Sample records for actual design parameters

  1. Linear parameter varying representations for nonlinear control design

    NASA Astrophysics Data System (ADS)

    Carter, Lance Huntington

    Linear parameter varying (LPV) systems are investigated as a framework for gain-scheduled control design and optimal hybrid control. An LPV system is defined as a linear system whose dynamics depend upon an a priori unknown but measurable exogenous parameter. A gain-scheduled autopilot design is presented for a bank-to-turn (BTT) missile. The method is novel in that the gain-scheduled design does not involve linearizations about operating points. Instead, the missile dynamics are brought to LPV form via a state transformation. This idea is applied to the design of a coupled longitudinal/lateral BTT missile autopilot. The pitch and yaw/roll dynamics are separately transformed to LPV form, where the cross axis states are treated as "exogenous" parameters. These are actually endogenous variables, so such a plant is called "quasi-LPV." Once in quasi-LPV form, a family of robust controllers using mu synthesis is designed for both the pitch and yaw/roll channels, using angle-of-attack and roll rate as the scheduling variables. The closed-loop time response is simulated using the original nonlinear model and also using perturbed aerodynamic coefficients. Modeling and control of engine idle speed is investigated using LPV methods. It is shown how generalized discrete nonlinear systems may be transformed into quasi-LPV form. A discrete nonlinear engine model is developed and expressed in quasi-LPV form with engine speed as the scheduling variable. An example control design is presented using linear quadratic methods. Simulations are shown comparing the LPV based controller performance to that using PID control. LPV representations are also shown to provide a setting for hybrid systems. A hybrid system is characterized by control inputs consisting of both analog signals and discrete actions. A solution is derived for the optimal control of hybrid systems with generalized cost functions. This is shown to be computationally intensive, so a suboptimal strategy is proposed that

  2. Study on reservoir time-varying design flood of inflow based on Poisson process with time-dependent parameters

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Huang, Jing; Li, Jianchang

    2018-06-01

    The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.

  3. Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1989-01-01

    Sampling design for site characterization studies of solute transport in porous media is formulated as a multiobjective problem. Optimal design of a sampling network is a sequential process in which the next phase of sampling is designed on the basis of all available physical knowledge of the system. Three objectives are considered: model discrimination, parameter estimation, and cost minimization. For the first two objectives, physically based measures of the value of information obtained from a set of observations are specified. In model discrimination, value of information of an observation point is measured in terms of the difference in solute concentration predicted by hypothesized models of transport. Points of greatest difference in predictions can contribute the most information to the discriminatory power of a sampling design. Sensitivity of solute concentration to a change in a parameter contributes information on the relative variance of a parameter estimate. Inclusion of points in a sampling design with high sensitivities to parameters tends to reduce variance in parameter estimates. Cost minimization accounts for both the capital cost of well installation and the operating costs of collection and analysis of field samples. Sensitivities, discrimination information, and well installation and sampling costs are used to form coefficients in the multiobjective problem in which the decision variables are binary (zero/one), each corresponding to the selection of an observation point in time and space. The solution to the multiobjective problem is a noninferior set of designs. To gain insight into effective design strategies, a one-dimensional solute transport problem is hypothesized. Then, an approximation of the noninferior set is found by enumerating 120 designs and evaluating objective functions for each of the designs. Trade-offs between pairs of objectives are demonstrated among the models. The value of an objective function for a given design is shown

  4. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.

    PubMed

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-06-25

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.

  5. Optimal experimental design for parameter estimation of a cell signaling model.

    PubMed

    Bandara, Samuel; Schlöder, Johannes P; Eils, Roland; Bock, Hans Georg; Meyer, Tobias

    2009-11-01

    Differential equation models that describe the dynamic changes of biochemical signaling states are important tools to understand cellular behavior. An essential task in building such representations is to infer the affinities, rate constants, and other parameters of a model from actual measurement data. However, intuitive measurement protocols often fail to generate data that restrict the range of possible parameter values. Here we utilized a numerical method to iteratively design optimal live-cell fluorescence microscopy experiments in order to reveal pharmacological and kinetic parameters of a phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) second messenger signaling process that is deregulated in many tumors. The experimental approach included the activation of endogenous phosphoinositide 3-kinase (PI3K) by chemically induced recruitment of a regulatory peptide, reversible inhibition of PI3K using a kinase inhibitor, and monitoring of the PI3K-mediated production of PIP(3) lipids using the pleckstrin homology (PH) domain of Akt. We found that an intuitively planned and established experimental protocol did not yield data from which relevant parameters could be inferred. Starting from a set of poorly defined model parameters derived from the intuitively planned experiment, we calculated concentration-time profiles for both the inducing and the inhibitory compound that would minimize the predicted uncertainty of parameter estimates. Two cycles of optimization and experimentation were sufficient to narrowly confine the model parameters, with the mean variance of estimates dropping more than sixty-fold. Thus, optimal experimental design proved to be a powerful strategy to minimize the number of experiments needed to infer biological parameters from a cell signaling assay.

  6. Novel parameter-based flexure bearing design method

    NASA Astrophysics Data System (ADS)

    Amoedo, Simon; Thebaud, Edouard; Gschwendtner, Michael; White, David

    2016-06-01

    A parameter study was carried out on the design variables of a flexure bearing to be used in a Stirling engine with a fixed axial displacement and a fixed outer diameter. A design method was developed in order to assist identification of the optimum bearing configuration. This was achieved through a parameter study of the bearing carried out with ANSYS®. The parameters varied were the number and the width of the arms, the thickness of the bearing, the eccentricity, the size of the starting and ending holes, and the turn angle of the spiral. Comparison was made between the different designs in terms of axial and radial stiffness, the natural frequency, and the maximum induced stresses. Moreover, the Finite Element Analysis (FEA) was compared to theoretical results for a given design. The results led to a graphical design method which assists the selection of flexure bearing geometrical parameters based on pre-determined geometric and material constraints.

  7. Design of experiment for earth rotation and baseline parameter determination from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Dermanis, A.

    1977-01-01

    The possibility of recovering earth rotation and network geometry (baseline) parameters are emphasized. The numerical simulated experiments performed are set up in an environment where station coordinates vary with respect to inertial space according to a simulated earth rotation model similar to the actual but unknown rotation of the earth. The basic technique of VLBI and its mathematical model are presented. The parametrization of earth rotation chosen is described and the resulting model is linearized. A simple analysis of the geometry of the observations leads to some useful hints on achieving maximum sensitivity of the observations with respect to the parameters considered. The basic philosophy for the simulation of data and their analysis through standard least squares adjustment techniques is presented. A number of characteristic network designs based on present and candidate station locations are chosen. The results of the simulations for each design are presented together with a summary of the conclusions.

  8. Robust design of configurations and parameters of adaptable products

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua

    2014-03-01

    An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.

  9. Selecting Design Parameters for Flying Vehicles

    NASA Astrophysics Data System (ADS)

    Makeev, V. I.; Strel'nikova, E. A.; Trofimenko, P. E.; Bondar', A. V.

    2013-09-01

    Studying the influence of a number of design parameters of solid-propellant rockets on the longitudinal and lateral dispersion is an important applied problem. A mathematical model of a rigid body of variable mass moving in a disturbed medium exerting both wave drag and friction is considered. The model makes it possible to determine the coefficients of aerodynamic forces and moments, which affect the motion of vehicles, and to assess the effect of design parameters on their accuracy

  10. Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1987-01-01

    The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time with a high sensitivity to the parameter. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases and the consequent estimate of velocity tends to have lower variance. (3) The frequency of sampling must be “in phase” with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise and thus have limited value in predicting variance in parameter estimates among designs. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters. (8) The time and space interval over which an observation point is sensitive to a given parameter depends on the actual values of the parameters in the underlying physical system.

  11. Technography and Design-Actuality Gap-Analysis of Internet Computer Technologies-Assisted Education: Western Expectations and Global Education

    ERIC Educational Resources Information Center

    Greenhalgh-Spencer, Heather; Jerbi, Moja

    2017-01-01

    In this paper, we provide a design-actuality gap-analysis of the internet infrastructure that exists in developing nations and nations in the global South with the deployed internet computer technologies (ICT)-assisted programs that are designed to use internet infrastructure to provide educational opportunities. Programs that specifically…

  12. Optimal design criteria - prediction vs. parameter estimation

    NASA Astrophysics Data System (ADS)

    Waldl, Helmut

    2014-05-01

    G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.

  13. A design methodology for nonlinear systems containing parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Young, G. E.; Auslander, D. M.

    1983-01-01

    In the present design methodology for nonlinear systems containing parameter uncertainty, a generalized sensitivity analysis is incorporated which employs parameter space sampling and statistical inference. For the case of a system with j adjustable and k nonadjustable parameters, this methodology (which includes an adaptive random search strategy) is used to determine the combination of j adjustable parameter values which maximize the probability of those performance indices which simultaneously satisfy design criteria in spite of the uncertainty due to k nonadjustable parameters.

  14. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jun; Zhang, Jiangjiang; Li, Weixuan

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees ofmore » freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.« less

  15. Parameters Design of Series Resonant Inverter Circuit

    NASA Astrophysics Data System (ADS)

    Qi, Xingkun; Peng, Yonglong; Li, Yabin

    This paper analyzes the main circuit structure of series resonant inverter, and designs the components parameters of the main circuit.That provides a theoretical method for the design of series resonant inverter.

  16. Preservice elementary teachers' actual and designated identities as teachers of science and teachers of students

    NASA Astrophysics Data System (ADS)

    Canipe, Martha Murray

    Preservice elementary teachers often have concerns about teaching science that may stem from a lack of confidence as teachers or their own negative experiences as learners of science. These concerns may lead preservice teachers to avoid teaching science or to teach it in a way that focuses on facts and vocabulary rather than engaging students in the doing of science. Research on teacher identity has suggested that being able to envision oneself as a teacher of science is an important part of becoming a teacher of science. Elementary teachers are generalists and as such rather than identifying themselves as teachers of particular content areas, they may identify more generally as teachers of students. This study examines three preservice teachers' identities as teachers of science and teachers of students and how these identities are enacted in their student teaching classrooms. Using a narrated identity framework, I explore stories told by preservice teachers, mentor teachers, student teaching supervisors, and science methods course instructors about who preservice teachers are as teachers of science and teachers of students. Identities are the stories that are told about who someone is or will become in relation to a particular context. Identities that are enacted are performances of the stories that are an identity. Stories were collected through interviews with each storyteller and in an unmoderated focus group with the three preservice teachers. In addition to sorting stories as being about teachers of science or students, the stories were categorized as being about preservice teachers in the present (actual identities) or in the future (designated identities). The preservice teachers were also observed teaching science lessons in their student teaching placements. These enactments of identities were analyzed in order to identify which aspects of the identity stories were reflected in the way preservice teachers taught their science lessons. I also analyzed the

  17. Metocean design parameter estimation for fixed platform based on copula functions

    NASA Astrophysics Data System (ADS)

    Zhai, Jinjin; Yin, Qilin; Dong, Sheng

    2017-08-01

    Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.

  18. Biological basis for space-variant sensor design I: parameters of monkey and human spatial vision

    NASA Astrophysics Data System (ADS)

    Rojer, Alan S.; Schwartz, Eric L.

    1991-02-01

    Biological sensor design has long provided inspiration for sensor design in machine vision. However relatively little attention has been paid to the actual design parameters provided by biological systems as opposed to the general nature of biological vision architectures. In the present paper we will provide a review of current knowledge of primate spatial vision design parameters and will present recent experimental and modeling work from our lab which demonstrates that a numerical conformal mapping which is a refinement of our previous complex logarithmic model provides the best current summary of this feature of the primate visual system. In this paper we will review recent work from our laboratory which has characterized some of the spatial architectures of the primate visual system. In particular we will review experimental and modeling studies which indicate that: . The global spatial architecture of primate visual cortex is well summarized by a numerical conformal mapping whose simplest analytic approximation is the complex logarithm function . The columnar sub-structure of primate visual cortex can be well summarized by a model based on a band-pass filtered white noise. We will also refer to ongoing work in our lab which demonstrates that: . The joint columnar/map structure of primate visual cortex can be modeled and summarized in terms of a new algorithm the ''''proto-column'''' algorithm. This work provides a reference-point for current engineering approaches to novel architectures for

  19. Design of the dual-buoy wave energy converter based on actual wave data of East Sea

    NASA Astrophysics Data System (ADS)

    Kim, Jeongrok; Kweon, Hyuck-Min; Jeong, Weon-Mu; Cho, Il-Hyoung; Cho, Hong-Yeon

    2015-07-01

    A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: 36.404 N° and 129.274 E°) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

  20. Theoretical performance analysis of doped optical fibers based on pseudo parameters

    NASA Astrophysics Data System (ADS)

    Karimi, Maryam; Seraji, Faramarz E.

    2010-09-01

    Characterization of doped optical fibers (DOFs) is an essential primary stage for design of DOF-based devices. This paper presents design of novel measurement techniques to determine DOFs parameters using mono-beam propagation in a low-loss medium by generating pseudo parameters for the DOFs. The designed techniques are able to characterize simultaneously the absorption, emission cross-sections (ACS and ECS), and dopant concentration of DOFs. In both the proposed techniques, we assume pseudo parameters for the DOFs instead of their actual values and show that the choice of these pseudo parameters values for design of DOF-based devices, such as erbium-doped fiber amplifier (EDFA), are appropriate and the resulting error is quite negligible when compared with the actual parameters values.Utilization of pseudo ACS and ECS values in design procedure of EDFAs does not require the measurement of background loss coefficient (BLC) and makes the rate equation of the DOFs simple. It is shown that by using the pseudo parameters values obtained by the proposed techniques, the error in the gain of a designed EDFA with a BLC of about 1 dB/km, are about 0.08 dB. It is further indicated that the same scenario holds good for BLC lower than 5 dB/m and higher than 12 dB/m. The proposed characterization techniques have simple procedures and are low cost that can have an advantageous use in manufacturing of the DOFs.

  1. Experimental design and efficient parameter estimation in preclinical pharmacokinetic studies.

    PubMed

    Ette, E I; Howie, C A; Kelman, A W; Whiting, B

    1995-05-01

    Monte Carlo simulation technique used to evaluate the effect of the arrangement of concentrations on the efficiency of estimation of population pharmacokinetic parameters in the preclinical setting is described. Although the simulations were restricted to the one compartment model with intravenous bolus input, they provide the basis of discussing some structural aspects involved in designing a destructive ("quantic") preclinical population pharmacokinetic study with a fixed sample size as is usually the case in such studies. The efficiency of parameter estimation obtained with sampling strategies based on the three and four time point designs were evaluated in terms of the percent prediction error, design number, individual and joint confidence intervals coverage for parameter estimates approaches, and correlation analysis. The data sets contained random terms for both inter- and residual intra-animal variability. The results showed that the typical population parameter estimates for clearance and volume were efficiently (accurately and precisely) estimated for both designs, while interanimal variability (the only random effect parameter that could be estimated) was inefficiently (inaccurately and imprecisely) estimated with most sampling schedules of the two designs. The exact location of the third and fourth time point for the three and four time point designs, respectively, was not critical to the efficiency of overall estimation of all population parameters of the model. However, some individual population pharmacokinetic parameters were sensitive to the location of these times.

  2. 10 CFR 60.141 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reported to the Commission. (e) In situ monitoring of the thermomechanical response of the underground... IN GEOLOGIC REPOSITORIES Performance Confirmation Program § 60.141 Confirmation of geotechnical and... needed in design to accommodate actual field conditions encountered. (b) Subsurface conditions shall be...

  3. 10 CFR 60.141 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reported to the Commission. (e) In situ monitoring of the thermomechanical response of the underground... IN GEOLOGIC REPOSITORIES Performance Confirmation Program § 60.141 Confirmation of geotechnical and... needed in design to accommodate actual field conditions encountered. (b) Subsurface conditions shall be...

  4. 10 CFR 60.141 - Confirmation of geotechnical and design parameters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reported to the Commission. (e) In situ monitoring of the thermomechanical response of the underground... IN GEOLOGIC REPOSITORIES Performance Confirmation Program § 60.141 Confirmation of geotechnical and... needed in design to accommodate actual field conditions encountered. (b) Subsurface conditions shall be...

  5. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  6. Parameter design considerations for an oscillator IR-FEL

    NASA Astrophysics Data System (ADS)

    Jia, Qi-Ka

    2017-01-01

    An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original relevant approaches and expressions are presented. Analytic formulae are used to estimate the optical field gain and saturation power for the preliminary design. By considering both physical and technical constraints, the relation of the deflection parameter K to the undulator period is analyzed. This helps us to determine the ranges of the magnetic pole gap, the electron energy and the radiation wavelength. The relations and design of the optical resonator parameters are analyzed. Using dimensionless quantities, the interdependences between the radii of curvature of the resonator mirror and the various parameters of the optical resonator are clearly demonstrated. The effect of the parallel-plate waveguide is analyzed for the far-infrared oscillator FEL. The condition of the necessity of using a waveguide and the modified filling factor in the case of the waveguide are given, respectively. Supported by National Nature Science Foundation of China (21327901, 11375199)

  7. Statistical Analyses of Femur Parameters for Designing Anatomical Plates.

    PubMed

    Wang, Lin; He, Kunjin; Chen, Zhengming

    2016-01-01

    Femur parameters are key prerequisites for scientifically designing anatomical plates. Meanwhile, individual differences in femurs present a challenge to design well-fitting anatomical plates. Therefore, to design anatomical plates more scientifically, analyses of femur parameters with statistical methods were performed in this study. The specific steps were as follows. First, taking eight anatomical femur parameters as variables, 100 femur samples were classified into three classes with factor analysis and Q-type cluster analysis. Second, based on the mean parameter values of the three classes of femurs, three sizes of average anatomical plates corresponding to the three classes of femurs were designed. Finally, based on Bayes discriminant analysis, a new femur could be assigned to the proper class. Thereafter, the average anatomical plate suitable for that new femur was selected from the three available sizes of plates. Experimental results showed that the classification of femurs was quite reasonable based on the anatomical aspects of the femurs. For instance, three sizes of condylar buttress plates were designed. Meanwhile, 20 new femurs are judged to which classes the femurs belong. Thereafter, suitable condylar buttress plates were determined and selected.

  8. Aerodynamic optimization by simultaneously updating flow variables and design parameters

    NASA Technical Reports Server (NTRS)

    Rizk, M. H.

    1990-01-01

    The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.

  9. Convergence in parameters and predictions using computational experimental design.

    PubMed

    Hagen, David R; White, Jacob K; Tidor, Bruce

    2013-08-06

    Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.

  10. Identification of vehicle suspension parameters by design optimization

    NASA Astrophysics Data System (ADS)

    Tey, J. Y.; Ramli, R.; Kheng, C. W.; Chong, S. Y.; Abidin, M. A. Z.

    2014-05-01

    The design of a vehicle suspension system through simulation requires accurate representation of the design parameters. These parameters are usually difficult to measure or sometimes unavailable. This article proposes an efficient approach to identify the unknown parameters through optimization based on experimental results, where the covariance matrix adaptation-evolutionary strategy (CMA-es) is utilized to improve the simulation and experimental results against the kinematic and compliance tests. This speeds up the design and development cycle by recovering all the unknown data with respect to a set of kinematic measurements through a single optimization process. A case study employing a McPherson strut suspension system is modelled in a multi-body dynamic system. Three kinematic and compliance tests are examined, namely, vertical parallel wheel travel, opposite wheel travel and single wheel travel. The problem is formulated as a multi-objective optimization problem with 40 objectives and 49 design parameters. A hierarchical clustering method based on global sensitivity analysis is used to reduce the number of objectives to 30 by grouping correlated objectives together. Then, a dynamic summation of rank value is used as pseudo-objective functions to reformulate the multi-objective optimization to a single-objective optimization problem. The optimized results show a significant improvement in the correlation between the simulated model and the experimental model. Once accurate representation of the vehicle suspension model is achieved, further analysis, such as ride and handling performances, can be implemented for further optimization.

  11. Analysis of Design Parameters Effects on Vibration Characteristics of Fluidlastic Isolators

    NASA Astrophysics Data System (ADS)

    Deng, Jing-hui; Cheng, Qi-you

    2017-07-01

    The control of vibration in helicopters which consists of reducing vibration levels below the acceptable limit is one of the key problems. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters is very important to obtain efficient vibration-suppressed. Aiming at getting the effect of design parameters on the property of fluidlastic isolator, a dynamic equation is set up based on the theory of dynamics. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. Dynamic analysis results have shown that fluidlastic isolator can reduce the vibration effectively. Analysis results also showed that the design parameters such as the fluid density, viscosity coefficient, stiffness (K1 and K2) and loss coefficient have obvious influence on the performance of isolator. The efficient vibration-suppressed can be obtained by the design optimization of parameters.

  12. Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zou, Mijun; Zhong, Lei; Ma, Yaoming; Hu, Yuanyuan; Feng, Lu

    2018-05-01

    As a critical component of the energy and water cycle, terrestrial actual evapotranspiration (ET) can be influenced by many factors. This study was mainly devoted to providing accurate and continuous estimations of actual ET for the Tibetan Plateau (TP) and analyzing the effects of its impact factors. In this study, summer observational data from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) for 2003 to 2004 was selected to determine actual ET and investigate its relationship with energy, hydrological, and dynamical parameters. Multiple-layer air temperature, relative humidity, net radiation flux, wind speed, precipitation, and soil moisture were used to estimate actual ET. The regression model simulation results were validated with independent data retrieved using the combinatory method. The results suggested that significant correlations exist between actual ET and hydro-meteorological parameters in the surface layer of the Nagqu river basin, among which the most important factors are energy-related elements (net radiation flux and air temperature). The results also suggested that how ET is eventually affected by precipitation and two-layer wind speed difference depends on whether their positive or negative feedback processes have a more important role. The multivariate linear regression method provided reliable estimations of actual ET; thus, 6-parameter simplified schemes and 14-parameter regular schemes were established.

  13. Design sensitivity analysis using EAL. Part 1: Conventional design parameters

    NASA Technical Reports Server (NTRS)

    Dopker, B.; Choi, Kyung K.; Lee, J.

    1986-01-01

    A numerical implementation of design sensitivity analysis of builtup structures is presented, using the versatility and convenience of an existing finite element structural analysis code and its database management system. The finite element code used in the implemenatation presented is the Engineering Analysis Language (EAL), which is based on a hybrid method of analysis. It was shown that design sensitivity computations can be carried out using the database management system of EAL, without writing a separate program and a separate database. Conventional (sizing) design parameters such as cross-sectional area of beams or thickness of plates and plane elastic solid components are considered. Compliance, displacement, and stress functionals are considered as performance criteria. The method presented is being extended to implement shape design sensitivity analysis using a domain method and a design component method.

  14. Practicing universal design to actual hand tool design process.

    PubMed

    Lin, Kai-Chieh; Wu, Chih-Fu

    2015-09-01

    UD evaluation principles are difficult to implement in product design. This study proposes a methodology for implementing UD in the design process through user participation. The original UD principles and user experience are used to develop the evaluation items. Difference of product types was considered. Factor analysis and Quantification theory type I were used to eliminate considered inappropriate evaluation items and to examine the relationship between evaluation items and product design factors. Product design specifications were established for verification. The results showed that converting user evaluation into crucial design verification factors by the generalized evaluation scale based on product attributes as well as the design factors applications in product design can improve users' UD evaluation. The design process of this study is expected to contribute to user-centered UD application. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Estimating parameters with pre-specified accuracies in distributed parameter systems using optimal experiment design

    NASA Astrophysics Data System (ADS)

    Potters, M. G.; Bombois, X.; Mansoori, M.; Hof, Paul M. J. Van den

    2016-08-01

    Estimation of physical parameters in dynamical systems driven by linear partial differential equations is an important problem. In this paper, we introduce the least costly experiment design framework for these systems. It enables parameter estimation with an accuracy that is specified by the experimenter prior to the identification experiment, while at the same time minimising the cost of the experiment. We show how to adapt the classical framework for these systems and take into account scaling and stability issues. We also introduce a progressive subdivision algorithm that further generalises the experiment design framework in the sense that it returns the lowest cost by finding the optimal input signal, and optimal sensor and actuator locations. Our methodology is then applied to a relevant problem in heat transfer studies: estimation of conductivity and diffusivity parameters in front-face experiments. We find good correspondence between numerical and theoretical results.

  16. [Design of blood-pressure parameter auto-acquisition circuit].

    PubMed

    Chen, Y P; Zhang, D L; Bai, H W; Zhang, D A

    2000-02-01

    This paper presents the realization and design of a kind of blood-pressure parameter auto-acquisition circuit. The auto-acquisition of blood-pressure parameter controlled by 89C2051 single chip microcomputer is accomplished by collecting and processing the driving signal of LCD. The circuit that is successfully applied in the home unit of telemedicine system has the simple and reliable properties.

  17. Launch Vehicle Propulsion Parameter Design Multiple Selection Criteria

    NASA Technical Reports Server (NTRS)

    Shelton, Joey Dewayne

    2004-01-01

    The optimization tool described herein addresses and emphasizes the use of computer tools to model a system and focuses on a concept development approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system, but more particularly the development of the optimized system using new techniques. This methodology uses new and innovative tools to run Monte Carlo simulations, genetic algorithm solvers, and statistical models in order to optimize a design concept. The concept launch vehicle and propulsion system were modeled and optimized to determine the best design for weight and cost by varying design and technology parameters. Uncertainty levels were applied using Monte Carlo Simulations and the model output was compared to the National Aeronautics and Space Administration Space Shuttle Main Engine. Several key conclusions are summarized here for the model results. First, the Gross Liftoff Weight and Dry Weight were 67% higher for the design case for minimization of Design, Development, Test and Evaluation cost when compared to the weights determined by the minimization of Gross Liftoff Weight case. In turn, the Design, Development, Test and Evaluation cost was 53% higher for optimized Gross Liftoff Weight case when compared to the cost determined by case for minimization of Design, Development, Test and Evaluation cost. Therefore, a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Secondly, the tool outputs define the sensitivity of propulsion parameters, technology and cost factors and how these parameters differ when cost and weight are optimized separately. A key finding was that for a Space Shuttle Main Engine thrust level the oxidizer/fuel ratio of 6.6 resulted in the lowest Gross Liftoff Weight rather than at 5.2 for the maximum specific impulse, demonstrating the relationships between specific impulse, engine weight, tank volume and tank weight. Lastly, the optimum chamber pressure for

  18. Robust linear quadratic designs with respect to parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Douglas, Joel; Athans, Michael

    1992-01-01

    The authors derive a linear quadratic regulator (LQR) which is robust to parametric uncertainty by using the overbounding method of I. R. Petersen and C. V. Hollot (1986). The resulting controller is determined from the solution of a single modified Riccati equation. It is shown that, when applied to a structural system, the controller gains add robustness by minimizing the potential energy of uncertain stiffness elements, and minimizing the rate of dissipation of energy through uncertain damping elements. A worst-case disturbance in the direction of the uncertainty is also considered. It is proved that performance robustness has been increased with the robust LQR when compared to a mismatched LQR design where the controller is designed on the nominal system, but applied to the actual uncertain system.

  19. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  20. Aerodynamics as a subway design parameter

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1976-01-01

    A parametric sensitivity study has been performed on the system operational energy requirement in order to guide subway design strategy. Aerodynamics can play a dominant or trivial role, depending upon the system characteristics. Optimization of the aerodynamic parameters may not minimize the total operational energy. Isolation of the station box from the tunnel and reduction of the inertial power requirements pay the largest dividends in terms of the operational energy requirement.

  1. A design methodology for nonlinear systems containing parameter uncertainty: Application to nonlinear controller design

    NASA Technical Reports Server (NTRS)

    Young, G.

    1982-01-01

    A design methodology capable of dealing with nonlinear systems, such as a controlled ecological life support system (CELSS), containing parameter uncertainty is discussed. The methodology was applied to the design of discrete time nonlinear controllers. The nonlinear controllers can be used to control either linear or nonlinear systems. Several controller strategies are presented to illustrate the design procedure.

  2. The Self-Actualizing Case Method.

    ERIC Educational Resources Information Center

    Gunn, Bruce

    1980-01-01

    Presents a case procedure designed to assist trainees in perfecting their problem-solving skills. Elements of that procedure are the rationale behind this "self-actualizing" case method; the role that the instructor, case leaders, and participants play in its execution; and the closed-loop grading system used for peer evaluation. (CT)

  3. Experimental Design for Parameter Estimation of Gene Regulatory Networks

    PubMed Central

    Timmer, Jens

    2012-01-01

    Systems biology aims for building quantitative models to address unresolved issues in molecular biology. In order to describe the behavior of biological cells adequately, gene regulatory networks (GRNs) are intensively investigated. As the validity of models built for GRNs depends crucially on the kinetic rates, various methods have been developed to estimate these parameters from experimental data. For this purpose, it is favorable to choose the experimental conditions yielding maximal information. However, existing experimental design principles often rely on unfulfilled mathematical assumptions or become computationally demanding with growing model complexity. To solve this problem, we combined advanced methods for parameter and uncertainty estimation with experimental design considerations. As a showcase, we optimized three simulated GRNs in one of the challenges from the Dialogue for Reverse Engineering Assessment and Methods (DREAM). This article presents our approach, which was awarded the best performing procedure at the DREAM6 Estimation of Model Parameters challenge. For fast and reliable parameter estimation, local deterministic optimization of the likelihood was applied. We analyzed identifiability and precision of the estimates by calculating the profile likelihood. Furthermore, the profiles provided a way to uncover a selection of most informative experiments, from which the optimal one was chosen using additional criteria at every step of the design process. In conclusion, we provide a strategy for optimal experimental design and show its successful application on three highly nonlinear dynamic models. Although presented in the context of the GRNs to be inferred for the DREAM6 challenge, the approach is generic and applicable to most types of quantitative models in systems biology and other disciplines. PMID:22815723

  4. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  5. Fiber coupled diode laser beam parameter product calculation and rules for optimized design

    NASA Astrophysics Data System (ADS)

    Wang, Zuolan; Segref, Armin; Koenning, Tobias; Pandey, Rajiv

    2011-03-01

    The Beam Parameter Product (BPP) of a passive, lossless system is a constant and cannot be improved upon but the beams may be reshaped for enhanced coupling performance. The function of the optical designer of fiber coupled diode lasers is to preserve the brightness of the diode sources while maximizing the coupling efficiency. In coupling diode laser power into fiber output, the symmetrical geometry of the fiber core makes it highly desirable to have symmetrical BPPs at the fiber input surface, but this is not always practical. It is therefore desirable to be able to know the 'diagonal' (fiber) BPP, using the BPPs of the fast and slow axes, before detailed design and simulation processes. A commonly used expression for this purpose, i.e. the square root of the sum of the squares of the BPPs in the fast and slow axes, has been found to consistently under-predict the fiber BPP (i.e. better beam quality is predicted than is actually achievable in practice). In this paper, using a simplified model, we provide the proof of the proper calculation of the diagonal (i.e. the fiber) BPP using BPPs of the fast and slow axes as input. Using the same simplified model, we also offer the proof that the fiber BPP can be shown to have a minimum (optimal) value for given diode BPPs and this optimized condition can be obtained before any detailed design and simulation are carried out. Measured and simulated data confirms satisfactory correlation between the BPPs of the diode and the predicted fiber BPP.

  6. Multiobjective optimization in structural design with uncertain parameters and stochastic processes

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1984-01-01

    The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.

  7. Reliability of COPVs Accounting for Margin of Safety on Design Burst

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L.N.

    2012-01-01

    In this paper, the stress rupture reliability of Carbon/Epoxy Composite Overwrapped Pressure Vessels (COPVs) is examined utilizing the classic Phoenix model and accounting for the differences between the design and the actual burst pressure, and the liner contribution effects. Stress rupture life primarily depends upon the fiber stress ratio which is defined as the ratio of stress in fibers at the maximum expected operating pressure to actual delivered fiber strength. The actual delivered fiber strength is calculated using the actual burst pressures of vessels established through burst tests. However, during the design phase the actual burst pressure is generally not known and to estimate the reliability of the vessels calculations are usually performed based upon the design burst pressure only. Since the design burst is lower than the actual burst, this process yields a much higher value for the stress ratio and consequently a conservative estimate for the reliability. Other complications arise due to the fact that the actual burst pressure and the liner contributions have inherent variability and therefore must be treated as random variables in order to compute the stress rupture reliability. Furthermore, the model parameters, which have to be established based on stress rupture tests of subscale vessels or coupons, have significant variability as well due to limited available data and hence must be properly accounted for. In this work an assessment of reliability of COPVs including both parameter uncertainties and physical variability inherent in liner and overwrap material behavior is made and estimates are provided in terms of degree of uncertainty in the actual burst pressure and the liner load sharing.

  8. Aerodynamic optimization by simultaneously updating flow variables and design parameters with application to advanced propeller designs

    NASA Technical Reports Server (NTRS)

    Rizk, Magdi H.

    1988-01-01

    A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.

  9. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  10. Structural Design Parameters for Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon; Rogers, Richard; Baker, Eric

    2017-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A* 1.7), it is not as anisotropic as SiC, NiAl, or Cu. Thus the fracture toughness was similar on the 100, 110, and 111 planes, however, measurements associated with randomly oriented grinding cracks were 6 to 30 higher. Crack extension in ring loaded disks occurred on the 111 planes due to both the lower fracture energy and the higher stresses on stiff 111 planes. Germanium exhibits a Weibull scale effect, but does not exhibit significant slow crack growth in distilled water. (n 100), implying that design for quasi static loading can be performed with scaled strength statistics. Practical values for engineering design are a fracture toughness of 0.69 0.02 MPam (megapascals per square root meter) and a Weibull modulus of m 6 2. For well ground and reasonable handled coupons, average fracture strength should be greater than 40 megapascals. Aggregate, polycrystalline elastic constants are Epoly 131 gigapascals, vpoly 0.22.

  11. Longitudinal design considerations to optimize power to detect variances and covariances among rates of change: Simulation results based on actual longitudinal studies

    PubMed Central

    Rast, Philippe; Hofer, Scott M.

    2014-01-01

    We investigated the power to detect variances and covariances in rates of change in the context of existing longitudinal studies using linear bivariate growth curve models. Power was estimated by means of Monte Carlo simulations. Our findings show that typical longitudinal study designs have substantial power to detect both variances and covariances among rates of change in a variety of cognitive, physical functioning, and mental health outcomes. We performed simulations to investigate the interplay among number and spacing of occasions, total duration of the study, effect size, and error variance on power and required sample size. The relation between growth rate reliability (GRR) and effect size to the sample size required to detect power ≥ .80 was non-linear, with rapidly decreasing sample sizes needed as GRR increases. The results presented here stand in contrast to previous simulation results and recommendations (Hertzog, Lindenberger, Ghisletta, & von Oertzen, 2006; Hertzog, von Oertzen, Ghisletta, & Lindenberger, 2008; von Oertzen, Ghisletta, & Lindenberger, 2010), which are limited due to confounds between study length and number of waves, error variance with GCR, and parameter values which are largely out of bounds of actual study values. Power to detect change is generally low in the early phases (i.e. first years) of longitudinal studies but can substantially increase if the design is optimized. We recommend additional assessments, including embedded intensive measurement designs, to improve power in the early phases of long-term longitudinal studies. PMID:24219544

  12. Procedures for establishing geotechnical design parameters from two data sources.

    DOT National Transportation Integrated Search

    2013-07-01

    The Missouri Department of Transportation (MoDOT) recently adopted new provisions for geotechnical design that require that : the mean value and the coefficient of variation (COV) for the mean value of design parameters be established in order to : d...

  13. Robust parameter design for automatically controlled systems and nanostructure synthesis

    NASA Astrophysics Data System (ADS)

    Dasgupta, Tirthankar

    2007-12-01

    This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor

  14. Learning Effects in the Block Design Task: A Stimulus Parameter-Based Approach

    ERIC Educational Resources Information Center

    Miller, Joseph C.; Ruthig, Joelle C.; Bradley, April R.; Wise, Richard A.; Pedersen, Heather A.; Ellison, Jo M.

    2009-01-01

    Learning effects were assessed for the block design (BD) task, on the basis of variation in 2 stimulus parameters: perceptual cohesiveness (PC) and set size uncertainty (U). Thirty-one nonclinical undergraduate students (19 female) each completed 3 designs for each of 4 varied sets of the stimulus parameters (high-PC/high-U, high-PC/low-U,…

  15. Response to actual and simulated recordings of conventional takeoff and landing jet aircraft

    NASA Technical Reports Server (NTRS)

    Mabry, J. E.; Sullivan, B. M.

    1978-01-01

    Comparability between noise characteristics of synthesized recordings of aircraft in flight and actual recordings were investigated. Although the synthesized recordings were more smoothly time-varying than the actual recordings and the synthesizer could not produce a comb-filter effect that was present in the actual recordings, results supported the conclusion that annoyance response is comparable to the synthesized and actual recordings. A correction for duration markedly improved the validity of engineering calculation procedures designed to measure noise annoyance. Results led to the conclusion that the magnitude estimation psychophysical method was a highly reliable approach for evaluating engineering calculation procedures designed to measure noise annoyance. For repeated presentations of pairs of actual recordings, differences between judgment results for identical signals ranged from 0.0 to 0.5 db.

  16. Priority design parameters of industrialized optical fiber sensors in civil engineering

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-03-01

    Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.

  17. Photovoltaic performance models: an evaluation with actual field data

    NASA Astrophysics Data System (ADS)

    TamizhMani, Govindasamy; Ishioye, John-Paul; Voropayev, Arseniy; Kang, Yi

    2008-08-01

    Prediction of energy production is crucial to the design and installation of the building integrated photovoltaic systems. This prediction should be attainable based on the commonly available parameters such as system size, orientation and tilt angle. Several commercially available as well as free downloadable software tools exist to predict energy production. Six software models have been evaluated in this study and they are: PV Watts, PVsyst, MAUI, Clean Power Estimator, Solar Advisor Model (SAM) and RETScreen. This evaluation has been done by comparing the monthly, seasonaly and annually predicted data with the actual, field data obtained over a year period on a large number of residential PV systems ranging between 2 and 3 kWdc. All the systems are located in Arizona, within the Phoenix metropolitan area which lies at latitude 33° North, and longitude 112 West, and are all connected to the electrical grid.

  18. Design Parameters for Subwavelength Transparent Conductive Nanolattices

    DOE PAGES

    Diaz Leon, Juan J.; Feigenbaum, Eyal; Kobayashi, Nobuhiko P.; ...

    2017-09-29

    Recent advancements with the directed assembly of block copolymers have enabled the fabrication over cm 2 areas of highly ordered metal nanowire meshes, or nanolattices, which are of significant interest as transparent electrodes. Compared to randomly dispersed metal nanowire networks that have long been considered the most promising next-generation transparent electrode material, such ordered nanolattices represent a new design paradigm that is yet to be optimized. Here in this paper, through optical and electrical simulations, we explore the potential design parameters for such nanolattices as transparent conductive electrodes, elucidating relationships between the nanowire dimensions, defects, and the nanolattices’ conductivity andmore » transmissivity. We find that having an ordered nanowire network significantly decreases the length of nanowires required to attain both high transmissivity and high conductivity, and we quantify the network’s tolerance to defects in relation to other design constraints. Furthermore, we explore how both optical and electrical anisotropy can be introduced to such nanolattices, opening an even broader materials design space and possible set of applications.« less

  19. Design Parameters for Subwavelength Transparent Conductive Nanolattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz Leon, Juan J.; Feigenbaum, Eyal; Kobayashi, Nobuhiko P.

    Recent advancements with the directed assembly of block copolymers have enabled the fabrication over cm 2 areas of highly ordered metal nanowire meshes, or nanolattices, which are of significant interest as transparent electrodes. Compared to randomly dispersed metal nanowire networks that have long been considered the most promising next-generation transparent electrode material, such ordered nanolattices represent a new design paradigm that is yet to be optimized. Here in this paper, through optical and electrical simulations, we explore the potential design parameters for such nanolattices as transparent conductive electrodes, elucidating relationships between the nanowire dimensions, defects, and the nanolattices’ conductivity andmore » transmissivity. We find that having an ordered nanowire network significantly decreases the length of nanowires required to attain both high transmissivity and high conductivity, and we quantify the network’s tolerance to defects in relation to other design constraints. Furthermore, we explore how both optical and electrical anisotropy can be introduced to such nanolattices, opening an even broader materials design space and possible set of applications.« less

  20. Innovation Analysis Approach to Design Parameters of High Speed Train Carriage and Their Intrinsic Complexity Relationships

    NASA Astrophysics Data System (ADS)

    Xiao, Shou-Ne; Wang, Ming-Meng; Hu, Guang-Zhong; Yang, Guang-Wu

    2017-09-01

    In view of the problem that it's difficult to accurately grasp the influence range and transmission path of the vehicle top design requirements on the underlying design parameters. Applying directed-weighted complex network to product parameter model is an important method that can clarify the relationships between product parameters and establish the top-down design of a product. The relationships of the product parameters of each node are calculated via a simple path searching algorithm, and the main design parameters are extracted by analysis and comparison. A uniform definition of the index formula for out-in degree can be provided based on the analysis of out-in-degree width and depth and control strength of train carriage body parameters. Vehicle gauge, axle load, crosswind and other parameters with higher values of the out-degree index are the most important boundary conditions; the most considerable performance indices are the parameters that have higher values of the out-in-degree index including torsional stiffness, maximum testing speed, service life of the vehicle, and so on; the main design parameters contain train carriage body weight, train weight per extended metre, train height and other parameters with higher values of the in-degree index. The network not only provides theoretical guidance for exploring the relationship of design parameters, but also further enriches the application of forward design method to high-speed trains.

  1. Computerized design of speech prostheses.

    PubMed

    Leonard, R J

    1991-08-01

    The use of computerized techniques to assist in the design of palatal and/or glossal prostheses is described. Patients with oropharyngeal resection and associated speech impairment are candidates for such prostheses. Procedures discussed allow for the design of some features of the prosthesis, such as shape, location, and tests of its effect on certain speech parameters, prior to actual fabrication. Advantages and current limitations of the techniques are also discussed.

  2. Test verification and design of the bicycle frame parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Xiang, Zhongxia; Luo, Huan; Tian, Guan

    2015-07-01

    Research on design of bicycles is concentrated on mechanism and auto appearance design, however few on matches between the bike and the rider. Since unreasonable human-bike relationship leads to both riders' worn-out joints and muscle injuries, the design of bicycles should focus on the matching. In order to find the best position of human-bike system, simulation experiments on riding comfort under different riding postures are done with the lifemode software employed to facilitate the cycling process as well as to obtain the best position and the size function of it. With BP neural network and GA, analyzing simulation data, conducting regression analysis of parameters on different heights and bike frames, the equation of best position of human-bike system is gained at last. In addition, after selecting testers, customized bikes based on testers' height dimensions are produced according to the size function. By analyzing and comparing the experimental data that are collected from testers when riding common bicycles and customized bicycles, it is concluded that customized bicycles are four times even six times as comfortable as common ones. The equation of best position of human-bike system is applied to improve bikes' function, and the new direction on future design of bicycle frame parameters is presented.

  3. How Many Parameters Actually Affect the Mobility of Conjugated Polymers?

    NASA Astrophysics Data System (ADS)

    Fornari, Rocco P.; Blom, Paul W. M.; Troisi, Alessandro

    2017-02-01

    We describe charge transport along a polymer chain with a generic theoretical model depending in principle on tens of parameters, reflecting the chemistry of the material. The charge carrier states are obtained from a model Hamiltonian that incorporates different types of disorder and electronic structure (e.g., the difference between homo- and copolymer). The hopping rate between these states is described with a general rate expression, which contains the rates most used in the literature as special cases. We demonstrate that the steady state charge mobility in the limit of low charge density and low field ultimately depends on only two parameters: an effective structural disorder and an effective electron-phonon coupling, weighted by the size of the monomer. The results support the experimental observation [N. I. Craciun, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett. 100, 056601 (2008), 10.1103/PhysRevLett.100.056601] that the mobility in a broad range of (polymeric) semiconductors follows a universal behavior, insensitive to the chemical detail.

  4. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  5. Development of a parameter optimization technique for the design of automatic control systems

    NASA Technical Reports Server (NTRS)

    Whitaker, P. H.

    1977-01-01

    Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.

  6. Design Parameters Affecting the Accuracy of Isothermal Thermocouples

    DTIC Science & Technology

    1975-01-02

    Design Parameters Lead Wire Length intekference Accuracy Askew Installation Tungsten / Rhenium Wire Diameter Trajectory Insulation Thickness Heatshield...Summary ................. 73 A-3 Thermodynamic Properties of Tungsten / Rhenium Therm ocouples ............................ 75 A-4 Thermodynamic Properties...were tungsten / rhenium , chromel/alumel, and iron/constbntan, which covered the 0 to 5000, 0 to 2200, and 0 to I-00°F temperatut- ranges, resoectively. in

  7. [Research and Design of a System for Detecting Automated External Defbrillator Performance Parameters].

    PubMed

    Wang, Kewu; Xiao, Shengxiang; Jiang, Lina; Hu, Jingkai

    2017-09-30

    In order to regularly detect the performance parameters of automated external defibrillator (AED), to make sure it is safe before using the instrument, research and design of a system for detecting automated external defibrillator performance parameters. According to the research of the characteristics of its performance parameters, combing the STM32's stability and high speed with PWM modulation control, the system produces a variety of ECG normal and abnormal signals through the digital sampling methods. Completed the design of the hardware and software, formed a prototype. This system can accurate detect automated external defibrillator discharge energy, synchronous defibrillation time, charging time and other key performance parameters.

  8. Benchmarking image fusion system design parameters

    NASA Astrophysics Data System (ADS)

    Howell, Christopher L.

    2013-06-01

    A clear and absolute method for discriminating between image fusion algorithm performances is presented. This method can effectively be used to assist in the design and modeling of image fusion systems. Specifically, it is postulated that quantifying human task performance using image fusion should be benchmarked to whether the fusion algorithm, at a minimum, retained the performance benefit achievable by each independent spectral band being fused. The established benchmark would then clearly represent the threshold that a fusion system should surpass to be considered beneficial to a particular task. A genetic algorithm is employed to characterize the fused system parameters using a Matlab® implementation of NVThermIP as the objective function. By setting the problem up as a mixed-integer constraint optimization problem, one can effectively look backwards through the image acquisition process: optimizing fused system parameters by minimizing the difference between modeled task difficulty measure and the benchmark task difficulty measure. The results of an identification perception experiment are presented, where human observers were asked to identify a standard set of military targets, and used to demonstrate the effectiveness of the benchmarking process.

  9. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  10. A Modified Rodrigues Parameter-based Nonlinear Observer Design for Spacecraft Gyroscope Parameters Estimation

    NASA Astrophysics Data System (ADS)

    Yong, Kilyuk; Jo, Sujang; Bang, Hyochoong

    This paper presents a modified Rodrigues parameter (MRP)-based nonlinear observer design to estimate bias, scale factor and misalignment of gyroscope measurements. A Lyapunov stability analysis is carried out for the nonlinear observer. Simulation is performed and results are presented illustrating the performance of the proposed nonlinear observer under the condition of persistent excitation maneuver. In addition, a comparison between the nonlinear observer and alignment Kalman filter (AKF) is made to highlight favorable features of the nonlinear observer.

  11. Monte Carlo Solution to Find Input Parameters in Systems Design Problems

    NASA Astrophysics Data System (ADS)

    Arsham, Hossein

    2013-06-01

    Most engineering system designs, such as product, process, and service design, involve a framework for arriving at a target value for a set of experiments. This paper considers a stochastic approximation algorithm for estimating the controllable input parameter within a desired accuracy, given a target value for the performance function. Two different problems, what-if and goal-seeking problems, are explained and defined in an auxiliary simulation model, which represents a local response surface model in terms of a polynomial. A method of constructing this polynomial by a single run simulation is explained. An algorithm is given to select the design parameter for the local response surface model. Finally, the mean time to failure (MTTF) of a reliability subsystem is computed and compared with its known analytical MTTF value for validation purposes.

  12. Design parameters of a miniaturized piezoelectric underwater acoustic transmitter.

    PubMed

    Li, Huidong; Deng, Zhiqun Daniel; Yuan, Yong; Carlson, Thomas J

    2012-01-01

    PZT ceramics have been widely used in underwater acoustic transducers. However, literature available discussing the design parameters of a miniaturized PZT-based low-duty-cycle transmitter is very limited. This paper discusses some of the design parameters--the backing material, driving voltage, PZT material type, power consumption and the transducer length of a miniaturized acoustic fish tag using a PZT tube. Four different types of PZT were evaluated with respect to the source level, energy consumption and bandwidth of the transducer. The effect of the tube length on the source level is discussed. The results demonstrate that ultralow-density closed-cell foam is the best backing material for the PZT tube. The Navy Type VI PZTs provide the best source level with relatively low energy consumption and that a low transducer capacitance is preferred for high efficiency. A 35% reduction in the transducer length results in 2 dB decrease in source level.

