images. Fairly reliable linear relationships were obtained between measurements on samples using a leaf area meter and indirect assessments (r2 = 0.78) Aqua-Crop simulations where also mostly accurate in estimating soil moisture temporal variations and soil water content of well textured soils. However for soils with high clay content, important differences were observed between simulation outputs and direct gravimetric measurements.

  16. Fuzzy-Probabilistic Calculations of Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.

    2011-12-01

    Given the difficulty involved in field hydrologic and meteorological measurements, as well as a large number of empirical and semi-empirical equations, forecasting potential and actual evapotranspiration is subject to numerous uncertainties. The objective of this presentation is to illustrate the application of a conceptual-mathematical approach, based on fuzzy-probabilistic predictions of evapotranspiration and its uncertainty, and to compare the results of calculations with field evapotranspiration measurements. Calculations of potential evapotranspiration are conducted using the Bair-Robertson, Blaney-Criddle, Caprio, Hargreaves-Samani, Hamon, Jensen-Haise, Linacre, Makkink, Penman, Penman-Monteith, Priestly-Taylor, Thornthwaite, and Turc equations, and the evapotranspiration is then determined based on the modified Budyko (1974) model. As a case study, statistics from historical monthly averaged and annual climatic data from the Hanford site, Washington, USA, are used as input parameters for the RAMAS Risk Calc code. The effect of aleatory uncertainty on evapotranspiration calculations is considered by assigning probability distributions of input meteorological parameters, and the effect of epistemic (model) uncertainty is assessed by assigning different evapotranspiration models.

  17. Study of evapotranspiration and evaporation beneath the canopy in a buckwheat field

    NASA Astrophysics Data System (ADS)

    Yan, Haofang; Zhang, Chuan; Oue, Hiroki; Wang, Guoqing; He, Bin

    2015-11-01

    The determination of evaporation and transpiration separately is very important in improving water use efficiency and developing exact irrigation scheduling. Hourly crop evapotranspiration ( ET c) and soil evaporation ( E g) beneath the buckwheat canopy were measured using Bowen ratio energy balance method and micro-lysimeters, respectively. The total ET c and E g in the whole growth season of buckwheat were 187.4 and 72.1 mm, respectively. Crop coefficient of buckwheat plant was simulated by days after sowing (DAS) and leaf area index (LAI), the average values for four growth stages were 0.58, 0.59, 1.10, and 0.74; and soil evaporation coefficient (the ratio of soil evaporation to reference evapotranspiration) was modeled by soil water content at 5-cm depth by dividing the LAI into two stages. The relationship between the ratio of soil evaporation to actual evapotranspiration ( E g/ ET c) and LAI was decided. It was found that E g/ ET c decreased from 1 to 0.3 with the increase in LAI.

  18. The Role of Evapotranspiration on Soil Moisture Depletion in a Small Alaskan Subarctic Farm

    NASA Astrophysics Data System (ADS)

    Ruairuen, W.; Fochesatto, G. J.; Sparrow, E. B.; Schnabel, W.; Zhang, M.

    2013-12-01

    At high latitudes the period for agriculture production is very short (110 frost-free days) and strongly depends on the availability of soil water content for vegetables to grow. In this context the evapotranspiration (ET) cycle is key variable underpinning mass and energy balance modulating therefore moisture gradients and soil dryness. Evapotranspiration (ET) from field-grown crops water stress is virtually unknown in the subarctic region. Understanding ET cycles in high latitude agricultural ecosystem is essential in terms of water management and sustainability and projection of agricultural activity. To investigate the ET cycle in farming soils a field experiment was conducted in the summer of 2012 and 2013 at the University of Alaska Fairbanks Agricultural and Forestry Experiment Station combining micrometeorological and hydrological measurements. In this case experimental plots of lettuce (Lactuca sativa) plants were grown. The experiment evaluated several components of the ET cycle such as actual evapotranspiration, reference evaporation, pan evaporation as well as soil water content and temperature profiles to link them to the vegetable growing functions. We investigated the relationship of soil moisture content and crop water use across the growing season as a function of the ET cycle. Soil water depletion was compared to daily estimates of water loss by ET during dry and wet periods. We also investigated the dependence of ET on the atmospheric boundary layer flow patterns set by the synoptic large scale weather patterns.

  19. Validating HYLARSMET: a Hydrologically Consistent Land Surface Model for Soil Moisture and Evapotranspiration Modelling over Southern Africa using Remote Sensing and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Sinclair, Scott; Pegram, Geoff; Mengitsu, Michael; Everson, Colin

    2015-04-01

    Timeous knowledge of the spatial distribution of soil moisture and evapotranspiration over a large region in fine detail has great value for coping with two weather extremes: flash floods and droughts, since the state of the wetness of the land surface has a major impact on runoff response. Also, the ability to monitor the wetness of the soil and the actual evapotranspiration over large regions, without having to laboriously take expensive samples, is a bonus for agricultural managers who need to predict crop yields. We present samples of the daily national Soil Moisture and Evapotranspiration estimates on a grid of 7300 locations centred in 12 km squares, then move on to the results of a validation study for soil moisture and evapotranspiration estimated using the PyTOPKAPI hydrological model in Land Surface Modelling mode, a system called HYLARSMET. The HYLARSMET estimates are compared with detailed evapotranspiration and soil moisture measurements made at the Baynesfield experimental farm in the KwaZulu-Natal province of South Africa, run by the University of KZN. The HYLARSMET evapotranspiration estimates compared very well with the measured estimates for the two chosen crop types, in spite of the fact that the HYLARSMET estimates were not designed to explicitly account for the crop types at each site. The same seasonality effects were evident in all 3 estimates, and there was a stronger ET relationship between HYLARSMET and the Soybean site (Pearson r = 0.81) than for Maize, (r = 0.59). The soil moisture relationship was stronger between the two in situ measured estimates (r = 0.98 at 0.5 m depth) than it was between HYLARSMET and the field estimates (r about 0.52 in both cases). Overall there was a reasonably good relationship between HYLARSMET and the in situ measurements of ET and SM at each site, indicating the value of the modelling procedure.

  20. Measuring Evapotranspiration in Urban Irrigated Lawns in Two Kansas Cities

    NASA Astrophysics Data System (ADS)

    Shonkwiler, K. B.; Bremer, D.; Ham, J. M.

    2011-12-01

    Conservation of water is becoming increasingly critical in many metropolitan areas. The use of automated irrigation systems for the maintenance of lawns and landscapes is rising and these systems are typically maladjusted to apply more water than necessary, resulting in water wastage. Provision of accurate estimates of actual lawn water use may assist urbanites in conserving water through better adjustment of automatic irrigation systems. Micrometeorological methods may help determine actual lawn water use by measuring evapotranspiration (ET) from urban lawns. From April - August of 2011, four small tripod-mounted weather stations (tripods, five total) were deployed in twelve residential landscapes in the Kansas cities of Manhattan (MHK) and Wichita (ICT) in the USA (six properties in each city). Each tripod was instrumented to estimate reference crop evapotranspiration (ETo) via the FAO-56 method. During tripod deployment in residential lawns, actual evapotranspiration (ETactual) was measured nearby using a stationary, trailer-mounted eddy covariance (EC) station. The EC station sampled well-watered turf at the K-State Rocky Ford Turfgrass Center within 5 km of the study properties in MHK, and was also deployed at a commercial sod farm 15 - 40 km from the study residences in the greater ICT metro area. The fifth tripod was deployed in the source area of the EC station to estimate ETo in conjunction with tripods in the lawns (i.e., to serve as a reference). Data from EC allowed for computation of a so-called lawn coefficient (Kc) by determining the ratio of ETo from the tripods in residential lawns to ETo from the EC station (ETo,EC); hence, Kc = ETo,tripod / ETo,EC. Using this method, ETactual can be estimated for individual tripods within a lawn. Data suggests that it may be more accurate to quantify ET within individual lawns by microclimate (i.e., determine coefficients for "shaded" and "open/unshaded" portions of a lawn). By finding microclimate coefficients

  1. Calculating crop ET values when lysimeter data are not available.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Texas High Plains Evapotranspiration (TXHPET) network utilizes a heat unit-based approach (growing degree day concept) in the timing of various crop growth stages along with crop coefficients for computation of crop water use with the newly standardized ASCE/EWRI reference evapotranspiration (ET...

  2. Crop Coefficients of Some Selected Crops of Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Reddy, K. Chandrasekhar; Arunajyothy, S.; Mallikarjuna, P.

    2015-06-01

    Precise information on crop coefficients for estimating crop evapotranspiration (ETc) for regional scale irrigation planning is a major impediment in many regions. Crop coefficients suggested based on lysimeter data by earlier investigators have to be locally calibrated to account for the differences in the crop canopy under given climatic conditions. In the present study crop coefficients were derived based on reference crop evapotranspiration (ET0) estimated from Penman-Monteith equation and lysimeter measured ETc for groundnut, paddy, tobacco, sugarcane and castor crops at Tirupati, Nellore, Rajahmundry, Anakapalli and Rajendranagar centers of Andhra Pradesh respectively. Crop coefficients derived were compared with those recommended by FAO-56. The mean crop coefficients at different stages of growth were significantly different from those of FAO-56 curve though a similar trend was observed. A third order polynomial crop coefficient model has therefore been developed as a function of time (days after sowing the crop) for deriving suitable crop coefficients. The crop coefficient models suggested may be adopted to estimate crop evapotranspiration in the study area with reasonable degree of accuracy.

  3. A new remote sensing procedure for the estimation of crop water requirements

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, M.; Loukas, A.; Mylopoulos, N.

    2015-06-01

    The objective of this work is the development of a new approach for the estimation of water requirements for the most important crops located at Karla Watershed, central Greece. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used as a basis for the derivation of actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat ETM+ imagery. MODIS imagery has been also used, and a spatial downscaling procedure is followed between the two sensors for the derivation of a new NDVI product with a spatial resolution of 30 m x 30 m. GER 1500 spectro-radiometric measurements are additionally conducted during 2012 growing season. Cotton, alfalfa, corn and sugar beets fields are utilized, based on land use maps derived from previous Landsat 7 ETM+ images. A filtering process is then applied to derive NDVI values after acquiring Landsat ETM+ based reflectance values from the GER 1500 device. ETrF vs NDVI relationships are produced and then applied to the previous satellite based downscaled product in order to finally derive a 30 m x 30 m daily ETrF map for the study area. CropWat model (FAO) is then applied, taking as an input the new crop coefficient values with a spatial resolution of 30 m x 30 m available for every crop. CropWat finally returns daily crop water requirements (mm) for every crop and the results are analyzed and discussed.

  4. Crop evapotranspiration and irrigation scheduling in blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are currently 139,000 ha of blueberry worldwide, including 66,000 ha of highbush [comprises northern highbush (Vaccinium corymbosum), southern highbush (Vaccinium sp.), and rabbiteye (V. virgatum formerly V. asheii) cultivars] and 73,000 ha of lowbush blueberry (V. angustifolium). The majority...

  5. Satellite-based monitoring of cotton evapotranspiration

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  6. Determination of growth-stage specific crop coefficients (Kc) of cotton and wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of crop coefficient (Kc), the ratio of crop evapotranspiration (ETc) to reference evapotranspiration (ETo), can enhance ETc estimates in relation to specific crop phenological development. This research was conducted to determine growth-stage-specific Kc and crop water use for cotton (Go...

  7. Determination of growth-state specific crop coefficients (Kc) of maize and sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ratio of crop evapotranspiration (ETC) to reference evapotranspiration (ETO) determines a crop coefficient (Kc) value, which is related to specific crop phenological development to improve transferability of the Kc values. Development of Kc can assist in predicting crop irrigation needs using mete...

  8. Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn

    NASA Astrophysics Data System (ADS)

    Padilla, F. L. M.; González-Dugo, M. P.; Gavilán, P.; Domínguez, J.

    2011-04-01

    Vegetation indices (VIs) have been traditionally used for quantitative monitoring of vegetation. Remotely sensed radiometric measurements of visible and infrared solar energy, which is reflected or emitted by plant canopies, can be used to obtain rapid, non-destructive estimates of certain canopy attributes and parameters. One parameter of special interest for water management applications, is the crop coefficient employed by the FAO-56 model to derive actual crop evapotranspiration (ET). The aim of this study was to evaluate a methodology that combines the basal crop coefficient derived from VIs with a daily soil water balance in the root zone to estimate daily evapotranspiration rates for corn and wheat crops at field scale. The ability of the model to trace water stress in these crops was also assessed. Vegetation indices were first retrieved from field hand-held radiometer measurements and then from Landsat 5 and 7 satellite images. The results of the model were validated using two independent measurement systems for ET and regular soil moisture monitoring, in order to evaluate the behavior of the soil and atmosphere components of the model. ET estimates were compared with latent heat flux measured by an eddy covariance system and with weighing lysimeter measurements. Average overestimates of daily ET of 8 and 11% were obtained for corn and wheat, respectively, with good agreement between the estimated and measured root-zone water deficit for both crops when field radiometry was employed. When the satellite sensor data replaced the field radiometry data the overestimation figures slightly changed to 9 and 6% for the same two crops. The model was also used to monitor the water stress during the 2009 growing season, detecting several periods of water stress in both crops. Some of these stresses occurred during stages like grain filling, when the water stress is know to have a negative effect on yield. This fact could explain the lower yield reached compared to

  9. A global sensitivity analysis of crop virtual water content

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for

  10. Cotton Evapotranspiration and Yield Variations With Canopy Temperature and Irrigation Deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton evapotranspiration and yield vary greatly with irrigation deficit, but indirectly due to cotton's indeterminant phenology. Canopy temperature can be related to yield through the crop water stress index (CWSI); and evapotranspiration can be modeled if the relationship between stress level and ...

  11. Effect of altitude on crop water need in Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Chul-gyum; Kim, Nam-won

    2016-04-01

    Spatial and temporal irrigation water need was estimated for upland crops in four study watersheds of Jeju Island, Korea using a method based on water balance and net water consumption concept. And evapotranspiration was also analyzed, which is an essential component of the hydrological cycle and this method. The annual potential evapotranspiration decreased linearly to high elevation, and altitudinal lapse rates were -0.32 mm/m to -0.28 mm/m. Actual evapotranspiration showed increase with elevation to about 200~400 m according to watershed, and gradual decrease with higher elevation due to vegetation species, water availability, and cold limitation. Net water need for representative crop showed linear decrease with an elevation, and lapse rates varied -0.52 mm/m to -0.45 mm/m. For cropping areas below 200 m in elevation, annual net water need were 559~680 mm. Accurate prediction of regional and seasonal water need in the past, present, and future, can be utilized to practical purposes of water resources management, such as assessment of water scarcity, and establishment of reasonable distribution and additional security planning. Managers of crops also can determine how much supplemental water is needed to achieve maximum productivity, and reduce unnecessary water use in the fields. Acknowledgement This research was supported by a grant (code number: 14RDRP-B076275-01-000000) from the Jeju Regional Infrastructure Technology Development Center funded by Ministry of Land, Infrastructure and Transport of Korean government.

  12. Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn

    NASA Astrophysics Data System (ADS)

    Padilla, F. L. M.; González-Dugo, M. P.; Gavilán, P.; Domínguez, J.

    2010-10-01

    Vegetation indices (VIs) have been traditionally used for quantitative monitoring of vegetation. Remotely sensed radiometric measurements of visible and infrared solar energy, which is reflected or emitted by plant canopies, can be used to obtain rapid, non-destructive estimates of certain canopy attributes and parameters. One parameter of special interest for water management applications, is the crop coefficient employed by the FAO-56 model to derive actual crop evapotranspiration (ET). The aim of this study was to evaluate a methodology that combines the basal crop coefficient derived from VIs with a daily soil water balance in the root zone to estimate daily evapotranspiration rates for corn and wheat crops at field scale. The ability of the model to trace water stress in these crops was also assessed. Vegetation indices were first retrieved from field hand-held radiometer measurements and then from Landsat 5 and 7 satellite images. The results of the model were validated using two independent measurement systems for ET and regular soil moisture monitoring, in order to evaluate the behavior of the soil and atmosphere components of the model. ET estimates were compared with latent heat flux measured by an eddy covariance system and with weighing lysimeter measurements. Average overestimates of daily ET of 8 and 11% were obtained for corn and wheat, respectively, with good agreement between the estimated and measured root-zone water deficit for both crops when field radiometry was employed. Satellite remote-sensing inputs overestimated ET by 4 to 9%, showing a non-significant lost of accuracy when the satellite sensor data replaced the field radiometry data. The model was also used to monitor the water stress during the 2009 growing season, detecting several periods of water stress in both crops. Some of these stresses occurred during stages like grain filling, when the water stress is know to have a negative effect on yield. This fact could explain the lower

  13. The effect of different evapotranspiration methods on portraying soil water dynamics and ET partitioning in a semi-arid environment in Northwest China

    NASA Astrophysics Data System (ADS)

    Yu, Lianyu; Zeng, Yijian; Su, Zhongbo; Cai, Huanjie; Zheng, Zhen

    2016-03-01

    Different methods for assessing evapotranspiration (ET) can significantly affect the performance of land surface models in portraying soil water dynamics and ET partitioning. An accurate understanding of the impact a method has is crucial to determining the effectiveness of an irrigation scheme. Two ET methods are discussed: one is based on reference crop evapotranspiration (ET0) theory, uses leaf area index (LAI) for partitioning into soil evaporation and transpiration, and is denoted as the ETind method; the other is a one-step calculation of actual soil evaporation and potential transpiration by incorporating canopy minimum resistance and actual soil resistance into the Penman-Monteith model, and is denoted as the ETdir method. In this study, a soil water model, considering the coupled transfer of water, vapor, and heat in the soil, was used to investigate how different ET methods could affect the calculation of the soil water dynamics and ET partitioning in a crop field. Results indicate that for two different ET methods this model varied concerning the simulation of soil water content and crop evapotranspiration components, but the simulation of soil temperature agreed well with lysimeter observations, considering aerodynamic and surface resistance terms improved the ETdir method regarding simulating soil evaporation, especially after irrigation. Furthermore, the results of different crop growth scenarios indicate that the uncertainty in LAI played an important role in estimating the relative transpiration and evaporation fraction. The impact of maximum rooting depth and root growth rate on calculating ET components might increase in drying soil. The influence of maximum rooting depth was larger late in the growing season, while the influence of root growth rate dominated early in the growing season.

  14. Investigating effects of different evapotranspiration (ET) schemes on soil water dynamics and ET partitioning: a large lysimeter case of summer maize in a semi-arid environment northwest of China

    NASA Astrophysics Data System (ADS)

    Yu, L.; Zeng, Y.; Su, Z.; Cai, H.; Zheng, Z.

    2015-09-01

    Different evapotranspiration (ET) schemes can affect significantly the performance of land surface models in capturing the soil water dynamics and ET partitioning over various land cover and climates, the accurate understanding of which is crucial to determine the effective irrigation. In this study, a land model considering the coupled transfer of water, vapor and heat in the soil, with two alternative ET schemes, was used to investigate how the coupled mechanism can affect the soil water dynamics in a crop field and how the ET partitioning was influenced. There are two different evapotranspiration (ET) schemes, one is based on reference crop evapotranspiration (ET0) and use LAI to partition into soil evaporation and transpiration, denoted as the ETind scheme; the other is one-step calculation of actual soil evaporation and potential transpiration by incorporating canopy minimum resistance and actual soil resistance into Penman-Monteith model, denoted as the ETdir scheme. Results indicated that the coupled model with the two different ET schemes differed in simulating soil water content and crop evapotranspiration components while agreed well for the simulation of soil temperature. Considering the aerodynamic and surface resistance terms made the ETdir scheme better in simulating soil evaporation especially after irrigations. Furthermore, the results of different crop growth scenarios indicated that the uncertainty in LAI played an important role in estimating the relative transpiration and evaporation fraction. The soil drying seemed to intensify the disturbance of maximum rooting depth and root growth rate in calculating ET components. The former was more important at the late growing season while the latter dominated at the early growing season.

  15. Timescales of Land Surface Evapotranspiration Response

    NASA Technical Reports Server (NTRS)

    Scott, Russell; Entekhabi, Dara; Koster, Randal; Suarez, Max

    1997-01-01

    Soil and vegetation exert strong control over the evapotranspiration rate, which couples the land surface water and energy balances. A method is presented to quantify the timescale of this surface control using daily general circulation model (GCM) simulation values of evapotranspiration and precipitation. By equating the time history of evaporation efficiency (ratio of actual to potential evapotranspiration) to the convolution of precipitation and a unit kernel (temporal weighting function), response functions are generated that can be used to characterize the timescales of evapotranspiration response for the land surface model (LSM) component of GCMS. The technique is applied to the output of two multiyear simulations of a GCM, one using a Surface-Vegetation-Atmosphere-Transfer (SVAT) scheme and the other a Bucket LSM. The derived response functions show that the Bucket LSM's response is significantly slower than that of the SVAT across the globe. The analysis also shows how the timescales of interception reservoir evaporation, bare soil evaporation, and vegetation transpiration differ within the SVAT LSM.

  16. Experimental verification of a recursive method to calculate evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, a recursive combination method (RCM) to calculate potential and crop evapotranspiration (ET) was given by Lascano and Van Bavel (Agron. J. 2007, 99:585–590). The RCM differs from the Penman-Monteith (PM) method, the main difference being that the assumptions made regarding the temperature ...

  17. Calculation of canopy resistance with a recursive evapotranspiration model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calculation of hourly and daily crop evapotranspiration (ETc) from weather variables requires a corresponding hourly or daily value of canopy resistance (rc). An iterative method first proposed by MI Budyko to calculate ETc finds the surface canopy temperature (Ts) that satisfies the crop’s ener...

  18. Global investigation of vegetation impact on mean annual catchment evapotranspiration

    NASA Astrophysics Data System (ADS)

    Peel, Murray C.; McMahon, Thomas A.; Finlayson, Brian L.

    2010-05-01

    Historically, relationships between catchment vegetation type, evapotranspiration and runoff have been assessed primarily through paired catchment studies. The literature contains results from over 200 of these studies from around the world but two factors limit the applicability of the results to the wider domain. Firstly, catchment areas are generally small (<10 km2). Secondly, the range of climate types is narrow, with temperate (Köppen C) and cold (Köppen D) climate types in the majority. Here we present results from a global assessment of the impact of vegetation type on mean annual catchment evapotranspiration for a large, spatially and climatically diverse dataset of 699 catchments. This assessment is based on analysis of areal precipitation, temperature, runoff, and land cover information from each catchment, which differs from the paired catchment methodology where streamflow responses to a controlled land cover change are assessed. When catchments are grouped by vegetation type, any evidence of differing vegetation impact on actual evapotranspiration will be observed through differences in mean annual actual evapotranspiration, defined as precipitation minus runoff. Stratifying catchments by climate type was observed to be important when assessing the vegetation impact on evapotranspiration. Tropical and temperate forested catchments had significantly higher median evapotranspiration (~170mm and ~130mm, respectively) than non-forested catchments. Cold forested catchments unexpectedly had significantly lower median evapotranspiration (~90mm) than non-forested catchments. No significant difference in median evapotranspiration was found between temperate evergreen and deciduous forested catchments, though sample sizes were small. Temperate evergreen needleleaf forested catchments had significantly higher median evapotranspiration than evergreen broadleaf forested catchments, though again sample sizes were small. The significant difference in median

  19. Modified method of aerodynamic resistance calculation and its application to potential evapotranspiration estimation

    NASA Astrophysics Data System (ADS)

    Rodný, Marek; Nolz, Reinhard; Novák, Viliam; Hlaváčiková, Hana; Loiskandl, Willibald; Himmelbauer, Margarita

    2016-04-01

    The aim of this study was to present and validate an alternative evapotranspiration calculation procedure that includes specific expression for the aerodynamic resistance. Calculated daily potential evapotranspiration totals were compared to the results of FAO56 procedure application and to the results of measurements taken with a precision weighing lysimeter permanently grown with irrigated, short grass. For the examination period from March 17 through October 31, 2011, it was found that daily potential evapotranspiration estimates obtained by both calculation procedures fitted well to the lysimeter measurements. Potential evapotranspiration daily totals calculated with the use of the proposed aerodynamic resistance calculation procedure gave better results for days with higher evapotranspiration, compared to the FAO56 method. The most important is that the approach based on the proposed alternative aerodynamic resistance could be effectively used even for a wide variety of crops, because it is not limited to any particular crop.

  20. Physically-based Methods for the Estimation of Crop Water Requirements from E.O. Optical Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The estimation of evapotranspiration (ET) represent the basic information for the evaluation of crop water requirements. A widely used method to compute ET is based on the so-called "crop coefficient" (Kc), defined as the ratio of total evapotranspiration by reference evapotranspiration ET0. The val...

  1. Spatial heterogeneity and sensitivity analysis of crop virtual water content at a global scale

    NASA Astrophysics Data System (ADS)

    Tuninetti, Marta; Tamea, Stefania; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2015-04-01

    In this study, the green and blue virtual water content (VWC) of four staple crops (i.e., wheat, rice, maize, and soybean) is quantified at a high resolution scale, for the period 1996-2005, and a sensitivity analysis is performed for model parameters. In each grid cell, the crop VWC is obtained by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield. The evapotranspiration is determined with a daily soil water balance that takes into account crop and soil properties, production conditions, and climate. The actual yield is estimated using country-based values provided by the FAOSTAT database multiplied by a coefficient adjusting for the spatial variability within countries. The model improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The overall water use (blue+green) for the global production of the four grains investigated is 2673 km3/yr. Food production almost entirely depends on green water (>90%), but, when applied, irrigation makes production more water efficient, thus requiring lower VWC. The spatial variability of the virtual water content is partly driven by the yield pattern with an average correlation coefficient of 0.83, and partly by reference evapotranspiration with correlation coefficient of 0.27. Wheat shows the highest spatial variability since it is grown under a wide range of climatic conditions, soil properties, and agricultural practices. The sensitivity analysis is performed to understand how uncertainties in input data propagate and impact the virtual water content accounting. In each cell fixed changes are introduced to one input parameters at a time, and a sensitivity index, SI, is determined as the ratio between the variation of VWC referred to its baseline value and the variation of the input parameter with respect to its reference value. VWC is found to be most sensitive to planting date (PD), followed by the length of

  2. Evapotranspiration and soil heterogeneity

    SciTech Connect

    Luxmoore, R J; Sharma, M L

    1982-01-01

    In a previous computer simulation study of a grassland catchment in Oklahoma, evapotranspiration was predicted to increase up to 25% for soils with finer textures than the silt loam reference soil. Results are further analyzed to illustrate plant water responses to scaled soil physical characteristics from the simulations with the Terrestrial Ecosystem Hydrology Model. Finer soils were shown to have higher soil water capacities over wider ranges of soil matric pressures than the reference soil which increased the water supply to vegetation. The water potential and stomatal conductance of foliage were generally higher on soils with higher soil water capacities. The analysis suggests that areal variation in soil hydraulic characteristics may significantly influence areal evapotranspiration.

  3. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  4. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  5. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  6. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  7. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  8. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  9. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration's Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ???100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world

  10. Comparison of prognostic and diagnostic approached to modeling evapotranspiration in the Nile river basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Actual evapotranspiration (ET) can be estimated using both prognostic and diagnostic modeling approaches, providing independent yet complementary information for hydrologic applications. Both approaches have advantages and disadvantages. When provided with temporally continuous atmospheric forcing d...

  11. Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains

    PubMed Central

    Gowda, Prasanna H.; Chávez, José L.; Howell, Terry A.; Marek, Thomas H.; New, Leon L.

    2008-01-01

    Agriculture on the Texas High Plains (THP) uses approximately 89% of groundwater withdrawals from the Ogallala Aquifer. Consequently, groundwater levels are declining faster than the recharge rate. Therefore, efficient agricultural water use is essential for economic viability and sustainability of the THP. Accurate regional evapotranspiration (ET) maps would provide valuable information on actual crop water use. In this study, METRIC (Mapping Evapotranspiration at High Resolution using Internalized Calibration), a remote sensing based ET algorithm, was evaluated for mapping ET in the THP. Two Landsat 5 Thematic Mapper images acquired on 27 June (DOY 178) and 29 July (DOY 210) 2005 were used for this purpose. The performance of the ET model was evaluated by comparing the predicted daily ET with values derived from soil moisture budget at four commercial agricultural fields. Daily ET estimates resulted with a prediction error of 12.7±8.1% (mean bias error ± root mean square error) on DOY 178 and -4.7±9.4% on DOY 210 when compared with ET derived from measured soil moisture through the soil water balance. These results are good considering the prevailing advective conditions in the THP. METRIC have the potential to be used for mapping regional ET in the THP region. However, more evaluation is needed under different agroclimatological conditions.

  12. Comparing SEBAL and METRIC: Evapotranspiration Models Applied to Paramount Farms Almond Orchards

    NASA Astrophysics Data System (ADS)

    Furey, B. J.; Kefauver, S. C.

    2011-12-01

    Two evapotranspiration models were applied to almond and pistachio orchards in California. The SEBAL model, developed by W.G.M. Bastiaanssen, was programmed in MatLab for direct comparison to the METRIC model, developed by R.G. Allen and the IDWR. Remote sensing data from the NASA SARP 2011 Airborne Research Program was used in the application of these models. An evaluation of the models showed that they both followed the same pattern in evapotranspiration (ET) rates for different types of ground cover. The models exhibited a slightly different range of values and appeared to be related (non-linearly). The models both underestimated the actual ET at the CIMIS weather station. However, SEBAL overestimated the ET of the almond orchards by 0.16 mm/hr when applying its crop coefficient to the reference ET. This is compared to METRIC, which underestimated the ET of the almond orchards by only 0.10 mm/hr. Other types of ground cover were similarly compared. Temporal variability in ET rates between the morning and afternoon were also observed.

  13. Predicting Crop Water Use from Ground Cover and Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheduling irrigations for horticultural crops with evapotranspiration calculations is difficult. Horticultural crops are grown under a wide range of cultural practices and conditions, making it difficult to select appropriate crop coefficients. A primary determinant of crop water use is light in...

  14. Evaluating the crop coefficient using spectral reflectance

    USGS Publications Warehouse

    Heilman, J. L.; Heilman, W. E.; Moore, Donald G.

    1982-01-01

    Significant linear relationships were found between PVI and percent cover (r2 = 0.911), and between Kc and percent cover (r2 = 0.815). In addition, the position of the PVl intersection on the soil background line changed as a result of soil moisture increases following irrigation, even at high percent cover. Thus, once experimental relationships between Kc and crop growth are established, a mean Kc can be determined from spectral estimates of stage of development and the soil background component of PVI can be used to adjust the mean K, for increased evaporation following irrigation because the ratio of actual to potential evapotranspiration will approach 1 when the soil surface is wet.

  15. ENERGY BALANCE ESTIMATION OF EVAPOTRANSPIRATION FOR WHEAT GROWN UNDER VARIABLE MANAGEMENT PRACTICES IN CENTRAL ARIZONA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation and monitoring the spatial distribution of evapotranspiration (ET) over irrigated crops is becoming increasingly important for managing crop water requirements under water scarce conditions. The usual approaches for estimating ET, however, do not provide plot-specific data but instead pro...

  16. Simulation of winter wheat evapotranspiration in Texas and Henan using three models of differing complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop evapotranspiration (ET) is an important component of simulation models with many practical applications related to the efficient management of crop water supply. The algorithms used by models to simulate ET are of various complexity and robustness, and often have to be modified for particular e...

  17. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    NASA Astrophysics Data System (ADS)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  18. Evapotranspiration as a component of water footprint: use of conventional and satellite data for better estimation of spatial and temporal pattern

    NASA Astrophysics Data System (ADS)

    Struzik, Piotr; Kepinska-Kasprzak, Malgorzata

    2014-08-01

    One of the main scientific goals of the COST Action ES1106 ("Assessment of European Agriculture Water use and Trade under Climate Change" EURO-AGRIWAT) is the analysis of the global water footprint (WF) in agriculture and virtual water trade (VWT). The starting point for further activities is analyses and inventory of data and tools which could be helpful for WF and WFT assessments. Evaporation values (ET) are crucial for agriculture where estimates of water reserves available for crops are the basis for scheduling the time and intensity of irrigation, yield prognoses, etc. Detail evapotranspiration data are, therefore, of essential value. However, stations performing direct measurements of evapotranspiration are very scarcely distributed in Poland for which reason the interpolation of the data is necessarily biased. Hence, evapotranspiration values are calculated using indirect methods (usually empirical formulas). Data from geostationary meteorological satellites are used operationally for determination of evapotranspiration with good spatial and temporal resolution (e.g. Land-SAF product). Study of relation between evapotranspiration values determined with use of satellite data and calculated using Penman-Monteith formula was performed for the study area in Poland. Daily values and cumulated (i.e. decadal, monthly and yearly) values were analyzed to determine quality and possible added value of the satellite product. Relation between reference ET and actual ET in two consecutive years was discussed, both for whole test area and individual stations, taking into account land use and possible water deficit in the root region, represented by H-SAF soil wetness index product. The differences were presented and discussed.

