Science.gov

Sample records for actual energy performance

  1. Investigating the discrepancy between the predicted and actual energy performance of buildings

    NASA Astrophysics Data System (ADS)

    Demanuele, Christine

    The threat of climate change has increased the demand for energy efficiency in buildings, with various stakeholders requesting more accurate predictions of energy consumption, and energy consultants coming under increased pressure to guarantee the energy performance of buildings. This study aims to investigate the factors causing the discrepancy which currently exists between the predicted and actual energy performance of buildings, which will lead to a deeper understanding of this discrepancy and, ultimately, more accurate energy predictions. As part of this study, a non-domestic building in London was modelled and monitored, so as to identify the main contributors to the discrepancy between the predicted and actual energy consumption. In addition, sensitivity analysis was carried out on a number of input variables to establish the set of influential parameters, and to determine whether using such techniques would successfully predict the range in which building energy consumption is likely to fall. The results show that the uncertainty calculated from differential sensitivity analysis encompasses the actual energy performance of the building. The most variable and influential parameters are those which are controlled by occupants, therefore it is paramount that management and occupants are well-informed about the building operation for energy targets to be achieved. Although the sensitivity analysis methods employed are impractical for commercial use, it is possible to develop simpler methods, encompassing all stages of building design and operation, which would decrease the discrepancy between the actual and predicted energy performance of buildings. Such techniques would be invaluable to energy consultants, for whom the cost resting on uncertainties in predictions is substantial due to more demanding clients and fines liable to be paid if energy predictions go wrong. A better understanding of the discrepancy, together with more accurate predictions, would

  2. An insight into actual energy use and its drivers in high-performance buildings

    SciTech Connect

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accurately indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are

  3. An insight into actual energy use and its drivers in high-performance buildings

    DOE PAGESBeta

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these

  4. MODIS Solar Diffuser: Modelled and Actual Performance

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.

  5. Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest

    SciTech Connect

    Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

    2012-10-01

    -predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

  6. Comparison of Projections to Actual Performance in the DOE-EPRI Wind Turbine Verification Program

    SciTech Connect

    Rhoads, H.; VandenBosche, J.; McCoy, T.; Compton, A.; Smith, B.

    2000-09-11

    As part of the US Department of Energy/Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program (TVP), Global Energy Concepts (GEC) worked with participating utilities to develop a set of performance projections for their projects based on historical site atmospheric conditions, turbine performance data, operation and maintenance (O and M) strategies, and assumptions about various energy losses. After a preliminary operation period at each project, GEC compared the actual performance to projections and evaluated the accuracy of the data and assumptions that formed the performance projections. This paper presents a comparison of 1999 power output, turbine availability, and other performance characteristics to the projections for TVP projects in Texas, Vermont, Iowa, Nebraska, Wisconsin, and Alaska. Factors that were overestimated or underestimated are quantified. Actual wind speeds are compared to projections based on long-term historical measurements. Turbine power curve measurements are compared with data provided by the manufacturers, and loss assumptions are evaluated for accuracy. Overall, the projects performed well, particularly new commercial turbines in the first few years of operation. However, some sites experienced below average wind resources and greater than expected losses. The TVP project owners successfully developed and constructed wind power plants that are now in full commercial operation, serving a total of approximately 12,000 households.

  7. Actual performance and economic feasibility of residential solar water heaters

    NASA Astrophysics Data System (ADS)

    Anhalt, Jorgdieter; Ennes, Sergio Augusto Weigert

    1987-09-01

    Four residential water heaters currently available on the Brazilian market have been evaluated for their possible use in substituting for the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents an average Brazilian family. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65 percent of the energy demand for residential water heating in the state of Sao Paulo. A study concludes that the installation and maintenance of such a solar system are economically feasible if long term financing is available.

  8. Does medical students’ clinical performance affect their actual performance during medical internship?

    PubMed Central

    Han, Eui-Ryoung; Chung, Eun-Kyung

    2016-01-01

    INTRODUCTION This study examines the relationship between the clinical performance of medical students and their performance as doctors during their internships. METHODS This retrospective study involved 63 applicants of a residency programme conducted at Chonnam National University Hospital, South Korea, in November 2012. We compared the performance of the applicants during their internship with their clinical performance during their fourth year of medical school. The performance of the applicants as interns was periodically evaluated by the faculty of each department, while their clinical performance as fourth-year medical students was assessed using the Clinical Performance Examination (CPX) and the Objective Structured Clinical Examination (OSCE). RESULTS The performance of the applicants as interns was positively correlated with their clinical performance as fourth-year medical students, as measured by the CPX and OSCE. The performance of the applicants as interns was moderately correlated with the patient-physician interaction items addressing communication and interpersonal skills in the CPX. CONCLUSION The clinical performance of medical students during their fourth year in medical school was related to their performance as medical interns. Medical students should be trained to develop good clinical skills through actual encounters with patients or simulated encounters using manikins, to enable them to become more competent doctors. PMID:26768172

  9. Optimization of CCGT power plant and performance analysis using MATLAB/Simulink with actual operational data.

    PubMed

    Hasan, Naimul; Rai, Jitendra Nath; Arora, Bharat Bhushan

    2014-01-01

    In the Modern scenario, the naturally available resources for power generation are being depleted at an alarming rate; firstly due to wastage of power at consumer end, secondly due to inefficiency of various power system components. A Combined Cycle Gas Turbine (CCGT) integrates two cycles- Brayton cycle (Gas Turbine) and Rankine cycle (Steam Turbine) with the objective of increasing overall plant efficiency. This is accomplished by utilising the exhaust of Gas Turbine through a waste-heat recovery boiler to run a Steam Turbine. The efficiency of a gas turbine which ranges from 28% to 33% can hence be raised to about 60% by recovering some of the low grade thermal energy from the exhaust gas for steam turbine process. This paper is a study for the modelling of CCGT and comparing it with actual operational data. The performance model for CCGT plant was developed in MATLAB/Simulink. PMID:24936394

  10. First-Grade Retention: Effects on Children's Actual and Perceived Performance throughout Elementary Education

    ERIC Educational Resources Information Center

    Goos, Mieke; Van Damme, Jan; Onghena, Patrick; Petry, Katja

    2011-01-01

    This study investigates the effects of repeating first grade on children's further academic growth, by tracking the actual performance and the teacher-rated performance of a cohort of Flemish first-graders until the end of elementary school. Two research questions are raised: (1) How do first-grade repeaters, at the cost of one extra year of…

  11. Consistency across Repeated Eyewitness Interviews: Contrasting Police Detectives’ Beliefs with Actual Eyewitness Performance

    PubMed Central

    Krix, Alana C.; Sauerland, Melanie; Lorei, Clemens; Rispens, Imke

    2015-01-01

    In the legal system, inconsistencies in eyewitness accounts are often used to discredit witnesses’ credibility. This is at odds with research findings showing that witnesses frequently report reminiscent details (details previously unrecalled) at an accuracy rate that is nearly as high as for consistently recalled information. The present study sought to put the validity of beliefs about recall consistency to a test by directly comparing them with actual memory performance in two recall attempts. All participants watched a film of a staged theft. Subsequently, the memory group (N = 84) provided one statement immediately after the film (either with the Self-Administered Interview or free recall) and one after a one-week delay. The estimation group (N = 81) consisting of experienced police detectives estimated the recall performance of the memory group. The results showed that actual recall performance was consistently underestimated. Also, a sharp decline of memory performance between recall attempts was assumed by the estimation group whereas actual accuracy remained stable. While reminiscent details were almost as accurate as consistent details, they were estimated to be much less accurate than consistent information and as inaccurate as direct contradictions. The police detectives expressed a great concern that reminiscence was the result of suggestive external influences. In conclusion, it seems that experienced police detectives hold many implicit beliefs about recall consistency that do not correspond with actual recall performance. Recommendations for police trainings are provided. These aim at fostering a differentiated view on eyewitness performance and the inclusion of more comprehensive classes on human memory structure. PMID:25695428