  13. LRFD software for design and actual ultimate capacity of confined rectangular columns.

    DOT National Transportation Integrated Search

    2013-04-01

    The analysis of concrete columns using unconfined concrete models is a well established practice. On the : other hand, prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear : analysis. Modern codes and...

  14. Construction and Validation of a Scale to Measure Maslow's Concept of Self-Actualization

    ERIC Educational Resources Information Center

    Jones, Kenneth Melvin; Randolph, Daniel Lee

    1978-01-01

    Designed to measure self-actualization as defined by Abraham Maslow, the Jones Self Actualizing Scale, as assessed in this study, possesses content validity, reliability, and a number of other positive characteristics. (JC)

  15. Design of Life Extending Controls Using Nonlinear Parameter Optimization

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.

  16. Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Le; Chen, Xi; Zhang, Ming; Dai, Hong-Yi

    2017-11-01

    In this paper we design the following two-step scheme to estimate the model parameter ω 0 of the quantum system: first we utilize the Fisher information with respect to an intermediate variable v=\\cos ({ω }0t) to determine an optimal initial state and to seek optimal parameters of the POVM measurement operators; second we explore how to estimate ω 0 from v by choosing t when a priori information knowledge of ω 0 is available. Our optimal initial state can achieve the maximum quantum Fisher information. The formulation of the optimal time t is obtained and the complete algorithm for parameter estimation is presented. We further explore how the lower bound of the estimation deviation depends on the a priori information of the model. Supported by the National Natural Science Foundation of China under Grant Nos. 61273202, 61673389, and 61134008

  17. Optimum Design of Forging Process Parameters and Preform Shape under Uncertainties

    NASA Astrophysics Data System (ADS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2004-06-01

    Forging is a highly complex non-linear process that is vulnerable to various uncertainties, such as variations in billet geometry, die temperature, material properties, workpiece and forging equipment positional errors and process parameters. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion and production risk. Identifying the sources of uncertainties, quantifying and controlling them will reduce risk in the manufacturing environment, which will minimize the overall cost of production. In this paper, various uncertainties that affect forging tool life and preform design are identified, and their cumulative effect on the forging process is evaluated. Since the forging process simulation is computationally intensive, the response surface approach is used to reduce time by establishing a relationship between the system performance and the critical process design parameters. Variability in system performance due to randomness in the parameters is computed by applying Monte Carlo Simulations (MCS) on generated Response Surface Models (RSM). Finally, a Robust Methodology is developed to optimize forging process parameters and preform shape. The developed method is demonstrated by applying it to an axisymmetric H-cross section disk forging to improve the product quality and robustness.

  18. Numerical investigation of design and operational parameters on CHI spheromak performance

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamas, C. A.; Woodruff, S.

    2016-10-01

    Nonlinear, extended-MHD computation with the NIMROD code is used to explore magnetic self-organization and performance with respect to externally controllable parameters in spheromaks formed with coaxial helicity injection. The goal of this study is to inform the design and operational parameters of proposed proof-of-principle spheromak experiment. The calculations explore multiple distinct phases of evolution (including adiabatic magnetic compression), which must be explored and optimized separately. Results indicate that modest changes to the design and operation of past experiments, e.g. SSPX [E.B. Hooper et al. PPCF 2012], could have significantly improved the plasma-current injector coupling efficiency and performance, particularly with respect to peak temperature and lifetime. Though we frequently characterize performance relative to SSPX, we are also exploring fundamentally different designs and modes of operation, e.g. flux compression. This work is supported by DAPRA under Grant No. N66001-14-1-4044.

  19. Design parameters for toroidal and bobbin magnetics. [conversion from English to metric units

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1974-01-01

    The adoption by NASA of the metric system for dimensioning to replace long-used English units imposes a requirement on the U.S. transformer designer to convert from the familiar units to the less familiar metric equivalents. Material is presented to assist in that transition in the field of transformer design and fabrication. The conversion data makes it possible for the designer to obtain a fast and close approximation of significant parameters such as size, weight, and temperature rise. Nomographs are included to provide a close approximation for breadboarding purposes. For greater convenience, derivations of some of the parameters are also presented.

  20. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    NASA Astrophysics Data System (ADS)

    Belwanshi, Vinod; Topkar, Anita

    2016-05-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  1. Assessment of the actual light dose in photodynamic therapy.

    PubMed

    Schaberle, Fabio A

    2018-06-09

    Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.

  2. Efficient Parameter Searches for Colloidal Materials Design with Digital Alchemy

    NASA Astrophysics Data System (ADS)

    Dodd, Paul, M.; Geng, Yina; van Anders, Greg; Glotzer, Sharon C.

    Optimal colloidal materials design is challenging, even for high-throughput or genomic approaches, because the design space provided by modern colloid synthesis techniques can easily have dozens of dimensions. In this talk we present the methodology of an inverse approach we term ''digital alchemy'' to perform rapid searches of design-paramenter spaces with up to 188 dimensions that yield thermodynamically optimal colloid parameters for target crystal structures with up to 20 particles in a unit cell. The method relies only on fundamental principles of statistical mechanics and Metropolis Monte Carlo techniques, and yields particle attribute tolerances via analogues of familiar stress-strain relationships.

  3. Definitive screening design enables optimization of LC-ESI-MS/MS parameters in proteomics.

    PubMed

    Aburaya, Shunsuke; Aoki, Wataru; Minakuchi, Hiroyoshi; Ueda, Mitsuyoshi

    2017-12-01

    In proteomics, more than 100,000 peptides are generated from the digestion of human cell lysates. Proteome samples have a broad dynamic range in protein abundance; therefore, it is critical to optimize various parameters of LC-ESI-MS/MS to comprehensively identify these peptides. However, there are many parameters for LC-ESI-MS/MS analysis. In this study, we applied definitive screening design to simultaneously optimize 14 parameters in the operation of monolithic capillary LC-ESI-MS/MS to increase the number of identified proteins and/or the average peak area of MS1. The simultaneous optimization enabled the determination of two-factor interactions between LC and MS. Finally, we found two parameter sets of monolithic capillary LC-ESI-MS/MS that increased the number of identified proteins by 8.1% or the average peak area of MS1 by 67%. The definitive screening design would be highly useful for high-throughput analysis of the best parameter set in LC-ESI-MS/MS systems.

  4. Numerical investigation of design and operation parameters on CHI spheromak performance

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamás, C. R.; Woodruff, S.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization in spheromaks formed with coaxial helicity injection, particularly with regard to how externally controllable parameters affect the resulting spheromak performance. The overall goal of our study is to inform the design and operational parameters of a future proof-of-principle spheromak experiment. Our calculations start from vacuum magnetic fields and model multiple distinct phases of evolution. Results indicate that modest changes to the design and operation of past experiments, e.g. SSPX [E.B. Hooper et al. PPCF 2012], could have significantly improved the plasma-current injector coupling efficiency and performance, particularly with respect to peak temperature and lifetime. While we frequently characterize performance relative to SSPX, our conclusions extrapolate to fundamentally different experimental designs. We also explore adiabatic magnetic compression of spheromaks, which may allow for a small-scale, high-performance and high-yield pulsed neutron source. This work is supported by DAPRA under Grant No. N66001-14-1-4044.

  5. Sherborne Missile Fire Frequency with Unconstraint Parameters

    NASA Astrophysics Data System (ADS)

    Dong, Shaquan

    2018-01-01

    For the modeling problem of shipborne missile fire frequency, the fire frequency models with unconstant parameters were proposed, including maximum fire frequency models with unconstant parameters, and actual fire frequency models with unconstant parameters, which can be used to calculate the missile fire frequency with unconstant parameters.

  6. The optimization of design parameters for surge relief valve for pipeline systems

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjun; Hur, Jisung; Kim, Sanghyun

    2017-06-01

    Surge is an abnormal pressure which induced by rapid changes of flow rate in pipeline systems. In order to protect pipeline system from the surge pressure, various hydraulic devices have been developed. Surge-relief valve(SRV) is one of the widely applied devices to control surge due to its feasibility in application, efficiency and cost-effectiveness. SRV is designed to automatically open under abnormal pressure and discharge the flow and makes pressure of the system drop to the allowable level. The performance of the SRV is influenced by hydraulics. According to previous studies, there are several affecting factors which determine performance of the PRV such as design parameters (e.g. size of the valve), system parameters (e.g. number of the valves and location of the valve), and operation parameters (e.g. set point and operation time). Therefore, the systematic consideration for factors affecting performance of SRV is required for the proper installation of SRV in the system. In this study, methodology for finding optimum parameters of the SRV is explored through the integration of Genetic Algorithm(GA) into surge analysis.

  7. Who is Self-Actualized?

    ERIC Educational Resources Information Center

    Roweton, William E.

    1981-01-01

    In an attempt to clarify Maslow's concept of self-actualization as it relates to human motivation, a class of educational psychology students wrote essays describing a self-actualized person and then attempted to decide whether public schools contribute to the production of self-actualized persons. Two-thirds of the students decided that schools…

  8. Student Exposure to Actual Patients in the Classroom.

    ERIC Educational Resources Information Center

    Chisholm, Marie A.; McCall, Charles Y.; Francisco, George E., Jr.; Poirier, Sylvie

    1997-01-01

    Two clinical courses for first-year dental students were designed to develop students' interaction skills through actual patient case presentations and discussions and an interdisciplinary teaching approach. Results indicate students preferred the case presentations, with or without lecture, to the lecture-only approach and felt they learned more…

  9. Electron work function-a promising guiding parameter for material design.

    PubMed

    Lu, Hao; Liu, Ziran; Yan, Xianguo; Li, Dongyang; Parent, Leo; Tian, Harry

    2016-04-14

    Using nickel added X70 steel as a sample material, we demonstrate that electron work function (EWF), which largely reflects the electron behavior of materials, could be used as a guide parameter for material modification or design. Adding Ni having a higher electron work function to X70 steel brings more "free" electrons to the steel, leading to increased overall work function, accompanied with enhanced e(-)-nuclei interactions or higher atomic bond strength. Young's modulus and hardness increase correspondingly. However, the free electron density and work function decrease as the Ni content is continuously increased, accompanied with the formation of a second phase, FeNi3, which is softer with a lower work function. The decrease in the overall work function corresponds to deterioration of the mechanical strength of the steel. It is expected that EWF, a simple but fundamental parameter, may lead to new methodologies or supplementary approaches for metallic materials design or tailoring on a feasible electronic base.

  10. Electron work function–a promising guiding parameter for material design

    PubMed Central

    Lu, Hao; Liu, Ziran; Yan, Xianguo; Li, Dongyang; Parent, Leo; Tian, Harry

    2016-01-01

    Using nickel added X70 steel as a sample material, we demonstrate that electron work function (EWF), which largely reflects the electron behavior of materials, could be used as a guide parameter for material modification or design. Adding Ni having a higher electron work function to X70 steel brings more “free” electrons to the steel, leading to increased overall work function, accompanied with enhanced e−–nuclei interactions or higher atomic bond strength. Young’s modulus and hardness increase correspondingly. However, the free electron density and work function decrease as the Ni content is continuously increased, accompanied with the formation of a second phase, FeNi3, which is softer with a lower work function. The decrease in the overall work function corresponds to deterioration of the mechanical strength of the steel. It is expected that EWF, a simple but fundamental parameter, may lead to new methodologies or supplementary approaches for metallic materials design or tailoring on a feasible electronic base. PMID:27074974

  11. Teaching-learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters

    NASA Astrophysics Data System (ADS)

    Singh, R.; Verma, H. K.

    2013-12-01

    This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.

  12. A two-parameter design storm for Mediterranean convective rainfall

    NASA Astrophysics Data System (ADS)

    García-Bartual, Rafael; Andrés-Doménech, Ignacio

    2017-05-01

    The following research explores the feasibility of building effective design storms for extreme hydrological regimes, such as the one which characterizes the rainfall regime of the east and south-east of the Iberian Peninsula, without employing intensity-duration-frequency (IDF) curves as a starting point. Nowadays, after decades of functioning hydrological automatic networks, there is an abundance of high-resolution rainfall data with a reasonable statistic representation, which enable the direct research of temporal patterns and inner structures of rainfall events at a given geographic location, with the aim of establishing a statistical synthesis directly based on those observed patterns. The authors propose a temporal design storm defined in analytical terms, through a two-parameter gamma-type function. The two parameters are directly estimated from 73 independent storms identified from rainfall records of high temporal resolution in Valencia (Spain). All the relevant analytical properties derived from that function are developed in order to use this storm in real applications. In particular, in order to assign a probability to the design storm (return period), an auxiliary variable combining maximum intensity and total cumulated rainfall is introduced. As a result, for a given return period, a set of three storms with different duration, depth and peak intensity are defined. The consistency of the results is verified by means of comparison with the classic method of alternating blocks based on an IDF curve, for the above mentioned study case.

  13. Probabilistic seismic hazard characterization and design parameters for the Pantex Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernreuter, D. L.; Foxall, W.; Savy, J. B.

    1998-10-19

    The Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) updated the seismic hazard and design parameters at the Pantex Plant. The probabilistic seismic hazard (PSH) estimates were first updated using the latest available data and knowledge from LLNL (1993, 1998), Frankel et al. (1996), and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity and for the system of potentially active faults associated with the Amarillo-Wichita uplift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was taken from results of similar studies. Special attentionmore » was given to soil amplification factors for the site. Horizontal Peak Ground Acceleration (PGA) and 5% damped uniform hazard spectra were calculated for six return periods (100 yr., 500 yr., 1000 yr., 2000 yr., 10,000 yr., and 100,000 yr.). The design parameters were calculated following DOE standards (DOE-STD-1022 to 1024). Response spectra for design or evaluation of Performance Category 1 through 4 structures, systems, and components are presented.« less

  14. ECCM Scheme against Interrupted Sampling Repeater Jammer Based on Parameter-Adjusted Waveform Design

    PubMed Central

    Wei, Zhenhua; Peng, Bo; Shen, Rui

    2018-01-01

    Interrupted sampling repeater jamming (ISRJ) is an effective way of deceiving coherent radar sensors, especially for linear frequency modulated (LFM) radar. In this paper, for a simplified scenario with a single jammer, we propose a dynamic electronic counter-counter measure (ECCM) scheme based on jammer parameter estimation and transmitted signal design. Firstly, the LFM waveform is transmitted to estimate the main jamming parameters by investigating the discontinuousness of the ISRJ’s time-frequency (TF) characteristics. Then, a parameter-adjusted intra-pulse frequency coded signal, whose ISRJ signal after matched filtering only forms a single false target, is designed adaptively according to the estimated parameters, i.e., sampling interval, sampling duration and repeater times. Ultimately, for typical jamming scenes with different jamming signal ratio (JSR) and duty cycle, we propose two particular ISRJ suppression approaches. Simulation results validate the effective performance of the proposed scheme for countering the ISRJ, and the trade-off relationship between the two approaches is demonstrated. PMID:29642508

  15. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.

    PubMed

    White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K

    2016-12-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.

  16. Sensitivity Analysis of Genetic Algorithm Parameters for Optimal Groundwater Monitoring Network Design

    NASA Astrophysics Data System (ADS)

    Abdeh-Kolahchi, A.; Satish, M.; Datta, B.

    2004-05-01

    A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of

  17. Photoacoustic design parameter optimization for deep tissue imaging by numerical simulation

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Ha, Seunghan; Kim, Kang

    2012-02-01

    A new design of light illumination scheme for deep tissue photoacoustic (PA) imaging, a light catcher, is proposed and evaluated by in silico simulation. Finite element (FE)-based numerical simulation model was developed for photoacoustic (PA) imaging in soft tissues. In this in silico simulation using a commercially available FE simulation package (COMSOL MultiphysicsTM, COMSOL Inc., USA), a short-pulsed laser point source (pulse length of 5 ns) was placed in water on the tissue surface. Overall, four sets of simulation models were integrated together to describe the physical principles of PA imaging. Light energy transmission through background tissues from the laser source to the target tissue or contrast agent was described by diffusion equation. The absorption of light energy and its conversion to heat by target tissue or contrast agent was modeled using bio-heat equation. The heat then causes the stress and strain change, and the resulting displacement of the target surface produces acoustic pressure. The created wide-band acoustic pressure will propagate through background tissues to the ultrasound detector, which is governed by acoustic wave equation. Both optical and acoustical parameters in soft tissues such as scattering, absorption, and attenuation are incorporated in tissue models. PA imaging performance with different design parameters of the laser source and energy delivery scheme was investigated. The laser light illumination into the deep tissues can be significantly improved by up to 134.8% increase of fluence rate by introducing a designed compact light catcher with highly reflecting inner surface surrounding the light source. The optimized parameters through this simulation will guide the design of PA system for deep tissue imaging, and help to form the base protocols of experimental evaluations in vitro and in vivo.

  18. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems

    PubMed Central

    Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.

    2016-01-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060

  19. Parameter-based estimation of CT dose index and image quality using an in-house android™-based software

    NASA Astrophysics Data System (ADS)

    Mubarok, S.; Lubis, L. E.; Pawiro, S. A.

    2016-03-01

    Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.

  20. On the effect of response transformations in sequential parameter optimization.

    PubMed

    Wagner, Tobias; Wessing, Simon

    2012-01-01

    Parameter tuning of evolutionary algorithms (EAs) is attracting more and more interest. In particular, the sequential parameter optimization (SPO) framework for the model-assisted tuning of stochastic optimizers has resulted in established parameter tuning algorithms. In this paper, we enhance the SPO framework by introducing transformation steps before the response aggregation and before the actual modeling. Based on design-of-experiments techniques, we empirically analyze the effect of integrating different transformations. We show that in particular, a rank transformation of the responses provides significant improvements. A deeper analysis of the resulting models and additional experiments with adaptive procedures indicates that the rank and the Box-Cox transformation are able to improve the properties of the resultant distributions with respect to symmetry and normality of the residuals. Moreover, model-based effect plots document a higher discriminatory power obtained by the rank transformation.

  1. Controller design for wind turbine load reduction via multiobjective parameter synthesis

    NASA Astrophysics Data System (ADS)

    Hoffmann, A. F.; Weiβ, F. A.

    2016-09-01

    During the design process for a wind turbine load reduction controller many different, sometimes conflicting requirements must be fulfilled simultaneously. If the requirements can be expressed as mathematical criteria, such a design problem can be solved by a criterion-vector and multi-objective design optimization. The software environment MOPS (Multi-Objective Parameter Synthesis) supports the engineer for such a design optimization. In this paper MOPS is applied to design a multi-objective load reduction controller for the well-known DTU 10 MW reference wind turbine. A significant reduction in the fatigue criteria especially the blade damage can be reached by the use of an additional Individual Pitch Controller (IPC) and an additional tower damper. This reduction is reached as a trade-off with an increase of actuator load.

  2. Spillover effects in epidemiology: parameters, study designs and methodological considerations

    PubMed Central

    Benjamin-Chung, Jade; Arnold, Benjamin F; Berger, David; Luby, Stephen P; Miguel, Edward; Colford Jr, John M; Hubbard, Alan E

    2018-01-01

    Abstract Many public health interventions provide benefits that extend beyond their direct recipients and impact people in close physical or social proximity who did not directly receive the intervention themselves. A classic example of this phenomenon is the herd protection provided by many vaccines. If these ‘spillover effects’ (i.e. ‘herd effects’) are present in the same direction as the effects on the intended recipients, studies that only estimate direct effects on recipients will likely underestimate the full public health benefits of the intervention. Causal inference assumptions for spillover parameters have been articulated in the vaccine literature, but many studies measuring spillovers of other types of public health interventions have not drawn upon that literature. In conjunction with a systematic review we conducted of spillovers of public health interventions delivered in low- and middle-income countries, we classified the most widely used spillover parameters reported in the empirical literature into a standard notation. General classes of spillover parameters include: cluster-level spillovers; spillovers conditional on treatment or outcome density, distance or the number of treated social network links; and vaccine efficacy parameters related to spillovers. We draw on high quality empirical examples to illustrate each of these parameters. We describe study designs to estimate spillovers and assumptions required to make causal inferences about spillovers. We aim to advance and encourage methods for spillover estimation and reporting by standardizing spillover parameter nomenclature and articulating the causal inference assumptions required to estimate spillovers. PMID:29106568

  3. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    PubMed

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  4. An approach to design controllers for MIMO fractional-order plants based on parameter optimization algorithm.

    PubMed

    Xue, Dingyü; Li, Tingxue

    2017-04-27

    The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. New evaluation parameter for wearable thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Wijethunge, Dimuthu; Kim, Woochul

    2018-04-01

    Wearable devices constitute a key application area for thermoelectric devices. However, owing to new constraints in wearable applications, a few conventional device optimization techniques are not appropriate and material evaluation parameters, such as figure of merit (zT) and power factor (PF), tend to be inadequate. We illustrated the incompleteness of zT and PF by performing simulations and considering different thermoelectric materials. The results indicate a weak correlation between device performance and zT and PF. In this study, we propose a new evaluation parameter, zTwearable, which is better suited for wearable applications compared to conventional zT. Owing to size restrictions, gap filler based device optimization is extremely critical in wearable devices. With respect to the occasions in which gap fillers are used, expressions for power, effective thermal conductivity (keff), and optimum load electrical ratio (mopt) are derived. According to the new parameters, the thermal conductivity of the material has become much more critical now. The proposed new evaluation parameter, namely, zTwearable, is extremely useful in the selection of an appropriate thermoelectric material among various candidates prior to the commencement of the actual design process.

  6. Analog design optimization methodology for ultralow-power circuits using intuitive inversion-level and saturation-level parameters

    NASA Astrophysics Data System (ADS)

    Eimori, Takahisa; Anami, Kenji; Yoshimatsu, Norifumi; Hasebe, Tetsuya; Murakami, Kazuaki

    2014-01-01

    A comprehensive design optimization methodology using intuitive nondimensional parameters of inversion-level and saturation-level is proposed, especially for ultralow-power, low-voltage, and high-performance analog circuits with mixed strong, moderate, and weak inversion metal-oxide-semiconductor transistor (MOST) operations. This methodology is based on the synthesized charge-based MOST model composed of Enz-Krummenacher-Vittoz (EKV) basic concepts and advanced-compact-model (ACM) physics-based equations. The key concept of this methodology is that all circuit and system characteristics are described as some multivariate functions of inversion-level parameters, where the inversion level is used as an independent variable representative of each MOST. The analog circuit design starts from the first step of inversion-level design using universal characteristics expressed by circuit currents and inversion-level parameters without process-dependent parameters, followed by the second step of foundry-process-dependent design and the last step of verification using saturation-level criteria. This methodology also paves the way to an intuitive and comprehensive design approach for many kinds of analog circuit specifications by optimization using inversion-level log-scale diagrams and saturation-level criteria. In this paper, we introduce an example of our design methodology for a two-stage Miller amplifier.

  7. Determination of representative dimension parameter values of Korean knee joints for knee joint implant design.

    PubMed

    Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu

    2012-05-01

    Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.

  8. Supporting Scientific Modeling Practices in Atmospheric Sciences: Intended and Actual Affordances of a Computer-Based Modeling Tool

    ERIC Educational Resources Information Center

    Wu, Pai-Hsing; Wu, Hsin-Kai; Kuo, Che-Yu; Hsu, Ying-Shao

    2015-01-01

    Computer-based learning tools include design features to enhance learning but learners may not always perceive the existence of these features and use them in desirable ways. There might be a gap between what the tool features are designed to offer (intended affordance) and what they are actually used (actual affordance). This study thus aims at…

  9. Northrop Triga facility decommissioning plan versus actual results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, F.W.

    1986-01-01

    This paper compares the Triga facility decontamination and decommissioning plan to the actual results and discusses key areas where operational activities were impacted upon by the final US Nuclear Regulatory Commission (NRC)-approved decontamination and decommissioning plan. Total exposures for fuel transfer were a factor of 4 less than planned. The design of the Triga reactor components allowed the majority of the components to be unconditionally released.

  10. Estimating Cosmic-Ray Spectral Parameters from Simulated Detector Responses with Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    2001-01-01

    A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  11. Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    PubMed

    Govoni, Leonardo; Dellaca', Raffaele L; Peñuelas, Oscar; Bellani, Giacomo; Artigas, Antonio; Ferrer, Miquel; Navajas, Daniel; Pedotti, Antonio; Farré, Ramon

    2012-01-01

    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines.

  12. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    USGS Publications Warehouse

    Wagner, Brian J.; Harvey, Judson W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute

  13. Optimal Design of Material and Process Parameters in Powder Injection Molding

    NASA Astrophysics Data System (ADS)

    Ayad, G.; Barriere, T.; Gelin, J. C.; Song, J.; Liu, B.

    2007-04-01

    The paper is concerned with optimization and parametric identification for the different stages in Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders part by solid state diffusion. In the first part, one describes an original methodology to optimize the process and geometry parameters in injection stage based on the combination of design of experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometeric curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization of material and process parameters for manufacturing a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  14. Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.

  15. Fluid manifold design for a solar energy storage tank

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.

    1975-01-01

    A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.

  16. Quantitative Estimation of Land Surface Characteristic Parameters and Actual Evapotranspiration in the Nagqu River Basin over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Ma, Y.; Ma, W.; Zou, M.; Hu, Y.

    2016-12-01

    Actual evapotranspiration (ETa) is an important component of the water cycle in the Tibetan Plateau. It is controlled by many hydrological and meteorological factors. Therefore, it is of great significance to estimate ETa accurately and continuously. It is also drawing much attention of scientific community to understand land surface parameters and land-atmosphere water exchange processes in small watershed-scale areas. Based on in-situ meteorological data in the Nagqu river basin and surrounding regions, the main meteorological factors affecting the evaporation process were quantitatively analyzed and the point-scale ETa estimation models in the study area were successfully built. On the other hand, multi-source satellite data (such as SPOT, MODIS, FY-2C) were used to derive the surface characteristics in the river basin. A time series processing technique was applied to remove cloud cover and reconstruct data series. Then improved land surface albedo, improved downward shortwave radiation flux and reconstructed normalized difference vegetation index (NDVI) were coupled into the topographical enhanced surface energy balance system to estimate ETa. The model-estimated results were compared with those ETa values determined by combinatory method. The results indicated that the model-estimated ETa agreed well with in-situ measurements with correlation coefficient, mean bias error and root mean square error of 0.836, 0.087 and 0.140 mm/h respectively.

  17. Results of an integrated structure/control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1989-01-01

    A design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations is discussed. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changes in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient than finite difference methods for the computation of the equivalent sensitivity information.

  18. A 30-Year Follow-Up Study of Actual Applied Music Practice Versus Estimated Practice

    ERIC Educational Resources Information Center

    Madsen, Clifford K.

    2004-01-01

    This study was designed to determine if adults are able to remember how much time they actually spent practicing during a past time period of their lives where detailed daily records were kept of actual number of minutes practiced. It also addressed how past practice time relates to their highest level of musical performance across the 30 years on…

  19. An Empirical Investigation of Variance Design Parameters for Planning Cluster-Randomized Trials of Science Achievement.

    PubMed

    Westine, Carl D; Spybrook, Jessaca; Taylor, Joseph A

    2013-12-01

    Prior research has focused primarily on empirically estimating design parameters for cluster-randomized trials (CRTs) of mathematics and reading achievement. Little is known about how design parameters compare across other educational outcomes. This article presents empirical estimates of design parameters that can be used to appropriately power CRTs in science education and compares them to estimates using mathematics and reading. Estimates of intraclass correlations (ICCs) are computed for unconditional two-level (students in schools) and three-level (students in schools in districts) hierarchical linear models of science achievement. Relevant student- and school-level pretest and demographic covariates are then considered, and estimates of variance explained are computed. Subjects: Five consecutive years of Texas student-level data for Grades 5, 8, 10, and 11. Science, mathematics, and reading achievement raw scores as measured by the Texas Assessment of Knowledge and Skills. Results: Findings show that ICCs in science range from .172 to .196 across grades and are generally higher than comparable statistics in mathematics, .163-.172, and reading, .099-.156. When available, a 1-year lagged student-level science pretest explains the most variability in the outcome. The 1-year lagged school-level science pretest is the best alternative in the absence of a 1-year lagged student-level science pretest. Science educational researchers should utilize design parameters derived from science achievement outcomes. © The Author(s) 2014.

  20. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1991-01-01

    The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.

  1. The shear instability energy: a new parameter for materials design?

    NASA Astrophysics Data System (ADS)

    Kanani, M.; Hartmaier, A.; Janisch, R.

    2017-10-01

    Reliable and predictive relationships between fundamental microstructural material properties and observable macroscopic mechanical behaviour are needed for the successful design of new materials. In this study we establish a link between physical properties that are defined on the atomic level and the deformation mechanisms of slip planes and interfaces that govern the mechanical behaviour of a metallic material. To accomplish this, the shear instability energy Γ is introduced, which can be determined via quantum mechanical ab initio calculations or other atomistic methods. The concept is based on a multilayer generalised stacking fault energy calculation and can be applied to distinguish the different shear deformation mechanisms occurring at TiAl interfaces during finite-temperature molecular dynamics simulations. We use the new parameter Γ to construct a deformation mechanism map for different interfaces occurring in this intermetallic. Furthermore, Γ can be used to convert the results of ab initio density functional theory calculations into those obtained with an embedded atom method type potential for TiAl. We propose to include this new physical parameter into material databases to apply it for the design of materials and microstructures, which so far mainly relies on single-crystal values for the unstable and stable stacking fault energy.

  2. Auxiliary Parameter MCMC for Exponential Random Graph Models

    NASA Astrophysics Data System (ADS)

    Byshkin, Maksym; Stivala, Alex; Mira, Antonietta; Krause, Rolf; Robins, Garry; Lomi, Alessandro

    2016-11-01

    Exponential random graph models (ERGMs) are a well-established family of statistical models for analyzing social networks. Computational complexity has so far limited the appeal of ERGMs for the analysis of large social networks. Efficient computational methods are highly desirable in order to extend the empirical scope of ERGMs. In this paper we report results of a research project on the development of snowball sampling methods for ERGMs. We propose an auxiliary parameter Markov chain Monte Carlo (MCMC) algorithm for sampling from the relevant probability distributions. The method is designed to decrease the number of allowed network states without worsening the mixing of the Markov chains, and suggests a new approach for the developments of MCMC samplers for ERGMs. We demonstrate the method on both simulated and actual (empirical) network data and show that it reduces CPU time for parameter estimation by an order of magnitude compared to current MCMC methods.

  3. Determination of morphological parameters of biological cells by analysis of scattered-light distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, D.E.

    1979-11-01

    The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less

  4. Design and parameter estimation of hybrid magnetic bearings for blood pump applications

    NASA Astrophysics Data System (ADS)

    Lim, Tau Meng; Zhang, Dongsheng; Yang, Juanjuan; Cheng, Shanbao; Low, Sze Hsien; Chua, Leok Poh; Wu, Xiaowei

    2009-10-01

    This paper discusses the design and parameter estimation of the dynamics characteristics of a high-speed hybrid magnetic bearings (HMBs) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet (PM) brushless and sensorless DC motor. It is levitated by two HMBs at both ends in five-degree-of-freedom with proportional-integral-derivative (PID) controllers; among which four radial directions are actively controlled and one axial direction is passively controlled. Test results show that the rotor can be stably supported to speeds of 14,000 rpm. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMBs system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air—in both the radial and axial directions. The radial stiffness of the HMBs is compared to the Ansoft's Maxwell 2D/3D finite element magnetostatic results. Experimental estimation showed that the dynamics characteristics of the HMBs system are dominated by the frequency-dependent stiffness coefficients. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamics properties under normal operating conditions with fluid.

  5. A linear parameter-varying multiobjective control law design based on youla parametrization for a flexible blended wing body aircraft

    NASA Astrophysics Data System (ADS)

    Demourant, F.; Ferreres, G.

    2013-12-01

    This article presents a methodology for a linear parameter-varying (LPV) multiobjective flight control law design for a blended wing body (BWB) aircraft and results. So, the method is a direct design of a parametrized control law (with respect to some measured flight parameters) through a multimodel convex design to optimize a set of specifications on the full-flight domain and different mass cases. The methodology is based on the Youla parameterization which is very useful since closed loop specifications are affine with respect to Youla parameter. The LPV multiobjective design method is detailed and applied to the BWB flexible aircraft example.

  6. Numerical method to determine mechanical parameters of engineering design in rock masses.

    PubMed

    Xue, Ting-He; Xiang, Yi-Qiang; Guo, Fa-Zhong

    2004-07-01

    This paper proposes a new continuity model for engineering in rock masses and a new schematic method for reporting the engineering of rock continuity. This method can be used to evaluate the mechanics of every kind of medium; and is a new way to determine the mechanical parameters used in engineering design in rock masses. In the numerical simulation, the experimental parameters of intact rock were combined with the structural properties of field rock. The experimental results for orthogonally-jointed rock are given. The results included the curves of the stress-strain relationship of some rock masses, the curve of the relationship between the dimension Delta and the uniaxial pressure-resistant strength sc of these rock masses, and pictures of the destructive procedure of some rock masses in uniaxial or triaxial tests, etc. Application of the method to engineering design in rock masses showed the potential of its application to engineering practice.

  7. Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter

    PubMed Central

    Li, Huidong; Deng, Zhiqun Daniel; Yuan, Yong; Carlson, Thomas J.

    2012-01-01

    PZT ceramics have been widely used in underwater acoustic transducers. However, literature available discussing the design parameters of a miniaturized PZT-based low-duty-cycle transmitter is very limited. This paper discusses some of the design parameters—the backing material, driving voltage, PZT material type, power consumption and the transducer length of a miniaturized acoustic fish tag using a PZT tube. Four different types of PZT were evaluated with respect to the source level, energy consumption and bandwidth of the transducer. The effect of the tube length on the source level is discussed. The results demonstrate that ultralow-density closed-cell foam is the best backing material for the PZT tube. The Navy Type VI PZTs provide the best source level with relatively low energy consumption and that a low transducer capacitance is preferred for high efficiency. A 35% reduction in the transducer length results in 2 dB decrease in source level. PMID:23012534

  8. Inductance parameter design based seamless transfer strategy for three-phase converter in microgrid

    NASA Astrophysics Data System (ADS)

    Zhao, Guopeng; Zhou, Xinwei; Jiang, Chao; Lu, Yi; Wang, Yanjie

    2018-06-01

    During the operation of microgrid, especially when the unplanned islanding occurs, the voltage of the point of common coupling (PCC) needs to be maintained within a certain range, otherwise it would affect the operation of loads in microgrid. This paper proposes a seamless transfer strategy based on the inductance parameter design for three-phase converter in microgrid, which considers both the fundamental component of voltage on the inductance and the ripple current in the inductance. In grid-connected mode, the PCC voltage is supported by the grid. When the unplanned islanding occurs, the PCC voltage is affected by the output voltage of converter and the voltage on the inductance. According to the single phase equivalent circuit, analyzing the phasor diagram of voltage and current vector, considering the prescribed range of PCC voltage and satisfying the requirement of the magnitude of ripple current, the inductance parameter is designed. At last, the simulation result shows that the designed inductance can ensure the PCC voltage does not exceed the prescribed range and restrain the ripple current.

  9. Correlation of Electric Field and Critical Design Parameters for Ferroelectric Tunable Microwave Filters

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred W.; Miranda, Felix A.; Canedy, Chadwick L.; Aggarwal, Sanjeev; Venkatesan, Thirumalai; Ramesh, Ramamoorthy

    2000-01-01

    The correlation of electric field and critical design parameters such as the insertion loss, frequency ability return loss, and bandwidth of conductor/ferroelectric/dielectric microstrip tunable K-band microwave filters is discussed in this work. This work is based primarily on barium strontium titanate (BSTO) ferroelectric thin film based tunable microstrip filters for room temperature applications. Two new parameters which we believe will simplify the evaluation of ferroelectric thin films for tunable microwave filters, are defined. The first of these, called the sensitivity parameter, is defined as the incremental change in center frequency with incremental change in maximum applied electric field (EPEAK) in the filter. The other, the loss parameter, is defined as the incremental or decremental change in insertion loss of the filter with incremental change in maximum applied electric field. At room temperature, the Au/BSTO/LAO microstrip filters exhibited a sensitivity parameter value between 15 and 5 MHz/cm/kV. The loss parameter varied for different bias configurations used for electrically tuning the filter. The loss parameter varied from 0.05 to 0.01 dB/cm/kV at room temperature.

  10. Classical Control System Design: A non-Graphical Method for Finding the Exact System Parameters

    NASA Astrophysics Data System (ADS)

    Hussein, Mohammed Tawfik

    2008-06-01

    The Root Locus method of control system design was developed in the 1940's. It is a set of rules that helps in sketching the path traced by the roots of the closed loop characteristic equation of the system, as a parameter such as a controller gain, k, is varied. The procedure provides approximate sketching guidelines. Designs on control systems using the method are therefore not exact. This paper aims at a non-graphical method for finding the exact system parameters to place a pair of complex conjugate poles on a specified damping ratio line. The overall procedure is based on the exact solution of complex equations on the PC using numerical methods.

  11. Design of a new nozzle for direct current plasma guns with improved spraying parameters

    NASA Astrophysics Data System (ADS)

    Jankovic, M.; Mostaghimi, J.; Pershin, V.

    2000-03-01

    A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.

  12. Optimization of process parameters for a quasi-continuous tablet coating system using design of experiments.

    PubMed

    Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah

    2011-03-01

    The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists

  13. Review & Peer Review of “Parameters for Properly Designed and Operated Flares” Documents

    EPA Pesticide Factsheets

    This page contains two 2012 memoranda on the review of EPA's parameters for properly designed and operated flares. One details the process of peer review, and the other provides background information and specific charge questions to the panel.

  14. Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2010-05-21

    Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor

  15. Marijuana and actual driving performance

    DOT National Transportation Integrated Search

    1993-11-01

    This report concerns the effects of marijuana smoking on actual driving performance. It presents the results of one pilot and three actual driving studies. The pilot study's major purpose was to establish the THC dose current marijuana users smoke to...

  16. Basic research on design analysis methods for rotorcraft vibrations

    NASA Technical Reports Server (NTRS)

    Hanagud, S.

    1991-01-01

    The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.

  17. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  18. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  19. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  20. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  1. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The APH...

  2. Estimation Model of Spacecraft Parameters and Cost Based on a Statistical Analysis of COMPASS Designs

    NASA Technical Reports Server (NTRS)

    Gerberich, Matthew W.; Oleson, Steven R.

    2013-01-01

    The Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at Glenn Research Center has performed integrated system analysis of conceptual spacecraft mission designs since 2006 using a multidisciplinary concurrent engineering process. The set of completed designs was archived in a database, to allow for the study of relationships between design parameters. Although COMPASS uses a parametric spacecraft costing model, this research investigated the possibility of using a top-down approach to rapidly estimate the overall vehicle costs. This paper presents the relationships between significant design variables, including breakdowns of dry mass, wet mass, and cost. It also develops a model for a broad estimate of these parameters through basic mission characteristics, including the target location distance, the payload mass, the duration, the delta-v requirement, and the type of mission, propulsion, and electrical power. Finally, this paper examines the accuracy of this model in regards to past COMPASS designs, with an assessment of outlying spacecraft, and compares the results to historical data of completed NASA missions.

  3. Constitutive parameter measurements of lossy materials

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.

    1989-01-01

    The electrical constitutive parameters of lossy materials are considered. A discussion of the NRL arch for lossy coatings is presented involving analytical analyses of the reflected field using the geometrical theory of diffraction (GTD) and physical optics (PO). The actual values for these parameters can be obtained through a traditional transmission technique which is examined from an error analysis standpoint. Alternate sample geometries are suggested for this technique to reduce sample tolerance requirements for accurate parameter determination. The performance for one alternate geometry is given.

  4. Optimal Linking Design for Response Model Parameters

    ERIC Educational Resources Information Center

    Barrett, Michelle D.; van der Linden, Wim J.

    2017-01-01

    Linking functions adjust for differences between identifiability restrictions used in different instances of the estimation of item response model parameters. These adjustments are necessary when results from those instances are to be compared. As linking functions are derived from estimated item response model parameters, parameter estimation…

  5. [Assessment of actual benefits of new drugs by the Transparency Committee].

    PubMed

    Le Jeunne, C

    2008-01-01

    When a drug has been granted a marketing authorization, if the pharmaceutical company wants it to be covered by the National Health Insurance, the company has to submit a file with all the studies concerning the drug, especially drug-drug comparative studies, to be assessed by the Transparency Committee. Drugs are assessed on two criteria: actual or expected benefit (AB) and improvement in actual benefit (IAB). Actual benefit mainly takes into account the severity of the disease concerned, the level of efficacy relative to known side effects (risk-benefit ratio), and the place the drug is intended to take in the therapeutic strategy. At the end of the assessment, AB is considered as important, moderate, poor or insufficient (to justify inclusion of the drug on the list of products to be reimbursed). After actual benefit is determined, improvement of actual benefit is assessed, comparing the estimated benefit of this drug with one of drugs with the same indication that is already reimbursed, to assess whether this drug will improve the patient's disease. This can be assessed by direct comparison (two drugs compared in the same clinical trial) or by indirect comparison (separate studies with the same design). There are four levels of added value, from I (major improvement) to IV (minor improvement). Level V represents no improvement. This second assessment is always relative to another drug. It never provides an absolute score. However, IAB is very important for pharmaceutical companies, because it is a fundamental criterion to determine the price of the drug, which is discussed with the Economic Committee of Health Products in a final phase. Actual benefit and improvement in actual benefit are allocated for each indication of a drug.

  6. Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Justus, C. G.; Batts, G. W.

    2001-01-01

    Thermal analysis and design of Earth orbiting systems requires specification of three environmental thermal parameters: the direct solar irradiance, Earth's local albedo, and outgoing longwave radiance (OLR). In the early 1990s data sets from the Earth Radiation Budget Experiment were analyzed on behalf of the Space Station Program to provide an accurate description of these parameters as a function of averaging time along the orbital path. This information, documented in SSP 30425 and, in more generic form in NASA/TM-4527, enabled the specification of the proper thermal parameters for systems of various thermal response time constants. However, working with the engineering community and SSP-30425 and TM-4527 products over a number of years revealed difficulties in interpretation and application of this material. For this reason it was decided to develop this guidelines document to help resolve these issues of practical application. In the process, the data were extensively reprocessed and a new computer code, the Simple Thermal Environment Model (STEM) was developed to simplify the process of selecting the parameters for input into extreme hot and cold thermal analyses and design specifications. In the process, greatly improved values for the cold case OLR values for high inclination orbits were derived. Thermal parameters for satellites in low, medium, and high inclination low-Earth orbit and with various system thermal time constraints are recommended for analysis of extreme hot and cold conditions. Practical information as to the interpretation and application of the information and an introduction to the STEM are included. Complete documentation for STEM is found in the user's manual, in preparation.

  7. Experimental investigation of shaping disturbance observer design for motion control of precision mechatronic stages with resonances

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Hu, Chuxiong; Zhu, Yu; Wang, Ze; Zhang, Ming

    2017-08-01

    In this paper, shaping disturbance observer (SDOB) is investigated for precision mechatronic stages with middle-frequency zero/pole type resonance to achieve good motion control performance in practical manufacturing situations. Compared with traditional standard disturbance observer (DOB), in SDOB a pole-zero cancellation based shaping filter is cascaded to the mechatronic stage plant to meet the challenge of motion control performance deterioration caused by actual resonance. Noting that pole-zero cancellation is inevitably imperfect and the controller may even consequently become unstable in practice, frequency domain stability analysis is conducted to find out how each parameter of the shaping filter affects the control stability. Moreover, the robust design criterion of the shaping filter, and the design procedure of SDOB, are both proposed to guide the actual design and facilitate practical implementation. The SDOB with the proposed design criterion is applied to a linear motor driven stage and a voice motor driven stage, respectively. Experimental results consistently validate the effectiveness nature of the proposed SDOB scheme in practical mechatronics motion applications. The proposed SDOB design actually could be an effective unit in the controller design for motion stages of mechanical manufacture equipments.

  8. The vehicle design evaluation program - A computer-aided design procedure for transport aircraft

    NASA Technical Reports Server (NTRS)

    Oman, B. H.; Kruse, G. S.; Schrader, O. E.

    1977-01-01

    The vehicle design evaluation program is described. This program is a computer-aided design procedure that provides a vehicle synthesis capability for vehicle sizing, external load analysis, structural analysis, and cost evaluation. The vehicle sizing subprogram provides geometry, weight, and balance data for aircraft using JP, hydrogen, or methane fuels. The structural synthesis subprogram uses a multistation analysis for aerodynamic surfaces and fuselages to develop theoretical weights and geometric dimensions. The parts definition subprogram uses the geometric data from the structural analysis and develops the predicted fabrication dimensions, parts material raw stock buy requirements, and predicted actual weights. The cost analysis subprogram uses detail part data in conjunction with standard hours, realization factors, labor rates, and material data to develop the manufacturing costs. The program is used to evaluate overall design effects on subsonic commercial type aircraft due to parameter variations.

  9. Design of a cardiac monitor in terms of parameters of QRS complex.

    PubMed

    Chen, Zhen-cheng; Ni, Li-li; Su, Ke-ping; Wang, Hong-yan; Jiang, Da-zong

    2002-08-01

    Objective. To design a portable cardiac monitor system based on the available ordinary ECG machine and works on the basis of QRS parameters. Method. The 80196 single chip microcomputer was used as the central microprocessor and real time electrocardiac signal was collected and analyzed [correction of analysized] in the system. Result. Apart from the performance of an ordinary monitor, this machine possesses also the following functions: arrhythmia analysis, HRV analysis, alarm, freeze, and record of automatic papering. Convenient in carrying, the system is powered by AC or DC sources. Stability, low power and low cost are emphasized in the hardware design; and modularization method is applied in software design. Conclusion. Popular in usage and low cost made the portable monitor system suitable for use under simple conditions.

  10. [Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the Hun-Taizi River Basin, Northeast China].

    PubMed

    Feng, Xue; Cai, Yan-Cong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Yuan, Feng-Hui

    2014-10-01

    Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis. The results showed that the empirical parameter value of 0.75 of AA model was suitable for the Hun-Taizi River Basin with an error of 11.4%. In the Hun-Taizi River Basin, the average annual actual evapotranspiration was 347.4 mm, which had a slightly upward trend with a rate of 1.58 mm · (10 a(-1)), but did not change significantly. It also indicated that the annual actual evapotranspiration presented a single-peaked pattern and its peak value occurred in July; the evapotranspiration in summer was higher than in spring and autumn, and it was the smallest in winter. The annual average evapotranspiration showed a decreasing trend from the northwest to the southeast in the Hun-Taizi River Basin from 1970 to 2006 with minor differences. Net radiation was largely responsible for the change of actual evapotranspiration in the Hun-Taizi River Basin.

  11. Does an alteration of dialyzer design and geometry affect biocompatibility parameters?

    PubMed

    Opatrný, Karel; Krouzzecký, Ales; Polanská, Kamila; Mares, Jan; Tomsů, Martina; Bowry, Sudhir K; Vienken, Jörg

    2006-04-01

    The aim of the study was to assess the biocompatibility profile of a newly developed high-flux polysulfone dialyzer type (FX-class dialyzer). The new class of dialyzers incorporates a number of novel design features (including a new membrane) that have been developed specifically in order to enhance the removal of small- and middle-size molecules. The new FX dialyzer series was compared with the classical routinely used high-flux polysulfone F series of dialyzers. In an open prospective, randomized, crossover clinical study, concentrations of the C5a complement component, and leukocyte count in blood and various thrombogenicity parameters were evaluated before, and at 15 and 60 min of hemodialysis at both dialyzer inlet and outlet in 9 long-term hemodialysis patients using the FX60S dialyzers and, after crossover, the classical F60S, while in another 9 patients, the evaluation was made with the dialyzers used in reverse order. The comparison of dialyzers based on evaluation of the group including all procedures with the FX60S and the group including procedures with the F60S did not reveal significant differences in platelet count, activated partial thromboplastin times, plasma heparin levels, platelet factor-4, D-dimer, C5a, and leukocyte count at any point of the collecting period. Both dialyzer types showed a significant increase in the plasma levels of the thrombin-antithrombin III complexes; however, the measured levels were only slightly elevated compared with the upper end of the normal range. Biocompatibility parameters reflecting the behavior of platelets, fibrinolysis, complement activation, and leukopenia do not differ during dialysis with either the FX60S or the F60S despite their large differences in design and geometry features. Although coagulation activation, as evaluated by one of the parameters used, was slightly higher with the FX60S, it was still within the range seen with other highly biocompatible dialyzers and therefore is not indicative of

  12. An Empirical Study of Design Parameters for Assessing Differential Impacts for Students in Group Randomized Trials.

    PubMed

    Jaciw, Andrew P; Lin, Li; Ma, Boya

    2016-10-18

    Prior research has investigated design parameters for assessing average program impacts on achievement outcomes with cluster randomized trials (CRTs). Less is known about parameters important for assessing differential impacts. This article develops a statistical framework for designing CRTs to assess differences in impact among student subgroups and presents initial estimates of critical parameters. Effect sizes and minimum detectable effect sizes for average and differential impacts are calculated before and after conditioning on effects of covariates using results from several CRTs. Relative sensitivities to detect average and differential impacts are also examined. Student outcomes from six CRTs are analyzed. Achievement in math, science, reading, and writing. The ratio of between-cluster variation in the slope of the moderator divided by total variance-the "moderator gap variance ratio"-is important for designing studies to detect differences in impact between student subgroups. This quantity is the analogue of the intraclass correlation coefficient. Typical values were .02 for gender and .04 for socioeconomic status. For studies considered, in many cases estimates of differential impact were larger than of average impact, and after conditioning on effects of covariates, similar power was achieved for detecting average and differential impacts of the same size. Measuring differential impacts is important for addressing questions of equity, generalizability, and guiding interpretation of subgroup impact findings. Adequate power for doing this is in some cases reachable with CRTs designed to measure average impacts. Continuing collection of parameters for assessing differential impacts is the next step. © The Author(s) 2016.