  19. The application of a Hybrid Evapotranspiration approach in rainfed wheat

    NASA Astrophysics Data System (ADS)

    Geli, Hatim; González-Piqueras, Jose; Torrres, Enrique; Campos, Isidro; Neale, Christopher; Calera, Alfonso

    2013-04-01

    The spatio-temporal estimates of evapotranspiration (ET) have been traditionally addressed applying the water balance (WB) model of the root zone using the FAO-56 approach. The WB model is a prognostic approach of obtaining estimates of the ET and soil moisture on a daily basis. The reflectance based basal-crop coefficient Ksbrf in the WB model is determined from remote sensing data instead of the tabulated averaged basal crop coefficients (Kcb). This improvement over tabulated Kc describes the actual temporal and spatial variability and the growing conditions pattern within the field. Maps of spatially distributed actual ET are obtained applying a two source energy balance (TSEB) Model of Norman et al. (1995), which provides instantaneous estimates of surface energy fluxes including the latent heat flux that can be extrapolated to daily estimates of ET. The soil moisture (SM) plays a key-role in understanding the spatial and temporal variability for improved estimates of both SM and ET. A multiple layer model simulating the dynamics in the soil profile has been used in order to better describe the SM status obtained using the FAO-56 model that considers a single value in the root zone. The SM content is very important in semiarid areas where the crops can develop their roots under water stress environments. Estimates of ET from the TSEB and WB models are independent and can be combined using data assimilation techniques. This hybrid ET approach as described by Geli (2012) and Neale et al. (2012) provides improved estimates of both ET and SM of the root zone and was also applied to irrigated and non-irrigated cotton grown under highly convective conditions. In this work the hybrid ET approach is applied to a rainfed wheat area of 18 ha in extension in La Mancha, Spain (39° 17´N, 1° 59'W, 700 m amsl) during the growing season of 2006. The area has a Mediterranean climate, considered semi-arid with scarce rain with a total of 122 mm measured throughout the growing

  20. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated

  1. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation

    NASA Astrophysics Data System (ADS)

    Siebert, Stefan; Döll, Petra

    2010-04-01

    SummaryCrop production requires large amounts of green and blue water. We developed the new global crop water model GCWM to compute consumptive water use (evapotranspiration) and virtual water content (evapotranspiration per harvested biomass) of crops at a spatial resolution of 5' by 5', distinguishing 26 crop classes, and blue versus green water. GCWM is based on the global land use data set MIRCA2000 that provides monthly growing areas for 26 crop classes under rainfed and irrigated conditions for the period 1998-2002 and represents multi-cropping. By computing daily soil water balances, GCWM determines evapotranspiration of blue and green water for each crop and grid cell. Cell-specific crop production under both rainfed and irrigated conditions is computed by downscaling average crop yields reported for 402 national and sub-national statistical units, relating rainfed and irrigated crop yields reported in census statistics to simulated ratios of actual to potential crop evapotranspiration for rainfed crops. By restricting water use of irrigated crops to green water only, the potential production loss without any irrigation was computed. For the period 1998-2002, the global value of total crop water use was 6685 km 3 yr -1, of which blue water use was 1180 km 3 yr -1, green water use of irrigated crops was 919 km 3 yr -1 and green water use of rainfed crops was 4586 km 3 yr -1. Total crop water use was largest for rice (941 km 3 yr -1), wheat (858 km 3 yr -1) and maize (722 km 3 yr -1). The largest amounts of blue water were used for rice (307 km 3 yr -1) and wheat (208 km 3 yr -1). Blue water use as percentage of total crop water use was highest for date palms (85%), cotton (39%), citrus fruits (33%), rice (33%) and sugar beets (32%), while for cassava, oil palm and cocoa, almost no blue water was used. Average crop yield of irrigated cereals was 442 Mg km -2 while average yield of rainfed cereals was only 266 Mg km -2. Average virtual water content of cereal

  2. Modeling Evapotranspiration in Subtropical Climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration loss is estimated at about 80% of annual precipitation in south Florida. Accurate prediction of evapotranspiration is important during and beyond the implementation of the Comprehensive Everglades Restoration Project(CERP). In the USDA’s Everglades Agro-Hydrology Model (EAHM) the...

  3. Investigation of spatial relationships between crop coefficients and specific ground based vegetation indices for Karla watershed, Greece

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, M.; Loukas, A.; Mylopoulos, N.; Toulios, L.; Stancalie, G.

    2014-08-01

    The objective of this work is the investigation of the specific relationships between actual evapotranspiration based crop coefficients and vegetation indices adapted to Karla Watershed, central Greece. Surface Energy Balance Algorithm for Land (SEBAL) was used to derive monthly actual evapotranspiration (ET) and ETrF values during the growing season of 2012. The methodology was developed using medium resolution Landsat 7 ETM+ images. Meteorological data from the archive of the Institute for Research and Technology, Thessaly (I.RE.TE.TH) have also been used. Fields with cotton, wheat, alfalfa, corn and sugar beets are utilized. During the same period, in-situ radiometric measurements were generated with the use of the field spectro-radiometer GER1500 giving specific spectral signatures for each crop. Filtering of reflectance values with the use of relative spectral responses (RSR) gives the opportunity to match the spectral measurements with Landsat ETM+ bands and compute VI like NDVI, SAVI, EVI and EVI2 using the same remote sensing formulas as the ETM+ conventional procedures. New relationships are derived and NDVI, SAVI, EVI and EVI2 are tested separately for each crop. Special attention is given to the constant L inside the SAVI relationship. The main advantage of the new approach is that is more crop specific and it less time consuming because there is no need for atmospheric correction.

  4. Wheat Irrigation Management Using Multispectral Crop Coefficients: II. Irrigation Scheduling Performance, Grain Yield, and Water Use Efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current irrigation scheduling is based on well-established crop coefficient-reference evapotranspiration methods. However, appropriate irrigation scheduling can be negated when crop evapotranspiration (ETc) is poor due to imprecise crop coefficients. The premise of this research is that real-time mo...

  5. Application of a CROPWAT Model to Analyze Crop Yields in Nicaragua

    NASA Astrophysics Data System (ADS)

    Doria, R.; Byrne, J. M.

    2013-12-01

    ABSTRACT Changes in climate are likely to influence crop yields due to varying evapotranspiration and precipitation over agricultural regions. In Nicaragua, agriculture is extensive, with new areas of land brought into production as the population increases. Nicaraguan staple food items (maize and beans) are produced mostly by small scale farmers with less than 10 hectares, but they are critical for income generation and food security for rural communities. Given that the majority of these farmers are dependent on rain for crop irrigation, and that maize and beans are sensitive to variations in temperature and rainfall patterns, the present study was undertaken to assess the impact of climate change on these crop yields. Climate data were generated per municipio representing the three major climatic zones of the country: the wet Pacific lowland, the cooler Central highland, and the Caribbean lowland. Historical normal climate data from 1970-2000 (baseline period) were used as input to CROPWAT model to analyze the potential and actual evapotranspiration (ETo and ETa, respectively) that affects crop yields. Further, generated local climatic data of future years (2030-2099) under various scenarios were inputted to the CROPWAT to determine changes in ETo and ETa from the baseline period. Spatial variability maps of both ETo and ETa as well as crop yields were created. Results indicated significant variation in seasonal rainfall depth during the baseline period and predicted decreasing trend in the future years that eventually affects yields. These maps enable us to generate appropriate adaptation measures and best management practices for small scale farmers under future climate change scenarios. KEY WORDS: Climate change, evapotranspiration, CROPWAT, yield, Nicaragua

  6. How do alternative root water uptake models affect the inverse estimation of soil hydraulic parameters and the prediction of evapotranspiration?

    NASA Astrophysics Data System (ADS)

    Gayler, Sebastian; Salima-Sultana, Daisy; Selle, Benny; Ingwersen, Joachim; Wizemann, Hans-Dieter; Högy, Petra; Streck, Thilo

    2016-04-01

    Soil water extraction by roots affects the dynamics and distribution of soil moisture and controls transpiration, which influences soil-vegetation-atmosphere feedback processes. Consequently, root water uptake requires close attention when predicting water fluxes across the land surface, e.g., in agricultural crop models or in land surface schemes of weather and climate models. The key parameters for a successful simultaneous simulation of soil moisture dynamics and evapotranspiration in Richards equation-based models are the soil hydraulic parameters, which describe the shapes of the soil water retention curve and the soil hydraulic conductivity curve. As measurements of these parameters are expensive and their estimation from basic soil data via pedotransfer functions is rather inaccurate, the values of the soil hydraulic parameters are frequently inversely estimated by fitting the model to measured time series of soil water content and evapotranspiration. It is common to simulate root water uptake and transpiration by simple stress functions, which describe from which soil layer water is absorbed by roots and predict when total crop transpiration is decreased in case of soil water limitations. As for most of the biogeophysical processes simulated in crop and land surface models, there exist several alternative functional relationships for simulating root water uptake and there is no clear reason for preferring one process representation over another. The error associated with alternative representations of root water uptake, however, contributes to structural model uncertainty and the choice of the root water uptake model may have a significant impact on the values of the soil hydraulic parameters estimated inversely. In this study, we use the agroecosystem model system Expert-N to simulate soil moisture dynamics and evapotranspiration at three agricultural field sites located in two contrasting regions in Southwest Germany (Kraichgau, Swabian Alb). The Richards

  7. An annual evapotranspiration model by combining Budyko curve and complementary relationship

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Tian, Fuqiang; Shao, Weiwei

    2015-04-01

    The complementary relationship and Budyko curve together describe the tight connections and feedbacks between water-energy balances and the landscape (Yang et al., 2006). The evapotranspiration models based on Budyko curve and complementary relationship are two kinds of parsimonious approaches for predicting mean annual catchment-scale evapotranspiration. Under the Budyko framework, actual evapotranspiration is partitioned from the precipitation as a functional balance between the water availability and the evaporative demand, and modified by catchment property parameter. The catchment property parameter was thought to be related to catchment landscape properties such as vegetation, soil, geological features, and rainfall distribution, etc.. The catchment properties seem change over time, and are difficult to be quantified (Roderick and Farquhar, 2011). Under the complementary relationship framework, actual evapotranspiration is estimated using only the routinely measured climatological variables, and the catchment properties were thought to be indirectly reflected by the relative magnitude of the aerodynamic and radiation terms of potential evapotranspiration because of the climate-vegetation-soil interactions. A implicit combination of the two approaches was conducted with the aim to represent the changing catchment properties using the relative magnitude of the aerodynamic and radiation terms of potential evapotranspiration. Actual evapotranspiration estimation of 99 non-humid catchments in China under varying environments was improved by this method.

  8. Estimation of crop water requirements using remote sensing for operational water resources management

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  9. Thin laser beam wandering and intensity fluctuations method for evapotranspiration measurement

    NASA Astrophysics Data System (ADS)

    Poisson, Antonin; Fernandez, Angel; Perez, Dario G.; Barille, Regis; Dupont, Jean-Charles

    2016-06-01

    We compare in this study two simple optical setups to measure the atmospheric turbulence characterized by the refractive index structure parameter Cn2. The corresponding heat flux values sensed by the laser beam propagation are calculated leading to the plant evapotranspiration. The results are discussed and compared to measurements obtained with a well-known and calibrated eddy-covariant instrument. A fine analysis gives a good insight of the accuracy of the optical devices proposed here to measure the crop evapotranspiration. Additional evapotranspiration values calculated with meteorological sensor data and the use of different models are also compared in parallel.

  10. Estimating seasonal evapotranspiration from temporal satellite images

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.

  11. An investigation of spectral change as influenced by irrigation and evapotranspiration volume estimation in western Nebraska

    USGS Publications Warehouse

    Seevers, P.M.; Sadowski, F.C.; Lauer, D.T.

    1990-01-01

    Retrospective satellite image data were evaluated for their ability to demonstrate the influence of center-pivot irrigation development in western Nebraska on spectral change and climate-related factors for the region. Periodic images of an albedo index and a normalized difference vegetation index (NDVI) were generated from calibrated Landsat multispectral scanner (MSS) data and used to monitor spectral changes associated with irrigation development from 1972 through 1986. The albedo index was not useful for monitoring irrigation development. For the NDVI, it was found that proportions of counties in irrigated agriculture, as discriminated by a threshold, were more highly correlated with reported ground estimates of irrigated agriculture than were county mean greenness values. A similar result was achieved when using coarse resolution Advanced Very High Resolution Radiometer (AVHRR) image data for estimating irrigated agriculture. The NDVI images were used to evaluate a procedure for making areal estimates of actual evapotranspiration (ET) volumes. Estimates of ET volumes for test counties, using reported ground acreages and corresponding standard crop coefficients, were correlated with the estimates of ET volume using crop coefficients scaled to NDVI values and pixel counts of crop areas. These county estimates were made under the assumption that soil water availability was unlimited. For nonirrigated vegetation, this may result in over-estimation of ET volumes. Ground information regarding crop types and acreages are required to derive the NDVI scaling factor. Potential ET, estimated with the Jensen-Haise model, is common to both methods. These results, achieved with both MSS and AVHRR data, show promise for providing climatologically important land surface information for regional and global climate models. ?? 1990 Kluwer Academic Publishers.

  12. Calculating crop water use in the northern Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The North Plains Evapotranspiration network (NPET) has been in operation providing meteorological and crop water use (evapotranspiration or ET) data to producers for over 14 years. Recently, the NPET and South Plains ET (SPET) merged to form the Texas High Plains ET network (TXHPET). Each of the r...

  13. An Updated Decision Support Interface: A Tool for Remote Monitoring of Crop Growing Conditions

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Budde, M. E.; Rowland, J.; Verdin, J. P.; Funk, C. C.; Landsfeld, M. F.

    2014-12-01

    Remote sensing of agroclimatological variables to monitor food production conditions is a critical component of the Famine Early Warning Systems Network portfolio of tools for assessing food security in the developing world. The Decision Support Interface (DSI) seeks to integrate a number of remotely sensed and modeled variables to create a single, simplified portal for analysis of crop growing conditions. The DSI has been reformulated to incorporate more variables and give the user more freedom in exploring the available data. This refinement seeks to transition the DSI from a "first glance" agroclimatic indicator to one better suited for the differentiation of drought events. The DSI performs analysis of variables over primary agricultural zones at the first sub-national administrative level. It uses the spatially averaged rainfall, normalized difference vegetation index (NDVI), water requirement satisfaction index (WRSI), and actual evapotranspiration (ETa) to identify potential hazards to food security. Presenting this information in a web-based client gives food security analysts and decision makers a lightweight portal for information on crop growing conditions in the region. The crop zones used for the aggregation contain timing information which is critical to the DSI presentation. Rainfall and ETa are accumulated from different points in the crop phenology to identify season-long deficits in rainfall or transpiration that adversely affect the crop-growing conditions. Furthermore, the NDVI and WRSI serve as their own seasonal accumulated measures of growing conditions by capturing vegetation vigor or actual evapotranspiration deficits. The DSI is currently active for major growing regions of sub-Saharan Africa, with intention of expanding to other areas over the coming years.

  14. Correlation between satellite vegetation indices and crop coefficients

    NASA Astrophysics Data System (ADS)

    Russo, A. L.; Simoniello, T.; Greco, M.; Squicciarrino, G.; Lanfredi, M.; Macchiato, M.

    2010-05-01

    for each cultivation highlighted that NDVI provided quite high correlation for all the investigated cultivation with maximum values for wheat (R2 = 0.89) and vineyards (R2 = 0.83). For the cultivation with more homogeneous canopy, e.g. kiwifruit, the best performing index was the WDVI showing a determination coefficient of 0.90; whereas its performances for vineyards and mixed olive cultivations were not satisfactory (R2 < 0.40). The EVI showed a behaviour similar to WDVI with slightly lower correlation values. The obtained results highlight the capability of medium resolution satellites for dynamically estimating crop coefficients and so for improving water balance assessment by taking into account the actual status of vegetation instead of expected and tabulated Kc-values. Ayenew, T., 2003. Evapotranspiration estimation using thematic mapper spectral satellite data in the Ethiopian rift and adjacent highlands, Journal of Hydrology, 279: 83-93 Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., Holstlag, A.A.M., 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, Journal of Hydrology, 212-213: 198-212. Calera A., Jochum A., Cuesta Garcia A., Montoro Rodriguez A., Lopez Fuster P., 2005. Irrigation management from space: Towards user-friendly products, Irrigation and Drainage Systems, 19: 337-353. Gonzalez-Dugo M.P. and Mateos L., 2008. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops, Agricultural Water Management, 95: 48-58.

  15. Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semi-arid agriculture

    NASA Astrophysics Data System (ADS)

    Kozak, Joseph A.; Ahuja, Lajpat R.; Green, Timothy R.; Ma, Liwang

    2007-01-01

    Crop canopies and residues have been shown to intercept a significant amount of rainfall. However, rainfall or irrigation interception by crops and residues has often been overlooked in hydrologic modelling. Crop canopy interception is controlled by canopy density and rainfall intensity and duration. Crop residue interception is a function of crop residue type, residue density and cover, and rainfall intensity and duration. We account for these controlling factors and present a model for both interception components based on Merriam's approach. The modified Merriam model and the current modelling approaches were examined and compared with two field studies and one laboratory study. The Merriam model is shown to agree well with measurements and was implemented within the Agricultural Research Service's Root Zone Water Quality Model (RZWQM). Using this enhanced version of RZWQM, three simulation studies were performed to examine the quantitative effects of rainfall interception by corn and wheat canopies and residues on soil hydrological components. Study I consisted of 10 separate hypothetical growing seasons (1991-2000) for canopy effects and 10 separate non-growing seasons (1991-2000) for residue effects for eastern Colorado conditions. For actual management practices in a no-till wheat-corn-fallow cropping sequence at Akron, Colorado (study II), a continuous 10-year RZWQM simulation was performed to examine the cumulative changes on water balance components and crop growth caused by canopy and residue rainfall interception. Finally, to examine a higher precipitation environment, a hypothetical, no-till wheat-corn-fallow rotation scenario at Corvallis, Oregon, was simulated (study III). For all studies, interception was shown to decrease infiltration, runoff, evapotranspiration from soil, deep seepage of water and chemical transport, macropore flow, leaf area index, and crop/grain yield. Because interception decreased both infiltration and soil evapotranspiration

  16. Assessing reference evapotranspiration in a subhumid climate in NE Austria

    NASA Astrophysics Data System (ADS)

    Nolz, Reinhard; Eitzinger, Josef; Cepuder, Peter

    2015-04-01

    Computing reference evapotranspiration and multiplying it with a specific crop coefficient as recommended by the Food and Agriculture Organization of the United Nations (FAO) is the most widely accepted approach to estimate plant water requirements. The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on local environmental conditions. Consequently, it seems advisable to evaluate the model under local environmental conditions. Evapotranspiration was determined at a subhumid site in Austria (48°12'N, 16°34'E; 157 m asl) using a large weighing lysimeter operated at (limited) reference conditions and compared with calculations according to ASCE-EWRI. The lysimeter had an inner diameter of 1.9 m and a hemispherical bottom with a maximum depth of 2.5 m. Seepage water was measured at a free draining outlet using a tipping bucket. Lysimeter mass changes were sensed by a weighing facility with an accuracy of ±0.1 mm. Both rainfall and evapotranspiration were determined directly from lysimeter data using a simple water balance equation. Meteorological data for the ASCE-EWRI model were obtained from a weather station of the Central Institute for Meteorology and Geodynamics, Austria (ZAMG). The study period was from 2005 to 2010, analyses were based upon daily time steps. Daily calculated reference evapotranspiration was generally overestimated at small values, whereas it was rather underestimated when evapotranspiration was large, which is supported also by other studies. In the given case, advection of sensible heat proved

  17. Mapping Subfield-Scale Evapotranspiration to Assess Agricultural Drought Sensitivity

    NASA Astrophysics Data System (ADS)

    Zipper, S. C.; Loheide, S. P., III

    2014-12-01

    Assessing crop response to drought on the subfield-scale is critical for efficient agricultural water management and yield forecasting. Evapotranspiration provides a direct physical link between the soil, crop canopy, and the atmosphere, and is hence highly sensitive to changes in water availability. Here, we introduce a new surface energy balance model (High Resolution Mapping of Evapotranspiration; HRMET) that can map ET at very high resolution (meter-scale) requiring only canopy surface temperature, canopy structure, and meteorology as inputs. HRMET can be used in both open and closed canopy conditions. We validate HRMET over two commercial cornfields in the Yahara River Watershed (south-central Wisconsin, USA) and investigate the spatially variable ET response to severe drought conditions during the 2012 growing season. Results show that the magnitude of within-field ET variability is much larger when the drought is more severe. We then introduce a new metric, Relative ET (ETR), which normalizes ET on a field scale and allows for direct comparison across measurement dates, despite differences in meteorological conditions and crop growth stage. Using a novel paired-image technique, we use persistent patterns of ETR identify portions of the field that are most susceptible to drought, and portions that are consistently productive across measurement dates. These results have implications for precision agriculture and irrigation efficiency in addition to water management and yield forecasting, as identification of persistent patterns in crop productivity during low-stress periods allows farmers to direct resources to the most sensitive areas early in droughts.

  18. Two- and one-layer implicit energy balance solutions compared with the one-layer explicit Penman-Monteith solution for evapotranspiration of alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa (Medicago sativa) is one of two crops commonly used to establish reference evapotranspiration (ET) for use in water use estimation for other crops. The other is grass. In the modern paradigm for estimating crop water use, both alfalfa (~0.5-m tall) and grass (cool-season variety, mowed, ~0.1...

  19. Evapotranspiration from selected fallowed agricultural fields on the Tule Lake National Wildlife Refuge, California, during May to October 2000

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    An investigation of evapotranspiration, vegetation quantity and composition, and depth to the water table below the land surface was made at three sites in two fallowed agricultural lots on the 15,800-hectare Tule Lake National Wildlife Refuge in northern California during the 2000 growing season. All three sites had been farmed during 1999, but were not irrigated since the 1999 growing season. Vegetation at the lot C1B and lot 6 stubble sites included weedy species and small grain plants. The lot 6 cover crop site supported a crop of cereal rye that had been planted during the previous winter. Percentage of coverage by live vegetation ranged from 0 to 43.2 percent at the lot C1B site, from approximately 0 to 63.2 percent at the lot 6 stubble site, and it was estimated to range from 0 to greater than 90 percent at the lot 6 cover crop site. Evapotranspiration was measured using the Bowen ratio energy balance technique and it was estimated using a model that was based on the Priestley-Taylor equation and a model that was based on reference evapotranspiration with grass as the reference crop. Total evapotranspiration during May to October varied little among the three evapotranspiration measurement sites, although the timing of evapotranspiration losses did vary among the sites. Total evapotranspiration from the lot C1B site was 426 millimeters, total evapotranspiration from the lot 6 stubble site was 444 millimeters, and total evapotranspiration from the lot 6 cover crop site was 435 millimeters. The months of May to July accounted for approximately 78 percent of the total evapotranspiration from the lot C1B site, approximately 63 percent of the evapotranspiration from the lot 6 stubble site, and approximately 86 percent of the total evapotranspiration from the lot 6 cover crop site. Estimated growing season precipitation accounted for 16 percent of the growing-season evapotranspiration at the lot C1B site and for 17 percent of the growing-season evapotranspiration

  20. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = ...

  1. Evapotranspiration studies for protective barriers: Experimental plans

    SciTech Connect

    Link, S.O.; Waugh, W.J.

    1989-11-01

    This document describes a general theory and experimental plans for predicting evapotranspiration in support of the Protective Barrier Program. Evapotranspiration is the combined loss of water from plants and soil surfaces to the atmosphere. 45 refs., 1 fig., 4 tabs.

  2. Canopy Temperature as a Crop Water Stress Indicator

    NASA Astrophysics Data System (ADS)

    Jackson, R. D.; Idso, S. B.; Reginato, R. J.; Pinter, P. J., Jr.

    1981-08-01

    Canopy temperatures, obtained by infrared thermometry, along with wet- and dry-bulb air temperatures and an estimate of net radiation were used in equations derived from energy balance considerations to calculate a crop water stress index (CWSI). Theoretical limits were developed for the canopy air temperature difference as related to the air vapor pressure deficit. The CWSI was shown to be equal to 1 - E/Ep, the ratio of actual to potential evapotranspiration obtained from the Penman-Monteith equation. Four experimental plots, planted to wheat, received postemergence irrigations at different times to create different degrees of water stress. Pertinent variables were measured between 1340 and 1400 each day (except some weekends). The CWSI, plotted as a function of time, closely paralleled a plot of the extractable soil water in the 0- to 1.1-m zone. The usefulness and limitations of the index are discussed.

  3. Potential Evapotranspiration on Tutuila, American Samoa

    USGS Publications Warehouse

    Izuka, Scott K.; Giambelluca, Thomas W.; Nullet, Michael A.

    2005-01-01

    Data from nine widely distributed climate stations were used to assess the distribution of potential evapotranspiration on the tropical South Pacific island of Tutuila, American Samoa. Seasonal patterns of climate data in this study differed in detail from available long-term data because the monitoring period of each station in this study was only 1 to 5 years, but overall climate conditions during the monitoring period (1999-2004) are representative of normal conditions. Potential evapotranspiration shows a diurnal pattern. On average, potential evapotranspiration in the daytime, when net radiation is the dominant controlling factor, constitutes 90 percent or more of the total daily potential evapotranspiration at each station. Positive heat advection from the ocean contributes to potential evapotranspiration at at least one station, and possibly other stations, in this study. Seasonal variation of potential evapotranspiration is linked to seasonal daylight duration. Spatial variation of potential evapotranspiration, however, is linked primarily to orographic cloud cover. Potential evapotranspiration on Tutuila is lowest in the interior of the island, where rainfall is higher, cloud cover is more frequent, and net radiation is lower than along the coasts. Potential evapotranspiration is highest along the southern and eastern coasts of the island, where rainfall is lower and cloud cover less frequent. The gradient from areas of high to low potential evapotranspiration is steepest in November and December, when island-wide potential evapotranspiration is highest, and less steep in June and July, when island-wide potential evapotranspiration is lowest. Comparison of potential evapotranspiration to rainfall indicates that evapotranspiration processes on Tutuila have the potential to remove from 23 to 61 percent of the water brought by rainfall. In lower-rainfall coastal locations, potential evapotranspiration can be 50 percent or more of rainfall, whereas in higher

  4. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a

  5. Evaluation of the Event Driven Phenology Model Coupled to the VegET Evapotranspiration Model Using Spatially Explicit Comparisons with Independent Reference Data

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.; Roy, D. P.; Senay, G. B.

    2011-12-01

    Vegetation growing cycles have a profound influence on regional evapotranspiration regimes. The recently developed Event Driven Phenology Model (EDPM) is an empirical crop-specific phenology model with data assimilation capabilities. Deployed in prognostic mode, the EDPM uses weather forcing data to produce daily estimates of phenology coefficients; and in diagnostic mode a one-dimensional Kalman filter is used to adjust EDPM estimates with satellite normalized difference vegetation index (NDVI) retrievals. In this study the EDPM is coupled to the VegET model that uses the Penman-Monteith equation to calculate reference ET and a water balance model for water stress coefficients to derive daily actual evapotranspiration. The coupled models were run for the croplands of the U.S. Northern Great Plains for three annual growing seasons to derive 8-day total actual evapotranspiration (ETa) estimates at 0.05° spatial resolution. The models were driven by North American Land Data Assimilation System (NLDAS) weather forcing and parameterized using annual MODIS cropland cover maps. Regional validation of the modeled NDVI and ETa were undertaken by comparison with MODIS NDVI and MODIS ETa products respectively. The modeled NDVI had a median coefficient of determination (r2) of 0.83 and a root mean square error (RMSE) of 0.15 within study area. With the EDPM deployed in both prognostic and diagnostic modes, the modeled ETa had r2 of 0.75 and RMSE of about 25% of season average ETa per observation period. With small computational effort these results yield comparable accuracy to those from computationally complex models of ETa which require more parameterization. The performance of the coupling scheme demonstrates that the modeling approach is a promising avenue for regional application studies.

  6. Climate Change Impact on Evapotranspiration, Heat Stress and Chill Requirements

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Marras, S.; Spano, D.

    2013-12-01

    Carbon dioxide concentration scenarios project an increase in CO2 from 372 ppm to between 500 and 950 ppm by the year 2100, and the potential effect on temperature, humidity, and plant responses to environmental factors are complex and concerning. For 2100, mean daily temperature increase projections range from 1.2oC to 6.8oC depending on greenhouse gas emissions. On the bad side, higher temperatures are often associated with increases in evapotranspiration (ET), heat stress, and pest infestations. On the good side, increased temperature is commonly related to less frost damage, faster growth, and higher production in some cases. One misconception is that global warming will increase evapotranspiration and, hence, agricultural water demand. As the oceans and other water bodies warm, evaporation and humidity are likely to increase globally, but higher humidity tends to reduce plant transpiration and hence ET. Higher CO2 concentrations also tend to reduce ET, and, in the end, the increase in ET due to higher temperature is likely to be offset by a decrease in ET due to higher humidity and CO2. With a decrease in daytime evapotranspiration, the canopy temperature is likely to rise relative to the air temperature, and this implies that heat stress could be worse than predicted by increased air temperature. Daily minimum temperatures are generally increasing about twice as fast as maximum temperatures presumably because of the increasing dew point temperatures as more water vapor is added to the atmosphere. This could present a serious problem to meet the chill requirement for fruit and nut crops. Growing seasons, i.e., from the last spring to the first fall frost, are likely to increase, but the crop growth period is likely to shorten due to higher temperature. Thus, spring frost damage is unlikely to change but there should be fewer damaging fall frost events. In this paper, we will present some ideas on the possible impact of climate change on evapotranspiration and

  7. Evapotranspiration (ET) covers.

    PubMed

    Rock, Steve; Myers, Bill; Fiedler, Linda

    2012-01-01

    Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information

  8. A thermal-based remote sensing modeling system for estimating evapotranspiration from field to global scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. This paper describes a robust but relatively simple thermal-based energy balance model that parameterizes the key soil/s...

  9. Evaluating three evapotranspiration mapping algorithms with lysimetric data in the semi-arid Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground water levels are declining at unsustainable rates in the Texas High Plains. Accurate evapotranspiration (ET) maps would provide valuable information on regional crop water use and hydrology. This study evaluated three remote sensing based algorithms for estimating ET rates for the Texas High ...

  10. A data fusion approach for mapping daily evapotranspiration at field scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capability for mapping water consumption over cropped landscapes on a daily and seasonal basis is increasingly relevant given forecasted scenarios of reduced water availability. Prognostic modeling of water losses to the atmosphere, or evapotranspiration (ET), at field or finer scales in agricul...

  11. Evapotranspiration: Measured with a lysimeter vs. calculated with a recursive method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, a recursive combination method (RCM) to calculate potential and crop evapotranspiration (ET) was given by Lascano and Van Bavel (Agron. J. 2007, 99:585-590) that differs from the Penman-Monteith (PM) method. The main difference between the two methods is that the assumptions made regarding...

  12. Infrared thermometry and stress monitoring of corn, and sensitivity analysis of reference evapotranspiration to sensor accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract for SOCR seminar: The USDA-ARS Water Management Research Unit in Fort Collins, CO is tasked with maintaining high crop yields under limited water. One focus of this project is to quantify evapotranspiration (ET) and water stress. Canopy temperature methods have been used for decades to quan...

  13. Sensitivity of grass and alfalfa reference evapotranspiration to weather station sensor accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1991 to 2008 from an autom...

  14. Two-source model estimates of evapotranspiration using component and composite surface temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two source energy balance model (TSM) can estimate evapotranspiration (ET) of vegetated surfaces, which has important applications in water resources management for irrigated crops. The TSM uses soil (TS) and canopy (TC) surface temperatures to solve the energy budgets of these layers separately...

  15. Spatial variability insensitivity coefficient of grass and alfalfa reference evapotranspiration in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is a major component of the agricultural water budget and accurate ET estimations are essential for effective irrigation scheduling. Therefore, it is an important aspect of production agriculture and agricultural research. Potential ET of a crop can be calculated by multiply...

  16. Application of remote sensing for multi-scale monitoring of evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating water loss from vegetation and soil or evapotranspiration (ET) at field to regional scales is critical information for many water resource and agricultural management applications as well as weather and climate forecasting and research. Water availability is strongly tied to crop product...

  17. Recommended documentation of evapotranspiration measurements and associated weather data and a review of requirements for accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More and more evapotranspiration (ET) models, ET crop coefficients, and associated measurements of ET are reported in the literature. These measurements base from a range of measurement systems including lysimeters, eddy covariance, Bowen ratio, water balance (gravimetric, neutron meter, other soil ...

  18. Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, six extrapolation methods have been compared for their ability to estimate daily crop evapotranspiration (ETd) from instantaneous latent heat flux estimates derived from digital airborne multispectral remote sensing imagery. Data used in this study were collected during an experiment...

  19. Daily evapotranspiration over cotton by assimilating remotely sensed data with ground-based radiometers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of spatially distributed evapotranspiration (ET) with remote sensing could be especially valuable for developing water management tools in arid lands. For decision support over irrigated crops, these spatial ET estimates also depend upon good spatial resolution ($<$30 m)at timely interval...

  20. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two-source energy balance model (TSEB) can estimate evaporation (E), transpiration (T), and evapotranspiration (ET) of vegetated surfaces, which has important applications in water resources management for irrigated crops. The TSEB requires soil (TS) and canopy (TC) surface temperatures to solv...

  1. Comparison of two simple tools (TSEB and FAO-56) to retrieve evapotranspiration of irrigated agriculture in semi-arid areas.