  12. Working memory and acquisition of implicit knowledge by imagery training, without actual task performance.

    PubMed

    Helene, A F; Xavier, G F

    2006-04-28

    This study investigated acquisition of a mirror-reading skill via imagery training, without the actual performance of a mirror-reading task. In experiment I, healthy volunteers simulated writing on an imaginary, transparent screen placed at eye level, which could be read by an experimenter facing the subject. Performance of this irrelevant motor task required the subject to imagine the letters inverted, as if seen in a mirror from their own point of view (imagery training). A second group performed the same imagery training interspersed with a complex, secondary spelling and counting task. A third, control, group simply wrote the words as they would normally appear from their own point of view. After training with 300 words, all subjects were tested in a mirror-reading task using 60 non-words, constructed according to acceptable letter combinations of the Portuguese language. Compared with control subjects, those exposed to imagery training, including those who switched between imagery and the complex task, exhibited shorter reading times in the mirror-reading task. Experiment II employed a 2 x 3 design, including two training conditions (imagery and actual mirror-reading) and three competing task conditions (a spelling and counting switching task, a visual working memory concurrent task, and no concurrent task). Training sessions were interspersed with mirror-reading testing sessions for non-words, allowing evaluation of the mirror-reading acquisition process during training. The subjects exposed to imagery training acquired the mirror-reading skill as quickly as those exposed to the actual mirror-reading task. Further, performance of concurrent tasks together with actual mirror-reading training severely disrupted mirror-reading skill acquisition; this interference effect was not seen in subjects exposed to imagery training and performance of the switching and the concurrent tasks. These results unequivocally show that acquisition of implicit skills by top

  13. Comparison of actual and predicted energy savings in Minnesota gas-heated single-family homes

    SciTech Connect

    Hirst, E.; Goeltz, R.

    1984-03-01

    Data available from a recent evaluation of a home energy audit program in Minnesota are sufficient to allow analysis of the actual energy savings achieved in audited homes and of the relationship between actual and predicted savings. The program, operated by Northern States Power in much of the southern half of the state, is part of Minnesota's version of the federal Residential Conservation Service. NSP conducted almost 12 thousand RCS audits between April 1981 (when the progam began) and the end of 1982. The data analyzed here, available for 346 homes that obtained an NSP energy audit, include monthly natural gas bills from October 1980 through April 1983; heating degree day data matched to the gas bills; energy audit reports; and information on household demographics, structure characteristics, and recent conservation actions from mail and telephone surveys. The actual reduction in weather-adjusted natural gas use between years 1 and 3 averaged 19 MBtu across these homes (11% of preprogram consumption); the median value of the saving was 16 MBtu/year. The variation in actual saving is quite large: gas consumption increased in almost 20% of the homes, while gas consumption decreased by more than 50 MBtu/year in more than 10% of the homes. These households reported an average expenditure of almost $1600 for the retrofit measures installed in their homes; the variation in retrofit cost, while large, was not as great as the variation in actual natural gas savings.

  14. Thermal Performance of Cryogenic Piping Multilayer Insulation in Actual Field Installations

    NASA Technical Reports Server (NTRS)

    Fesmire, J.; Augustnynowicz, S.; Thompson, K. (Technical Monitor)

    2002-01-01

    A standardized way of comparing the thermal performance of different pipelines in different sizes is needed. Vendor data for vacuum-insulated piping are typically given in heat leak rate per unit length (W/m) for a specific diameter pipeline. An overall k-value for actual field installations (k(sub oafi)) is therefore proposed as a more generalized measure for thermal performance comparison and design calculation. The k(sub oafi) provides a direct correspondence to the k-values reported for insulation materials and illustrates the large difference between ideal multilayer insulation (MLI) and actual MLI performance. In this experimental research study, a section of insulated piping was tested under cryogenic vacuum conditions, including simulated spacers and bending. Several different insulation systems were tested using a 1-meter-long cylindrical cryostat test apparatus. The simulated spacers tests showed significant degradation in the thermal performance of a given insulation system. An 18-meter-long pipeline test apparatus is now in operation at the Cryogenics Test Laboratory, NASA Kennedy Space Center, for conducting liquid nitrogen thermal performance tests.

  15. Official recommendations and actual practice in physiotherapy: managing troubles of physical performance.

    PubMed

    Parry, Ruth Helen

    2005-01-01

    This paper explores relations between official written recommendations for physiotherapists and actual practice. It does so by presenting and discussing findings from a conversation analytic study of 74 physiotherapy treatment sessions video-recorded in four English hospitals. Various practices are described by which therapists address troubles of ongoing or recent physical performance by patients during phases of sessions that are occupied with therapists' instructions in treatment activities and patients' physical responses. Divergence between practice and official guidance can be observed, particularly regarding recommendations that therapists always be unambiguous and clear in their communication with patients. Also, there seem to be conflicting demands between maintaining performance of physical treatment activities, whilst also spending time giving patients information and explanation about troubles of performance, and checking their understanding (as is recommended). There are also conflicting demands between individual recommendations. These observations inform a discussion of the wider challenges involved in formulating relevant, appropriate official guidance on communication practice. I argue that the difficulties of auditing actual conduct against official recommendations on interaction should be acknowledged, and that recommendations should be explicitly tentative and broad. Conversation analytic studies can provide resources and understandings to complement and augment such official guidance. PMID:16808720

  16. Comparisons of pilot performance in simulated and actual flight. [effects of ingested barbiturates

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Gerke, R. J.; Wick, R. L., Jr.

    1975-01-01

    Five highly experienced professional pilots performed instrument landing system approaches under simulated instrument flight conditions in a Cessna 172 airplane and in a Link-Singer GAT-1 simulator while under the influence of orally administered secobarbital (0, 100, and 200 mg). Tracking performance in two axes and airspeed control were evaluated continuously during each approach. Error and RMS variability were about half as large in the simulator as in the airplane. The observed data were more strongly associated with the drug level in the simulator than in the airplane. Further, the drug-related effects were more consistent in the simulator. Improvement in performance suggestive of learning effects were seen in the simulator, but not in actual flight.

  17. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  18. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant

  19. Time interval moderates the relationship between psyching-up and actual sprint performance.

    PubMed

    Hammoudi-Nassib, Sarra; Chtara, Moktar; Nassib, Sabri; Briki, Walid; Hammoudi-Riahi, Sabra; Tod, David; Chamari, Karim

    2014-11-01

    This study attempted to test whether the strongest effect of psyching-up (PU) strategy on actual sprint performance can be observed when the strategy is used immediately (or almost) before performance compared with when there is a delay between PU and performance. To do so, 16 male sprinters (age, 20.6 ± 1.3 years; body mass, 77.5 ± 7.1 kg; height, 180.8 ± 5.6 cm) were enrolled in a counterbalanced experimental design in which participants were randomly assigned to 10 sessions (2 [Experimental Condition: imagery vs. distraction] × 5 [Time Intervals: no interval, 1 minute, 2 minutes, 3 minutes, and 5 minutes]). Before performing the experimental tasks, participants rated: (a) the Hooper index, (b) their degree of self-confidence, and (c) after the completion of the experimental test; they rated their perceived effort. Findings showed that the imagery significantly improved sprint performance. Specifically, the imagery enhanced performance on the phase of acceleration (0-10 m) and on the overall sprint (0-30 m) when used immediately before performance and at 1- and 2-minute intervals but not for 3- and 5-minute intervals. These findings support the hypothesis that the potential effect of the PU strategy on performance vanishes over time. The pre-experimental task Hooper and self-efficacy indexes did not change across the 10 experimental sessions, reinforcing the view that the observed performance changes were directly caused by the experimental manipulation and not through any altered status of the athletes (self-efficacy, fatigue/recovery, and stress). The potential mechanisms underlying such a process and practical applications are discussed. PMID:25029002

  20. Actual versus design performance of solar systems in the National Solar Data Network

    NASA Astrophysics Data System (ADS)

    Logee, T. L.; Kendall, P. W.