  13. Intelligent, Robust Control of Deteriorated Turbofan Engines via Linear Parameter Varying Quadratic Lyapunov Function Design

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.

  14. Method and system for monitoring and displaying engine performance parameters

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S. (Inventor); Person, Jr., Lee H. (Inventor)

    1991-01-01

    The invention is a method and system for monitoring and directly displaying the actual thrust produced by a jet aircraft engine under determined operating conditions and the available thrust and predicted (commanded) thrust of a functional model of an ideal engine under the same determined operating conditions. A first set of actual value output signals representative of a plurality of actual performance parameters of the engine under the determined operating conditions is generated and compared with a second set of predicted value output signals representative of the predicted value of corresponding performance parameters of a functional model of the engine under the determined operating conditions to produce a third set of difference value output signals within a range of normal, caution, or warning limit values. A thrust indicator displays when any one of the actual value output signals is in the warning range while shaping function means shape each of the respective difference output signals as each approaches the limit of the respective normal, caution, and warning range limits.

  15. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    NASA Astrophysics Data System (ADS)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  16. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    NASA Astrophysics Data System (ADS)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  17. Results of an integrated structure-control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1988-01-01

    Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.

  18. The design and analysis of mooring system

    NASA Astrophysics Data System (ADS)

    Li, Yixuan

    2017-05-01

    In this paper, the force status and a design method of single chain mooring system for shallow sea observation network are studied. With treating the link of a chain, steel drum and steel pipe as a rigid body, the recurrence model is established by using Newton's first law and the law of Moment equilibrium theorem. Via the simplified calculation of dichotomy searching, we determine the design parameters of mooring system, such as anchor model, anchor chain length, heavy ball quality under different water flow and wind conditions. We apply MATLAB to simulate the internal steady state of the system in the fixed scheme, water depth of buoy and swimming area to meet the decision-making needs, providing an idea for the actual scheme design of mooring system.

  19. Concept design theory and model for multi-use space facilities: Analysis of key system design parameters through variance of mission requirements

    NASA Astrophysics Data System (ADS)

    Reynerson, Charles Martin

    This research has been performed to create concept design and economic feasibility data for space business parks. A space business park is a commercially run multi-use space station facility designed for use by a wide variety of customers. Both space hardware and crew are considered as revenue producing payloads. Examples of commercial markets may include biological and materials research, processing, and production, space tourism habitats, and satellite maintenance and resupply depots. This research develops a design methodology and an analytical tool to create feasible preliminary design information for space business parks. The design tool is validated against a number of real facility designs. Appropriate model variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is used to analyze the effect of various payload requirements on the size, weight and power of the facility. The approach for the analytical tool was to input potential payloads as simple requirements, such as volume, weight, power, crew size, and endurance. In creating the theory, basic principles are used and combined with parametric estimation of data when necessary. Key system parameters are identified for overall system design. Typical ranges for these key parameters are identified based on real human spaceflight systems. To connect the economics to design, a life-cycle cost model is created based upon facility mass. This rough cost model estimates potential return on investments, initial investment requirements and number of years to return on the initial investment. Example cases are analyzed for both performance and cost driven requirements for space hotels, microgravity processing facilities, and multi-use facilities. In combining both engineering and economic models, a design-to-cost methodology is created for more accurately estimating the commercial viability for multiple space business park markets.

  20. Multiobjective design of aquifer monitoring networks for optimal spatial prediction and geostatistical parameter estimation

    NASA Astrophysics Data System (ADS)

    Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.

    2013-06-01

    Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that

  1. Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm

    PubMed Central

    Palamara, Gian Marco; Childs, Dylan Z; Clements, Christopher F; Petchey, Owen L; Plebani, Marco; Smith, Matthew J

    2014-01-01

    Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important

  2. A design of experiments test to define critical spray cleaning parameters for Brulin 815 GD and Jettacin cleaners

    NASA Technical Reports Server (NTRS)

    Keen, Jill M.; Evans, Kurt B.; Schiffman, Robert L.; Deweese, C. Darrell; Prince, Michael E.

    1995-01-01

    Experimental design testing was conducted to identify critical parameters of an aqueous spray process intended for cleaning solid rocket motor metal components (steel and aluminum). A two-level, six-parameter, fractional factorial matrix was constructed and conducted for two cleaners, Brulin 815 GD and Diversey Jettacin. The matrix parameters included cleaner temperature and concentration, wash density, wash pressure, rinse pressure, and dishwasher type. Other spray parameters: nozzle stand-off, rinse water temperature, wash and rinse time, dry conditions, and type of rinse water (deionized) were held constant. Matrix response testing utilized discriminating bond specimens (fracture energy and tensile adhesion strength) which represent critical production bond lines. Overall, Jettacin spray cleaning was insensitive to the range of conditions tested for all parameters and exhibited bond strengths significantly above the TCA test baseline for all bond lines tested. Brulin 815 was sensitive to cleaning temperature, but produced bond strengths above the TCA test baseline even at the lower temperatures. Ultimately, the experimental design database was utilized to recommend process parameter settings for future aqueous spray cleaning characterization work.

  3. Development of a multiple-parameter nonlinear perturbation procedure for transonic turbomachinery flows: Preliminary application to design/optimization problems

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Elliott, J. P.; Spreiter, J. R.

    1983-01-01

    An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously developed successful method for single parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of the multiple-parameter procedure in combination with an optimization method to blade design/optimization problem. In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding exact nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations.

  4. Parameter monitoring compensation system and method

    DOEpatents

    Barkman, William E.; Babelay, Edwin F.; DeMint, Paul D.; Hebble, Thomas L.; Igou, Richard E.; Williams, Richard R.; Klages, Edward J.; Rasnick, William H.

    1995-01-01

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along preprogrammed path during a machining operation utilizes sensors for gathering information at a preselected stage of a machining operation relating to an actual condition. The controller compares the actual condition to a condition which the program presumes to exist at the preselected stage and alters the program in accordance with detected variations between the actual condition and the assumed condition. Such conditions may be related to process parameters, such as a position, dimension or shape of the cutting tool or workpiece or an environmental temperature associated with the machining operation, and such sensors may be a contact or a non-contact type of sensor or a temperature transducer.

  5. Parameter monitoring compensation system and method

    DOEpatents

    Barkman, W.E.; Babelay, E.F.; DeMint, P.D.; Hebble, T.L.; Igou, R.E.; Williams, R.R.; Klages, E.J.; Rasnick, W.H.

    1995-02-07

    A compensation system is described for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation. It utilizes sensors for gathering information at a preselected stage of a machining operation relating to an actual condition. The controller compares the actual condition to a condition which the program presumes to exist at the preselected stage and alters the program in accordance with detected variations between the actual condition and the assumed condition. Such conditions may be related to process parameters, such as a position, dimension or shape of the cutting tool or workpiece or an environmental temperature associated with the machining operation, and such sensors may be a contact or a non-contact type of sensor or a temperature transducer. 7 figs.

  6. Quantum Computing Architectural Design

    NASA Astrophysics Data System (ADS)

    West, Jacob; Simms, Geoffrey; Gyure, Mark

    2006-03-01

    Large scale quantum computers will invariably require scalable architectures in addition to high fidelity gate operations. Quantum computing architectural design (QCAD) addresses the problems of actually implementing fault-tolerant algorithms given physical and architectural constraints beyond those of basic gate-level fidelity. Here we introduce a unified framework for QCAD that enables the scientist to study the impact of varying error correction schemes, architectural parameters including layout and scheduling, and physical operations native to a given architecture. Our software package, aptly named QCAD, provides compilation, manipulation/transformation, multi-paradigm simulation, and visualization tools. We demonstrate various features of the QCAD software package through several examples.

  7. As-Built design specification for PARPLT. [program to produce scatter plots of crop greenness profile parameters

    NASA Technical Reports Server (NTRS)

    Tompkins, M. A.; Cheng, D. E. (Principal Investigator)

    1981-01-01

    The design and implementation of the PARPLT program are described. The program produces scatter plots of the greenness profile derived parameters alpha, beta, and t sub o computed by the CLASFYG program (alpha being the approximate greenness rise time; beta, the greenness decay time; and t sub o, the spectral crop emergence date). Statistical information concerning the parameters is also computed.

  8. The Study of the Relationship between Probabilistic Design and Axiomatic Design Methodology. Volume 2

    NASA Technical Reports Server (NTRS)

    Onwubiko, Chin-Yere; Onyebueke, Landon

    1996-01-01

    The structural design, or the design of machine elements, has been traditionally based on deterministic design methodology. The deterministic method considers all design parameters to be known with certainty. This methodology is, therefore, inadequate to design complex structures that are subjected to a variety of complex, severe loading conditions. A nonlinear behavior that is dependent on stress, stress rate, temperature, number of load cycles, and time is observed on all components subjected to complex conditions. These complex conditions introduce uncertainties; hence, the actual factor of safety margin remains unknown. In the deterministic methodology, the contingency of failure is discounted; hence, there is a use of a high factor of safety. It may be most useful in situations where the design structures are simple. The probabilistic method is concerned with the probability of non-failure performance of structures or machine elements. It is much more useful in situations where the design is characterized by complex geometry, possibility of catastrophic failure, sensitive loads and material properties. Also included: Comparative Study of the use of AGMA Geometry Factors and Probabilistic Design Methodology in the Design of Compact Spur Gear Set.

  9. From FBA to Implementation: A Look at What Is Actually Being Delivered

    ERIC Educational Resources Information Center

    Blood, Erika; Neel, Richard S.

    2007-01-01

    This study looks at the utilization of assessments on developing behavior intervention plans (BIPs) and their use in designing actual implementation for the children (elementary through high school) labeled EBD in a mid-sized district in eastern Washington. Files were reviewed to determine the types of assessments used, FBA components addressed,…

  10. Evaluation of the pre-posterior distribution of optimized sampling times for the design of pharmacokinetic studies.

    PubMed

    Duffull, Stephen B; Graham, Gordon; Mengersen, Kerrie; Eccleston, John

    2012-01-01

    Information theoretic methods are often used to design studies that aim to learn about pharmacokinetic and linked pharmacokinetic-pharmacodynamic systems. These design techniques, such as D-optimality, provide the optimum experimental conditions. The performance of the optimum design will depend on the ability of the investigator to comply with the proposed study conditions. However, in clinical settings it is not possible to comply exactly with the optimum design and hence some degree of unplanned suboptimality occurs due to error in the execution of the study. In addition, due to the nonlinear relationship of the parameters of these models to the data, the designs are also locally dependent on an arbitrary choice of a nominal set of parameter values. A design that is robust to both study conditions and uncertainty in the nominal set of parameter values is likely to be of use clinically. We propose an adaptive design strategy to account for both execution error and uncertainty in the parameter values. In this study we investigate designs for a one-compartment first-order pharmacokinetic model. We do this in a Bayesian framework using Markov-chain Monte Carlo (MCMC) methods. We consider log-normal prior distributions on the parameters and investigate several prior distributions on the sampling times. An adaptive design was used to find the sampling window for the current sampling time conditional on the actual times of all previous samples.

  11. Parameter Design and Optimal Control of an Open Core Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Pang, D.; Anand, D. K.; Kirk, J. A.

    1996-01-01

    In low earth orbit (LEO) satellite applications spacecraft power is provided by photovoltaic cells and batteries. To overcome battery shortcomings the University of Maryland, working in cooperation with NASA/GSFC and NASA/LeRC, has developed a magnetically suspended flywheel for energy storage applications. The system is referred to as an Open Core Composite Flywheel (OCCF) energy storage system. Successful application of flywheel energy storage requires integration of several technologies, viz. bearings, rotor design, motor/generator, power conditioning, and system control. In this paper we present a parameter design method which has been developed for analyzing the linear SISO model of the magnetic bearing controller for the OCCF. The objective of this continued research is to principally analyze the magnetic bearing system for nonlinear effects in order to increase the region of stability, as determined by high speed and large air gap control. This is achieved by four tasks: (1) physical modeling, design, prototyping, and testing of an improved magnetically suspended flywheel energy storage system, (2) identification of problems that limit performance and their corresponding solutions, (3) development of a design methodology for magnetic bearings, and (4) design of an optimal controller for future high speed applications. Both nonlinear SISO and MIMO models of the magnetic system were built to study limit cycle oscillations and power amplifier saturation phenomenon observed in experiments. The nonlinear models include the inductance of EM coils, the power amplifier saturation, and the physical limitation of the flywheel movement as discussed earlier. The control program EASY5 is used to study the nonlinear SISO and MIMO models. Our results have shown that the characteristics and frequency responses of the magnetic bearing system obtained from modeling are comparable to those obtained experimentally. Although magnetic saturation is shown in the bearings, there

  12. Development of a turbomachinery design optimization procedure using a multiple-parameter nonlinear perturbation method

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.

    1984-01-01

    An investigation was carried out to complete the preliminary development of a combined perturbation/optimization procedure and associated computational code for designing optimized blade-to-blade profiles of turbomachinery blades. The overall purpose of the procedures developed is to provide demonstration of a rapid nonlinear perturbation method for minimizing the computational requirements associated with parametric design studies of turbomachinery flows. The method combines the multiple parameter nonlinear perturbation method, successfully developed in previous phases of this study, with the NASA TSONIC blade-to-blade turbomachinery flow solver, and the COPES-CONMIN optimization procedure into a user's code for designing optimized blade-to-blade surface profiles of turbomachinery blades. Results of several design applications and a documented version of the code together with a user's manual are provided.

  13. Determination of the actual evapotranspiration by using remote sensing methods

    NASA Astrophysics Data System (ADS)

    Bora, Eser

    2017-10-01

    Evapotranspiration is so crucial for determining amount of the irrigation and the effective water management planning. Moreover, it is vital for determining agricultural drought management and determination the actual evapotranspiration ın a region is critical for early drought warning systems. The main object of this study was to assess accuracy of the remote sensing method (METRIC) by calibrating with the bowen ratio observations at the same time. The research was carried out in the west of Marmara Region, Turkey. Landsat 5 images was used to determine the metric algorithm. By using this algorithms are found. Landsat 5 images file were used to determine actual evapotranspiration and the image's date was June 11 in 2010. This date was used for calibration with available terrestrial observation by using bowen ratio in that time. Landsat images obtained from the web site, earthexplorer.usgs.gov, and results of bowen ratio taken from micrometeorology station. As a result, energy balance parameters that are net radiation, soil heat flux and latent heat flux were compared both metric algorithm and the bowen ration in the images time. The results are found so close to each other.

  14. Functional relationships of landfill and landraise capacity with design and operation parameters.

    PubMed

    Aivaliotis, Vassilis; Dokas, Ioannis; Hatzigiannakou, Maria; Panagiotakopoulos, Demetrios

    2004-08-01

    Solid waste management presses for effective landfill design and operation. While planning and operating a landfill (LF) or a landraise (LR), choices need to be made regarding: (1) LF-LR morphology (base shape, side slopes, final cover thickness, LR/LF height/depth); (2) cell geometry (height, length, slopes); and (3) operation parameters (waste density, working face length, cover thicknesses). These parameters affect LF/LR capacity, operation lifespan and construction/ operation costs. In this paper, relationships are generated between capacity (C, space available for waste) and the above parameters. Incorporating real data into simulation kgamma A1.38, runs, two types of functions are developed: first, C = where A is the LF/LR base area size and kgamma a base shape-dependent coefficient; and second, C = alpha(p,gamma,A) + delta(p,gamma,A)Xp for every parameter p, where Xp is the value of p and alpha(p,gamma,A) and delta(p,gamma,A) are parameter- and base (shape/size)-specific coefficients. Moreover, the relationship between LF depth and LR height that balances excavation volume with cover material, is identified. Another result is that, for a symmetrical combination of LF/LR, with base surface area shape between square and 1:2 orthogonal, and final density between 500 and 800 kg m(-3), waste quantity placed ranges from 1.76A1.38 to 2.55A1.38 tons. The significance of such functions is obvious, as they allow the analyst to investigate alternative LF/LR schemes and make trade-off analyses.

  15. Design and application of quadrature compensation patterns in bulk silicon micro-gyroscopes.

    PubMed

    Ni, Yunfang; Li, Hongsheng; Huang, Libin

    2014-10-29

    This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four types of basic structure units were presented to obtain the basic compensation function. A novel layout design was proposed to eliminate the additional disturbing static forces and torques. Parameter optimization was carried out to maximize the available compensation capability in a limited layout area. Two types of voltage loading methods were presented. Their influences on the sense mode dynamics were analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope developed in our laboratory. The theoretical compensation capability of a quadrature equivalent angular rate no more than 412 °/s was designed. In experiments, an actual quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual compensation voltages were a little larger than the theoretical ones. The correctness of the design and the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon micro-gyroscopes for quadrature compensation purpose.

  16. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  17. Advanced Method to Estimate Fuel Slosh Simulation Parameters

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl

    2005-01-01

    The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the

  18. Associations between skill perceptions and young children's actual fundamental movement skills.

    PubMed

    Liong, Grace H E; Ridgers, Nicola D; Barnett, Lisa M

    2015-04-01

    Given that children with low movement skill competence engage in less physical activity, it is important to understand how children's perceptions relate to actual movement competence. This study examined relationships between (i) children's self-perception and objective assessments of their movement skills (object control and locomotor) and (ii) parents' perceptions of the children's movement skills and objective assessment. Children's skill perceptions were assessed using the Pictorial Scale of Perceived Movement Skill Competence for Young Children. Parent perceptions of their child's skills were assessed using a modified version of this instrument. The Test of Gross Motor Development-2nd edition assessed children's skills objectively. Participants were 136 Australian children (51% boys; M=6.5 yr., SD=1.1) and 133 parents. Regression analyses (by sex) examined the relationship between perceptions and children's scores for actual skilled performance. Boys' perceptions were associated with their actual object control ability. Parents accurately perceived boys' object control ability and girls' locomotor ability, but not the reverse. This suggests interventions aiming to improve children's movement skills could target parents and be designed to teach parents how to recognize good and poor skill performance in their children.

  19. Ditching Investigations of Dynamic Models and Effects of Design Parameters on Ditching Characteristics

    NASA Technical Reports Server (NTRS)

    Fisher, Lloyd J; Hoffman, Edward L

    1958-01-01

    Data from ditching investigations conducted at the Langley Aeronautical Laboratory with dynamic scale models of various airplanes are presented in the form of tables. The effects of design parameters on the ditching characteristics of airplanes, based on scale-model investigations and on reports of full-scale ditchings, are discussed. Various ditching aids are also discussed as a means of improving ditching behavior.

  20. Published methodological quality of randomized controlled trials does not reflect the actual quality assessed in protocols

    PubMed Central

    Mhaskar, Rahul; Djulbegovic, Benjamin; Magazin, Anja; Soares, Heloisa P.; Kumar, Ambuj

    2011-01-01

    Objectives To assess whether reported methodological quality of randomized controlled trials (RCTs) reflect the actual methodological quality, and to evaluate the association of effect size (ES) and sample size with methodological quality. Study design Systematic review Setting Retrospective analysis of all consecutive phase III RCTs published by 8 National Cancer Institute Cooperative Groups until year 2006. Data were extracted from protocols (actual quality) and publications (reported quality) for each study. Results 429 RCTs met the inclusion criteria. Overall reporting of methodological quality was poor and did not reflect the actual high methodological quality of RCTs. The results showed no association between sample size and actual methodological quality of a trial. Poor reporting of allocation concealment and blinding exaggerated the ES by 6% (ratio of hazard ratio [RHR]: 0.94, 95%CI: 0.88, 0.99) and 24% (RHR: 1.24, 95%CI: 1.05, 1.43), respectively. However, actual quality assessment showed no association between ES and methodological quality. Conclusion The largest study to-date shows poor quality of reporting does not reflect the actual high methodological quality. Assessment of the impact of quality on the ES based on reported quality can produce misleading results. PMID:22424985

  1. A dc model for power switching transistors suitable for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; George, R. T., Jr.; Owen, H. A.; Wilson, T. G.

    1979-01-01

    A model for bipolar junction power switching transistors whose parameters can be readily obtained by the circuit design engineer, and which can be conveniently incorporated into standard computer-based circuit analysis programs is presented. This formulation results from measurements which may be made with standard laboratory equipment. Measurement procedures, as well as a comparison between actual and computed results, are presented.

  2. Actual drawing of histological images improves knowledge retention.

    PubMed

    Balemans, Monique C M; Kooloos, Jan G M; Donders, A Rogier T; Van der Zee, Catharina E E M

    2016-01-01

    Medical students have to process a large amount of information during the first years of their study, which has to be retained over long periods of nonuse. Therefore, it would be beneficial when knowledge is gained in a way that promotes long-term retention. Paper-and-pencil drawings for the uptake of form-function relationships of basic tissues has been a teaching tool for a long time, but now seems to be redundant with virtual microscopy on computer-screens and printers everywhere. Several studies claimed that, apart from learning from pictures, actual drawing of images significantly improved knowledge retention. However, these studies applied only immediate post-tests. We investigated the effects of actual drawing of histological images, using randomized cross-over design and different retention periods. The first part of the study concerned esophageal and tracheal epithelium, with 384 medical and biomedical sciences students randomly assigned to either the drawing or the nondrawing group. For the second part of the study, concerning heart muscle cells, students from the previous drawing group were now assigned to the nondrawing group and vice versa. One, four, and six weeks after the experimental intervention, the students were given a free recall test and a questionnaire or drawing exercise, to determine the amount of knowledge retention. The data from this study showed that knowledge retention was significantly improved in the drawing groups compared with the nondrawing groups, even after four or six weeks. This suggests that actual drawing of histological images can be used as a tool to improve long-term knowledge retention. © 2015 American Association of Anatomists.

  3. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  4. Design Optimization of a Hybrid Electric Vehicle Powertrain

    NASA Astrophysics Data System (ADS)

    Mangun, Firdause; Idres, Moumen; Abdullah, Kassim

    2017-03-01

    This paper presents an optimization work on hybrid electric vehicle (HEV) powertrain using Genetic Algorithm (GA) method. It focused on optimization of the parameters of powertrain components including supercapacitors to obtain maximum fuel economy. Vehicle modelling is based on Quasi-Static-Simulation (QSS) backward-facing approach. A combined city (FTP-75)-highway (HWFET) drive cycle is utilized for the design process. Seeking global optimum solution, GA was executed with different initial settings to obtain sets of optimal parameters. Starting from a benchmark HEV, optimization results in a smaller engine (2 l instead of 3 l) and a larger battery (15.66 kWh instead of 2.01 kWh). This leads to a reduction of 38.3% in fuel consumption and 30.5% in equivalent fuel consumption. Optimized parameters are also compared with actual values for HEV in the market.

  5. Mechanical Analog Approach to Parameter Estimation of Lateral Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Sudermann, James; Walker, Charles; Ristow, James; Hubert, Carl

    2007-01-01

    The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. Simplified mechanical analogs for the slosh are preferred during the initial stages of design to reduce computational time and effort to evaluate the Nutation Time Constant (NTC). Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. An experimental set-up is designed and built to include a diaphragm in the simulated spacecraft fuel tank subjected to lateral slosh. This research paper focuses on the parameter estimation of a SimMechanics model of the simulated spacecraft propellant tank with and without diaphragms using lateral fuel slosh experiments. Automating the parameter identification process will save time and thus allow earlier identification of potential vehicle problems.

  6. A Proposed Probabilistic Extension of the Halpern and Pearl Definition of ‘Actual Cause’

    PubMed Central

    2017-01-01

    ABSTRACT Joseph Halpern and Judea Pearl ([2005]) draw upon structural equation models to develop an attractive analysis of ‘actual cause’. Their analysis is designed for the case of deterministic causation. I show that their account can be naturally extended to provide an elegant treatment of probabilistic causation. 1Introduction2Preemption3Structural Equation Models4The Halpern and Pearl Definition of ‘Actual Cause’5Preemption Again6The Probabilistic Case7Probabilistic Causal Models8A Proposed Probabilistic Extension of Halpern and Pearl’s Definition9Twardy and Korb’s Account10Probabilistic Fizzling11Conclusion PMID:29593362

  7. Adjustable Parameter-Based Distributed Fault Estimation Observer Design for Multiagent Systems With Directed Graphs.

    PubMed

    Zhang, Ke; Jiang, Bin; Shi, Peng

    2017-02-01

    In this paper, a novel adjustable parameter (AP)-based distributed fault estimation observer (DFEO) is proposed for multiagent systems (MASs) with the directed communication topology. First, a relative output estimation error is defined based on the communication topology of MASs. Then a DFEO with AP is constructed with the purpose of improving the accuracy of fault estimation. Based on H ∞ and H 2 with pole placement, multiconstrained design is given to calculate the gain of DFEO. Finally, simulation results are presented to illustrate the feasibility and effectiveness of the proposed DFEO design with AP.

  8. Study of design and technology factors influencing gas turbine blade cooling

    NASA Astrophysics Data System (ADS)

    Shevchenko, I. V.; Garanin, I. V.; Rogalev, A. N.; Kindra, V. O.; Khudyakova, V. P.

    2017-11-01

    The knowledge of aerodynamic and thermal parameters of turbulators used in order to design an efficient blade cooling system. However, all experimental tests of the hydraulic and thermal characteristics of the turbulators were conducted on the rectangular shape channels with a strongly defined air flow direction. The actual blades have geometry of the channels that essentially differs from the rectangular shape. Specifically, the air flow in the back cavity of a blade with one and half-pass cooling channel changes its direction throughout the feather height. In most cases the ribs and pins are made with a tilt to the channel walls, which is determined by the moving element design of a mould for the ceramic rod element fabrication. All of the factors described above may result in the blade thermohydraulic model being developed failing to fully simulate the air flow and the heat exchange processes in some sections of the cooling path. Hence, the design temperature field will differ from the temperature field of an actual blade. This article studied the numerical data of design and technology factors influencing heat transfer in the cooling channels. The results obtained showed their substantial impact on the blade cooling efficiency.

  9. Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs.

    PubMed

    Longin, Carl Friedrich Horst; Gowda, Manje; Mühleisen, Jonathan; Ebmeyer, Erhard; Kazman, Ebrahim; Schachschneider, Ralf; Schacht, Johannes; Kirchhoff, Martin; Zhao, Yusheng; Reif, Jochen Christoph

    2013-11-01

    Commercial heterosis for grain yield is present in hybrid wheat but long-term competiveness of hybrid versus line breeding depends on the development of heterotic groups to improve hybrid prediction. Detailed knowledge of the amount of heterosis and quantitative genetic parameters are of paramount importance to assess the potential of hybrid breeding. Our objectives were to (1) examine the extent of midparent, better-parent and commercial heterosis in a vast population of 1,604 wheat (Triticum aestivum L.) hybrids and their parental elite inbred lines and (2) discuss the consequences of relevant quantitative parameters for the design of hybrid wheat breeding programs. Fifteen male lines were crossed in a factorial mating design with 120 female lines, resulting in 1,604 of the 1,800 potential single-cross hybrid combinations. The hybrids, their parents, and ten commercial wheat varieties were evaluated in multi-location field experiments for grain yield, plant height, heading time and susceptibility to frost, lodging, septoria tritici blotch, yellow rust, leaf rust, and powdery mildew at up to five locations. We observed that hybrids were superior to the mean of their parents for grain yield (10.7 %) and susceptibility to frost (-7.2 %), leaf rust (-8.4 %) and septoria tritici blotch (-9.3 %). Moreover, 69 hybrids significantly (P < 0.05) outyielded the best commercial inbred line variety underlining the potential of hybrid wheat breeding. The estimated quantitative genetic parameters suggest that the establishment of reciprocal recurrent selection programs is pivotal for a successful long-term hybrid wheat breeding.

  10. Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Binh; Park, Seungchul; Lim, Hyuneui

    2018-03-01

    In this paper, we report the contributions of actual ice-substrate contact area and nanopillar height to passive anti-icing performance in terms of adhesion force and freezing time. Well-textured nanopillars with various parameters were fabricated via colloidal lithography and a dry etching process. The nanostructured quartz surface was coated with low-energy material to confer water-repellent properties. These superhydrophobic surfaces were investigated to determine the parameters essential for reducing adhesion strength and delaying freezing time. A well-textured surface with nanopillars of very small top diameter, regardless of height, could reduce adhesion force and delay freezing time in a subsequent de-icing process. Small top diameters of nanopillars also ensured the metastable Cassie-Baxter state based on energy barrier calculations. The results demonstrated the important role of areal fraction in anti-icing efficiency, and the negligible contribution of texture height. This insight into icing phenomena should lead to design of improved ice-phobic surfaces in the future.

  11. Design and operational parameters of a rooftop rainwater harvesting system: definition, sensitivity and verification.

    PubMed

    Mun, J S; Han, M Y

    2012-01-01

    The appropriate design and evaluation of a rainwater harvesting (RWH) system is necessary to improve system performance and the stability of the water supply. The main design parameters (DPs) of an RWH system are rainfall, catchment area, collection efficiency, tank volume and water demand. Its operational parameters (OPs) include rainwater use efficiency (RUE), water saving efficiency (WSE) and cycle number (CN). The sensitivity analysis of a rooftop RWH system's DPs to its OPs reveals that the ratio of tank volume to catchment area (V/A) for an RWH system in Seoul, South Korea is recommended between 0.03 and 0.08 in terms of rate of change in RUE. The appropriate design value of V/A is varied with D/A. The extra tank volume up to V/A of 0.15∼0.2 is also available, if necessary to secure more water. Accordingly, we should figure out suitable value or range of DPs based on the sensitivity analysis to optimize design of an RWH system or improve operation efficiency. The operational data employed in this study, which was carried out to validate the design and evaluation method of an RWH system, were obtained from the system in use at a dormitory complex at Seoul National University (SNU) in Korea. The results of these operational data are in good agreement with those used in the initial simulation. The proposed method and the results of this research will be useful in evaluating and comparing the performance of RWH systems. It is found that RUE can be increased by expanding the variety of rainwater uses, particularly in the high rainfall season. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater.

    PubMed

    Naderi, Kambiz Vaezzadeh; Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Abdekhodaie, Mohammad Jafar

    2017-05-04

    In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H 2 O 2 residual in the effluent of the combined UV-C/H 2 O 2 -VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOC o ) and hydrogen peroxide (H 2 O 2o ) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H 2 O 2 residual of 1.05% were TOC o of 213 mg L -1 , H 2 O 2o of 450 mg L -1 , and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H 2 O 2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H 2 O 2 , and UV-C/H 2 O 2 , were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H 2 O 2 -VUV processes. Results confirmed that an adequate combination of the UV-C/H 2 O 2 -VUV processes is essential for an optimized TOC removal and H 2 O 2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H 2 O 2 -VUV processes.

  13. Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design

    NASA Astrophysics Data System (ADS)

    Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu

    2018-02-01

    Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.

  14. Design of robust systems by means of the numerical optimization with harmonic changing of the model parameters

    NASA Astrophysics Data System (ADS)

    Zhmud, V. A.; Reva, I. L.; Dimitrov, L. V.

    2017-01-01

    The design of robust feedback systems by means of the numerical optimization method is mostly accomplished with modeling of the several systems simultaneously. In each such system, regulators are similar. But the object models are different. It includes all edge values from the possible variants of the object model parameters. With all this, not all possible sets of model parameters are taken into account. Hence, the regulator can be not robust, i. e. it can not provide system stability in some cases, which were not tested during the optimization procedure. The paper proposes an alternative method. It consists in sequent changing of all parameters according to harmonic low. The frequencies of changing of each parameter are aliquant. It provides full covering of the parameters space.

  15. Theoretical studies of system performance and adaptive optics design parameters

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1990-08-01

    The ultimate performance of an adaptive optics (AO) system can be sensitive to specific design parameters of individual components. The type and configuration of a wavefront sensor or the shape of individual deformable mirror actuator influence functions can have a profound effect on the correctability of the AO system. This paper will discuss the results of a theoretical study which employed both closed form analytic solutions and computer models. A parametric analysis of wavefront sensor characteristics, noise, and subaperture geometry are independently evaluated against system response to an aberrated wave characteristic of atmospheric turbulence. Similarly, the shape and extent of the deformable mirror influence function and the placement and number of actuators is evaluated to characterize the effects of fitting error and coupling.

  16. Hypochondria as an actual neurosis.

    PubMed

    Nissen, Bernd

    2017-09-27

    Freud defined hypochondria as an actual neurosis. In this paper the actual neurosis will be interpreted as unbound traumatic elements which threaten the self. In severe hypochondria, breakdowns have occurred, as outlined by Winnicott. The nameless traumatic elements of the breakdown have been encapsulated. The moment these encapsulated elements are liberated, an actual dynamic takes place which threatens the self with annihilation. Projective identification is not possible because no idea of containment exists. The self tries to evacuate these elements projectively, thus triggering a disintegrative regression. However, the object of this projection, which becomes a malign introject, is felt to remove the remaining psychical elements, forcing the worthless residue back into the self. In a final re-introjection, the self is threatened by unintegration. To save the self, these elements are displaced into an organ which becomes hypochondriacal, an autistoid object, protecting itself against unintegration and decomposition. An autistoid dynamic develops between the hypochondriac organ, the ego and the introject. Two short clinical vignettes illustrate the regressive dynamical and metapsychological considerations. Copyright © 2017 Institute of Psychoanalysis.

  17. Parameter estimating state reconstruction

    NASA Technical Reports Server (NTRS)

    George, E. B.

    1976-01-01

    Parameter estimation is considered for systems whose entire state cannot be measured. Linear observers are designed to recover the unmeasured states to a sufficient accuracy to permit the estimation process. There are three distinct dynamics that must be accommodated in the system design: the dynamics of the plant, the dynamics of the observer, and the system updating of the parameter estimation. The latter two are designed to minimize interaction of the involved systems. These techniques are extended to weakly nonlinear systems. The application to a simulation of a space shuttle POGO system test is of particular interest. A nonlinear simulation of the system is developed, observers designed, and the parameters estimated.

  18. Optimization of thiamethoxam adsorption parameters using multi-walled carbon nanotubes by means of fractional factorial design.

    PubMed

    Panić, Sanja; Rakić, Dušan; Guzsvány, Valéria; Kiss, Erne; Boskovic, Goran; Kónya, Zoltán; Kukovecz, Ákos

    2015-12-01

    The aim of this work was to evaluate significant factors affecting the thiamethoxam adsorption efficiency using oxidized multi-walled carbon nanotubes (MWCNTs) as adsorbents. Five factors (initial solution concentration of thiamethoxam in water, temperature, solution pH, MWCNTs weight and contact time) were investigated using 2V(5-1) fractional factorial design. The obtained linear model was statistically tested using analysis of variance (ANOVA) and the analysis of residuals was used to investigate the model validity. It was observed that the factors and their second-order interactions affecting the thiamethoxam removal can be divided into three groups: very important, moderately important and insignificant ones. The initial solution concentration was found to be the most influencing parameter on thiamethoxam adsorption from water. Optimization of the factors levels was carried out by minimizing those parameters which are usually critical in real life: the temperature (energy), contact time (money) and weight of MWCNTs (potential health hazard), in order to maximize the adsorbed amount of the pollutant. The results of maximal adsorbed thiamethoxam amount in both real and optimized experiments indicate that among minimized parameters the adsorption time is one that makes the largest difference. The results of this study indicate that fractional factorial design is very useful tool for screening the higher number of parameters and reducing the number of adsorption experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Seismic design parameters - A user guide

    USGS Publications Warehouse

    Leyendecker, E.V.; Frankel, A.D.; Rukstales, K.S.

    2001-01-01

    The 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings (1997 NEHRP Provisions) introduced seismic design procedure that is based on the explicit use of spectral response acceleration rather than the traditional peak ground acceleration and/or peak ground velocity or zone factors. The spectral response accelerations are obtained from spectral response acceleration maps accompanying the report. Maps are available for the United States and a number of U.S. territories. Since 1997 additional codes and standards have also adopted seismic design approaches based on the same procedure used in the NEHRP Provisions and the accompanying maps. The design documents using the 1997 NEHRP Provisions procedure may be divided into three categories -(1) Design of New Construction, (2) Design and Evaluation of Existing Construction, and (3) Design of Residential Construction. A CD-ROM has been prepared for use in conjunction with the design documents in each of these three categories. The spectral accelerations obtained using the software on the CD are the same as those that would be obtained by using the maps accompanying the design documents. The software has been prepared to operate on a personal computer using a Windows (Microsoft Corporation) operating environment and a point and click type of interface. The user can obtain the spectral acceleration values that would be obtained by use of the maps accompanying the design documents, include site factors appropriate for the Site Class provided by the user, calculate a response spectrum that includes the site factor, and plot a response spectrum. Sites may be located by providing the latitude-longitude or zip code for all areas covered by the maps. All of the maps used in the various documents are also included on the CDROM

  20. The new car assessment program: does it predict the relative safety of vehicles in actual crashes?

    PubMed

    Nirula, Ram; Mock, Charles N; Nathens, Avery B; Grossman, David C

    2004-10-01

    Federal motor vehicle safety standards are based on crash test dummy analyses that estimate the relative risk of traumatic brain injury (TBI) and severe thoracic injury (STI) by quantifying head (Head Injury Criterion [HIC]) and chest (Chest Gravity Score [CGS]) acceleration. The New Car Assessment Program (NCAP) combines these probabilities to yield the vehicle's five-star rating. The validity of the NCAP system as it relates to an actual motor vehicle crash (MVC) remains undetermined. We therefore sought to determine whether HIC and CGS accurately predict TBI and STI in actual crashes, and compared the NCAP five-star rating system to the rates of TBI and/or STI in actual MVCs. We analyzed frontal crashes with restrained drivers from the 1994 to 1998 National Automotive Sampling System. The relationship of HIC and CGS to the probabilities of TBI and STI derived from crash tests were respectively compared with the HIC-TBI and CGS-STI risk relationships observed in actual crashes while controlling for covariates. Receiver operating characteristic curves determined the sensitivity and specificity of HIC and CGS as predictors of TBI and STI, respectively. Estimates of the likelihood of TBI and/or STI (in actual MVCs) were compared with the expected probabilities of TBI and STI (determined by crash test analysis), as they relate to NCAP ratings. The crash tests overestimate TBI likelihood at HIC scores >800 and underestimate it at scores <500. STI likelihood is overestimated when CGS exceeds 40 g. Receiver operating characteristic curves demonstrated poor sensitivity and specificity of HIC and CGS in predicting injury. The actual MVC injury probability estimates did not vary between vehicles of different NCAP rating. HIC and CGS are poor predictors of TBI and STI in actual MVCs. The NCAP five-star rating system is unable to differentiate vehicles of varying crashworthiness in actual MVCs. More sensitive parameters need to be developed and incorporated into vehicle

  1. An algorithm for control system design via parameter optimization. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sinha, P. K.

    1972-01-01

    An algorithm for design via parameter optimization has been developed for linear-time-invariant control systems based on the model reference adaptive control concept. A cost functional is defined to evaluate the system response relative to nominal, which involves in general the error between the system and nominal response, its derivatives and the control signals. A program for the practical implementation of this algorithm has been developed, with the computational scheme for the evaluation of the performance index based on Lyapunov's theorem for stability of linear invariant systems.

  2. Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor.

    PubMed

    Hamouche, W; Maurini, C; Vidoli, S; Vincenti, A

    2017-08-01

    We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a 'gear-less motor', which is, in reality, a precession of the axis of principal curvature.

  3. Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor

    NASA Astrophysics Data System (ADS)

    Hamouche, W.; Maurini, C.; Vidoli, S.; Vincenti, A.

    2017-08-01

    We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a `gear-less motor', which is, in reality, a precession of the axis of principal curvature.

  4. Expected satiation alone does not predict actual intake of desserts.

    PubMed

    Guillocheau, Etienne; Davidenko, Olga; Marsset-Baglieri, Agnès; Darcel, Nicolas; Gaudichon, Claire; Tomé, Daniel; Fromentin, Gilles

    2018-04-01

    The degree to which consumers expect foods to satisfy hunger, referred to as expected satiation, has been reported to predict food intake. Yet this relationship has not been established precisely, at a quantitative level. We sought to explore this relationship in detail by determining whether expected satiation predicts the actual intake of semi-solid desserts. Two separate experiments were performed: the first used variations of a given food (eight apple purées), while the second involved a panel of different foods within a given category (eight desserts). Both experiments studied the consumption of two products assigned to volunteers based on their individual liking and expected satiation ratings, given ad libitum at the end of a standardised meal. A linear model was used to find predictors of food intake and included expected satiation scores, palatability scores, BMI, age, sex, TFEQ-R, TFEQ-D, water consumption during the meal, reported frequency of eating desserts, and reported frequency of consuming tested products as explanatory variables. Expected satiation was a significant predictor of actual food intake in both experiments (apple purée: F(1,97) = 18.60, P < .001; desserts: F(1,106) = 9.05, P < .01), along with other parameters such as product palatability and the volunteers' age, sex and food restriction (variation explained by the model/expected satiation in the experiments: 57%/23% and 36%/17%, respectively). However, we found a significant gap between expected and actual consumption of desserts, on group and on individual level. Our results confirm the importance of expected satiation as a predictor of subsequent food intake, but highlight the need to study individual consumption behaviour and preferences in order to fully understand the role of expected satiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Dai, Xiao-Xia; Feng, Yuan

    2015-12-01

    When modeling a stealth aircraft with low RCS (Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters are estimated via directly calculating the statistics of RCS. The Bayesian-Markov Chain Monte Carlo (Bayesian-MCMC) method is introduced herein to estimate the parameters so as to improve the fitting accuracies of fluctuation models. The parameter estimations of the lognormal and the Legendre polynomial models are reformulated in the Bayesian framework. The MCMC algorithm is then adopted to calculate the parameter estimates. Numerical results show that the distribution curves obtained by the proposed method exhibit improved consistence with the actual ones, compared with those fitted by the conventional method. The fitting accuracy could be improved by no less than 25% for both fluctuation models, which implies that the Bayesian-MCMC method might be a good candidate among the optimal parameter estimation methods for stealth aircraft RCS models. Project supported by the National Natural Science Foundation of China (Grant No. 61101173), the National Basic Research Program of China (Grant No. 613206), the National High Technology Research and Development Program of China (Grant No. 2012AA01A308), the State Scholarship Fund by the China Scholarship Council (CSC), and the Oversea Academic Training Funds, and University of Electronic Science and Technology of China (UESTC).

  6. Parameter Optimization for Feature and Hit Generation in a General Unknown Screening Method-Proof of Concept Study Using a Design of Experiment Approach for a High Resolution Mass Spectrometry Procedure after Data Independent Acquisition.

    PubMed

    Elmiger, Marco P; Poetzsch, Michael; Steuer, Andrea E; Kraemer, Thomas

    2018-03-06

    High resolution mass spectrometry and modern data independent acquisition (DIA) methods enable the creation of general unknown screening (GUS) procedures. However, even when DIA is used, its potential is far from being exploited, because often, the untargeted acquisition is followed by a targeted search. Applying an actual GUS (including untargeted screening) produces an immense amount of data that must be dealt with. An optimization of the parameters regulating the feature detection and hit generation algorithms of the data processing software could significantly reduce the amount of unnecessary data and thereby the workload. Design of experiment (DoE) approaches allow a simultaneous optimization of multiple parameters. In a first step, parameters are evaluated (crucial or noncrucial). Second, crucial parameters are optimized. The aim in this study was to reduce the number of hits, without missing analytes. The obtained parameter settings from the optimization were compared to the standard settings by analyzing a test set of blood samples spiked with 22 relevant analytes as well as 62 authentic forensic cases. The optimization lead to a marked reduction of workload (12.3 to 1.1% and 3.8 to 1.1% hits for the test set and the authentic cases, respectively) while simultaneously increasing the identification rate (68.2 to 86.4% and 68.8 to 88.1%, respectively). This proof of concept study emphasizes the great potential of DoE approaches to master the data overload resulting from modern data independent acquisition methods used for general unknown screening procedures by optimizing software parameters.

  7. Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning

    PubMed Central

    Baykal, Cenk; Torres, Luis G.; Alterovitz, Ron

    2015-01-01

    Concentric tube robots are tentacle-like medical robots that can bend around anatomical obstacles to access hard-to-reach clinical targets. The component tubes of these robots can be swapped prior to performing a task in order to customize the robot’s behavior and reachable workspace. Optimizing a robot’s design by appropriately selecting tube parameters can improve the robot’s effectiveness on a procedure-and patient-specific basis. In this paper, we present an algorithm that generates sets of concentric tube robot designs that can collectively maximize the reachable percentage of a given goal region in the human body. Our algorithm combines a search in the design space of a concentric tube robot using a global optimization method with a sampling-based motion planner in the robot’s configuration space in order to find sets of designs that enable motions to goal regions while avoiding contact with anatomical obstacles. We demonstrate the effectiveness of our algorithm in a simulated scenario based on lung anatomy. PMID:26951790

  8. Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning.

    PubMed

    Baykal, Cenk; Torres, Luis G; Alterovitz, Ron

    2015-09-28

    Concentric tube robots are tentacle-like medical robots that can bend around anatomical obstacles to access hard-to-reach clinical targets. The component tubes of these robots can be swapped prior to performing a task in order to customize the robot's behavior and reachable workspace. Optimizing a robot's design by appropriately selecting tube parameters can improve the robot's effectiveness on a procedure-and patient-specific basis. In this paper, we present an algorithm that generates sets of concentric tube robot designs that can collectively maximize the reachable percentage of a given goal region in the human body. Our algorithm combines a search in the design space of a concentric tube robot using a global optimization method with a sampling-based motion planner in the robot's configuration space in order to find sets of designs that enable motions to goal regions while avoiding contact with anatomical obstacles. We demonstrate the effectiveness of our algorithm in a simulated scenario based on lung anatomy.

  9. Empirical flow parameters - a tool for hydraulic model validity assessment : [summary].

    DOT National Transportation Integrated Search

    2013-10-01

    Hydraulic modeling assembles models based on generalizations of parameter values from textbooks, professional literature, computer program documentation, and engineering experience. Actual measurements adjacent to the model location are seldom availa...

  10. Optimal correction and design parameter search by modern methods of rigorous global optimization

    NASA Astrophysics Data System (ADS)

    Makino, K.; Berz, M.

    2011-07-01

    Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle

  11. ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García Pérez, Ana E.; Majewski, Steven R.; Shane, Neville

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution ( R  ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ {sup 2} minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and datamore » handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.« less

  12. Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer.

    PubMed

    Júnez-Ferreira, H E; Herrera, G S; González-Hita, L; Cardona, A; Mora-Rodríguez, J

    2016-01-01

    A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.

  13. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  14. Dissipated energy as a design parameter of coated conductors for their use in resistive fault current limiters

    NASA Astrophysics Data System (ADS)

    Schacherer, C.; Kudymow, A.; Noe, M.

    2008-02-01

    Coated conductors are suitable for many power applications like motors, magnets and superconducting fault current limiters (SCFCLs). For their use in resistive SCFCLs main requirements are quench stability and resistance development above Tc. Several coated conductors are available with different kinds of stabilization like thickness or material of cap-layer and additional stabilization. The stabilization can vary and has a great influence on the quench stability and quench behaviour of a coated conductor. Thus, for the dimensioning of a superconducting current limiting element there is a need of reliable and universal design parameters. This paper presents experimental quench test results on several coated conductor types with different stabilization and geometry. The test results show that the dissipated energy during a quench is a very useful parameter for the SCFCL design.

  15. Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Nanda, B. K.

    2018-04-01

    Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.

  16. 19 CFR 162.79b - Recovery of actual loss of duties, taxes and fees or actual loss of revenue.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Recovery of actual loss of duties, taxes and fees or actual loss of revenue. 162.79b Section 162.79b Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE...