    NASA Astrophysics Data System (ADS)

    Diarra, Alhousseine; Jarlan, Lionel; Er-Raki, Salah; Le Page, Michel; Khabba, Said; Boulet, Gilles

    2016-04-01

    In a context of climate change and an increasing water demand, the semi-arid climate region face heightened pressure on the availability of water resources. About 85% of available water is used for irrigation in these regions. There is thus a crucial need to develop tools for a better management of irrigation through accurate estimates of crop water requirement. The objective of this study was to adapt and evaluate two parsimonious modeling approaches feeded by remote sensing observations, which have potential for the operational monitoring of evapotranspiration (ET): the two-source surface energy balance (TSEB) model developed by Norman et al. (1995) and the FAO-56 dual crop coefficient method (Allen et al., 1998), through the SAMIR tool (Simonneaux et al., 2009). At the field scale, both models were evaluated on four sites located in the Haouz plain (Marrakech, Morocco) during two agricultural seasons: wheat and sugar beet in 2012 and two other wheat crops in 2013; all belonging to an irrigated perimeter of 2800 ha. A time series of 12 high spatial resolution images acquired by SPOT-5 and ASTER images was collected during the growing seasons of wheat and sugar beet. The simulation results showed that both models offer fair performances of ET compared to measured one by eddy covariance with an average root mean square error (RMSE) lower than 1 mm/day for the sugar beet where the simulation are lower by the FAO-56 approach due to water inputs are uncertain. By contrast, the TSEB model, which not needs the water supply as input, offers smoother performances in all cases. At the scale of the perimeter, both approaches show similar spatial patterns because of homogeneous water conditions at the date of remote sensing image acquisitions. The partition of evapotranspiration between soil evaporation and transpiration from vegetation is estimated indirectly by confrontation between simulated soil evaporation and surface (0-5 cm) soil moisture acquired spatially with Theta

  2. Comparison of evapotranspiration rates for flatwoods and ridge citrus

    USGS Publications Warehouse

    Jia, X.; Swancar, A.; Jacobs, J.M.; Dukes, M.D.; Morgan, K.

    2007-01-01

    Florida citrus groves are typically grown in two regions of the state: flatwoods and ridge. The southern flatwoods citrus area has poorly drained fine textured sands with low organic matter in the shallow root zone. Ridge citrus is located in the northern ridge citrus zone and has fine to coarse textured sands with low water-holding capacity. Two commercial citrus groves, selected from each region, were studied from 15 July 2004 to 14 July 2005. The flatwoods citrus (FC) grove had a grass cover and used drainage ditches to remove excess water from the root zone. The ridge citrus (RC) grove had a bare soil surface with weeds periodically eliminated by tillage. Citrus crop evapotranspiration (ETc) rates at the two citrus groves were measured by the eddy correlation method, and components in the energy balance were also examined and compared. The study period had higher than average rainfall, and as a result, the two locations had similar annual ETc rates (1069 and 1044 mm for RC and FC, respectively). The ETc rates were 59% (RC) and 47% (FC) of the rainfall amounts during the study period. The annual reference crop evapotranspiration (ETo) rates were 1180 mm for RC and 1419 mm for FC, estimated using the standardized reference evapotranspiration equation. The citrus crop coefficients (Kc, ratio of ETc to ET o) were different between the two locations because of differences in latitude, ground cover, and rainfall amounts. The Kc values ranged from 0.70 between December and March to 1.05 between July and November for RC, and from 0.65 between November and May to 0.85 between June and October for FC. The results are consistent with other Kc values reported from field studies on citrus in both Florida and elsewhere using these and alternate methods.

  3. The Impact of Climate and Its Variability on Crop Yield and Irrigation

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T.

    2014-12-01

    As the global population grows and the climate changes, having a secure food supply is increasingly important especially under water stressed-conditions. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources. It is therefore important to understand how crop yields due to irrigation are affected by climate variability and how irrigation may buffer against climate, allowing for more resilient agricultural systems. Efforts to solve these barely exposed questions can benefit from comprehending the influence of climate variability on crop yield and irrigation water use in the past. To do this, we use historical climate data,irrigation water use data and rainfed and irrigated crop yields over the US to analyze the relationship among climate, irrigation and delta crop yields, gained by subtracting rainfed yield from irrigated yield since 1970. We find that the increase in delta crop yield due to irrigation is larger for certain climate conditions, such that there are optimal climate conditions where irrigation provides a benefit and other conditions where irrigation proves to have marginal benefits when temperature increased to certain degrees. We find that crop water requirements are linked to potential evapotranspiration, yet actual irrigation water use is largely decoupled from the climate conditions but related with other causes. This has important implications for agricultural and water resource system planning, as it implies there are optimal climate zones where irrigation is productive and that changes in water use, both temporally and spatially, could lead to increased water availability without negative impacts on crop yields. Furthermore, based on the exposed relationship between crop yield gained by irrigation and climate variability, those models predicting the global harvest will be redress to estimate crop production in the future more accurately.

  4. Estimation of Spatially Distributed Evapotranspiration Using Remote Sensing and a Relevance Vector Machine

    NASA Astrophysics Data System (ADS)

    Maslova, I.; Bachour, R.; Walker, W. R.; Ticlavilca, A. M.; McKee, M.

    2014-12-01

    With the development of surface energy balance analyses, remote sensing has become a spatially explicit and quantitative methodology for understanding evapotranspiration (ET), a critical requirement for water resources planning and management. Limited temporal resolution of satellite images and cloudy skies present major limitations that impede continuous estimates of ET. This study introduces a practical approach that overcomes (in part) the previous limitations by implementing machine learning techniques that are accurate and robust. The analysis was applied to the Canal B service area of the Delta Canal Company in central Utah using data from the 2009-2011 growing seasons. Actual ET was calculated by an algorithm using data from satellite images. A relevance vector machine (RVM), which is a sparse Bayesian regression, was used to build a spatial model for ET. The RVM was trained with a set of inputs consisting of vegetation indexes, crops, and weather data. ET estimated via the algorithm was used as an output. The developed RVM model provided an accurate estimation of spatial ET based on a Nash-Sutcliffe coefficient (E) of 0.84 and a root-mean-squared error (RMSE) of 0.5 mmday-1. This methodology lays the groundwork for estimating ET at a spatial scale for the days when a satellite image is not available. It could also be used to forecast daily spatial ET if the vegetation indexes model inputs are extrapolated in time and the reference ET is forecasted accurately.

  5. Comparison of sap flux, moisture flux tower and MODIS enhanced vegetation index methods for estimating riparian evapotranspiration

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Morino, Kiyomi

    2010-01-01

    Riparian evapotranspiration (ET) was measured on a salt cedar (Tamarix spp.) dominated river terrace on the Lower Colorado River from 2007 to 2009 using tissue-heat-balance sap flux sensors at six sites representing very dense, medium dense, and sparse stands of plants. Salt cedar ET varied markedly across sites, and sap flux sensors showed that plants were subject to various degrees of stress, detected as mid-day depression of transpiration and stomatal conductance. Sap flux results were scaled from the leaf level of measurement to the stand level by measuring plant-specific leaf area index and fractional ground cover at each site. Results were compared to Bowen ratio moisture tower data available for three of the sites. Sap flux sensors and flux tower results ranked the sites the same and had similar estimates of ET. A regression equation, relating measured ET of salt cedar and other riparian plants and crops on the Lower Colorado River to the Enhanced Vegetation Index from the MODIS sensor on the Terra satellite and reference crop ET measured at meteorological stations, was able to predict actual ET with an accuracy or uncertainty of about 20%, despite between-site differences for salt cedar. Peak summer salt cedar ET averaged about 6 mm d-1 across sites and methods of measurement.

  6. Estimation of land surface evapotranspiration with A satellite remote sensing procedure

    USGS Publications Warehouse

    Irmak, A.; Ratcliffe, I.; Ranade, P.; Hubbard, K.G.; Singh, R.K.; Kamble, B.; Kjaersgaard, J.

    2011-01-01

    There are various methods available for estimating magnitude and trends of evapotranspiration. Bowen ratio energy balance system and eddy correlation techniques offer powerful alternatives for measuring land surface evapotranspiration. In spite of the elegance, high accuracy, and theoretical attractions of these techniques for measuring evapotranspiration, their practical use over large areas can be limited due to the number of sites needed and the related expense. Application of evapotranspiration mapping from satellite measurements can overcome the limitations. The objective of this study was to utilize the METRIC??? (Mapping Evapotranspiration at High Resolution using Internalized Calibration) model in Great Plains environmental settings to understand water use in managed ecosystems on a regional scale. We investigated spatiotemporal distribution of a fraction of reference evapotranspiration (ETrF) using eight Landsat 5 images during the 2005 and 2006 growing season for path 29, row 32. The ETrF maps generated by METRIC??? allowed us to follow the magnitude and trend in ETrF for major land-use classes during the growing season. The ETrF was lower early in the growing season for agricultural crops and gradually increased as the normalized difference vegetation index of crops increased, thus presenting more surface area over which water could transpire toward the midseason. Comparison of predictions with Bowen ratio energy balance system measurements at Clay Center, NE, showed that METRIC??? performed well at the field scale for predicting evapotranspiration from a cornfield. If calibrated properly, the model could be a viable tool to estimate water use in managed ecosystems in subhumid climates at a large scale. ?? 2011 Copyright by the Center for Great Plains Studies, University of Nebraska-Lincoln.

  7. Recent changes in reference evapotranspiration in Romania

    NASA Astrophysics Data System (ADS)

    Croitoru, Adina-Eliza; Piticar, Adrian; Dragotă, Carmen Sofia; Burada, Doina Cristina

    2013-12-01

    In the last few decades, climate changes have become the most important topic in the field of climatology. Reference evapotranspiration (ET0) is often used to identify regions prone to drought or aridity. In this paper, we used monthly data recorded in 57 weather stations in Romania over the period 1961-2007. The FAO Penman-Monteith method, based on air temperature, sunshine duration, relative humidity and wind speed, was employed in order to calculate ET0. Seasonal, annual, winter wheat and maize growing seasons data sets of ET0 were generated. The trends were detected using the Mann-Kendall test and Sen's slope, while an ArcGIS software was employed for mapping the results. The main findings of the study are: positive slopes were found in 71% of the data series considered and almost 30% of the total number of series were found significant at α = 0.05; the highest frequency of the increasing trends as well as their absolute maximum magnitude were detected during summer and maize growing season; in winter, significant increasing changes are specific mainly to the extra-Carpathians regions; in autumn decreasing ET0 is specific to more than 80% of the locations, but the significant decrease characterizes mainly the southern half of the country; during the growing seasons of maize and winter wheat, the increase of the ET0 is dominant for the entire country. The relative change decreases with the increase of the length of the period considered: the most intense changes were detected for climatic seasons, followed by crop growing seasons and annual values. Among the climatic seasons, the highest relative increase is specific to winter followed by summer, spring and autumn, while for the crop growing seasons the values detected are similar.

  8. Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Hafeez, Mohsin; Rabbani, Umair; Ishikawa, Hirohiko; Ma, Yaoming

    2012-11-01

    The idea of ground-based evapotranspiration (ET) is of the most interesting for land-atmosphere interactions, such as water-saving irrigation, the performance of irrigation systems, crop water deficit, drought mitigation strategies and accurate initialization of climate prediction models especially in arid and semiarid catchments where water shortage is a critical problem. The recent year's drought in Australia and concerns about climate change has prominent the need to manage water resources more sustainably especially in the Murrumbidgee catchment which utilizes bulk water for food security and production. This paper discusses the application of a Surface Energy Balance System (SEBS) model based on Landsat-5 TM data and field observations has been used and tested for deriving ET over Coleambally Irrigation Area (CIA), located in the southwest of NSW, Australia. 16 Landsat-5 TM scenes were selected covering the time period of 2009, 2010 and 2011 for estimating the actual ET in CIA. To do the validation the used methodology, the ground-measured ET was compared to the Landsat-5 TM retrieved actual ET results for CIA. The derived ET value over CIA is much closer to the field measurement. From the remote sensing results and observations, the root mean square error (RMSE) is 0.74 and the mean APD is 7.5%. The derived satellite remote sensing values belong to reasonable range.

  9. Satellite Mapping of Horticultural Crop Cover in California's San Joaquin Valley - Potenial for Irrigation Water Resource Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of crop water use, and associated irrigation demand, is commonly addressed by application of so-called crop coefficients, which express water loss as a proportion of evapotranspiration from a well-characterized reference crop such as grass or alfalfa. For horticultural crops, however, pla...

  10. Mapping Seasonal Evapotranspiration and Root Zone Soil Moisture using a Hybrid Modeling Approach over Vineyards

    NASA Astrophysics Data System (ADS)

    Geli, H. M. E.

    2015-12-01

    Estimates of actual crop evapotranspiration (ETa) at field scale over the growing season are required for improving agricultural water management, particularly in water limited and drought prone regions. Remote sensing data from multiple platforms such as airborne and Landsat-based sensors can be used to provide these estimates. Combining these data with surface energy balance models can provide ETa estimates at sub- field scale as well as information on vegetation stress and soil moisture conditions. However, the temporal resolution of airborne and Landsat data does not allow for a continuous ETa monitoring over the course of the growing season. This study presents the application of a hybrid ETa modeling approach developed for monitoring daily ETa and root zone available water at high spatial resolutions. The hybrid ETa modeling approach couples a thermal-based energy balance model with a water balance-based scheme using data assimilation. The two source energy balance (TSEB) model is used to estimate instantaneous ETa which can be extrapolated to daily ETa using a water balance model modified to use the reflectance-based basal crop coefficient for interpolating ETa in between airborne and/or Landsat overpass dates. Moreover, since it is a water balance model, the soil moisture profile is also estimated. The hybrid ETa approach is applied over vineyard fields in central California. High resolution airborne and Landsat imagery were used to drive the hybrid model. These images were collected during periods that represented different vine phonological stages in 2013 growing season. Estimates of daily ETa and surface energy balance fluxes will be compared with ground-based eddy covariance tower measurements. Estimates of soil moisture at multiple depths will be compared with measurements.

  11. Comparison of estimates of evapotranspiration and consumptive use in Palo Verde Valley, California

    USGS Publications Warehouse

    Raymond, Lee H.; Owen-Joyce, Sandra J.

    1987-01-01

    Estimates of evapotranspiration and consumptive use by vegetation in Palo Verde Valley, California, were compared for calendar years 1981 to 1984. Vegetation types were classified, and the areas covered by each type were computed from Landsat satellite digital-image analysis. Evapotranspiration was calculated by multiplying the area of each vegetation type by a corresponding water use rate adjusted for year-to-year variations in climate. The vegetation classification slightly underestimates the total vegetated area when compared to crop reports, because not all multiple cropping could be identified. The accuracy of evapotranspiration calculated from vegetation classification depends primarily on the correct classification of alfalfa and cotton because alfalfa and cotton have larger acreages and use more water/acre than the other crops in the valley. Consumptive use was calculated using a water budget for each of the 4 years. Estimates of evapotranspiration and consumptive use by vegetation, respectively, were: (1) 439,400 and 483,500 acre-ft in 1981, (2) 430,700 and 452,700 acre-ft in 1982, (3) 402,000 and 364,400 acre-ft in 1983, and (4) 406,700 and 373,800 acre-ft in 1984. Evapotranspiration estimates were lower than consumptive use estimates in 1981 and 1982 and higher in 1983 and 1984. Both estimates were lower in 1983 and 1984 than in 1981 and 1982. Yearly differences in estimates correspond most closely to significant changes in stage of the lower Colorado River caused by flood control releases in 1983 and 1984 and to changes in cropping practices. (Author 's abstract)

  12. Increasing accuracy of daily evapotranspiration through synergistic use of MSG and MERIS/AATSR

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; van der Tol, Christiaan; Su, Zhongbo

    2010-05-01

    Daily Evapotranspiration estimates are important in many applications. Evapotranspiration plays a significant role in the water, energy and carbon cycles. Through these cycles evapotranspiration is important for monitoring droughts, managing agricultural irrigation, and weather forecast modeling. Drought levels and irrigation needs can be calculated from evapotranspiration because evapotranspiration estimates give a direct indication on the health and growth rate of crops. The evaporation of the soil and open water bodies and transpiration from plants combine as a lower forcing boundary parameter to the atmosphere affecting local and regional weather patterns. Evapotranspiration can be estimated using different techniques: ground measurements, hydrological modeling, and remote sensing algorithms. The first two techniques are not suitable for large scale estimation of evapotranspiration. Ground measurements are only valid within a small footprint area; and hydrological modelling requires intensive knowledge of a too large amount of processes. The advantage of remote sensing algorithms is that they are capable of estimating the evapotranspiration over large scales with a limited amount of parameters. In remote sensing a trade off exists between temporal and spatial resolution. Geostationary satellites have high temporal resolution but have a low spatial resolution, where near-Polar Orbiting satellites have high spatial resolution but have low temporal resolution. For example the SEVIRI sensor on the Meteosat Second Generation (MSG) satellite acquires images every 15 minutes with a resolution of 3km, where the AATSR/MERIS combination of the ENVISAT satellite has a revisit time of several days with a 1km resolution. Combining the advantages of geostationary satellites and polar-orbiting satellites will greatly improve the accuracy of the daily evapotranspiration estimates. Estimating daily evapotranspiration from near-polar orbiting satellites requires a method to

  13. Influence of potential evapotranspiration on the water balance of sugarcane fields in Maui, Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The year-long warm temperatures and other climatic characteristics of the Pacific Ocean Islands have made Hawaii an optimum place for growing sugarcane; however, irrigation is essential to satisfy the large water demand of sugarcane. Under the Hawaiian tropical weather, actual evapotranspiration (A...

  14. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

    PubMed

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-01-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373

  15. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    NASA Astrophysics Data System (ADS)

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr-1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  16. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    PubMed Central

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-01-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12–23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51–98 vs. 7–8 mm yr−1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373

  17. Evaluation of Pan Coefficients for Estimating Reference Evapotranspiration in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, H.

    2006-12-01

    Evapotranspiration is an important process of water transfer in the hydrosphere and atmosphere, which plays an active role in the hydrological cycle. Evaporation pan (Epan) data are often used to estimate reference evapotranspiration (ETref) for use in water resource planning. Generally, ETref is estimated as the product of the Epan data and a pan coefficient (Kpan). However, reliable estimation of ETref using Epan depends on the accurate determination of pan coefficients Kpan. Many different methods for estimating ETref have been developed, among which the Penman-Monteith method is demonstrated to be especially excellent by the Food and Agriculture Organization (FAO). In this study, the Penman-Monteith reference evapotranspiration, pan evaporation, and pan coefficient are calculated, compared and regionally mapped at nine meteorological stations during 1990-2004 in Southern Taiwan. The results show the reference evapotranspiration and pan evaporation have similar regional distribution patterns in the southern Taiwan both with the highest values being in the lower region and the lowest values being in the upper region. In addition, the pan coefficient, Kpan, varies both regionally and seasonally. Smallest Kpan values are found in the upper reach of the southern Taiwan, meaning that the relative difference between the reference evapotranspiration and pan evaporation is the biggest in the region, the largest Kpan values are obtained in the western area of southern Taiwan. This distribution pattern provides valuable information for regional hydrological studies since it is one of the most important factors determining regional actual evapotranspiration.

  18. NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.

    1989-01-01

    NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.

  19. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  20. Assessing Macroscopic Evapotranspiration Function Response to Climate

    NASA Astrophysics Data System (ADS)

    Gharun, M.; Vervoort, R. W.; Turnbull, T.; Henry, J.; Adams, M.

    2012-12-01

    Evapotranspiration (ET) by forests can reach up to 100% of rainfall in Australia, and is a substantial component of the water balance. Transpiration is a major part of the ET and it is well-known that transpiration depends on a combination of physiological and environmental controls. As a consequence of well-ventilated canopies of eucalypt forests and close decoupling to the atmosphere, atmospheric conditions exert a large control over transpiration. We measured a suit of environmental variables including temperature, humidity, radiation, and soil moisture concurrently with transpiration in a range of eucalypt forests. We observed that atmospheric demand (VPD) exerts the strongest control over transpiration. Experimental evidence also showed a strong dependency of the control on soil moisture abundance in the top soil layer. In many eco-hydrological models actual ET is represented with a linear transformation of potential ET based on the soil moisture condition, a so-called macroscopic approach. Such ET functions lump various soil and plant factors, are not experimentally supported and therefore quite poorly validated. Different combinations of atmospheric demand and soil moisture availability lead to diverse behaviour of the macroscopic ET function. Based on our observations in this study, we propose a novel approach that improves portray of transpiration, evaporation, drainage and hence the loss of water from the root zone. We used a modified version of the Norwegian HBV model to test our approach over a medium size catchment (150 km2) in south east Australia.

  1. Estimation of crop water requirements: extending the one-step approach to dual crop coefficients

    NASA Astrophysics Data System (ADS)

    Lhomme, J. P.; Boudhina, N.; Masmoudi, M. M.; Chehbouni, A.

    2015-07-01

    Crop water requirements are commonly estimated with the FAO-56 methodology based upon a two-step approach: first a reference evapotranspiration (ET0) is calculated from weather variables with the Penman-Monteith equation, then ET0 is multiplied by a tabulated crop-specific coefficient (Kc) to determine the water requirement (ETc) of a given crop under standard conditions. This method has been challenged to the benefit of a one-step approach, where crop evapotranspiration is directly calculated from a Penman-Monteith equation, its surface resistance replacing the crop coefficient. Whereas the transformation of the two-step approach into a one-step approach has been well documented when a single crop coefficient (Kc) is used, the case of dual crop coefficients (Kcb for the crop and Ke for the soil) has not been treated yet. The present paper examines this specific case. Using a full two-layer model as a reference, it is shown that the FAO-56 dual crop coefficient approach can be translated into a one-step approach based upon a modified combination equation. This equation has the basic form of the Penman-Monteith equation but its surface resistance is calculated as the parallel sum of a foliage resistance (replacing Kcb) and a soil surface resistance (replacing Ke). We also show that the foliage resistance, which depends on leaf stomatal resistance and leaf area, can be inferred from the basal crop coefficient (Kcb) in a way similar to the Matt-Shuttleworth method.

  2. Evaluation of a coupled event-driven phenology and evapotranspiration model for croplands in the United States northern Great Plains

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.; Roy, D. P.; Adusei, B.; Hansen, M.; Senay, G.; Mocko, D. M.

    2013-06-01

    A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme consists of the VegET, a model to estimate ET from meteorological and water balance data, and an Event Driven Phenology Model (EDPM), an empirical crop specific model trained on multiple years of flux tower data transformed into six types of environmental forcings that are called "events" to emphasize their temporally discrete character, which has advantages for modeling multiple contingent influences. The EDPM in prognostic mode supplies seasonal trajectories of normalized difference vegetation index (NDVI); whereas in diagnostic mode, it can adjust the NDVI prediction with assimilated remotely sensed observations. The scheme was deployed within the croplands of the Northern Great Plains. The evaluation used 2007-2009 land surface forcing data from the North American Land Data Assimilation System and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the NDVI produced by the EDPM with NDVI data derived from the MODIS nadir bidirectional reflectance distribution function adjusted reflectance product. The EDPM performance in prognostic mode yielded a coefficient of determination (r2) of 0.8 ± 0.15and the root mean square error (RMSE) of 0.1 ± 0.035 across the entire study area. Retrospective correction of canopy attributes using assimilated MODIS NDVI values improved EDPM NDVI estimates, bringing the errors down to the average level of 0.1. The ET estimates produced by the coupled scheme were compared with the MODIS evapotranspiration product and with ET from NASA's Mosaic land surface model. The expected r2 = 0.7 ± 0.15 and RMSE = 11.2 ± 4 mm per 8 days achieved in earlier point-based validations were met in this study by the coupling scheme functioning in both prognostic and retrospective modes. Coupled model performance was diminished at the

  3. The Texas High Plains Evapotranspiration (TXHPET) network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The newly developed Texas High Plains Evapotranspiration (TXHPET) network is comprised of the North Plains and South Plains evapotranspiration (ET) networks. The TXHPET network currently entails the operation of 18 meteorological stations located in 15 Texas counties and regional coverage is estima...

  4. THE ASCE STANDARDIZED REFERENCE EVAPOTRANSPIRATION EQUATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the standardization of calculation of reference evapotranspiration (ET) as recommended by the Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute of the American Society of Civil Engineers. The purpose of the stan...

  5. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  6. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  7. Weighing lysimeters for the determination of crop water requirements and crop coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weighing lysimeters are accurate instruments to measure crop evapotranspiration. Three weighing lysimeters consisting of undisturbed 1.5- × 2.0-m surface area by 2.5-m depth cores of soil, were constructed and installed at the Texas Agricultural Experiment Station in Uvalde, Texas. Two lysimeters, e...

  8. Estimating the actual ET from a pecan farm using the OPEC energy-balance and Penman- Monteith methods

    NASA Astrophysics Data System (ADS)

    Debele, B.; Bawazir, S. A.

    2006-12-01

    Accurate estimation of ET from field crops/orchards is the basis for better irrigation water management. In areas like Mesilla Valley, NM, where water is scarce, it is even more important to precisely determine the crop ET. An OPEC energy balance system was run for 117 days (June 22 October 14, 2001) in a matured pecan farm at Mesilla Valley, NM. The actual evapotranspiration (ET) from pecan orchards was determined from the surface energy balance as a residual, having measured the net radiation, soil heat flux, and sensible heat components using the OPEC method. Since pecans are large trees, we have also examined the effect of including thermal energies stored in the air (Ga) and plant canopy (Gc), on top of the commonly used thermal energy stored in the soil (Gs), on surface energy balance, and hence ET. The results indicate that incorporating thermal energies stored in the air and canopy has a significant effect on total energy storage for shorter temporal resolutions, such as 30-minutes and an hour. Conversely, for longer temporal resolutions (e.g., diurnal and monthly averages), the effect of including thermal energies stored in the air and vegetation on total thermal energy storage is negligible. Our results also showed that the bulk of the total thermal energy storage (G = Gs + Ga + Gc) in the surface energy balance was stored in the soil (Gs). In addition, we have also determined the crop coefficient (Kc) of pecan by combining the actual ET obtained from the OPEC method and potential ET (ET0) calculated using weather data in the surrounding area. Our average pecan Kc values were comparable with the ones reported by other researchers using different methods. We conclude that the OPEC energy balance method can be used to calculate Kc values for pecan whereby farmers and extension agents use the calculated Kc values in combination with ET0 to determine the consumptive use of pecan trees.

  9. Recharge and Evapotranspiration Assessment In Kalahari

    NASA Astrophysics Data System (ADS)

    Lubczynski, M.; Obakeng, O.

    2006-12-01

    Sustainability of groundwater resources in Kalahri is constrained not only by recharge to the aquifers but also by discharge from them. Natural groundwater discharge takes place in 3 different ways, as aquifer groundwater outflow, direct tree root water uptake called groundwater transpiration (Tg) and as upward vapor-liquid water movement called groundwater evaporation (Eg), the latter two called groundwater evapotranspiration (ETg). The evaluation of ETg and recharge was the main goal of this study. Due to generally large depth of groundwater table in Kalahari, >60 m, Eg was assumed as negligible component of groundwater balances while in contrast Tg has been considered significant already since 90-ties. This was because of fragments of tree roots of Boscia albitrunca and Acacia erioloba found in borehole cores at depth of >60 m. Some of those roots reach groundwater, which allow them to remain green throughout dry seasons. This study was carried out using hydrological monitoring consisting of 10 multi-sensor towers and 17 groundwater monitoring points. Soil moisture movement was investigated by profile monitoring. The deepest profile was down to 76 m depth. The soil moisture results revealed complicated pattern characterized by a combination of diffuse and preferential flow. The actual evapotranspiration was estimated by the Bowen-ratio and temperature-profile methods which provided overestimated results as compared with rainfall so the recharge could not be deduced directly. Therefore recharge was derived indirectly, through 1D lumped parameter model that used rainfall and PET as input and heads as calibration reference. That model indicated recharge 0-50 mm/yr. For understanding tree impact upon groundwater recharge, tree sap velocity was monitored for 2 years using the Granier method on 41 trees of 9 species in 8 plots of 30x30m. The estimated plot transpirations showed large spatio-temporal variability, 3-71 mm/yr and occasionally exceeded recharge. In order

  10. A decade of remote sensing and evapotranspiration research at USDA-ARS Conservation and Production Research Laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is widely recognized that image-based remote sensing can provide spatially and temporally distributed information on soil and crop characteristics including tillage and evapotranspiration (ET) from plot to regional scales. ET is an important component of the water balance and the major consumptiv...

  11. Trend analysis and forecast of precipitation, reference evapotranspiration and rainfall deficit in the Blackland Prairie of eastern Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trend analysis and estimation of monthly and annual precipitation, reference evapotranspiration (ETo) and rainfall deficit are essential for water resources management and cropping system design. Rainfall, ETo, and water deficit patterns and trends in eastern Mississippi USA for a 120-year period (1...

  12. Daily stand-scale evapotranspiration estimation over a managed pine plantation in North Carolina, USA, using multisatellite data fusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) over agricultural land surfaces represents the rate at which soil water is consumed in growing crops. Maps of ET,produced at high spatial and temporal resolution using satellite imagery, can provide detailed information about daily vegetation water use and soil moisture statu...

  13. A thermal-based remote sensing modeling system for estimating daily evapotranspiration from field to global scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal-infrared (TIR) remote sensing of land surface temperature (LST) provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition as well as providing useful information for constraining prognostic land surface models. This presentation d...

  14. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.

    PubMed

    Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi

    2013-08-01

    An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. PMID:23564676

  15. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion.

    PubMed

    Bernacchi, Carl J; Leakey, Andrew D B; Kimball, Bruce A; Ort, Donald R

    2011-06-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O₃]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O₃] on crop ecosystem energy fluxes and water use. Elevated [O₃] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C. PMID:21477906

  16. Estimating evapotranspiration in different rain-fed peatlands from groundwater level changes

    NASA Astrophysics Data System (ADS)

    Dettmann, Ullrich; Maurer, Eike; Bechtold, Michel; Brümmer, Christian; Tiemeyer, Bärbel

    2014-05-01

    Biogeochemical processes in peatlands are strongly controlled by the hydrological conditions of these environments. One of the key parameters controlling the water balance is the evapotranspiration, which can be calculated e.g. by the FAO crop reference evapotranspiration or the Penman-Monteith equation as a function of atmospheric conditions and plant specific parameters. These parameters are well investigated for agricultural crops and forests but poorly for most peatland vegetation types. Direct measurement of the evapotranspiration is possible with weighing lysimeters or the eddy-covariance technique, but expensive and time consuming. In many peatlands and riparian areas groundwater table changes are characterized by diurnal fluctuations (daytime decline, night-time recovery) caused by the evapotranspiration and groundwater recharge. White introduced 1932 a method to calculate the evapotranspiration from these diurnal fluctuations. In contrast to traditional evapotranspiration models only a small number of variables need to be measured (groundwater level changes, possibly precipitation) or calculated (specific yield). Over the last decades, several studies and modifications of the White method have been published. Several authors showed the applicability of the method for riparian areas and fens, but this relies on the assumption of a constant recharge over the whole day. As there is no groundwater inflow at rain-fed peatlands, recovery during night-time can only result from redistribution in the soil profile or from lateral flow processes within the peatland. Thus, approaches to calculate evapotranspiration from diurnal groundwater fluctuations used to date need to be adapted. Based on 50 hydrographs measured in 6 rain-fed peatlands in Germany characterized by different soil properties, land use and vegetation, we systematically analyzed diurnal patterns of the groundwater levels. These patterns were spatially and temporally very variable. At some sites, the

  17. Evapotranspiration estimates using remote-sensing data, Parker and Palo Verde valleys, Arizona and California

    USGS Publications Warehouse

    Raymond, Lee H.; Rezin, Kelly V.

    1989-01-01

    In 1981 the U.S. Geological Survey established an experimental project to assess the possible and practical use of remote-sensing data to estimate evapotranspiration as an approximation of consumptive use of water in the lower Colorado River flood plain. The project area was in Parker Valley, Arizona. The approach selected was to measure the areas covered by each type of vegetation, using remote-sensing data in various types of analyses, and to multiply each area by a predetermined water-use rate. Two calibration and six remote-sensing methods of classifying crop types were compared for cost, accuracy, consistency, and labor requirements. Included were one method each for field reconnaissance using 1982 data, low-altitude (less than 5,000 feet) aerial photography using 1982 data, and visual photointerpretation of Landsat satellite images using 1981 and 1982 data; two methods for medium-altitude (15,000-18,000 feet) aerial photography using 1982 data; and three methods for digital Landsat satellite images using 1981 data. A test of the most promising digital-processing method, which used three image dates, was made in part of Palo Verde Valley, California, where 1981 crop data were more complete than in Parker Valley. Of the eight methods studied, the two-date digital-processing method was the most consistent and least labor intensive for identifying two or three major crops; visual photointerpretation of Landsat images was the least expensive. Evapotranspiration estimates from crop classifications by all methods differed by a maximum of 6 percent. Total evapotranspiration calculated from crop data and phreatophyte maps in 1981 ranged from 11 percent lower in Palo Verde Valley to 17 percent lower in Parker Valley than consumptive use calculated by water budgets. The difference was greater in Parker Valley because the winter crop data were not included.

  18. Evapotranspiration and Dual Crop Coefficients Sonisa Sharma1, Ayse Irmak12, Anne Parkhurst3, Elizabeth walter-Shea1 and Kenneth G. Hubbard1 1School of Natural Resources, 2Civil Engineering, 3Departments of Statistics, University of Nebraska-Lincoln

    NASA Astrophysics Data System (ADS)

    Sharma, S.