    1984-09-01

    Field measured performance were compared to the designer predicted performance. The field measured data were collected by the National Solar Data Network (NSDN) over a period of 6 years. Data from 25 solar systems were selected from a data pool of some 170 solar systems. Several concerns arose which can be partially allayed by study of the NSDN data. These are: what types of failures occurred and why; how good was the design versus actual performance; why was predicted performance not achieved in the field; and which components should be integrated with a system type for good performance. The measured results were also compared to f-chart 5.1 results. This comparison is a type of normalization in that all systems are modeled with the same process. An added benefit of this normalization is a further validation of the f-Chart model on a fairly large scale. The systems are modeled using equipment design parameters, measured loads, and f-Chart weather data from nearby cities.

  1. Study on Tire-attached Energy Harvester for Low-speed Actual Vehicle Driving

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zheng, R.; Kaizuka, T.; Su, D.; Nakano, K.

    2015-12-01

    This study reports a tire-attached energy harvester, in which a cantilever beam pasted piezoelectric film and magnets with the same polarity are fabricated as a bistable vibrating system, for low-speed actual-vehicle driving. As the wheel rotates, the energy harvester is subjected to the noise produced from the interaction between the paved road and the rotating tire, and tangentially gravitational force as a periodic input can be applied to achieve the occurrence of stochastic resonance. Stochastic resonance can significantly stimulate the response of the bistable vibrating system, and therefore enhance the energy harvesting efficiency.

  2. Cognition and the Placebo Effect – Dissociating Subjective Perception and Actual Performance

    PubMed Central

    Schwarz, Katharina A.; Büchel, Christian

    2015-01-01

    The influence of positive or negative expectations on clinical outcomes such as pain relief or motor performance in patients and healthy participants has been extensively investigated for years. Such research promises potential benefit for patient treatment by deliberately using expectations as means to stimulate endogenous regulation processes. Especially regarding recent interest and controversies revolving around cognitive enhancement, the question remains whether mere expectancies might also yield enhancing or impairing effects in the cognitive domain, i.e., can we improve or impair cognitive performance simply by creating a strong expectancy in participants about their performance? Moreover, previous literature suggests that especially subjective perception is highly susceptible to expectancy effects, whereas objective measures can be affected in certain domains, but not in others. Does such a dissociation of objective measures and subjective perception also apply to cognitive placebo and nocebo effects? In this study, we sought to investigate whether placebo and nocebo effects can be evoked in cognitive tasks, and whether these effects influence objective and subjective measures alike. To this end, we instructed participants about alleged effects of different tone frequencies (high, intermediate, low) on brain activity and cognitive functions. We paired each tone with specific success rates in a Flanker task paradigm as a preliminary conditioning procedure, adapted from research on placebo hypoalgesia. In a subsequent test phase, we measured reaction times and success rates in different expectancy conditions (placebo, nocebo, and control) and then asked participants how the different tone frequencies affected their performance. Interestingly, we found no effects of expectation on objective measures, but a strong effect on subjective perception, i.e., although actual performance was not affected by expectancy, participants strongly believed that the placebo

  3. Characterizing the response of galloping energy harvesters using actual wind statistics

    NASA Astrophysics Data System (ADS)

    Daqaq, Mohammed F.

    2015-11-01

    In this paper, we incorporate actual wind statistics into the response of galloping energy harvesters and shed light onto the influence of the wind probability distribution on the average power as compared to the deterministic scenario. Specifically, we obtain an expression for the average output power of the harvester as a function of the wind statistical averages, which are, in turn, obtained by fitting wind data using a Weibull Probability Density Function (PDF). The resulting expression is then used to demonstrate that knowledge of the actual PDF is essential for correct power predictions as well as for accurate electric load optimization. We discuss the influence of the wind direction on the average output power and show that the direction of the prevailing wind is not necessarily the ideal direction to maximize the average power.

  4. Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach

    USGS Publications Warehouse

    Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.

    2013-01-01

    Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0

  5. Design of the dual-buoy wave energy converter based on actual wave data of East Sea

    NASA Astrophysics Data System (ADS)

    Kim, Jeongrok; Kweon, Hyuck-Min; Jeong, Weon-Mu; Cho, Il-Hyoung; Cho, Hong-Yeon

    2015-07-01

    A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: 36.404 N° and 129.274 E°) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

  6. Mabolizable energy differences between values calculated using energy conversion factors and actual values determined by metabolic study of Korean starch foods.

    PubMed

    Kim, Eunmi; Choi, Jinho; Kim, Hyejin

    2014-04-01

    This study was conducted to compare the metabolizable energies of Korean starch foods by an animal metabolic study with those calculated using well-known energy conversion factors. There were 12 experimental diets (that is, 7 Korean foods, 3 Western foods, and 2 control foods): barley, brown rice, laver-rolled rice, rice mixed with vegetables and meat, seafood noodle soup, rice cake soup, rice cake in hot pepper paste, pizza, hamburger, spaghetti, basal diet, and glucose. Each diet comprised 70% basal diet and 30% experimental food. After 3 d of adaptation, a metabolic trial was performed for 4 d. The apparent metabolizable energy of pizza, hamburger, spaghetti, and rice cake soup were significantly higher than that of the basal diet group (P < 0.05). For barley, brown rice, laver-rolled rice, rice mixed with vegetables and meat, and seafood noodle soup, the differences between the actual and calculated energies were 8.7%, 13.3%, 4.5%, 17.2%, and 4.1%, respectively, and the actual energy contents were lower than those calculated using the Atwater conversion factor. The results of this study show that the energy contents of Korean foods are significantly different from those calculated using the conversion factors based on the food composition. Therefore, because Korean starch foods are considered to be calorie-rich based on calculations, their energy contents can be accurately determined only by animal experiments. PMID:24621178

  7. Assessing daily actual evapotranspiration through energy balance: an experiment to evaluate the selfpreservation hypothesis with acquisition time

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.; Rallo, G.

    2013-10-01

    An operational use of the actual evapotranspiration estimates requires the integration from instantaneous to daily values. This can commonly be achieved under the hypothesis of daytime self-preservation of the evaporative fraction. In this study, it has been evaluated the effect of this assumption on the assessment of daily evapotranspiration from proximity sensing images acquired at hourly intervals over a homogeneous olive groove. Results have been validated by comparison with observations made by a micrometeorological (EC-flux tower) and an eco-physiological (sap flux) sensor. SEBAL model has been applied to thermal and multispectral images acquired during a clear day on August 2009 trough a FLIR A320G thermal camera and a Tetracam MCA II multispectral camera, installed on a tethered helium balloon. Thermal and multispectral images were characterized by very high spatial resolution. This experiment aims to analyze two effects: 1) the consistency of the self-preservation hypothesis for daily estimates of the actual evapotranspiration from hourly assessments at different times of the day; 2) the effects of the spatial resolution on the performances of the energy balance model. To evaluate the effects of the spatial resolution, semi-hourly observations made by a flux tower and sap-flow measures were compared to the evapotranspiration estimates performed using downscaled images at resolutions close to canopy sizes (2, 5 and 10 m). Results show that the best estimates are obtained with a spatial resolution comparable to the average size of the canopy with images taken approximately at 10 UTC.

  8. Energy performance assessment with empirical methods: application of energy signature

    NASA Astrophysics Data System (ADS)

    Belussi, L.; Danza, L.; Meroni, I.; Salamone, F.

    2015-03-01

    Energy efficiency and reduction of building consumption are deeply felt issues both at Italian and international level. The recent regulatory framework sets stringent limits on energy performance of buildings. Awaiting the adoption of these principles, several methods have been developed to solve the problem of energy consumption of buildings, among which the simplified energy audit is intended to identify any anomalies in the building system, to provide helpful tips for energy refurbishments and to raise end users' awareness. The Energy Signature is an operational tool of these methodologies, an evaluation method in which energy consumption is correlated with climatic variables, representing the actual energy behaviour of the building. In addition to that purpose, the Energy Signature can be used as an empirical tool to determine the real performances of the technical elements. The latter aspect is illustrated in this article.

  9. Actual and prescribed energy and protein intakes for very low birth weight infants: An observational study

    NASA Astrophysics Data System (ADS)

    Allevato, Anthony J.