  17. Overcoming the winner's curse: estimating penetrance parameters from case-control data.

    PubMed

    Zollner, Sebastian; Pritchard, Jonathan K

    2007-04-01

    Genomewide association studies are now a widely used approach in the search for loci that affect complex traits. After detection of significant association, estimates of penetrance and allele-frequency parameters for the associated variant indicate the importance of that variant and facilitate the planning of replication studies. However, when these estimates are based on the original data used to detect the variant, the results are affected by an ascertainment bias known as the "winner's curse." The actual genetic effect is typically smaller than its estimate. This overestimation of the genetic effect may cause replication studies to fail because the necessary sample size is underestimated. Here, we present an approach that corrects for the ascertainment bias and generates an estimate of the frequency of a variant and its penetrance parameters. The method produces a point estimate and confidence region for the parameter estimates. We study the performance of this method using simulated data sets and show that it is possible to greatly reduce the bias in the parameter estimates, even when the original association study had low power. The uncertainty of the estimate decreases with increasing sample size, independent of the power of the original test for association. Finally, we show that application of the method to case-control data can improve the design of replication studies considerably.

  18. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    NASA Astrophysics Data System (ADS)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  19. SELF-ACTUALIZATION AND THE UTILIZATION OF TALENT.

    ERIC Educational Resources Information Center

    FRENCH, JOHN R.P.; MILLER, DANIEL R.

    THIS STUDY ATTEMPTED (1) TO DEVELOP A THEORY OF THE CAUSES AND CONSEQUENCES OF SELF-ACTUALIZATION AS RELATED TO THE UTILIZATION OF TALENT, (2) TO FIT THE THEORY TO EXISTING DATA, AND (3) TO PLAN ONE OR MORE RESEARCH PROJECTS TO TEST THE THEORY. TWO ARTICLES ON IDENTITY AND MOTIVATION AND SELF-ACTUALIZATION AND SELF-IDENTITY THEORY REPORTED THE…

  20. Key parameters design of an aerial target detection system on a space-based platform

    NASA Astrophysics Data System (ADS)

    Zhu, Hanlu; Li, Yejin; Hu, Tingliang; Rao, Peng

    2018-02-01

    To ensure flight safety of an aerial aircraft and avoid recurrence of aircraft collisions, a method of multi-information fusion is proposed to design the key parameter to realize aircraft target detection on a space-based platform. The key parameters of a detection wave band and spatial resolution using the target-background absolute contrast, target-background relative contrast, and signal-to-clutter ratio were determined. This study also presented the signal-to-interference ratio for analyzing system performance. Key parameters are obtained through the simulation of a specific aircraft. And the simulation results show that the boundary ground sampling distance is 30 and 35 m in the mid- wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands for most aircraft detection, and the most reasonable detection wavebands is 3.4 to 4.2 μm and 4.35 to 4.5 μm in the MWIR bands, and 9.2 to 9.8 μm in the LWIR bands. We also found that the direction of detection has a great impact on the detection efficiency, especially in MWIR bands.

  1. Pharmacokinetic design optimization in children and estimation of maturation parameters: example of cytochrome P450 3A4.

    PubMed

    Bouillon-Pichault, Marion; Jullien, Vincent; Bazzoli, Caroline; Pons, Gérard; Tod, Michel

    2011-02-01

    The aim of this work was to determine whether optimizing the study design in terms of ages and sampling times for a drug eliminated solely via cytochrome P450 3A4 (CYP3A4) would allow us to accurately estimate the pharmacokinetic parameters throughout the entire childhood timespan, while taking into account age- and weight-related changes. A linear monocompartmental model with first-order absorption was used successively with three different residual error models and previously published pharmacokinetic parameters ("true values"). The optimal ages were established by D-optimization using the CYP3A4 maturation function to create "optimized demographic databases." The post-dose times for each previously selected age were determined by D-optimization using the pharmacokinetic model to create "optimized sparse sampling databases." We simulated concentrations by applying the population pharmacokinetic model to the optimized sparse sampling databases to create optimized concentration databases. The latter were modeled to estimate population pharmacokinetic parameters. We then compared true and estimated parameter values. The established optimal design comprised four age ranges: 0.008 years old (i.e., around 3 days), 0.192 years old (i.e., around 2 months), 1.325 years old, and adults, with the same number of subjects per group and three or four samples per subject, in accordance with the error model. The population pharmacokinetic parameters that we estimated with this design were precise and unbiased (root mean square error [RMSE] and mean prediction error [MPE] less than 11% for clearance and distribution volume and less than 18% for k(a)), whereas the maturation parameters were unbiased but less precise (MPE < 6% and RMSE < 37%). Based on our results, taking growth and maturation into account a priori in a pediatric pharmacokinetic study is theoretically feasible. However, it requires that very early ages be included in studies, which may present an obstacle to the

  2. 40 CFR 74.22 - Actual SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Actual SO2 emissions rate. 74.22... (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.22 Actual SO2 emissions... actual SO2 emissions rate shall be 1985. (2) For combustion sources that commenced operation after...

  3. An analysis of fuel conserving operational procedures and design modifications for bomber/transport aircraft. volume ii. Final report, 7 June 1976-7 July 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, R.K.

    1978-07-01

    Various proposed improvements in the design and operational procedures for bomber/transport aircraft are evaluated. The evaluation is performed in terms of the estimated savings in fuel consumption and in Direct Operating Cost (DOC). As an aid in the evaluation of design modifications, graphs of fuel and DOC savings as a function of the design parameters are developed. These graphs are based on actual mission trajectory data rather than some typical trajectory profile. The actual mission data is presented in terms of histograms which provide statistical information concerning altitude, air speed, take-off weight, landing weight, and mission time. Separate analyses aremore » performed on the following aircraft: the B-52G, the B-52H, the KC-135, the C-141, the C-130, and the C-5A. (Author)« less

  4. Multidisciplinary design optimisation of a recurve bow based on applications of the autogenetic design theory and distributed computing

    NASA Astrophysics Data System (ADS)

    Fritzsche, Matthias; Kittel, Konstantin; Blankenburg, Alexander; Vajna, Sándor

    2012-08-01

    The focus of this paper is to present a method of multidisciplinary design optimisation based on the autogenetic design theory (ADT) that provides methods, which are partially implemented in the optimisation software described here. The main thesis of the ADT is that biological evolution and the process of developing products are mainly similar, i.e. procedures from biological evolution can be transferred into product development. In order to fulfil requirements and boundary conditions of any kind (that may change at any time), both biological evolution and product development look for appropriate solution possibilities in a certain area, and try to optimise those that are actually promising by varying parameters and combinations of these solutions. As the time necessary for multidisciplinary design optimisations is a critical aspect in product development, ways to distribute the optimisation process with the effective use of unused calculating capacity, can reduce the optimisation time drastically. Finally, a practical example shows how ADT methods and distributed optimising are applied to improve a product.

  5. First-order kinetic gas generation model parameters for wet landfills.

    PubMed

    Faour, Ayman A; Reinhart, Debra R; You, Huaxin

    2007-01-01

    Landfill gas collection data from wet landfill cells were analyzed and first-order gas generation model parameters were estimated for the US EPA landfill gas emissions model (LandGEM). Parameters were determined through statistical comparison of predicted and actual gas collection. The US EPA LandGEM model appeared to fit the data well, provided it is preceded by a lag phase, which on average was 1.5 years. The first-order reaction rate constant, k, and the methane generation potential, L(o), were estimated for a set of landfills with short-term waste placement and long-term gas collection data. Mean and 95% confidence parameter estimates for these data sets were found using mixed-effects model regression followed by bootstrap analysis. The mean values for the specific methane volume produced during the lag phase (V(sto)), L(o), and k were 33 m(3)/Megagrams (Mg), 76 m(3)/Mg, and 0.28 year(-1), respectively. Parameters were also estimated for three full scale wet landfills where waste was placed over many years. The k and L(o) estimated for these landfills were 0.21 year(-1), 115 m(3)/Mg, 0.11 year(-1), 95 m(3)/Mg, and 0.12 year(-1) and 87 m(3)/Mg, respectively. A group of data points from wet landfills cells with short-term data were also analyzed. A conservative set of parameter estimates was suggested based on the upper 95% confidence interval parameters as a k of 0.3 year(-1) and a L(o) of 100 m(3)/Mg if design is optimized and the lag is minimized.

  6. Linear Parameter Varying Control Synthesis for Actuator Failure, Based on Estimated Parameter

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine

    2002-01-01

    The design of a linear parameter varying (LPV) controller for an aircraft at actuator failure cases is presented. The controller synthesis for actuator failure cases is formulated into linear matrix inequality (LMI) optimizations based on an estimated failure parameter with pre-defined estimation error bounds. The inherent conservatism of an LPV control synthesis methodology is reduced using a scaling factor on the uncertainty block which represents estimated parameter uncertainties. The fault parameter is estimated using the two-stage Kalman filter. The simulation results of the designed LPV controller for a HiMXT (Highly Maneuverable Aircraft Technology) vehicle with the on-line estimator show that the desired performance and robustness objectives are achieved for actuator failure cases.

  7. Enhanced sampling simulations of DNA step parameters.

    PubMed

    Karolak, Aleksandra; van der Vaart, Arjan

    2014-12-15

    A novel approach for the selection of step parameters as reaction coordinates in enhanced sampling simulations of DNA is presented. The method uses three atoms per base and does not require coordinate overlays or idealized base pairs. This allowed for a highly efficient implementation of the calculation of all step parameters and their Cartesian derivatives in molecular dynamics simulations. Good correlation between the calculated and actual twist, roll, tilt, shift, and slide parameters is obtained, while the correlation with rise is modest. The method is illustrated by its application to the methylated and unmethylated 5'-CATGTGACGTCACATG-3' double stranded DNA sequence. One-dimensional umbrella simulations indicate that the flexibility of the central CG step is only marginally affected by methylation. © 2014 Wiley Periodicals, Inc.

  8. Predicting water suppy and actual evapotranspiration of street trees

    NASA Astrophysics Data System (ADS)

    Wessolek, Gerd; Heiner, Moreen; Trinks, Steffen

    2017-04-01

    It's well known that street trees cool air temperature in summer-time by transpiration and shading and also reduce runoff. However, it's difficult to analyse if trees have water shortage or not. This contribution focus on predicting water supply, actual evapotranspiration, and runoff by using easily available climate data (precipiation, potential evapotranspiration) and site characteristics (water retention, space, sealing degree, groundwater depth). These parameter were used as input data for Hydro-Pedotransfer-Functions (HPTFs) allowing the estimation of the annual water budget. Results give statements on water supply of trees, drought stress, and additional water demand by irrigation. Procedure also analyse, to which extent the surrounding partly sealed surfaces deliver water to the trees. Four representative street canyons of Berlin City were analysed and evaluated within in training program for M.A. students of „Urban Eco-system Science" at the Technische Universität Berlin.

  9. Adolescents' attitudes toward antimarijuana ads, usage intentions, and actual marijuana usage.

    PubMed

    Alvaro, Eusebio M; Crano, William D; Siegel, Jason T; Hohman, Zachary; Johnson, Ian; Nakawaki, Brandon

    2013-12-01

    The association of adolescents' appraisals of the antimarijuana TV ads used in the National Youth Antidrug Media Campaign with future marijuana use was investigated. The 12- to 18-year-old respondents (N = 2,993) were first classified as users, resolute nonusers, or vulnerable nonusers (Crano, Siegel, Alvaro, Lac, & Hemovich, 2008). Usage status and the covariates of gender, age, and attitudes toward marijuana were used to predict attitudes toward the ads (Aad) in the first phase of a multilevel linear analysis. All covariates were significantly associated with Aad, as was usage status: Resolute nonusers evaluated the ads significantly more positively than vulnerable nonusers and users (all ps < .001), who did not differ. In the second phase, the covariates along with Aad and respondents' usage status predicted intentions and actual usage 1 year after initial measurement. The lagged analysis disclosed negative associations between Aad and usage intentions and between Aad and actual marijuana use (both ps < .05); however, this association held only for users (p < .01), not vulnerable or resolute nonusers. Users who reported more positive attitudes toward the ads were less likely to report intention to use marijuana and to continue marijuana use at 1-year follow-up. These findings may inform designers of persuasion-based prevention campaigns, guiding preimplementation efforts in the design of ads that targeted groups find appealing and thus, influential. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. Optimal supplementary frequency controller design using the wind farm frequency model and controller parameters stability region.

    PubMed

    Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad

    2018-03-01

    In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. [ACTUAL PROBLEMS OF HYGIENE SCIENCE AND PRACTICE IN THE PRESERVATION OF PUBLIC HEALTH].

    PubMed

    Onishchenko, G G

    2015-01-01

    In the article there are designated the state and actual hygiene tasks on the issue of environmental pollution and its effects on health of the population. There was emphasized the growing importance of chemical contamination of various objects of environment--air water, soil, and living environment. There is presented the analysis of data on different types of treatment of municipal waste in selected countries. There were shown the significance of the developed Guidance on risk assessmentfor public health as a toolfor making sound management decisions, prospects of using of the methodology of epidemiological mapping based on geoinformational technology (GIS technology). There was marked an important role of the younger generation of hygienists and health officers in further work on both preservation and improvement the health of the population in their countries, harmonization of scientific and practical solutions of actual problems of hygiene.

  12. Thermal Performance of Cryogenic Piping Multilayer Insulation in Actual Field Installations

    NASA Technical Reports Server (NTRS)

    Fesmire, J.; Augustnynowicz, S.; Thompson, K. (Technical Monitor)

    2002-01-01

    A standardized way of comparing the thermal performance of different pipelines in different sizes is needed. Vendor data for vacuum-insulated piping are typically given in heat leak rate per unit length (W/m) for a specific diameter pipeline. An overall k-value for actual field installations (k(sub oafi)) is therefore proposed as a more generalized measure for thermal performance comparison and design calculation. The k(sub oafi) provides a direct correspondence to the k-values reported for insulation materials and illustrates the large difference between ideal multilayer insulation (MLI) and actual MLI performance. In this experimental research study, a section of insulated piping was tested under cryogenic vacuum conditions, including simulated spacers and bending. Several different insulation systems were tested using a 1-meter-long cylindrical cryostat test apparatus. The simulated spacers tests showed significant degradation in the thermal performance of a given insulation system. An 18-meter-long pipeline test apparatus is now in operation at the Cryogenics Test Laboratory, NASA Kennedy Space Center, for conducting liquid nitrogen thermal performance tests.

  13. Functional brain mapping of actual car-driving using [18F]FDG-PET.

    PubMed

    Jeong, Myeonggi; Tashiro, Manabu; Singh, Laxsmi N; Yamaguchi, Keiichiro; Horikawa, Etsuo; Miyake, Masayasu; Watanuki, Shouichi; Iwata, Ren; Fukuda, Hiroshi; Takahashi, Yasuo; Itoh, Masatoshi

    2006-11-01

    This study aims at identifying the brain activation during actual car-driving on the road, and at comparing the results to those of previous studies on simulated car-driving. Thirty normal volunteers, aged 20 to 56 years, were divided into three subgroups, active driving, passive driving and control groups, for examination by positron emission tomography (PET) and [18F]2-deoxy-2-fluoro-D-glucose (FDG). The active driving subjects (n = 10) drove for 30 minutes on quiet normal roads with a few traffic signals. The passive driving subjects (n = 10) participated as passengers on the front seat. The control subjects (n = 10) remained seated in a lit room with their eyes open. Voxel-based t-statistics were applied using SPM2 to search brain activation among the subgroups mentioned above. Significant brain activation was detected during active driving in the primary and secondary visual cortices, primary sensorimotor areas, premotor area, parietal association area, cingulate gyrus, the parahippocampal gyrus as well as in thalamus and cerebellum. The passive driving manifested a similar-looking activation pattern, lacking activations in the premotor area, cingulate and parahippocampal gyri and thalamus. Direct comparison of the active and passive driving conditions revealed activation in the cerebellum. The result of actual driving looked similar to that of simulated driving, suggesting that visual perception and visuomotor coordination were the main brain functions while driving. In terms of attention and autonomic arousal, however, it seems there was a significant difference between simulated and actual driving possibly due to risk of accidents. Autonomic and emotional aspects of driving should be studied using an actual driving study-design.

  14. Design of acoustic emission monitoring system based on VC++

    NASA Astrophysics Data System (ADS)

    Yu, Yang; He, Wei

    2015-12-01

    At present, a lot of companies at home and abroad have researched and produced a batch of specialized monitoring instruments for acoustic emission (AE). Most of them cost highly and the system function exists in less stable and less portability for the testing environment and transmission distance and other aspects. Depending on the research background and the status quo, a dual channel intelligent acoustic emission monitoring system was designed based on Microsoft Foundation Classes in Visual Studio C++ to solve some of the problems in the acoustic emission research and meet the needs of actual monitoring task. It contains several modules such as main module, acquisition module, signal parameters setting module and so on. It could give out corrosion AE waveform and signal parameters results according to the main menu selected parameters. So the needed information could be extracted from the experiments datum to solve the problem deeply. This soft system is the important part of AE detection g system.

  15. Tutorial on Actual Space Environmental Hazards For Space Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Fennell, J. F.; Guild, T. B.; O'Brien, T. P.

    2013-12-01

    It has become common in the space science community to conduct research on diverse physical phenomena because they are thought to contribute to space weather. However, satellites contend with only three primary environmental hazards: single event effects, vehicle charging, and total dose, and not every physical phenomenon that occurs in space contributes in substantial ways to create these hazards. One consequence of the mismatch between actual threats and all-encompassing research is the often-described gap between research and operations; another is the creation of forecasts that provide no actionable information for design engineers or spacecraft operators. An example of the latter is the physics of magnetic field emergence on the Sun; the phenomenon is relevant to the formation and launch of coronal mass ejections and is also causally related to the solar energetic particles that may get accelerated in the interplanetary shock. Unfortunately for the research community, the engineering community mitigates the space weather threat (single-event effects from heavy ions above ~50 MeV/nucleon) with a worst-case specification of the environment and not with a prediction. Worst-case definition requires data mining of past events, while predictions involve large-scale systems science from the Sun to the Earth that is compelling for scientists and their funding agencies but not actionable for design or for most operations. Differing priorities among different space-faring organizations only compounds the confusion over what science research is relevant. Solar particle impacts to human crew arise mainly from the total ionizing dose from the solar protons, so the priority for prediction in the human spaceflight community is therefore much different than in the unmanned satellite community, while both communities refer to the fundamental phenomenon as space weather. Our goal in this paper is the presentation of a brief tutorial on the primary space environmental phenomena

  16. Tool use without a tool: kinematic characteristics of pantomiming as compared to actual use and the effect of brain damage.

    PubMed

    Hermsdörfer, Joachim; Li, Yong; Randerath, Jennifer; Goldenberg, Georg; Johannsen, Leif

    2012-04-01

    Movement goals and task mechanics differ substantially between actual tool use and corresponding pantomimes. In addition, apraxia seems to be more severe during pantomime than during actual tool use. Comparisons of these two modes of action execution using quantitative methods of movement analyses are rare. In the present study, repetitive scooping movements with a ladle from a bowl into a plate were recorded and movement kinematics was analyzed. Brain-damaged patients using their ipsilesional hand and healthy control subjects were tested in three conditions: pantomime, demonstration with the tool only, and actual use in the normal context. Analysis of the hand trajectories during the transport component revealed clear differences between the tasks, such as slower actual use and moderate deficits in patients with left brain damage (LBD). LBD patients were particularly impaired in the scooping component: LBD patients with apraxia exhibited reduced hand rotation at the bowl and the plate. The deficit was most obvious during pantomime but actual use was also affected, and reduced hand rotation was consistent across conditions as indicated by strong pair-wise correlations between task conditions. In healthy control subjects, correlations between movement parameters were most evident between the pantomime and demonstration conditions but weak in correlation pairs involving actual use. From these findings and published neuroimaging evidence, we conclude that for a specific tool-use action, common motor schemas are activated but are adjusted and modified according to the actual task constraints and demands. An apraxic LBD individual can show a deficit across all three action conditions, but the severity can differ substantially between conditions.

  17. Effect of combined digital imaging parameters on endodontic file measurements.

    PubMed

    de Oliveira, Matheus Lima; Pinto, Geraldo Camilo de Souza; Ambrosano, Glaucia Maria Bovi; Tosoni, Guilherme Monteiro

    2012-10-01

    This study assessed the effect of the combination of a dedicated endodontic filter, spatial resolution, and contrast resolution on the determination of endodontic file lengths. Forty extracted single-rooted teeth were x-rayed with K-files (ISO size 10 and 15) in the root canals. Images were acquired using the VistaScan system (Dürr Dental, Beitigheim-Bissingen, Germany) under different combining parameters of spatial resolution (10 and 25 line pairs per millimeter [lp/mm]) and contrast resolution (8- and 16-bit depths). Subsequently, a dedicated endodontic filter was applied on the 16-bit images, creating 2 additional parameters. Six observers measured the length of the endodontic files in the root canals using the software that accompanies the system. The mean values of the actual file lengths and the measurements of the radiographic images were submitted to 1-way analysis of variance and the Tukey test at a level of significance of 5%. The intraobserver reproducibility was assessed by the intraclass correlation coefficient. All combined image parameters showed excellent intraobserver agreement with intraclass correlation coefficient means higher than 0.98. The imaging parameter of 25 lp/mm and 16 bit associated with the use of the endodontic filter did not differ significantly from the actual file lengths when both file sizes were analyzed together or separately (P > .05). When the size 15 file was evaluated separately, only 8-bit images differed significantly from the actual file lengths (P ≤ .05). The combination of an endodontic filter with high spatial resolution and high contrast resolution is recommended for the determination of file lengths when using storage phosphor plates. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. An analysis of fuel conserving operational procedures and design modifications for bomber/transport aircraft. Volume I. Executive summary. Final report, 7 June 1976-7 July 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, R.

    1978-07-01

    Various proposed improvements in the design and operational procedures for bomber/transport aircraft are evaluated. The evaluation is performed in terms of the estimated savings in fuel consumption and in Direct Operating Cost (DOC). As an aid in the evaluation of design modifications, graphs of fuel and DOC savings as a function of the design parameters are developed. These graphs are based on actual mission trajectory data rather than some type trajectory profile. The actual mission data is presented in terms of histograms which provide statistical information concerning altitude, air speed, take-off weight, landing weights, and mission time. Separate analyses aremore » performed on the following aircraft: the B-52G, the B-52H, the KC-135, the C-141, the C-130, and the C-5A.« less

  19. Adolescents’ Attitudes toward Anti-marijuana Ads, Usage Intentions, and Actual Marijuana Usage

    PubMed Central

    Alvaro, Eusebio M.; Crano, William D.; Siegel, Jason T.; Hohman, Zachary; Johnson, Ian; Nakawaki, Brandon

    2015-01-01

    The association of adolescents’ appraisals of the anti-marijuana television ads used in the National Youth Anti-drug Media Campaign with future marijuana use was investigated. The 12 to 18 year old respondents (N = 2993) were first classified as users, resolute nonusers, or vulnerable nonusers (Crano, Siegel, Alvaro, Lac, & Hemovich, 2008). Usage status and the covariates of gender, age, and attitudes toward marijuana were used to predict attitudes toward the ads (Aad) in the first phase of a multi-level linear analysis. All covariates were significantly associated with Aad, as was usage status: resolute nonusers evaluated the ads significantly more positively than vulnerable nonusers and users (all p < .001), who did not differ. In the second phase, the covariates along with Aad and respondents’ usage status predicted intentions and actual usage one year after initial measurement. The lagged analysis disclosed negative associations between Aad and usage intentions, and between Aad and actual marijuana use (both p < .05); however, this association held only for users (p < .01), not vulnerable or resolute nonusers. Users reporting more positive attitudes towards the ads were less likely to report intention to use marijuana and to continue marijuana use at 1-year follow-up. These findings may inform designers of persuasion-based prevention campaigns, guiding pre-implementation efforts in the design of ads that targeted groups find appealing and thus, influential. PMID:23528197

  20. Cast Off expansion plan by rapid improvement through Optimization tool design, Tool Parameters and using Six Sigma’s ECRS Technique

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, T.; Saravanan, R.

    2017-03-01

    Powerful management concepts step-up the quality of the product, time saving in producing the product thereby increase the production rate, improves tools and techniques, work culture, work place and employee motivation and morale. In this paper discussed about the case study of optimizing the tool design, tool parameters to cast off expansion plan according ECRS technique. The proposed designs and optimal tool parameters yielded best results and meet the customer demand without expansion plan. Hence the work yielded huge savings of money (direct and indirect cost), time and improved the motivation and more of employees significantly.

  1. Electrical Characterization of 4H-SiC JFET Wafer: DC Parameter Variations for Extreme Temperature IC Design

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Chen, Liangyu; Spry, David J.; Beheim, Glenn M.; Chang, Carl W.

    2014-01-01

    This work reports DC electrical characterization of a 76 mm diameter 4H-SiC JFET test wafer fabricated as part of NASA's on-going efforts to realize medium-scale ICs with prolonged and stable circuit operation at temperatures as high as 500 degC. In particular, these measurements provide quantitative parameter ranges for use in JFET IC design and simulation. Larger than expected parameter variations were observed both as a function of position across the wafer as well as a function of ambient testing temperature from 23 degC to 500 degC.

  2. Motivators to participation in actual HIV vaccine trials.

    PubMed

    Dhalla, Shayesta; Poole, Gary

    2014-02-01

    An examination of actual HIV vaccine trials can contribute to an understanding of motivators for participation in these studies. Analysis of these motivators reveals that they can be categorized as social and personal benefits. Social benefits are generally altruistic, whereas personal benefits are psychological, physical, and financial. In this systematic review, the authors performed a literature search for actual preventive HIV vaccine trials reporting motivators to participation. Of studies conducted in the Organization for Economic Co-operation and Development (OECD) countries, the authors retrieved 12 studies reporting on social benefits and seven reporting on personal benefits. From the non-OECD countries, nine studies reported on social benefits and eight studies on personal benefits. Social benefits were most frequently described on macroscopic, altruistic levels. Personal benefits were most frequently psychological in nature. Rates of participation were compared between the OECD and the non-OECD countries. Knowledge of actual motivators in specific countries and regions can help target recruitment in various types of actual HIV vaccine trials.

  3. Neural network-based preprocessing to estimate the parameters of the X-ray emission of a single-temperature thermal plasma

    NASA Astrophysics Data System (ADS)

    Ichinohe, Y.; Yamada, S.; Miyazaki, N.; Saito, S.

    2018-04-01

    We present data preprocessing based on an artificial neural network to estimate the parameters of the X-ray emission spectra of a single-temperature thermal plasma. The method finds appropriate parameters close to the global optimum. The neural network is designed to learn the parameters of the thermal plasma (temperature, abundance, normalization and redshift) of the input spectra. After training using 9000 simulated X-ray spectra, the network has grown to predict all the unknown parameters with uncertainties of about a few per cent. The performance dependence on the network structure has been studied. We applied the neural network to an actual high-resolution spectrum obtained with Hitomi. The predicted plasma parameters agree with the known best-fitting parameters of the Perseus cluster within uncertainties of ≲10 per cent. The result shows that neural networks trained by simulated data might possibly be used to extract a feature built in the data. This would reduce human-intensive preprocessing costs before detailed spectral analysis, and would help us make the best use of the large quantities of spectral data that will be available in the coming decades.

  4. External Validity of Contingent Valuation: Comparing Hypothetical and Actual Payments.

    PubMed

    Ryan, Mandy; Mentzakis, Emmanouil; Jareinpituk, Suthi; Cairns, John

    2017-11-01

    Whilst contingent valuation is increasingly used in economics to value benefits, questions remain concerning its external validity that is do hypothetical responses match actual responses? We present results from the first within sample field test. Whilst Hypothetical No is always an Actual No, Hypothetical Yes exceed Actual Yes responses. A constant rate of response reversals across bids/prices could suggest theoretically consistent option value responses. Certainty calibrations (verbal and numerical response scales) minimise hypothetical-actual discrepancies offering a useful solution. Helping respondents resolve uncertainty may reduce the discrepancy between hypothetical and actual payments and thus lead to more accurate policy recommendations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Rational Behavioral Training and Changes in Self-Actualization.

    ERIC Educational Resources Information Center

    Johnson, Norbert; And Others

    1982-01-01

    Examined the effects on self-actualization of CETA supervisors who participated in a Rational Behavioral Training (RBT) group. The Personal Orientation Inventory (POI) was administered to experimental and control groups before and after the group. Results indicated the RBT experience enabled participants to move toward self-actualization. (RC)

  6. Self-Actualization Effects Of A Marathon Growth Group

    ERIC Educational Resources Information Center

    Jones, Dorothy S.; Medvene, Arnold M.

    1975-01-01

    This study examined the effects of a marathon group experience on university student's level of self-actualization two days and six weeks after the experience. Gains in self-actualization as a result of marathon group participation depended upon an individual's level of ego strength upon entering the group. (Author)

  7. Tracing Actual Causes

    DTIC Science & Technology

    2016-08-08

    actual values for variables in the SEM ), and an event e with M ,~u |= e, our definition answers the question : Which paths of the causal network G( M ...for each variable and a directed edge from vari- able X to Y if the equation for computing X uses Y . Given an SEM M , a context ~u (that supplies the...caused the event e1? Our definition answers this question as a set of causal slices, where each causal slice is a subgraph of G( M ). All paths in each

  8. Third Stokes parameter emission from a periodic water surface

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.

    1991-01-01

    An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.

  9. Development of engineering parameters for the design of metal biosorption waste treatment systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, W.S.

    1991-12-03

    Untreated landfill leachates and wastes from metal plating and mining operations are sources of environmental contamination by heavy metals. Because of their toxicity and potential for accumulation, the discharge of heavy metals must be controlled. Standard physical and chemical treatments used to remove metals from wastes such as concentration by electro-precipitation, ion exchange, solvent extraction, evaporative recovery, and conventional precipitation, are usually expensive and produce high quantities of sludge. Biosorption is the removal of metals from aqueous solutions by microorganisms. It is called biosorption rather than bioadsorption or bioaccumulation because the mechanisms of removal are not restricted to adsorption ormore » metabolic uptake and so the more general term is preferable and has come to be accepted. In this thesis the focus is one two microorganisms and two metals. However, the possible combinations of conditions such as pH, relative metal molarities, time of contact, and organism are numerous. These experiments are designed to provide optimized parameters to facilitate the design of a functioning biosorption system. The two metals chosen for study are copper and lead in aqueous solution. The two types of microorganisms chosen for testing include an actinomycete and a fungus. The purpose of this research is to identify the significant engineering parameters to be evaluated include reaction rates, equilibrium partitioning of metal ions between those in solution and those removed to the cells, optimum pH for achieving the removal or recovery goal, and biosorption selectivity for one metal over another.« less

  10. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  11. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  12. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  13. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  14. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH...

  15. The Process of Designing for Learning: Understanding University Teachers' Design Work

    ERIC Educational Resources Information Center

    Bennett, Sue; Agostinho, Shirley; Lockyer, Lori

    2017-01-01

    Interest in how to support the design work of university teachers has led to research and development initiatives that include technology-based design-support tools, online repositories, and technical specifications. Despite these initiatives, remarkably little is known about the design work that university teachers actually do. This paper…

  16. Parameter-tolerant design of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Chevallier, Christyves; Fressengeas, Nicolas; Jacquet, Joel; Almuneau, Guilhem; Laaroussi, Youness; Gauthier-Lafaye, Olivier; Cerutti, Laurent; Genty, Frédéric

    2015-02-01

    This work is devoted to the design of high contrast grating mirrors taking into account the technological constraints and tolerance of fabrication. First, a global optimization algorithm has been combined to a numerical analysis of grating structures (RCWA) to automatically design HCG mirrors. Then, the tolerances of the grating dimensions have been precisely studied to develop a robust optimization algorithm with which high contrast gratings, exhibiting not only a high efficiency but also large tolerance values, could be designed. Finally, several structures integrating previously designed HCGs has been simulated to validate and illustrate the interest of such gratings.

  17. Dancers' Perceived and Actual Knowledge of Anatomy.

    PubMed

    Kotler, Dana H; Lynch, Meaghan; Cushman, Daniel; Hu, Jason; Garner, Jocelyn

    2017-06-15

    Dancers are highly susceptible to musculoskeletal injuries and frequently require interaction with medical professionals. While many dancers have a finely tuned awareness of their bodies, their knowledge of the fundamentals of human anatomy is not uniform. There is a paucity of literature on the benefits of human anatomy education in dancers, though it seems intuitive that there should be a relationship. The purpose of this study was to assess dancers' perceived and actual knowledge of basic musculoskeletal anatomy and its relationship to function. Adult dancers at the undergraduate, pre-professional, and professional levels were surveyed through an anonymous online questionnaire. Questions included demographic information, dance techniques studied, anatomy training, and injury history. Subjects rated their perceived knowledge of anatomy and were tested with 15 multiple-choice questions on basic musculoskeletal anatomy. Four hundred seventy-five surveys were completed. Ordinal regression showed a correlation of perceived to actual knowledge of anatomy (p < 0.001). Factors that correlated with increases in both perceived and actual knowledge of anatomy included having taken an anatomy course of any type (p < 0.001) and increased age (p ≤ 0.001). Years of dance training and professional dancer status both significantly correlated with increased knowledge of anatomy (p < 0.001) but not perceived knowledge. Chi-square analysis showed that dancers with training in either modern or jazz dance had a significantly higher perceived, but not actual, knowledge when compared to those without training in those styles of dance (p < 0.001 and p = 0.011, respectively). In conclusion, dancers generally scored well on questions pertaining to basic musculoskeletal anatomy, and their perception correlated with their actual knowledge of anatomy. Factors that contribute to dancers' knowledge of anatomy include age, years of experience, professional dancer status, and anatomy training.

  18. The Self-Actualization of Polk Community College Students.

    ERIC Educational Resources Information Center

    Pearsall, Howard E.; Thompson, Paul V., Jr.

    This article investigates the concept of self-actualization introduced by Abraham Maslow (1954). A summary of Maslow's Needs Hierarchy, along with a description of the characteristics of the self-actualized person, is presented. An analysis of humanistic education reveals it has much to offer as a means of promoting the principles of…

  19. CFD analysis of a full-scale ceramic kiln module under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Venturelli, Matteo

    2017-11-01

    The paper focuses on the CFD analysis of a full-scale module of an industrial ceramic kiln under actual operating conditions. The multi-dimensional analysis includes the real geometry of a ceramic kiln module employed in the preheating and firing sections and investigates the heat transfer between the tiles and the burners' flame as well as the many components that comprise the module. Particular attention is devoted to the simulation of the convective flow field in the upper and lower chambers and to the effects of radiation on the different materials is addressed. The assessment of the radiation contribution to the tiles temperature is paramount to the improvement of the performance of the kiln in terms of energy efficiency and fuel consumption. The CFD analysis is combined to a lumped and distributed parameter model of the entire kiln in order to simulate the module behaviour at the boundaries under actual operating conditions. Finally, the CFD simulation is employed to address the effects of the module operating conditions on the tiles' temperature distribution in order to improve the temperature uniformity as well as to enhance the energy efficiency of the system and thus to reduce the fuel consumption.

  20. On Nb Silicide Based Alloys: Alloy Design and Selection.

    PubMed

    Tsakiropoulos, Panos

    2018-05-18

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb₅Si₃ (Materials 11 (2018) 69), and hexagonal C14-NbCr₂ and cubic A15-Nb₃X phases (Materials 11 (2018) 395) and eutectics with Nb ss and Nb₅Si₃ (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys.

  1. Design-Parameters Setup for Power-Split Dual-Regime IVT

    NASA Astrophysics Data System (ADS)

    Preda, Ion; Ciolan, Gheorghe; Covaciu, Dinu

    2017-10-01

    To analyze the working possibilities of power-split infinitely variable transmissions (IVTs) it is necessary to follow a systematic approach. The method proposed in this paper consists of generating a block diagram of the transmission and then, based on this diagram, to derive the kinematics and dynamics equations of the transmission. For an actual numerical case, the derived equations are used to find characteristic values of the transmission components (gear and chain drives, planetary units) necessary to calculate the speed ratios, the speeds, torques and powers acting on the shafts and coupling (control) elements, and even to estimate the overall efficiency of the transmission.

  2. On the problem of modeling for parameter identification in distributed structures

    NASA Technical Reports Server (NTRS)

    Norris, Mark A.; Meirovitch, Leonard

    1988-01-01

    Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above.

  3. Acoustical characterization and parameter optimization of polymeric noise control materials

    NASA Astrophysics Data System (ADS)

    Homsi, Emile N.

    2003-10-01

    The sound transmission loss (STL) characteristics of polymer-based materials are considered. Analytical models that predict, characterize and optimize the STL of polymeric materials, with respect to physical parameters that affect performance, are developed for single layer panel configuration and adapted for layered panel construction with homogenous core. An optimum set of material parameters is selected and translated into practical applications for validation. Sound attenuating thermoplastic materials designed to be used as barrier systems in the automotive and consumer industries have certain acoustical characteristics that vary in function of the stiffness and density of the selected material. The validity and applicability of existing theory is explored, and since STL is influenced by factors such as the surface mass density of the panel's material, a method is modified to improve STL performance and optimize load-bearing attributes. An experimentally derived function is applied to the model for better correlation. In-phase and out-of-phase motion of top and bottom layers are considered. It was found that the layered construction of the co-injection type would exhibit fused planes at the interface and move in-phase. The model for the single layer case is adapted to the layered case where it would behave as a single panel. Primary physical parameters that affect STL are identified and manipulated. Theoretical analysis is linked to the resin's matrix attribute. High STL material with representative characteristics is evaluated versus standard resins. It was found that high STL could be achieved by altering materials' matrix and by integrating design solution in the low frequency range. A suggested numerical approach is described for STL evaluation of simple and complex geometries. In practice, validation on actual vehicle systems proved the adequacy of the acoustical characterization process.

  4. Matching and Mismatching between the Pedagogical Design Principles of a Math Game and the Actual Practices of Play

    ERIC Educational Resources Information Center

    Lindstrom, P.; Gulz, A.; Haake, M.; Sjoden, B.

    2011-01-01

    The article reports and discusses a long-term qualitative study of forty 8-10-year-old students who regularly played a math game during math lessons for 9 weeks. The goal was to explore the relations between (i) some of the "pedagogical principles" that underlie the game and (ii) the "playing practice" in terms of what actually takes place when…

  5. Doubly negative isotropic elastic metamaterial for sub-wavelength focusing: Design and realization

    NASA Astrophysics Data System (ADS)

    Oh, Joo Hwan; Seung, Hong Min; Kim, Yoon Young

    2017-12-01

    In spite of much progress in elastic metamaterials, tuning the effective density and stiffness to desired values ranging from negatives to large positives is still difficult. In particular, simultaneous realization of double negativity and isotropy, critical in sub-wavelength focusing, is very challenging since anisotropy is usually unavoidable in resonance-based metamaterials. The main difficulty is that there is no established systematic design method for simultaneous achieving of double negativity and isotropy. Thus, we propose a unique elastic metamaterial unit cell with which simultaneous realization can be achieved by an explicit step-by-step approach. The unit cell of the proposed metamaterial can be accurately modeled as an equivalent mass-spring system so that the effective properties can be easily controlled with the design parameters. The actual realization was carried out by acquiring the desired properties in sequential steps which is in detail. The specific application for this study is on sub-wavelength focusing, which will be demonstrated by waves from a single point source focused on a region smaller than half the wavelength. Actual experiments were performed on an aluminum plate where the designed metamaterial flat lens was imbedded. The results acquired through simulations and experiments suggest potential applications of the proposed metamaterial and the systematic design approach in advanced acoustic surgery or non-destructive testing.

  6. Lecture Hall and Learning Design: A Survey of Variables, Parameters, Criteria and Interrelationships for Audio-Visual Presentation Systems and Audience Reception.

    ERIC Educational Resources Information Center

    Justin, J. Karl

    Variables and parameters affecting architectural planning and audiovisual systems selection for lecture halls and other learning spaces are surveyed. Interrelationships of factors are discussed, including--(1) design requirements for modern educational techniques as differentiated from cinema, theater or auditorium design, (2) general hall…

  7. The influence of design parameters on the performance of FBAR in 10-14 GHz

    NASA Astrophysics Data System (ADS)

    Nor, N. I. M.; Osman, R. A. M.; Idris, M. S.; Khalid, N.; Mohamad Isa, M.; Ahmad, N.; Mat Isa, Siti S.; Ramli, Muhammad M.; Kasjoo, S. R.

    2017-11-01

    This research presents the analysis of the influence of design parameters on the performance of film bilk acoustic wave resonator (FBAR) working from 10 GHz to 14 GHz. The analysis is done by implementing one-dimensional (1-D) modellings, which are 1-D Mason model and Butterworth Van Dyke (BVD) model. The physical parameters such as piezoelectric materials and its thickness, and size of area affecting the characteristics of the FBAR are analyzed in detail. Zinc oxide (ZnO) and aluminum nitride (AlN) are chosen as the piezoelectric materials. The resonance area is varied at 25μm×25μm to 35μm×35μm. From the analysis, it is found that as the frequency increases, the thickness of the piezoelectric material decreases. Meanwhile, the static capacitance increases as the frequency increases. It is also found that as the area increases, the electrical impedance and static capacitance also increases.

  8. Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huidong; Deng, Zhiqun; Yuan, Yong

    2012-07-02

    The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. As part of the transmitter downsizing effort some of the design parameters of the lead zirconate titanate (PZT) ceramic tube transducer in the transmitter were studied, including the type of PZT, the backing material, the necessary drive voltage, the transmitting bandwidth and the length ofmore » the transducer. It was found that, to satisfy the 156-dB source level requirement of JSATS, a square wave with a 10-volt amplitude is required to drive 'soft' PZT transducers. PZT-5H demonstrated the best source level performance. For Navy types I and II, 16 volts or 18 volts were needed. Ethylene-propylene-diene monomer (EPDM) closed-cell foam was found to be the backing material providing the highest source level. The effect of tube length on the source level is also demonstrated in this paper, providing quantitative information for downsizing of small piezoelectric transmitters.« less

  9. Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.

  10. Electrodermal responses to implied versus actual violence on television.

    PubMed

    Kalamas, A D; Gruber, M L

    1998-01-01

    The electrodermal response (EDR) of children watching a violent show was measured. Particular attention was paid to the type of violence (actual or implied) that prompted an EDR. In addition, the impact of the auditory component (sounds associated with violence) of the show was evaluated. Implied violent stimuli, such as the villain's face, elicited the strongest EDR. The elements that elicited the weakest responses were the actual violent stimuli, such as stabbing. The background noise and voices of the sound track enhanced the total number of EDRs. The results suggest that implied violence may elicit more fear (as measured by EDRs) than actual violence does and that sounds alone contribute significantly to the emotional response to television violence. One should not, therefore, categorically assume that a show with mostly actual violence evokes less fear than one with mostly implied violence.

  11. Photogrammetric determination of discrepancies between actual and planned position of dental implants

    NASA Astrophysics Data System (ADS)

    Forlani, G.; Rivara, F.

    2014-05-01

    The paper describes the design and testing of a photogrammetric measurement protocol set up to determine the discrepancies between the planned and actual position of computer-guided template-based dental implants. Two moulds with the implants positioned in pre- and post- intervention are produced and separately imaged with a highly redundant block of convergent images; the model with the implants is positioned on a steel frame with control points and with suitable targets attached. The theoretical accuracy of the system is better than 20 micrometers and 0.3-0.4° respectively for positions of implants and directions of implant axes. In order to compare positions and angles between the planned and actual position of an implant, coordinates and axes directions are brought to a common reference system with a Helmert transformation. A procedure for comparison of positions and directions to identify out-of-tolerance discrepancies is presented; a numerical simulation study shows the effectiveness of the procedure in identifying the implants with significant discrepancies between pre- and post- intervention.

  12. Planar air-bearing microgravity simulators: Review of applications, existing solutions and design parameters

    NASA Astrophysics Data System (ADS)

    Rybus, Tomasz; Seweryn, Karol

    2016-03-01

    All devices designed to be used in space must be thoroughly tested in relevant conditions. For several classes of devices the reduced gravity conditions are the key factor. In early stages of development and later due to financial reasons, the tests need to be done on Earth. However, in Earth conditions it is impossible to obtain a different gravity field independent on all linear and rotational spatial coordinates. Therefore, various test-bed systems are used, with their design driven by the device's specific needs. One of such test-beds are planar air-bearing microgravity simulators. In such an approach, the tested objects (e.g., manipulators intended for on-orbit operations or vehicles simulating satellites in a close formation flight) are mounted on planar air-bearings that allow almost frictionless motion on a flat surface, thus simulating microgravity conditions in two dimensions. In this paper we present a comprehensive review of research activities related to planar air-bearing microgravity simulators, demonstrating achievements of the most active research groups and describing newest trends and ideas, such as tests of landing gears for low-g bodies. Major design parameters of air-bearing test-beds are also reviewed and a list of notable existing test-beds is presented.

  13. Development of model for prediction of Leachate Pollution Index (LPI) in absence of leachate parameters.

    PubMed

    Lothe, Anjali G; Sinha, Alok

    2017-05-01

    Leachate pollution index (LPI) is an environmental index which quantifies the pollution potential of leachate generated in landfill site. Calculation of Leachate pollution index (LPI) is based on concentration of 18 parameters present in leachate. However, in case of non-availability of all 18 parameters evaluation of actual values of LPI becomes difficult. In this study, a model has been developed to predict the actual values of LPI in case of partial availability of parameters. This model generates eleven equations that helps in determination of upper and lower limit of LPI. The geometric mean of these two values results in LPI value. Application of this model to three landfill site results in LPI value with an error of ±20% for ∑ i n w i ⩾0.6. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Self-Actualization and the Human Tendency for Varied Experience

    ERIC Educational Resources Information Center

    Schwartz, Marilyn M.; Gaines, Lawrence S.

    1974-01-01

    Examines the hypothesis that a significant correlate of self-actualization may be the subjective expression of the tendency towards novelty experiencing and examines the interaction of self-actualization level and specific components of the novelty experiencing construct. (Author/RC)

  15. Evaluating the process parameters of the dry coating process using a 2(5-1) factorial design.

    PubMed

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2013-02-01

    A recent development of coating technology is dry coating, where polymer powder and liquid plasticizer are layered on the cores without using organic solvents or water. Several studies evaluating the process were introduced in literature, however, little information about the critical process parameters (CPPs) is given. Aim of the study was the investigation and optimization of CPPs with respect to one of the critical quality attributes (CQAs), the coating efficiency of the dry coating process in a rotary fluid bed. Theophylline pellets were coated with hydroxypropyl methylcellulose acetate succinate as enteric film former and triethyl citrate and acetylated monoglyceride as plasticizer. A 2(5-1) design of experiments (DOEs) was created investigating five independent process parameters namely coating temperature, curing temperature, feeding/spraying rate, air flow and rotor speed. The results were evaluated by multilinear regression using the software Modde(®) 7. It is shown, that generally, low feeding/spraying rates and low rotor speeds increase coating efficiency. High coating temperatures enhance coating efficiency, whereas medium curing temperatures have been found to be optimum in terms of coating efficiency. This study provides a scientific base for the design of efficient dry coating processes with respect to coating efficiency.

  16. Design as Storytelling

    ERIC Educational Resources Information Center

    Parrish, Patrick

    2006-01-01

    Technical problem solving as a model for instructional design (ID) has its strengths, and it has done much to provide designers strategies for their work, but it has substantial limitations as well. For one, it does not do a good job in describing how designers actually think. Slavish adherence to its methods can also be considered responsible for…

  17. Enzyme reactor design under thermal inactivation.

    PubMed

    Illanes, Andrés; Wilson, Lorena

    2003-01-01

    Temperature is a very relevant variable for any bioprocess. Temperature optimization of bioreactor operation is a key aspect for process economics. This is especially true for enzyme-catalyzed processes, because enzymes are complex, unstable catalysts whose technological potential relies on their operational stability. Enzyme reactor design is presented with a special emphasis on the effect of thermal inactivation. Enzyme thermal inactivation is a very complex process from a mechanistic point of view. However, for the purpose of enzyme reactor design, it has been oversimplified frequently, considering one-stage first-order kinetics of inactivation and data gathered under nonreactive conditions that poorly represent the actual conditions within the reactor. More complex mechanisms are frequent, especially in the case of immobilized enzymes, and most important is the effect of catalytic modulators (substrates and products) on enzyme stability under operation conditions. This review focuses primarily on reactor design and operation under modulated thermal inactivation. It also presents a scheme for bioreactor temperature optimization, based on validated temperature-explicit functions for all the kinetic and inactivation parameters involved. More conventional enzyme reactor design is presented merely as a background for the purpose of highlighting the need for a deeper insight into enzyme inactivation for proper bioreactor design.