    2012-12-01

    Accurate estimation of water content in the crop root zone is most important for water conservation and management practices like irrigation. The objective of this study is to use the FA0-56 dual crop cefficients: basal crop coefficient Kcb and the soil evaporation coefficient Ke for a large corn/soybean field in the year 2005 at the Mead Turf Farm in the state of Nebraska, USA..Dual crop coefficients can be used to estimate both transpiration from crops and evaporation from soil. The Kcb has a low value of 0.15(K cb, in) during the initial period, increases rapidly to a maximum of 1.14 (K cb, mid) for the entire midseason and decreases rapidly to 0.5 at the end of the corn growing season (K cb,end). When examined together with precipitation, the dual crop coefficient was higher following rainfall or irrigation, as expected. The data suggests that the dual crop coefficient approach is a good estimation of water loss from well-watered crops. Irrigation can be scheduled to replace the loss of water from the crop/soil system. Similarly, when we compared the measured daily ET and the ET calculated from dual crop coefficients, it gives 98 % R2.; Comparision of calculated ET from dual crop coefficient appraoch with Weather Station ET

  19. Evapotranspiration from the Lower Walker River Basin, West-Central Nevada, Water Years 2005-07

    USGS Publications Warehouse

    Allander, Kip K.; Smith, J. LaRue; Johnson, Michael J.

    2009-01-01

    evapotranspiration station in a saltcedar grove, measurements indicated a possible decrease in evapotranspiration of about 50 percent due to defoliation of the saltcedar by the saltcedar leaf beetle. Total evapotranspiration from the evapotranspiration units identified in the Lower Walker River basin was about 231,000 acre-feet per year (acre-ft/yr). Of this amount, about 45,000 acre-ft/yr originated from direct precipitation, resulting in net evapotranspiration of about 186,000 acre-ft/yr. More than 80 percent of net evapotranspiration in the Lower Walker River basin was through evaporation from Walker Lake. Total evaporation from Walker Lake was about 161,000 acre-ft/yr and net evaporation was about 149,000 acre-ft/yr. Some previous estimates of evaporation from Walker Lake based on water-budget analysis actually represent total evaporation minus ground-water inflow to the lake. Historical evaporation rates determined on the basis of water budget analysis were less than the evaporation rate measured directly during this study. The difference could represent ground-water inflow to Walker Lake of 16,000 to 26,000 acre-ft/yr or could indicate that ground-water inflow to Walker Lake is decreasing over time as the lake perimeter recedes.

  20. Evapotranspiration estimation in heterogeneous urban vegetation

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Nouri, H.; Beecham, S.; Anderson, S.; Sutton, P.; Chavoshi, S.

    2015-12-01

    Finding a valid approach to measure the water requirements of mixed urban vegetation is a challenge. Evapotranspiration (ET) is the main component of a plant's water requirement. A better understanding of the ET of urban vegetation is essential for sustainable urbanisation. Increased implementation of green infrastructure will be informed by this work. Despite promising technologies and sophisticated facilities, ET estimation of urban vegetation remains insufficiently characterized. We reviewed the common field, laboratory and modelling techniques for ET estimation, mostly agriculture and forestry applications. We opted for 3 approaches of ET estimation: 1) an observational-based method using adjustment factors applied to reference ET, 2) a field-based method of Soil Water Balance (SWB) and 3) a Remote Sensing (RS)-based method. These approaches were applied to an experimental site to evaluate the most suitable ET estimation approach for an urban parkland. To determine in-situ ET, 2 lysimeters and 4 Neutron Moisture Meter probes were installed. Based on SWB principles, all input water (irrigation, precipitation and upward groundwater movements) and output water (ET, drainage, soil moisture and runoff) were measured monthly for 14 months. The observation based approach and the ground-based approach (SWB) were compared. Our predictions were compared to the actual irrigation rates (data provided by the City Council). Results suggest the observational-based method is the most appropriate urban ET estimation. We examined the capability of RS to estimate ET for urban vegetation. Image processing of 5 WorldView2 satellite images enabled modelling of the relationship between urban vegetation and vegetation indices derived from high resolution images. Our results indicate that an ETobservational-based -NDVI modelling approach is a reliable method of ET estimation for mixed urban vegetation. It also has the advantage of not depending on extensive field data collection.

  1. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1981-01-01

    Emissive and reflective data for 10 days, and IR data for 6 nights in south Texas scenes were analyzed after procedures were developed for removing cloud-affected data. HCMM radiometric temperatures were: within 2 C of dewpoint temperatures on nights when air temperature approached dewpoint temperatures; significantly correlated with variables important in evapotranspiration; and, related to freeze severity and planting depth soil temperatures. Vegetation greenness indexes calculated from visible and reflective IR bands of NOAA-6 to -9 meteorological satellites will be useful in the AgRISTARS program for seasonal crop development, crop condition, and drought applications.

  2. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.

    2015-03-01

    Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.

  3. Evapotranspiration of applied water, Central Valley, California, 1957-78

    USGS Publications Warehouse

    Williamson, Alex K.

    1982-01-01

    In the Central Valley, Calif., where 57% of the 20,000 square miles of land is irrigated, ground-water recharge from agricultural lands is an important input to digital simulation models of ground-water flow. Several methods of calculating recharge were explored for the Central Valley Aquifer Project and a simplified water budget was designed where net recharge (recharge minus pumpage) equals net surface water diverted minus evapotranspiration of applied water (ETAW). This equation eliminates the need to determine pumpage from the water-table aquifer, assuming that the time lag for infiltration is not longer than the time intervals of interest for modeling. This study evaluates only the evapotranspiration of applied water. Future reports will describe the other components of the water budget. ETAW was calculated by summing the products of ETAW coefficients and respective crop areas for each 7 1/2-minute quadrangle area in the valley, for each of three land-use surveys between 1957 and 1978. In 1975 total ETAW was 15.2 million acre-feet, a 43% increase since 1959. The largest increases were in the south, especially Kern County, which had a sixfold increase, which was caused by the import of surface water in the California Aqueduct. (USGS)

  4. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (α=0

  5. Evapotranspiration information reporting: II. Recommended documentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and journal authors, reviewers, and readers can benefit from more complete documentation of published evapotranspiration (ET) information, including a description of field procedures, instrumentation, data filtering, model parameterization, and site review. This information is important ...

  6. Mapping evapotranspiration in the Texas Panhandle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the Texas High Plains accounts for approximately 92% of groundwater withdrawals. Because groundwater levels are declining in the region, efficient agricultural water use is imperative for sustainability and regional economic viability. Accurate regional evapotranspiration (ET) maps ...

  7. Estimating potential evapotranspiration with improved radiation estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential evapotranspiration (PET) is of great importance to estimation of surface energy budget and water balance calculation. The accurate estimation of PET will facilitate efficient irrigation scheduling, drainage design, and other agricultural and meteorological applications. However, accuracy o...

  8. Remote Sensing of Snow and Evapotranspiration

    NASA Technical Reports Server (NTRS)

    Schmugge, T. (Editor)

    1985-01-01

    The use of snowmelt runoff models from both the U.S. and Japan for simulating discharge on basins in both countries is discussed as well as research in snowpack properties and evapotranspiration using remotely sensed data.

  9. First insights into disassembled "evapotranspiration"

    NASA Astrophysics Data System (ADS)

    Chormański, Jarosław; Kleniewska, Małgorzata; Berezowski, Tomasz; Szporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatyłowicz, Jan; Batelaan, Okke

    2015-04-01

    In this work we present an initial data analysis obtained from a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them fromthe total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its component transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project

  10. Measurements of CO2 and H2O fluxes of crop plants are essential to understand the impacts of environmental variables on crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of CO2 and H2O fluxes of crop plants are essential to understand the impacts of environmental variables on crop productivity. A portable, CETA (Canopy Evapo-Transpiration and Assimilation) chamber system was built and evaluated at Big Spring, TX. This chamber system is an open or flow...

  11. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  12. The Self Actualized Reader.

    ERIC Educational Resources Information Center

    Marino, Michael; Moylan, Mary Elizabeth

    A study examined the commonalities that "voracious" readers share, and how their experiences can guide parents, teachers, and librarians in assisting children to become self-actualized readers. Subjects, 25 adults ranging in age from 20 to 67 years, completed a questionnaire concerning their reading histories and habits. Respondents varied in…

  13. Evapotranspiration estimates using remote-sensing data, Parker and Palo Verde valleys, Arizona and California

    USGS Publications Warehouse

    Raymond, L.H.; Rezin, K.V.

    1986-01-01

    In 1981 the U.S. Geological Survey established an experimental project to assess the possible and practical use of remote sensing data to estimate evapotranspiration as an approximation of consumptive use in the lower Colorado River flood plain. The project area was in Parker Valley, Arizona. The approach selected was to measure the areas covered by each type of vegetation using remote sensing data in various types of analyses and to multiply each area by a predetermined water use rate. Two calibration and six remote sensing methods of classifying crop types were compared for cost, accuracy, consistency, and labor requirements. Included were one method each for field reconnaissance using 1982 data, low altitude (< than 5,000 ft) aerial photography using 1982 data, and visual photointerpretation of Landsat satellite images using 1981 and 1982 data; two methods for medium-altitude (15,000-18,000 ft) aerial photography using 1982 data; and three methods for digital Landsat satellite images using 1981 data. A test of the most promising digital processing method, which used three image dates, was made in part of Palo Verde Valley, California, where 1981 crop data were more complete than in Parker Valley. Of the eight methods studied, the three-date digital processing method was the most consistent and least labor-intensive; visual photointerpretation of Landsat images was the least expensive. Evapotranspiration estimates from crop classifications by all methods differed by a maximum of 6%. Total evapotranspiration calculated from crop data and phreatophyte maps in 1981 ranged from 12% lower in Palo Verde Valley to 17% lower in Parker Valley than consumptive use calculated by water budgets. The difference was greater in Parker Valley because the winter crop data were not included. (Author 's abstract)

  14. Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are great tools to improve soil quality and health, and great tools to increase carbon sequestration. They are nutrient management tools that can help scavenge nitrate, cycle nitrogen to the following crop, mine NO3 from groundwater, and increase nitrogen use efficiency of cropping syste...

  15. The effect of background hydrometeorological conditions on the sensitivity of evapotranspiration to model parameters: analysis with measurements from an Italian alpine catchment

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Toninelli, V.; Albertson, J. D.; Mancini, M.; Troch, P. A.

    Recent developments have made land-surface models (LSMs) more complex through the inclusion of more processes and controlling variables, increasing numbers of parameters and uncertainty in their estimates. To overcome these uncertainties, prior to applying a distributed LSM over the whole Toce basin (Italian Alps), a field campaign was carried out at an experimental plot within the basin before exploring the skill and parameter importance (sensitivity) using the TOPLATS model, an existing LSM. In the summer and autumn of 1999, which included both wet (atmosphere controlled) and dry (soil controlled) periods, actual evapotranspiration estimates were performed using Bowen ratio and, for a short period, eddy correlation methods. Measurements performed with the two methods are in good agreement. The calibrated LSM predicts actual evapotranspiration quite well over the whole observation period. A sensitivity analysis of the evapotranspiration to model parameters was performed through the global multivariate technique during both wet and dry periods of the campaign. This approach studies the influence of each parameter without conditioning on certain values of the other variables. Hence, all parameters are varied simultaneously using, for instance, a uniform sampling strategy through a Monte Carlo simulation framework. The evapotranspiration is highly sensitive to the soil parameters, especially during wet periods. However, the evapotranspiration is also sensitive to some vegetation parameters and, during dry periods, wilting point is the most critical for evapotranspiration predictions. This result confirms the importance of correct representation of vegetation properties which, in water-limited conditions, control evapotranspiration.

  16. Improved seasonal drought forecasts using reference evapotranspiration anomalies

    NASA Astrophysics Data System (ADS)

    McEvoy, Daniel J.; Huntington, Justin L.; Mejia, John F.; Hobbins, Michael T.

    2016-01-01

    A novel contiguous United States (CONUS) wide evaluation of reference evapotranspiration (ET0; a formulation of evaporative demand) anomalies is performed using the Climate Forecast System version 2 (CFSv2) reforecast data for 1982-2009. This evaluation was motivated by recent research showing ET0 anomalies can accurately represent drought through exploitation of the complementary relationship between actual evapotranspiration and ET0. Moderate forecast skill of ET0 was found up to leads of 5 months and was consistently better than precipitation skill over most of CONUS. Forecasts of ET0 during drought events revealed high categorical skill for notable warm-season droughts of 1988 and 1999 in the central and northeast CONUS, with precipitation skill being much lower or absent. Increased ET0 skill was found in several climate regions when CFSv2 forecasts were initialized during moderate-to-strong El Niño-Southern Oscillation events. Our findings suggest that ET0 anomaly forecasts can improve and complement existing seasonal drought forecasts.

  17. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role.

    PubMed

    Ruairuen, Watcharee; Fochesatto, Gilberto J; Sparrow, Elena B; Schnabel, William; Zhang, Mingchu; Kim, Yongwon

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  18. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role

    PubMed Central

    Ruairuen, Watcharee

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  19. Monitoring Daily Evapotranspiration in California Vineyards Using Landsat 8

    NASA Astrophysics Data System (ADS)

    Anderson, M. C.; Semmens, K. A.; Kustas, W. P.; Gao, F.; Alfieri, J. G.; McKee, L.; Prueger, J. H.; Hain, C.; Cammalleri, C.

    2014-12-01

    In California's Central Valley, due to competing demands for limited water resources, it is critical to monitor evaporative water loss and crop conditions at both individual field scales and over larger areas in support of water management decisions. This is particularly important for viticulture because grape vines must be maintained under highly controlled conditions in order to maximize production of quality fruit. Thus, regular high resolution temporal monitoring of hundreds of acres is required, a task only efficiently achieved with satellite remote sensing, combining multiple earth observations. In this research, we evaluate the utility of a multi-scale system for monitoring evapotranspiration (ET) and crop water stress applied over two vineyard sites near Lodi, California during the 2013 growing season. The system employs a data fusion methodology (STARFM: Spatial and Temporal Adaptive Reflective Fusion Model) combined with multi-scale ET modeling (ALEXI: Atmosphere Land Exchange Inverse Model) to compute daily 30 m resolution ET. ALEXI ET fluxes (4 km resolution, daily) are integrated with ET fluxes from Landsat 8 thermal data (30 m resolution, ~16 day) and Moderate Resolution Imaging Spectroradiometer (MODIS) data (1 km resolution, daily). The high spatial resolution Landsat retrievals are then fused with high temporal frequency MODIS data using STARFM to produce daily estimates of crop water use that resolve within field variation in ET for individual vineyards. Estimates of daily ET generated in two fields of Pinot Noir vines of different maturity agreed well with ground-based flux measurements collected within each field with relative errors of about 15%. Spatial patterns of cumulative ET correspond to yield estimates and indicate areas of variable crop moisture, condition, and yield within the vineyards that could require additional management strategies due to variation in soil type/texture, nutrient conditions and other environmental factors.

  20. Concerning the relationship between evapotranspiration and soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1987-01-01

    The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.

  1. The Bushland weighing lysimeters: A quarter century of crop ET investigations to advance sustainable irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1987-1989, the first irrigated crops were grown on the four large, precision weighing lysimeters at the USDA-ARS Laboratory at Bushland, Texas, on the Southern High Plains (SHP). Thus began >25-years of full- and deficit-irrigated crop growth, energy and water balance, evapotranspiration (ET), yi...

  2. An energy balance approach for mapping crop waterstress and yield impacts over the Czech Republic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a growing demand for timely, spatially distributed information regarding crop condition and water use to inform agricultural decision making and yield forecasting efforts. Remote sensing of land-surface temperature has proven valuable for mapping evapotranspiration (ET) and crop stress from...

  3. Water use efficiency of perennial and annual bioenergy crops in central Illinois

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable bioenergy production depends upon the efficiency with which crops use available water to produce biomass and store carbon belowground. Therefore, water use efficiency (WUE; productivity vs. annual evapotranspiration, ET) is a key metric of bioenergy crop performance. We evaluate WUE of t...

  4. Estimation of actual evapotranspiration using measured and calculated values of bulk surface resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently the United Nations-Food and Agriculture Organization (FAO) recommends using the Penman-Monteith method for estimating ET over all other meteorological methods. The principal limitation of using the generalized form of the Penman-Monteith equation is in obtaining accurate values for the bu...

  5. Impact of Atmospheric Albedo on Amazon Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lopes, A. V.; Thompson, S. E.; Dracup, J. A.

    2013-12-01

    The vulnerability of the Amazon region to climate and anthropogenic driven disturbances has been the subject of extensive research efforts, given its importance in the global and regional climate and ecologic systems. The evaluation of such vulnerabilities requires the proper understanding of physical mechanisms controlling water and energy balances and how the disturbances change them. Among those mechanisms, the effects of atmospheric albedo on evapotranspiration have not been fully explored yet and are explored in this study. Evapotranspiration in the Amazon is sustained at high levels across all seasons and represents a large fraction of water and energy surface budgets. In this study, statistical analysis of data from four flux towers installed at Amazon primary forest sites was employed to quantify the impact of atmospheric albedo, mostly resulted from cloudiness, on evapotranspiration and to compare it to the effect of water limitation. Firstly, the difference in eddy-flux derived evapotranspiration at the flux towers under rainy and non-rainy antecedent conditions was tested for significance. Secondly, the same statistical comparison was performed under cloudy and clear sky conditions at hourly and daily time scales, using the reduction in incoming solar radiation as an indicator of cloudiness. Finally, the sensitivity of seasonal evapotranspiration totals to atmospheric albedo resulted from rainfall patterns is evaluated. That was done by sampling daily evapotranspiration estimates from empirical probability distribution functions conditioned to rainfall occurrence and then varying the number of dry days in each season. It was found that light limitation is much more important than water limitation in the Amazon, resulting in up to 43% reduction in daily evapotranspiration. Also, this effect varies by location and by season, the largest impact being in wet season, from December do January. Moreover, seasonal evapotranspiration totals were found to be

  6. Estimation of regional evapotranspiration for clear sky days over the North China Plain

    NASA Astrophysics Data System (ADS)

    Shu, Y.; Stisen, S.; Sandholt, I.; Jensen, K. H.

    2009-04-01

    The triangle method combined with thermal inertia for estimation of regional evapotranspiration based on Feng Yun-2C(FY-2C) satellite data and MODIS products over the North China Plain is presented. FY-2C, China's first operational geostationary meteorological satellite which features 5 spectral bands (1 VIS and 4 IR), can acquire one full disc image of China (60° N - 60° S ,45° E - 165° E) per hour every day. Two thermal red channels (IR1: 10.3-11.3 μm) and (IR2:11.5-12.5 μm) were used for surface temperature estimation using a split window algorithm originally proposed for the MSG-SEVIRI sensor assuming the channel response function range of the two split-window channels for MSG SEVIRI and FY-2C are similar and that the center of channels are the same. For application of the improved triangle method taking thermal inertia into account, the surface-air temperature gradient in the Ts-NDVI space, was replaced by the surface temperature temporal change estimated from the Land Surface Temperature at hours 8:00 and 12:00 in local time (ΔTs). Combined with the 16 days composite MODIS Vegetation Indices product (MOD 13) at spatial resolution of 5 km, evaporative fraction was estimated by interpolation in the ΔTs-NDVI triangular-shaped parameter space. Subsequently, regional actual evapotranspiration was estimated based on the derived evaporative fraction and available energy estimated from satellite data. In the piedmont plain with high NDVI and low ΔTs, evapotranspiration rate is high because of irrigation of winter wheat. In the coastal plain NDVI is low and also ΔTs is low as high evapotranspiration rates are sustained water supply from shallow water table. Ground-based measurements of evapotranspiration were retrieved from a lysimeter at the Luancheng eco-agricultural station of China Academy of Sciences. These data are representative for evapotranspiration in the piedmont plain and were used for validation of the actual evapotranspiration retrievals from

  7. Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins

    NASA Astrophysics Data System (ADS)

    Gurtz, Joachim; Baltensweiler, Andri; Lang, Herbert

    1999-12-01

    River basins in mountainous regions are characterized by strong variations in topography, vegetation, soils, climatic conditions and snow cover conditions, and all are strongly related to altitude. The high spatial variation needs to be considered when modelling hydrological processes in such catchments. A complex hydrological model, with a great potential to account for spatial variability, was developed and applied for the hourly simulation of evapotranspiration, soil moisture, water balance and the runoff components for the period 1993 and 1994 in 12 subcatchments of the alpine/pre-alpine basin of the River Thur (area 1703 km2). The basin is located in the north-east of the Swiss part of the Rhine Basin and has an elevation range from 350 to 2500 m a.s.l. A considerable part of the Thur Basin is high mountain area, some of it above the tree-line and a great part of the basin is snow covered during the winter season.In the distributed hydrological model, the 12 sub-basins of the Thur catchment were spatially subdivided into sub-areas (hydrologically similar response units - HRUs or hydrotopes) using a GIS. Within the HRUs a hydrologically similar behaviour was assumed. Spatial interpolations of the meteorological input variables wereemployed for each altitudinal zone. The structure of the model components for snow accumulation and melt, interception, soil water storage and uptake by evapotranspiration, runoff generation and flow routing are briefly outlined. The results of the simulated potential evapotranspiration reflect the dominant role of altitudinal change in radiation and albedo of exposure, followed by the influence of slope. The actual evapotranspiration shows, in comparison with the potential evapotranspiration, a greater variability in the lower and medium altitudinal zones and a smaller variability in the upper elevation zones, which was associated with limitations of available moisture in soil and surface depression storages as well as with the

  8. Vegetation impact on mean annual evapotranspiration at a global catchment scale

    NASA Astrophysics Data System (ADS)

    Peel, Murray C.; McMahon, Thomas A.; Finlayson, Brian L.

    2010-09-01

    Research into the role of catchment vegetation within the hydrologic cycle has a long history in the hydrologic literature. Relationships between vegetation type and catchment evapotranspiration and runoff were primarily assessed through paired catchment studies during the 20th century. Results from over 200 paired catchment studies from around the world have been reported in the literature. Two constraints on utilizing the results from paired catchment studies in the wider domain have been that the catchment areas studied are generally (1) small (<10 km2) and (2) from a narrow range of climate types. The majority of reported paired catchment studies are located in the USA (˜47%) and Australia (˜27%) and experience mainly temperate (Köppen C) and cold (Köppen D) climate types. In this paper we assess the impact of vegetation type on mean annual evapotranspiration through a large, spatially, and climatically diverse data set of 699 catchments from around the world. These catchments are a subset of 861 unregulated catchments considered for the analysis. Spatially averaged precipitation and temperature data, in conjunction with runoff and land cover information, are analyzed to draw broad conclusions about the vegetation impact on mean annual evapotranspiration. In this analysis any vegetation impact signal is assessed through differences in long-term catchment average actual evapotranspiration, defined as precipitation minus runoff, between catchments grouped by vegetation type. This methodology differs from paired catchment studies where vegetation impact is assessed through streamflow responses to a controlled, within catchment, land cover change. The importance of taking the climate type experienced by the catchments into account when assessing the vegetation impact on evapotranspiration is demonstrated. Tropical and temperate forested catchments are found to have statistically significant higher median evapotranspiration, by about 170 mm and 130 mm

  9. Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Yinsheng; Szilagyi, Jozsef; Guo, Yanhong; Zhai, Jianqing; Gao, Haifeng

    2015-02-01

    The complementary relationship (CR) of evapotranspiration allows the estimation of the actual evapotranspiration rate (ETa) of the land surface using only routine meteorological data, which is of great importance in the Tibetan Plateau (TP) due to its sparse observation network. With the highest in situ automatic climate observation system in a typical semiarid alpine steppe region of the TP, the wind function of Penman was replaced by one based on the Monin-Obukhov Similarity theory for calculating the potential evapotranspiration rate (ETp); the Priestley-Taylor coefficient, α, was estimated using observations in wet days; and the slope of the saturation vapor pressure curve was evaluated at an estimate of the wet surface temperature, provided the latter was smaller than the actual air temperature. A symmetric CR was obtained between the observed daily actual and potential evapotranspiration. Local calibration of the parameter value (in this order) is key to obtaining a symmetric CR: α, wet environment air temperature (Twea), and wind function. Also, present symmetric CR contradicts previous research that used default parameter values for claiming an asymmetric CR in arid and semiarid regions of the TP. The effectiveness of estimating the daily ETa via symmetric CR was greatly improved when local calibrations were implemented. At the same time, an asymmetric CR was found between the observed daily ETa and pan evaporation rates (Epan), both for D20 aboveground and E601B sunken pans. The daily ETa could also be estimated by coupling the Epan of D20 aboveground and/or E601B sunken pan through CR. The former provided good descriptors for observed ETa, while the latter still tended to overestimate it to some extent.

  10. Comparison of wetland evapotranspiration estimates using diurnal groundwater fluctuations and measurements of a groundwater lysimeter

    NASA Astrophysics Data System (ADS)

    Fahle, Marcus; Dietrich, Ottfried; Lischeid, Gunnar

    2013-04-01

    Sound water management in wetlands requires knowledge of on-going processes and estimates of the water balance components. Specifically evapotranspiration is of crucial importance, as it is often the main water extracting quantity. To avoid elaborate and expensive equipment, which is often required for estimating actual values, potential evapotranspiration is frequently used, which can be easily derived from standard meteorological measurements. However, the potential values may under- or overestimate actual evapotranspiration significantly. A cheap and easy-to-use method for estimating actual values in shallow groundwater environments relies on diurnal groundwater fluctuation. Basically the 24 hours groundwater level decline, considering in some way the prevalent groundwater recovery, is multiplied by the readily available specific yield. Various varieties of this approach have been employed for that purpose, above all differing in their assumptions on groundwater recovery, i.e. lateral or vertical in- or outflow. The objective of our study is therefore to compare these different methods. For this purpose we use data of a weighable groundwater lysimeter situated at a ditch drained grassland site in the Spreewald wetland in Northeastern Germany. The groundwater level in the lysimeter was adjusted to a reference gauge and simulated the conditions of the surrounding area. Hence the lysimeter reflected near natural conditions and provided measurements of all water balance components with high temporal resolution (up to 10 minute intervals). Suitable days, i.e. with a pronounced diurnal fluctuation, of the vegetation periods 2011 and 2012 are chosen and used to prove common assumptions about groundwater recharge, e.g. if the values remain constant during the day or if diurnal variations resulting from gradient changes exist. Finally, based on the lysimeter measurements, the evapotranspiration estimates gained from different approaches that employ diurnal groundwater

  11. Estimating evapotranspiration with thermal UAV data and two source energy balance models

    NASA Astrophysics Data System (ADS)

    Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P. J.; Friborg, T.

    2015-08-01

    Estimating evapotranspiration is important when managing water resources and cultivating crops. Evapotranspiration can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST) which recently have become obtainable in very high resolution using Unmanned Aerial Vehicles (UAVs). Very high resolution LST can give insight into e.g. distributed crop conditions within cultivated fields. In this study evapotranspiration is estimated using LST retrieved with a UAV and the physically-based, two source energy balance models: the Priestley-Taylor TSEB (TSEB-PT) and the Dual-Temperature-Difference (DTD). A fixed-wing UAV was flown over a barley field in western Denmark during the spring and summer in 2014 and retrieved images of LST is successfully processed into thermal mosaics which serve as model input for both TSEB-PT and DTD. The aim is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to obtain high spatial and temporal resolution surface energy heat fluxes. Furthermore, this study evaluates the performance of the two source energy balance (TSEB) model scheme during cloudy and overcast weather conditions. This is feasible due to the low data retrieval altitude compared to satellite thermal data that are only available during clear skies and sunny conditions. Flux estimates from TSEB-PT and DTD are compared and validated against field data collected using an eddy covariance system located at same site at which the UAV flights were conducted. Furthermore, spatially distributed evapotranspiration patterns are evaluated using known irrigation patterns. Evapotranspiration is well estimated by both TSEB-PT and DTD with DTD as the best predictor. The DTD model provides results comparable to studies estimating evapotranspiration with satellite retrieved LST and physical land-surface models. This study shows that the UAV platform and the lightweight thermal camera provide high

  12. Crop Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  13. Crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues [e.g., corn (Zea mays) stover and small grain straw] are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems. This chapter focuses on current cor...

  14. A review of approaches for evapotranspiration partitioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partitioning of evapotranspiration (ET) into evaporation from the soil surface (E) and transpiration (T) is challenging but important in order to assess biomass production and the allocation of increasingly scarce water resources. Generally T is the desired component with the water being used to enh...

  15. Assessment of Texas evapotranspiration (ET) networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the current status of evapotranspiration (ET) data and networks in Texas for potential and beneficial conservation use with irrigation decision support systems. Objectives of this study included (1) identification of existing networks and the meteorological param...

  16. Evapotranspiration in Subtropical Climate: Measurements and predictions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) loss is estimated at about 80-85% of annual precipitation in South Florida. Accurate prediction of ET is an important part of the implementation of the Comprehensive Everglades Restoration Plan (CERP). In the USDA's Everglades Agro-Hydrology Model (EAHM), the daily soil root...

  17. Field measurement of cotton seedling evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on cotton evapotranspiration (ET) during the seedling growth stage and under field conditions is scarce because ET is a difficult parameter to measure. Our objective was to use weighable lysimeters to measure daily values of cotton seedling ET. We designed and built plastic weighable mic...

  18. Evapotranspiration estimates using ASTER thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Schmugge, Thomas J.; French, Andrew; Kustas, William P.

    2002-01-01

    The recent availability of multi-band thermal infrared imagery from the Advanced Spaceborne Thermal Emission & Reflection radiometer (ASTER) on NASA's Terra satellite has made feasible the estimation of evapotranspiration at 90 meter resolution. One critical variable in evapotranspiration models is surface temperature. With ASTER the temperature can be reliably determined over a wide range of vegetative conditions. The requirements for accurate temperature measurement include minimization of atmospheric effects, correction for surface emissivity variations and sufficient resolution for the type of vegetative cover. When ASTER imagery are combined with meteorological observations, these requirements are usually met and result in surface temperatures accurate within 1-2 C. ASTER-based evapotranspiration estimates were made during September 2000 over a sub-humid regions at the USDA/ARS Grazinglands research laboratory near El Reno in central Oklahoma. Daily evapotranspiration was estimated by applying instantaneous ASTER surface temperatures, as well as ASTER-based vegetation indices from visible-near infrared bands, to a two-source energy flux model and combining the result with separately acquired hourly solar radiation data. The estimates of surface fluxes show reasonable agreement (within 50-100 W/m2) with ground-based Bowen Ratio Energy Balance measurements and illustrate how ASTER measurements can be applied to heterogeneous terrain. There are some significant discrepancies, however, and these may in part be due to difficulty quantifying fractional cover of senescent vegetation.

  19. A new reference evapotranspiration surface for the National Water Census community

    NASA Astrophysics Data System (ADS)

    Verdin, J. P.; Hobbins, M. T.; Senay, G. B.

    2012-12-01

    To meet its congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle—the National Water Census—the USGS has developed a framework for ongoing estimation of actual evapotranspiration (ET) combining both land-based and remotely sensed (R/S) drivers and is transferable to observation-scarce regions. To provide ET at Census-required resolutions (~100-1000 m), we combine (i) an operational, long-term, high-quality, scientific record of reference crop ET (ETrc), (ii) R/S land-surface temperature (LST) and reflectance at finer spatial scales but coarser temporal scales, and (iii) the USDA Annual Cropland Data Layer as a geographic mask for cropped surfaces. Our presentation motivates this new ET framework and describes its ETrc input. The ETrc is generated by the Penman-Monteith equation, driven by hourly, 0.125-degree (~12-km) NLDAS data, from Jan 1, 1979, to within five days of the present. This is the first consistently modeled, daily, continent-wide ETrc dataset that is both up-to-date and as temporally extensive. The R/S component relies on this input to provide an ETrc magnitude at coarse scale relative to the imagery. Remote sensing of LST and/or surface reflectance permits inference of ET as a fraction of ETrc. One such method used by the USGS is the Simplified Surface Energy Balance (SSEB) approach, which adapted the hot and cold pixel approach of SEBAL/METRIC; an operational version (SSEBop) calculates ET-fraction for a given pixel and combines it with ETrc to estimate and map ET on a routine basis with a high degree of consistency at multiple spatial scales. Though these imagery options have limited temporal coverage due to the time between satellite overpasses (1 to 8 days for MODIS, 16 days for Landsat), ET-fraction so derived is stable on such time scales. Thus, as ETrc varies significantly across the diurnal cycle and inter-overpass periods, it is used to track conditions

  20. Soil water sensor-based and evapotranspiration-based irrigation scheduling for soybean production on a Blackland Prairie soil in humid climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In east-central Mississippi, annual rainfall was 1307 mm and reference evapotranspiration (ETo) was 1210 mm for the 120-year period from 1894 to 2014. From May to October, when major crops are typically grown in this area, monthly rainfall ranged from 72 to 118 mm, and monthly ETo from 94 to 146 mm ...

  1. Improving Spectral Crop Coefficient Approach with Raw Image Digital Count Data to Estimate Crop Water Use

    NASA Astrophysics Data System (ADS)

    Shafian, S.; Maas, S. J.; Rajan, N.