    Objectives: To determine (1) whether prescribed and delivered energy and protein intakes during the first two weeks of life met Ziegler's estimated requirements for Very Low Birth Weight (VLBW) infants, (2) if actual energy during the first week of life correlated with time to regain birth weight and reach full enteral nutrition (EN) defined as 100 kcal/kg/day, (3) if growth velocity from time to reach full EN to 36 weeks' postmenstrual age (PMA) met Ziegler's estimated fetal growth velocity (16 g/kg/day), and (4) growth outcomes at 36 weeks' PMA. Study design: Observational study of feeding, early nutrition and early growth of 40 VLBW infants <30 weeks GA at birth in three newborn intensive care units NICUs. Results: During the first week of life, the percentages of prescribed and delivered energy (69% [65 kcal/kg/day]) and protein (89% [3.1 g/kg/day]) were significantly less than theoretical estimated requirements. Delivered intakes were 15% less than prescribed because of numerous interruptions in delivery and medical complications. During the second week, the delivered intakes of energy (90% [86 kcal/kg/day]) and protein (102% [3.5 g/kg/day]) improved although the differences between prescribed and delivered were consistently 15%. Energy but not protein intake during the first week was significantly related to time to reach full EN. Neither energy nor protein intake significantly correlated with days to return to birth weight. The average growth velocity from the age that full EN was attained to 36 weeks' PMA (15 g/kg/day) was significantly less than the theoretical estimated fetal growth velocity (16 g/kg/day) (p<0.03). A difference of 1 g/kg/day represents a total deficit of 42 - 54 grams over the course of a month. At 36 weeks' PMA, 53% of the VLBW infants had extrauterine growth restriction, or EUGR (<10th percentile) on the Fenton growth grid and 34% had EUGR on the Lubchenco growth grid. Conclusions: The delivered nutrient intakes were consistently less

  10. Frontoparietal cortex and cerebellum contribution to the update of actual and mental motor performance during the day

    PubMed Central

    Bonzano, Laura; Roccatagliata, Luca; Ruggeri, Piero; Papaxanthis, Charalambos; Bove, Marco

    2016-01-01

    Actual and imagined movement speed increases from early morning until mid-afternoon. Here, we investigated the neural correlates of these daily changes. Fifteen subjects performed actual and imagined right finger opposition movement sequences at 8 am and 2 pm. Both actual and imagined movements were significantly faster at 2 pm than 8 am. In the morning, actual movements significantly activated the left primary somatosensory and motor areas, and bilaterally the cerebellum; in the afternoon activations were similar but reduced. Contrast analysis revealed greater activity in the cerebellum, the left primary sensorimotor cortex and parietal lobe in the morning than in the afternoon. Imagined movements in the morning significantly activated the parietal association cortices bilaterally, the left supplementary and premotor areas, and the right orbitofrontal cortex and cerebellum. In the afternoon, the frontal lobe was significantly activated with the right cerebellum. Contrast analysis revealed increased activity in the left parietal lobe in the morning than in the afternoon. For both tasks, speed in the morning was significantly related to the BOLD signal in the brain areas resulted more active. These findings suggest that motor performance is continuously updated on a daily basis with a predominant role of the frontoparietal cortex and cerebellum. PMID:27444783

  11. 48 CFR 252.225-7006 - Quarterly reporting of actual contract performance outside the United States.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this clause is not required if— (1) A foreign place of performance is the principal place of performance of the contract; and (2) The Contractor specified the foreign place of performance in its offer... Director of Defense Procurement and Acquisition Policy (Contract Policy and International...

  12. How accurately can students estimate their performance on an exam and how does this relate to their actual performance on the exam?

    NASA Astrophysics Data System (ADS)

    Rebello, N. Sanjay

    2012-02-01

    Research has shown students' beliefs regarding their own abilities in math and science can influence their performance in these disciplines. I investigated the relationship between students' estimated performance and actual performance on five exams in a second semester calculus-based physics class. Students in a second-semester calculus-based physics class were given about 72 hours after the completion of each of five exams, to estimate their individual and class mean score on each exam. Students were given extra credit worth 1% of the exam points for estimating their score correct within 2% of the actual score and another 1% extra credit for estimating the class mean score within 2% of the correct value. I compared students' individual and mean score estimations with the actual scores to investigate the relationship between estimation accuracies and exam performance of the students as well as trends over the semester.

  13. Actual Evapotranspiration using a two source energy balance model and gridded reference ET0

    NASA Astrophysics Data System (ADS)

    Geli, H. M.; Neale, C. M.; Verdin, J. P.; Senay, G. B.; Hobbins, M.

    2013-12-01

    In an ongoing effort to provide estimates of actual evapotranspiration (ETa) at different spatial scales from local to regional this study investigate the use of a newly under development gridded reference ET0 product. This study is conducted within the context of a USGS project aimed to provide a standardized framework for the remote sensing of ETa that can be followed in the implementation of the WaterSMART program. Most thermal remote sensing based models provide instantaneous estimates of latent heat flux which then can be extrapolated to daily ETa. In many cases extrapolation is achieved using the ETref method. At field scales reference ET0, daily and instantaneous values, are obtained from point-based/local scale measurements. When considering regional scale this local scale estimates of ET0 might not be appropriate to account for the corresponding spatial variability. This analysis provides a comparison of ETa estimates based on a two source energy balance approach using point-based and gridded reference ET0 data. The two source energy balance SEBS (Norman et al. 1995) is used to calculate surface energy fluxes and ETa. Data from Palo Verdi Irrigation District (PVID), CA is used during the analysis. The area which extends over 500 km2 covered mostly with alfalfa, cotton and vegetable crops. Ground-based hydrometeorological data including reference ET0 are provided from a nearby weather stations. CONUS wide gridded reference ET0 which being developed by NOAA using NLDAS-phase 2 weather forcing are used. Both estimates of ETa_point and ETa_NLDAS based on ground and gridded ET0 data, respectively, are compared to ground-based measurement. Preliminary results of the comparison will be presented to highlight on the potential use of such gridded ET0 data in the use of remote sensing of ETa at regional scales application. References Norman, J. M., W. P. Kustas, & K. S. Humes, 1995: A two-source approach for estimating soil and vegetation energy fluxes in

  14. Does Topic Familiarity Affect Assessed Difficulty and Actual Performance on Reading Comprehension Tests in LSP?

    ERIC Educational Resources Information Center

    Peretz, Arna S.; Shoham, Miriam

    A study investigated the hypothesis that topic familiarity and assessed difficulty of a second language text correlated positively with performance on reading comprehension tests in languages for special purposes (LSP). Subjects were 177 advanced students of English as a Foreign Language (EFL) at Ben Gurion University (Israel). Faculty from the…

  15. Testing Reading Comprehension in LSP: Does Topic Familiarity Affect Assessed Difficulty and Actual Performance?

    ERIC Educational Resources Information Center

    Peretz, Arna S.; Shoham, Miriam

    1990-01-01

    Investigates hypothesis that topic familiarity and assessed difficulty of a text correlate positively with performance on reading comprehension tests. A study of 177 advanced students of English for Specific Purposes indicates that students' subjective evaluation of the relative difficulty of a reading text is not always a reliable index of their…

  16. Predicted versus Actual Performance in Undergraduate Organic Chemistry and Implications for Student Advising

    ERIC Educational Resources Information Center

    Pursell, David P.

    2007-01-01

    Performance as measured by grades in the first and second semesters of organic chemistry was predicted using pre-college measures (SAT scores, high school rank, validation exams) and college measures (general chemistry GPA, overall college GPA prior to beginning organic chemistry, first-semester organic chemistry GPA). Data indicate that overall…

  17. Motivational Style and Actual and Perceived Academic Performance of Secondary School Students in Hong Kong

    ERIC Educational Resources Information Center

    Sit, Cindy H. P.; Braman, O. Randall; Kerr, John H.; Lindner, Koenraad J.

    2013-01-01

    This study examined the relationship between motivational style and academic achievement among 2,220 secondary school males and females in Hong Kong. Respondents were classified into high, average, or low academic performance (AAP) groups based on a single average for academic subjects obtained from their schools. Respondents were also classified…

  18. How does sport psychology actually improve athletic performance? A framework to facilitate athletes' and coaches' understanding.