  18. Computer Program for Analysis, Design and Optimization of Propulsion, Dynamics, and Kinematics of Multistage Rockets

    NASA Astrophysics Data System (ADS)

    Lali, Mehdi

    2009-03-01

    A comprehensive computer program is designed in MATLAB to analyze, design and optimize the propulsion, dynamics, thermodynamics, and kinematics of any serial multi-staging rocket for a set of given data. The program is quite user-friendly. It comprises two main sections: "analysis and design" and "optimization." Each section has a GUI (Graphical User Interface) in which the rocket's data are entered by the user and by which the program is run. The first section analyzes the performance of the rocket that is previously devised by the user. Numerous plots and subplots are provided to display the performance of the rocket. The second section of the program finds the "optimum trajectory" via billions of iterations and computations which are done through sophisticated algorithms using numerical methods and incremental integrations. Innovative techniques are applied to calculate the optimal parameters for the engine and designing the "optimal pitch program." This computer program is stand-alone in such a way that it calculates almost every design parameter in regards to rocket propulsion and dynamics. It is meant to be used for actual launch operations as well as educational and research purposes.

  19. Calculation of parameters of technological equipment for deep-sea mining

    NASA Astrophysics Data System (ADS)

    Yungmeister, D. A.; Ivanov, S. E.; Isaev, A. I.

    2018-03-01

    The actual problem of extracting minerals from the bottom of the world ocean is considered. On the ocean floor, three types of minerals are of interest: iron-manganese concretions (IMC), cobalt-manganese crusts (CMC) and sulphides. The analysis of known designs of machines and complexes for the extraction of IMC is performed. These machines are based on the principle of excavating the bottom surface; however such methods do not always correspond to “gentle” methods of mining. The ecological purity of such mining methods does not meet the necessary requirements. Such machines require the transmission of high electric power through the water column, which in some cases is a significant challenge. The authors analyzed the options of transportation of the extracted mineral from the bottom. The paper describes the design of machines that collect IMC by the method of vacuum suction. In this method, the gripping plates or drums are provided with cavities in which a vacuum is created and individual IMC are attracted to the devices by a pressure drop. The work of such machines can be called “gentle” processing technology of the bottom areas. Their environmental impact is significantly lower than mechanical devices that carry out the raking of IMC. The parameters of the device for lifting the IMC collected on the bottom are calculated. With the use of Kevlar ropes of serial production up to 0.06 meters in diameter, with a cycle time of up to 2 hours and a lifting speed of up to 3 meters per second, a productivity of about 400,000 tons per year can be realized for IMC. The development of machines based on the calculated parameters and approbation of their designs will create a unique complex for the extraction of minerals at oceanic deposits.

  20. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central…

  1. Simultaneous state-parameter estimation supports the evaluation of data assimilation performance and measurement design for soil-water-atmosphere-plant system

    NASA Astrophysics Data System (ADS)

    Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin

    2017-12-01

    Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.

  2. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties

    PubMed Central

    Zhou, Kesong; Ma, Wenyou; Attard, Bonnie; Zhang, Panpan; Kuang, Tongchun

    2018-01-01

    Abstract Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. PMID:29707073

  3. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties.

    PubMed

    Tan, Chaolin; Zhou, Kesong; Ma, Wenyou; Attard, Bonnie; Zhang, Panpan; Kuang, Tongchun

    2018-01-01

    Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm 3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV 0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.

  4. A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation.

    PubMed

    Layton, D M; Bundschuh, R

    2005-01-01

    Computational RNA secondary structure prediction is rather well established. However, such prediction algorithms always depend on a large number of experimentally measured parameters. Here, we study how sensitive structure prediction algorithms are to changes in these parameters. We found already that for changes corresponding to the actual experimental error to which these parameters have been determined, 30% of the structure are falsely predicted whereas the ground state structure is preserved under parameter perturbation in only 5% of all the cases. We establish that base-pairing probabilities calculated in a thermal ensemble are viable although not a perfect measure for the reliability of the prediction of individual structure elements. Here, a new measure of stability using parameter perturbation is proposed, and its limitations are discussed.

  5. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B.

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for themore » proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.« less

  6. Re-typograph phase I: a proof-of-concept for typeface parameter extraction from historical documents

    NASA Astrophysics Data System (ADS)

    Lamiroy, Bart; Bouville, Thomas; Blégean, Julien; Cao, Hongliu; Ghamizi, Salah; Houpin, Romain; Lloyd, Matthias

    2015-01-01

    This paper reports on the first phase of an attempt to create a full retro-engineering pipeline that aims to construct a complete set of coherent typographic parameters defining the typefaces used in a printed homogenous text. It should be stressed that this process cannot reasonably be expected to be fully automatic and that it is designed to include human interaction. Although font design is governed by a set of quite robust and formal geometric rulesets, it still heavily relies on subjective human interpretation. Furthermore, different parameters, applied to the generic rulesets may actually result in quite similar and visually difficult to distinguish typefaces, making the retro-engineering an inverse problem that is ill conditioned once shape distortions (related to the printing and/or scanning process) come into play. This work is the first phase of a long iterative process, in which we will progressively study and assess the techniques from the state-of-the-art that are most suited to our problem and investigate new directions when they prove to not quite adequate. As a first step, this is more of a feasibility proof-of-concept, that will allow us to clearly pinpoint the items that will require more in-depth research over the next iterations.

  7. Design and Analyze a New Measuring Lift Device for Fin Stabilizers Using Stiffness Matrix of Euler-Bernoulli Beam

    PubMed Central

    Liang, Lihua; Sun, Mingxiao; Shi, Hongyu; Luan, Tiantian

    2017-01-01

    Fin-angle feedback control is usually used in conventional fin stabilizers, and its actual anti-rolling effect is difficult to reach theoretical design requirements. Primarily, lift of control torque is a theoretical value calculated by static hydrodynamic characteristics of fin. However, hydrodynamic characteristics of fin are dynamic while fin is moving in waves. As a result, there is a large deviation between actual value and theoretical value of lift. Firstly, the reasons of deviation are analyzed theoretically, which could avoid a variety of interference factors and complex theoretical derivations. Secondly, a new device is designed for direct measurement of actual lift, which is composed of fin-shaft combined mechanism and sensors. This new device can make fin-shaft not only be the basic function of rotating fin, but also detect actual lift. Through analysis using stiffness matrix of Euler-Bernoulli beam, displacement of shaft-core end is measured instead of lift which is difficult to measure. Then quantitative relationship between lift and displacement is defined. Three main factors are analyzed with quantitative relationship. What is more, two installation modes of sensors and a removable shaft-end cover are proposed according to hydrodynamic characteristics of fin. Thus the new device contributes to maintenance and measurement. Lastly, the effectiveness and accuracy of device are verified by contrasting calculation and simulation on the basis of actual design parameters. And the new measuring lift method can be proved to be effective through experiments. The new device is achieved from conventional fin stabilizers. Accordingly, the reliability of original equipment is inherited. The alteration of fin stabilizers is minor, which is suitable for engineering application. In addition, the flexural properties of fin-shaft are digitized with analysis of stiffness matrix. This method provides theoretical support for engineering application by carrying out finite

  8. Applicability of Monte-Carlo Simulation to Equipment Design of Radioactive Noble Gas Monitor

    NASA Astrophysics Data System (ADS)

    Sakai, Hirotaka; Hattori, Kanako; Umemura, Norihiro

    In the nuclear facilities, radioactive noble gas is continuously monitored by using the radioactive noble gas monitor with beta-sensitive plastic scintillation radiation detector. The detection efficiency of the monitor is generally calibrated by using a calibration loop and standard radioactive noble gases such as 85Kr. In this study, the applicability of PHITS to the equipment design of the radioactive noble gas monitor was evaluated by comparing the calculated results to the test results obtained by actual calibration loop tests to simplify the radiation monitor design evaluation. It was confirmed that the calculated results were well matched to the test results of the monitor after the modeling. In addition, the key parameters for equipment design, such as thickness of detector window or depth of the sampler, were also specified and evaluated.

  9. Assessing the Desired and Actual Levels of Teachers' Participation in Decision-Making in Secondary Schools of Ethiopia

    ERIC Educational Resources Information Center

    Bademo, Yismaw; Tefera, Bekalu Ferede

    2016-01-01

    This study was conducted to assess the desired and actual levels of teachers' participation in decision-making process in Ethiopian secondary schools. For this, the study employed a cross-sectional survey design collecting data from sampled secondary school teachers (n = 258) found in Assosa Zone, Benishangual Gumuz Regional state, Ethiopia.…

  10. Design and Checking Analysis of Injection Mold for a Plastic Cup

    NASA Astrophysics Data System (ADS)

    Li, Xuebing

    2018-03-01

    A special injection mold was designed for the structural characteristics of a plastic cup part. The mold was simulated by Moldflow software and verified by calculating the stripping force, the pulling force and the clamping force of the mold so that to determine the appropriate injection parameters. It has been proved that the injection mold is effective and practical in the actual producing and can meet the quality requirements during the course of using it, which solved some problems for injection molding of this kind of parts and can provide some reference for the production of other products in the same industry.

  11. Carbon Nanotubes as FET Channel: Analog Design Optimization considering CNT Parameter Variability

    NASA Astrophysics Data System (ADS)

    Samar Ansari, Mohd.; Tripathi, S. K.

    2017-08-01

    Carbon nanotubes (CNTs), both single-walled as well as multi-walled, have been employed in a plethora of applications pertinent to semiconductor materials and devices including, but not limited to, biotechnology, material science, nanoelectronics and nano-electro mechanical systems (NEMS). The Carbon Nanotube Field Effect Transistor (CNFET) is one such electronic device which effectively utilizes CNTs to achieve a boost in the channel conduction thereby yielding superior performance over standard MOSFETs. This paper explores the effects of variability in CNT physical parameters viz. nanotube diameter, pitch, and number of CNT in the transistor channel, on the performance of a chosen analog circuit. It is further shown that from the analyses performed, an optimal design of the CNFETs can be derived for optimizing the performance of the analog circuit as per a given specification set.

  12. Nominal vs. actual supersaturation of solutions

    NASA Astrophysics Data System (ADS)

    Borisenko, Alexander

    2018-03-01

    Following the formalism of the Classical Nucleation Theory beyond the dilute solution approximation, this paper considers a difference between the actual solute supersaturation (given by the present-to-saturated solute activity ratio) and the nominal supersaturation (given by the present-to-saturated solute concentration ratio) due to formation of subcritical transient solute clusters, called heterophase fluctuations. Based on their distribution function, we introduce an algebraic equation of supersaturation that couples the nominal supersaturation of a binary metastable solution with its actual supersaturation and a function of the specific interface energy and temperature. The applicability of this approach is validated by comparison to simulation data [(Clouet et al., Phys. Rev. B 69, 064109 (2004)] on nucleation of Al3Zr and Al3Sc in model binary Al alloys.

  13. The Actual Mass of the Object Orbiting Epsilon Eridani

    NASA Astrophysics Data System (ADS)

    Gatewood, G.

    2000-10-01

    We have tested our 112 Multichannel Astrometric Photometer (MAP) (Gatewood 1987, AJ 94, 213) observations (beginning in 1988) of Epsilon Eridani against the orbital elements provided to us by W. Cochran (private communication). The reduction algorithm is detailed most recently by Gatewood, Han, and Black (2000 ApJ Letters, in press). The seven year period is clearly shown in a variance vs trial periods plot. Although it is near the limit of the current instrument, the astrometric orbital motion is apparent in the residuals to a standard derivation of the star's proper motion and parallax. The astrometric orbital parameters derived by forcing the spectroscopic elements are: semimajor axis = 1.51 +/- 0.44 mas, node of the orbit on the sky = 120 +/- 28 deg, inclination out of the plane of the sky = 46 +/- 17 deg, actual mass = 1.2 +/- 0.33 times that of Jupiter. Our study confirms this object (this is not a minimum mass) as the nearest extrasolar Jupiter mass companion to our solar system. In view of its large orbital eccentricity, however, its exact nature remains unclear.

  14. Self-Actualization in a Marathon Growth Group: Do the Strong Get Stronger?

    ERIC Educational Resources Information Center

    Kimball, Ronald; Gelso, Charles J.

    1974-01-01

    This study examined the effects of a weekend marathon on the level of self-actualization of college students and the relationship between ego strength and extent of change in self-actualization. The group experience did increase self-actualization, but participants' initial level of ego strength was unrelated to changes in self-actualization.…

  15. On Nb Silicide Based Alloys: Alloy Design and Selection

    PubMed Central

    Tsakiropoulos, Panos.

    2018-01-01

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb5Si3 (Materials 11 (2018) 69), and hexagonal C14-NbCr2 and cubic A15-Nb3X phases (Materials 11 (2018) 395) and eutectics with Nbss and Nb5Si3 (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys. PMID:29783707

  16. Er:YAG laser for dentistry: basics, actual questions, and perspectives

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1994-12-01

    In recent years the dental use of the Er:YAG has found increasing interest. Most of the papers published so far concentrate on in vitro studies on cavity preparation, including the determination of ablation rates, measurements of temperature increase, microscopical analysis, and studies on the effect of water spray. The results are qualitatively in agreement and reveal a combination of high ablation efficiency and small side effects superior to other laser systems. Quantitative results, however, e.g., on ablation threshold or crater depths, sometimes differ. Some of these differences now can be explained and related to laser parameters or experimental conditions. Besides increasing the understanding on laser tissue interaction, the actual research enlarges the potential applications of the Er:YAG laser, such as for condition of enamel or dentin surfaces to enhance the bonding of composites. With the use of fibers, additional perspectives are given in periodontics and endodontics, e.g., for concrement removal or root canal preparation or sterilization.

  17. Relationship between strong-motion array parameters and the accuracy of source inversion and physical waves

    USGS Publications Warehouse

    Iida, M.; Miyatake, T.; Shimazaki, K.

    1990-01-01

    We develop general rules for a strong-motion array layout on the basis of our method of applying a prediction analysis to a source inversion scheme. A systematic analysis is done to obtain a relationship between fault-array parameters and the accuracy of a source inversion. Our study of the effects of various physical waves indicates that surface waves at distant stations contribute significantly to the inversion accuracy for the inclined fault plane, whereas only far-field body waves at both small and large distances contribute to the inversion accuracy for the vertical fault, which produces more phase interference. These observations imply the adequacy of the half-space approximation used throughout our present study and suggest rules for actual array designs. -from Authors

  18. An Exploration of the Actual Role of the School Counselor Framed within the California Public School Counseling Standards

    ERIC Educational Resources Information Center

    Anderson, Deja L.

    2015-01-01

    The study was designed to explore the actual performance of secondary school counselors' perception of their role framed within the California State School Counseling Standards. A qualitative phenomenological narrative inquiry was conducted with counselors, detailing their experience as educators. In person interviews were conducted with eight…

  19. The performance of a prototype device designed to evaluate general quality parameters of X-ray equipment

    NASA Astrophysics Data System (ADS)

    Murata, C. H.; Fernandes, D. C.; Lavínia, N. C.; Caldas, L. V. E.; Pires, S. R.; Medeiros, R. B.

    2014-02-01

    The performance of radiological equipment can be assessed using non-invasive methods and portable instruments that can analyze an X-ray beam with just one exposure. These instruments use either an ionization chamber or a state solid detector (SSD) to evaluate X-ray beam parameters. In Brazil, no such instruments are currently being manufactured; consequently, these instruments come at a higher cost to users due to importation taxes. Additionally, quality control tests are time consuming and impose a high workload on the X-ray tubes when evaluating their performance parameters. The assessment of some parameters, such as the half-value layer (HVL), requires several exposures; however, this can be reduced by using a SSD that requires only a single exposure. One such SSD uses photodiodes designed for high X-ray sensitivity without the use of scintillation crystals. This sensitivity allows one electron-hole pair to be created per 3.63 eV of incident energy, resulting in extremely high and stable quantum efficiencies. These silicon photodiodes operate by absorbing photons and generating a flow of current that is proportional to the incident power. The aim of this study was to show the response of the solid sensor PIN RD100A detector in a multifunctional X-ray analysis system that is designed to evaluate the average peak voltage (kVp), exposure time, and HVL of radiological equipment. For this purpose, a prototype board that uses four SSDs was developed to measure kVp, exposure time, and HVL using a single exposure. The reproducibility and accuracy of the results were compared to that of different X-ray beam analysis instruments. The kVp reproducibility and accuracy results were 2% and 3%, respectively; the exposure time reproducibility and accuracy results were 2% and 1%, respectively; and the HVL accuracy was ±2%. The prototype's methodology was able to calculate these parameters with appropriate reproducibility and accuracy. Therefore, the prototype can be considered

  20. Self-actualization: Its Use and Misuse in Teacher Education.

    ERIC Educational Resources Information Center

    Ivie, Stanley D.

    1982-01-01

    The writings of Abraham Maslow are analyzed to determine the meaning of the psychological term "self-actualization." After pointing out that self-actualization is a rare quality and that it has little to do with formal education, the author concludes that the concept has little practical relevance for teacher education. (PP)

  1. Case Studies of Self-Actualization.

    ERIC Educational Resources Information Center

    Brennan, Thomas P.; Piechowski, Michael M.

    Case studies of self-actualizing people according to the ideas of A. Maslow and the criteria of K. Dabrowski are presented. To find people meeting the criteria of Level 4 of the Dabrowski theory, a pool of 21 subjects was established by nomination. All subjects were given the Definition-Response Instrument to assess levels of emotional…

  2. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Qualification for actual production history coverage... Production History § 400.55 Qualification for actual production history coverage program. (a) The approved... history is certified and T or D-Yields are not provided in the actuarial documents, (2) If actual yield...

  3. Optimization and influence of parameter affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate: using full factorial design approach

    NASA Astrophysics Data System (ADS)

    Krishnan, Thulasirajan; Purushothaman, Revathi

    2017-07-01

    There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.

  4. Effects of cutting parameters and machining environments on surface roughness in hard turning using design of experiment

    NASA Astrophysics Data System (ADS)

    Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan

    2016-07-01

    Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.

  5. An analysis of adaptive design variations on the sequential parallel comparison design for clinical trials.

    PubMed

    Mi, Michael Y; Betensky, Rebecca A

    2013-04-01

    Currently, a growing placebo response rate has been observed in clinical trials for antidepressant drugs, a phenomenon that has made it increasingly difficult to demonstrate efficacy. The sequential parallel comparison design (SPCD) is a clinical trial design that was proposed to address this issue. The SPCD theoretically has the potential to reduce the sample-size requirement for a clinical trial and to simultaneously enrich the study population to be less responsive to the placebo. Because the basic SPCD already reduces the placebo response by removing placebo responders between the first and second phases of a trial, the purpose of this study was to examine whether we can further improve the efficiency of the basic SPCD and whether we can do so when the projected underlying drug and placebo response rates differ considerably from the actual ones. Three adaptive designs that used interim analyses to readjust the length of study duration for individual patients were tested to reduce the sample-size requirement or increase the statistical power of the SPCD. Various simulations of clinical trials using the SPCD with interim analyses were conducted to test these designs through calculations of empirical power. From the simulations, we found that the adaptive designs can recover unnecessary resources spent in the traditional SPCD trial format with overestimated initial sample sizes and provide moderate gains in power. Under the first design, results showed up to a 25% reduction in person-days, with most power losses below 5%. In the second design, results showed up to a 8% reduction in person-days with negligible loss of power. In the third design using sample-size re-estimation, up to 25% power was recovered from underestimated sample-size scenarios. Given the numerous possible test parameters that could have been chosen for the simulations, the study's results are limited to situations described by the parameters that were used and may not generalize to all possible

  6. Perceived and actual social discrimination: the case of overweight and social inclusion.

    PubMed

    Hartung, Freda-Marie; Renner, Britta

    2013-01-01

    The present study examined the correspondence between perceived and actual social discrimination of overweight people. In total, 77 first-year students provided self-ratings about their height, weight, and perceived social inclusion. To capture actual social inclusion, each participant nominated those fellow students (a) she/he likes and dislikes and (b) about whom she/he is likely to hear social news. Students with lower Body Mass Index (BMI) felt socially included, irrespective of their actual social inclusion. In contrast, students with higher BMI felt socially included depending on the degree of their actual social inclusion. Specifically, their felt social inclusion accurately reflected whether they were actually liked/disliked, but only when they were part of social news. When not part of social news, they also showed insensitivity to their actual social inclusion status. Thus, students with a lower BMI tended to be insensitive, while students with a higher BMI showed a differential sensitivity to actual social discrimination.

  7. Effect of Small Numbers of Test Results on Accuracy of Hoek-Brown Strength Parameter Estimations: A Statistical Simulation Study

    NASA Astrophysics Data System (ADS)

    Bozorgzadeh, Nezam; Yanagimura, Yoko; Harrison, John P.

    2017-12-01

    The Hoek-Brown empirical strength criterion for intact rock is widely used as the basis for estimating the strength of rock masses. Estimations of the intact rock H-B parameters, namely the empirical constant m and the uniaxial compressive strength σc, are commonly obtained by fitting the criterion to triaxial strength data sets of small sample size. This paper investigates how such small sample sizes affect the uncertainty associated with the H-B parameter estimations. We use Monte Carlo (MC) simulation to generate data sets of different sizes and different combinations of H-B parameters, and then investigate the uncertainty in H-B parameters estimated from these limited data sets. We show that the uncertainties depend not only on the level of variability but also on the particular combination of parameters being investigated. As particular combinations of H-B parameters can informally be considered to represent specific rock types, we discuss that as the minimum number of required samples depends on rock type it should correspond to some acceptable level of uncertainty in the estimations. Also, a comparison of the results from our analysis with actual rock strength data shows that the probability of obtaining reliable strength parameter estimations using small samples may be very low. We further discuss the impact of this on ongoing implementation of reliability-based design protocols and conclude with suggestions for improvements in this respect.

  8. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.

    PubMed

    Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D; Richhariya, Ashutosh; Yoon, Geunyoung

    2018-02-01

    The optical performance of the human cornea under intraocular pressure (IOP) is the result of complex material properties and their interactions. The measurement of the numerous material parameters that define this material behavior may be key in the refinement of patient-specific models. The goal of this study was to investigate the relative contribution of these parameters to the biomechanical and optical responses of human cornea predicted by a widely accepted anisotropic hyperelastic finite element model, with regional variations in the alignment of fibers. Design of experiments methods were used to quantify the relative importance of material properties including matrix stiffness, fiber stiffness, fiber nonlinearity and fiber dispersion under physiological IOP. Our sensitivity results showed that corneal apical displacement was influenced nearly evenly by matrix stiffness, fiber stiffness and nonlinearity. However, the variations in corneal optical aberrations (refractive power and spherical aberration) were primarily dependent on the value of the matrix stiffness. The optical aberrations predicted by variations in this material parameter were sufficiently large to predict clinically important changes in retinal image quality. Therefore, well-characterized individual variations in matrix stiffness could be critical in cornea modeling in order to reliably predict optical behavior under different IOPs or after corneal surgery.

  9. Marijuana, alcohol and actual driving performance

    DOT National Transportation Integrated Search

    1999-07-01

    The purpose of this study was to empirically determine the separate and combined effects of Delta-9-tetrahydrocannabinol (THC) and alcohol on actual driving performance. This was the first study ever in which the drugs' combined effects were measured...

  10. Study on the effect of the runner design parameters on 50 MW Francis hydro turbine model performance

    NASA Astrophysics Data System (ADS)

    Shrestha, Ujjwal; Chen, Zhenmu; Choi, Young-Do

    2018-06-01

    Francis hydro turbine is the dominant turbine in the hydropower generation. Francis turbine has been installed at most 60% of the hydropower in the world at present. Although the basic design for the Francis turbine has various method regarding the specific speed. The runner meridional shape varies with different specific speed. Despite having, the basic design but there is still some room for the optimization. In this study 50 MW, Francis hydro turbine with specific speed 323 m-kW was designed and considered for the optimization. The various parameter as runner meridional shape (curve profile of hub, shroud, leading edge and trailing edge), blade angle and its distribution, blade thickness, runner inlet width that has been considered for the optimization of the runner for enhancement of the performance.

  11. 16 CFR 700.4 - Parties “actually making” a written warranty.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Parties âactually makingâ a written warranty... “actually making” a written warranty. Section 110(f) of the Act provides that only the supplier “actually making” a written warranty is liable for purposes of FTC and private enforcement of the Act. A supplier...

  12. Self-perceived health versus actual cardiovascular disease risks.

    PubMed

    Ko, Young; Boo, Sunjoo

    2016-01-01

    Self-perceived poor health is related to cardiovascular disease (CVD) risk perception, cardiovascular event, hospital readmission, and death from CVD. This study evaluated the associations between self-perceived health and actual CVD risk in South Koreans as well as the influence of sociodemographic and cardiovascular risk factors on self-perceived poor health. This is a secondary data analysis of the 2010 Korea National Health and Nutrition Examination Survey. The sample was 4535 South Koreans aged 30-74 years without CVD. Self-perceived health status was compared with actual cardiovascular risk separately by sex using χ(2) -tests. Logistic regressions were used to identify potential sociodemographic and cardiovascular risk factors of self-perceived poor health. Self-perceived poor health was related to higher CVD risk but there were substantial gaps between them. Among cardiovascular risk factors, dyslipidemia, obesity, smoking, and a family history of CVD did not affect self-perceived health. Gaps between perceived health and actual CVD risk should be closed to optimize cardiovascular health of South Koreans. Koreans need to increase risk perception to a level commensurate with their actual risk. Healthcare providers should try to provide individuals at increased CVD risk with better information more frequently, especially those who have favorable perceptions of their health but smoke or have elevated cholesterol levels and bodyweight. © 2015 Japan Academy of Nursing Science.

  13. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  14. Facebook as a Library Tool: Perceived vs. Actual Use

    ERIC Educational Resources Information Center

    Jacobson, Terra B.

    2011-01-01

    As Facebook has come to dominate the social networking site arena, more libraries have created their own library pages on Facebook to create library awareness and to function as a marketing tool. This paper examines reported versus actual use of Facebook in libraries to identify discrepancies between intended goals and actual use. The results of a…

  15. Design and implementation of atmospheric multi-parameter sensor for UAVs

    NASA Astrophysics Data System (ADS)

    Yu, F.; Zhao, Y.; Chen, G.; Liu, Y.; Han, Y.

    2017-12-01

    With the rapid development of industry and the increase of cars in developing countries, air pollutants have caused a series of environmental issues such as haze and smog. However, air pollution is a process of surface-to-air mass exchange, and various kinds of atmospheric factors have close association with aerosol concentration, such as temperature, humidity, etc. Vertical distributions of aerosol in the region provide an important clue to reveal the exchange mechanism in the atmosphere between atmospheric boundary layer and troposphere. Among the various kinds of flying platforms, unmanned aerial vehicles (UAVs) shows more advantages in vertical measurement of aerosol owned to its flexibility and low cost. However, only few sensors could be mounted on the UAVs because of the limited size and power requirement. Here, a light-weight, low-power atmospheric multi-parameter sensor (AMPS) is proposed and could be mounted on several kinds of UAV platforms. The AMPS integrates multi-sensors, which are the laser aerosol particle sensor, the temperature probe, the humidity probe and the pressure probe, in order to simultaneously sample the vertical distribution characters of aerosol particle concentration, temperature, relative humidity and atmospheric pressure. The data from the sensors are synchronized by a proposed communication mechanism based on GPS. Several kinds of housing are designed to accommodate the different payload requirements of UAVs in size and weight. The experiments were carried out with AMPS mounted on three kinds of flying platforms. The results shows that the power consumption is less than 1.3 W, with relatively high accuracy in temperature (±0.1°C), relative humidity (±0.8%RH), PM2.5 (<20%) and PM10 (<20%). Vertical profiles of PM2.5 and PM10 concentrations were observed simultaneously by the AMPS three times every day in five days. The results revealed the significant correlation between the aerosol particle concentration and atmospheric

  16. Dangers of "confirmatory" cancer trials that fail to actually test the original hypothesis.

    PubMed

    Markman, Maurie

    2014-04-01

    The concept of "confirmatory" studies is a standard and important component of the overall clinical trials strategy in oncology. However, it is critical that such studies are similar enough in basic design and how they are conducted that they actually have the realistic potential to confirm, or refute, objectively the findings of the original study. In this commentary, two examples of clinical studies in the gynecologic oncology arena suggested by some to serve as "confirmatory" trials for the original reports demonstrate both the dangers and potential inappropriateness of such conclusions.

  17. Analysis of material parameter effects on fluidlastic isolators performance

    NASA Astrophysics Data System (ADS)

    Cheng, Q. Y.; Deng, J. H.; Feng, Z. Z.; Qian, F.

    2018-01-01

    Control of vibration in helicopters has always been a complex and challenging task. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters of fluid and rubber is very important to obtain efficient vibration-suppressed. Aiming at getting the property of fluidlastic isolator to material design parameters, a dynamic equation is set up based on the dynamic theory. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. The material parameters examined are the properties of fluid and rubber. Analysis results showed that the design parameters such as density of fluid, viscosity coefficient of fluid, stiffness of rubber (K1) and loss coefficient of rubber have obvious influence on the performance of isolator. Base on the results of the study it is concluded that the efficient vibration-suppressed can be obtained by the selection of design parameters.

  18. Actual and desired information provision after a stroke.

    PubMed

    Wachters-Kaufmann, Cresje; Schuling, Jan; The, Hauw; Meyboom-de Jong, Betty

    2005-02-01

    Stroke patients and caregivers have a substantial information need. The study investigates how information was actually provided to stroke patients and caregivers and how they prefer to be informed. The GP, neurologist and physiotherapist are both the actual and desired information providers. The actual and desired information correspond in terms of content, frequency, and method of presentation. However, patients and caregivers prefer to receive information within 24 h and to be informed about, and be given, relevant written information. The information given by the various professional stroke care-providers could be better co-ordinated. The role of the GP as an information provider lagged quite a long way behind. Recommendations for the provision of an improved information system is given. Most of the subjects are relatively young male patients with few disabilities and healthy caregivers. More attention should be paid to encouraging patients and caregivers to actively seek information to supplement the information given by professional stroke care-providers.

  19. Using a Time-Driven Activity-Based Costing Model To Determine the Actual Cost of Services Provided by a Transgenic Core.

    PubMed

    Gerwin, Philip M; Norinsky, Rada M; Tolwani, Ravi J

    2018-03-01

    Laboratory animal programs and core laboratories often set service rates based on cost estimates. However, actual costs may be unknown, and service rates may not reflect the actual cost of services. Accurately evaluating the actual costs of services can be challenging and time-consuming. We used a time-driven activity-based costing (ABC) model to determine the cost of services provided by a resource laboratory at our institution. The time-driven approach is a more efficient approach to calculating costs than using a traditional ABC model. We calculated only 2 parameters: the time required to perform an activity and the unit cost of the activity based on employee cost. This method allowed us to rapidly and accurately calculate the actual cost of services provided, including microinjection of a DNA construct, microinjection of embryonic stem cells, embryo transfer, and in vitro fertilization. We successfully implemented a time-driven ABC model to evaluate the cost of these services and the capacity of labor used to deliver them. We determined how actual costs compared with current service rates. In addition, we determined that the labor supplied to conduct all services (10,645 min/wk) exceeded the practical labor capacity (8400 min/wk), indicating that the laboratory team was highly efficient and that additional labor capacity was needed to prevent overloading of the current team. Importantly, this time-driven ABC approach allowed us to establish a baseline model that can easily be updated to reflect operational changes or changes in labor costs. We demonstrated that a time-driven ABC model is a powerful management tool that can be applied to other core facilities as well as to entire animal programs, providing valuable information that can be used to set rates based on the actual cost of services and to improve operating efficiency.

  20. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  1. Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration

    NASA Astrophysics Data System (ADS)

    Khan, M. M. A.; Romoli, L.; Fiaschi, M.; Dini, G.; Sarri, F.

    2011-02-01

    This paper presents an experimental design approach to process parameter optimization for the laser welding of martensitic AISI 416 and AISI 440FSe stainless steels in a constrained overlap configuration in which outer shell was 0.55 mm thick. To determine the optimal laser-welding parameters, a set of mathematical models were developed relating welding parameters to each of the weld characteristics. These were validated both statistically and experimentally. The quality criteria set for the weld to determine optimal parameters were the minimization of weld width and the maximization of weld penetration depth, resistance length and shearing force. Laser power and welding speed in the range 855-930 W and 4.50-4.65 m/min, respectively, with a fiber diameter of 300 μm were identified as the optimal set of process parameters. However, the laser power and welding speed can be reduced to 800-840 W and increased to 4.75-5.37 m/min, respectively, to obtain stronger and better welds.

  2. Experimental philosophy of actual and counterfactual free will intuitions.

    PubMed

    Feltz, Adam

    2015-11-01

    Five experiments suggested that everyday free will and moral responsibility judgments about some hypothetical thought examples differed from free will and moral responsibility judgments about the actual world. Experiment 1 (N=106) showed that free will intuitions about the actual world measured by the FAD-Plus poorly predicted free will intuitions about a hypothetical person performing a determined action (r=.13). Experiments 2-5 replicated this result and found the relations between actual free will judgments and free will judgments about hypothetical determined or fated actions (rs=.22-.35) were much smaller than the differences between them (ηp(2)=.2-.55). These results put some pressure on theoretical accounts of everyday intuitions about freedom and moral responsibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Optimum Design Parameters of Box Window DSF Office at Different Glazing Types under Sub Interval of Intermediate Sky Conditions (20-40 klux)

    NASA Astrophysics Data System (ADS)

    Elayeb, O. K.; Alghoul, M. A.; Sopian, K.; Khrita, N. G.

    2017-11-01

    Despite Double skin façade (DSF) buildings are widely deployed worldwide, daylighting strategy is not commonly incorporated in these buildings compare to other strategies. Therefore, further theoretical and experimental studies would lead to adopting daylighting strategy in DSF office buildings. The aim of this study is to investigate the daylighting performance of office building at different design parameters of box window DSF using different glazing types under sub interval of intermediate sky conditions (20-40) klux using the (IES VE) simulation tool from Integrated Environmental Solutions - Virtual Environment. The implemented design parameters are window wall ratio (WWR) of internal façade (10-100) %, cavity depth (CD) of DSF (1-2.5) m and different glazing types. The glazing types were selected from the list available in the (IES VE) simulation tool. After series of evaluations, bronze tinted coating (STOPSOL) is implemented for the exterior façade while clear float, clear reflective coating (STOPSOL), grey and brown tinted coating (Anti-sun float) and blue coating tinted (SUNCOOL float) are implemented for the interior façade. In this paper, several evaluation parameters are used to quantify the optimum design parameters that would balance the daylighting requirements of a box window DSF office versus sky conditions range (20-40) klux. The optimum design parameters of DSF office building obtained under different glazing types are highlighted as follows. When using bronze tinted coating (STOPSOL) for the exterior façade, the glazing types of interior façade that showed superior daylighting performance of DSF office at (CD of 1.0m with WWR of 70%), (CD of 1.5m with WWR of 70%), (CD of 2.0m with WWR of 70%) and (CD of 2.0m with WWR of 70%) are grey tinted coating (Anti-sun float), clear reflective coating (STOPSOL), brown tinted coating (Anti-sun float), and clear float glazing respectively. Blue Coating tinted (SUNCOOL float) of interior façade glazing

  4. Humanistic Education and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  5. Investigating Effects of Fused-Deposition Modeling (FDM) Processing Parameters on Flexural Properties of ULTEM 9085 using Designed Experiment.

    PubMed

    Gebisa, Aboma Wagari; Lemu, Hirpa G

    2018-03-27

    Fused-deposition modeling (FDM), one of the additive manufacturing (AM) technologies, is an advanced digital manufacturing technique that produces parts by heating, extruding and depositing filaments of thermoplastic polymers. The properties of FDM-produced parts apparently depend on the processing parameters. These processing parameters have conflicting advantages that need to be investigated. This article focuses on an investigation into the effect of these parameters on the flexural properties of FDM-produced parts. The investigation is carried out on high-performance ULTEM 9085 material, as this material is relatively new and has potential application in the aerospace, military and automotive industries. Five parameters: air gap, raster width, raster angle, contour number, and contour width, with a full factorial design of the experiment, are considered for the investigation. From the investigation, it is revealed that raster angle and raster width have the greatest effect on the flexural properties of the material. The optimal levels of the process parameters achieved are: air gap of 0.000 mm, raster width of 0.7814 mm, raster angle of 0°, contour number of 5, and contour width of 0.7814 mm, leading to a flexural strength of 127 MPa, a flexural modulus of 2400 MPa, and 0.081 flexural strain.

  6. Investigating Effects of Fused-Deposition Modeling (FDM) Processing Parameters on Flexural Properties of ULTEM 9085 using Designed Experiment

    PubMed Central

    Gebisa, Aboma Wagari

    2018-01-01

    Fused-deposition modeling (FDM), one of the additive manufacturing (AM) technologies, is an advanced digital manufacturing technique that produces parts by heating, extruding and depositing filaments of thermoplastic polymers. The properties of FDM-produced parts apparently depend on the processing parameters. These processing parameters have conflicting advantages that need to be investigated. This article focuses on an investigation into the effect of these parameters on the flexural properties of FDM-produced parts. The investigation is carried out on high-performance ULTEM 9085 material, as this material is relatively new and has potential application in the aerospace, military and automotive industries. Five parameters: air gap, raster width, raster angle, contour number, and contour width, with a full factorial design of the experiment, are considered for the investigation. From the investigation, it is revealed that raster angle and raster width have the greatest effect on the flexural properties of the material. The optimal levels of the process parameters achieved are: air gap of 0.000 mm, raster width of 0.7814 mm, raster angle of 0°, contour number of 5, and contour width of 0.7814 mm, leading to a flexural strength of 127 MPa, a flexural modulus of 2400 MPa, and 0.081 flexural strain. PMID:29584674

  7. Approach to design space from retrospective quality data.

    PubMed

    Puñal Peces, Daniel; García-Montoya, Encarna; Manich, Albert; Suñé-Negre, Josep Maria; Pérez-Lozano, Pilar; Miñarro, Montse; Ticó, Josep Ramon

    2016-01-01

    Nowadays, the entire manufacturing process is based on the current GMPs, which emphasize the reproducibility of the process, and companies have a lot of recorded data about their processes. The establishment of the design space (DS) from retrospective data for a wet compression process. A design of experiments (DoE) with historical data from 4 years of industrial production has been carried out using the experimental factors as the results of the previous risk analysis and eight key parameters (quality specifications) that encompassed process and quality control data. Software Statgraphics 5.0 was applied, and data were processed to obtain eight DS as well as their safe and working ranges. Experience shows that it is possible to determine DS retrospectively, being the greatest difficulty in handling and processing of high amounts of data; however, the practicality of this study is very interesting as it let have the DS with minimal investment in experiments since actual production batch data are processed statistically.

  8. LRFD software for design and actual ultimate capacity of confined rectangular columns : [technical summary].

    DOT National Transportation Integrated Search

    2013-04-01

    Columns are considered the most critical elements in structures. The unconfined analysis for columns is well established in the literature. Structural design codes dictate reduction factors for safety. It wasnt until very recently that design spec...

  9. Ergonomic design in ancient Greece.

    PubMed

    Marmaras, N; Poulakakis, G; Papakostopoulos, V

    1999-08-01

    Although the science of ergonomics did not actually emerge until the 20th century, there is evidence to suggest that ergonomic principles were in fact known and adhered to 25 centuries ago. The study reported here is a first attempt to research the ergonomics concerns of ancient Greeks, on both a conceptual and a practical level. On the former we present a collection of literature references to the concepts of usability and human-centred design. On the latter, examples of ergonomic design from a variety of fields are analysed. The fields explored here include the design of everyday utensils, the sculpture and manipulation of marble as a building material and the design of theatres. Though hardly exhaustive, these examples serve to demonstrate that the ergonomics principles, in content if not in name, actually emerged a lot earlier than is traditionally thought.

  10. Further comments on sensitivities, parameter estimation, and sampling design in one-dimensional analysis of solute transport in porous media

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1988-01-01

    Sensitivities of solute concentration to parameters associated with first-order chemical decay, boundary conditions, initial conditions, and multilayer transport are examined in one-dimensional analytical models of transient solute transport in porous media. A sensitivity is a change in solute concentration resulting from a change in a model parameter. Sensitivity analysis is important because minimum information required in regression on chemical data for the estimation of model parameters by regression is expressed in terms of sensitivities. Nonlinear regression models of solute transport were tested on sets of noiseless observations from known models that exceeded the minimum sensitivity information requirements. Results demonstrate that the regression models consistently converged to the correct parameters when the initial sets of parameter values substantially deviated from the correct parameters. On the basis of the sensitivity analysis, several statements may be made about design of sampling for parameter estimation for the models examined: (1) estimation of parameters associated with solute transport in the individual layers of a multilayer system is possible even when solute concentrations in the individual layers are mixed in an observation well; (2) when estimating parameters in a decaying upstream boundary condition, observations are best made late in the passage of the front near a time chosen by adding the inverse of an hypothesized value of the source decay parameter to the estimated mean travel time at a given downstream location; (3) estimation of a first-order chemical decay parameter requires observations to be made late in the passage of the front, preferably near a location corresponding to a travel time of √2 times the half-life of the solute; and (4) estimation of a parameter relating to spatial variability in an initial condition requires observations to be made early in time relative to passage of the solute front.

  11. Actual and Idealized Crystal Field Parameterizations for the Uranium Ions in UF 4

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Mulak, J.; Krupa, J. C.

    1993-12-01

    The crystal field parameters for the actual coordination symmetries of the uranium ions in UF 4, C2 and C1, and for their idealizations to D2, C2 v , D4, D4 d , and the Archimedean antiprism point symmetries are given. They have been calculated by means of both the perturbative ab initio model and the angular overlap model and are referenced to the recent results fitted by Carnall's group. The equivalency of some different sets of parameters has been verified with the standardization procedure. The adequacy of several idealized approaches has been tested by comparison of the corresponding splitting patterns of the 3H 4 ground state. Our results support the parameterization given by Carnall. Furthermore, the parameterization of the crystal field potential and the splitting diagram for the symmetryless uranium ion U( C1) are given. Having at our disposal the crystal field splittings for the two kinds of uranium ions in UF 4, U( C2) and U( C1), we calculate the model plots of the paramagnetic susceptibility χ( T) and the magnetic entropy associated with the Schottky anomaly Δ S( T) for UF 4.

  12. Design and analysis of control system for VCSEL of atomic interference magnetometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-nan; Sun, Xiao-jie; Kou, Jun; Yang, Feng; Li, Jie; Ren, Zhang; Wei, Zong-kang

    2016-11-01

    Magnetic field detection is an important means of deep space environment exploration. Benefit from simple structure and low power consumption, atomic interference magnetometer become one of the most potential detector payloads. Vertical Cavity Surface Emitting Laser (VCSEL) is usually used as a light source in atomic interference magnetometer and its frequency stability directly affects the stability and sensitivity of magnetometer. In this paper, closed-loop control strategy of VCSEL was designed and analysis, the controller parameters were selected and the feedback error algorithm was optimized as well. According to the results of experiments that were performed on the hardware-in-the-loop simulation platform, the designed closed-loop control system is reasonable and it is able to effectively improve the laser frequency stability during the actual work of the magnetometer.

  13. Inversion of parameters for semiarid regions by a neural network

    NASA Technical Reports Server (NTRS)

    Zurk, Lisa M.; Davis, Daniel; Njoku, Eni G.; Tsang, Leung; Hwang, Jenq-Neng

    1992-01-01

    Microwave brightness temperatures obtained from a passive radiative transfer model are inverted through use of a neural network. The model is applicable to semiarid regions and produces dual-polarized brightness temperatures for 6.6-, 10.7-, and 37-GHz frequencies. A range of temperatures is generated by varying three geophysical parameters over acceptable ranges: soil moisture, vegetation moisture, and soil temperature. A multilayered perceptron (MLP) neural network is trained with a subset of the generated temperatures, and the remaining temperatures are inverted using a backpropagation method. Several synthetic terrains are devised and inverted by the network under local constraints. All the inversions show good agreement with the original geophysical parameters, falling within 5 percent of the actual value of the parameter range.

  14. 100 km CEPC parameters and lattice design

    NASA Astrophysics Data System (ADS)

    Wang, D.; Gao, J.; Yu, C. H.; Zhang, Y.; Wang, Y. W.; Su, F.; Y Zhai, J.; Bai, S.; Geng, H. P.; Bian, T. J.; Wang, N.; Cui, X. H.; Zhang, C.; Qin, Q.

    2017-07-01

    The 100km double ring configuration with shared superconducting RF system has been defined as baseline by the circular electron positron collider (CEPC) steering committee. Based on this new scheme, we will get higher luminosity for Higgs (+170%) keeping the beam power in preliminary conceptual design report (Pre-CDR) or to reduce the beam power (19 MW) while keeping same luminosity. CEPC will be compatible with W and Z experiment. The luminosity for Z is designed at the level of 1035 cm-2s-1. The requirement for the energy acceptance of Higgs has been reduced to 1.5% by enlarging the ring to 100 km. The optics of arc and final focus system (FFS) with crab sextupoles has been designed, and also some primary dynamic aperture (DA) results were introduced. Work supported by the National Key Programme for S&T Research and Development (Grant NO. 2016YFA0400400) and the National Natural Science Foundation of China (11505198, 11575218, 11605210 and 11605211).

  15. A new Bayesian recursive technique for parameter estimation

    NASA Astrophysics Data System (ADS)

    Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis

    2006-08-01

    The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.

  16. On-line estimation of error covariance parameters for atmospheric data assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.

    1995-01-01

    A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including

  17. Design and formulation of nano-sized spray dried efavirenz-part I: influence of formulation parameters

    NASA Astrophysics Data System (ADS)

    Katata, Lebogang; Tshweu, Lesego; Naidoo, Saloshnee; Kalombo, Lonji; Swai, Hulda

    2012-11-01

    Efavirenz (EFV) is one of the first-line antiretroviral drugs recommended by the World Health Organisation for treating HIV. It is a hydrophobic drug that suffers from low aqueous solubility (4 μg/mL), which leads to a limited oral absorption and low bioavailability. In order to improve its oral bioavailability, nano-sized polymeric delivery systems are suggested. Spray dried polycaprolactone-efavirenz (PCL-EFV) nanoparticles were prepared by the double emulsion method. The Taguchi method, a statistical design with an L8 orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen as significant parameters affecting the particle size and polydispersity index (PDI). Small nanoparticles with an average particle size of less than 254 ± 0.95 nm in the case of ethyl acetate as organic solvent were obtained as compared to more than 360 ± 19.96 nm for dichloromethane. In this study, the type of solvent and sugar were the most influencing parameters of the particle size and PDI. Taguchi method proved to be a quick, valuable tool in optimising the particle size and PDI of PCL-EFV nanoparticles. The optimised experimental values for the nanoparticle size and PDI were 217 ± 2.48 nm and 0.093 ± 0.02.

  18. Design of autonomous sensor nodes for remote soil monitoring in tropical banana plantation

    NASA Astrophysics Data System (ADS)

    Tiausas, Francis Jerome G.; Co, Jerelyn; Macalinao, Marc Joseph M.; Guico, Maria Leonora; Monje, Jose Claro; Oppus, Carlos

    2017-09-01

    Determining the effect of Fusarium oxysporum f. sp. cubense Tropical Race 4 on various soil parameters is essential in modeling and predicting its occurrence in banana plantations. One way to fulfill this is through a sensor network that will continuously and automatically monitor environmental conditions at suspect locations for an extended period of time. A wireless sensor network was developed specifically for this purpose. This sensor network is capable of measuring soil acidity, moisture, temperature, and conductivity. The designed prototype made use of off-the-shelf Parrot Flower Power soil sensor, pH sensor, Bluno Beetle, battery, and 3D-printed materials, catering specifically to the conditions of tropical banana plantations with consideration for sensor node size, communication, and power. Sensor nodes were tested on both simulated tropical environments and on an actual banana plantation in San Jose, General Santos City, Philippines. Challenges were resolved through iterative design and development of prototypes. Several tests including temperature and weather resilience, and structural stress tests were done to validate the design. Findings showed that the WSN nodes developed for this purpose are resilient to high tropical temperatures for up to 12 hours of continuous exposure, are able to withstand compressive forces of up to 8880.6 N, and can reliably collect data automatically from the area 47.96% of the time at an hourly frequency under actual field conditions.

  19. Evolving MEMS Resonator Designs for Fabrication

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Kraus, William F.; Lohn, Jason D.

    2008-01-01

    Because of their small size and high reliability, microelectromechanical (MEMS) devices have the potential to revolution many areas of engineering. As with conventionally-sized engineering design, there is likely to be a demand for the automated design of MEMS devices. This paper describes our current status as we progress toward our ultimate goal of using an evolutionary algorithm and a generative representation to produce designs of a MEMS device and successfully demonstrate its transfer to an actual chip. To produce designs that are likely to transfer to reality, we present two ways to modify evaluation of designs. The first is to add location noise, differences between the actual dimensions of the design and the design blueprint, which is a technique we have used for our work in evolving antennas and robots. The second method is to add prestress to model the warping that occurs during the extreme heat of fabrication. In future we expect to fabricate and test some MEMS resonators that are evolved in this way.