    2014-12-01

    Water resources and agricultural applications require knowledge of crop water use (CWU) over a range of spatial and temporal scales. Due to the spatial density of meteorological stations, the resolution of CWU estimates based on these data is fairly coarse and not particularly suitable or reliable for water resources planning, irrigation scheduling and decision making. Various methods have been developed for quantifying CWU of agricultural crops. In this study, an improved version of the spectral crop coefficient which includes the effects of stomatal closure is applied. Raw digital count (DC) data in the red, near-infrared, and thermal infrared (TIR) spectral bands of Landsat-7 and Landsat-8 imaging sensors are used to construct the TIR-ground cover (GC) pixel data distribution and estimate the effects of stomatal closure. CWU is then estimated by combining results of the spectral crop coefficient approach and the stomatal closer effect. To test this approach, evapotranspiration was measured in 5 agricultural fields in the semi-arid Texas High Plains during the 2013 and 2014 growing seasons and compared to corresponding estimated values of CWU determined using this approach. The results showed that the estimated CWU from this approach was strongly correlated (R2 = 0.79) with observed evapotranspiration. In addition, the results showed that considering the stomatal closer effect in the proposed approach can improve the accuracy of the spectral crop coefficient method. These results suggest that the proposed approach is suitable for operational estimation of evapotranspiration and irrigation scheduling where irrigation is used to replace the daily CWU of a crop.

  2. Evapotranspiration Estimates for Deficit Irrigated Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficits must be imposed on crops during non-critical growth periods to maximize net economic output per unit of water consumed by the plant. The reference ET-crop coefficient procedure widely used for managing fully irrigated crops would be easiest to implement for irrigation management of d...

  3. Modeling soybean canopy resistance from micrometeorological and plant variables for estimating evapotranspiration using one-step Penman-Monteith approach

    NASA Astrophysics Data System (ADS)

    Irmak, Suat; Mutiibwa, Denis; Payero, Jose; Marek, Thomas; Porter, Dana

    2013-12-01

    Canopy resistance (rc) is one of the most important variables in evapotranspiration, agronomy, hydrology and climate change studies that link vegetation response to changing environmental and climatic variables. This study investigates the concept of generalized nonlinear/linear modeling approach of rc from micrometeorological and plant variables for soybean [Glycine max (L.) Merr.] canopy at different climatic zones in Nebraska, USA (Clay Center, Geneva, Holdrege and North Platte). Eight models estimating rc as a function of different combination of micrometeorological and plant variables are presented. The models integrated the linear and non-linear effects of regulating variables (net radiation, Rn; relative humidity, RH; wind speed, U3; air temperature, Ta; vapor pressure deficit, VPD; leaf area index, LAI; aerodynamic resistance, ra; and solar zenith angle, Za) to predict hourly rc. The most complex rc model has all regulating variables and the simplest model has only Rn, Ta and RH. The rc models were developed at Clay Center in the growing season of 2007 and applied to other independent sites and years. The predicted rc for the growing seasons at four locations were then used to estimate actual crop evapotranspiration (ETc) as a one-step process using the Penman-Monteith model and compared to the measured data at all locations. The models were able to account for 66-93% of the variability in measured hourly ETc across locations. Models without LAI generally underperformed and underestimated due to overestimation of rc, especially during full canopy cover stage. Using vapor pressure deficit or relative humidity in the models had similar effect on estimating rc. The root squared error (RSE) between measured and estimated ETc was about 0.07 mm h-1 for most of the models at Clay Center, Geneva and Holdrege. At North Platte, RSE was above 0.10 mm h-1. The results at different sites and different growing seasons demonstrate the robustness and consistency of the

  4. Drought trends indicated by evapotranspiration deficit over the contiguous United States during 1896-2013

    NASA Astrophysics Data System (ADS)

    Kim, Daeha; Rhee, Jinyoung

    2016-04-01

    Evapotranspiration (ET) has received a great attention in drought assessment as it is closely related to atmospheric water demand. The hypothetical potential ET (ETp) has been predominantly used, nonetheless it does not actually exist in the hydrologic cycle. In this work, we used a complementary method for ET estimation to obtain wet-environment ET (ETw) and actual ET (ETa) from routinely observed climatic data. By combining ET deficits (ETw minus ETa) and the structure of the Standardized Precipitation-Evapotranspiration Index (SPEI), we proposed a novel ET-based drought index, the Standardized Evapotranspiration Deficit Index (SEDI). We carried out historical drought identification for the contiguous United States using temperature datasets of the PRISM Climate Group. SEDI presented spatial distributions of drought areas similar to the Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI) for major drought events. It indicates that SEDI can be used for validating other drought indices. Using the non-parametric Mann-Kendall test, we found a significant decreasing trend of SEDI (increasing drought risk) similar to PDSI and SPI in the western United States. This study suggests a potential of ET-based indices for drought quantification even with no involvement of precipitation data.

  5. Spatial Observation and Models for Crop Water Use in Australia (Invited)

    NASA Astrophysics Data System (ADS)

    Hafeez, M. M.; Chemin, Y.; Rabbani, U.

    2009-12-01

    Recent drought in Australia and concerns about climate change have highlighted the need to manage agricultural water resources more sustainably, especially in the Murray Darling Basin which accounts for more than 70% of water for crop production. For Australian continent, approximately 90% of the precipitation that falls on the land is returned back to the atmosphere through actual evapotranspiration (ET) process. However, despite its significance nationally, it is almost impossible to measure or observe it directly at a meaningful scale in space and time through traditional point-based methods. Since late 1990's, the optical-thermal remote sensing satellite data has been extensively used for mapping of actual ET from farm to catchment scales in Australia. Numerous ET algorithms have been developed to make use of remote sensing data acquired by optical-thermal sensors mounted on airborne and satellite platforms. This article concentrates on the Murrumbidgee catchment, where ground truth data has been collected on a fortnightly basis since 2007 using two Eddy Covariance Systems (ECS) and two Large Aperture Scintillometers (LAS). Their setup absorbed variability in the landscape to measure ET-related fluxes. The ground truthing measurement data includes leaf area index (LAI) from LICOR 2000, soil heat fluxes from HuskeFlux, crop reflectance data from CROPScan and from a thermal radiometer. UAV drone equipped with multispectral scanner and thermal imager was used to get very high spatial resolution NDVI and surface temperature maps over the selected farms. This large array of high technology instruments have been used to collect specific measurements within various micro-ecosystems available in our study area. This article starts by an overview of common ET estimation algorithms based on satellite remote sensing data. The algorithms are SEBAL, METRIC, Simplified Surface Energy Balance, Two Source Energy Balance and SEBS. They are used in Australia at both regional and

  6. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  7. Tracing the allocation of water in rainfed rice ecosystem by partitioning evapotranspiration of rainfed rice (Oryza Sativa L.)

    NASA Astrophysics Data System (ADS)

    Nay-Htoon, Bhone; Dubbert, Maren; Wei, Xue; Cuntz, Matthias; Ko, Jonghan; Tenhunen, John; Werner, Christiane

    2015-04-01

    To understand productive and unproductive water use of crop production, partitioning evapotranspiration (ET ) into evaporation (E) and transpiration (T ) is important. Water movements within the eco-hydrologic cycle of agroecosystems can be traced by stable oxygen isotopes of water (δ18O) and plant transpiration and soil evaporation can also be estimated by tracing the δ18O. We quantified the contribution of transpiration to total ecosystem evapotranspiration of rainfed rice field by a stable oxygen isotope approach and FAO 56 dual crop modelling approach. Our study aims to provide quantification of ecosystem water cycle of rainfed rice by partitioning productive and unproductive water use since productivity and water use of rice which is a highly water demanding agroecosystem, is under intense research. Crop season total evapotranspiration fluxes from rainfed rice was mainly dominated by transpiration (T to ET contribution (T /ET ) = 65%) and domination of transpiration over evaporation fluxes was noted since early vegetative stage (Leaf Area Index = 0.8 m2 m-2) until harvesting. T /ET of rainfed rice fluctuated with changes in soil water content (SWC) and the highest T /ET was found at SWC of 0.34 m3 m-3, during seedling stage. Our results demonstrate that partitioning ET by FAO 56 dual crop model is in a good agreement with δ18O isotope based ET partitioning results. Using monthly mean values of leaf resistance and vegetation index derived crop coefficients instead of original fixed parameters of the FAO 56 dual crop model resulted better agreement with δ18O isotope based ET partitioning.

  8. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  9. Simple analytical model of evapotranspiration in the presence of roots

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare M.; Hough, L. A.; Castaing, Jean-Christophe; Frétigny, Christian; Dreyfus, Rémi

    2014-10-01

    Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer. Water is pumped by the roots, channeled to the leaf surface, and released into the surrounding air by a process called transpiration. Prediction of the evapotranspiration of water over time in the presence of roots helps keep track of the amount of water that remains in the soil. Using a controlled visual setup of a two-dimensional model soil consisting of monodisperse glass beads, we perform experiments on actual roots grown under different relative humidity conditions. We record the total water mass loss in the medium and the position of the evaporating front that forms within the medium. We then develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation fluxes and includes empirical assumptions on the quantity of open stomata in the leaves, where water transpiration occurs. Comparison between the model and experimental results shows excellent prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of roots. The model also provides a way to predict the lifetime of a plant.

  10. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration

    USGS Publications Warehouse

    Sumner, D.M.; Jacobs, J.M.

    2005-01-01

    Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

  11. Using Satellite Imagery with ET Weather Station Networks to Map Crop Water Use for Irrigation Scheduling: TOPS-SIMS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration estimates for scheduling irrigation must be field specific and real time. Weather station networks provide daily reference ET values, but users need to select crop coefficients for their particular crop and field. A prototype system has been developed that combines satellite image...

  12. Inteligent estimation of daily evapotranspiration susing

    NASA Astrophysics Data System (ADS)

    Sharifan, H.; Dehghani, A. A.

    2009-04-01

    Evapotranspiration (ET) is one of the parameters in water resources management which is attractive for design of irrigation systems. Due to interaction between meteorology parameter, there are nonlinear relations for assessing the evapotraqnspiration. Artifical neural networks are innovative approaches for estimation and prediction by using learning concept. In this study, by using the daily data of Gorgan synoptical station in Golestan province/ Iran the multilayer perceptron with back propagation learning rule was trained. Five different ANN models comprision various combinations of daily climate variable, i. e. air temperature, sunshine, wind speed and humidity was developed to evaluate degree of effect of each input variables on ET. A comparison is made between the estimated provide by ANN models and ET-values estimated by FAO-Penman-Monteith (F-P-M) method. The results show that ANN models perform better than experimental relation. Keyword : Evapotranspiration, Artifical neural network, Penman-Manteith, Gorgan.

  13. The Artificial Neural Network Estimation for Daily and Hourly Rice Evapotranspiration in the Region of Red Soil, South China

    NASA Astrophysics Data System (ADS)

    Jing, Yuanshu; Ruthaikarn, Buaphean; Jin, Xinyi; Pang, Bo

    The evapotranspiration estimation is a key item for irrigation program. It has the important practical significance for high stable yield and water-saving in the region of red soil, South China. Penman-Monteith equation, recommended by FAO, is verified to be the most effective calculation to actual evaporation in many regions of the world. The only default is it has to use complete meteorological factors. To solve this problem, we are trying to find out a artificial neural network model (ANN) which can easily get its information and easy to calculate as well as guaranteed accuracy. A Bowen ratio energy balance (BREB) system and automatic weather station were employed for simultaneous measurement of actual evapotranspiration above the rice field. The frequency of 20-min recording provided the possibility for the estimation of daily and hourly evapotranspiration. The determined coefficient from the artificial neural network model on daily scale R2 is 0.9642, while hourly scale R2 is 0.9880. The reason was that the hourly scale training samples was greater than the daily scale measures. In general, the model gives an effective and feasible way for the evaluation of paddy rice evapotranspiration by the conventional parameters.

  14. Online irrigation service for fruit und vegetable crops at farmers site

    NASA Astrophysics Data System (ADS)

    Janssen, W.

    2009-09-01

    Online irrigation service for fruit und vegetable crops at farmers site by W. Janssen, German Weather Service, 63067 Offenbach Agrowetter irrigation advice is a product which calculates the present soil moisture as well as the soil moisture to be expected over the next 5 days for over 30 different crops. It's based on a water balance model and provides targeted recommendations for irrigation. Irrigation inputs according to the soil in order to avoid infiltration and, as a consequence thereof, the undesired movement of nitrate and plant protectants into the groundwater. This interactive 'online system' takes into account the user's individual circumstances such as crop and soil characteristics and the precipitation and irrigation amounts at the user's site. Each user may calculate up to 16 different enquiries simultaneously (different crops or different emergence dates). The user can calculate the individual soil moistures for his fields with a maximum effort of 5 minutes per week only. The sources of water are precipitation and irrigation whereas water losses occur due to evapotranspiration and infiltration of water into the ground. The evapotranspiration is calculated by multiplying a reference evapotranspiration (maximum evapotranspiration over grass) with the so-called crop coefficients (kc values) that have been developed by the Geisenheim Research Centre, Vegetable Crops Branch. Kc values depending on the crop and the individual plant development stage. The reference evapotranspiration is calculated from a base weather station user has chosen (out of around 500 weather stations) using Penman method based on daily values. After chosen a crop and soil type the user must manually enter the precipitation data measured at the site, the irrigation water inputs and the dates for a few phenological stages. Economical aspects can be considered by changing the values of soil moisture from which recommendations for irrigation start from optimal to necessary plant supply

  15. Investigation of Valiantzas' evapotranspiration equation in Iran

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-07-01

    Several methods are available to estimate the reference evapotranspiration including mass transfer-based, radiation-based, temperature-based, and pan evaporation-based methods. The most important weather parameters are solar radiation, temperature, relative humidity, and wind speed for evapotranspiration models. This study aims to compare five forms of Valiantzas' evapotranspiration methods (one of the newest models) as well as Priestley-Taylor and Turc models to detect the best one under different weather conditions. For this purpose, weather data were gathered from 181 synoptic stations in 31 provinces of Iran. The reference evapotranspiration was compared with the FAO Penman-Monteith method. The results show that they are suitable for provinces of Iran (coefficient of determination ( R 2) was more than 0.9900). The Valiantzas 1 ( T, R s, RH, u) is more suitable for centre and south of Iran (9 provinces), and the Valiantzas 2 ( T, R s, RH, u) is suitable for west, east, and north of Iran (22 provinces). The most precise method was the Valiantzas 1 ( T, R s, RH, u) for ES. In addition, among limited data methods, the Valiantzas 2 ( T, R s, RH) is the best method (18 provinces). Finally, a list of the best performances of each method was presented to use other regions according to values of temperature, relative humidity, solar radiation, and wind speed. The best weather conditions for use in Valiantzas' methods are >24.2 MJ m-2 day-1, 16-18 °C, 40-50 %, and 1.50-2.50 m s-1 for solar radiation, temperature, relative humidity, and wind speed, respectively. Results are also useful for selecting the best model when researchers must apply these models on the basis of the available data.

  16. Evapotranspiration: Challenges in Measurement and Modeling

    NASA Astrophysics Data System (ADS)

    Amatya, Devendra; Sun, Ge; Gowda, Prasanna

    2014-07-01

    Evapotranspiration (ET) processes at the leaf-to-landscape scales have important controls and feedbacks for the regional and global climate systems through complex interactions among the Earth's atmospheric, hydrological, and biogeochemical cycles. Innovative methods, tools, and technologies for improved understanding and quantifying of ET are critical for adapting more effective management strategies to cope with the increasing demand for freshwater resources under global change.

  17. Comparative Analysis of Evapotranspiration Using Eddy Covariance

    NASA Astrophysics Data System (ADS)

    BAE, H.; Ji, H.; Lee, B.; Nam, K.; Jang, B.; Lee, C.; Jung, H.

    2013-12-01

    The eddy covariance method has been widely used to quantify evapotranspiration. However, independent measurements of energy components such as latent heat flux, sensible heat flux often lead to under-measurements, this is commonly known as a lack of closure of the surface energy balance. In response to this methodological problem, this study is addressed specifically to correction of the latent and heat sensible fluxes. The energy components observed in agricultural and grassland from January 2013 were measured using the eddy covariance method. As a result of the comparison of the available energy (Rn-G) with the sum of the latent and sensible heat fluxes, R-Squared values were 0.72 in the agricultural land, 0.78 in the grassland, indicating that the latent and sensible heat fluxes were under-measured. The obtained latent and sensible heat fluxes were then modified using the Bowen-ratio closure method. After this correction process, the values of the sum of the latent and sensible heat fluxes have increased by 39.7 percent in the agricultural land, 32.2 percent in the grassland respectively. Evapotranspiration will be calculated with both the unmodified and modified latent heat flux values, the results will be then thoroughly compared. The results will be finally verified by comparison with evapotranspiration obtained from energy balance based model.

  18. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, Alex M., Jr.

    1989-01-01

    From July 1982 through June 1984, a study was made of the evapotranspiration and microclimate at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily awnless brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy budget with the Bowen ratio, (2) an aerodynamic profile, and (3) a soil-based water budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data and then summed by days and months. Yearly estimates (for March through November) by these methods were in close agreement: 648 and 626 millimeters, respectively. Daily estimates reach a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of total precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soilmoisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) at the Sheffield site were virtually identical to long-term averages from nearby National Weather Service

  19. Assessing water footprint of wheat production in China using a crop-model-coupled-statistics approach

    NASA Astrophysics Data System (ADS)

    Cao, X. C.; Wu, P. T.; Wang, Y. B.; Zhao, X. N.

    2014-01-01

    The aim of this study is to estimate the green and blue water footprint of wheat, distinguishing the irrigated and rain-fed crop, from a production perspective. The assessment herein focuses on China and improves upon earlier research by taking a crop-model-coupled-statistics approach to estimate the water footprint of the crop in 30 provinces. We have calculated the water footprint at regional scale based on the actual data collected from 442 typical irrigation districts. Crop evapotranspiration and the water conveyance loss are both considered in calculating irrigated water footprint at the regional scale. We have also compared water footprint of per unit product between irrigated and rain-fed crops and analyzed the relationship between promoting yield and saving water resources. The national wheat production in the year 2010 takes about 142.5 billion cubic meters of water. The major portion of WF (80.9%) comes from the irrigated farmland and the remaining 19.1% falls into the rain-fed. Green water (50.3%) and blue water (49.7%) carry almost equal shares of water footprint (WF) in total cropland WF. Green water dominates the south of the Yangtze River, whereas low green water proportions relate themselves to the provinces located in the north China especially northwest China. Approximately 38.5% of the water footprint related to the production of wheat is not consumed in the form of crop evapotranspiration but of conveyance loss during irrigation process. Proportions of blue water for conveyance loss (BWCL) in the arid Xinjiang, Ningxia and Neimenggu (Inner Mongolia) exceed 40% due to low irrigation efficiency. The national average water footprint of wheat per unit of crop (WFP) is 1.237 m3 kg-1 in 2010. There exists a big difference in WFP among provinces. Compared to the rain-fed cultivation (with no irrigation), irrigation has promoted crop yield, both provincially and up by about 170% nationally. As a result, more water resources are demanded in irrigated

  20. Deriving Daily Time Series Evapotranspiration, Evaporation and Transpiration Maps With Landsat Data

    NASA Astrophysics Data System (ADS)

    Paul, G.; Gowda, P. H.; Marek, T.; Xiao, X.; Basara, J. B.

    2014-12-01

    Mapping high resolution evapotranspiration (ET) over large region at daily time step is complex and computationally intensive. Utility of high resolution daily ET maps are large ranging from crop water management to watershed management. The aim of this work is to generate daily time series (10 years) ET and its components vegetation transpiration (T) and soil water evaporation (E) maps using Landsat 5 satellite data for Southern Great Plains forage-rangeland-winter wheat production system in Oklahoma (OK). Framework for generating these products included the two source energy balance (TSEB) algorithm and other important features were: (a) atmospheric correction algorithm; (b) spatially interpolated weather inputs; (c) functions for varying Priestley-Taylor coefficient; and (d) ET, E and T extrapolating algorithm utilizing reference ET. An extensive network of 140 weather stations managed by Oklahoma Mesonet was utilized to generate spatially interpolated inputs of air temperature, relative humidity, wind speed, solar radiation, pressure, and reference ET. Validation of the ET maps were done against eddy covariance data from two grassland sites at El Reno, OK suggested good performance (Table 1). Figure 1 illustrates a daily ET map for a very small subset of 18thJuly 2006 ET map, where difference in ET among different land uses such as the irrigated cropland, vegetation along drainage, and grassland is very distinct. Results indicated that the proposed ET mapping framework is suitable for deriving high resolution time series daily ET maps at regional scale with Landsat Thematic Mapper data. . Table 1: Daily actual ET performance statistics for two grassland locations at El Reno OK for year 2005 . Management Type Mean (obs) (mm d-1) Mean (est) (mm d-1) MBE (mm d-1) % MBE (%) RMSE (mm d-1) RMSE (%) MAE (mm d-1) MAPD (%) NSE R2 Control 2.2 1.8 -0.43 -19.4 0.87 38.9 0.65 29.5 0.71 0.79 Burnt 2.0 1.8 -0.15 -7.7 0.80 39.8 0.62 30.7 0.73 0.77

  1. Sensitivity of evapotranspiration to climatic change in different climates

    NASA Astrophysics Data System (ADS)

    Tabari, Hossein; Hosseinzadeh Talaee, P.

    2014-04-01

    This paper presents a study of the sensibility of evapotranspiration (ET) to climatic change in four types of climates (i.e., humid, cold semi-arid, warm semi-arid and arid). The use of a reference crop ET (ETo) permits the standardization of ET estimates across varying conditions. So, ETo was estimated with the FAO-56 Penman-Monteith equation using data from eight Iranian sites over a 41-year period (1965-2005). The sensitivity analyses were carried out for air temperature, wind speed and sunshine hours within a possible range of ± 20% (i.e., - 5%, - 10%, - 20%, + 5%, + 10%, + 20%) from the normal long-term climatic variables. The sensitivity of ETo to the same climatic variables revealed significant differences among climates. From the comparison of the sensitivity of ETo to climatic change in different climates, it can be inferred that the sensitivity of ETo to wind speed and air temperature decreased from arid to humid climate, whereas its sensitivity to sunshine hours increased from arid to humid environment. Furthermore, the greatest change in ETo (about ± 9%) was found in arid climate in response to ± 20 change in wind speed.

  2. Time trend and change point of reference evapotranspiration over Iran

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Talaee, P.; Shifteh Some'e, B.; Sobhan Ardakani, S.

    2014-05-01

    Identifying changes in reference evapotranspiration (ETo) can help in future planning of crop water requirements and water resources for high water-use efficiency. This study analyzes the ETo trends on a seasonal and annual timescale by applying various statistical tools to data from 41 Iranian weather stations during the period between 1966 and 2005. The Mann-Kendall test after removal of significant serial correlation was used to determine the statistical significance of the trends, and the change point in the ETo time series was determined using the cumulative sum technique. The results showed that (1) the significant increasing trends of annual ETo were observed at seven stations which are located in different parts of Iran, (2) the stations located at the southeast, northeast, and northwest corners of Iran experienced the highest positive change of annual ETo, and (3) the changes in seasonal ETo were most pronounced in the winter season, both in terms of trend magnitude and the number of stations with significant trends.

  3. Investigating Landsat-derived forest evapotranspiration in the Amazon

    NASA Astrophysics Data System (ADS)

    Khand, K. B.; Numata, I.; Kjaersgaard, J.; Cochrane, M. A.

    2015-12-01

    Nearly half of annual rainfall in the Amazon rainforest region is returned to the atmosphere through evapotranspiration (ET). However, this land-atmosphere water vapor feedback in Amazonia has been continuously disturbed by anthropogenic influence and climate change such as severe drought events. While forest ET dynamics in the Amazon have been studied from both point estimates (or in-situ measurements) and regional land-surface models as well as coarse-spatial satellite data, finer spatial data is required to address the spatial variability of forest ET associated with both forest disturbances and extreme climate events. We use Landsat-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model to generate high-resolution (30 m) ET products and investigate its potential to characterize local and regional ET behavior by comparison to ET calculated from flux tower data. METRIC estimates actual ET as residual of the surface energy balance and is applied to capture the spatial variability of forest ET. The flux tower data were collected at two sites with different forest types: Para with wet equatorial forest and Rondônia with seasonally dry tropical forest. Our study was conducted on the dry season of the years 2003 and 2005 for Para, and 2000 through 2002 for Rondônia as a function of data availability of both cloud-free Landsat images and meteorological data for METRIC processing. Daily gridded actual ET estimates from METRIC during the dry season were obtained using a cubic spline interpolation of ETrF (fraction of reference ET) values between the satellite image dates and multiplying by daily reference ET. Across the all study years, differences between the daily ET estimates for the selected image dates from METRIC and the flux towers were less than 1.2 mm/day, while on monthly basis, these averaged daily ET differences were much lower (< 0.5 mm). At Para, the correlation (R2) between the daily ET rates from METRIC and the

  4. Ecohydrology of Graciosa semi-natural grasslands: water use and evapotranspiration partition

    NASA Astrophysics Data System (ADS)

    Paço, Teresa A.; Paredes, Paula; Azevedo, Eduardo B.; Madruga, João S.; Pereira, Luís S.

    2016-04-01

    Semi-natural grasslands are a main landscape of Graciosa and other Islands of Azores. The present study aims at calibrate and validate the soil water balance model SIMDualKc for those grasslands aiming at assessing the dynamics of soil water and evapotranspiration. This objective relates with the need to improve knowledge on the ecohydrology of grasslands established in (volcanic) Andosols. This model adopts the dual crop coefficient approach to compute daily crop evapotranspiration (ETc) and to perform its partition into transpiration (T) and soil evaporation (Es). The application refers to a semi-natural grassland sporadically sowed with ryegrass (Lolium multiflorum Lam.). Model calibration and validation were performed comparing simulated against observed grassland evapotranspiration throughout two periods in consecutive years. Daily ET values were derived from eddy covariance data collected at the Eastern North Atlantic (ENA) facility of the ARM programme (established and supported by the U.S. Department of Energy with the collaboration of the local government and University of the Azores), at Graciosa, Azores (Portugal). Various statistical performance indicators were used to assess model accuracy and results show a good adequacy of the model for predicting vegetation ET in such conditions. Surface flux energy balance was also evaluated throughout the observation period (2014-2016). The ratio Es/ET shows that soil evaporation is much small than T/ET due to high soil cover by vegetation. The model was then applied to contrasting climatic conditions (dry vs. wet years) to assess related impacts on water balance components and grassland transpiration.

  5. Sunflower crop

    SciTech Connect

    Beard, B.H.

    1981-05-01

    A review of the sunflower as a major commercial crop, including its history, cultivation, hybridization and uses. It is grown principally for its oil which is high in polyunsaturated fatty acids and used in a variety of foods. Recently it has been tested in diesel engines and a high protein meal is produced from the seed residues.

  6. Remote sensing of evapotranspiration using automated calibration: Development and testing in the state of Florida

    NASA Astrophysics Data System (ADS)

    Evans, Aaron H.

    Thermal remote sensing is a powerful tool for measuring the spatial variability of evapotranspiration due to the cooling effect of vaporization. The residual method is a popular technique which calculates evapotranspiration by subtracting sensible heat from available energy. Estimating sensible heat requires aerodynamic surface temperature which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for this problem by calibrating the relationship between sensible heat and retrieved surface temperature. Disadvantage of these calibrations are 1) user must manually identify extremely dry and wet pixels in image 2) each calibration is only applicable over limited spatial extent. Producing larger maps is operationally limited due to time required to manually calibrate multiple spatial extents over multiple days. This dissertation develops techniques which automatically detect dry and wet pixels. LANDSAT imagery is used because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet pixels are developed. Snapshots of retrieved evaporative fraction and actual evapotranspiration are compared to eddy covariance measurements for five study areas in Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available energy, roughness length and wind speed is tested. A technique for temporally interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and tested. The automated algorithm is successful at detecting wet and dry pixels (if they exist). Including wet pixels in calibration and assuming constant atmospheric conductance significantly improved results for all but Big Cypress and Gainesville. Evaporative fraction is not very sensitive to instantaneous available energy but it is sensitive to temperature when wet pixels are included because temperature is required for estimating wet pixel

  7. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  8. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, A.M.

    1987-01-01

    From July 1982 through June 1984, a study was made of the microclimate and evapotranspiration at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy-budget with the Bowen ratio, (2) an aerodynamic-profile, and (3) a soil-based water-budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data, then summed by days and months. Yearly estimates for March through November, by these methods, were quite close--648 and 626 millimeters, respectively. Daily estimates range up to a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soil-moisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) were virtually identical to long-term averages from nearby National Weather Service stations. Solar radiation averaged 65

  9. Spatial resolution effects on the assessment of evapotranspiration in olive orchards using high resolution thermal imagery

    NASA Astrophysics Data System (ADS)

    Santos, Cristina; Zarco-Tejada, Pablo J.; Lorite, Ignacio J.; Allen, Richard G.

    2013-04-01

    The use of remote sensing techniques for estimating surface energy balance and water consumption has significantly improved the characterization of the agricultural systems by determining accurate information about crop evapotranspiration and stress, mainly for extensive crops. However the use of these methodologies for woody crops has been low due to the difficulty in the accurate characterization of these crops, mainly caused by a coarse resolution of the imagery provided by the most widely used satellites (such as Landsat 5 and 7). The coarse spatial resolution provided by these satellite sensors aggregates into a single pixel the tree crown, sunlit and shaded soil components. These surfaces can each exhibit huge differences in temperature, albedo and vegetation indexes calculated in the visible, near infrared and short-wave infrared regions. Recent studies have found that the use of energy balance approaches can provide useful results for non-homogeneous crops (Santos et al., 2012) but detailed analysis is required to determine the effect of the spatial resolution and the aggregation of the scene components in these heterogeneous canopies. In this study a comparison between different spatial resolutions has been conducted using images from Landsat 7 (with thermal resolution of 60m) and from an airborne thermal (with resolution of 80 cm) flown over olive orchards at different dates coincident with the Landsat overpass. The high resolution thermal imagery was resampled at different scales to generate images with spatial resolution ranging from 0.8 m up to 120m (thermal resolution for Landsat 5 images). The selection of the study area was made to avoid those areas with missing Landsat 7 data caused by SLC-off gaps. The selected area has a total area of around 2500 ha and is located in Southern Spain, in the province of Malaga. The selected area is mainly cultivated with olive orchards with different crop practices (rainfed, irrigated, high density, young and adult

  10. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    USGS Publications Warehouse

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.

    2012-01-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  11. Annual evapotranspiration retrieved solely from satellites' vegetation indices

    NASA Astrophysics Data System (ADS)

    Helman, David; Lensky, Itamar; Givati, Amir

    2015-04-01

    We present a simple model to retrieve annual actual evapotranspiration (ETannual) solely from satellites. The model is based on empirical relationships between vegetation indices (NDVI & EVI from MODIS) and ETannual from 16 fluxnet sites. These sites represent a wide range of plant functional types and ETannual. A multiple regression model is applied separately for (a) annuals vegetation systems (i.e., croplands and grasslands), and (b) combined annuals and perennials vegetation systems (i.e., woodlands, forests, savanna and shrublands). It explained 80% of the variance in ETannual for annuals, and 91% for combined annuals and perennials systems. We used this model to retrieve ETannual at 250 m spatial resolution for the Eastern Mediterranean from 2000 to 2013. The models estimates were highly correlated (R = 0.96, N = 7) with ETannual calculated from water catchments balances along the rainfall gradient of Israel. Models estimates were also comparable to the coarser resolution ET products of MSG (LSA-SAF MSG ETA, 3.1 km) and MODIS (MOD16, 1 km) in 148 Eastern Mediterranean basins, with a correlation coefficient (R) of 0.79 (N = 148), for both.

  12. Adequacy of selected evapotranspiration approximations for hydrologic simulation

    USGS Publications Warehouse

    Sumner, D.M.

    2006-01-01

    Evapotranspiration (ET) approximations, usually based on computed potential ET (PET) and diverse PET-to-ET conceptualizations, are routinely used in hydrologic analyses. This study presents an approach to incorporate measured (actual) ET data, increasingly available using micrometeorological methods, to define the adequacy of ET approximations for hydrologic simulation. The approach is demonstrated at a site where eddy correlation-measured ET values were available. A baseline hydrologic model incorporating measured ET values was used to evaluate the sensitivity of simulated water levels, subsurface recharge, and surface runoff to error in four ET approximations. An annually invariant pattern of mean monthly vegetation coefficients was shown to be most effective, despite the substantial year-to-year variation in measured vegetation coefficients. The temporal variability of available water (precipitation minus ET) at the humid, subtropical site was largely controlled by the relatively high temporal variability of precipitation, benefiting the effectiveness of coarse ET approximations, a result that is likely to prevail at other humid sites.

  13. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... APH yield is calculated from a database containing a minimum of four yields and will be updated each subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may include... only occur in the database when there are less than four years of actual and/or assigned yields....

  14. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... APH yield is calculated from a database containing a minimum of four yields and will be updated each subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may include... only occur in the database when there are less than four years of actual and/or assigned yields....