    PubMed

    Gee, Chris J

    2010-09-01

    The popularity of sport psychology, both as an academic discipline and an applied practice, has grown substantially over the past two decades. Few within the realm of competitive athletics would argue with the importance of being mentally prepared prior to an athletic competition as well as the need to maintain that particular mindset during a competitive contest. Nevertheless, recent research has shown that many athletes, coaches, and sporting administrators are still quite reluctant to seek out the services of a qualified sport psychologist, even if they believe it could help. One of the primary reasons for this hesitation appears to be a lack of understanding about the process and the mechanisms by which these mental skills affect performance. Unlike the "harder sciences" of sport physiology and biochemistry where athletes can see the tangible results in themselves or other athletes (e.g., he or she lifted weights, developed larger muscles, and is now stronger/faster as a result), the unfamiliar and often esoteric nature of sport psychology appears to be impeding a large number of athletes from soliciting these important services. As such, the purpose of this article is to provide the reader with a simple framework depicting how mental skills training translates into improved within-competition performance. This framework is intended to help bridge the general "understanding gap" that is currently being reported by a large number of athletes and coaches, while also helping sport psychology practitioners sell their valuable services to individual athletes and teams. PMID:20935240

  19. Actual Performance Prediction of Split-type Room Air Conditioner which Considered Unsteady Operation Concerning Heat Island Problem

    NASA Astrophysics Data System (ADS)

    Shinomiya, Naruaki; Nishimura, Nobuya; Iyota, Hiroyuki; Nomura, Tomohiro

    Split type air conditioners are operated actually in the situation unlike the condition that was described in a product catalog. On the other hand, exhaust heat from air conditioner is considered as one of the causes of heat island problem in urban area, and the air conditioner performance and heat load affect exhaust heat amount. In this study, air conditioner performances in both standard summer day and severe hot day were examined by dynamic simulation which considered outdoor weather changes. As a result, actual performances of the air conditioner were demonstrated as a function of outdoor temperature, heat load and indoor temperature. The higher the outdoor temperature and heat load rise, the smaller influences of indoor temperature against COP became. In standard summer day, relative performance exceeded by 15 to 45% than that of JIS operating condition. Also, COP in severe hot day decreased about 6% at the peak time than that of standard day. As a result, the air conditioner exhaust heat during one day which was predicted by the proposed simulation model became about 16% smaller than the conventional prediction model.

  20. Planck pre-launch status: The HFI instrument, from specification to actual performance

    NASA Astrophysics Data System (ADS)

    Lamarre, J.-M.; Puget, J.-L.; Ade, P. A. R.; Bouchet, F.; Guyot, G.; Lange, A. E.; Pajot, F.; Arondel, A.; Benabed, K.; Beney, J.-L.; Benoît, A.; Bernard, J.-Ph.; Bhatia, R.; Blanc, Y.; Bock, J. J.; Bréelle, E.; Bradshaw, T. W.; Camus, P.; Catalano, A.; Charra, J.; Charra, M.; Church, S. E.; Couchot, F.; Coulais, A.; Crill, B. P.; Crook, M. R.; Dassas, K.; de Bernardis, P.; Delabrouille, J.; de Marcillac, P.; Delouis, J.-M.; Désert, F.-X.; Dumesnil, C.; Dupac, X.; Efstathiou, G.; Eng, P.; Evesque, C.; Fourmond, J.-J.; Ganga, K.; Giard, M.; Gispert, R.; Guglielmi, L.; Haissinski, J.; Henrot-Versillé, S.; Hivon, E.; Holmes, W. A.; Jones, W. C.; Koch, T. C.; Lagardère, H.; Lami, P.; Landé, J.; Leriche, B.; Leroy, C.; Longval, Y.; Macías-Pérez, J. F.; Maciaszek, T.; Maffei, B.; Mansoux, B.; Marty, C.; Masi, S.; Mercier, C.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Murphy, J. A.; Narbonne, J.; Nexon, M.; Paine, C. G.; Pahn, J.; Perdereau, O.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Pons, R.; Ponthieu, N.; Prunet, S.; Rambaud, D.; Recouvreur, G.; Renault, C.; Ristorcelli, I.; Rosset, C.; Santos, D.; Savini, G.; Serra, G.; Stassi, P.; Sudiwala, R. V.; Sygnet, J.-F.; Tauber, J. A.; Torre, J.-P.; Tristram, M.; Vibert, L.; Woodcraft, A.; Yurchenko, V.; Yvon, D.

    2010-09-01

    Context. The High Frequency Instrument (HFI) is one of the two focal instruments of the Planck mission. It will observe the whole sky in six bands in the 100 GHz-1 THz range. Aims: The HFI instrument is designed to measure the cosmic microwave background (CMB) with a sensitivity limited only by fundamental sources: the photon noise of the CMB itself and the residuals left after the removal of foregrounds. The two high frequency bands will provide full maps of the submillimetre sky, featuring mainly extended and point source foregrounds. Systematic effects must be kept at negligible levels or accurately monitored so that the signal can be corrected. This paper describes the HFI design and its characteristics deduced from ground tests and calibration. Methods: The HFI instrumental concept and architecture are feasible only by pushing new techniques to their extreme capabilities, mainly: (i) bolometers working at 100 mK and absorbing the radiation in grids; (ii) a dilution cooler providing 100 mK in microgravity conditions; (iii) a new type of AC biased readout electronics and (iv) optical channels using devices inspired from radio and infrared techniques. Results: The Planck-HFI instrument performance exceeds requirements for sensitivity and control of systematic effects. During ground-based calibration and tests, it was measured at instrument and system levels to be close to or better than the goal specification.

  1. Propensity-matched analysis of the gap between capacity and actual performance of dressing in patients with stroke.

    PubMed

    Fujita, Takaaki; Sato, Atsushi; Yamamoto, Yuichi; Otsuki, Koji; Iokawa, Kazuaki; Sone, Toshimasa; Midorikawa, Manabu; Tsuchiya, Kenji; Bumsuk, Lee; Tozato, Fusae

    2016-06-01

    [Purpose] Dressing is an activity of daily living for which stroke patients often show discrepancies between capacity and actual performance. The aim of this study was to elucidate the physical function and unilateral spatial neglect in stroke patients that reduce their level of actual performance despite having the capacity for dressing independently. [Subjects and Methods] This retrospective study included 60 first-time stroke patients judged by occupational therapists as able to dress independently. The patients were divided into two groups according to their FIM(®) instrument scores for dressing the upper and lower body: an independent group with both scores ≥6 and an assistance group with one or both scores ≤5. After adjusting for confounding factors through propensity score matching, the groups were compared by using Stroke Impairment Assessment Set items, the Simple Test for Evaluating Hand Function of both upper limbs, and the Berg balance scale. [Results] The assistance group had a significantly lower score for the Berg balance scale than the independent dressing group (31.0 ± 12.3 vs. 47.8 ± 7.4). [Conclusion] The results of the present study suggested that the balance function has an effect on the discrepancy between dressing capacity and performance. PMID:27390439

  2. Propensity-matched analysis of the gap between capacity and actual performance of dressing in patients with stroke

    PubMed Central

    Fujita, Takaaki; Sato, Atsushi; Yamamoto, Yuichi; Otsuki, Koji; Iokawa, Kazuaki; Sone, Toshimasa; Midorikawa, Manabu; Tsuchiya, Kenji; Bumsuk, Lee; Tozato, Fusae

    2016-01-01

    [Purpose] Dressing is an activity of daily living for which stroke patients often show discrepancies between capacity and actual performance. The aim of this study was to elucidate the physical function and unilateral spatial neglect in stroke patients that reduce their level of actual performance despite having the capacity for dressing independently. [Subjects and Methods] This retrospective study included 60 first-time stroke patients judged by occupational therapists as able to dress independently. The patients were divided into two groups according to their FIM® instrument scores for dressing the upper and lower body: an independent group with both scores ≥6 and an assistance group with one or both scores ≤5. After adjusting for confounding factors through propensity score matching, the groups were compared by using Stroke Impairment Assessment Set items, the Simple Test for Evaluating Hand Function of both upper limbs, and the Berg balance scale. [Results] The assistance group had a significantly lower score for the Berg balance scale than the independent dressing group (31.0 ± 12.3 vs. 47.8 ± 7.4). [Conclusion] The results of the present study suggested that the balance function has an effect on the discrepancy between dressing capacity and performance. PMID:27390439