  20. Interpersonal Communication Behaviors and Self-Actualizing Values: A Conceptual Framework.

    ERIC Educational Resources Information Center

    Macklin, Thomas

    This report addresses the relationship between self-actualizing values and interpersonal communication behaviors. After a discussion of behavioristic and humanistic frameworks for social science research, the paper explains Abraham Maslow's and Carl Roger's concepts of self-actualization as the tendency toward completing and perfecting one's…

  1. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada).

    PubMed

    Ochoo, Benjamin; Valcour, James; Sarkar, Atanu

    2017-11-01

    Studying public perception on drinking water quality is crucial for managing of water resources, generation of water quality standards, and surveillance of the drinking-water quality. However, in policy discourse, the reliability of public perception concerning drinking water quality and associated health risks is questionable. Does the public perception of water quality equate with the actual water quality? We investigated public perceptions of water quality and the perceived health risks and associated with the actual quality of public water supplies in the same communities. The study was conducted in 45 communities of Newfoundland (Canada) in 2012. First, a telephone survey of 100 households was conducted to examine public perceptions of drinking water quality of their respective public sources. Then we extracted public water quality reports of the same communities (1988-2011) from the provincial government's water resources portal. These reports contained the analysis of 2091 water samples, including levels of Disinfection By-Products (DBPs), nutrients, metals, ions and physical parameters. The reports showed that colour, manganese, total dissolved solids, iron, turbidity, and DBPs were the major detected parameters in the public water. However, the majority of the respondents (>56%) were either completely satisfied or very satisfied with the quality of drinking water. Older, higher educated and high-income group respondents were more satisfied with water quality than the younger, less educated and low-income group respondents. The study showed that there was no association with public satisfaction level and actual water quality of the respective communities. Even, in the communities, supplied by the same water system, the respondents had differences in opinion. Despite the effort by the provincial government to make the water-test results available on its website for years, the study showed existing disconnectedness between public perception of drinking water

  2. Culture Studies and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1983-01-01

    True citizenship education is impossible unless students develop the habit of intelligently evaluating cultures. Abraham Maslow's theory of self-actualization, a theory of innate human needs and of human motivation, is a nonethnocentric tool which can be used by teachers and students to help them understand other cultures. (SR)

  3. Relating stick-slip friction experiments to earthquake source parameters

    USGS Publications Warehouse

    McGarr, Arthur F.

    2012-01-01

    Analytical results for parameters, such as static stress drop, for stick-slip friction experiments, with arbitrary input parameters, can be determined by solving an energy-balance equation. These results can then be related to a given earthquake based on its seismic moment and the maximum slip within its rupture zone, assuming that the rupture process entails the same physics as stick-slip friction. This analysis yields overshoots and ratios of apparent stress to static stress drop of about 0.25. The inferred earthquake source parameters static stress drop, apparent stress, slip rate, and radiated energy are robust inasmuch as they are largely independent of the experimental parameters used in their estimation. Instead, these earthquake parameters depend on C, the ratio of maximum slip to the cube root of the seismic moment. C is controlled by the normal stress applied to the rupture plane and the difference between the static and dynamic coefficients of friction. Estimating yield stress and seismic efficiency using the same procedure is only possible when the actual static and dynamic coefficients of friction are known within the earthquake rupture zone.

  4. Generalised Pareto distribution: impact of rounding on parameter estimation

    NASA Astrophysics Data System (ADS)

    Pasarić, Z.; Cindrić, K.

    2018-05-01

    Problems that occur when common methods (e.g. maximum likelihood and L-moments) for fitting a generalised Pareto (GP) distribution are applied to discrete (rounded) data sets are revealed by analysing the real, dry spell duration series. The analysis is subsequently performed on generalised Pareto time series obtained by systematic Monte Carlo (MC) simulations. The solution depends on the following: (1) the actual amount of rounding, as determined by the actual data range (measured by the scale parameter, σ) vs. the rounding increment (Δx), combined with; (2) applying a certain (sufficiently high) threshold and considering the series of excesses instead of the original series. For a moderate amount of rounding (e.g. σ/Δx ≥ 4), which is commonly met in practice (at least regarding the dry spell data), and where no threshold is applied, the classical methods work reasonably well. If cutting at the threshold is applied to rounded data—which is actually essential when dealing with a GP distribution—then classical methods applied in a standard way can lead to erroneous estimates, even if the rounding itself is moderate. In this case, it is necessary to adjust the theoretical location parameter for the series of excesses. The other solution is to add an appropriate uniform noise to the rounded data ("so-called" jittering). This, in a sense, reverses the process of rounding; and thereafter, it is straightforward to apply the common methods. Finally, if the rounding is too coarse (e.g. σ/Δx 1), then none of the above recipes would work; and thus, specific methods for rounded data should be applied.

  5. High Powered Rocketry: Design, Construction, and Launching Experience and Analysis

    ERIC Educational Resources Information Center

    Paulson, Pryce; Curtis, Jarret; Bartel, Evan; Cyr, Waycen Owens; Lamsal, Chiranjivi

    2018-01-01

    In this study, the nuts and bolts of designing and building a high powered rocket have been presented. A computer simulation program called RockSim was used to design the rocket. Simulation results are consistent with time variations of altitude, velocity, and acceleration obtained in the actual flight. The actual drag coefficient was determined…

  6. School Guidance Counselors' Perceptions of Actual and Preferred Job Duties

    ERIC Educational Resources Information Center

    Edwards, John Dexter

    2010-01-01

    The purpose of this study was to provide process data for school counselors, administrators, and the public, regarding school counselors' actual roles within the guidance counselor preferred job duties and actual job duties. In addition, factors including National Certification or no National Certification, years of counseling experience, and…

  7. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design--part I. Model development.

    PubMed

    He, L; Huang, G H; Lu, H W

    2010-04-15

    Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the "true" ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes. 2009 Elsevier B.V. All rights reserved.

  8. How to Select the most Relevant Roughness Parameters of a Surface: Methodology Research Strategy

    NASA Astrophysics Data System (ADS)

    Bobrovskij, I. N.

    2018-01-01

    In this paper, the foundations for new methodology creation which provides solving problem of surfaces structure new standards parameters huge amount conflicted with necessary actual floors quantity of surfaces structure parameters which is related to measurement complexity decreasing are considered. At the moment, there is no single assessment of the importance of a parameters. The approval of presented methodology for aerospace cluster components surfaces allows to create necessary foundation, to develop scientific estimation of surfaces texture parameters, to obtain material for investigators of chosen technological procedure. The methods necessary for further work, the creation of a fundamental reserve and development as a scientific direction for assessing the significance of microgeometry parameters are selected.

  9. A control system design approach for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Silverberg, L. M.

    1985-01-01

    A control system design approach for flexible spacecraft is presented. The control system design is carried out in two steps. The first step consists of determining the ideal control system in terms of a desirable dynamic performance. The second step consists of designing a control system using a limited number of actuators that possess a dynamic performance that is close to the ideal dynamic performance. The effects of using a limited number of actuators is that the actual closed-loop eigenvalues differ from the ideal closed-loop eigenvalues. A method is presented to approximate the actual closed-loop eigenvalues so that the calculation of the actual closed-loop eigenvalues can be avoided. Depending on the application, it also may be desirable to apply the control forces as impulses. The effect of digitizing the control to produce the appropriate impulses is also examined.

  10. Influence of some design parameters on the thermal performance of domestic refrigerator appliances

    NASA Astrophysics Data System (ADS)

    Rebora, Alessandro; Senarega, Maurizio; Tagliafico, Luca A.

    2006-07-01

    This paper presents a thermal study on chest-freezers, the small refrigerators used in domestic and supermarket applications. A thermal and energy model of a particular kind of these refrigerators, the “hot-wall” (or “skin condenser”) refrigerator, is developed and used to perform sensitivity and design optimisation analysis for given working temperatures and useful volume of the refrigerated cell. A finite-element heat transfer model of the refrigerator box is coupled to the complete thermodynamic model of the refrigerating plant, including real working conditions (compressor efficiency, friction pressure losses and so on). A sensitivity study of the main design parameters affecting the global refrigerator performance has been developed (for fixed working temperatures) with reference to the thickness of the metallic plates, to the evaporator and condenser tube diameters and to the evaporator tube pitch (with fixed evaporator-to-condenser tube pitch ratio). The results obtained show that the proposed sensitivity analysis can yield quite reliable results (in comparison with much more complex, albeit more accurate mathematical optimisation algorithms) using small computational resources. The great importance of 2-D heat conduction in the metallic plates is shown, evidencing how the plate thickness and the evaporator and condenser tube diameters affect the global performance of the system according to the well-known “fin efficiency” effect. The influence of the evaporator and condenser tube diameters on the friction pressure losses is also outlined. Some practical suggestions are made in conclusion, regarding the criteria which should be adopted in the thermal design of a hot-wall refrigerator.

  11. Analysis on Flexural Strength of A36 Mild Steel by Design of Experiment (DOE)

    NASA Astrophysics Data System (ADS)

    Nurulhuda, A.; Hafizzal, Y.; Izzuddin, MZM; Sulawati, MRN; Rafidah, A.; Suhaila, Y.; Fauziah, AR

    2017-08-01

    Nowadays demand for high quality and reliable components and materials are increasing so flexural tests have become vital test method in both the research and manufacturing process and development to explain in details about the material’s ability to withstand deformation under load. Recently, there are lack research studies on the effect of thickness, welding type and joint design on the flexural condition by DOE approach method. Therefore, this research will come out with the flexural strength of mild steel since it is not well documented. By using Design of Experiment (DOE), a full factorial design with two replications has been used to study the effects of important parameters which are welding type, thickness and joint design. The measurement of output response is identified as flexural strength value. Randomize experiments was conducted based on table generated via Minitab software. A normal probability test was carried out using Anderson Darling Test and show that the P-value is <0.005. Thus, the data is not normal since there is significance different between the actual data with the ideal data. Referring to the ANOVA, only factor joint design is significant since the P-value is less than 0.05. From the main plot and interaction plot, the recommended setting for each of parameters were suggested as high level for welding type, high level for thickness and low level for joint design. The prediction model was developed thru regression in order to measure effect of output response for any changes on parameters setting. In the future, the experiments can be enhanced using Taguchi methods in order to do verification of result.

  12. Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering

    PubMed Central

    Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327

  13. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.

    PubMed

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Anisi, Fatemeh; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  14. Self-Actualization in a Marathon Growth Group: Do the Strong Get Stronger?

    ERIC Educational Resources Information Center

    Kimball, Ronald; Gelso, Charles J.

    This study examined the effects of a weekend marathon on the level of self-actualization of college students one and four weeks following their group experience. It also studied the relationship between ego strength and extent of change in self-actualization during a marathon. Generally, the group experience did increase self-actualization and the…

  15. An analysis of adaptive design variations on the sequential parallel comparison design for clinical trials

    PubMed Central

    Mi, Michael Y.; Betensky, Rebecca A.

    2013-01-01

    Background Currently, a growing placebo response rate has been observed in clinical trials for antidepressant drugs, a phenomenon that has made it increasingly difficult to demonstrate efficacy. The sequential parallel comparison design (SPCD) is a clinical trial design that was proposed to address this issue. The SPCD theoretically has the potential to reduce the sample size requirement for a clinical trial and to simultaneously enrich the study population to be less responsive to the placebo. Purpose Because the basic SPCD design already reduces the placebo response by removing placebo responders between the first and second phases of a trial, the purpose of this study was to examine whether we can further improve the efficiency of the basic SPCD and if we can do so when the projected underlying drug and placebo response rates differ considerably from the actual ones. Methods Three adaptive designs that used interim analyses to readjust the length of study duration for individual patients were tested to reduce the sample size requirement or increase the statistical power of the SPCD. Various simulations of clinical trials using the SPCD with interim analyses were conducted to test these designs through calculations of empirical power. Results From the simulations, we found that the adaptive designs can recover unnecessary resources spent in the traditional SPCD trial format with overestimated initial sample sizes and provide moderate gains in power. Under the first design, results showed up to a 25% reduction in person-days, with most power losses below 5%. In the second design, results showed up to a 8% reduction in person-days with negligible loss of power. In the third design using sample size re-estimation, up to 25% power was recovered from underestimated sample size scenarios. Limitations Given the numerous possible test parameters that could have been chosen for the simulations, the study’s results are limited to situations described by the parameters

  16. Temporal characteristics of imagined and actual walking in frail older adults.

    PubMed

    Nakano, Hideki; Murata, Shin; Shiraiwa, Kayoko; Iwase, Hiroaki; Kodama, Takayuki

    2018-05-09

    Mental chronometry, commonly used to evaluate motor imagery ability, measures the imagined time required for movements. Previous studies investigating mental chronometry of walking have investigated healthy older adults. However, mental chronometry in frail older adults has not yet been clarified. To investigate temporal characteristics of imagined and actual walking in frail older adults. We investigated the time required for imagined and actual walking along three walkways of different widths [width(s): 50, 25, 15 cm × length: 5 m] in 29 frail older adults and 20 young adults. Imagined walking was measured with mental chronometry. We observed significantly longer imagined and actual walking times along walkways of 50, 25, and 15 cm width in frail older adults compared with young adults. Moreover, temporal differences (absolute error) between imagined and actual walking were significantly greater in frail older adults than in young adults along walkways with a width of 25 and 15 cm. Furthermore, we observed significant differences in temporal differences (constant error) between frail older adults and young adults for walkways with a width of 25 and 15 cm. Frail older adults tended to underestimate actual walking time in imagined walking trials. Our results suggest that walkways of different widths may be a useful tool to evaluate age-related changes in imagined and actual walking in frail older adults.

  17. A Recommended Procedure for Estimating the Cosmic-Ray Spectral Parameter of a Simple Power Law With Applications to Detector Design

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    2001-01-01

    A simple power law model consisting of a single spectral index alpha-1 is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV. Two procedures for estimating alpha-1 the method of moments and maximum likelihood (ML), are developed and their statistical performance compared. It is concluded that the ML procedure attains the most desirable statistical properties and is hence the recommended statistical estimation procedure for estimating alpha-1. The ML procedure is then generalized for application to a set of real cosmic-ray data and thereby makes this approach applicable to existing cosmic-ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution, as well as inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic-ray detector as they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives. This is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  18. Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) and performance of everyday life tasks: Actual Reality.

    PubMed

    Goverover, Yael; Chiaravalloti, Nancy; DeLuca, John

    2016-04-01

    Recently, a brief cognitive assessment (Brief International Cognitive Assessment for Multiple Sclerosis: BICAMS) has been recommended for use with patients diagnosed with multiple sclerosis (MS) to screen for cognitive impairments. However, the relationship between the BICAMS and everyday life activity has not been examined. The aim of this study was to examine whether the BICAMS can predict performance of activities of daily living using Actual Reality(TM) (AR) in persons with MS. A between-subjects design was utilized to compare 41 individuals with MS and 32 healthy controls (HC) performing BICAMS and an AR task. Participants were asked to access the internet to purchase a flight ticket or cookies, and were administered the BICAMS and questionnaires to assess quality of life (QOL), affect symptomatology, and prior internet experience. Participants with MS performed significantly worse than HC on the BICAMS and the AR. Additionally, better BICAMS performance was associated with more independent AR performance. Self-reports of QOL were not correlated with AR or BICAMS performance. Individuals with MS have greater problems with actual everyday life tasks as compared to HC. The BICAMS is a promising cognitive screening tool to predict actual functional performance in participants with MS. © The Author(s), 2015.

  19. A systematic optimization of design parameters in strained silicon waveguides to further enhance the linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Olivares, Irene; Angelova, Todora I.; Pinilla-Cienfuegos, Elena; Sanchis, Pablo

    2016-05-01

    The electro-optic Pockels effect may be generated in silicon photonics structures by breaking the crystal symmetry by means of a highly stressing cladding layer (typically silicon nitride, SiN) deposited on top of the silicon waveguide. In this work, the influence of the waveguide parameters on the strain distribution and its overlap with the optical mode to enhance the Pockels effect has been analyzed. The optimum waveguide structure have been designed based on the definition and quantification of a figure of merit. The fabrication of highly stressing SiN layers by PECVD has also been optimized to characterize the designed structures. The residual stress has been controlled during the growth process by analyzing the influence of the main deposition parameters. Therefore, two identical samples with low and high stress conditions were fabricated and electro-optically characterized to test the induced Pockels effect and the influence of carrier effects. Electro-optical modulation was only measured in the sample with the high stressing SiN layer that could be attributed to the Pockels effect. Nevertheless, the influence of carriers were also observed thus making necessary additional experiments to decouple both effects.

  20. The influence of Monte Carlo source parameters on detector design and dose perturbation in small field dosimetry

    NASA Astrophysics Data System (ADS)

    Charles, P. H.; Crowe, S. B.; Kairn, T.; Knight, R.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.

    2014-03-01

    To obtain accurate Monte Carlo simulations of small radiation fields, it is important model the initial source parameters (electron energy and spot size) accurately. However recent studies have shown that small field dosimetry correction factors are insensitive to these parameters. The aim of this work is to extend this concept to test if these parameters affect dose perturbations in general, which is important for detector design and calculating perturbation correction factors. The EGSnrc C++ user code cavity was used for all simulations. Varying amounts of air between 0 and 2 mm were deliberately introduced upstream to a diode and the dose perturbation caused by the air was quantified. These simulations were then repeated using a range of initial electron energies (5.5 to 7.0 MeV) and electron spot sizes (0.7 to 2.2 FWHM). The resultant dose perturbations were large. For example 2 mm of air caused a dose reduction of up to 31% when simulated with a 6 mm field size. However these values did not vary by more than 2 % when simulated across the full range of source parameters tested. If a detector is modified by the introduction of air, one can be confident that the response of the detector will be the same across all similar linear accelerators and the Monte Carlo modelling of each machine is not required.

  1. Determination of optimal parameters for dual-layer cathode of polymer electrolyte fuel cell using computational intelligence-aided design.

    PubMed

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference η and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs.

  2. Determination of Optimal Parameters for Dual-Layer Cathode of Polymer Electrolyte Fuel Cell Using Computational Intelligence-Aided Design

    PubMed Central

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs. PMID:25490761

  3. Self-Perceived and Actual Motor Competence in Young British Children.

    PubMed

    Duncan, Michael J; Jones, Victoria; O'Brien, Wesley; Barnett, Lisa M; Eyre, Emma L J

    2018-04-01

    Children's perception of their own motor competence is an important correlate of their actual motor competence. The current study is the first to examine this association in British children and the first to use both product and process measures of actual motor competence. A total of 258 children (139 boys and 119 girls; aged 4 to 7 years, Mean = 5.6, SD = .96) completed measures of self-perceived motor competence using the Pictorial Scale for Perceived Movement Competence in Young Children. Children were classified as "Low," "Medium," or "High" perceived competence based on tertile analysis. Actual motor competence was assessed with the Test of Gross Motor Development-2 (a process measure) and a composite of 10-m sprint run time, standing long jump distance, and 1-kg seated medicine ball throw (collectively, a product measure). Data for process and product measures were analyzed using a 2 (sex) × 3 (high, medium, low perceived competence) analysis of covariance, with body mass index, calculated from height and mass, and age controlled. Boys obtained significantly higher scores than girls for both the process ( p = .044) and product ( p = .001) measures of actual motor competence. Boys had significantly ( p = .04) higher scores for perceived competence compared to girls. Compared to children classified as medium and high self-perceived competence, children classified as low self-perceived competence had lower process ( p = .001) and product scores (i.e., medium, p = .009 and high, p = .0001) of actual motor competence. Age ( p = .0001) and body mass index ( p = .0001) were significantly associated with product motor competence. Strategies to enhance actual motor competence may benefit children's self-perceived motor competence.

  4. Task-oriented display design - Concept and example

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1989-01-01

    The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.

  5. Task-oriented display design: Concept and example

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1989-01-01

    The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.

  6. A study in cost analysis of aggregate production as depending on drilling and blasting design

    NASA Astrophysics Data System (ADS)

    Bilim, Niyazi; Çelik, Arif; Kekeç, Bilgehan

    2017-10-01

    Since aggregate production has vital importance for many engineering projects-such as construction, highway and plant-mixed concrete production-this study was undertaken to determine how the costs for such production are affected by the design of drilling and blasting processes used. Aggregates are used in the production of concrete and asphalt, which are critical resources for the construction sector. The ongoing population increase and the growth of living standards around the world drive the increasing demand for these products. As demand grows, competition has naturally arisen among producers in the industry. Competition in the market has directly affected prices, which leads to the need for new measures and cost analysis on production costs. The cost calculation is one of the most important parameters in mining activities. Aggregate production operations include drilling, blasting, secondary crushing (if necessary), loading, hauling and crushing-screening, and each of these factors affects cost. In this study, drilling and blasting design parameters (such as hole diameter, hole depth, hole distance and burden) were investigated and evaluated for their effect on the total cost of quarrying these products, based on a particular quarry selected for this research. As the result of evaluation, the parameters actually driving costs have been identified, and their effects on the cost have been determined. In addition, some suggestions are presented regarding production design which may lead to avoiding increased production costs.

  7. Perceived and actual noise levels in critical care units.

    PubMed

    White, Brittany Lynn; Zomorodi, Meg

    2017-02-01

    To compare the noise levels perceived by critical care nurses in the Intensive Care Unit (ICU) to actual noise levels in the ICU. Following a pilot study (n=18) and revision of the survey tool, a random sample of nurses were surveyed twice in a 3-day period (n=108). Nurses perception of noise was compared to the actual sound pressure level using descriptive statistics. Nurses perceived the ICUs to be noisier than the actual values. The ICU was louder than the recommended noise level for resotrative sleep. This finding raises the question of how we can assist nurses to reduce what they perceive to be a loud environment. Future work is needed to develop interventions specifically for nurses to raise awareness of noise in the ICU and to provide them with skills to assist in noise reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  9. Time Experiences, Self-actualizing Values, and Creativity

    ERIC Educational Resources Information Center

    Yonge, George D.

    1975-01-01

    The correlations between the Personal Orientation Inventory and Inventory of Temporal Experiences are investigated. The interpretations of these findings are made in light of the theories which postulate a convergence between time, self actualization and creativity. (Author/DEP)

  10. Perceived Need and Actual Usage of the Family Support Agreement in Rural China: Results from a Nationally Representative Survey

    ERIC Educational Resources Information Center

    Chou, Rita Jing-Ann

    2011-01-01

    Purpose: The Family Support Agreement (FSA) is a voluntary but legal contract between older parents and adult children on parental support in China. As the first comprehensive empirical study on the FSA, this study aims to understand the prevalence and covariates of older parents' perceived need and actual use of this agreement. Design and…

  11. From preferred to actual mate characteristics: the case of human body shape.

    PubMed

    Courtiol, Alexandre; Picq, Sandrine; Godelle, Bernard; Raymond, Michel; Ferdy, Jean-Baptiste

    2010-09-27

    The way individuals pair to produce reproductive units is a major factor determining evolution. This process is complex because it is determined not only by individual mating preferences, but also by numerous other factors such as competition between mates. Consequently, preferred and actual characteristics of mates obtained should differ, but this has rarely been addressed. We simultaneously measured mating preferences for stature, body mass, and body mass index, and recorded corresponding actual partner's characteristics for 116 human couples from France. Results show that preferred and actual partner's characteristics differ for male judges, but not for females. In addition, while the correlation between all preferred and actual partner's characteristics appeared to be weak for female judges, it was strong for males: while men prefer women slimmer than their actual partner, those who prefer the slimmest women also have partners who are slimmer than average. This study therefore suggests that the influences of preferences on pair formation can be sex-specific. It also illustrates that this process can lead to unexpected results on the real influences of mating preferences: traits considered as highly influencing attractiveness do not necessarily have a strong influence on the actual pairing, the reverse being also possible.

  12. Avatars mirroring the actual self versus projecting the ideal self: the effects of self-priming on interactivity and immersion in an exergame, Wii Fit.

    PubMed

    Jin, Seung-A Annie

    2009-12-01

    As exergames are increasingly being used as an interventional tool to fight the obesity epidemic in clinical studies, society is absorbing their impact to a more intense degree. Interactivity and immersion are key factors that attract exergame consumers. This research asks, What are the effects of priming the actual self versus the ideal self on users' perceived interactivity and immersion in avatar-based exergame playing? and What are important moderators that play a role in exergame users' self-concept perception? To answer these research questions, this study leveraged the Wii's avatar-creating function (Mii Channel) and exergame feature (Wii Fit) in a controlled, randomized experimental design (N = 126). The results of a 2 x 2 factorial design experiment demonstrated the significant main effect of self-priming on interactivity and the moderating role of the actual-ideal self-concept discrepancy in influencing immersion during exergame playing. Game players who created an avatar reflecting the ideal self reported greater perceived interactivity than those who created a replica avatar mirroring the actual self. A two-way ANOVA demonstrated the moderating role of the actual-ideal self-concept discrepancy in determining the effects of the primed regulatory focus on immersion in the exergame play. The underlying theoretical mechanism is derived from and explained by Higgins's self-concept discrepancy perspective. Practical implications for game developers and managerial implications for the exergame industry are discussed.

  13. Moderating effects of voluntariness on the actual use of electronic health records for allied health professionals.

    PubMed

    Chiu, Teresa Ml; Ku, Benny Ps

    2015-02-10

    Mandatory versus voluntary requirement has moderating effect on a person's intention to use a new information technology. Studies have shown that the use of technology in health care settings is predicted by perceived ease of use, perceived usefulness, social influence, facilitating conditions, and attitude towards computer. These factors have different effects on mandatory versus voluntary environment of use. However, the degree and direction of moderating effect of voluntariness on these factors remain inconclusive. This study aimed to examine the moderating effect of voluntariness on the actual use of an electronic health record (EHR) designed for use by allied health professionals in Hong Kong. Specifically, this study explored and compared the moderating effects of voluntariness on factors organized into technology, implementation, and individual contexts. Physiotherapists who had taken part in the implementation of a new EHR were invited to complete a survey. The survey included questions that measured the levels of voluntariness, technology acceptance and use, and attitude towards technology. Multiple logistic regressions were conducted to identify factors associated with actual use of a compulsory module and a noncompulsory module of the EHR. In total, there were 93 participants in the study. All of them had access to the noncompulsory module, the e-Progress Note, to record progress notes of their patients. Out of the 93 participants, 57 (62%) were required to use a compulsory module, the e-Registration, to register patient attendance. In the low voluntariness environment, Actual Use was associated with Effort Expectancy (mean score of users 3.51, SD 0.43; mean score of non-users 3.21, SD 0.31; P=.03). Effort Expectancy measured the perceived ease of use and was a variable in the technology context. The variables in the implementation and individual contexts did not show a difference between the two groups. In the high voluntariness environment, the mean

  14. Moderating Effects of Voluntariness on the Actual Use of Electronic Health Records for Allied Health Professionals

    PubMed Central

    Ku, Benny PS

    2015-01-01

    Background Mandatory versus voluntary requirement has moderating effect on a person’s intention to use a new information technology. Studies have shown that the use of technology in health care settings is predicted by perceived ease of use, perceived usefulness, social influence, facilitating conditions, and attitude towards computer. These factors have different effects on mandatory versus voluntary environment of use. However, the degree and direction of moderating effect of voluntariness on these factors remain inconclusive. Objective This study aimed to examine the moderating effect of voluntariness on the actual use of an electronic health record (EHR) designed for use by allied health professionals in Hong Kong. Specifically, this study explored and compared the moderating effects of voluntariness on factors organized into technology, implementation, and individual contexts. Methods Physiotherapists who had taken part in the implementation of a new EHR were invited to complete a survey. The survey included questions that measured the levels of voluntariness, technology acceptance and use, and attitude towards technology. Multiple logistic regressions were conducted to identify factors associated with actual use of a compulsory module and a noncompulsory module of the EHR. Results In total, there were 93 participants in the study. All of them had access to the noncompulsory module, the e-Progress Note, to record progress notes of their patients. Out of the 93 participants, 57 (62%) were required to use a compulsory module, the e-Registration, to register patient attendance. In the low voluntariness environment, Actual Use was associated with Effort Expectancy (mean score of users 3.51, SD 0.43; mean score of non-users 3.21, SD 0.31; P=.03). Effort Expectancy measured the perceived ease of use and was a variable in the technology context. The variables in the implementation and individual contexts did not show a difference between the two groups. In the high

  15. Method and system for monitoring and displaying engine performance parameters

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S. (Inventor); Person, Lee H., Jr. (Inventor)

    1988-01-01

    The invention is believed a major improvement that will have a broad application in governmental and commercial aviation. It provides a dynamic method and system for monitoring and simultaneously displaying in easily scanned form the available, predicted, and actual thrust of a jet aircraft engine under actual operating conditions. The available and predicted thrusts are based on the performance of a functional model of the aircraft engine under the same operating conditions. Other critical performance parameters of the aircraft engine and functional model are generated and compared, the differences in value being simultaneously displayed in conjunction with the displayed thrust values. Thus, the displayed information permits the pilot to make power adjustments directly while keeping him aware of total performance at a glance of a single display panel.

  16. An insight into actual energy use and its drivers in high-performance buildings

    DOE PAGES

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these

  17. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales

    USGS Publications Warehouse

    Stephenson, N.L.

    1998-01-01

    Correlative approaches to understanding the climatic controls of vegetation distribution have exhibited at least two important weaknesses: they have been conceptually divorced across spatial scales, and their climatic parameters have not necessarily represented aspects of climate of broad physiological importance to plants. Using examples from the literature and from the Sierra Nevada of California, I argue that two water balance parameters-actual evapotranspiration (AET) and deficit (D)-are biologically meaningful, are well correlated with the distribution of vegetation types, and exhibit these qualities over several orders of magnitude of spatial scale (continental to local). I reach four additional conclusions. (1) Some pairs of climatic parameters presently in use are functionally similar to AET and D; however, AET and D may be easier to interpret biologically. (2) Several well-known climatic parameters are biologically less meaningful or less important than AET and D, and consequently are poorer correlates of the distribution of vegetation types. Of particular interest, AET is a much better correlate of the distributions of coniferous and deciduous forests than minimum temperature. (3) The effects of evaporative demand and water availability on a site's water balance are intrinsically different. For example, the 'dry' experienced by plants on sunward slopes (high evaporative demand) is not comparable to the 'dry' experienced by plants on soils with low water-holding capacities (low water availability), and these differences are reflected in vegetation patterns. (4) Many traditional topographic moisture scalars-those that additively combine measures related to evaporative demand and water availability are not necessarily meaningful for describing site conditions as sensed by plants; the same holds for measured soil moisture. However, using AET and D in place of moisture scalars and measured soil moisture can solve these problems.

  18. An actual load forecasting methodology by interval grey modeling based on the fractional calculus.

    PubMed

    Yang, Yang; Xue, Dingyü

    2017-07-17

    The operation processes for thermal power plant are measured by the real-time data, and a large number of historical interval data can be obtained from the dataset. Within defined periods of time, the interval information could provide important information for decision making and equipment maintenance. Actual load is one of the most important parameters, and the trends hidden in the historical data will show the overall operation status of the equipments. However, based on the interval grey parameter numbers, the modeling and prediction process is more complicated than the one with real numbers. In order not lose any information, the geometric coordinate features are used by the coordinates of area and middle point lines in this paper, which are proved with the same information as the original interval data. The grey prediction model for interval grey number by the fractional-order accumulation calculus is proposed. Compared with integer-order model, the proposed method could have more freedom with better performance for modeling and prediction, which can be widely used in the modeling process and prediction for the small amount interval historical industry sequence samples. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Toward On-line Parameter Estimation of Concentric Tube Robots Using a Mechanics-based Kinematic Model

    PubMed Central

    Jang, Cheongjae; Ha, Junhyoung; Dupont, Pierre E.; Park, Frank Chongwoo

    2017-01-01

    Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation. This paper proposes a method for estimating the mechanics-based model parameters using an extended Kalman filter as a step toward on-line parameter estimation. Our methodology is validated through both simulation and experiments. PMID:28717554

  20. Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA

    NASA Astrophysics Data System (ADS)

    Rong, Youmin; Zhang, Zhen; Zhang, Guojun; Yue, Chen; Gu, Yafei; Huang, Yu; Wang, Chunming; Shao, Xinyu

    2015-04-01

    The laser brazing (LB) is widely used in the automotive industry due to the advantages of high speed, small heat affected zone, high quality of welding seam, and low heat input. Welding parameters play a significant role in determining the bead geometry and hence quality of the weld joint. This paper addresses the optimization of the seam shape in LB process with welding crimping butt of 0.8 mm thickness using back propagation neural network (BPNN) and genetic algorithm (GA). A 3-factor, 5-level welding experiment is conducted by Taguchi L25 orthogonal array through the statistical design method. Then, the input parameters are considered here including welding speed, wire speed rate, and gap with 5 levels. The output results are efficient connection length of left side and right side, top width (WT) and bottom width (WB) of the weld bead. The experiment results are embed into the BPNN network to establish relationship between the input and output variables. The predicted results of the BPNN are fed to GA algorithm that optimizes the process parameters subjected to the objectives. Then, the effects of welding speed (WS), wire feed rate (WF), and gap (GAP) on the sum values of bead geometry is discussed. Eventually, the confirmation experiments are carried out to demonstrate the optimal values were effective and reliable. On the whole, the proposed hybrid method, BPNN-GA, can be used to guide the actual work and improve the efficiency and stability of LB process.

  1. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    PubMed

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  2. Design considerations for a LORAN-C timing receiver in a hostile signal to noise environment

    NASA Technical Reports Server (NTRS)

    Porter, J. W.; Bowell, J. R.; Price, G. E.

    1981-01-01

    The environment in which a LORAN-C Timing Receiver may function effectively depends to a large extent on the techniques utilized to insure that interfering signals within the pass band of the unit are neutralized. The baseline performance manually operated timing receivers is discussed and the basic design considerations and necessary parameters for an automatic unit utilizing today's technology are established. Actual performance data is presented comparing the results obtained from a present generation timing receiver against a new generation microprocessor controlled automatic acquisition receiver. The achievements possible in a wide range of signal to noise situations are demonstrated.

  3. Micro-porous layer stochastic reconstruction and transport parameter determination

    NASA Astrophysics Data System (ADS)

    El Hannach, Mohamed; Singh, Randhir; Djilali, Ned; Kjeang, Erik

    2015-05-01

    The Micro-Porous Layer (MPL) is a porous, thin layer commonly used in fuel cells at the interfaces between the catalyst layers and gas diffusion media. It is generally made from spherical carbon nanoparticles and PTFE acting as hydrophobic agent. The scale and brittle nature of the MPL structure makes it challenging to study experimentally. In the present work, a 3D stochastic model is developed to virtually reconstruct the MPL structure. The carbon nanoparticle and PTFE phases are fully distinguished by the algorithm. The model is shown to capture the actual structural morphology of the MPL and is validated by comparing the results to available experimental data. The model shows a good capability in generating a realistic MPL successfully using a set of parameters introduced to capture specific morphological features of the MPL. A numerical model that resolves diffusive transport at the pore scale is used to compute the effective transport properties of the reconstructed MPLs. A parametric study is conducted to illustrate the capability of the model as an MPL design tool that can be used to guide and optimize the functionality of the material.

  4. Multivariate meta-analysis with an increasing number of parameters

    PubMed Central

    Boca, Simina M.; Pfeiffer, Ruth M.; Sampson, Joshua N.

    2017-01-01

    Summary Meta-analysis can average estimates of multiple parameters, such as a treatment’s effect on multiple outcomes, across studies. Univariate meta-analysis (UVMA) considers each parameter individually, while multivariate meta-analysis (MVMA) considers the parameters jointly and accounts for the correlation between their estimates. The performance of MVMA and UVMA has been extensively compared in scenarios with two parameters. Our objective is to compare the performance of MVMA and UVMA as the number of parameters, p, increases. Specifically, we show that (i) for fixed-effect meta-analysis, the benefit from using MVMA can substantially increase as p increases; (ii) for random effects meta-analysis, the benefit from MVMA can increase as p increases, but the potential improvement is modest in the presence of high between-study variability and the actual improvement is further reduced by the need to estimate an increasingly large between study covariance matrix; and (iii) when there is little to no between study variability, the loss of efficiency due to choosing random effects MVMA over fixed-effect MVMA increases as p increases. We demonstrate these three features through theory, simulation, and a meta-analysis of risk factors for Non-Hodgkin Lymphoma. PMID:28195655

  5. Investigation of the effects of melt electrospinning parameters on the direct-writing fiber size using orthogonal design

    NASA Astrophysics Data System (ADS)

    He, Feng-Li; He, Jin; Deng, Xudong; Li, Da-Wei; Ahmad, Fiaz; Liu, Yang-Yang; Liu, Ya-Li; Ye, Ya-Jing; Zhang, Chen-Yan; Yin, Da-Chuan

    2017-10-01

    Melt electrospinning is a complex process, and many of the processing parameters can impact the result of fiber formation. In this paper, we conducted a systematic investigation on the impacts of the melt electrospinning parameters (including temperature, needle gauge, flow rate and collector speed) on the fiber diameter via an orthogonal design experiment. The straight single fibers were fabricated using melt electrospinning in a direct-writing way with a diameter varied from 9.68  ±  0.93 µm to 48.55  ±  3.72 µm. The results showed that the fiber diameter changed differently against different parameters: when the temperature or needle gauge increased, the fiber diameter increased first and then decreased; when the flow rate increased, the fiber diameter decreased first and then increased; when the collector speed increased, the fiber diameter decreased monotonously. We also found that the collector speed was the most influential factor while the needle gauge was least important in determining the diameter of the fiber. Moreover, the feasibility of melt electrospinning in a direct-writing way as a novel 3D printing technology had been demonstrated by fabricating both uniform and controllable structures with high accuracy, based on the optimal parameters from the orthogonal experiments. The promising results indicated that melt electrospinning can be developed as a powerful technique for fabricating miniatured parts with high resolution and controllable structures for versatile potential applications.

  6. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    PubMed

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Actual and Recalled Test Anxiety and Flexibility, Rigidity, and Self-Control.

    ERIC Educational Resources Information Center

    DeVito, Anthony J.; Kubis, Joseph F.

    1983-01-01

    Compared recalled and actual test anxiety in college students (N=71) and examined the interrelationship of anxiety with personality variables and sex differences. Results showed recalled test anxiety to be significantly higher than actual test anxiety and indicated no significant differences according to sex. (LLL)

  8. From Preferred to Actual Mate Characteristics: The Case of Human Body Shape

    PubMed Central

    Courtiol, Alexandre; Picq, Sandrine; Godelle, Bernard; Raymond, Michel; Ferdy, Jean-Baptiste

    2010-01-01

    The way individuals pair to produce reproductive units is a major factor determining evolution. This process is complex because it is determined not only by individual mating preferences, but also by numerous other factors such as competition between mates. Consequently, preferred and actual characteristics of mates obtained should differ, but this has rarely been addressed. We simultaneously measured mating preferences for stature, body mass, and body mass index, and recorded corresponding actual partner's characteristics for 116 human couples from France. Results show that preferred and actual partner's characteristics differ for male judges, but not for females. In addition, while the correlation between all preferred and actual partner's characteristics appeared to be weak for female judges, it was strong for males: while men prefer women slimmer than their actual partner, those who prefer the slimmest women also have partners who are slimmer than average. This study therefore suggests that the influences of preferences on pair formation can be sex-specific. It also illustrates that this process can lead to unexpected results on the real influences of mating preferences: traits considered as highly influencing attractiveness do not necessarily have a strong influence on the actual pairing, the reverse being also possible. PMID:20885953

  9. Designing a capacitated multi-configuration logistics network under disturbances and parameter uncertainty: a real-world case of a drug supply chain

    NASA Astrophysics Data System (ADS)

    Shishebori, Davood; Babadi, Abolghasem Yousefi

    2018-03-01

    This study investigates the reliable multi-configuration capacitated logistics network design problem (RMCLNDP) under system disturbances, which relates to locating facilities, establishing transportation links, and also allocating their limited capacities to the customers conducive to provide their demand on the minimum expected total cost (including locating costs, link constructing costs, and also expected costs in normal and disturbance conditions). In addition, two types of risks are considered; (I) uncertain environment, (II) system disturbances. A two-level mathematical model is proposed for formulating of the mentioned problem. Also, because of the uncertain parameters of the model, an efficacious possibilistic robust optimization approach is utilized. To evaluate the model, a drug supply chain design (SCN) is studied. Finally, an extensive sensitivity analysis was done on the critical parameters. The obtained results show that the efficiency of the proposed approach is suitable and is worthwhile for analyzing the real practical problems.

  10. Rational Design of Molecular Gelator - Solvent Systems Guided by Solubility Parameters

    NASA Astrophysics Data System (ADS)

    Lan, Yaqi

    Self-assembled architectures, such as molecular gels, have attracted wide interest among chemists, physicists and engineers during the past decade. However, the mechanism behind self-assembly remains largely unknown and no capability exists to predict a priori whether a small molecule will gelate a specific solvent or not. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the gelator-gelator interactions are of paramount importance in understanding gelation, the solvent-gelator specific (i.e., H-bonding) and nonspecific (dipole-dipole, dipole-induced and instantaneous dipole induced forces) intermolecular interactions are equally important. Solvent properties mediate the self-assembly of molecular gelators into their self-assembled fibrillar networks. Herein, solubility parameters of solvents, ranging from partition coefficients (logP), to Henry's law constants (HLC), to solvatochromic ET(30) parameters, to Kamlet-Taft parameters (beta, alpha and pi), to Hansen solubility parameters (deltap, deltad, deltah), etc., are correlated with the gelation ability of numerous classes of molecular gelators. Advanced solvent clustering techniques have led to the development of a priori tools that can identify the solvents that will be gelled and not gelled by molecular gelators. These tools will greatly aid in the development of novel gelators without solely relying on serendipitous discoveries.

  11. The actual citation impact of European oncological research.

    PubMed

    López-Illescas, Carmen; de Moya-Anegón, Félix; Moed, Henk F

    2008-01-01

    This study provides an overview of the research performance of major European countries in the field Oncology, the most important journals in which they published their research articles, and the most important academic institutions publishing them. The analysis was based on Thomson Scientific's Web of Science (WoS) and calculated bibliometric indicators of publication activity and actual citation impact. Studying the time period 2000-2006, it gives an update of earlier studies, but at the same time it expands their methodologies, using a broader definition of the field, calculating indicators of actual citation impact, and analysing new and policy relevant aspects. Findings suggest that the emergence of Asian countries in the field Oncology has displaced European articles more strongly than articles from the USA; that oncologists who have published their articles in important, more general journals or in journals covering other specialties, rather than in their own specialist journals, have generated a relatively high actual citation impact; and that universities from Germany, and--to a lesser extent--those from Italy, the Netherlands, UK, and Sweden, dominate a ranking of European universities based on number of articles in oncology. The outcomes illustrate that different bibliometric methodologies may lead to different outcomes, and that outcomes should be interpreted with care.

  12. Extraction channel design based on an equivalent lumped parameter method for a SCC-250 MeV superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Zhang, Lige; Fan, Kuanjun; Hu, Shengwei; Li, Xiaofei; Mei, Zhiyuan; Zeng, Zhijie; Chen, Wei; Qin, Bin; Rao, Yinong

    2018-07-01

    A SCC-250 MeV cyclotron, producing a 250 MeV proton beam, is under development in Huazhong University of Science and Technology (HUST) for proton therapy. The magnetic flux density, as a function of radius, decreases rapidly in the beam extraction region, which increases the radial beam size continuously along the extraction orbit. In this paper, an extraction channel inside the SCC-250 MeV is designed to control the beam size using passive magnetic channels. An equivalent lumped parameter method is used to establish the model of the extraction channel in the complex fringe magnetic field of the main magnet. Then, the extraction channel is designed using the lattice design software MADX. The beam envelopes are verified using particle tracing method. The maximum radial size of 6.8 mm and axial size of 4.3 mm meet the requirements of the extraction from the SCC-250 MeV.

  13. HiC-bench: comprehensive and reproducible Hi-C data analysis designed for parameter exploration and benchmarking.

    PubMed

    Lazaris, Charalampos; Kelly, Stephen; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis

    2017-01-05

    Chromatin conformation capture techniques have evolved rapidly over the last few years and have provided new insights into genome organization at an unprecedented resolution. Analysis of Hi-C data is complex and computationally intensive involving multiple tasks and requiring robust quality assessment. This has led to the development of several tools and methods for processing Hi-C data. However, most of the existing tools do not cover all aspects of the analysis and only offer few quality assessment options. Additionally, availability of a multitude of tools makes scientists wonder how these tools and associated parameters can be optimally used, and how potential discrepancies can be interpreted and resolved. Most importantly, investigators need to be ensured that slight changes in parameters and/or methods do not affect the conclusions of their studies. To address these issues (compare, explore and reproduce), we introduce HiC-bench, a configurable computational platform for comprehensive and reproducible analysis of Hi-C sequencing data. HiC-bench performs all common Hi-C analysis tasks, such as alignment, filtering, contact matrix generation and normalization, identification of topological domains, scoring and annotation of specific interactions using both published tools and our own. We have also embedded various tasks that perform quality assessment and visualization. HiC-bench is implemented as a data flow platform with an emphasis on analysis reproducibility. Additionally, the user can readily perform parameter exploration and comparison of different tools in a combinatorial manner that takes into account all desired parameter settings in each pipeline task. This unique feature facilitates the design and execution of complex benchmark studies that may involve combinations of multiple tool/parameter choices in each step of the analysis. To demonstrate the usefulness of our platform, we performed a comprehensive benchmark of existing and new TAD callers

  14. Computer-assisted design for scaling up systems based on DNA reaction networks.

    PubMed

    Aubert, Nathanaël; Mosca, Clément; Fujii, Teruo; Hagiya, Masami; Rondelez, Yannick

    2014-04-06

    In the past few years, there have been many exciting advances in the field of molecular programming, reaching a point where implementation of non-trivial systems, such as neural networks or switchable bistable networks, is a reality. Such systems require nonlinearity, be it through signal amplification, digitalization or the generation of autonomous dynamics such as oscillations. The biochemistry of DNA systems provides such mechanisms, but assembling them in a constructive manner is still a difficult and sometimes counterintuitive process. Moreover, realistic prediction of the actual evolution of concentrations over time requires a number of side reactions, such as leaks, cross-talks or competitive interactions, to be taken into account. In this case, the design of a system targeting a given function takes much trial and error before the correct architecture can be found. To speed up this process, we have created DNA Artificial Circuits Computer-Assisted Design (DACCAD), a computer-assisted design software that supports the construction of systems for the DNA toolbox. DACCAD is ultimately aimed to design actual in vitro implementations, which is made possible by building on the experimental knowledge available on the DNA toolbox. We illustrate its effectiveness by designing various systems, from Montagne et al.'s Oligator or Padirac et al.'s bistable system to new and complex networks, including a two-bit counter or a frequency divider as well as an example of very large system encoding the game Mastermind. In the process, we highlight a variety of behaviours, such as enzymatic saturation and load effect, which would be hard to handle or even predict with a simpler model. We also show that those mechanisms, while generally seen as detrimental, can be used in a positive way, as functional part of a design. Additionally, the number of parameters included in these simulations can be large, especially in the case of complex systems. For this reason, we included the

  15. Design of PID temperature control system based on STM32

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru

    2018-03-01

    A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.

  16. 25 CFR 39.101 - Does ISEF assess the actual cost of school operations?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Does ISEF assess the actual cost of school operations? 39... SCHOOL EQUALIZATION PROGRAM Indian School Equalization Formula § 39.101 Does ISEF assess the actual cost of school operations? No. ISEF does not attempt to assess the actual cost of school operations either...

  17. Ability Estimation and Item Calibration Using the One and Three Parameter Logistic Models: A Comparative Study. Research Report 77-1.

    ERIC Educational Resources Information Center

    Reckase, Mark D.

    Latent trait model calibration procedures were used on data obtained from a group testing program. The one-parameter model of Wright and Panchapakesan and the three-parameter logistic model of Wingersky, Wood, and Lord were selected for comparison. These models and their corresponding estimation procedures were compared, using actual and simulated…

  18. Simultaneous inversion of intrinsic and scattering attenuation parameters incorporating multiple scattering effect

    NASA Astrophysics Data System (ADS)

    Ogiso, M.