  15. Evaluation of different methods to estimate daily reference evapotranspiration in ungauged basins in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Fontoura, Jessica; Allasia, Daniel; Herbstrith Froemming, Gabriel; Freitas Ferreira, Pedro; Tassi, Rutineia

    2016-04-01

    Evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance. Due to the higher information requirements of the Penman-Monteith method and the existing data uncertainty, simplified empirical methods for calculating potential and actual evapotranspiration are widely used in hydrological models. This is especially important in Brazil, where the monitoring of meteorological data is precarious. In this study were compared different methods for estimating evapotranspiration for Rio Grande do Sul, the Southernmost State of Brazil, aiming to suggest alternatives to the recommended method (Penman-Monteith-FAO 56) for estimate daily reference evapotranspiration (ETo) when meteorological data is missing or not available. The input dataset included daily and hourly-observed data from conventional and automatic weather stations respectively maintained by the National Weather Institute of Brazil (INMET) from the period of 1 January 2007 to 31 January 2010. Dataset included maximum temperature (Tmax, °C), minimum temperature (Tmin, °C), mean relative humidity (%), wind speed at 2 m height (u2, m s‑1), daily solar radiation (Rs, MJ m‑ 2) and atmospheric pressure (kPa) that were grouped at daily time-step. Was tested the Food and Agriculture Organization of the United Nations (FAO) Penman-Monteith method (PM) at its full form, against PM assuming missing several variables not normally available in Brazil in order to calculate daily reference ETo. Missing variables were estimated as suggested in FAO56 publication or from climatological means. Furthermore, PM was also compared against the following simplified empirical methods: Hargreaves-Samani, Priestley-Taylor, Mccloud, McGuiness-Bordne, Romanenko, Radiation-Temperature, Tanner-Pelton. The statistical analysis indicates that even if just Tmin and Tmax are available, it is better to use PM estimating missing variables from syntetic data than

  16. On the Global Water Productivity Distribution for Major Cereal Crops: some First Results from Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G.; Verstegen, J. A.; Steduto, P.; Goudriaan, R.; Wada, Y.

    2014-12-01

    Feeding the world requires 70 percent more food for an additional 2.3 billion people by 2050. The increasing competition for water resources prompts the modern consumer society to become more efficient with scarce water resources. The water footprint of agriculture is hundred times more than the footprint for domestic water use, yet we do not fully know how much water is used in relation to the amount of food being produced. Water Productivity describes the crop yield per unit of water consumed and is the ultimate indicator for the efficiency of water use in agriculture. Our basic understanding of actual and benchmark values for Water Productivity is limited, partially because operational measurements and guidelines for Water Productivity do not currently exist. Remote sensing algorithms have been developed over the last 20 years to compute crop yield Y and evapotranspiration ET, often in an independent manner. The new WatPro and GlobWat algorithms are based on directly solving the Y/ET ratio. Several biophysical parameter and processes such as solar radiation, Leaf Area Index, stomatal aperture and soil moisture affect biomass production and crop transpiration simultaneously, and this enabled us to simplify the schematization of a Y/ET model. Global maps of wheat, rice and maize were prepared from various open-access data sources, and Y/ET was computed across a period of 10 years. The global distribution demonstrates that 66 percent of the world's agricultural land cultivated with wheat, rice and corn performs below average. Furthermore, Water Productivity in most countries exhibits a significant spatial variability. Therefore, there is significant scope to produce the same food - or more food - from less water resources if packages with good practices are locally implemented. The global maps of water productivity will be demonstrated, along with some country examples.

  17. Seasonal evapotranspiration patterns in mangrove forests

    NASA Astrophysics Data System (ADS)

    Barr, Jordan G.; DeLonge, Marcia S.; Fuentes, Jose D.

    2014-04-01

    Diurnal and seasonal controls on water vapor fluxes were investigated in a subtropical mangrove forest in Everglades National Park, Florida. Energy partitioning between sensible and latent heat fluxes was highly variable during the 2004-2005 study period. During the dry season, the mangrove forest behaved akin to a semiarid ecosystem as most of the available energy was partitioned into sensible heat, which gave Bowen ratio values exceeding 1.0 and minimum latent heat fluxes of 5 MJ d-1. In contrast, during the wet season the mangrove forest acted as a well-watered, broadleaved deciduous forest, with Bowen ratio values of 0.25 and latent heat fluxes reaching 18 MJ d-1. During the dry season, high salinity levels (> 30 parts per thousand, ppt) caused evapotranspiration to decline and correspondingly resulted in reduced canopy conductance. From multiple linear regression, daily average canopy conductance to water vapor declined with increasing salinity, vapor pressure deficit, and daily sums of solar irradiance but increased with air temperature and friction velocity. Using these relationships, appropriately modified Penman-Monteith and Priestley-Taylor models reliably reproduced seasonal trends in daily evapotranspiration. Such numerical models, using site-specific parameters, are crucial for constructing seasonal water budgets, constraining hydrological models, and driving regional climate models over mangrove forests.

  18. National Weather Service Forecast Reference Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Osborne, H. D.; Palmer, C. K.; Krone-Davis, P.; Melton, F. S.; Hobbins, M.

    2013-12-01

    The National Weather Service (NWS), Weather Forecasting Offices (WFOs) are producing daily reference evapotranspiration (ETrc) forecasts or FRET across the Western Region and in other selected locations since 2009, using the Penman - Monteith Reference Evapotranspiration equation for a short canopy (12 cm grasses), adopted by the Environmental Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI, 2004). The sensitivity of these daily calculations to fluctuations in temperatures, humidity, winds, and sky cover allows forecasters with knowledge of local terrain and weather patterns to better forecast in the ETrc inputs. The daily FRET product then evolved into a suite of products, including a weekly ETrc forecast for better water planning and a tabular point forecast for easy ingest into local water management-models. The ETrc forecast product suite allows water managers, the agricultural community, and the public to make more informed water-use decisions. These products permit operational planning, especially with the impending drought across much of the West. For example, the California Department of Water Resources not only ingests the FRET into their soil moisture models, but uses the FRET calculations when determining the reservoir releases in the Sacramento and American Rivers. We will also focus on the expansion of FRET verification, which compares the daily FRET to the observations of ETo from the California Irrigation Management Information System (CIMIS) across California's Central Valley for the 2012 water year.

  19. Dynamic Modeling of an Evapotranspiration Cap

    SciTech Connect

    Jacob J. Jacobson; Steven Piet; Rafael Soto; Gerald Sehlke; Harold Heydt; John Visser

    2005-10-01

    The U.S. Department of Energy is scheduled to design and install hundreds of landfill caps/barriers over the next several decades and these caps will have a design life expectancy of up to 1,000 years. Other landfill caps with 30 year design lifetimes are reaching the end of their original design life; the changes to these caps need to be understood to provide a basis for lifetime extension. Defining the attributes that make a successful cap (one that isolates the waste from the environment) is crucial to these efforts. Because cap systems such as landfill caps are dynamic in nature, it is impossible to understand, monitor, and update lifetime predictions without understanding the dynamics of cap degradation, which is most often due to multiple interdependent factors rather than isolated independent events. In an attempt to understand the dynamics of cap degradation, a computer model using system dynamics is being developed to capture the complex behavior of an evapotranspiration cap. The specific objectives of this project are to capture the dynamic, nonlinear feedback loop structures underlying an evapotranspiration cap and, through computer simulation, gain a better understanding of long-term behavior, influencing factors, and, ultimately, long-term cap performance.

  20. Prediction of the Reference Evapotranspiration Using a Chaotic Approach

    PubMed Central

    Wang, Wei-guang; Zou, Shan; Luo, Zhao-hui; Zhang, Wei; Kong, Jun

    2014-01-01

    Evapotranspiration is one of the most important hydrological variables in the context of water resources management. An attempt was made to understand and predict the dynamics of reference evapotranspiration from a nonlinear dynamical perspective in this study. The reference evapotranspiration data was calculated using the FAO Penman-Monteith equation with the observed daily meteorological data for the period 1966–2005 at four meteorological stations (i.e., Baotou, Zhangbei, Kaifeng, and Shaoguan) representing a wide range of climatic conditions of China. The correlation dimension method was employed to investigate the chaotic behavior of the reference evapotranspiration series. The existence of chaos in the reference evapotranspiration series at the four different locations was proved by the finite and low correlation dimension. A local approximation approach was employed to forecast the daily reference evapotranspiration series. Low root mean square error (RSME) and mean absolute error (MAE) (for all locations lower than 0.31 and 0.24, resp.), high correlation coefficient (CC), and modified coefficient of efficiency (for all locations larger than 0.97 and 0.8, resp.) indicate that the predicted reference evapotranspiration agrees well with the observed one. The encouraging results indicate the suitableness of chaotic approach for understanding and predicting the dynamics of the reference evapotranspiration. PMID:25133221

  1. Prediction of the reference evapotranspiration using a chaotic approach.

    PubMed

    Wang, Wei-guang; Zou, Shan; Luo, Zhao-hui; Zhang, Wei; Chen, Dan; Kong, Jun

    2014-01-01

    Evapotranspiration is one of the most important hydrological variables in the context of water resources management. An attempt was made to understand and predict the dynamics of reference evapotranspiration from a nonlinear dynamical perspective in this study. The reference evapotranspiration data was calculated using the FAO Penman-Monteith equation with the observed daily meteorological data for the period 1966-2005 at four meteorological stations (i.e., Baotou, Zhangbei, Kaifeng, and Shaoguan) representing a wide range of climatic conditions of China. The correlation dimension method was employed to investigate the chaotic behavior of the reference evapotranspiration series. The existence of chaos in the reference evapotranspiration series at the four different locations was proved by the finite and low correlation dimension. A local approximation approach was employed to forecast the daily reference evapotranspiration series. Low root mean square error (RSME) and mean absolute error (MAE) (for all locations lower than 0.31 and 0.24, resp.), high correlation coefficient (CC), and modified coefficient of efficiency (for all locations larger than 0.97 and 0.8, resp.) indicate that the predicted reference evapotranspiration agrees well with the observed one. The encouraging results indicate the suitableness of chaotic approach for understanding and predicting the dynamics of the reference evapotranspiration. PMID:25133221

  2. Evaluation of alternative methods for estimating reference evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration is an important component in water-balance and irrigation scheduling models. While the FAO-56 Penman-Monteith method has become the de facto standard for estimating reference evapotranspiration (ETo), it is a complex method requiring several weather parameters. Required weather ...

  3. Measuring and modeling maize evapotranspiration under plastic film-mulching condition

    NASA Astrophysics Data System (ADS)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Ortega-Farias, Samuel; Li, Fusheng; Du, Taisheng; Tong, Ling; Wang, Sufen; Ingman, Mark; Guo, Weihua

    2013-10-01

    Plastic film-mulching techniques have been widely used over a variety of agricultural crops for saving water and improving yield. Accurate estimation of crop evapotranspiration (ET) under the film-mulching condition is critical for optimizing crop water management. After taking the mulching effect on soil evaporation (Es) into account, our study adjusted the original Shuttleworth-Wallace model (MSW) in estimating maize ET and Es under the film-mulching condition. Maize ET and Es respectively measured by eddy covariance and micro-lysimeter methods during 2007 and 2008 were used to validate the performance of the Penman-Monteith (PM), the original Shuttleworth-Wallace (SW) and the MSW models in arid northwest China. Results indicate that all three models significantly overestimated ET during the initial crop stage in the both years, which may be due to the underestimation of canopy resistance induced by the Jarvis model for the drought stress in the stage. For the entire experimental period, the SW model overestimated half-hourly maize ET by 17% compared with the eddy covariance method (ETEC) and overestimated daily Es by 241% compared with the micro-lysimeter measurements (EL), while the PM model only underestimated daily maize ET by 6%, and the MSW model only underestimated half-hourly maize ET by 2% and Es by 7% during the whole period. Thus the PM and MSW models significantly improved the accuracy against the original SW model and can be used to estimate ET and Es under the film-mulching condition.

  4. Contrasting Methods for Measuring Evapotranspiration in Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop scientists are often interested in canopy rather than leaf water fluxes. Canopy measurements are difficult to obtain because instrumentation is expensive, investigations require a high level of comprehension in micrometeorological methods, and treatment comparisons are usually limited. The obje...

  5. Improving Evapotranspiration Estimates Using Multi-Platform Remote Sensing

    NASA Astrophysics Data System (ADS)

    Knipper, Kyle; Hogue, Terri; Franz, Kristie; Scott, Russell

    2016-04-01

    Understanding the linkages between energy and water cycles through evapotranspiration (ET) is uniquely challenging given its dependence on a range of climatological parameters and surface/atmospheric heterogeneity. A number of methods have been developed to estimate ET either from primarily remote-sensing observations, in-situ measurements, or a combination of the two. However, the scale of many of these methods may be too large to provide needed information about the spatial and temporal variability of ET that can occur over regions with acute or chronic land cover change and precipitation driven fluxes. The current study aims to improve the spatial and temporal variability of ET utilizing only satellite-based observations by incorporating a potential evapotranspiration (PET) methodology with satellite-based down-scaled soil moisture estimates in southern Arizona, USA. Initially, soil moisture estimates from AMSR2 and SMOS are downscaled to 1km through a triangular relationship between MODIS land surface temperature (MYD11A1), vegetation indices (MOD13Q1/MYD13Q1), and brightness temperature. Downscaled soil moisture values are then used to scale PET to actual ET (AET) at a daily, 1km resolution. Derived AET estimates are compared to observed flux tower estimates, the North American Land Data Assimilation System (NLDAS) model output (i.e. Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model, Mosiac Model, and Noah Model simulations), the Operational Simplified Surface Energy Balance Model (SSEBop), and a calibrated empirical ET model created specifically for the region. Preliminary results indicate a strong increase in correlation when incorporating the downscaling technique to original AMSR2 and SMOS soil moisture values, with the added benefit of being able to decipher small scale heterogeneity in soil moisture (riparian versus desert grassland). AET results show strong correlations with relatively low error and bias when compared to flux tower

  6. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  7. Basin Scale Estimates of Evapotranspiration Using GRACE and other Observations

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Famiglietti, J. S.; Chen, J.; Seneviratne, S. I.; Viterbo, P.; Holl, S.; Wilson, C. R.

    2004-01-01

    Evapotranspiration is integral to studies of the Earth system, yet it is difficult to measure on regional scales. One estimation technique is a terrestrial water budget, i.e., total precipitation minus the sum of evapotranspiration and net runoff equals the change in water storage. Gravity Recovery and Climate Experiment (GRACE) satellite gravity observations are now enabling closure of this equation by providing the terrestrial water storage change. Equations are presented here for estimating evapotranspiration using observation based information, taking into account the unique nature of GRACE observations. GRACE water storage changes are first substantiated by comparing with results from a land surface model and a combined atmospheric-terrestrial water budget approach. Evapotranspiration is then estimated for 14 time periods over the Mississippi River basin and compared with output from three modeling systems. The GRACE estimates generally lay in the middle of the models and may provide skill in evaluating modeled evapotranspiration.

  8. Crop Rotation in Row Crop Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotation is a system of growing different kinds of crops in recurrent succession on the same land. Thus, in the strictest sense, crop rotation is more than just changing crops from year to year based on current economic situations. Rather, it is a long-term plan for soil and farm management. Cr...

  9. Evaporative loss from the interrow of irrigated crops in a semi-arid agricultural area

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil evaporation plays an important role in the water balance of irrigated crops, especially in arid and semi-arid regions. Irrigation scheduling may affect the fraction of evaporative loss (E) from the total evapotranspiration (ET), and thus affect the water use efficiency. During the second intens...

  10. Remote sensing for crop water use management: Present status and challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is an essential component of the water balance and a major consumptive use of irrigation water and precipitation on cropland. Remote sensing based agrometeorological models are presently most suited for estimating crop water use at both field and regional scales. Numerous ET ...

  11. Use of crop-specific drought indices for determining irrigation demand in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a highly destructive natural phenomenon that affects portions of the U.S. almost every year. Severe water deficiencies can become catastrophic for agriculture and crop yields. Evapotranspiration (ET) is an important component in the agricultural water budget; thus, it is strongly preferre...

  12. Use of crop specific drought indices for determining irrigation demand in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a highly destructive natural phenomenon that affects portions of the U.S. almost every year. Severe water deficiencies can become catastrophic for agriculture and crop yields. Evapotranspiration (ET) is an important component in the agricultural water budget; thus, it is strongly preferre...

  13. Remote sensing for evaluating crop water stress at field scale using infrared thermography: Potentials and limitations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past few decades, the competition for freshwater resources has substantially increased in arid/semi-arid areas, exacerbating the pressure on the largest user of water, namely agriculture, to consume less water. However, reducing crop consumptive water use or evapotranspiration through water...

  14. Soil sorptivity enhancement with crop residue accumulation in simiarid dryland no-till agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water capture and precipitation use efficiency are of great importance in dryland cropping systems because the world’s dependence on food produced in dryland areas continues to increase. Growing season evapotranspiration potential greatly exceeds growing season precipitation rates in dryland areas,...

  15. Using FAO-56 model to estimate soil and crop water status: Application to a citrus orchard under regulated deficit irrigation

    NASA Astrophysics Data System (ADS)

    Provenzano, Giuseppe; Gonzàles-Altozano, Pablo; Manzano-Juàrez, Juan; Rallo, Giovanni

    2015-04-01

    treatments were considered: in the first (control, T0-100%), irrigation doses (Id) were determined according to evapotranspiration and precipitation data obtained from a meteorological station installed nearby the plot, whereas in the other two, water application was reduced to 40%Id (T1-40%) and 60%Id (T2-60%) only during the initial fruit enlargement phase (July-August), being the plots irrigated at 100%Id for the remaining periods of the year. In each plot, soil water status was monitored along a soil profile with an Enviroscan probe (Sentek Sensor Technologies), whereas MSWPs with a Sholander chamber (Solfranc SF-Pres-35), on leaves wrapped in bags at least 2 hours before the measurements. At the end of each season, crop yield was determined on each treatment, by weighting the total production of at least 8 trees. It was observed that FAO-56 model simulates with a reasonable accuracy, acceptable for practical applications, the average soil water content in the root zone, with estimation errors lower than about 2.0%. On the other hand, relative transpiration simulated by the model follows the general seasonal trend of midday stem water potential, allowing therefore to identify the actual crop water status as recognized in the field.

  16. Effect of soil type patterns on the variability of bare soil evaporation within a field: comparison of eddy covariance measurements with potential and actual evaporation calculations

    NASA Astrophysics Data System (ADS)

    Vanderborght, J.; Graf, A.; Steenpass, C.; Scharnagl, B.; Prolingheuer, N.; Herbst, M.; Vereecken, H.

    2009-12-01

    Bare soil evaporation was measured with the eddy-covariance method at the Selhausen field site. The site has a distinct gradient in soil texture with a considerably higher stone content at the upper part of the field. Because of this gradient, a spatial variation in evaporation fluxes in the field is expected. Because of the higher stone content at the upper part of the field, it is expected that the water that is stored in the soil surface layer and can be evaporated at a maximal evaporation rate, which is determined by the energy that is available for evaporation, is considerable smaller in the upper than in the lower part of the field. We investigated whether this hypothesis is supported by eddy covariance (EC) measurements of the evaporation fluxes at the field site. The EC measurements were combined with a footprint model that predicts the location of the soil surface that contributes to the measured evaporation flux. In this way, evaporation measurements of the two parts of the field site could be distinguished. However, since only one EC station was available, simultaneous evaporation measurements for the two field parts were not available. As a consequence, the datasets of measurements had to be interpreted and put into context of the meteorological and soil hydrological conditions. The potential evapotranspiration was calculated using the FAO method (Allen et al., 1998) to represent the meteorological conditions whereas a simple soil evaporation model (Boesten and Stroosnijder, 1986) was used to represent the influence of the precipitation and soil hydrological conditions on the actual evaporation rate. Since different soil parameters were required to describe the evaporation measurements for the upper and lower part of the plot, our starting hypothesis that more water is evaporated in the lower part of the field could be confirmed. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration: Guidelines for computing crop water

  17. Daily lsa-saf evapotranspiration product

    NASA Astrophysics Data System (ADS)

    Arboleda Rodallega, Alirio; Ghilain, Nicolas; Meulenberghs, Francoise

    2010-05-01

    In the framework of the EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA-SAF), some models have been implemented in view to characterize continental surfaces by using information obtained from MSG and EPS satellites. In this context a method has been developed in order to monitor the flux of water (Evapotranspiration) between the land surface and the atmosphere. The method is based on a physical approach in which radiative data derived from Meteosat Second Generation (MSG) satellites together with land-cover information are used to constrain a physical model of energy exchange between the soil-vegetation system and the atmosphere. The implemented algorithm provides instantaneous ET estimates over four regions defined in the MSG FOV (the defined regions cover Europe, Africa and the west of south America), with MSG spatial resolution (3km at sub satellite point) and a temporal time step of 30 minutes. The scope of the method is limited to evaporation from terrestrial surfaces rather than from lakes or oceans. The instantaneous product has been validated over different vegetation cover and climatic conditions, providing evidence that the algorithm is able to reproduce ET estimates with accuracy equivalent to the accuracy of ET obtained from observations. In 2009 the instantaneous ET product has been declared pre-operational by EUMETSAT, allowing the product to be disseminated to a larger community of users (http://landsaf.meteo.pt). In some areas like agriculture, hydrology, water management, ecology and climate studies the main concern is not instantaneous but accumulated values over days, months or longer periods. To encompass the need for these community of users, a daily ET product in which daily evapotranspiration is obtained as temporal integration of instantaneous values has been developed. In this contribution we will present the methodology used to obtain instantaneous ET estimates and the procedure applied to derive daily

  18. Estimating evapotranspiration in natural and constructed wetlands

    USGS Publications Warehouse

    Lott, R. Brandon; Hunt, Randall J.

    2001-01-01

    Difficulties in accurately calculating evapotranspiration (ET) in wetlands can lead to inaccurate water balances—information important for many compensatory mitigation projects. Simple meteorological methods or off-site ET data often are used to estimate ET, but these approaches do not include potentially important site-specific factors such as plant community, root-zone water levels, and soil properties. The objective of this study was to compare a commonly used meterological estimate of potential evapotranspiration (PET) with direct measurements of ET (lysimeters and water-table fluctuations) and small-scale root-zone geochemistry in a natural and constructed wetland system. Unlike what has been commonly noted, the results of the study demonstrated that the commonly used Penman combination method of estimating PET underestimated the ET that was measured directly in the natural wetland over most of the growing season. This result is likely due to surface heterogeneity and related roughness efffects not included in the simple PET estimate. The meterological method more closely approximated season-long measured ET rates in the constructed wetland but may overestimate the ET rate late in the growing season. ET rates also were temporally variable in wetlands over a range of time scales because they can be influenced by the relation of the water table to the root zone and the timing of plant senescence. Small-scale geochemical sampling of the shallow root zone was able to provide an independent evaluation of ET rates, supporting the identification of higher ET rates in the natural wetlands and differences in temporal ET rates due to the timing of senescence. These discrepancies illustrate potential problems with extrapolating off-site estimates of ET or single measurements of ET from a site over space or time.

  19. Calculation of available water supply in crop root zone and the water balance of crops

    NASA Astrophysics Data System (ADS)

    Haberle, Jan; Svoboda, Pavel

    2015-12-01

    Determination of the water supply available in soils for crops is important for both the calculation of water balance and the prediction of water stress. An approach to calculations of available water content in layers of the root zone, depletion of water during growth, and water balance, with limited access to data on farms, is presented. Soil water retention was calculated with simple pedotransfer functions from the texture of soil layers, root depth, and depletion function were derived from observed data; and the potential evapotranspiration was calculated from the temperature. A comparison of the calculated and experimental soil water contents showed a reasonable fit.

  20. Evaluation of the Event Driven Phenology Model Coupled with the VegET Evapotranspiration Model Through Comparisons with Reference Datasets in a Spatially Explicit Manner

    NASA Technical Reports Server (NTRS)

    Kovalskyy, V.; Henebry, G. M.; Adusei, B.; Hansen, M.; Roy, D. P.; Senay, G.; Mocko, D. M.

    2011-01-01

    A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme represents a mix of the VegET, a physically based model to estimate ET from a water balance, and an event driven phenology model (EDPM), where the EDPM is an empirically derived crop specific model capable of producing seasonal trajectories of canopy attributes. In this experiment, the scheme was deployed in a spatially explicit manner within the croplands of the Northern Great Plains. The evaluation was carried out using 2007-2009 land surface forcing data from the North American Land Data Assimilation System (NLDAS) and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the canopy parameters produced by the phenology model with normalized difference vegetation index (NDVI) data derived from the MODIS nadir bi-directional reflectance distribution function (BRDF) adjusted reflectance (NBAR) product. The expectations of the EDPM performance in prognostic mode were met, producing determination coefficient (r2) of 0.8 +/-.0.15. Model estimates of NDVI yielded root mean square error (RMSE) of 0.1 +/-.0.035 for the entire study area. Retrospective correction of canopy dynamics with MODIS NDVI brought the errors down to just below 10% of observed data range. The ET estimates produced by the coupled scheme were compared with ones from the MODIS land product suite. The expected r2=0.7 +/-.15 and RMSE = 11.2 +/-.4 mm per 8 days were met and even exceeded by the coupling scheme0 functioning in both prognostic and retrospective modes. Minor setbacks of the EDPM and VegET performance (r2 about 0.5 and additional 30 % of RMSR) were found on the peripheries of the study area and attributed to the insufficient EDPM training and to spatially varying accuracy of crop maps. Overall the experiment provided sufficient evidence of soundness and robustness of the EDPM and

  1. Testing an Irrigation Decision Support Tool for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  2. Distributed modelling of evapotranspiration using high-resolution NDVI maps over cropland in South-West France

    NASA Astrophysics Data System (ADS)

    Cherif, R.; Simonneaux, V.; Rivalland, V.; Gascoin, S.; Le Page, M.; Ceschia, E.

    2012-04-01

    Distributed hydrological modelling in cropland areas requires an accurate estimation of evapotranspiration (ET). Remotely sensed data can support ET computation by providing valuable information on the vegetation condition. Here, we assessed the potential of high-resolution satellite imagery to monitor crop evapotranspiration over a small rural catchment area of South-West France (3.35 km2). We used a series of 88 Normalized Difference Vegetation Index (NDVI) maps spanning 2006-2009 derived from Formosat-2 images (8-m spatial resolution) to drive a dual crop coefficient model (SAMIR model). This model is based on the FAO-56 method and includes a conceptual soil module to account for soil water storage and drainage. The model was first applied at the plot scale (i.e. in 1-D mode) over a research site located in the watershed, which is instrumented with an eddy covariance system and soil moisture probes. This comparison enabled to identify the most critical model parameters and to adjust them to match the observed daily ET rates. In particular this analysis allowed the calibration of the linear relationship between the basal crop coefficient (Kcb) and the NDVI for winter wheat, rapeseed and sunflower. The model performance was also found to depend on the initial soil water content. At this stage good model performances were achieved (annual R2 ranging from 0.7 to 0.8, bias 5% to 15%). Further validation of the simulated soil water content indicated acceptable results without calibration. Then, the model was run at the catchment-scale using the calibrated Kcb, the NDVI images and a high-resolution land cover map for every year to predict the annual catchment evapotranspiration. We will present the result of the catchment-scale model validation based on the river discharge measurements.

  3. Evapotranspiration studies for protective barriers: FY 1988 status report

    SciTech Connect

    Link, S.O.; Thiede, M.E.; Evans, R.D.; Downs, J.L.; Waugh, W.J.

    1990-05-01

    In FY 1988, evapotranspiration studies in support of the Protective Barrier Development Program focused on developing instruments to measure evapotranspiration and on conducting natural analog studies. This report describes a has exchange chamber being developed that will control internal temperature and relative humidity to simulate outdoor conditions. This device will measure evapotranspiration rates unambiguously from any surface and measure carbon dioxide exchange rates, which will provide information on plant growth processes. The report also describes ecophysiological experiments that were conducted to determine water and carbon dynamics of shrubs. 5 refs., 24 figs.

  4. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central element in a metaphysical…

  5. Spatially distributed evapotranspiration and recharge estimation for sand regions of Hungary in the context of climate change

    NASA Astrophysics Data System (ADS)

    Csáki, Péter; Kalicz, Péter; Gribovszki, Zoltán

    2016-04-01

    Water balance of sand regions of Hungary was analysed using remote-sensing based evapotranspiration (ET) maps (1*1 km spatial resolution) by CREMAP model over the 2000-2008 period. The mean annual (2000-2008) net groundwater recharge (R) estimated as the difference in mean annual precipitation (P) and ET, taking advantage that for sand regions the surface runoff is commonly negligible. For the examined nine-year period (2000-2008) the ET and R were about 90 percent and 10 percent of the P. The mean annual ET and R were analysed in the context of land cover types. A Budyko-model was used in spatially-distributed mode for the climate change impact analysis. The parameters of the Budyko-model (α) was calculated for pixels without surplus water. For the extra-water affected pixels a linear model with β-parameters (actual evapotranspiration / pan-evapotranspiration) was used. These parameter maps can be used for evaluating future ET and R in spatially-distributed mode (1*1 km resolution). By using the two parameter maps (α and β) and data of regional climate models (mean annual temperature and precipitation) evapotranspiration and net groundwater recharge projections have been done for three future periods (2011-2040, 2041-2070, 2071-2100). The expected ET and R changes have been determined relative to a reference period (1981-2010). According to the projections, by the end of the 21th century, ET may increase while in case of R a heavy decrease can be detected for the sand regions of Hungary. This research has been supported by Agroclimate.2 VKSZ_12-1-2013-0034 project. Keywords: evapotranspiration, net groundwater recharge, climate change, Budyko-model

  6. Evapotranspiration estimate in the Mediterranean: the comparison between different methods and possible impacts of climate change

    NASA Astrophysics Data System (ADS)

    Todorovic, Mladen; Karic, Biljana; Santos Pereira, Luis; Lionello, Piero

    2015-04-01

    This work focused on the performances of different methods to estimate evapotranspiration (ET) across the Mediterranean climates. Two types of monthly weather data were used in the analysis: CLIMWAT historical database for 577 meteorological stations located in the Mediterranean countries and data derived from the ENSEMBLES project (EC-FP6-ENV) Regional Circulation Model (RCM) simulations. The performance of two temperature based approaches for the estimation of reference evapotranspiration (Hargreaves-Samani - HS and the FAO Penman-Monteith with temperature data only - PMT) was assessed against the Penman-Monteith approach (PM) using a full input climate data. Data were grouped according to climate: hyper-arid, arid, semi-arid, dry sub-humid, moist sub-humid and humid zones. For almost all zones, the statistical parameters indicate slightly better performance of PMT than HS method. Both methods tend to underestimate ETo in hyper arid areas and to overestimate ETo in humid areas. The reduction of either minimum air temperature or dew temperature by 2°C under arid conditions (when the ratio between precipitation and ETo is smaller than 0.4) improves ETo estimation especially for interior locations and in hyper-arid and arid regions. The analysis performed for the future referred to the A1B SRES scenario for the period 2036-2065 using the results of RACMO2 driven by ECHAM5. The overall results indicated the redistribution of climatic zone over the Mediterranean with the further extension of arid zones towards higher altitudes. Accordingly, the variation in the performances of ET models was observed. Moreover, the climate change had an impact of the peak monthly evapotranspiration of Mediterranean crops which, in turn, affected the climatic water balance over the whole region.

  7. Evapotranspiration Parameterizations at a Grass Site in Florida, USA

    NASA Astrophysics Data System (ADS)

    Rizou, M.; Sumner, D. M.; Nnadi, F.

    2007-05-01

    In spite of the fact that grasslands account for about 40% of the ice-free global terrestrial land cover, their contribution to the surface exchanges of energy and water in local and regional scale is so far uncertain. In this study, the sensitivity of evapotranspiration (ET) and other energy fluxes to wetness variables, namely the volumetric Soil Water Content (SWC) and Antecedent Precipitation Index (API), over a non-irrigated grass site in Central Florida, USA (28.049 N, 81.400 W) were investigated. Eddy correlation and soil water content measurements were taken by USGS (U.S. Geological Survey) at the grass study site, within 100 m of a SFWMD (South Florida Water Management District) weather station. The soil is composed of fine sands and it is mainly covered by Paspalum notatum (bahia grass). Variable soil wetness conditions with API bounds of about 2 to 160 mm and water table levels of 0.03 to 1.22 m below ground surface, respectively, were observed throughout the year 2004. The Bowen ratio exhibited an average of 1 and values larger than 2 during few dry days. The daytime average ET was classified into two stages, first stage (energy-limited) and second stage (water- limited) based on the water availability. The critical values of API and SWC were found to be about 56 mm and 0.17 respectively, with the second one being approximately 33% of the SWC at saturation. The ET values estimated by the simple Priestley-Taylor (PT) method were compared to the actual values. The PT coefficient varied from a low bound of approximately 0.4 to a peak of 1.21. Simple relationships for the PT empirical factor were employed in terms of SWC and API to improve the accuracy of the second stage observations. The results of the ET parameterizations closely match eddy-covariance flux values on daily and longer time steps.

  8. Evapotranspiration parameterizations at a grass site in Florida, USA

    USGS Publications Warehouse

    Rizou, M.; Sumner, David M.; Nnadi, F.

    2007-01-01

    In spite of the fact that grasslands account for about 40% of the ice-free global terrestrial land cover, their contribution to the surface exchanges of energy and water in local and regional scale is so far uncertain. In this study, the sensitivity of evapotranspiration (ET) and other energy fluxes to wetness variables, namely the volumetric Soil Water Content (SWC) and Antecedent Precipitation Index (API), over a non-irrigated grass site in Central Florida, USA (28.049 N, 81.400 W) were investigated. Eddy correlation and soil water content measurements were taken by USGS (U.S. Geological Survey) at the grass study site, within 100 m of a SFWMD (South Florida Water Management District) weather station. The soil is composed of fine sands and it is mainly covered by Paspalum notatum (bahia grass). Variable soil wetness conditions with API bounds of about 2 to 160 mm and water table levels of 0.03 to 1.22 m below ground surface, respectively, were observed throughout the year 2004. The Bowen ratio exhibited an average of 1 and values larger than 2 during few dry days. The daytime average ET was classified into two stages, first stage (energy-limited) and second stage (water- limited) based on the water availability. The critical values of API and SWC were found to be about 56 mm and 0.17 respectively, with the second one being approximately 33% of the SWC at saturation. The ET values estimated by the simple Priestley-Taylor (PT) method were compared to the actual values. The PT coefficient varied from a low bound of approximately 0.4 to a peak of 1.21. Simple relationships for the PT empirical factor were employed in terms of SWC and API to improve the accuracy of the second stage observations. The results of the ET parameterizations closely match eddy-covariance flux values on daily and longer time steps.