  3. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  4. Revisit of Energy Use and Technologies of High Performance Buildings

    SciTech Connect

    Li, Cheng; Hong, Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  5. The energy performance of thermochromic glazing

    NASA Astrophysics Data System (ADS)

    Diamantouros, Pavlos

    This study investigated the energy performance of thermochromic glazing. It was done by simulating the model of a small building in a highly advanced computer program (EnergyPlus - U.S. DOE). The physical attributes of the thermochromic samples examined came from actual laboratory samples fabricated in UCL's Department of Chemistry (Prof I. P. Parkin). It was found that they can substantially reduce cooling loads while requiring the same heating loads as a high end low-e double glazing. The reductions in annual cooling energy required were in the 20%-40% range depending on sample, location and building layout. A series of sensitivity analyses showed the importance of switching temperature and emissivity factor in the performance of the glazing. Finally an ideal pane was designed to explore the limits this technology has to offer.

  6. Estimating the actual ET from a pecan farm using the OPEC energy-balance and Penman- Monteith methods

    NASA Astrophysics Data System (ADS)

    Debele, B.; Bawazir, S. A.

    2006-12-01

    Accurate estimation of ET from field crops/orchards is the basis for better irrigation water management. In areas like Mesilla Valley, NM, where water is scarce, it is even more important to precisely determine the crop ET. An OPEC energy balance system was run for 117 days (June 22 October 14, 2001) in a matured pecan farm at Mesilla Valley, NM. The actual evapotranspiration (ET) from pecan orchards was determined from the surface energy balance as a residual, having measured the net radiation, soil heat flux, and sensible heat components using the OPEC method. Since pecans are large trees, we have also examined the effect of including thermal energies stored in the air (Ga) and plant canopy (Gc), on top of the commonly used thermal energy stored in the soil (Gs), on surface energy balance, and hence ET. The results indicate that incorporating thermal energies stored in the air and canopy has a significant effect on total energy storage for shorter temporal resolutions, such as 30-minutes and an hour. Conversely, for longer temporal resolutions (e.g., diurnal and monthly averages), the effect of including thermal energies stored in the air and vegetation on total thermal energy storage is negligible. Our results also showed that the bulk of the total thermal energy storage (G = Gs + Ga + Gc) in the surface energy balance was stored in the soil (Gs). In addition, we have also determined the crop coefficient (Kc) of pecan by combining the actual ET obtained from the OPEC method and potential ET (ET0) calculated using weather data in the surrounding area. Our average pecan Kc values were comparable with the ones reported by other researchers using different methods. We conclude that the OPEC energy balance method can be used to calculate Kc values for pecan whereby farmers and extension agents use the calculated Kc values in combination with ET0 to determine the consumptive use of pecan trees.

  7. Advanced Performance Hydraulic Wind Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  8. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    PubMed Central

    Senay, Gabriel B.; Budde, Michael; Verdin, James P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  9. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    USGS Publications Warehouse

    Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  10. Is Talk ‘Cheap’? An Initial Investigation of the Equivalence of Alcohol Purchase Task Performance for Hypothetical and Actual Rewards

    PubMed Central

    Amlung, Michael; Acker, John; Stojek, Monika; Murphy, James G.; MacKillop, James

    2011-01-01

    Background Behavioral economic alcohol purchase tasks (APTs) are self-report measures of alcohol demand that assess estimated consumption at escalating levels of price. However, the relationship between estimated performance for hypothetical outcomes and choices for actual outcomes has not been determined. The present study examined both the correspondence between choices for hypothetical and actual outcomes, and the correspondence between estimated alcohol consumption and actual drinking behavior. A collateral goal of the study was to examine the effects of alcohol cues on APT performance. Methods Forty one heavy-drinking adults (56% male) participated in a human laboratory protocol comprising APTs for hypothetical and actual alcohol and money, an alcohol cue reactivity paradigm, an alcohol self-administration period, and a recovery period. Results Pearson correlations revealed very high correspondence between APT performance for hypothetical and actual alcohol (ps < .001). Estimated consumption on the APT was similarly strongly associated with actual consumption during the self-administration period (r = .87, p <.001). Exposure to alcohol cues significantly increased subjective craving and arousal, and had a trend-level effect on intensity of demand, in spite of notable ceiling effects. Associations among motivational indices were highly variable, suggesting multidimensionality. Conclusions These results suggest there may be close correspondence both between value preferences for hypothetical alcohol and actual alcohol, and between estimated consumption and actual consumption. Methodological considerations and priorities for future studies are discussed. PMID:22017303

  11. Performance changes and relationship between vertical jump measures and actual sprint performance in elite sprinters with visual impairment throughout a Parapan American games training season

    PubMed Central

    Loturco, Irineu; Winckler, Ciro; Kobal, Ronaldo; Cal Abad, Cesar C.; Kitamura, Katia; Veríssimo, Amaury W.; Pereira, Lucas A.; Nakamura, Fábio Y.

    2015-01-01

    The aims of this study were to estimate the magnitude of variability and progression in actual competitive and field vertical jump test performances in elite Paralympic sprinters with visual impairment in the year leading up to the 2015 Parapan American Games, and to investigate the relationships between loaded and unloaded vertical jumping test results and actual competitive sprinting performance. Fifteen Brazilian Paralympic sprinters with visual impairment attended seven official competitions (four national, two international and the Parapan American Games 2015) between April 2014 and August 2015, in the 100- and 200-m dash. In addition, they were tested in five different periods using loaded (mean propulsive power [MPP] in jump squat [JS] exercise) and unloaded (squat jump [SJ] height) vertical jumps within the 3 weeks immediately prior to the main competitions. The smallest important effect on performances was calculated as half of the within-athlete race-to-race (or test-to-test) variability and a multiple regression analysis was performed to predict the 100- and 200-m dash performances using the vertical jump test results. Competitive performance was enhanced during the Parapan American Games in comparison to the previous competition averages, overcoming the smallest worthwhile enhancement in both the 100- (0.9%) and 200-m dash (1.43%). In addition, The SJ and JS explained 66% of the performance variance in the competitive results. This study showed that vertical jump tests, in loaded and unloaded conditions, could be good predictors of the athletes' sprinting performance, and that during the Parapan American Games the Brazilian team reached its peak competitive performance. PMID:26594181

  12. How many people actually see the price signal? Quantifying marketfailures in the end use of energy

    SciTech Connect

    Meier, Alan; Eide, Anita

    2007-09-01

    "Getting the price right" is a goal of many market-orientedenergy policies. However, there are situations where the consumer payingfor the energy is separate from the owner of the energy-using device.Economists call this a "principal agent problem". A team organised by theInternational Energy Agency examined seven end uses and one sector whereprincipal agent problems existed: refrigerators, water heating, spaceheating, vending machines, commercial HVAC, company cars, lighting, andfirms. These investigations took place in Australia, Japan, theNetherlands, Norway, and the United States. About 2 100 percent of theenergy consumed in the end uses examined was affected by principal agentproblems. The size (and sometimes even the existence) varied greatly fromone country to another but all countries had significant amounts ofenergy affected by principal agent problems. The presence of a marketfailure does not mean that energy use would fall substantially if thefailure were eliminated; however it does suggest that raising energyprices such as in the form of carbon taxes will not necessarily increaseefficiency investments.