    2017-12-01

    Heterogeneous attenuation structure is important for not only understanding the earth structure and seismotectonics, but also ground motion prediction. Attenuation of ground motion in high frequency range is often characterized by the distribution of intrinsic and scattering attenuation parameters (intrinsic Q and scattering coefficient). From the viewpoint of ground motion prediction, both intrinsic and scattering attenuation affect the maximum amplitude of ground motion while scattering attenuation also affect the duration time of ground motion. Hence, estimation of both attenuation parameters will lead to sophisticate the ground motion prediction. In this study, we try to estimate both parameters in southwestern Japan in a tomographic manner. We will conduct envelope fitting of seismic coda since coda has sensitivity to both intrinsic attenuation and scattering coefficients. Recently, Takeuchi (2016) successfully calculated differential envelope when these parameters have fluctuations. We adopted his equations to calculate partial derivatives of these parameters since we did not need to assume homogeneous velocity structure. Matrix for inversion of structural parameters would become too huge to solve in a straightforward manner. Hence, we adopted ART-type Bayesian Reconstruction Method (Hirahara, 1998) to project the difference of envelopes to structural parameters iteratively. We conducted checkerboard reconstruction test. We assumed checkerboard pattern of 0.4 degree interval in horizontal direction and 20 km in depth direction. Reconstructed structures well reproduced the assumed pattern in shallower part while not in deeper part. Since the inversion kernel has large sensitivity around source and stations, resolution in deeper part would be limited due to the sparse distribution of earthquakes. To apply the inversion method which described above to actual waveforms, we have to correct the effects of source and site amplification term. We consider these issues

  19. Structural design parameters of current WSDOT mixtures.

    DOT National Transportation Integrated Search

    2013-06-01

    The AASHTO LRFD, as well as other design manuals, has specifications that estimate the structural performance of a concrete mixture with regard to compressive strength, tensile strength, and deformation-related properties such as the modulus of elast...

  20. 25 CFR 39.201 - Does ISEF reflect the actual cost of school operations?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Does ISEF reflect the actual cost of school operations... Does ISEF reflect the actual cost of school operations? ISEF does not attempt to assess the actual cost of school operations either at the local school level or in the aggregate nationally. ISEF is a...

  1. Verification of Emmert's law in actual and virtual environments.

    PubMed

    Nakamizo, Sachio; Imamura, Mariko

    2004-11-01

    We examined Emmert's law by measuring the perceived size of an afterimage and the perceived distance of the surface on which the afterimage was projected in actual and virtual environments. The actual environment consisted of a corridor with ample cues as to distance and depth. The virtual environment was made from the CAVE of a virtual reality system. The afterimage, disc-shaped and one degree in diameter, was produced by flashing with an electric photoflash. The observers were asked to estimate the perceived distance to surfaces located at various physical distances (1 to 24 m) by the magnitude estimation method and to estimate the perceived size of the afterimage projected on the surfaces by a matching method. The results show that the perceived size of the afterimage was directly proportional to the perceived distance in both environments; thus, Emmert's law holds in virtual as well as actual environments. We suggest that Emmert's law is a specific case of a functional principle of distance scaling by the visual system.

  2. Dependencies and Ill-designed Parameters Within High-speed Videoendoscopy and Acoustic Signal Analysis.

    PubMed

    Schlegel, Patrick; Stingl, Michael; Kunduk, Melda; Kniesburges, Stefan; Bohr, Christopher; Döllinger, Michael

    2018-05-31

    The phonatory process is often judged during sustained phonation by analyzing the acoustic voice signal and the vocal fold vibrations. Many formulas and parameters have been suggested for qualifying the characteristics of the acoustic signal and the vocal fold vibrations during sustained phonation. These parameters are directly computed from the acoustic signal and the endoscopic glottal area waveform (GAW). The GAW is calculated from laryngeal high-speed videoendoscopy (HSV) recordings and describes the increase and decrease of the glottal area during the phonation process, that is, the opening and closing of the two oscillating vocal folds over time. However, some of the parameters have strong mathematical dependencies with one another and some are ill-defined. The purpose of this study is to identify mathematical dependencies between parameters with the aim of reducing their numbers and suggesting which parameters may best describe the properties of the GAW and the acoustical signal. In this preliminary investigation, 20 frequently used parameters are examined: 10 GAW only and 10 both GAW and acoustic parameters. In total 13 parameters can be neglected because of mathematical dependencies. In addition, nine of these parameters show problematic features that range from unexpected behavior to ill definition. Reducing the number of parameters appears to be necessary to standardize vocal fold function analysis. This may lead to better comparability of research results from different studies. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Instructional Design Cases and Why We Need Them

    ERIC Educational Resources Information Center

    Howard, Craig D.; Boling, Elizabeth; Rowland, Gordon; Smith, Kennon M.

    2012-01-01

    The field of instructional design does not collect and share actual completed instructional designs and designers' reflections on the creation of those designs as an integral, widespread aspect of its practice. This article defines the instructional design case as a means of knowledge building. It lays out the components of instructional design…

  4. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.0 theory manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.« less

  5. Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices.

    PubMed

    Li, Zhigang; Liu, Boying; Yuan, Mengxiong; Zhang, Feifei; Guo, Jiaqiang

    2016-01-01

    Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information.

  6. Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices

    PubMed Central

    Li, Zhigang; Liu, Boying; Yuan, Mengxiong; Zhang, Feifei; Guo, Jiaqiang

    2016-01-01

    Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information. PMID:27907188

  7. Numerical analysis of an entire ceramic kiln under actual operating conditions for the energy efficiency improvement.

    PubMed

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Saponelli, Roberto; Lizzano, Maurizio

    2017-12-01

    The paper focuses on the analysis of an industrial ceramic kiln in order to improve the energy efficiency and thus the fuel consumption and the corresponding carbon dioxide emissions. A lumped and distributed parameter model of the entire system is constructed to simulate the performance of the kiln under actual operating conditions. The model is able to predict accurately the temperature distribution along the different modules of the kiln and the operation of the many natural gas burners employed to provide the required thermal power. Furthermore, the temperature of the tiles is also simulated so that the quality of the final product can be addressed by the modelling. Numerical results are validated against experimental measurements carried out on a real ceramic kiln during regular production operations. The developed numerical model demonstrates to be an efficient tool for the investigation of different design solutions for the kiln's components. In addition, a number of control strategies for the system working conditions can be simulated and compared in order to define the best trade off in terms of fuel consumption and product quality. In particular, the paper analyzes the effect of a new burner type characterized by internal heat recovery capability aimed at improving the energy efficiency of the ceramic kiln. The fuel saving and the relating reduction of carbon dioxide emissions resulted in the order of 10% when compared to the standard burner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach.

    PubMed

    Leng, Donglei; Thanki, Kaushik; Fattal, Elias; Foged, Camilla; Yang, Mingshi

    2017-08-25

    Chronic obstructive pulmonary disease (COPD) is a complex disease, characterized by persistent airflow limitation and chronic inflammation. The purpose of this study was to design lipid-polymer hybrid nanoparticles (LPNs) loaded with the corticosteroid, budesonide, which could potentially be combined with small interfering RNA (siRNA) for COPD management. Here, we prepared LPNs based on the biodegradable polymer poly(dl-lactic-co-glycolic acid) (PLGA) and the cationic lipid dioleyltrimethylammonium propane (DOTAP) using a double emulsion solvent evaporation method. A quality-by-design (QbD) approach was adopted to define the optimal formulation parameters. The quality target product profile (QTPP) of the LPNs was identified based on risk assessment. Two critical formulation parameters (CFPs) were identified, including the theoretical budesonide loading and the theoretical DOTAP loading. The CFPs were linked to critical quality attributes (CQAs), which included the intensity-based hydrodynamic particle diameter (z-average), the polydispersity index (PDI), the zeta-potential, the budesonide encapsulation efficiency, the actual budesonide loading and the DOTAP encapsulation efficiency. A response surface methodology (RSM) was applied for the experimental design to evaluate the influence of the CFPs on the CQAs, and to identify the optimal operation space (OOS). All nanoparticle dispersions displayed monodisperse size distributions (PDI<0.2) with z-averages of approximately 150nm, suggesting that the size is not dependent on the investigated CFPs. In contrast, the zeta-potential was highly dependent on the theoretical DOTAP loading. Upon increased DOTAP loading, the zeta-potential reached a maximal point, after which it remained stable at the maximum value. This suggests that the LPN surface is covered by DOTAP, and that the DOTAP loading is saturable. The actual budesonide loading of the LPNs was mainly dependent on the initial amount of budesonide, and a clear

  9. A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni

    PubMed Central

    Penny, Christian; Grothendick, Beau; Zhang, Lin; Borror, Connie M.; Barbano, Duane; Cornelius, Angela J.; Gilpin, Brent J.; Fagerquist, Clifton K.; Zaragoza, William J.; Jay-Russell, Michele T.; Lastovica, Albert J.; Ragimbeau, Catherine; Cauchie, Henry-Michel; Sandrin, Todd R.

    2016-01-01

    MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the

  10. Development of a knowledge-based system for the design of composite automotive components

    NASA Astrophysics Data System (ADS)

    Moynihan, Gary P.; Stephens, J. Paul

    1997-01-01

    Composite materials are comprised of two or more constituents possessing significantly different physical properties. Due to their high strength and light weight, there is an emerging trend to utilize composites in the automotive industry. There is an inherent link between component design and the manufacturing processes necessary for fabrication. To many designers, this situation may be intimidating, since there is frequently little available understanding of composites and their processes. A direct results is high rates of product scrap and rework. Thus, there is a need to implement a systematic approach to composite material design. One such approach is quality function deployment (QFD). By translating customer requirements into design parameters, through the use of heuristics, QFD supports the improvement of product quality during the planning stages prior to actual production. The purpose of this research is to automate the use of knowledge pertaining to the design and application of composite materials within the automobile industry. This is being accomplished through the development of a prototype expert system incorporating a QFD approach. It will provide industry designers with access to knowledge of composite materials that might not be otherwise available.

  11. Optimization of parameters affecting signal intensity in an LTQ-orbitrap in negative ion mode: A design of experiments approach.

    PubMed

    Lemonakis, Nikolaos; Skaltsounis, Alexios-Leandros; Tsarbopoulos, Anthony; Gikas, Evagelos

    2016-01-15

    A multistage optimization of all the parameters affecting detection/response in an LTQ-orbitrap analyzer was performed, using a design of experiments methodology. The signal intensity, a critical issue for mass analysis, was investigated and the optimization process was completed in three successive steps, taking into account the three main regions of an orbitrap, the ion generation, the ion transmission and the ion detection regions. Oleuropein and hydroxytyrosol were selected as the model compounds. Overall, applying this methodology the sensitivity was increased more than 24%, the resolution more than 6.5%, whereas the elapsed scan time was reduced nearly to its half. A high-resolution LTQ Orbitrap Discovery mass spectrometer was used for the determination of the analytes of interest. Thus, oleuropein and hydroxytyrosol were infused via the instruments syringe pump and they were analyzed employing electrospray ionization (ESI) in the negative high-resolution full-scan ion mode. The parameters of the three main regions of the LTQ-orbitrap were independently optimized in terms of maximum sensitivity. In this context, factorial design, response surface model and Plackett-Burman experiments were performed and analysis of variance was carried out to evaluate the validity of the statistical model and to determine the most significant parameters for signal intensity. The optimum MS conditions for each analyte were summarized and the method optimum condition was achieved by maximizing the desirability function. Our observation showed good agreement between the predicted optimum response and the responses collected at the predicted optimum conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Bioreactor process parameter screening utilizing a Plackett-Burman design for a model monoclonal antibody.

    PubMed

    Agarabi, Cyrus D; Schiel, John E; Lute, Scott C; Chavez, Brittany K; Boyne, Michael T; Brorson, Kurt A; Khan, Mansoora; Read, Erik K

    2015-06-01

    Consistent high-quality antibody yield is a key goal for cell culture bioprocessing. This endpoint is typically achieved in commercial settings through product and process engineering of bioreactor parameters during development. When the process is complex and not optimized, small changes in composition and control may yield a finished product of less desirable quality. Therefore, changes proposed to currently validated processes usually require justification and are reported to the US FDA for approval. Recently, design-of-experiments-based approaches have been explored to rapidly and efficiently achieve this goal of optimized yield with a better understanding of product and process variables that affect a product's critical quality attributes. Here, we present a laboratory-scale model culture where we apply a Plackett-Burman screening design to parallel cultures to study the main effects of 11 process variables. This exercise allowed us to determine the relative importance of these variables and identify the most important factors to be further optimized in order to control both desirable and undesirable glycan profiles. We found engineering changes relating to culture temperature and nonessential amino acid supplementation significantly impacted glycan profiles associated with fucosylation, β-galactosylation, and sialylation. All of these are important for monoclonal antibody product quality. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Mechanical design handbook for elastomers. [the design of elastomer dampers for application in rotating machinery

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Zorzi, E.

    1981-01-01

    A comprehensive guide for the design of elastomer dampers for application in rotating machinery is presented. Theoretical discussions, a step by step procedure for the design of elastomer dampers, and detailed examples of actual elastomer damper applications are included. Dynamic and general physical properties of elastomers are discussed along with measurement techniques.

  14. Design Enhancement and Performance Examination of External Rotor Switched Flux Permanent Magnet Machine for Downhole Application

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Sulaiman, E.; Soomro, H. A.; Jusoh, L. I.; Bahrim, F. S.; Omar, M. F.

    2017-08-01

    The recent change in innovation and employments of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has turned out to be one of the suitable contenders for seaward boring, however, less intended for downhole because of high atmospheric temperature. Subsequently, this extensive review manages the design enhancement and performance examination of external rotor PMFSM for the downhole application. Preparatory, the essential design parameters required for machine configuration are computed numerically. At that point, the design enhancement strategy is actualized through deterministic technique. At last, preliminary and refined execution of the machine is contrasted and as a consequence, the yield torque is raised from 16.39Nm to 33.57Nm while depreciating the cogging torque and PM weight up to 1.77Nm and 0.79kg, individually. In this manner, it is inferred that purposed enhanced design of 12slot-22pole with external rotor is convenient for the downhole application.

  15. As-built design specification for PARHIS

    NASA Technical Reports Server (NTRS)

    Tompkins, M. A. (Principal Investigator)

    1981-01-01

    The program is part of the CLASFYG package. It produces histograms of the greeness profile derived parameters alpha, beta, t sub o, and chi squared, which are computed by the CLASFYG program. Alpha is the approximate greeness rise time, beta is the approximate greeness decay time, t sub o is the spectral crop emergence date, and chi squared per degree of freedom is the goodness of fit of the actual data to the computed greeness profile. The program also produces statistical information concerning the parameters.

  16. Overcoming the knowledge-behavior gap: The effect of evidence-based HPV vaccination leaflets on understanding, intention, and actual vaccination decision.

    PubMed

    Wegwarth, O; Kurzenhäuser-Carstens, S; Gigerenzer, G

    2014-03-10

    Informed decision making requires transparent and evidence-based (=balanced) information on the potential benefit and harms of medical preventions. An analysis of German HPV vaccination leaflets revealed, however, that none met the standards of balanced risk communication. We surveyed a sample of 225 girl-parent pairs in a before-after design on the effects of balanced and unbalanced risk communication on participants' knowledge about cervical cancer and the HPV vaccination, their perceived risk, their intention to have the vaccine, and their actual vaccination decision. The balanced leaflet increased the number of participants who were correctly informed about cervical cancer and the HPV vaccine by 33 to 66 absolute percentage points. In contrast, the unbalanced leaflet decreased the number of participants who were correctly informed about these facts by 0 to 18 absolute percentage points. Whereas the actual uptake of the HPV vaccination 14 months after the initial study did not differ between the two groups (22% balanced leaflet vs. 23% unbalanced leaflet; p=.93, r=.01), the originally stated intention to have the vaccine reliably predicted the actual vaccination decision for the balanced leaflet group only (concordance between intention and actual uptake: 97% in the balanced leaflet group, rs=.92, p=.00; 60% in the unbalanced leaflet group, rs=.37, p=.08). In contrast to a unbalanced leaflet, a balanced leaflet increased people's knowledge of the HPV vaccination, improved perceived risk judgments, and led to an actual vaccination uptake, which first was robustly predicted by people's intention and second did not differ from the uptake in the unbalanced leaflet group. These findings suggest that balanced reporting about HPV vaccination increases informed decisions about whether to be vaccinated and does not undermine actual uptake. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Knowledge-based system for detailed blade design of turbines

    NASA Astrophysics Data System (ADS)

    Goel, Sanjay; Lamson, Scott

    1994-03-01

    A design optimization methodology that couples optimization techniques to CFD analysis for design of airfoils is presented. This technique optimizes 2D airfoil sections of a blade by minimizing the deviation of the actual Mach number distribution on the blade surface from a smooth fit of the distribution. The airfoil is not reverse engineered by specification of a precise distribution of the desired Mach number plot, only general desired characteristics of the distribution are specified for the design. Since the Mach number distribution is very complex, and cannot be conveniently represented by a single polynomial, it is partitioned into segments, each of which is characterized by a different order polynomial. The sum of the deviation of all the segments is minimized during optimization. To make intelligent changes to the airfoil geometry, it needs to be associated with features observed in the Mach number distribution. Associating the geometry parameters with independent features of the distribution is a fairly complex task. Also, for different optimization techniques to work efficiently the airfoil geometry needs to be parameterized into independent parameters, with enough degrees of freedom for adequate geometry manipulation. A high-pressure, low reaction steam turbine blade section was optimized using this methodology. The Mach number distribution was partitioned into pressure and suction surfaces and the suction surface distribution was further subdivided into leading edge, mid section and trailing edge sections. Two different airfoil representation schemes were used for defining the design variables of the optimization problem. The optimization was performed by using a combination of heuristic search and numerical optimization. The optimization results for the two schemes are discussed in the paper. The results are also compared to a manual design improvement study conducted independently by an experienced airfoil designer. The turbine blade optimization

  18. Clinical and biometric determinants of actual lens position after cataract surgery.

    PubMed

    Plat, Julien; Hoa, Didier; Mura, Frederic; Busetto, Timothe; Schneider, Christelle; Payerols, Arnaud; Villain, Max; Daien, Vincent

    2017-02-01

    To evaluate the preoperative clinical and biometric determinants associated with the actual lens position after cataract surgery. Department of Ophthalmology, University Hospital of Montpellier, France. Prospective longitudinal cohort study. The data collected included clinical factors (age, sex, history of vitrectomy) and biometry factors (axial length [AL], anterior chamber depth [ACD], lens thickness, white-to-white [WTW] distance) that might affect actual lens position. Each patient had optical low-coherence reflectometry biometry (Lenstar) preoperatively and 1 month postoperatively. The actual lens position was measured as the postoperative position of the center of the intraocular lens (IOL). Patients were stratified into 3 groups by type of IOL: Acrysof SN60WF or SN6AT (Group 1), Tecnis ZCB00 or ZCT (Group 2), and Asphina 409 MV (Group 3). The study comprised 168 eyes (mean age 73.3 years ± 9.8 [SD]). The mean actual lens position was 4.88 ± 0.29 mm, 5.01 ± 0.29 mm, and 5.05 ± 0.32 mm in Group 1 (n = 67 eyes), Group 2 (n = 52 eyes), and Group 3 (n = 49 eyes), respectively. In the overall population, AL, ACD, anterior segment depth, and WTW distance were correlated with actual lens position (r = 0.48, P < .0001; r = 0.64, P < .001; r = 0.58, P < .0001; r = 0.39, P < .001, respectively). The AL, ACD, anterior segment depth, and WTW distance correlated with actual lens position after cataract surgery. The integration of these data in IOL formulas could help improve refractive outcomes after the surgery. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Comparing Derived and Actual Upwelling Longwave Measurements at the CERES Ocean Validation Experiment (COVE)

    NASA Astrophysics Data System (ADS)

    Fabbri, B. E.; Schuster, G. L.; Denn, F. M.; Arduini, R. F.; Madigan, J. J.

    2017-12-01

    One of the parameters measured from the Clouds and the Earth's Radiant Energy System (CERES) satellite is Earth emitted or longwave (LW) radiation. One validation site to compare this quantity is the CERES Ocean Validation Experiment (COVE), located at Chesapeake Light Station, approximately 25 kilometers east of Virginia Beach, Virginia (coordinates: 36.90N, 75.71W). However, the upwelling measurement is complicated due to the Light Station tower being in the LW instruments field of view. A negative outcome of the tower being in the field of view is a tower radiating effect, especially noticeable on clear, sunny days. During these days, the tower tends to heat up and radiate extra heat energy that is measured by the LW instrument. To understand the extent of the problem, we derive upwelling longwave measurements at the surface using sea surface temperature, air temperature, and dewpoint to compare with the actual longwave measurement made with an Eppley Laboratory pyrgeometer. The data used in this study is over a four-year period (2009-2012). One result using only nighttime data (range: 15.0 =< sa <= 55.0) shows the relative error between actual versus derived being low. The resultant statistics produced a mean, median, standard deviation and standard error to be -0.378, -0.14, 1.906 and 0.005 respectively. This low error is not too surprising since there is no solar insolation creating the tower radiating effect. Other results comparing the diurnal scope are analyzed and presented.

  20. Optimization for minimum sensitivity to uncertain parameters

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw

    1994-01-01

    A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.

  1. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  2. Monitoring based maintenance utilizing actual stress sensory technology

    NASA Astrophysics Data System (ADS)

    Sumitro, Sunaryo; Kurokawa, Shoji; Shimano, Keiji; Wang, Ming L.

    2005-06-01

    In recent years, many infrastructures have been deteriorating. In order to maintain sustainability of those infrastructures which have significant influence on social lifelines, economical and rational maintenance management should be carried out to evaluate the life cycle cost (LCC). The development of structural health monitoring systems, such as deriving evaluation techniques for the field structural condition of existing structures and identification techniques for the significant engineering properties of new structures, can be considered as the first step in resolving the above problem. New innovative evaluation methods need to be devised to identify the deterioration of infrastructures, e.g. steel tendons, cables in cable-stayed bridges and strands embedded in pre- or post-tensioned concrete structures. One of the possible solutions that show 'AtoE' characteristics, i.e., (a)ccuracy, (b)enefit, (c)ompendiousness, (d)urability and (e)ase of operation, elasto-magnetic (EM) actual stress sensory technology utilizing the sensitivity of incremental magnetic permeability to stress change, has been developed. Numerous verification tests on various steel materials have been conducted. By comparing with load cell, strain gage and other sensory technology measurement results, the actual stresses of steel tendons in a pre-stressed concrete structure at the following stages have been thoroughly investigated: (i) pre-stress change due to set-loss (anchorage slippage) at the tendon fixation stage; (ii) pre-stress change due to the tendon relaxation stage; (iii) concrete creep and shrinkage at the long term pre-stressing stage; (iv) pre-stress change in the cyclic fatigue loading stage; and (v) pre-stress change due to the re-pre-stress setting stage. As the result of this testing, it is confirmed that EM sensory technology enables one to measure actual stress in steel wire, strands and steel bars precisely without destroying the polyethylene covering sheath and enables

  3. 77 FR 13328 - Federal Acquisition Regulation; Information Collection; Davis Bacon Act-Price Adjustment (Actual...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ...; Information Collection; Davis Bacon Act--Price Adjustment (Actual Method) AGENCY: Department of Defense (DOD... approved information collection requirement concerning the Davis-Bacon Act price adjustment (actual method... Information Collection 9000- 0154, Davis Bacon Act--Price Adjustment (Actual Method), by any of the following...

  4. Are Human Mating Preferences with Respect to Height Reflected in Actual Pairings?

    PubMed Central

    Stulp, Gert; Buunk, Abraham P.; Pollet, Thomas V.; Nettle, Daniel; Verhulst, Simon

    2013-01-01

    Pair formation, acquiring a mate to form a reproductive unit, is a complex process. Mating preferences are a step in this process. However, due to constraining factors such as availability of mates, rival competition, and mutual mate choice, preferred characteristics may not be realised in the actual partner. People value height in their partner and we investigated to what extent preferences for height are realised in actual couples. We used data from the Millennium Cohort Study (UK) and compared the distribution of height difference in actual couples to simulations of random mating to test how established mate preferences map on to actual mating patterns. In line with mate preferences, we found evidence for: (i) assortative mating (r = .18), (ii) the male-taller norm, and, for the first time, (iii) for the male-not-too-tall norm. Couples where the male partner was shorter, or over 25 cm taller than the female partner, occurred at lower frequency in actual couples than expected by chance, but the magnitude of these effects was modest. We also investigated another preference rule, namely that short women (and tall men) prefer large height differences with their partner, whereas tall women (and short men) prefer small height differences. These patterns were also observed in our population, although the strengths of these associations were weaker than previously reported strength of preferences. We conclude that while preferences for partner height generally translate into actual pairing, they do so only modestly. PMID:23342102

  5. Are human mating preferences with respect to height reflected in actual pairings?

    PubMed

    Stulp, Gert; Buunk, Abraham P; Pollet, Thomas V; Nettle, Daniel; Verhulst, Simon

    2013-01-01

    Pair formation, acquiring a mate to form a reproductive unit, is a complex process. Mating preferences are a step in this process. However, due to constraining factors such as availability of mates, rival competition, and mutual mate choice, preferred characteristics may not be realised in the actual partner. People value height in their partner and we investigated to what extent preferences for height are realised in actual couples. We used data from the Millennium Cohort Study (UK) and compared the distribution of height difference in actual couples to simulations of random mating to test how established mate preferences map on to actual mating patterns. In line with mate preferences, we found evidence for: (i) assortative mating (r = .18), (ii) the male-taller norm, and, for the first time, (iii) for the male-not-too-tall norm. Couples where the male partner was shorter, or over 25 cm taller than the female partner, occurred at lower frequency in actual couples than expected by chance, but the magnitude of these effects was modest. We also investigated another preference rule, namely that short women (and tall men) prefer large height differences with their partner, whereas tall women (and short men) prefer small height differences. These patterns were also observed in our population, although the strengths of these associations were weaker than previously reported strength of preferences. We conclude that while preferences for partner height generally translate into actual pairing, they do so only modestly.

  6. Let's not, and say we would: imagined and actual responses to witnessing homophobia.

    PubMed

    Crosby, Jennifer Randall; Wilson, Johannes

    2015-01-01

    We compared imagined versus actual affective and behavioral responses to witnessing a homophobic slur. Participants (N = 72) witnessed a confederate using a homophobic slur, imagined the same scenario, or were not exposed to the slur. Those who imagined hearing the slur reported significantly higher levels of negative affect than those who actually witnessed the slur, and nearly one half of them reported that they would confront the slur, whereas no participants who actually heard the slur confronted it. These findings reveal a discrepancy between imagined and real responses to homophobic remarks, and they have implications for the likelihood that heterosexuals will actually confront homophobic remarks.

  7. Speed Harmonization--Design Speed vs. Operating Speed.

    DOT National Transportation Integrated Search

    2016-10-01

    When the actual operating speed on the roads exceeds the design speed, which is common on rural highways, the roadway design may become problematic from a safety point of view. This report presents a new methodology that summarizes the relationship b...

  8. An in-vitro comparison of the radiographic and actual gutta-percha terminus.

    PubMed

    Namazikhah, M S; Ghiai, M; Parkin, M J; Puccinelli, L

    2000-06-01

    The purpose of this study was to investigate the difference between the radiographic gutta-percha terminus and the actual gutta-percha terminus of human molars by comparing radiographic obturation results with actual obturation results. Forty maxillary palatal roots and 50 mandibular distal roots were randomly selected from a population of 540. They were then mounted in stone and radiographed. Conventional endodontic therapy was completed using stainless-steel K files and lateral condensation. Each radiographic gutta-percha terminus was evaluated under 4.5x magnification by three examiners following the completion of root canal therapy. These results were recorded. Each tooth was then removed from its mounting, and the actual gutta-percha terminus was evaluated under 4.5x magnification. These results were recorded and compared to the radiographic gutta-percha terminus results. In all 90 teeth examined, the actual gutta-percha terminus was equal to or longer than the radiographic gutta-percha terminus. In the 50 mandibular distal roots, the actual gutta-percha terminus averaged 0.645 mm longer than the radiographic gutta-percha terminus. In the 40 maxillary palatal roots, this difference measured 0.6375 mm.

  9. Exaggerating Accessible Differences: When Gender Stereotypes Overestimate Actual Group Differences.

    PubMed

    Eyal, Tal; Epley, Nicholas

    2017-09-01

    Stereotypes are often presumed to exaggerate group differences, but empirical evidence is mixed. We suggest exaggeration is moderated by the accessibility of specific stereotype content. In particular, because the most accessible stereotype contents are attributes perceived to differ between groups, those attributes are most likely to exaggerate actual group differences due to regression to the mean. We tested this hypothesis using a highly accessible gender stereotype: that women are more socially sensitive than men. We confirmed that the most accessible stereotype content involves attributes perceived to differ between groups (pretest), and that these stereotypes contain some accuracy but significantly exaggerate actual gender differences (Experiment 1). We observe less exaggeration when judging less accessible stereotype content (Experiment 2), or when judging individual men and women (Experiment 3). Considering the accessibility of specific stereotype content may explain when stereotypes exaggerate actual group differences and when they do not.

  10. Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design.

    PubMed

    Kasnakoğlu, Coşku

    2016-01-01

    Some level of uncertainty is unavoidable in acquiring the mass, geometry parameters and stability derivatives of an aerial vehicle. In certain instances tiny perturbations of these could potentially cause considerable variations in flight characteristics. This research considers the impact of varying these parameters altogether. This is a generalization of examining the effects of particular parameters on selected modes present in existing literature. Conventional autopilot designs commonly assume that each flight channel is independent and develop single-input single-output (SISO) controllers for every one, that are utilized in parallel for actual flight. It is demonstrated that an attitude controller built like this can function flawlessly on separate nominal cases, but can become unstable with a perturbation no more than 2%. Two robust multi-input multi-output (MIMO) design strategies, specifically loop-shaping and μ-synthesis are outlined as potential substitutes and are observed to handle large parametric changes of 30% while preserving decent performance. Duplicating the loop-shaping procedure for the outer loop, a complete flight control system is formed. It is confirmed through software-in-the-loop (SIL) verifications utilizing blade element theory (BET) that the autopilot is capable of navigation and landing exposed to high parametric variations and powerful winds.

  11. Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design

    PubMed Central

    Kasnakoğlu, Coşku

    2016-01-01

    Some level of uncertainty is unavoidable in acquiring the mass, geometry parameters and stability derivatives of an aerial vehicle. In certain instances tiny perturbations of these could potentially cause considerable variations in flight characteristics. This research considers the impact of varying these parameters altogether. This is a generalization of examining the effects of particular parameters on selected modes present in existing literature. Conventional autopilot designs commonly assume that each flight channel is independent and develop single-input single-output (SISO) controllers for every one, that are utilized in parallel for actual flight. It is demonstrated that an attitude controller built like this can function flawlessly on separate nominal cases, but can become unstable with a perturbation no more than 2%. Two robust multi-input multi-output (MIMO) design strategies, specifically loop-shaping and μ-synthesis are outlined as potential substitutes and are observed to handle large parametric changes of 30% while preserving decent performance. Duplicating the loop-shaping procedure for the outer loop, a complete flight control system is formed. It is confirmed through software-in-the-loop (SIL) verifications utilizing blade element theory (BET) that the autopilot is capable of navigation and landing exposed to high parametric variations and powerful winds. PMID:27783706

  12. An Exploratory Exercise in Taguchi Analysis of Design Parameters: Application to a Shuttle-to-space Station Automated Approach Control System

    NASA Technical Reports Server (NTRS)

    Deal, Don E.

    1991-01-01

    The chief goals of the summer project have been twofold - first, for my host group and myself to learn as much of the working details of Taguchi analysis as possible in the time allotted, and, secondly, to apply the methodology to a design problem with the intention of establishing a preliminary set of near-optimal (in the sense of producing a desired response) design parameter values from among a large number of candidate factor combinations. The selected problem is concerned with determining design factor settings for an automated approach program which is to have the capability of guiding the Shuttle into the docking port of the Space Station under controlled conditions so as to meet and/or optimize certain target criteria. The candidate design parameters under study were glide path (i.e., approach) angle, path intercept and approach gains, and minimum impulse bit mode (a parameter which defines how Shuttle jets shall be fired). Several performance criteria were of concern: terminal relative velocity at the instant the two spacecraft are mated; docking offset; number of Shuttle jet firings in certain specified directions (of interest due to possible plume impingement on the Station's solar arrays), and total RCS (a measure of the energy expended in performing the approach/docking maneuver). In the material discussed here, we have focused on single performance criteria - total RCS. An analysis of the possibility of employing a multiobjective function composed of a weighted sum of the various individual criteria has been undertaken, but is, at this writing, incomplete. Results from the Taguchi statistical analysis indicate that only three of the original four posited factors are significant in affecting RCS response. A comparison of model simulation output (via Monte Carlo) with predictions based on estimated factor effects inferred through the Taguchi experiment array data suggested acceptable or close agreement between the two except at the predicted optimum

  13. Acoustic parameters inversion and sediment properties in the Yellow River reservoir

    NASA Astrophysics Data System (ADS)

    Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei

    2018-03-01

    The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.

  14. Controlled attenuation parameter is correlated with actual hepatic fat content in patients with non-alcoholic fatty liver disease with none-to-mild obesity and liver fibrosis.

    PubMed

    Fujimori, Naoyuki; Tanaka, Naoki; Shibata, Soichiro; Sano, Kenji; Yamazaki, Tomoo; Sekiguchi, Tomohiro; Kitabatake, Hiroyuki; Ichikawa, Yuki; Kimura, Takefumi; Komatsu, Michiharu; Umemura, Takeji; Matsumoto, Akihiro; Tanaka, Eiji

    2016-09-01

    Non-invasive steatosis-quantifying methods are required for non-alcoholic fatty liver disease (NAFLD) patients in order to monitor disease severity and assess therapeutic efficacy. Controlled attenuation parameter (CAP) evaluated with vibration-controlled transient elastography can predict the presence of steatosis, but its application to absolute hepatic fat quantitation remains unclear. The aim of this st\\udy was to examine whether CAP is correlated with real hepatic fat content in NAFLD patients. Eighty-two NAFLD patients who had undergone percutaneous liver biopsy were enrolled. CAP was measured using FibroScan(®) just before liver biopsy. The percentage of fat droplet area to hepatocyte area in biopsied specimen was determined morphometrically using computerized optical image analyzing system. The correlation between CAP and liver histology was examined. CAP showed an excellent correlation with actual liver fat percentage in the NAFLD patients with body mass index (BMI) of less than 28 kg/m(2) (r = 0.579, P < 0.0001), especially less than 25 kg/m(2) (r = 0.708, P < 0.01), but the meaningful correlation disappeared in the patients with BMI of 28 kg/m(2) or more. In the patients with BMI of less than 28 kg/m(2) , CAP quantitativeness was affected by the presence of stage 2-4 fibrosis, but not the presence of hepatocyte ballooning and severity of lobular inflammation. CAP may be a promising tool for quantifying hepatic fat content in NAFLD patients with none-to-mild obesity and liver fibrosis. Further improvement of CAP performance is needed for the NAFLD patients with BMI of more than 28 kg/m(2) or significant hepatic fibrosis. © 2016 The Japan Society of Hepatology.

  15. Prototype design of singles processing unit for the small animal PET

    NASA Astrophysics Data System (ADS)

    Deng, P.; Zhao, L.; Lu, J.; Li, B.; Dong, R.; Liu, S.; An, Q.

    2018-05-01

    Position Emission Tomography (PET) is an advanced clinical diagnostic imaging technique for nuclear medicine. Small animal PET is increasingly used for studying the animal model of disease, new drugs and new therapies. A prototype of Singles Processing Unit (SPU) for a small animal PET system was designed to obtain the time, energy, and position information. The energy and position is actually calculated through high precison charge measurement, which is based on amplification, shaping, A/D conversion and area calculation in digital signal processing domian. Analysis and simulations were also conducted to optimize the key parameters in system design. Initial tests indicate that the charge and time precision is better than 3‰ FWHM and 350 ps FWHM respectively, while the position resolution is better than 3.5‰ FWHM. Commination tests of the SPU prototype with the PET detector indicate that the system time precision is better than 2.5 ns, while the flood map and energy spectra concored well with the expected.

  16. Integrating Thermal Tools Into the Mechanical Design Process

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  17. Oral surgical handpiece use time parameters.

    PubMed

    Roberts, Howard W; Cohen, Mark E; Murchison, David F

    2005-07-01

    To evaluate the clinical usage time parameters of handpieces used in oral surgical procedures. One hundred randomly selected clinical oral surgery exodontia procedures were timed to record lengths of continuous segments of both handpiece use and non-usage. Providers with experience ranging from general dentists to board certified oral surgeons were timed during surgical exodontia treatment involving 1 to 4 teeth of various complexities. Usage times were compared with manufacturers' recommendations that on times should not exceed 20 seconds in any 50-second interval (20/50 rule). Handpiece run time increased with the number of teeth and surgical case complexity (both P < .001) but was unrelated to operator experience (P = .763), in a 3-predictor model (R2 = 0.20; P < .001). Ninety-four of the 100 cases experienced at least 1 second in violation of the 20/50 rule and 42% of all run seconds were in violation. Clinicians should be aware of recommended handpiece duty use cycles. Manufacturers' recommendations about handpiece use time cycles do not reflect actual clinical usage. Under the conditions of this study, actual surgical handpiece use time was not correlated with user experience. Less experienced providers did require longer to complete treatment, but increased treatment times were due to time spent that did not require surgical handpiece use.

  18. Multivariate meta-analysis with an increasing number of parameters.

    PubMed

    Boca, Simina M; Pfeiffer, Ruth M; Sampson, Joshua N

    2017-05-01

    Meta-analysis can average estimates of multiple parameters, such as a treatment's effect on multiple outcomes, across studies. Univariate meta-analysis (UVMA) considers each parameter individually, while multivariate meta-analysis (MVMA) considers the parameters jointly and accounts for the correlation between their estimates. The performance of MVMA and UVMA has been extensively compared in scenarios with two parameters. Our objective is to compare the performance of MVMA and UVMA as the number of parameters, p, increases. Specifically, we show that (i) for fixed-effect (FE) meta-analysis, the benefit from using MVMA can substantially increase as p increases; (ii) for random effects (RE) meta-analysis, the benefit from MVMA can increase as p increases, but the potential improvement is modest in the presence of high between-study variability and the actual improvement is further reduced by the need to estimate an increasingly large between study covariance matrix; and (iii) when there is little to no between-study variability, the loss of efficiency due to choosing RE MVMA over FE MVMA increases as p increases. We demonstrate these three features through theory, simulation, and a meta-analysis of risk factors for non-Hodgkin lymphoma. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  19. Parameter estimation and statistical analysis on frequency-dependent active control forces

    NASA Astrophysics Data System (ADS)

    Lim, Tau Meng; Cheng, Shanbao

    2007-07-01

    The active control forces of an active magnetic bearing (AMB) system are known to be frequency dependent in nature. This is due to the frequency-dependent nature of the AMB system, i.e. time lags in sensors, digital signal processing, amplifiers, filters, and eddy current and hysteresis losses in the electromagnetic coils. The stiffness and damping coefficients of these control forces can be assumed to be linear for small limit of perturbations within the air gap. Numerous studies have also attempted to estimate these coefficients directly or indirectly without validating the model and verifying the results. This paper seeks to address these issues, by proposing a one-axis electromagnetic suspension system to simplify the measurement requirements and eliminate the possibility of control force cross-coupling capabilities. It also proposes an on-line frequency domain parameter estimation procedure with statistical information to provide a quantitative measure for model validation and results verification purposes. This would lead to a better understanding and a design platform for optimal vibration control scheme for suspended system. This is achieved by injecting Schroeder Phased Harmonic Sequences (SPHS), a multi-frequency test signal, to persistently excite all possible suspended system modes. By treating the system as a black box, the parameter estimation of the "actual" stiffness and damping coefficients in the frequency domain are realised experimentally. The digitally implemented PID controller also facilitated changes on the feedback gains, and this allowed numerous system response measurements with their corresponding estimated stiffness and damping coefficients.

  20. A RSSI-based parameter tracking strategy for constrained position localization

    NASA Astrophysics Data System (ADS)

    Du, Jinze; Diouris, Jean-François; Wang, Yide

    2017-12-01

    In this paper, a received signal strength indicator (RSSI)-based parameter tracking strategy for constrained position localization is proposed. To estimate channel model parameters, least mean squares method (LMS) is associated with the trilateration method. In the context of applications where the positions are constrained on a grid, a novel tracking strategy is proposed to determine the real position and obtain the actual parameters in the monitored region. Based on practical data acquired from a real localization system, an experimental channel model is constructed to provide RSSI values and verify the proposed tracking strategy. Quantitative criteria are given to guarantee the efficiency of the proposed tracking strategy by providing a trade-off between the grid resolution and parameter variation. The simulation results show a good behavior of the proposed tracking strategy in the presence of space-time variation of the propagation channel. Compared with the existing RSSI-based algorithms, the proposed tracking strategy exhibits better localization accuracy but consumes more calculation time. In addition, a tracking test is performed to validate the effectiveness of the proposed tracking strategy.

  1. HIGH-SHEAR GRANULATION PROCESS: INFLUENCE OF PROCESSING PARAMETERS ON CRITICAL QUALITY ATTRIBUTES OF ACETAMINOPHEN GRANULES AND TABLETS USING DESIGN OF EXPERIMENT APPROACH.

    PubMed

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shedfat, Ramadan I

    2017-01-01

    Application of quality by design (QbD) in high shear granulation process is critical and need to recognize the correlation between the granulation process parameters and the properties of intermediate (granules) and corresponding final product (tablets). The present work examined the influence of water amount (X,) and wet massing time (X2) as independent process variables on the critical quality attributes of granules and corresponding tablets using design of experiment (DoE) technique. A two factor, three level (32) full factorial design was performed; each of these variables was investigated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their size distribution, density and flow pattern. Additionally, the produced tablets have been investigated for weight uniformity, crushing strength, friability and percent capping, disintegration time and drug dissolution. Statistically significant impact (p < 0.05) of water amount was identified for granule growth, percent fines and distribution width and flow behavior. Granule density and compressibility were found to be significantly influenced (p < 0.05) by the two operating conditions. Also, water amount has significant effect (p < 0.05) on tablet weight unifornity, friability and percent capping. Moreover, tablet disintegration time and drug dissolution appears to be significantly influenced (p < 0.05) by the two process variables. On the other hand, the relationship of process parameters with critical quality attributes of granule and final product tablet was identified and correlated. Ultimately, a judicious selection of process parameters in high shear granulation process will allow providing product of desirable quality.

  2. Comparison of actual and seismologically inferred stress drops in dynamic models of microseismicity

    NASA Astrophysics Data System (ADS)

    Lin, Y. Y.; Lapusta, N.

    2017-12-01

    Estimating source parameters for small earthquakes is commonly based on either Brune or Madariaga source models. These models assume circular rupture that starts from the center of a fault and spreads axisymmetrically with a constant rupture speed. The resulting stress drops are moment-independent, with large scatter. However, more complex source behaviors are commonly discovered by finite-fault inversions for both large and small earthquakes, including directivity, heterogeneous slip, and non-circular shapes. Recent studies (Noda, Lapusta, and Kanamori, GJI, 2013; Kaneko and Shearer, GJI, 2014; JGR, 2015) have shown that slip heterogeneity and directivity can result in large discrepancies between the actual and estimated stress drops. We explore the relation between the actual and seismologically estimated stress drops for several types of numerically produced microearthquakes. For example, an asperity-type circular fault patch with increasing normal stress towards the middle of the patch, surrounded by a creeping region, is a potentially common microseismicity source. In such models, a number of events rupture the portion of the patch near its circumference, producing ring-like ruptures, before a patch-spanning event occurs. We calculate the far-field synthetic waveforms for our simulated sources and estimate their spectral properties. The distribution of corner frequencies over the focal sphere is markedly different for the ring-like sources compared to the Madariaga model. Furthermore, most waveforms for the ring-like sources are better fitted by a high-frequency fall-off rate different from the commonly assumed value of 2 (from the so-called omega-squared model), with the average value over the focal sphere being 1.5. The application of Brune- or Madariaga-type analysis to these sources results in the stress drops estimates different from the actual stress drops by a factor of up to 125 in the models we considered. We will report on our current studies of

  3. Computational Modeling and High Performance Computing in Advanced Materials Processing, Synthesis, and Design

    DTIC Science & Technology

    2014-12-07

    parameters of resin viscosity and preform permeability prior to resin gelation. However, there could be significant variations in these two parameters...during actual manufacturing due to differences in the resin batches, mixes, temperature, ambient conditions for viscosity ; in the preform rolls...optimal injection time and locations for given process parameters of resin viscosity and preform permeability prior to resin gelation. However, there

  4. Point spread function engineering for iris recognition system design.

    PubMed

    Ashok, Amit; Neifeld, Mark A

    2010-04-01

    Undersampling in the detector array degrades the performance of iris-recognition imaging systems. We find that an undersampling of 8 x 8 reduces the iris-recognition performance by nearly a factor of 4 (on CASIA iris database), as measured by the false rejection ratio (FRR) metric. We employ optical point spread function (PSF) engineering via a Zernike phase mask in conjunction with multiple subpixel shifted image measurements (frames) to mitigate the effect of undersampling. A task-specific optimization framework is used to engineer the optical PSF and optimize the postprocessing parameters to minimize the FRR. The optimized Zernike phase enhanced lens (ZPEL) imager design with one frame yields an improvement of nearly 33% relative to a thin observation module by bounded optics (TOMBO) imager with one frame. With four frames the optimized ZPEL imager achieves a FRR equal to that of the conventional imager without undersampling. Further, the ZPEL imager design using 16 frames yields a FRR that is actually 15% lower than that obtained with the conventional imager without undersampling.

  5. Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools

    NASA Astrophysics Data System (ADS)

    Januszkiewicz, Krystyna; Banachowicz, Marta

    2017-10-01

    The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.

  6. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    NASA Astrophysics Data System (ADS)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  7. The assessment of body sway and the choice of the stability parameter(s).

    PubMed

    Raymakers, J A; Samson, M M; Verhaar, H J J

    2005-01-01

    This methodological study aims at comparison of the practical usefulness of several parameters of body sway derived from recordings of the center of pressure (CoP) with the aid of a static force platform as proposed in the literature. These included: mean displacement velocity, maximal range of movement along x- and y-co-ordinates, movement area, planar deviation, phase plane parameter of Riley and the parameters of the diffusion stabilogram according to Collins. They were compared in over 850 experiments in a group of young healthy subjects (n = 10, age 21-45 years), a group of elderly healthy (n = 38, age 61-78 years) and two groups of elderly subjects (n = 10 and n = 21, age 65-89 years) with stability problems under different conditions known to interfere with stability as compared to standing with open eyes fixing a visual anchoring point: closing the eyes, standing on plastic foam in stead of a firm surface and performing a cognitive task: the modified stroop test. A force platform (Kistler) was used and co-ordinates of the body's center of pressure were recorded during 60 s of quiet barefoot standing with a sampling frequency of 10 Hz. In general, the results show important overlapping among groups and test conditions. Mean displacement velocity shows the most consistent differences between test situations, health conditions and age ranges, but is not affected by an extra cognitive task in healthy old people. Mean maximal sideways sway range is different among groups and test conditions except for the cognitive task in young and elderly subjects. Standardised displacement parameters such as standard deviations of displacements and planar deviation discriminate less well than the actual range of motion or the velocity. The critical time interval derived from the diffusion stabilogram according to Collins et al. seems to add a specific type of information since it shows significant influence from addition of a cognitive task in old subjects standing on a firm

  8. Design for a Crane Metallic Structure Based on Imperialist Competitive Algorithm and Inverse Reliability Strategy

    NASA Astrophysics Data System (ADS)

    Fan, Xiao-Ning; Zhi, Bo

    2017-07-01

    Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO) offers a more reasonable design approach. However, existing RBDO methods for crane metallic structures are prone to low convergence speed and high computational cost. A unilevel RBDO method, combining a discrete imperialist competitive algorithm with an inverse reliability strategy based on the performance measure approach, is developed. Application of the imperialist competitive algorithm at the optimization level significantly improves the convergence speed of this RBDO method. At the reliability analysis level, the inverse reliability strategy is used to determine the feasibility of each probabilistic constraint at each design point by calculating its α-percentile performance, thereby avoiding convergence failure, calculation error, and disproportionate computational effort encountered using conventional moment and simulation methods. Application of the RBDO method to an actual crane structure shows that the developed RBDO realizes a design with the best tradeoff between economy and safety together with about one-third of the convergence speed and the computational cost of the existing method. This paper provides a scientific and effective design approach for the design of metallic structures of cranes.

  9. Design Steps for Physic STEM Education Learning in Secondary School

    NASA Astrophysics Data System (ADS)

    Teevasuthonsakul, C.; Yuvanatheeme, V.; Sriput, V.; Suwandecha, S.