  9. Divergence of reference evapotranspiration observations with windy tropical conditions

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Wang, D.; Tirado-Corbalá, R.; Zhang, H.; Ayars, J. E.

    2014-06-01

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ETEC) using Eddy Covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET0) and tall (ETr) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley-Taylor ET (ETPT) and ETEC. Reference ET from the ASCE approaches exceeded ETEC during the mid-period (when vegetation coefficients suggest ETEC should exceed reference ET). At the windier tower site, cumulative ETr exceeded ETEC by 854 mm over the course of the mid-period (267 days). At the less windy site, mid-period ETr still exceeded ETEC, but the difference was smaller (443 mm). At both sites, ETPT approximated mid-period ETEC more closely than the ASCE equations ((ETPT-ETEC) < 170 mm). Analysis of applied water and precipitation, soil moisture, leaf stomatal resistance, and canopy cover suggest that the lower observed ETEC was not the result of water stress or reduced vegetation cover. Use of a custom calibrated bulk canopy resistance improved the reference ET estimate and reduced seasonal ET discrepancy relative to ETPT and ETEC for the less windy field and had mixed performance at the windier field. These divergences suggest that modifications to reference ET equations may be warranted in some tropical regions.

  10. Contrasting methods for estimating evapotranspiration in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop scientists are often interested in canopy rather than leaf water fluxes. Comparing canopy fluxes for multiple treatments using micrometeorological approaches presents limitations because of the large fetch required. The goal of this study was to compare leaf-scale to field-scale data by summing...

  11. Value of using remotely sensed evapotranspiration for SWAT model calibration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic models are useful management tools for assessing water resources solutions and estimating the potential impact of climate variation scenarios. A comprehensive understanding of the water budget components and especially the evapotranspiration (ET) is critical and often overlooked for adeq...

  12. Radiometric surface temperature calibration effects on satellite based evapotranspiration estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture on the Texas High Plains (THP) uses approximately 89% of groundwater withdrawals from the Ogallala Aquifer, leading to steady decline in water table levels. Therefore, efficient water management is essential for sustaining agricultural production in the THP. Accurate evapotranspiration (...

  13. Potential Evapotranspiration Trends over South America

    NASA Astrophysics Data System (ADS)

    Maske, B. B.; Goncalves, L.

    2013-05-01

    Evapotranspiration (ET) is a key variable for energy and mass flux estimation from the land surface, and consequent water balance over regional to global scales. It also affects the atmosphere dynamics from weather to climate scales due to its link between the hydrological and energy cycles. Many studies investigating global ET trends have found a consistently positive signal in the period between 1982-1997 followed by a decline until 2008, which proved consistent with the acceleration of the hydrological cycle, caused by the global increase of temperature and radiative forcing. The large El nino in 1998, for instance, resulted in a negative trend of ET due in part to the limitation of soil moisture availability. However some researchers emphasize the importance of treating ET trends regionally and thus already found two distinct scenarios with inclusion of the regional dimension of evapotranspiration drivers for global studies: one where ET decreases following decreasing in pan evaporation in regions with ample supply of water and, the other scenario with a positive trend in observed ET following decreasing in pan evaporation, with indication of the latter being induced only by the tendency of precipitation. Studies about ET trend in the western United States, using data from the hydrologic model Variable Infiltration Capacity (VIC), also found significant seasonal variations associated with changes of temperature, snow accumulation and melting. Moreover, Canada researchers indicate strong correlation between ET variations and temperature, although temperature alone can not be related to changes of ET, since it not considers the heat flux in soil and cycles of freezing and melting of snow. Considering the importance of understanding variations of ET regionally, this study aims to analyze ET trends over South America. The data used are potential evapotranspiration estimated by the Penman-Monteith method, computed using data from meteorological stations for the

  14. Perun: The System For Seasonal Crop Yield Forecasting Based On The Crop Model and Weather Generator

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Zalud, Z.; Trnka, M.; Haberle, J.; Pesice, P.

    The main purpose of the computer system PERUN, which is now being developed, is the probabilistic seasonal crop yield forecasting. The crop yields (winter wheat and spring barley in the first step) are simulated by crop model WOFOST. The input daily weather series consist of observed data, which are available in the date of forecast issuance, and synthetic data, which follow up with the observed data till the end of the crop model simulation. The synthetic weather series are generated by stochastic generator Met&Roll conditionally on the seasonal weather forecast. The probabilis- tic forecast is based on multiple crop model runs. To provide the six daily weather characteristics required for crop model simulation (precipitation, solar radiation, max- imum and minimum temperatures, air humidity, wind speed), the previous WGEN- like four-variate version of Met&Roll generator was supplemented by a new module. This module adds wind speed and air humidity (necessary to calculate evapotranspi- ration) using the nearest neighbours resampling from the observed data. Because of the problems with availability and/or accuracy of wind and humidity data, the source code of the WOFOST model was modified and allows now to switch between Penman and Makkink methods of calculating the evapotranspiration (the daily values of wind speed and humidity are not required in the Makkink method). The contribution will address following items: 1) Structure of the PERUN system: components and their inputs and outputs. Modifications to WOFOST crop model and Met&Roll generator will be discussed. 2) Validation of the WOFOST crop model. The accuracy obtained using the Penman and Makkink methods will be compared. 3) Demonstration of the forecast accuracy in dependence on the date of issuance. Acknowledgement: The system PERUN is being developed within the frame of project QC1316 sponsored by the Czech National Agency for Agricultural Research (NAZV).

  15. Modeling bulk canopy resistance from climatic variables for predicting hourly evapotranspiration of maize and buckwheat

    NASA Astrophysics Data System (ADS)

    Yan, Haofang; Shi, Haibin; Hiroki, Oue; Zhang, Chuan; Xue, Zhu; Cai, Bin; Wang, Guoqing

    2015-06-01

    This study presents models for predicting hourly canopy resistance ( r c) and evapotranspiration (ETc) based on Penman-Monteith approach. The micrometeorological data and ET c were observed during maize and buckwheat growing seasons in 2006 and 2009 in China and Japan, respectively. The proposed models of r c were developed by a climatic resistance ( r *) that depends on climatic variables. Non-linear relationships between r c and r * were applied. The measured ETc using Bowen ratio energy balance method was applied for model validation. The statistical analysis showed that there were no significant differences between predicted ETc by proposed models and measured ETc for both maize and buckwheat crops. The model for predicting ETc at maize field showed better performance than predicting ETc at buckwheat field, the coefficients of determination were 0.92 and 0.84, respectively. The study provided an easy way for the application of Penman-Monteith equation with only general available meteorological database.

  16. Application of remote sensing in estimating evapotranspiration in the Platte river basin

    NASA Technical Reports Server (NTRS)

    Blad, B. L.; Rosenberg, N. J.

    1976-01-01

    A 'resistance model' and a mass transport model for estimating evapotranspiration (ET) were tested on large fields of naturally subirrigated alfalfa. Both models make use of crop canopy temperature data. Temperature data were obtained with an IR thermometer and with leaf thermocouples. A Bowen ratio-energy balance (BREB) model, adjusted to account for underestimation of ET during periods of strong sensible heat advection, was used as the standard against which the resistance and mass transport models were compared. Daily estimates by the resistance model were within 10% of estimates made by the BREB model. Daily estimates by the mass transport model did not agree quite as well. Performance was good on clear and cloudy days and also during periods of non-advection and strong advection of sensible heat. The performance of the mass transport and resistance models was less satisfactory for estimation of fluxes of latent heat for short term periods. Both models tended to overestimate at low LE fluxes.

  17. The hysteretic evapotranspiration - vapor pressure deficit relation

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Manzoni, S.; Katul, G. G.; Porporato, A. M.; Yang, D.

    2013-12-01

    Diurnal hysteresis between evapotranspiration (ET) and vapor pressure deficit (VPD) was reported in many ecosystems but justification for its onset and magnitude remain incomplete with biotic and abiotic factors invoked as possible explanations. To place these explanations within a mathematical framework, ';rate-dependent' hysteresis originating from a phase angle difference between periodic input and output time series is first considered. Lysimeter evaporation (E) measurements from wet bare soils and model calculations using the Penman equation demonstrate that the E-VPD hysteresis emerges without any biotic effects due to a phase angle difference (or time lag) between net radiation the main driver of E, and VPD. Modulations originating from biotic effects on the ET-VPD hysteresis were then considered. The phase angle difference representation earlier employed was mathematically transformed into a storage problem and applied to the soil-plant system. The transformed system shows that soil moisture storage within the root zone can produce an ET-VPD hysteresis prototypical of those generated by phase-angle differences. To explore the interplay between all the lags in the soil-plant-atmosphere system and phase angle differences among forcing and response variables, a detailed soil-plant-atmosphere continuum (SPAC) model was developed and applied to a grassland ecosystem. The results of the SPAC model suggest that the hysteresis magnitude depends on the radiation-VPD lag. The soil moisture dry-down simulations also suggest that modeled root water potential and leaf water potential are both better indicators of the hysteresis magnitude than soil moisture, suggesting that plant water status is the main factor regulating the hysteretic relation between ET and VPD. Hence, the genesis and magnitude of the ET-VPD hysteresis are controlled directly by both biotic factors and abiotic factors such as time lag between radiation and VPD originating from boundary layer processes

  18. Evaluating the SSEBop approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid Texas High Plains

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Gowda, P. H.; Bohms, S.; Howell, T. A.; Friedrichs, M.; Marek, T. H.; Verdin, J. P.

    2014-01-01

    The operational Simplified Surface Energy Balance (SSEBop) approach was applied on 14 Landsat 5 thermal infrared images for mapping daily actual evapotranspiration (ETa) fluxes during the spring and summer seasons (March-October) in 2006 and 2007. Data from four large lysimeters, managed by the USDA-ARS Conservation and Production Research Laboratory were used for evaluating the SSEBop estimated ETa. Lysimeter fields are arranged in a 2 × 2 block pattern with two fields each managed under irrigated and dryland cropping systems. The modeled and observed daily ETa values were grouped as "irrigated" and "dryland" at four different aggregation periods (1-day, 2-day, 3 day and "seasonal") for evaluation. There was a strong linear relationship between observed and modeled ETa with R2 values ranging from 0.87 to 0.97. The root mean square error (RMSE), as percent of their respective mean values, were reduced progressively with 28, 24, 16 and 12% at 1-day, 2-day, 3-day, and seasonal aggregation periods, respectively. With a further correction of the underestimation bias (-11%), the seasonal RMSE reduced from 12 to 6%. The random error contribution to the total error was reduced from 86 to 20% while the bias' contribution increased from 14 to 80% when aggregated from daily to seasonal scale, respectively. This study shows the reliable performance of the SSEBop approach on the Landsat data stream with a transferable approach for use with the recently launched LDCM (Landsat Data Continuity Mission) Thermal InfraRed Sensor (TIRS) data. Thus, SSEBop can produce quick, reliable and useful ET estimations at various time scales with higher seasonal accuracy for use in regional water management decisions.

  19. The Expansion of Agriculture and Its Effects of Evapotranspiration in Brazil's Newest Agricultural Frontier

    NASA Astrophysics Data System (ADS)

    Spera, S. A.; Coe, M. T.; Galford, G. L.; Macedo, M.; Mustard, J. F.

    2015-12-01

    Approximately half of the Cerrado has been deforested in Brazil's drive to develop export-oriented mechanized agriculture. We focus our analysis on Brazil's newest-and potentially final-agricultural frontier, Mapitoba. Using MODIS Enhanced Vegetation Index (EVI) data, we map land-use change within Mapitoba between 2003 and 2013 with 87% accuracy. During our study period, row-crop agriculture more than doubled, expanding from 1.2 to 2.5 million ha. We use MODIS evapotranspiration (ET) data and quantify the impacts of agricultural conversion on ET in Mapitoba. Monthly ET was, on average, 26 mm mo-1 higher over areas of natural vegetation for all months except January, February, and March. These 26 mm mo-1 equate to a 22% (April) to 77% (September) difference in ET rates depending on the month. In January and February, ET occurs at similar (~100%) or slightly higher (~107%) rates over row-crop agriculture than natural vegetation. ET is negatively correlated with single-cropped agricultural area for August through December and April through July across all years. Single-cropped area is positively correlated with ET in February across all years, and January and March across most years. Double-cropping is positively correlated with ET across all years during January, April, and May, and a majority of the study period during February, March, and June. The change in dry season (June-August) ET is linearly related (R2 = 0.81) to the cumulative amount of land converted to row-crop agriculture. For every new 1000 ha of row-crops, 1.7 million m3 less water is recycled back to the atmosphere. If row-crop were to expand onto the 8.2 million ha of remnant Cerrado suitable for agriculture in Mapitoba, we estimate an additional reduction of 14 km3 of water each year during these 3 months alone. Land-use-change-induced climate feedbacks may extend the dry season and threaten both the health of the natural vegeation and sustainabiltity of continued agricultural production.

  20. Evapotranspiration and runoff in a forest watershed, western Japan

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Shimizu, T.; Miyabuchi, Y.; Ogawa, Y.

    2003-10-01

    Both water and heat balances were studied in a conifer plantation watershed in south-west Japan, within the warm-temperate East Asia monsoon area. Forest cover in the watershed consists mainly of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) plantations. Precipitation and runoff have been observed since 1991, so evapotranspiration can be compared with the water balance. Two meteorological observation towers were built to monitor evapotranspiration in the watershed. The annual average precipitation, amount of runoff and losses were 2166, 1243 and 923 mm, respectively. The evapotranspiration (latent heat flux) agreed well with the water balance losses. The average annual evapotranspiration at the tower built in the centre of the watershed was 902 mm; evapotranspiration at the other tower, further upslope, was 875 mm. The observed evapotranspiration was 39% to 40% of the average precipitation (2166 mm). The mean net radiation was c. 2·6 GJ m-2 year-1, and is considered a representative value of the net radiation (Rn) in coniferous plantations in this region. This region is classified in the humid zone based on the ratio of net radiation (Rn) to the energy required to evaporate the rainfall (R). The mean annual evaporation of canopy-intercepted water was 356 mm or about 15% of the average precipitation. Copyright

  1. Watershed-scale Evapotranspiration Changed Little over 50 years of Agricultural Land Abandonment in Southern Michigan

    NASA Astrophysics Data System (ADS)

    Hamilton, S. K.; Hussain, M. Z.; Lowrie, C. J.

    2015-12-01

    The difference between precipitation and stream discharge over annual periods provides an indication of the total water loss to evaporation and evapotranspiration. The response of evaporative water loss to land cover change affects groundwater recharge, stream flow, and lake levels. This study examined the watershed water balance for Augusta Creek, which drains a 95-km2 glacial landscape in southwestern Michigan covered by cropland, grassland, forest, and wetlands. The climate is humid and temperate; between 1964-2014 the water-year precipitation averaged 948 mm and ranged from 695-1386 mm with no temporal trend. Over the study period the percentage of land in agriculture has decreased to about a third of its original extent, with abandoned lands gradually transitioning from old fields to woody vegetation. Comparison of precipitation on the upland watershed to baseflow discharge (USGS data; baseflow estimation by WHAT model) across the 50-year record shows that total evaporative water loss averaged 563 + 103 mm and ranged from 385-897 mm, with no apparent trend over the record. The evaporative water loss accounts for a mean + s.d. of 59 + 6% of precipitation (range, 48-70%). Evaporative water loss was positively related to total precipitation (r2 = 0.74. These results are interpreted using a Budyko plot framework to facilitate comparison with other settings. This water balance approach to infer evaporative water loss compares well with direct measurements in the same watershed since 2009 using eddy covariance (grasslands and crops) and soil moisture monitoring by time-domain reflectometry (grasslands, crops, and forest). Thus the evaporative water loss, which is predominantly by evapotranspiration, has been remarkably similar across a period of changing land cover, leaving a relatively consistent proportion for groundwater recharge and streamflow.

  2. Evaluation of evapotranspiration estimation methods for sweet cherry trees (Prunus avium) in sub-humid climate.

    PubMed

    Denmirtas, Cigdem; Buyukcangaz, Hakan; Yazgan, Senih; Candogan, Burak Nazmi

    2007-02-01

    This study was carried out in the summer of 2001 in a 3 year old and in the summer of 2002 in a 4 year old sweet cherry trees (Prunus avium, variety Z-900) on Mazzard rootstocks in Bayramic-Canakkale which is located in the west part of Turkey. Micro-sprinkler irrigation was selected as the irrigation method. The trees were subjected to four micro-sprinkler irrigation treatments (T-1, T-2, T-3 and T-4). The water applied in treatment T-3 was considered sufficient to satisfy fully needs of the crop (100% of ETc) and to allow good rooting and tree growth. The water balance relationship was used in estimating ETc. A total of 4 climatological methods were selected for estimating reference crop evapotranspiration on a daily basis. Some of these methods are based on combination theory and others are empirical methods based primarily on solar radiation, temperature ans relative humidity. An attempt was made in the current study to develop regional relationship between the evapotranspiration measured and that estimated by the climatological methods, such as FAO-Penman, Penman-Monteith, FAO-Radiation and FAO-Blaney-Criddle. Performance of the climatological methods in estimating the ETo values as compared to the measured values was evaluated on the basis of root mean square error (RMSE). In 2001, the Penman-Monteith equation gave the best results followed by FAO-Penman, FAO-Radiation and FAO-Blaney-Criddle. In 2002, the Penman-Monteith and FAO-Blaney-Criddle equations gave same results. PMID:19069518

  3. A comparison of methods for determining the cotton field evapotranspiration and its components under mulched drip irrigation conditions: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H.

    2013-12-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. For upscaling the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. For upscaling the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between the leaf area and the stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling is slightly higher (18%) than that obtained by sap flow. At the field scale, the estimate of the transpiration obtained by upscaling the estimate based on sap flow measurements is also systematically higher (10%) compared to that obtained through eddy covariance during the cotton open boll growth stage when soil evaporation can be neglected. Nevertheless, the results derived from these three distinct methods show reasonable consistency at the field scale, which indicates that the upscaling approaches are reasonable and valid. Based on the measurements and the upscaling approaches, the evapotranspiration components were analyzed under mulched drip irrigation. During the cotton flower and bolling stages in July and August, the evapotranspiration are 3.94 and 4.53 mm day-1, respectively. The proportion of transpiration to evapotranspiration reaches 87.1% before drip irrigation and 82.3% after irrigation. The high water use efficiency is principally due to the mulched film above the drip pipe, the low soil water content in the inter

  4. Simulating Stochastic Crop Management in Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  5. Combining eddy-covariance measurements and Penman-Monteith type models to estimate evapotranspiration of flooded and aerobic rice

    NASA Astrophysics Data System (ADS)

    Facchi, Arianna; Masseroni, Daniele; Gharsallah, Olfa; Gandolfi, Claudio

    2014-05-01

    Rice is of great importance both from a food supply point of view, since it represents the main food in the diet of over half the world's population, and from a water resources point of view, since it consumes almost 40% of the water amount used for irrigation. About 90% of global production takes place in Asia, while European production is quantitatively modest (about 3 million tons). However, Italy is the Europe's leading producer, with over half of total production, almost totally concentrated in a large traditional paddy rice area between the Lombardy and Piedmont regions, in the north-western part of the country. In this area, irrigation of rice is traditionally carried out by continuous flooding. The high water requirement of this irrigation regime encourages the introduction of water saving irrigation practices, as flood irrigation after sowing in dry soil and intermittent irrigation (aerobic rice). In the agricultural season 2013 an intense monitoring activity was conducted on three experimental fields located in the Padana plain (northern Italy) and characterized by different irrigation regimes (traditional flood irrigation, flood irrigation after sowing in dry soil, intermittent irrigation), with the aim of comparing the water balance terms for the three irrigation treatments. Actual evapotranspiration (ET) is one of the terms, but, unlike others water balance components, its field monitoring requires expensive instrumentation. This work explores the possibility of using only one eddy covariance system and Penman-Monteith (PM) type models for the determination of ET fluxes for the three irrigation regimes. An eddy covariance station was installed on the levee between the traditional flooded and the aerobic rice fields, to contemporaneously monitor the ET fluxes from this two treatments as a function of the wind direction. A detailed footprint analysis was conducted - through the application of three different analytical models - to determine the position

  6. Potential Evapotranspiration as a Source of Uncertainty and Bias in Hydrologic Impact Analyses

    NASA Astrophysics Data System (ADS)

    Milly, P. C. D.

    2015-12-01

    The diversity of commonly used potential evapotranspiration (PET) models contributes uncertainty in the estimation of hydrologic response to anthropogenic climate change. The temperature sensitivity of six commonly used PET equations (Hamon, Oudin, Penman-Monteith, Priestley-Taylor, Samani-Hargreaves, and Thornthwaite) is readily shown to vary by almost an order of magnitude, with energy-unconstrained (i.e., temperature-based) methods showing the largest sensitivity. The change in annual multimodel (Coupled Model Intercomparison Project, Phase 5) PET under Representative Concentration Pathway 8.5 from 1981-2000 to 2081-2100 is typically 10-20% (20-40%) in the low (high) latitudes according to the physics-based Penman-Monteith (ASCE Standardized Reference Evapotranspiration) equation, but 20-40% (20-80%) according to the empirical, temperature-based Hamon equation. Radiation-based Priestley-Taylor changes are smaller than both of these, while empirical, temperature-based Thornthwaite changes are larger than both. These differences in PET change translate to large differences in change of water availability; when combined with a form of the Budyko water-balance relation, the PET methods predict a wide range of runoff changes. Furthermore, all PET methods result in bias that indicates drier conditions globally than those computed by the climate models themselves, and all PET methods overestimate the changes in actual evapotranspiration in non-water-stressed seasons/regions relative to the changes in the climate models. We conclude that use of PET methods that are inappropriate for climate-change applications is a source not only of uncertainty, but also of more drying than suggested by climate models, in hydrologic impact analyses. In view of the bias, it is advised that a no-PET-change analysis be used to define a wet upper bound on potential hydrologic impacts.

  7. Estimating Evapotranspiration with Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, C. D.; Kumar, S. V.; Mocko, D. M.; Tian, Y.

    2011-01-01

    Advancements in both land surface models (LSM) and land surface data assimilation, especially over the last decade, have substantially advanced the ability of land data assimilation systems (LDAS) to estimate evapotranspiration (ET). This article provides a historical perspective on international LSM intercomparison efforts and the development of LDAS systems, both of which have improved LSM ET skill. In addition, an assessment of ET estimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 (NLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.

  8. NASA GLDAS Evapotranspiration Data and Climatology

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko Kato; Teng, William L.; Vollmer, Bruce; Rodell, Matthew

    2012-01-01

    Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.

  9. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  10. Alcohol co-production from tree crops

    SciTech Connect

    Seibert, M.; Folger, G.; Milne, T.

    1982-06-01

    A concept for the sustainable production of alcohol from fermentable substrates produced on an annual basis by the reproductive organs (pods, fruits, nuts, berries, etc.) of tree crops is presented. The advantages of tree-crop systems include suitability for use on marginal land, potential productivity equivalent to row crops, minimal maintenance and energy-input requirements, environmental compatibility, and the possibility of co-product production. Honeylocust, mesquite, and persimmon are examined as potential US tree-crop species. Other species not previously considered, including osage orange and breadfruit, are suggested as tree-crop candidates for North America and the tropical developing world, respectively. Fermentation of tree-crop organs and the economics of tree-crop systems are also discussed. Currently the greatest area of uncertainty lies in actual pod or fruit yields one can expect from large tree farms under real life conditions. However, ballpark ethanol yield estimates of from 880 to 3470 l hectare/sup -1/ (94 to 400 gal acre/sup -1/) justify further consideration of tree crop systems.

  11. Mapping Evapotranspiration on Vineyards: The SENTINEL-2 Potentiality

    NASA Astrophysics Data System (ADS)

    Ciraolo, Giuseppe; Capodici, Fulvio; D'Urso, Guido; La Loggia, Goffredo; Maltese, Antonino

    2012-04-01

    Estimation of actual evapotranspiration in Sicilian vineyards, is an emerging issue since these agricultural systems. Indeed unlike other agricultural species (Vitis vinifera L.) are generally cultivated under mild water stress, in order to enhance quality (Guadillère et al., 2002. This has significant impacts on the management of the scarce water resources of the region. The choice of the most appropriate methodology for assessing water use in these systems is still an issue of debating, due to the complexity of canopy and root systems and for their high spatial fragmentation. In vineyards, quality and quantity of the final product are dependent on the controlled stress conditions to be set trough irrigation. This paper reports an application of the well-known Penman-Monteith approach, applied in a distributed way, using high resolution remote sensing data to map the potential evapotranspiration (ETp). In 2008 a series of airborne multispectral images were acquired on the "Tenute Rapitalà", a wine farm located in the northwest of Sicily. Five airborne remote sensing scenes were collected using a SKY ARROW 351 650 TC/TCNS aircraft, at a height of about 1000 m a.g.l.. The acquisitions encompassed almost a whole phenological period, between June and September 2008 (approximately one each three weeks). The platform had on board a multi-spectral camera with 3 spectral bands in the green (G, 530-570 nm), red (R, 650-690 nm) and near infrared (NIR, 767-832 nm) wavelengths, and a thermal camera with a broad band in the range 7.5-13 μm. The nominal pixel resolution was approximately 0.7 m for VIS/NIR acquisitions, and 1.7 m for the thermal-IR data. Field data were acquired simultaneously to airborne acquisitions. The former include spectral reflectance in visible, near infrared, middle infrared (VIS, NIR, MIR) regions of the spectrum, leaf area index (LAI), soil moisture at different depths (both in row and below plants). Moreover, meteorological variables and fluxes

  12. Statistical Analysis of Meteorological Data to Assess Evapotranspiration and Infiltration at the Rifle Site, CO, USA

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Long, P. E.; Tokunaga, T. K.; Christensen, J. N.

    2015-12-01

    Net infiltration to the vadose zone, especially in arid or semi-arid climates, is an important control on microbial activity and solute and green house gas fluxes. To assess net infiltration, we performed a statistical analysis of meteorological data as the basis for hydrological and climatic investigations and predictions for the Rifle site, Colorado, USA, located within a floodplain in a mountainous region along the Colorado River, with a semi-arid climate. We carried out a statistical analysis of meteorological 30-year time series data (1985-2015), including: (1) precipitation data, taking into account the evaluation of the snowmelt, (2) evaluation of the evapotranspiration (reference and actual), (3) estimation of the multi-time-scalar Standardized Precipitation-Evapotranspiration Index (SPEI), (4) evaluation of the net infiltration rate, and (5) corroborative analysis of calculated net infiltration rate and groundwater recharge from radioisotopic measurements from samples collected in 2013. We determined that annual net infiltration percentage of precipitation varies from 4.7% to ~18%, with a mean of ~10%, and concluded that calculations of net infiltration based on long-term meteorological data are comparable with those from strontium isotopic investigations. The evaluation of the SPEI showed the intermittent pattern of droughts and wet periods over the past 30 years, with a detectable decreasein the duration of droughts with time. Local measurements within the floodplain indicate a recharge gradient with increased recharge closer to the Colorado River.

  13. Estimating hourly crop ET using a two-source energy balance model and multispectral airborne imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient water use through improved irrigation scheduling is expected to moderate fast declining groundwater levels and improve sustainability of the Ogallala Aquifer. Thus, an accurate estimation of spatial actual evapotranspiration (ET) is needed for this purpose. Therefore, during 2007, the Bush...

  14. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  15. Evapotranspiration of tropical peat swamp forests.

    PubMed

    Hirano, Takashi; Kusin, Kitso; Limin, Suwido; Osaki, Mitsuru

    2015-05-01

    In Southeast Asia, peatland is widely distributed and has accumulated a massive amount of soil carbon, coexisting with peat swamp forest (PSF). The peatland, however, has been rapidly degraded by deforestation, fires, and drainage for the last two decades. Such disturbances change hydrological conditions, typically groundwater level (GWL), and accelerate oxidative peat decomposition. Evapotranspiration (ET) is a major determinant of GWL, whereas information on the ET of PSF is limited. Therefore, we measured ET using the eddy covariance technique for 4-6 years between 2002 and 2009, including El Niño and La Niña events, at three sites in Central Kalimantan, Indonesia. The sites were different in disturbance degree: a PSF with little drainage (UF), a heavily drained PSF (DF), and a drained burnt ex-PSF (DB); GWL was significantly lowered at DF, especially in the dry season. The ET showed a clear seasonal variation with a peak in the mid-dry season and a large decrease in the late dry season, mainly following seasonal variation in net radiation (Rn ). The Rn drastically decreased with dense smoke from peat fires in the late dry season. Annual ET forced to close energy balance for 4 years was 1636 ± 53, 1553 ± 117, and 1374 ± 75 mm yr(-1) (mean ± 1 standard deviation), respectively, at UF, DF, and DB. The undrained PSF (UF) had high and rather stable annual ET, independently of El Niño and La Niña events, in comparison with other tropical rainforests. The minimum monthly-mean GWL explained 80% of interannual variation in ET for the forest sites (UF and DF); the positive relationship between ET and GWL indicates that drainage by a canal decreased ET at DF through lowering GWL. In addition, ET was decreased by 16% at DB in comparison with UF chiefly because of vegetation loss through fires. PMID:24912043

  16. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    NASA Astrophysics Data System (ADS)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  17. Bryophyte Evapotranspiration in a Boreal Forest Chronosequence

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Ewers, B.; Angstmann, J.; Gower, S.

    2008-12-01

    Forest water fluxes, in particular evapotranspiration (ET), are less well constrained than are carbon fluxes, and the effect of changing stand age on forest ET is not well understood. We combined field and lab measurements to estimate the bryophyte contribution to ET in a black spruce-dominated boreal chronosequence in Manitoba, Canada. Site ages were 17, 42, 76 and 156 years, and each site contained separate well- and poorly-drained stands (bogs). Field plots (N=4) were surveyed for moss diversity and microtopography; meteorological variables were recorded continuously. Field measurements were made 3-4 times during the growing season using a custom chamber attached to a LI-COR 6400. In addition, large tubs of moss were incubated in a controlled-environment chamber and water loss rates measured via weighing; these tubs were also measured using the same protocol as performed in the field. In the lab, fully-saturated feathermoss and Sphagnum lost water at rates as high as 1.5 and 4.5 mm day-1, respectively, at 25 °C. Over the entire year, modeled bryophyte ET ranged from 0.2-0.3 and 0.2-0.5 mm day-1 in the well- and poorly-drained stands, respectively. During the growing season, these rates were 0.7-0.8 and 0.6- 1.4 mm day-1. Ignoring bog microtopography would have resulted in underestimation of fluxes by ~10%. There was no clear trend of moss ET flux with stand age, except at the very youngest stands, where bryophyte spatial coverage was low. Our results emphasize the important contribution that bryophytes make to the ET flux of boreal forests.

  18. Evapotranspiration and energy balance components spatial distribution in the north region of Minas Gerais, Brazil, using the SEBAL model and Landsat 5 TM images

    NASA Astrophysics Data System (ADS)

    Gomide, Reinaldo L.; de Paula Boratto, Isa Maria

    2014-10-01

    The determination of crop evapotranspiration (ETc) values is very useful information for planning irrigation, water supply estimation, regulation of water rights and river basins hydrologic studies. Values of ETc in the North region of Minas Gerais state, Brazil, were estimated in this research from the multispectral images of the Landsat 5 TM by means of the model Surface Energy Balance Algorithm for Land- SEBAL, based on the simplified energy balance equation of a surface covered by vegetation, using a few daily surface climatological parameters (wind speed, rainfall, air temperature and relative humidity, solar radiation). The aim of this study was to estimate the regional spatial distribution of the energy balance components and evapotranspiration in the study area, covering the irrigated perimeter of Gorutuba, involving the cities of Nova Porteirinha, Janaúba, Porteirinha, Verdelândia and Pai Pedro. Thematic maps of regional evapotranspiration and energy balance components were generated from spectral analyzes of the images obtained, associated with the used weather data. The ability of SEBAL to provide the spatial variability of energy balance components, including evapotranspiration, demonstrated its sensitivity to different occupation of the soil surface vegetation, and to high data temporal and spatial resolutions data, indicating that the SEBAL model can be used in scales and operational routine for north region of Minas Gerais.

  19. Advances in the two-source energy balance model:Partioning of evaporation and transpiration for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  20. A thermal-based remote sensing modelling system for estimating crop water use and stress from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...

  1. Utility of multi temporal satellite images for crop water requirements estimation and irrigation management in the Jordan Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying the spatial and temporal distribution of crop water requirements is a key for successful management of water resources in the dry areas. Climatic data were obtained from three automated weather stations to estimate reference evapotranspiration (ETO) in the Jordan Valley according to the...

  2. Spatial variability in sensitivity of reference crop ET to accuracy of climate data in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1995 to 2008, fro...

  3. COMBINING REMOTELY SENSED DATA AND GROUND-BASED RADIOMETERS TO ESTIMATE CROP COVER AND SURFACE TEMPERATURES AT DAILY TIME STEPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of evapotranspiration (ET) is important for monitoring crop water stress and for developing decision support systems for irrigation scheduling. Techniques to estimate ET have been available for many years, while more recently remote sensing data have extended ET into a spatially distribut...