  13. Energy performance evaluation of AAC

    NASA Astrophysics Data System (ADS)

    Aybek, Hulya

    The U.S. building industry constitutes the largest consumer of energy (i.e., electricity, natural gas, petroleum) in the world. The building sector uses almost 41 percent of the primary energy and approximately 72 percent of the available electricity in the United States. As global energy-generating resources are being depleted at exponential rates, the amount of energy consumed and wasted cannot be ignored. Professionals concerned about the environment have placed a high priority on finding solutions that reduce energy consumption while maintaining occupant comfort. Sustainable design and the judicious combination of building materials comprise one solution to this problem. A future including sustainable energy may result from using energy simulation software to accurately estimate energy consumption and from applying building materials that achieve the potential results derived through simulation analysis. Energy-modeling tools assist professionals with making informed decisions about energy performance during the early planning phases of a design project, such as determining the most advantageous combination of building materials, choosing mechanical systems, and determining building orientation on the site. By implementing energy simulation software to estimate the effect of these factors on the energy consumption of a building, designers can make adjustments to their designs during the design phase when the effect on cost is minimal. The primary objective of this research consisted of identifying a method with which to properly select energy-efficient building materials and involved evaluating the potential of these materials to earn LEED credits when properly applied to a structure. In addition, this objective included establishing a framework that provides suggestions for improvements to currently available simulation software that enhance the viability of the estimates concerning energy efficiency and the achievements of LEED credits. The primary objective

  14. Direct and Indirect Effects of Completion versus Accuracy Contingencies on Practice-Exam and Actual-Exam Performance

    ERIC Educational Resources Information Center

    Oliver, Renee; Williams, Robert L.

    2005-01-01

    Students in four sections of an undergraduate educational course (two large and two small sections) took out-of-class practice exams prior to actual exams for each of five course units. Each course unit consisted of five class sessions focusing on a specific developmental theme. Some sections received practice-exam credit based on the number of…

  15. Performance Assessment of Counseling Skills Based on Specific Theories: Acquisition, Retention and Transfer to Actual Counseling Sessions

    ERIC Educational Resources Information Center

    Schaefle, Scott; Smaby, Marlowe H.; Packman, Jill; Maddux, Cleborne D.

    2007-01-01

    The purposes of the present study were to determine if (a) students trained to demonstrate specific skills learn these skills and transfer them to actual counseling sessions; (b) mastery of counseling skills differs by students' adherence to one of four general counseling theories; (c) mastery of counseling skills is related to counseling goal…

  16. Validation of an improved energy balance model to estimate actual evapotranspiration in irrigated cotton ecosystems of Central Asia

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher; Falk, Ulrike; Bauer-Marschallinger, Bernhard

    2014-05-01

    The understanding of the hydrological and the energy cycles are essential in order to describe the complex interactions within the climate system of the earth. Being recognized as an essential component of both the water and the energy cycle, reliable estimation of actual evapotranspiration and its spatial distribution is one outstanding challenge in this context. For instance, in irrigation systems of arid regions, artificial locations of evapotranspiration have been created. An in-depth process understanding is of paramount importance, as irrigated agriculture consumes about 70 % of the available freshwater resources worldwide, with a significant but unsatisfyingly quantified impact on the water cycle, especially on regional scale. Moreover, an exact quantification of ET inside these artificial ecosystems enables assessments of crop water consumptions and hence about water use efficiency (WUE). The withdrawal of water for agricultural use in the countries of Central Asia is more than 90%. Khorezm region in Uzbekistan is a case study region for the problems of irrigated agriculture in CA. For Khorezm the seasonal actual ET was calculated for the years 2003 - 2010 using the partly modified surface energy balance algorithm for land (SEBAL). SEBAL was implemented based on MODIS time series to calculate the energy balance components like net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G). Whilst SEBAL is using an empirical equation for estimating G, a more physically based method was introduced in this study. This method uses microwave soil moisture products (ASAR-SSM and ASCAT-SSM) as additional input information. The modelled energy balance components were intensively validated by field measurements with an eddy covariance system and soil sensors. For turbulent heat fluxes the RMSE is about 40 W/m² for H and 80 W/m² for LE with a coefficient of determination (r²) of 0.64 for H and 0.52 for LE. Soil heat flux estimation could be

  17. Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system.

    PubMed

    Dai, Xiaohu; Luo, Fan; Yi, Jing; He, Qunbiao; Dong, Bin

    2014-02-01

    Polyacrylamide (PAM) used in sludge dewatering widely exists in high-solid anaerobic digestion. Degradation of polyacrylamide accompanied with accumulation of its toxic monomer is important to disposition of biogas residues. The potential of anaerobic digestion activity in microbial utilization of PAM was investigated in this study. The results indicated that the utilization rate of PAM (as nitrogen source) was influenced by accumulation of ammonia, while cumulative removal of amide group was accorded with zeroth order reaction in actual dewatered system. The adjoining amide group can combined into ether group after biodegradation. PAM can be broken down in different position of its carbon chain backbone. In actual sludge system, the hydrolytic PAM was liable to combined tyrosine-rich protein to form colloid complex, and then consumed as carbon source to form monomer when easily degradable organics were exhausted. The accumulation of acrylamide was leveled off ultimately, accompanied with the yield of methane. PMID:24345566

  18. Differences Between Actual Motor Ability and Physical Self-Concept (Perceived Motor Performance/Body Image) of Fifth-Grade Boys.

    ERIC Educational Resources Information Center

    Boling, Robert; Kirk, Pamela

    Differences between high and low perceived physical self-concept and actual motor performance of 120 fifth grade boys were investigated. Self-concept was measured by the Physical Self-Concept Scale. Motor proficiency was measured by a four-item advanced agility/coordination test battery: hand-eye coordination; foot-eye coordination; whole body…

  19. The Role of Teacher and Family Opinions in Identifying Gifted Kindergarten Children and the Consistence of These Views with Children's Actual Performance

    ERIC Educational Resources Information Center

    Daglioglu, H. Elif; Suveren, Senem

    2013-01-01

    This study was conducted in order to identify gifted children attending kindergartens of elementary schools, determine how successful families and teachers were in selecting these children, and see how consistent their opinions were with children's actual performance. Participants were children attending kindergartens of elementary schools,…

  20. Mothers' and Teachers' Estimations of First Graders' Literacy Level and Their Relation to the Children's Actual Performance in Different SES Groups

    ERIC Educational Resources Information Center

    Korat, Ofra

    2011-01-01

    The relationship between mothers' and teachers' estimations of 60 children's literacy level and their actual performance were investigated in two different socio-economic status (SES) groups: low (LSES) and high (HSES). The children's reading (fluency, accuracy and comprehension) and spelling levels were measured. The mothers evaluated their own…

  1. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G. M.; Cheema, M. J. M.; Immerzeel, W. W.; Miltenburg, I. J.; Pelgrum, H.

    2012-11-01

    The surface energy fluxes and related evapotranspiration processes across the Indus Basin were estimated for the hydrological year 2007 using satellite measurements. The new ETLook remote sensing model (version 1) infers information on actual Evaporation (E) and actual Transpiration (T) from combined optical and passive microwave sensors, which can observe the land-surface even under persistent overcast conditions. A two-layer Penman-Monteith equation was applied for quantifying soil and canopy evaporation. The novelty of the paper is the computation of E and T across a vast area (116.2 million ha) by using public domain microwave data that can be applied under all weather conditions, and for which no advanced input data are required. The average net radiation for the basin was estimated as being 112 Wm-2. The basin average sensible, latent and soil heat fluxes were estimated to be 80, 32, and 0 Wm-2, respectively. The average evapotranspiration (ET) and evaporative fraction were 1.2 mm d-1 and 0.28, respectively. The basin wide ET was 496 ± 16.8 km3 yr-1. Monte Carlo analysis have indicated 3.4% error at 95% confidence interval for a dominant land use class. Results compared well with previously conducted soil moisture, lysimeter and Bowen ratio measurements at field scale (R2 = 0.70; RMSE = 0.45 mm d-1; RE = -11.5% for annual ET). ET results were also compared against earlier remote sensing and modeling studies for various regions and provinces in Pakistan (R2 = 0.76; RMSE = 0.29 mmd-1; RE = 6.5% for annual ET). The water balance for all irrigated areas together as one total system in Pakistan and India (26.02 million ha) show a total ET value that is congruent with the ET value from the ETLook surface energy balance computations. An unpublished validation of the same ETLook model for 23 jurisdictional areas covering the entire Australian continent showed satisfactory results given the quality of the watershed data and the diverging physiographic and climatic