    2017-09-01

    This study aimed to develop the process of STEM Education activity design used in Physics subjects in the Thai secondary schools. The researchers have conducted the study by reviewing the literature and related works, interviewing Physics experts, designing and revising the process accordingly, and experimenting the designed process in actual classrooms. This brought about the five-step process of STEM Education activity design which Physics teachers applied to their actual teaching context. The results from the after-class evaluation revealed that the students’ satisfaction level toward Physics subject and critical thinking skill was found higher statistically significant at p < .05. Moreover, teachers were advised to integrate the principles of science, mathematics, technology, and engineering design process as the foundation when creating case study of problems and solutions.

  10. Persistence with treatment for hypertension in actual practice

    PubMed Central

    Caro, J J; Salas, M; Speckman, J L; Raggio, G; Jackson, J D

    1999-01-01

    BACKGROUND: Despite the existence of efficacious medications, many patients in actual practice remain with uncontrolled hypertension. Randomized clinical trials, cannot address this issue well given their highly restricted environment. This paper examines persistence with antihypertensive therapy among patients in actual practice. METHODS: Cohort study of patients who received a diagnosis of hypertension and were treated between 1989 and 1994 identified through the Saskatchewan Health databases. Patients with concurrent diagnoses likely to affect initial treatment choice were excluded. The resulting population of 79,591 subjects was grouped into those with established hypertension (52,227 [66%]) and those with newly diagnosed hypertension (27,364 [34%]). The initial antihypertensive prescription, subsequent changes in treatment and persistence with antihypertensive therapy were analysed. RESULTS: Persistence with antihypertensive therapy decreased in the first 6 months after treatment was started and continued to decline over the next 4 years. Of the patients with newly diagnosed hypertension, only 78% persisted with therapy at the end of 1 year, as compared with 97% of the patients with established hypertension (p < 0.001). Among those with newly diagnosed hypertension, older patients were more likely than younger ones to persist, and women were more likely than men to persist (p < 0.001). INTERPRETATION: This analysis of actual practice data indicates that barriers to persistence occur early in the therapeutic course and that achieving successful therapy when treatment is started is important to maintaining long-term persistence. PMID:9934341

  11. Physicians' prescribing preferences were a potential instrument for patients' actual prescriptions of antidepressants☆

    PubMed Central

    Davies, Neil M.; Gunnell, David; Thomas, Kyla H.; Metcalfe, Chris; Windmeijer, Frank; Martin, Richard M.

    2013-01-01

    Objectives To investigate whether physicians' prescribing preferences were valid instrumental variables for the antidepressant prescriptions they issued to their patients. Study Design and Setting We investigated whether physicians' previous prescriptions of (1) tricyclic antidepressants (TCAs) vs. selective serotonin reuptake inhibitors (SSRIs) and (2) paroxetine vs. other SSRIs were valid instruments. We investigated whether the instrumental variable assumptions are likely to hold and whether TCAs (vs. SSRIs) were associated with hospital admission for self-harm or death by suicide using both conventional and instrumental variable regressions. The setting for the study was general practices in the United Kingdom. Results Prior prescriptions were strongly associated with actual prescriptions: physicians who previously prescribed TCAs were 14.9 percentage points (95% confidence interval [CI], 14.4, 15.4) more likely to prescribe TCAs, and those who previously prescribed paroxetine were 27.7 percentage points (95% CI, 26.7, 28.8) more likely to prescribe paroxetine, to their next patient. Physicians' previous prescriptions were less strongly associated with patients' baseline characteristics than actual prescriptions. We found no evidence that the estimated association of TCAs with self-harm/suicide using instrumental variable regression differed from conventional regression estimates (P-value = 0.45). Conclusion The main instrumental variable assumptions held, suggesting that physicians' prescribing preferences are valid instruments for evaluating the short-term effects of antidepressants. PMID:24075596

  12. Energy Expenditure of Trotting Gait Under Different Gait Parameters

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Bao; Gao, Feng

    2017-07-01

    Robots driven by batteries are clean, quiet, and can work indoors or in space. However, the battery endurance is a great problem. A new gait parameter design energy saving strategy to extend the working hours of the quadruped robot is proposed. A dynamic model of the robot is established to estimate and analyze the energy expenditures during trotting. Given a trotting speed, optimal stride frequency and stride length can minimize the energy expenditure. However, the relationship between the speed and the optimal gait parameters is nonlinear, which is difficult for practical application. Therefore, a simplified gait parameter design method for energy saving is proposed. A critical trotting speed of the quadruped robot is found and can be used to decide the gait parameters. When the robot is travelling lower than this speed, it is better to keep a constant stride length and change the cycle period. When the robot is travelling higher than this speed, it is better to keep a constant cycle period and change the stride length. Simulations and experiments on the quadruped robot show that by using the proposed gait parameter design approach, the energy expenditure can be reduced by about 54% compared with the 100 mm stride length under 500 mm/s speed. In general, an energy expenditure model based on the gait parameter of the quadruped robot is built and the trotting gait parameters design approach for energy saving is proposed.

  13. Design of oligonucleotides for microarrays and perspectives for design of multi-transcriptome arrays.

    PubMed

    Nielsen, Henrik Bjørn; Wernersson, Rasmus; Knudsen, Steen

    2003-07-01

    Optimal design of oligonucleotides for microarrays involves tedious and laborious work evaluating potential oligonucleotides relative to a series of parameters. The currently available tools for this purpose are limited in their flexibility and do not present the oligonucleotide designer with an overview of these parameters. We present here a flexible tool named OligoWiz for designing oligonucleotides for multiple purposes. OligoWiz presents a set of parameter scores in a graphical interface to facilitate an overview for the user. Additional custom parameter scores can easily be added to the program to extend the default parameters: homology, DeltaTm, low-complexity, position and GATC-only. Furthermore we present an analysis of the limitations in designing oligonucleotide sets that can detect transcripts from multiple organisms. OligoWiz is available at www.cbs.dtu.dk/services/OligoWiz/.

  14. Hippocampal closed-loop modeling and implications for seizure stimulation design.

    PubMed

    Sandler, Roman A; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W; Marmarelis, Vasilis Z

    2015-10-01

    Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.

  15. Development of an analytical solution for the Budyko watershed parameter in terms of catchment physical features

    NASA Astrophysics Data System (ADS)

    Reaver, N.; Kaplan, D. A.; Jawitz, J. W.

    2017-12-01

    The Budyko hypothesis states that a catchment's long-term water and energy balances are dependent on two relatively easy to measure quantities: rainfall depth and potential evaporation. This hypothesis is expressed as a simple function, the Budyko equation, which allows for the prediction of a catchment's actual evapotranspiration and discharge from measured rainfall depth and potential evaporation, data which are widely available. However, the two main analytically derived forms of the Budyko equation contain a single unknown watershed parameter, whose value varies across catchments; variation in this parameter has been used to explain the hydrological behavior of different catchments. The watershed parameter is generally thought of as a lumped quantity that represents the influence of all catchment biophysical features (e.g. soil type and depth, vegetation type, timing of rainfall, etc). Previous work has shown that the parameter is statistically correlated with catchment properties, but an explicit expression has been elusive. While the watershed parameter can be determined empirically by fitting the Budyko equation to measured data in gauged catchments where actual evapotranspiration can be estimated, this limits the utility of the framework for predicting impacts to catchment hydrology due to changing climate and land use. In this study, we developed an analytical solution for the lumped catchment parameter for both forms of the Budyko equation. We combined these solutions with a statistical soil moisture model to obtain analytical solutions for the Budyko equation parameter as a function of measurable catchment physical features, including rooting depth, soil porosity, and soil wilting point. We tested the predictive power of these solutions using the U.S. catchments in the MOPEX database. We also compared the Budyko equation parameter estimates generated from our analytical solutions (i.e. predicted parameters) with those obtained through the calibration of

  16. Heuristic lipophilicity potential for computer-aided rational drug design: optimizations of screening functions and parameters.

    PubMed

    Du, Q; Mezey, P G

    1998-09-01

    In this research we test and compare three possible atom-based screening functions used in the heuristic molecular lipophilicity potential (HMLP). Screening function 1 is a power distance-dependent function, bi/[formula: see text] Ri-r [formula: see text] gamma, screening function 2 is an exponential distance-dependent function, bi exp(-[formula: see text] Ri-r [formula: see text]/d0), and screening function 3 is a weighted distance-dependent function, sign(bi) exp[-xi [formula: see text] Ri-r [formula: see text]/magnitude of bi)]. For every screening function, the parameters (gamma, d0, and xi) are optimized using 41 common organic molecules of 4 types of compounds: aliphatic alcohols, aliphatic carboxylic acids, aliphatic amines, and aliphatic alkanes. The results of calculations show that screening function 3 cannot give chemically reasonable results, however, both the power screening function and the exponential screening function give chemically satisfactory results. There are two notable differences between screening functions 1 and 2. First, the exponential screening function has larger values in the short distance than the power screening function, therefore more influence from the nearest neighbors is involved using screening function 2 than screening function 1. Second, the power screening function has larger values in the long distance than the exponential screening function, therefore screening function 1 is effected by atoms at long distance more than screening function 2. For screening function 1, the suitable range of parameter gamma is 1.0 < gamma < 3.0, gamma = 2.3 is recommended, and gamma = 2.0 is the nearest integral value. For screening function 2, the suitable range of parameter d0 is 1.5 < d0 < 3.0, and d0 = 2.0 is recommended. HMLP developed in this research provides a potential tool for computer-aided three-dimensional drug design.

  17. Actual versus perceived peer sexual risk behavior in online youth social networks.

    PubMed

    Black, Sandra R; Schmiege, Sarah; Bull, Sheana

    2013-09-01

    Perception of peer behaviors is an important predictor of actual risk behaviors among youth. However, we lack understanding of peer influence through social media and of actual and perceived peer behavior concordance. The purpose of this research is to document the relationship between individual perception of and actual peer sexual risk behavior using online social networks. The data are a result of a secondary analysis of baseline self-reported and peer-reported sexual risk behavior from a cluster randomized trial including 1,029 persons from 162 virtual networks. Individuals (seeds) recruited up to three friends who then recruited additional friends, extending three waves from the seed. ANOVA models compared network means of actual participant behavior across categories of perceived behavior. Concordance varied between reported and perceived behavior, with higher concordance between perceived and reported condom use, multiple partners, concurrent partners, sexual pressure, and drug and alcohol use during sex. Individuals significantly over-reported risk and under-reported protective peer behaviors related to sex.

  18. New model performance index for engineering design of control systems

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Performance index includes a model representing linear control-system design specifications. Based on a geometric criterion for approximation of the model by the actual system, the index can be interpreted directly in terms of the desired system response model without actually having the model's time response.

  19. Mechanical Design Handbook for Elastomers

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Zorzi, E.

    1986-01-01

    Mechanical Design Handbook for Elastomers reviews state of art in elastomer-damper technology with particular emphasis on applications of highspeed rotor dampers. Self-contained reference but includes some theoretical discussion to help reader understand how and why dampers used for rotating machines. Handbook presents step-by-step procedure for design of elastomer dampers and detailed examples of actual elastomer damper applications.

  20. 40 CFR 86.094-22 - Approval of application for certification; test fleet selections; determinations of parameters...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Audit and Production Compliance Audit testing, the adequacy of the limits, stops, seals, or other means... (Selective Enforcement Audit and Production Compliance Audit) only the actual settings to which the parameter... Selective Enforcement Audit, adequacy of limits, and physically adjustable ranges. 86.094-22 Section 86.094...

  1. Parameter Study of the LIFE Engine Nuclear Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, K J; Meier, W R; Latkowski, J F

    2009-07-10

    LLNL is developing the nuclear fusion based Laser Inertial Fusion Energy (LIFE) power plant concept. The baseline design uses a depleted uranium (DU) fission fuel blanket with a flowing molten salt coolant (flibe) that also breeds the tritium needed to sustain the fusion energy source. Indirect drive targets, similar to those that will be demonstrated on the National Ignition Facility (NIF), are ignited at {approx}13 Hz providing a 500 MW fusion source. The DU is in the form of a uranium oxycarbide kernel in modified TRISO-like fuel particles distributed in a carbon matrix forming 2-cm-diameter pebbles. The thermal power ismore » held at 2000 MW by continuously varying the 6Li enrichment in the coolants. There are many options to be considered in the engine design including target yield, U-to-C ratio in the fuel, fission blanket thickness, etc. Here we report results of design variations and compare them in terms of various figures of merit such as time to reach a desired burnup, full-power years of operation, time and maximum burnup at power ramp down and the overall balance of plant utilization.« less

  2. Comparison of Actual Surgical Outcomes and 3D Surgical Simulations

    PubMed Central

    Tucker, Scott; Cevidanes, Lucia; Styner, Martin; Kim, Hyungmin; Reyes, Mauricio; Proffit, William; Turvey, Timothy

    2009-01-01

    Purpose The advent of imaging software programs have proved to be useful for diagnosis, treatment planning, and outcome measurement, but precision of 3D surgical simulation still needs to be tested. This study was conducted to determine if the virtual surgery performed on 3D models constructed from Cone-beam CT (CBCT) can correctly simulate the actual surgical outcome and to validate the ability of this emerging technology to recreate the orthognathic surgery hard tissue movements in 3 translational and 3 rotational planes of space. Methods Construction of pre- and post-surgery 3D models from CBCTs of 14 patients who had combined maxillary advancement and mandibular setback surgery and 6 patients who had one-piece maxillary advancement surgery was performed. The post-surgery and virtually simulated surgery 3D models were registered at the cranial base to quantify differences between simulated and actual surgery models. Hotelling T-test were used to assess the differences between simulated and actual surgical outcomes. Results For all anatomic regions of interest, there was no statistically significant difference between the simulated and the actual surgical models. The right lateral ramus was the only region that showed a statistically significant, but small difference when comparing two- and one-jaw surgeries. Conclusions Virtual surgical methods were reliably reproduced, oral surgery residents could benefit from virtual surgical training, and computer simulation has the potential to increase predictability in the operating room. PMID:20591553

  3. Production of biodiesel from coastal macroalgae (Chara vulgaris) and optimization of process parameters using Box-Behnken design.

    PubMed

    Siddiqua, Shaila; Mamun, Abdullah Al; Enayetul Babar, Sheikh Md

    2015-01-01

    Renewable biodiesels are needed as an alternative to petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Algae biomass, are a potential source of renewable energy, and they can be converted into energy such as biofuels. This study introduces an integrated method for the production of biodiesel from Chara vulgaris algae collected from the coastal region of Bangladesh. The Box-Behnken design based on response surface methods (RSM) used as the statistical tool to optimize three variables for predicting the best performing conditions (calorific value and yield) of algae biodiesel. The three parameters for production condition were chloroform (X1), sodium chloride concentration (X2) and temperature (X3). Optimal conditions were estimated by the aid of statistical regression analysis and surface plot chart. The optimal condition of biodiesel production parameter for 12 g of dry algae biomass was observed to be 198 ml chloroform with 0.75 % sodium chloride at 65 °C temperature, where the calorific value of biodiesel is 9255.106 kcal/kg and yield 3.6 ml.

  4. Optimization of design and operating parameters of a space-based optical-electronic system with a distributed aperture.

    PubMed

    Tcherniavski, Iouri; Kahrizi, Mojtaba

    2008-11-20

    Using a gradient optimization method with objective functions formulated in terms of a signal-to-noise ratio (SNR) calculated at given values of the prescribed spatial ground resolution, optimization problems of geometrical parameters of a distributed optical system and a charge-coupled device of a space-based optical-electronic system are solved for samples of the optical systems consisting of two and three annular subapertures. The modulation transfer function (MTF) of the distributed aperture is expressed in terms of an average MTF taking residual image alignment (IA) and optical path difference (OPD) errors into account. The results show optimal solutions of the optimization problems depending on diverse variable parameters. The information on the magnitudes of the SNR can be used to determine the number of the subapertures and their sizes, while the information on the SNR decrease depending on the IA and OPD errors can be useful in design of a beam combination control system to produce the necessary requirements to its accuracy on the basis of the permissible deterioration in the image quality.

  5. Parameter design and experimental study of a bifunctional isolator for optical payload protection and stabilization

    NASA Astrophysics Data System (ADS)

    Wang, Guang-yuan; Guan, Xin; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie

    2017-11-01

    requirement and the displacement restriction during launch are satisfied by tuning the nonlinear stiffness and damping parameters. A group of sample isolators are designed tested both statically and dynamically.

  6. Applications of Evolutionary Algorithms to Electromagnetic Materials Characterization and Design Problems

    NASA Astrophysics Data System (ADS)

    Frasch, Jonathan Lemoine

    parameters, but success of the technique ultimately depends upon how independent the measurements actually are. Next, a method is demonstrated for developing synthetic verification standards. These standards are created from combinations of vertical steps formed from a single piece of metal or metal coated plastic. These fully insertable structures mimic some of the measurement characteristics of typical lab specimens and thus provide a useful tool for verifying the proper calibration and function of the experimental setup used for NRW characterization. These standards are designed with the use an EA, which compares possible designs based on the quality of the match with target parameter values. Several examples have been fabricated and tested, and the design specifications and results are presented. Finally, a second characterization technique is considered. This method uses multiple vertical steps to construct an error reducing structure within the waveguide, which allows parameters to be reliably extracted using both reflection and transmission measurements. These structures are designed with an EA, measuring fitness by the reduction of error in the extracted parameters. An additional EA is used to assist in the extraction of the material parameters supplying better initial guesses to a secant method solver. This hybrid approach greatly increases the stability of the solver and increases the speed of parameter extractions. Several designs have been identified and are analyzed.

  7. New Perspective on Visual Communication Design Education: An Empirical Study of Applying Narrative Theory to Graphic Design Courses

    ERIC Educational Resources Information Center

    Yang, Chao-Ming; Hsu, Tzu-Fan

    2017-01-01

    Visual communication design (VCD) is a form of nonverbal communication. The application of relevant linguistic or semiotic theories to VCD education renders graphic design an innovative and scientific discipline. In this study, actual teaching activities were examined to verify the feasibility of applying narrative theory to graphic design…

  8. Correlation of parents' religious behavior with family's emotional relations and students' self-actualization.

    PubMed

    Poorsheikhali, Fatemah; Alavi, Hamid Reza

    2015-02-01

    The main goal of this research is to study the relationship between parents' religious behavior, emotional relations inside family, and self-actualization of male and female high school students of district 2 in Kerman city. Research method is descriptive and of correlative type. Questionnaires of parent's religious behavior, emotional relations inside family, and students' self-actualization were used in the research. After collecting questionnaires, data were analyzed by SPSS, MINITAB, and EXCEL software. The sample volume in the research has been 309 students and their parents, and the sampling method was in the form of classification and then in the form of cluster in two stages. 1.29 % of students had a low self-actualization, 17.15 % had average, and 81.55 % of them had high self-actualization. Also the results showed that 9.4 % of emotional relations in families were undesirable, 55.3 % were relatively desirable, and 35.3 % were desirable. Moreover, 2.27 % of parents' religious behavior was inappropriate, 29.13 % was relatively appropriate, and 68.61 % was appropriate. The main results of the research are as follows: (1) There is a significant positive correlation between parents' religious behavior and emotional relations inside students' family. (2) There is not any significant correlational between parents' religious behavior and students' self-actualization. (3) There is a significant positive correlation between emotional relations inside family and students' self-actualization.

  9. Perceived and actual competence among overweight and non-overweight children.

    PubMed

    Jones, Rachel A; Okely, Anthony D; Caputi, Peter; Cliff, Dylan P

    2010-11-01

    Child overweight and obesity continues to be a global public health concern. The aim of this study was to investigate whether children's actual and perceived physical competence and parental perception's of their child's competence differ by weight status. Understanding these differences is important because physical activity levels are significantly lower among overweight children than their lean counterparts and children's motivation to participate in physical activity is influenced by their perceived and actual competence and their parents perceptions of their competence. Cross-sectional data were collected from 1414 9- and 11-year-old children and their parents from 20 primary schools in New South Wales, Australia. Outcomes measured included child and parental perceptions of physical competence and children's actual physical competence. Parents of overweight boys perceived them to be significantly less competent than parents of non-overweight boys. For 11-year-old girls, parent's perception of their daughter's ability to run (mean diff=1.06 [95% CI 0.73, 1.40]), jump (mean diff=0.54 [95% CI 0.15, 0.93]) and leap (mean diff=0.78 [95% CI 0.41, 1.17]) was lower among parents of overweight children. Overweight children also reported lower perceived physical competence than non-overweight children. 9- and 11-year-old overweight boys had lower actual physical competence than non-overweight boys (mean diff=1.32 [95% CI 0.29, 2.35]; mean diff=1.26 [95% CI 0.37, 2.15], respectively). Overweight 11-year-old girls had lower actual competence than non-overweight 11-year-old girls (mean diff=1.14 [95% CI 0.70, 2.12]). This study highlighted several differences between overweight and non-overweight children. Better understanding these differences at different stages of development may lead to identifying more specific and appropriate intervention points to promote physical activity in overweight children. Crown Copyright © 2010. Published by Elsevier Ltd. All rights

  10. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Ahmad, S; Alsbou, N

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulatemore » respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing

  11. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    NASA Astrophysics Data System (ADS)

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-01

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  12. Consequences of Predicted or Actual Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  13. Object Design: Twelve Concepts to Know, Understand and Apply

    ERIC Educational Resources Information Center

    Marschalek, Douglas G.

    2005-01-01

    Some art teachers say that art is all around us when they actually mean that "design" is all around us. The everyday objects we view, purchase, and use are designed. Some are well designed, others are poorly designed, and many are in-between. Teachers need to develop learning strategies that enable their students to understand how design is part…

  14. A Galerkin discretisation-based identification for parameters in nonlinear mechanical systems

    NASA Astrophysics Data System (ADS)

    Liu, Zuolin; Xu, Jian

    2018-04-01

    In the paper, a new parameter identification method is proposed for mechanical systems. Based on the idea of Galerkin finite-element method, the displacement over time history is approximated by piecewise linear functions, and the second-order terms in model equation are eliminated by integrating by parts. In this way, the lost function of integration form is derived. Being different with the existing methods, the lost function actually is a quadratic sum of integration over the whole time history. Then for linear or nonlinear systems, the optimisation of the lost function can be applied with traditional least-squares algorithm or the iterative one, respectively. Such method could be used to effectively identify parameters in linear and arbitrary nonlinear mechanical systems. Simulation results show that even under the condition of sparse data or low sampling frequency, this method could still guarantee high accuracy in identifying linear and nonlinear parameters.

  15. Influence of newly designed monorail pressure sensor catheter on coronary diagnostic parameters: an in vitro study.

    PubMed

    Banerjee, Rupak K; Peelukhana, Srikara V; Goswami, Ishan

    2014-02-07

    The decision to perform intervention on a patient with coronary stenosis is often based on functional diagnostic parameters obtained from pressure and flow measurements using sensor-tipped guidewire at maximal vasodilation (hyperemia). Recently, a rapid exchange Monorail Pressure Sensor catheter of 0.022″ diameter (MPS22), with pressure sensor at distal end has been developed for improved assessment of stenosis severity. The hollow shaft of the MPS22 is designed to slide over any standard 0.014″ guidewire (G14). Hence, influence of MPS22 diameter on coronary diagnostic parameters needs investigation. An in vitro experiment was conducted to replicate physiologic flows in three representative area stenosis (AS): mild (64% AS), intermediate (80% AS), and severe (90% AS), for two arterial diameters, 3mm (N2; more common) and 2.5mm (N1). Influence of MPS22 on diagnostic parameters: fractional flow reserve (FFR) and pressure drop coefficient (CDP) was evaluated both at hyperemic and basal conditions, while comparing it with G14. The FFR values decreased for the MPS22 in comparison to G14, (Mild: 0.87 vs 0.88, Intermediate: 0.68 vs 0.73, Severe: 0.48 vs 0.56) and CDP values increased (Mild: 16 vs 14, Intermediate: 75 vs 56, Severe: 370 vs 182) for N2. Similar trend was observed in the case of N1. The FFR values were found to be well above (mild) and below (intermediate and severe) the diagnostic cut-off of 0.75. Therefore, MPS22 catheter can be used as a possible alternative to G14. Further, irrespective of the MPS22 or G14, basal FFR (FFRb) had overlapping ranges in close proximity for clinically relevant mild and intermediate stenoses that will lead to diagnostic uncertainty under both N1 and N2. However, CDPb had distinct ranges for different stenosis severities and could be a potential diagnostic parameter under basal conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Selection of Wire Electrical Discharge Machining Process Parameters on Stainless Steel AISI Grade-304 using Design of Experiments Approach

    NASA Astrophysics Data System (ADS)

    Lingadurai, K.; Nagasivamuni, B.; Muthu Kamatchi, M.; Palavesam, J.

    2012-06-01

    Wire electrical discharge machining (WEDM) is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. Parts having sharp edges that pose difficulties to be machined by the main stream machining processes can be easily machined by WEDM process. Design of Experiments approach (DOE) has been reported in this work for stainless steel AISI grade-304 which is used in cryogenic vessels, evaporators, hospital surgical equipment, marine equipment, fasteners, nuclear vessels, feed water tubing, valves, refrigeration equipment, etc., is machined by WEDM with brass wire electrode. The DOE method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal choice for each WEDM parameter such as voltage, pulse ON, pulse OFF and wire feed. It is found that these parameters have a significant influence on machining characteristic such as metal removal rate (MRR), kerf width and surface roughness (SR). The analysis of the DOE reveals that, in general the pulse ON time significantly affects the kerf width and the wire feed rate affects SR, while, the input voltage mainly affects the MRR.

  17. Impact of heating on sensory properties of French Protected Designation of Origin (PDO) blue cheeses. Relationships with physicochemical parameters.

    PubMed

    Bord, Cécile; Guerinon, Delphine; Lebecque, Annick

    2016-07-01

    The aim of this study was to measure the impact of heating on the sensory properties of blue-veined cheeses in order to characterise their sensory properties and to identify their specific sensory typology associated with physicochemical parameters. Sensory profiles were performed on a selection of Protected Designation of Origin (PDO) cheeses representing the four blue-veined cheese categories produced in the Massif Central (Fourme d'Ambert, Fourme de Montbrison, Bleu d'Auvergne and Bleu des Causses). At the same time, physicochemical parameters were measured in these cheeses. The relationship between these two sets of data was investigated. Four types of blue-veined cheeses displayed significantly different behaviour after heating and it is possible to discriminate these cheese categories through specific sensory attributes. Fourme d'Ambert and Bleu d'Auvergne exhibited useful culinary properties: they presented good meltability, stretchability and a weak oiling-off. However, basic tastes (salty, bitter and sour) are also sensory attributes which can distinguish heated blue cheeses. The relationship between the sensory and physicochemical data indicated a correlation suggesting that some of these sensory properties may be explained by certain physicochemical parameters of heated cheeses. © The Author(s) 2015.

  18. Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots

    NASA Astrophysics Data System (ADS)

    WANG, Wei; WANG, Lei; YUN, Chao

    2017-03-01

    Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.

  19. Characteristics of the Self-Actualized Person: Visions from the East and West.

    ERIC Educational Resources Information Center

    Chang, Raylene; Page, Richard C.

    1991-01-01

    Compares and contrasts the ways that Chinese Taoism and Zen Buddhism view the development of human potential with the ways that the self-actualization theories of Rogers and Maslow describe the human potential movement. Notes many similarities between the ways that Taoism, Zen Buddhism, and the self-actualization theories of Rogers and Maslow…

  20. Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Morgan, K. M.; Pappas, C. G.; Reintsema, C. N.; Swetz, D. S.; Ullom, J. N.; Irwin, K. D.; Akamatsu, H.; Gottardi, L.; den Hartog, R.; Jackson, B. D.; van der Kuur, J.; Barret, D.; Peille, P.

    2016-07-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28" pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2" pixels in the central 36" region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (< 1.5 eV) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  1. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... before final endorsement, except that in the case of an existing project that does not require..., directors, stockholders, partners or other entity member ownership, of construction and other costs, as...

  2. Farmland Tenure Security in China: Influencing Factors of Actual and Perceived Farmland Tenure Security

    NASA Astrophysics Data System (ADS)

    Ren, Guangcheng; Zhu, Xueqin; Heerink, Nico; van Ierland, Ekko; Feng, Shuyi

    2017-04-01

    Tenure security plays an important role in farm households' investment, land renting and other decisions. Recent literature distinguishes between actual farmland tenure security (i.e. farm households' actual control of farmland) and perceived farmland tenure security (i.e. farm households' subjective understanding of their farmland tenure situation and expectation regarding government enforcement and equality of the law). However little is known on what factors influence the actual and perceived farmland tenure security in rural China. Theoretically, actual farmland tenure security is related to village self-governance as a major informal governance rule in rural China. Both economic efficiency and equity considerations are likely to play a role in the distribution of land and its tenure security. Household perceptions of farmland tenure security depend not only on the actual farmland tenure security in a village, but may also be affected by households' investment in and ability of changing social rules. Our study examines what factors contribute to differences in actual and perceived farmland tenure security between different villages and farm households in different regions of China. Applying probit models to the data collected from 1,485 households in 124 villages in Jiangsu, Jiangxi, Liaoning and Chongqing, we find that development of farmland rental market and degree of self-governance of a village have positive impacts, and development of labour market has a negative effect on actual farmland tenure security. Household perceptions of tenure security depend not only on actual farmland tenure security and on households' investment in and ability of changing social rules, but also on risk preferences of households. This finding has interesting policy implications for future land reforms in rural China.

  3. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.

    PubMed

    Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd

    2015-09-01

    Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Design, Modeling, Fabrication, and Evaluation of the Air Amplifier for Improved Detection of Biomolecules by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Robichaud, Guillaume; Dixon, R. Brent; Potturi, Amarnatha S.; Cassidy, Dan; Edwards, Jack R.; Sohn, Alex; Dow, Thomas A.; Muddiman, David C.

    2010-01-01

    Through a multi-disciplinary approach, the air amplifier is being evolved as a highly engineered device to improve detection limits of biomolecules when using electrospray ionization. Several key aspects have driven the modifications to the device through experimentation and simulations. We have developed a computer simulation that accurately portrays actual conditions and the results from these simulations are corroborated by the experimental data. These computer simulations can be used to predict outcomes from future designs resulting in a design process that is efficient in terms of financial cost and time. We have fabricated a new device with annular gap control over a range of 50 to 70 μm using piezoelectric actuators. This has enabled us to obtain better aerodynamic performance when compared to the previous design (2× more vacuum) and also more reproducible results. This is allowing us to study a broader experimental space than the previous design which is critical in guiding future directions. This work also presents and explains the principles behind a fractional factorial design of experiments methodology for testing a large number of experimental parameters in an orderly and efficient manner to understand and optimize the critical parameters that lead to obtain improved detection limits while minimizing the number of experiments performed. Preliminary results showed that several folds of improvements could be obtained for certain condition of operations (up to 34 folds). PMID:21499524

  5. Ensemble engineering and statistical modeling for parameter calibration towards optimal design of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Hongyue; Luo, Shuai; Jin, Ran; He, Zhen

    2017-07-01

    Mathematical modeling is an important tool to investigate the performance of microbial fuel cell (MFC) towards its optimized design. To overcome the shortcoming of traditional MFC models, an ensemble model is developed through integrating both engineering model and statistical analytics for the extrapolation scenarios in this study. Such an ensemble model can reduce laboring effort in parameter calibration and require fewer measurement data to achieve comparable accuracy to traditional statistical model under both the normal and extreme operation regions. Based on different weight between current generation and organic removal efficiency, the ensemble model can give recommended input factor settings to achieve the best current generation and organic removal efficiency. The model predicts a set of optimal design factors for the present tubular MFCs including the anode flow rate of 3.47 mL min-1, organic concentration of 0.71 g L-1, and catholyte pumping flow rate of 14.74 mL min-1 to achieve the peak current at 39.2 mA. To maintain 100% organic removal efficiency, the anode flow rate and organic concentration should be controlled lower than 1.04 mL min-1 and 0.22 g L-1, respectively. The developed ensemble model can be potentially modified to model other types of MFCs or bioelectrochemical systems.

  6. A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data

    NASA Astrophysics Data System (ADS)

    Koh, T. S.; Zhang, Jeff L.; Ong, C. K.; Shuter, B.

    2006-06-01

    Dynamic renal scintigraphy is an established method in nuclear medicine, commonly used for the assessment of renal function. In this paper, a biphasic model fitting method is proposed for simultaneous estimation of both vascular and parenchymal parameters from renal scintigraphic data. These parameters include the renal plasma flow, vascular and parenchymal mean transit times, and the glomerular extraction rate. Monte Carlo simulation was used to evaluate the stability and confidence of the parameter estimates obtained by the proposed biphasic method, before applying the method on actual patient study cases to compare with the conventional fitting approach and other established renal indices. The various parameter estimates obtained using the proposed method were found to be consistent with the respective pathologies of the study cases. The renal plasma flow and extraction rate estimated by the proposed method were in good agreement with those previously obtained using dynamic computed tomography and magnetic resonance imaging.

  7. Projections for antiinfective drug shortages and time to actual resolution.

    PubMed

    McLaughlin, Milena M; Pentoney, Zachary; Skoglund, Erik; Scheetz, Marc H

    2014-12-01

    The results of a national study of projected versus actual times to resolution of temporary U.S. shortages of antiinfective drugs are presented. Descriptive data on antiinfective drug shortages, including differences between manufacturer-estimated and actual times to shortage resolution, were collected over a one-year period via regular monitoring of the websites of ASHP and the Food and Drug Administration. Inventory data from one large hospital in the Midwest were collected in order to characterize realized shortages (i.e., those for which mitigation was required). During the study period, there were 47 transient shortages of antiinfective medications involving 381 unique products or formulations, of which 40% (n = 19) were emergent shortages. Generic-only and brand-only medications accounted for 53% (n = 25) and 21% (n = 10) of the evaluated shortages, respectively; the median shortage duration was 40 days (interquartile range [IQR], 22-91 days). The reasons for shortages most frequently cited by manufacturers were product or formulation discontinuation (21%), increased demand (12%), and raw material shortfalls (8%). Some shortages were resolved sooner than originally projected, but overall, actual shortage durations exceeded manufacturer-projected durations by a median of 17 days (IQR, 0-52.5 days). Ten realized shortages occurred at the hospital study site, compelling the antimicrobial stewardship team to recommend alternative therapies or restrict the use of drugs in short supply. The actual durations of evaluated antiinfective drug shortages during the study period were longer than the manufacturer-projected durations by a median of 17 days. Copyright © 2014 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. Combinatorial influence of environmental parameters on transcription factor activity.

    PubMed

    Knijnenburg, T A; Wessels, L F A; Reinders, M J T

    2008-07-01

    Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.

  9. Optimal experimental design for improving the estimation of growth parameters of Lactobacillus viridescens from data under non-isothermal conditions.

    PubMed

    Longhi, Daniel Angelo; Martins, Wiaslan Figueiredo; da Silva, Nathália Buss; Carciofi, Bruno Augusto Mattar; de Aragão, Gláucia Maria Falcão; Laurindo, João Borges

    2017-01-02

    In predictive microbiology, the model parameters have been estimated using the sequential two-step modeling (TSM) approach, in which primary models are fitted to the microbial growth data, and then secondary models are fitted to the primary model parameters to represent their dependence with the environmental variables (e.g., temperature). The Optimal Experimental Design (OED) approach allows reducing the experimental workload and costs, and the improvement of model identifiability because primary and secondary models are fitted simultaneously from non-isothermal data. Lactobacillus viridescens was selected to this study because it is a lactic acid bacterium of great interest to meat products preservation. The objectives of this study were to estimate the growth parameters of L. viridescens in culture medium from TSM and OED approaches and to evaluate both the number of experimental data and the time needed in each approach and the confidence intervals of the model parameters. Experimental data for estimating the model parameters with TSM approach were obtained at six temperatures (total experimental time of 3540h and 196 experimental data of microbial growth). Data for OED approach were obtained from four optimal non-isothermal profiles (total experimental time of 588h and 60 experimental data of microbial growth), two profiles with increasing temperatures (IT) and two with decreasing temperatures (DT). The Baranyi and Roberts primary model and the square root secondary model were used to describe the microbial growth, in which the parameters b and T min (±95% confidence interval) were estimated from the experimental data. The parameters obtained from TSM approach were b=0.0290 (±0.0020) [1/(h 0.5 °C)] and T min =-1.33 (±1.26) [°C], with R 2 =0.986 and RMSE=0.581, and the parameters obtained with the OED approach were b=0.0316 (±0.0013) [1/(h 0.5 °C)] and T min =-0.24 (±0.55) [°C], with R 2 =0.990 and RMSE=0.436. The parameters obtained from OED approach

  10. Item Parameter Changes and Equating: An Examination of the Effects of Lack of Item Parameter Invariance on Equating and Score Accuracy for Different Proficiency Levels

    ERIC Educational Resources Information Center

    Store, Davie

    2013-01-01

    The impact of particular types of context effects on actual scores is less understood although there has been some research carried out regarding certain types of context effects under the nonequivalent anchor test (NEAT) design. In addition, the issue of the impact of item context effects on scores has not been investigated extensively when item…

  11. Associations between young children's perceived and actual ball skill competence and physical activity.

    PubMed

    Barnett, Lisa M; Ridgers, Nicola D; Salmon, Jo

    2015-03-01

    The relationship between actual and perceived object control competence (ball skills) and the contribution to young children's physical activity is not known. Cross sectional study. The Test Gross Motor Development-2 assessed actual object control competence and a modified version of the Pictorial Scale of Perceived Competence and Social Acceptance for Young Children assessed perceived object control competence. Moderate- to vigorous-intensity physical activity was measured via accelerometry. Three mixed regression models were performed: (i) object control competence as the predictor and the outcome as perceived object control, (ii) perceived object control competence as the predictor and the outcome moderate to vigorous physical activity and (iii) actual object control as the predictor and the outcome moderate to vigorous physical activity. Models adjusted for school clustering, monitor wear time, sex and age. Interactions between respective predictor variables and sex were performed if warranted. A total of 102 children (56% boys, 44% girls) aged 4-8 years (M 6.3, SD 0.92) completed assessments. Girls had lower perceived and actual object control competence and were less active than boys. Actual object control competence was positively associated with perceived object control competence (B=0.11, t(96)=2.25, p<0.001, p=0.027) and this relationship did not differ by sex (p=0.449); however, neither actual (p=0.092) nor perceived object control competence (p=0.827) were associated with moderate to vigorous physical activity. Young children's perceived ball skill abilities appear to relate to actual competence; however, these measures were not associated with physical activity. In older children, object control skill is associated with physical activity so targeting young children's object control skills is an intervention priority. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. Inter-trial and test–retest reliability of kinematic and kinetic gait parameters among subjects with adolescent idiopathic scoliosis

    PubMed Central

    Nadeau, Sylvie; Labelle, Hubert

    2007-01-01

    Gait analysis is actually used in subjects with scoliosis to determine the change in lower limb parameters after surgery, but the reliability of these parameters still remained unknown. The purpose of this study was to assess the repeatability of traditional gait parameters in subjects with adolescent idiopathic scoliosis (AIS) and to estimate the associated standard error of measurement (SEM). A test–retest design was used to assess the reliability of gait parameters at self-selected and fast speeds. A convenience sample of 20 girls aged from 12 to 17 years, with an idiopathic scoliosis (King classification: types I, II or III; Cobb angle 17–50°) participated in the study. Five good trials were recorded on two occasions. The time-distance, kinematic, and kinetic gait parameters were recorded using foot-switches in combination with a three-dimensional motion analysis system (Optotrak) and Advanced Mechanical Technologies Inc., (AMTI) Watertown, MA, USA; force plates. The coefficients of dependability and SEM derived from the generalizability theory were used to assess the reliability. Inter-trial reliability was good for time-distance, kinematic, and kinetic (absolute and normalized) gait parameters except for the medio-lateral ground reaction force (GRF) component and the ankle dorsiflexor moment (ϕ = 0.60–0.77). Test–retest reliability was higher for the kinetic than for the kinematic parameters. These coefficients ranged from 0.42 to 0.58 for the time-distance parameters; from 0.55 to 0.88 for the angular displacements and from 0.25 to 0.99 for the kinetic parameters. The SEMs were lower than 3.3° for the angular displacements and lower than 8 Nm (0.15 Nm/kg) and 36 W (0.54 W/Kg) for the joint moments and powers regardless of the speed. Several gait parameters are reliable among subjects with AIS and can be used to assess the evolution of the spinal modifications and the impact of treatment on their lower limb gait pattern. PMID:17891424

  13. Modeling and Parameter Estimation of Spacecraft Fuel Slosh with Diaphragms Using Pendulum Analogs

    NASA Technical Reports Server (NTRS)

    Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Ristow, James; Suderman, James; Walker, Charles; Hubert, Carl

    2007-01-01

    Prediction and control of liquid slosh in moving containers is an important consideration in the design of spacecraft and launch vehicle control systems. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. It is still desirable to use some type of simplified mechanical analog for the slosh to shorten computation time. Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. This paper will describe efforts by the university component of a team comprised of NASA's Launch Services Program, Embry Riddle Aeronautical University, Southwest Research Institute and Hubert Astronautics to improve the accuracy and efficiency of modeling techniques used to predict these types of motions. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. The previous research was an effort to automate the process of slosh model parameter identification using a MATLAB/SimMechanics-based computer simulation. These results are the first step in applying the same computer estimation to a full-size tank and vehicle propulsion system. The introduction of diaphragms to this experimental set-up will aid in a better and more complete prediction of fuel slosh characteristics and behavior. Automating the

  14. Design and Development of Microcontroller-Based Clinical Chemistry Analyser for Measurement of Various Blood Biochemistry Parameters

    PubMed Central

    Taneja, S. R.; Kumar, Jagdish; Thariyan, K. K.; Verma, Sanjeev

    2005-01-01

    Clinical chemistry analyser is a high-performance microcontroller-based photometric biochemical analyser to measure various blood biochemical parameters such as blood glucose, urea, protein, bilirubin, and so forth, and also to measure and observe enzyme growth occurred while performing the other biochemical tests such as ALT (alkaline amino transferase), amylase, AST (aspartate amino transferase), and so forth. These tests are of great significance in biochemistry and used for diagnostic purposes and classifying various disorders and diseases such as diabetes, liver malfunctioning, renal diseases, and so forth. An inexpensive clinical chemistry analyser developed by the authors is described in this paper. This is an open system in which any reagent kit available in the market can be used. The system is based on the principle of absorbance transmittance photometry. System design is based around 80C31 microcontroller with RAM, EPROM, and peripheral interface devices. The developed system incorporates light source, an optical module, interference filters of various wave lengths, peltier device for maintaining required temperature of the mixture in flow cell, peristaltic pump for sample aspiration, graphic LCD display for displaying blood parameters, patients test results and kinetic test graph, 40 columns mini thermal printer, and also 32-key keyboard for executing various functions. The lab tests conducted on the instrument include versatility of the analyzer, flexibility of the software, and treatment of sample. The prototype was tested and evaluated over 1000 blood samples successfully for seventeen blood parameters. Evaluation was carried out at Government Medical College and Hospital, the Department of Biochemistry. The test results were found to be comparable with other standard instruments. PMID:18924737

  15. Design and development of microcontroller-based clinical chemistry analyser for measurement of various blood biochemistry parameters.

    PubMed

    Taneja, S R; Gupta, R C; Kumar, Jagdish; Thariyan, K K; Verma, Sanjeev

    2005-01-01

    Clinical chemistry analyser is a high-performance microcontroller-based photometric biochemical analyser to measure various blood biochemical parameters such as blood glucose, urea, protein, bilirubin, and so forth, and also to measure and observe enzyme growth occurred while performing the other biochemical tests such as ALT (alkaline amino transferase), amylase, AST (aspartate amino transferase), and so forth. These tests are of great significance in biochemistry and used for diagnostic purposes and classifying various disorders and diseases such as diabetes, liver malfunctioning, renal diseases, and so forth. An inexpensive clinical chemistry analyser developed by the authors is described in this paper. This is an open system in which any reagent kit available in the market can be used. The system is based on the principle of absorbance transmittance photometry. System design is based around 80C31 microcontroller with RAM, EPROM, and peripheral interface devices. The developed system incorporates light source, an optical module, interference filters of various wave lengths, peltier device for maintaining required temperature of the mixture in flow cell, peristaltic pump for sample aspiration, graphic LCD display for displaying blood parameters, patients test results and kinetic test graph, 40 columns mini thermal printer, and also 32-key keyboard for executing various functions. The lab tests conducted on the instrument include versatility of the analyzer, flexibility of the software, and treatment of sample. The prototype was tested and evaluated over 1000 blood samples successfully for seventeen blood parameters. Evaluation was carried out at Government Medical College and Hospital, the Department of Biochemistry. The test results were found to be comparable with other standard instruments.

  16. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  17. Lay theories of obesity predict actual body mass.

    PubMed

    McFerran, Brent; Mukhopadhyay, Anirban

    2013-08-01

    Obesity is a major public health problem, but despite much research into its causes, scientists have largely neglected to examine laypeople's personal beliefs about it. Such naive beliefs are important because they guide actual goal-directed behaviors. In a series of studies across five countries on three continents, we found that people mainly believed either that obesity is caused by a lack of exercise or that it is caused by a poor diet. Moreover, laypeople who indicted a lack of exercise were more likely to actually be overweight than were those who implicated a poor diet. This effect held even after controlling for several known correlates of body mass index (BMI), thereby explaining previously unexplained variance. We also experimentally demonstrated the mechanism underlying this effect: People who implicated insufficient exercise tended to consume more food than did those who indicted a poor diet. These results suggest that obesity has an important, pervasive, and hitherto overlooked psychological antecedent.

  18. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  19. Near Earth Asteroid Rendezvous (NEAR) Revised Eros Orbit Phase Trajectory Design

    NASA Technical Reports Server (NTRS)

    Helfrich, J; Miller, J. K.; Antreasian, P. G.; Carranza, E.; Williams, B. G.; Dunham, D. W.; Farquhar, R. W.; McAdams, J. V.

    1999-01-01

    Trajectory design of the orbit phase of the NEAR mission involves a new process that departs significantly from those procedures used in previous missions. In most cases, a precise spacecraft ephemeris is designed well in advance of arrival at the target body. For NEAR, the uncertainty in the dynamic environment around Eros does not allow the luxury of a precise spacecraft trajectory to be defined in advance. The principal cause of this uncertainty is the limited knowledge oi' the gravity field a,-id rotational state of Eros. As a result, the concept for the NEAR trajectory design is to define a number of rules for satisfying spacecraft, mission, and science constraints, and then apply these rules to various assumptions for the model of Eros. Nominal, high, and low Eros mass models are used for testing the trajectory design strategy and to bracket the ranges of parameter variations that are expected upon arrival at the asteroid. The final design is completed after arrival at Eros and determination of the actual gravity field and rotational state. As a result of the unplanned termination of the deep space rendezvous maneuver on December 20, 1998, the NEAR spacecraft passed within 3830 km of Eros on December 23, 1998. This flyby provided a brief glimpse of Eros, and allowed for a more accurate model of the rotational parameters and gravity field uncertainty. Furthermore, after the termination of the deep space rendezvous burn, contact with the spacecraft was lost and the NEAR spacecraft lost attitude control. During the subsequent gyrations of the spacecraft, hydrazine thruster firings were used to regain attitude control. This unplanned thruster activity used Much of the fuel margin allocated for the orbit phase. Consequently, minimizing fuel consumption is now even more important.

  20. Design of experiments confirms optimization of lithium administration parameters for enhanced fracture healing.

    PubMed

    Vachhani, Kathak; Pagotto, Andrea; Wang, Yufa; Whyne, Cari; Nam, Diane

    2018-01-03

    Fracture healing is a lengthy process which fails in 5-10% of cases. Lithium, a low-cost therapeutic used in psychiatric medicine, up-regulates the canonical Wingless pathway crucial for osteoblastic mineralization in fracture healing. A design-of-experiments (DOE) methodology was used to optimize lithium administration parameters (dose, onset time and treatment duration) to enhance healing in a rat femoral fracture model. In the previously completed first stage (screening), onset time was found to significantly impact healing, with later (day 7 vs. day 3 post-fracture) treatment yielding improved maximum yield torque. The greatest strength was found in healing femurs treated at day 7 post fracture, with a low lithium dose (20 mg/kg) for 2 weeks duration. This paper describes the findings of the second (optimization) and third (verification) stages of the DOE investigation. Closed traumatic diaphyseal femur fractures were induced in 3-month old rats. Healing was evaluated on day 28 post fracture by CT-based morphometry and torsional loading. In optimization, later onset times of day 10 and 14 did not perform as well as day 7 onset. As such, efficacy of the best regimen (20 mg/kg dose given at day 7 onset for 2 weeks duration) was reassessed in a distinct cohort of animals to complete the DOE verification. A significant 44% higher maximum yield torque (primary outcome) was seen with optimized lithium treatment vs. controls, which paralleled the 46% improvement seen in the screening stage. Successful completion of this robustly designed preclinical DOE study delineates the optimal lithium regimen for enhancing preclinical long-bone fracture healing. Copyright © 2017 Elsevier Ltd. All rights reserved.