  4. Advances in the two-source energy balance model:Partioning of evaporation and transpiration for row crops for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  5. Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity

    PubMed Central

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917

  6. Spatial and temporal variation in evapotranspiration using Raman lidar

    NASA Astrophysics Data System (ADS)

    Eichinger, W. E.; Cooper, D. I.; Hipps, L. E.; Kustas, W. P.; Neale, C. M. U.; Prueger, J. H.

    2006-02-01

    The Los Alamos Raman lidar has been used to make high resolution (25 m) estimates of the evapotranspiration rate over adjacent corn and soybean canopies. The lidar makes three-dimensional measurements of the water vapor content of the atmosphere directly above the canopy that are inverted using Monin-Obukhov similarity theory. This may be used to examine the relationship between evapotranspiration and surface moisture/soil type. Lidar estimates of evapotranspiration reveal a high degree of spatial variability over corn and soybean fields that may be associated with small elevation changes in the area. The spatial structure of the variability is characterized using a structure function and correlation function approach. The power law relationship found by other investigators for soil moisture is not clear in the data for evapotranspiration, nor is the data a straight line over the measured lags. The magnitude of the structure function and the slope changes with time of day, with a probable connection to the amount of evapotranspiration and the spatial variability of the water vapor source. The data used was taken during the soil moisture-atmosphere coupling experiment (SMACEX) conducted in the Walnut Creek Watershed near Ames, Iowa in June and July 2002.

  7. Multi-scale indicators in CropWatch

    NASA Astrophysics Data System (ADS)

    Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zhang, N.; Zou, W.; Chang, S.; Liu, G.

    2013-12-01

    CropWatch is a crop monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information, mostly for Chinese users. In its 15th year of operation, CropWatch uses remote sensing data combined with selected field data to determine key crop descriptors: acreage, yield and production, condition, cropping intensity, planting proportion, total food availability, and the status and severity of droughts. Currently, CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite 3 (FY-3A) and geostationary meteorological satellites (FY-2). The new indicators can be assigned to three different scales: (1) global, (2) regional/Agro-ecological Zone (AEZ), and (3) National/sub-national level. At the global scale, CropWatch focuses on the growing environment including precipitation (R), soil moisture (SM), land surface temperature accumulation (LSTA) and photosynthetically active radiation (PAR). National values of these four descriptors of the current season and their departure from long term average (LTA) will be determined by spatial average weighted by the production potential. At regional/AEZ scale, CropWatch will use three indicators (biomass, fallow land ratio and cropping intensity) to represent crop condition. At the national/sub-national scale, CropWatch will focus on 30 countries plus China, covering 80% of exports and 80% of production, plus some additional countries. Indicators at global and AEZ scale will also be used for the 30 countries plus China but at a high resolution. Normalized difference vegetation index (NDVI) as well as Evapotranspiration (ET) will be incorporated to determine the crop condition and water stress. All these national/sub-national indicators will be analyzed by irrigated and rain-fed areas

  8. Penman-Monteith Evapotranspiration under Soil Moisture Limiting Conditions across California

    NASA Astrophysics Data System (ADS)

    Purdy, A. J.; Famiglietti, J. S.

    2014-12-01

    In arid and semi-arid regions soil moisture often limits the flux of water to meet the atmospheric evapotranspiration (ET) demand. Potentially drier conditions and more variable precipitation and snow in California create a need to better understand how this reservoir limits ET across the state. The upcoming Soil Moisture Active Passive (SMAP) mission's surface and root zone soil moisture data will provide additional information to force observation based ET models at spatial scales ranging from 3-36 km2. To support application of SMAP data to ET modeling we investigate the role of soil moisture within the Penman-Monteith representation at FLUXNET and agricultural sites across California. We present findings on actual ET under soil moisture limiting conditions that do not violate assumptions within this modeling framework.

  9. Irrigation and fertigation scheduling under drip irrigation for maize crop in sandy soil

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; El-Baroudy, Ahmed A.; Taha, Ahmed M.

    2016-01-01

    Field experiments was conducted to determine the best irrigation scheduling and the proper period for injecting fertilizers through drip irrigation water in a sandy soil to optimize maize yield and water productivity. Four irrigation levels (0.6, 0.8, 1.0 and 1.2) of the crop evapotranspiration and two fertigation periods (applying the recommended fertilizer dose in 60 and 80% of the irrigation time) were applied in a split-plot design, in addition to a control treatment which represented conventional irrigation and fertilization of maize in the studied area. The results showed that increasing the irrigation water amount and the fertilizer application period increased vegetative growth and yield. The highest grain yield and the lowest one were obtained under the treatment at 1.2 and of 0.6 crop evapotranspiration, respectively. The treatment at 0.8 crop evapotranspiration with fertilizer application in 80% of the irrigation time gave the highest water productivity (1.631 kg m-3) and saved 27% of the irrigation water compared to the control treatment. Therefore, this treatment is recommended to irrigate maize crops because of the water scarcity conditions of the studied area.

  10. NOAA Introduces its First-Generation Reference Evapotranspiration Product

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.

    2013-12-01

    NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally

  11. Estimation of Evapotranspiration as a function of Photosynthetic Active Radiation

    NASA Astrophysics Data System (ADS)

    Wesley, E.; Migliaccio, K.; Judge, J.

    2012-12-01

    The purpose of this research project is to more accurately measure the water balance and energy movements to properly allocate water resources at the Snapper Creek Site in Miami-Dade County, FL, by quantifying and estimating evapotranspiration (ET). ET is generally estimated using weather based equations, this project focused on estimating ET as a function of Photosynthetic Active Radiation (PAR). The project objectives were first to compose a function of PAR and calculated coefficients that can accurately estimate daily ET values with the least amount of variables used in its estimation equation, and second, to compare the newly identified ET estimation PAR function to TURC estimations, in comparison to our actual Eddy Covariance (EC) ET data and determine the differences in ET values. PAR, volumetric water content (VWC), and temperature (T) data were quality checked and used in developing singular and multiple variable regression models fit with SigmaPlot software. Fifteen different ET estimation equations were evaluated against EC ET and TURC estimated ET using R2 and slope factors. The selected equation that best estimated EC ET was cross validated using a 5 month data set; its daily and monthly ET values and sums were compared against the commonly used TURC equation. Using a multiple variable regression model, an equation with three variables (i.e., VWC, T, and PAR) was identified that best fit EC ET daily data. However, a regression was also found that used only PAR and provided ET predictions of similar accuracy. The PAR based regression model predicted daily EC ET more accurately than the traditional TURC method. Using only PAR to estimate ET reduces the input variables as compared to using the TURC model which requires T and solar radiation. Thus, not only is the PAR approach more accurate but also more cost effective. The PAR-based ET estimation equation derived in this study may be over fit considering only 5 months of data were used to produce the PAR

  12. Offsetting Streamflow Depletion from Well Pumpage by Capture of Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Konikow, L. F.

    2014-12-01

    It is well established that groundwater pumpage must be balanced by a loss of water elsewhere. This loss comes primarily from storage depletion at early times and increasingly from capture at later times. Capture includes some combination of increases in recharge to the aquifer and decreases in discharge from the aquifer induced by the pumpage. Most capture is manifested as streamflow depletion (e.g., through induced infiltration and/or reductions in baseflow). However, decreasing evapotransirative discharge from an aquifer would constitute a type of capture that does not affect streamflow. In his classic 1940 paper Theis recommends that wells be placed in areas where groundwater "is being lost by evaporation or transpiration by non-productive vegetation," thereby utilizing this "lost" water with a minimal lowering of the water table. This study uses numerical simulation of a hypothetical unconfined stream-aquifer system in an arid climate, where streamflow depletion is typically a major concern, to assess how capture of evapotranspiration (ET) can influence the sources of water for a pumping well when the ET losses are directly affected by spatial and temporal changes in the depth to the water table. Consequently, streamflow depletion for a given pumping rate can be affected by capture of ET and how that varies with well location and the history of development and drawdown. We assume the standard MODFLOW linear model for changes in groundwater ET as the water table declines to a specified extinction depth. In one scenario in which about half the recharge to the aquifer is lost to ET under predevelopment conditions, the percentage of well discharge balanced by decreased ET changed from 1.1% after one year to 18% after 200 years of simulated pumpage. The actual ET rate decreased from 5,372 m3/d under predevelopment conditions to 5,001 m3/d after 200 years of development (a 7% reduction in total ET losses). At this same time, 77% of pumpage is derived from streamflow

  13. Evaporation and reference evapotranspiration trends in Spain

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Vicente-Serrano, Sergio M.; Wild, Martin; Azorin-Molina, Cesar; Calbó, Josep; Revuelto, Jesús; López-Moreno, Juan I.; Moran-Tejeda, Enrique; Martín-Hernández, Natalia; Peñuelas, Josep

    2015-04-01

    Interest is growing in the trends of atmospheric evaporation demand, increasing the need for long-term time series. In this study, we first describe the development of a dataset on evaporation in Spain based on long-term series of Piché and pan measurement records. Piché measurements have been reported for >50 stations since the 1960s. Measurements of pan evaporation, which is a much more widely studied variable in the literature, are also available, but only since 1984 for 21 stations. Particular emphasis was placed on the homogenization of this dataset (for more details, we refer to Sanchez-Lorenzo et al., 2014, Clim Res, 61: 269-280). Both the mean annual Piché and pan series over Spain showed evaporative increases during the common study period (1985-2011). Furthermore, using the annual Piché records since the 1960s, an evaporation decline was detected from the 1960s to the mid-1980s, which resulted in a non-significant trend over the entire 1961-2011 period. Our results indicate agreement between the decadal variability of reference evapotranspiration (Vicente-Serrano et al., 2014, Glob Planet Chang, 121: 26-40) and surface solar radiation (Sanchez-Lorenzo et al., 2013, Glob Planet Chang, 100: 343-352) and the evaporation from Piché and pan measurements since the mid-1980s, especially during summer. Nevertheless, this agreement needs attention, as Piché evaporimeters are inside meteorological screens and not directly exposed to radiation. Thus, as Piché readings are mainly affected by the aerodynamic term in Penman's evaporation equation and pan records are affected by both the heat balance and aerodynamic terms, the results suggest that both terms must be highly and positively correlated in Spain. In order to check this hypothesis, the radiative and aerodynamic components were estimated using the Penman's equation. The results show that the relationship with the radiative components is weaker than that with the aerodynamic component for both pan and

  14. Partioning the evapotranspiration flux from a maize field using stable isotopes

    NASA Astrophysics Data System (ADS)

    Hogan, Patrick; Oismueller, Markus; Parajka, Juraj

    2015-04-01

    Knowledge of the components of evapotranspiration (ET) is important for SVAT modelling and also agriculture, particularly for irrigation efficiency and crop productivity. Measurements of transpiration (T) and soil evaporation (E) can have significant errors due to upscaling, caused by heterogeneities within the vegetation and environment. The stable isotope method can be used to estimate the ratio of evaporation to transpiration and when combined with eddy covariance measurements can be used to measure the values of evaporation and transpiration at a field scale. During the summer of 2014 the concentration and isotopic ratios of water vapour in the ecosystem boundary layer of a growing maize field at the HOAL catchment was measured using a Picarro field sampling device and in conjunction with isotope samples from the soil and maize plants this data was used to calculate the E:T ratio using the Keeling plot method. A tripod mounted eddy covariance device was used to calculate the ET value for the field with control measurements for the evaporation and transpiration being provided by sets of micro-lysimeters and sap flow devices respectively. These results along with supporting energy balance and meteorological data will be used to analyse the performance of the HYDRUS 1-D model in partitioning the ET for a crop field.

  15. Modeling uncertainty of evapotranspiration measurements from multiple eddy covariance towers over a crop canopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All measurements have random error associated with them. With fluxes in an eddy covariance system, measurement error can been modelled in several ways, often involving a statistical description of turbulence at its core. Using a field experiment with four towers, we generated four replicates of meas...

  16. A satellite-based drought index describing anomalies in evapotranspiration for global crop monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility and reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, precipitation-based indices only reflect one component of the surface hydrologic cycle, ...

  17. Estimating evapotranspiration for dryland cropping systems in the semiarid Texas High Plains using SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Water Assessment Tool (SWAT) is a widely used watershed model for simulating stream flow, overland flow, sediment, pesticide, and bacterial loading in response to management practices. All SWAT processes are directly dependent upon the accurate representation of hydrology. Evapotranspiratio...

  18. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia.

    PubMed

    Headley, T R; Davison, L; Huett, D O; Müller, R

    2012-02-01

    The balance between evapotranspiration (ET) loss and rainfall ingress in treatment wetlands (TWs) can affect their suitability for certain applications. The aim of this paper was to investigate the water balance and seasonal dynamics in ET of subsurface horizontal flow (HF) TWs in a sub-tropical climate. Monthly water balances were compiled for four pilot-scale HF TWs receiving horticultural runoff over a two year period (Sep. 1999-Aug. 2001) on the sub-tropical east-coast of Australia. The mean annual wetland ET rate increased from 7.0 mm/day in the first year to 10.6 mm/day in the second, in response to the development of the reed (Phragmites australis) population. Consequently, the annual crop coefficients (ratio of wetland ET to pan evaporation) increased from 1.9 in the first year to 2.6 in the second. The mean monthly ET rates were generally greater and more variable than the Class-A pan evaporation rates, indicating that transpiration is an important contributor to ET in HF TWs. Evapotranspiration rates were generally highest in the summer and autumn months, and corresponded with the times of peak standing biomass of P. australis. It is likely that ET from the relatively small 1 m wide by 4 m long HF TWs was enhanced by advection through so-called "clothesline" and "oasis" effects, which contributed to the high crop coefficients. For the second year, when the reed population was well established, the annual net loss to the atmosphere (taking into account rainfall inputs) accounted for 6.1-9.6 % of the influent hydraulic load, which is considered negligible. However, the net loss is likely to be higher in arid regions with lower rainfall. The Water Use Efficiency (WUE) of the wetlands in the second year of operation was 1.3 g of above-ground biomass produced per kilogram of water consumed, which is low compared to agricultural crops. It is proposed that system level WUE provides a useful metric for selecting wetland plant species and TW design alternatives to

  19. Use of Land Surface Temperature Observations in a Two-Source Energy Balance Model Towards Improved Monitoring of Evapotranspiration and Drought

    NASA Astrophysics Data System (ADS)

    Hain, C.; Anderson, M. C.; Otkin, J.; Semmens, K. A.; Zhan, X.; Fang, L.; Li, Z.

    2014-12-01

    As the world's water resources come under increasing tension due to the dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. However, direct validation of ET models is challenging due to lack of available observations that are sufficiently representative at the model grid scale (10-100 km). Prognostic land-surface models require accurate information about observed precipitation, soil moisture storage, groundwater, and artificial controls on water supply (e.g., irrigation, dams, etc.) to reliably link rainfall to evaporative fluxes. In contrast, diagnostic estimates of ET can be generated, with no prior knowledge of the surface moisture state, by energy balance models using thermal-infrared remote sensing of land-surface temperature (LST) as a boundary condition. One such method, the Atmosphere Land Exchange Inverse (ALEXI) model provides estimates of surface energy fluxes through the use of mid-morning change in LST and radiation inputs. The LST inputs carry valuable proxy information regarding soil moisture and its effect on soil evaporation and canopy transpiration. Additionally, the Evaporative Stress Index (ESI) representing anomalies in the ratio of actual-to-potential ET has shown to be a reliable indicator of drought. ESI maps over the continental US show good correspondence with standard drought metrics and with patterns of precipitation, but can be generated at significantly higher spatial resolution due to a limited reliance on ground observations. Furthermore, ESI is a measure of actual stress rather than potential for stress, and has physical relevance to projected crop development. Because precipitation is not used in construction of the ESI, it provides an independent assessment of drought conditions and has particular utility for real-time monitoring in regions with sparse rainfall data or

  20. Regional evaluation of evapotranspiration in the Everglades

    USGS Publications Warehouse

    German, E.R.

    2000-01-01

    Nine sites in the Florida Everglades were selected and instrumented for collection of data necessary for evapotranspiration-determination using the Bowen-ratio energy-budget method. The sites were selected to represent the sawgrass or cattail marshes, wet prairie, and open-water areas that constitute most of the natural Everglades system. At each site, measurements necessary for evapotranspiration (ET) calculation and modeling were automatically made and stored on-site at 15- or 30-minute intervals. Data collected included air temperature and humidity at two heights, wind speed and direction, incoming solar radiation, net solar radiation, water level and temperature, soil moisture content, soil temperature, soil heat flux, and rainfall. Data summarized in this report were collected from January 1996 through December 1997, and the development of site-specific and regional models of ET for this period is described. Latent heat flux is the energy flux density equivalent of the ET rate. Modified Priestley-Taylor models of latent heat flux as a function of selected independent variables were developed at each site. These models were used to fill in periods of missing latent heat flux measurement, and to develop regional models of the entire Everglades region. The regional models may be used to estimate ET in wet prairie, sawgrass or cattail marsh, and open-water portions of the natural Everglades system. The models are not applicable to forested areas or to the brackish areas adjacent to Florida Bay. Two types of regional models were developed. One type of model uses measurements of available energy at a site, together with incoming solar energy and water depth, to estimate hourly ET. This available-energy model requires site data for net radiation, water heat storage, and soil heat flux, as well as data for incoming solar radiation and water depth. The other type of model requires only incoming solar energy, air temperature, and water depth data to provide estimates of

  1. Influence of land-surface evapotranspiration on the earth's climate

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Mintz, Y.

    1982-01-01

    Land-surface evapotranspiration is shown to strongly influence global fields of rainfall, temperature and motion by calculations using a numerical model of the atmosphere, confirming the general belief in the importance of evapotranspiration-producing surface vegetation for the earth's climate. The current version of the Goddard Laboratory atmospheric general circulation model is used in the present experiment, in which conservation equations for mass, momentum, moisture and energy are expressed in finite-difference form for a spherical grid to calculate (1) surface pressure field evolution, and (2) the wind, temperature, and water vapor fields at nine levels between the surface and a 20 km height.

  2. Heterogeneous terrain: a challenge to derive evapotranspiration with remote sensing and scintillometry

    NASA Astrophysics Data System (ADS)

    Thiem, Christina; Sun, Liya; Müller, Benjamin; Bernhardt, Matthias; Schulz, Karsten

    2014-05-01

    Despite the importance of evapotranspiration for Meteorology, Hydrology and Agronomy, obtaining area-averaged evapotranspiration estimates is cost as well as maintenance intensive: usually area-averaged evapotranspiration estimates are obtained by distributed sensor networks or remotely sensed with a scintillometer. A low cost alternative for evapotranspiration estimates are satellite images, as many of them are freely available. This approach has been proven to be worthwhile above homogeneous terrain, and typically evapotranspiration data obtained with scintillometry are applied for validation. We will extend this approach to heterogeneous terrain: evapotranspiration estimates from ASTER 2013 images will be compared to scintillometer derived evapotranspiration estimates. The goodness of the correlation will be presented as well as an uncertainty estimation for both the ASTER derived and the scintillometer derived evapotranspiration.

  3. Sub-canopy evapotranspiration from floating vegetation and open water in a swamp forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have demonstrated large discrepancies in the difference between evapotranspiration from wetland vegetation and evaporation from open water. In this study, we investigate evapotranspiration differences between water and vegetation in a scenario that has otherwise not been extensively...

  4. Agrometeorological study of crop drought vulnerability and avoidance in northeast of Iran

    NASA Astrophysics Data System (ADS)

    Lashkari, A.; Bannayan, M.

    2013-07-01

    Drought is one of the crucial environmental factors affecting crop production. Synchronizing crop phenology with expected or predicted seasonal soil moisture supply is an effective approach to avoid drought impact. To assess the potential for drought avoidance, this study investigated the long-term climate data of four locations (Bojnourd, Mashhad, Sabzevar, and Torbat Heydarieh) in Khorasan province, in the northeast of Iran, with respect to the four dominant crops (common bean, lentil, peanut, and potato). Weekly water deficit defined as the difference between weekly precipitation and weekly potential evapotranspiration was calculated. Whenever the weekly water deficit was larger than the critical water demand of a crop, the probability for drought was determined. Results showed that Sabzevar has the highest average maximum temperature (24.6 °C), minimum temperature (11.7 °C), weekly evapotranspiration (32.1 mm), and weekly water deficit (28.3 mm) and has the lowest average weekly precipitation (3.8 mm). However, the lowest mean maximum temperature (19.7 °C), minimum temperature (6.9 °C), weekly evapotranspiration (22.5 mm), and weekly water deficit (17.5 mm) occur in Bojnourd. This location shows the shortest period of water deficit during the growing season for all crops except potato, which also experienced drought at the end of the growing season. Sabzevar and Torbat Heydarieh experienced the highest probability of occurrence and longest duration of drought during the growing season for all crops. The result of this study will be helpful for farmers in order to reduce drought impact and enable them to match crop phenology with periods during the growing season when water supply is more abundant.

  5. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  6. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals} (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51

  7. Evapotranspiration from areas of native vegetation in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Woodham, W.M.; Lopez, Miguel Angel

    1996-01-01

    The micrometeorological methods of energy-balance Bowen ratio and eddy correlation probably are suitable for determining evapotranspiration from unforested sites, but the aerodynamic effects of tall tree canopies need to be considered when the methods are used for forested sites. Potential evapotranspiration methods might not yield reliable estimates of evapotranspiration for all areas of native vegetation. Estimates of annual evapotranspiration ranged from 970 millimeters for a cypress swamp site to 1,060 millimeters for a pine flatwood site.

  8. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  9. Crop synergism can help dryland crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply is a major constraint for crop production in dryland agriculture across the world, and extensive research has been conducted to improve water use. In the grass steppe of the United States, water use has improved through a series of management advancements, such as preservation of crop ...

  10. Operational evapotranspiration based on Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  11. Wind Turbines Benefit Crops

    SciTech Connect

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  12. Wind Turbines Benefit Crops

    ScienceCinema

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  13. A Comparison of Methods for Estimating Evapotranspiration (ET) in a Semi-Arid Agricultural System

    NASA Astrophysics Data System (ADS)

    Gordon, B. L.; Claes, N.; Miller, S. N.; Paige, G. B.; Parsekian, A.; Beverly, D.

    2015-12-01

    In the intermountain West, much like the rest of the world, agriculture is the oldest and largest water consumer. Particularly in the arid headwaters states of the intermountain west changing water demands are highlighting the importance of water use efficiency in agriculture. In flood irrigation an area is irrigated until saturation is achieved although crops only consume a portion of the total water applied. The remaining water eventually returns to streams or aquifers. Accurately quantifying the portion of applied water that is consumptively used—and its corollary in the form of return flows—represents an important avenue for potential water use reduction in the face of increasing demands from sundry downstream users. Consumptive use has historically been understood as the difference between the irrigation water applied and irrigation water returned to adjacent surface waters via quick or delayed return flow as well as overland flow. Penman-derived models, which calculate evapotranspiration based on meteorological data, are another widely recognized method for estimating consumptive use. We determined consumptive use on an agricultural field in northeastern Wyoming using both of these two traditional methods as well as a quantitative scintillometer-based estimate, which couples meteorological data with the latent heat flux across a field to measure evapotranspiration for a given area. Since the wider application of the scintillometer is limited by the instrument's complexity and cost, a comparison of the resulting data with these two more customary methods provides critical insight in to where certain methods might under or overestimate consumptive use. The purpose of this comparison is twofold. First, the comparison of these three methods allows for the optimization of a reach-scale water budget that aims to better characterize and quantify return flow processes. Second, the addition of information that couples hydrology, meteorology, geophysics, and heat

  14. Evapotranspiration and energy flux observations from a global tower network with a critical analysis of uncertainties

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.

    2012-12-01

    Eddy covariance studies tend to focus on the flux of carbon dioxide despite the central role of surface-atmosphere water and energy exchange in the climate system. The under-utilization of water and energy flux data is due in part to uncertainties, including the lack of observed energy balance closure. Across 173 FLUXNET sites, energy balance closure averaged 0.84 with best average closure in evergreen broadleaf forests and savannas (0.91-0.94) and worst average closure in crops, deciduous broadleaf forests, mixed forests and wetlands (0.70-0.78). The simplest explanatory model using information criteria analyses cannot exclude landscape-level heterogeneity. This finding is in empirical agreement with studies that suggest that secondary circulations, likely attributable to landscape-scale variability, are related to lack of energy balance closure, although unmeasured storage terms cannot be ruled out as a dominant contributor. Keeping uncertainties in mind, evapotranspiration and sensible heat flux follow expected seasonal patterns, and the magnitude of evapotranspiration in temperate ecosystems approached that of tropical ecosystems during the peak growing season. Latent heat exchange is constrained by an exponentially-decreasing function of vapor pressure deficit, consistent with theories of optimal stomatal behavior. Forests tended to have cooler surface temperatures when controlled for net radiation than did short-statured ecosystems, and further investigations revealed the importance of efficient heat and water vapor transport in forest canopies that are well-coupled to the atmosphere. The value of energy and water flux data from FLUXNET increases as uncertainties become better-understood, and careful interpretations of tower-level water and energy flux data will ultimately improve our understanding of the role of terrestrial ecosystems in the Earth system.

  15. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  16. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  17. FIELD EVALUATION OF EVAPO-TRANSPIRATION (ET) CAPS

    EPA Science Inventory

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid W...

  18. Ecosystem evapotranspiration: Challenges in measurements, estimates, and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) processes at the leaf-to-landscape scales in multiple land uses have important controls and feedbacks for the local, regional and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and cro...

  19. Using Thermal Remote Sensing for Drought and Evapotranspiration Monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status affecting evapotranspiration and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as...

  20. Using Thermal Remote Sensing for Drought and Evapotranspiration Monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status for estimating evapotranspiration and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g...

  1. Seasonal energy and evapotranspiration partitioning in a desert vineyard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The challenge of partitioning energy and evapotranspiration (ET) components was addressed over a season (bud break till harvest) in a wine grape vineyard located in an extreme arid region. A below canopy energy balance approach was applied to continuously estimate evaporation from the soil (E) while...

  2. Partitioning evapotranspiration into evaporation and transpiration in a corn field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is a main component of the hydrology cycle. It consists of soil water evaporation (E) and plant transpiration (T). Accurate partitioning of ET into E and T is challenging. We measured soil water E using heat pulse sensors and a micro-Bowen ratio system, T using stem flow gaug...

  3. Partitioning evapotranspiration using diurnal surface temperature variation 1861

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The encroachment of woody plants in grasslands across the Western U.S. will affect soil water availability by altering the contributions of evaporation (E) and transpiration (T) to total evapotranspiration (ET). To study this phenomenon, a network of flux stations is in place to measure ET in grass...

  4. Evapotranspiration: Progress in measurement and modeling in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the water resources available for agriculture become limiting due to population growth, competition from other water users, drought and water quality degradation, the importance of evapotranspiration (ET) as a major component of water use in agriculture grows. This paper provides a focused survey...

  5. Deriving hourly evapotranspiration (ET) rates with SEBS: A lysimetric evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous energy balance (EB) algorithms have been developed to use remote sensing data for mapping evapotranspiration (ET) on a regional basis. Adopting any single or combination of these models for an operational ET remote sensing program requires a thorough evaluation. The Surface Energy Balance S...

  6. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    NASA Astrophysics Data System (ADS)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  7. Bushland Evapotranspiration and Agricultural Remote Sensing EXperiment 2007 (BEAREX07)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Texas High Plains, every millimeter of irrigation water saved greatly affects profit margins. If available, high-resolution daily evapotranspiration (ET) maps would help producers plan their irrigation schedule effectively. The ET maps derived from satellite sensors with daily coverage such a...

  8. Bushland evapotranspiration and agricultural remote sensing system (BEARS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution daily evapotranspiration (ET) maps would greatly assist irrigation scheduling and hydrologic modeling. Numerous remote sensing-based ET algorithms that vary in complexity are available for estimating spatially and temporally variable daily ET at a regional scale. However, implementat...

  9. Evapotranspiration model of different complexity for multiple land cover types

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparison between half-hourly and daily measured and computed evapotranspiration (ET) using three models of different complexity, namely the Priestley-Taylor (P-T), reference Penman-Monteith (P-M), and Common Land Model (CLM) was conducted using three AmeriFlux sites under different land cover an...

  10. Remote sensing estimation of evapotranspiration for SWAT Model Calibration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrological models are used to assess many water resource problems from water quantity to water quality issues. The accurate assessment of the water budget, primarily the influence of precipitation and evapotranspiration (ET), is a critical first-step evaluation, which is often overlooked in hydro...

  11. ESTIMATION OF POTENTIAL EVAPOTRANSPIRATION FROM MERGED CERES and MODIS OBSERVATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and timely estimates of potential evapotranspiration (ET) and knowledge of their spatial and temporal distribution are essential for agriculture and water resource management as well as for understanding the impacts of climate variability on terrestrial systems. Because of the paucity and i...

  12. Daily time series evapotranspiration maps for Oklahoma and Texas panhandle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...

  13. GOES Solar Radiation for Evapotranspiration Estimation and Streamflow Predictions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Weather Service River Forecast System uses the Sacramento Soil Moisture Accounting (SAC-SMA) rainfall-runoff model to produce daily river and flood forecasts and issue flood warnings. The manual observations of total sky cover used to estimate solar radiation and potential evapotranspir...

  14. Determining the oxygen isotope composition of evapotranspiration with eddy covariance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oxygen isotope componsition of evapotranspiration (dF) represents an important tracer in the study of biosphere-atmosphere interactions, hydrology, paleoclimate, and carbon cycling. Here we demonstrate direct measurement of dF based on eddy covariance (EC) and tunable diode laser (EC-TDL) techni...

  15. Sorghums as energy crops

    SciTech Connect

    Lipinsky, E. S.; Kresovich, S.

    1980-01-01

    The botanical, physiological, and agronomic characteristics of sorghum are described. Integration concepts to improve sorghum prospects are discussed as follows: multiple sweet sorghum crops each year, integration with sugarcane, integration with sugar beets, integration with starch crops, sweet stemmed grain sorghum, and integration with lignocellulosic crops. (MHR)

  16. Cucurbitaceae (Vine Crops)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cucurbitaceae or vine crop family is a distinct family without any close relatives. The Cucurbitaceae or vine crop family includes many important vegetables collectively referred to as cucurbits. Cucumber, melon, and watermelon are major crop species originally from the Old World (cucumber fro...

  17. Cover crops for Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are grown to benefit the following crop as well as to improve the soil, but they are normally not intended for harvest. Selecting the right cover crops for farming operations can improve yields, soil and water conservation and quality, and economic productivity. Properly managed cover ...

  18. Cover Crop Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential benefits of cover crops in vegetable production systems depend on the type of cover crop that is used and how it is managed from planting to termination date. This chapter focuses on management practices that are applicable to a broad range cover crops and vegetable production systems ...

  19. Impact of Climate Change on Irrigation Demand and Crop Growth in a Mediterranean Environment of Turkey

    PubMed Central

    Yano, Tomohisa; Aydin, Mehmet; Haraguchi, Tomokazu

    2007-01-01

    A simulation study was carried out to describe effects of climate change on crop growth and irrigation water demand for a wheat-maize cropping sequence in a Mediterranean environment of Turkey. Climate change scenarios were projected using data of the three general circulation models—GCMs (CGCM2, ECHAM4 and MRI)—for the period of 1990 to 2100 and one regional climate model—RCM—for the period of 2070 to 2079. Potential impacts of climate change based on GCMs data were estimated for the A2 scenario in the Special Report on Emission Scenarios (SRES). The forcing data for the boundary condition of the RCM were given by the MRI model. Daily CGCM2 and RCM data were used for computations of water balance and crop development. Predictions derived from the models about changes in irrigation and crop growth in this study covered the period of 2070 to 2079 relative to the baseline period of 1994 to 2003. The effects of climate change on water demand and on wheat and maize yields were predicted using the detailed crop growth subroutine of the SWAP (Soil-Water-Atmosphere-Plant) model. Precipitation was projected to decrease by about 163, 163 and 105 mm during the period of 1990 to 2100 under the A2 scenario of the CGCM2, ECHAM4 and MRI models, respectively. The CGCM2, ECHAM4 and MRI models projected a temperature rise of 4.3, 5.3 and 3.1 °C, respectively by 2100. An increase in temperature may result in a higher evaporative demand of the atmosphere. However, actual evapotranspiration (ETa) from wheat cropland under a doubling CO2 concentration for the period of 2070 to 2079 was predicted to decrease by about 28 and 8% relative to the baseline period based on the CGCM2 and RCM data, respectively. According to these models, irrigation demand by wheat would be higher for the same period due to a decrease in precipitation. Both ETa and irrigation water for maize cropland were projected to decrease by 24 and 15% according to the CGCM2, and 28 and 22% according to the RCM

  20. Estimation of Some Bio-Physical Indicators for Sustainable Crop Production in the Eastern Nile Basin of Sudan Using Landsat-8 Imagery and SEBAL Model

    NASA Astrophysics Data System (ADS)

    Guma Biro Turk, Khalid

    2016-07-01

    Crop production under modern irrigation systems require unique management at field level and hence better utilization of agricultural inputs and water resources. This study aims to make use of remote sensing (RS) data and the surface energy balance algorithm for land (SEBAL) to improve the on-farm management. The study area is located in the Eastern part of the Blue Nile River about 60 km south of Khartoum, Sudan. Landsat-8 data were used to estimate a number of bi