  2. Perception Versus Actual Performance in Timely Tissue Plasminogen Activation Administration in the Management of Acute Ischemic Stroke

    PubMed Central

    Lin, Cheryl B; Cox, Margueritte; Olson, DaiWai M; Britz, Gavin W; Constable, Mark; Fonarow, Gregg C; Schwamm, Lee; Peterson, Eric D; Shah, Bimal R

    2015-01-01

    Background Timely thrombolytic therapy can improve stroke outcomes. Nevertheless, the ability of US hospitals to meet guidelines for intravenous tissue plasminogen activator (tPA) remains suboptimal. What is unclear is whether hospitals accurately perceive their rate of tPA “door-to-needle” (DTN) time within 60 minutes and how DTN rates compare across different hospitals. Methods and Results DTN performance was defined by the percentage of treated patients who received tPA within 60 minutes of arrival. Telephone surveys were obtained from staff at 141 Get With The Guidelines hospitals, representing top, middle, and lowDTN performance. Less than one-third (29.1%) of staff accurately identified their DTN performance. Among middle- and low-performing hospitals (n=92), 56 sites (60.9%) overestimated their performance; 42% of middle performers and 85% of low performers overestimated their performance. Sites that overestimated tended to have lower annual volumes of tPA administration (median 8.4 patients [25th to 75th percentile 5.9 to 11.8] versus 10.2 patients [25th to 75th percentile 8.2 to 17.3], P=0.047), smaller percentages of eligible patients receiving tPA (84.7% versus 89.8%, P=0.008), and smaller percentages of DTN ≤60 minutes among treated patients (10.6% versus 16.6%, P=0.002). Conclusions Hospitals often overestimate their ability to deliver timely tPA to treated patients. Our findings indicate the need to routinely provide comparative provider performance rates as a key step to improving the quality of acute stroke care. PMID:26201547

  3. Roadmap Toward a Predictive Performance-based Commercial Energy Code

    SciTech Connect

    Rosenberg, Michael I.; Hart, Philip R.

    2014-10-01

    Energy codes have provided significant increases in building efficiency over the last 38 years, since the first national energy model code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, and the inability to handle control optimization that is specific to building type and use. This paper provides a high level review of different options for energy codes, including prescriptive, prescriptive packages, EUI Target, outcome-based, and predictive performance approaches. This paper also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. A vision is outlined to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building specific prescriptive packages that are designed to be both cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target as demonstrated by whole building energy modeling, or by choosing one of the prescriptive packages.

  4. Is less really more: Does a prefrontal efficiency genotype actually confer better performance when working memory becomes difficult?

    PubMed

    Ihne, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E

    2016-01-01

    Perhaps the most widely studied effect to emerge from the combination of neuroimaging and human genetics is the association of the COMT-Val(108/158)Met polymorphism with prefrontal activity during working memory. COMT-Val is a putative risk factor in schizophrenia, which is characterized by disordered prefrontal function. Work in healthy populations has sought to characterize mechanisms by which the valine (Val) allele may lead to disadvantaged prefrontal cognition. Lower activity in methionine (Met) carriers has been interpreted as advantageous neural efficiency. Notably, however, studies reporting COMT effects on neural efficiency have generally not reported working memory performance effects. Those studies have employed relatively low/easy working memory loads. Higher loads are known to elicit individual differences in working memory performance that are not visible at lower loads. If COMT-Met confers greater neural efficiency when working memory is easy, a reasonable prediction is that Met carriers will be better able to cope with increasing demand for neural resources when working memory becomes difficult. To our knowledge, this prediction has thus far gone untested. Here, we tested performance on three working memory tasks. Performance on each task was measured at multiple levels of load/difficulty, including loads more demanding than those used in prior studies. We found no genotype-by-load interactions or main effects of COMT genotype on accuracy or reaction time. Indeed, even testing for performance differences at each load of each task failed to find a single significant effect of COMT genotype. Thus, even if COMT genotype has the effects on prefrontal efficiency that prior work has suggested, such effects may not directly impact high-load working memory ability. The present findings accord with previous evidence that behavioral effects of COMT are small or nonexistent and, more broadly, with a growing consensus that substantial effects on phenotype will

  5. Integrating MODIS and Landsat Data Using the Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration at Multiple Scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating actual evapotranspiration (ETa) in space and time is critical for developing useful basin water balance models and for monitoring vegetation water use and drought severity analysis. In this study, we combined MODIS and Landsat thermal data using a 'time-limited' stable fractional relation...

  6. Analysis of Illinois Home Performance with ENERGY STAR® Measure Packages

    SciTech Connect

    Baker, J.; Yee, S.; Brand, L.

    2013-09-01

    Through the Chicagoland Single Family Housing Characterization and Retrofit Prioritization report, the Partnership for Advanced Residential Retrofit research team characterized 15 housing types in the Chicagoland region based on assessor data, utility billing history, and available data from prior energy efficiency programs. Within these 15 groups, a subset showed the greatest opportunity for energy savings based on BEopt Version 1.1 modeling of potential energy efficiency package options and the percent of the housing stock represented by each group. In this project, collected field data from a whole-home program in Illinois are utilized to compare marketplace-installed measures to the energy saving optimal packages previously developed for the 15 housing types. Housing type, conditions, energy efficiency measures installed, and retrofit cost information were collected from 19 homes that participated in the Illinois Home Performance with ENERGY STAR program in 2012, representing eight of the characterized housing groups. Two were selected for further case study analysis to provide an illustration of the differences between optimal and actually installed measures. Taken together, these homes are representative of 34.8% of the Chicagoland residential building stock. In one instance, actual installed measures closely matched optimal recommended measures.

  7. Performance of high-velocity oxy-fuel-sprayed chromium carbide-nickel chromium coating in an actual boiler environment of a thermal power plant

    SciTech Connect

    Sidhu, T.S.; Prakash, S.; Agrawal, R.D.

    2007-09-15

    The present study aims to evaluate the performance of a high-velocity oxy-fuel (HVOF)-sprayed Cr{sub 3}C{sub 2}-NiCr (chromium carbide-nickel chromium) coating on a nickel-based super-alloy in an actual industrial environment of a coal-fired boiler, with the objective to protect the boiler super-heater and reheater tubes from hot corrosion. The tests were performed in the platen super heater zone of a coal-fired boiler for 1,000 h at 900 degrees C under cyclic conditions. The Cr{sub 3}C{sub 2}-NiCr coating imparted the necessary protection to the nickel-based super alloy in the given environment. The dense and flat splat structure of the coating, and the formation of oxides of chromium and nickel and their spinels, might have protected the substrate super alloy from the inward permeation of corrosive species.

  8. Developing an Energy Performance Modeling Startup Kit

    SciTech Connect

    none,

    2012-10-01

    In 2011, the NAHB Research Center began assessing the needs and motivations of residential remodelers regarding energy performance remodeling. This report outlines: the current remodeling industry and the role of energy efficiency; gaps and barriers to adding energy efficiency into remodeling; and support needs of professional remodelers to increase sales and projects involving improving home energy efficiency.

  9. 78 FR 20097 - Energy Savings Performance Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... ESPCs at 10 CFR part 436, Subpart B. (See, 60 FR 18334.) To facilitate and accelerate the use of ESPCs... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Savings Performance Contracts AGENCY: Office...

  10. Performance profiles of major energy producers 1994

    SciTech Connect

    1996-02-01

    Performance Profiles of Major Energy Producers 1994 is the eighteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 24 major U.S. energy companies required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the United States and abroad.

  11. A New Model to Simulate Energy Performance of VRF Systems

    SciTech Connect

    Hong, Tianzhen; Pang, Xiufeng; Schetrit, Oren; Wang, Liping; Kasahara, Shinichi; Yura, Yoshinori; Hinokuma, Ryohei

    2014-03-30

    This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real

  12. Achieving Deeper Energy Savings in Federal Energy Performance Contracts

    SciTech Connect

    Shonder, John A.; Nasseri, Cyrus

    2015-01-01

    Legislation requires each agency of the US federal government to reduce the aggregate energy use index of its buildings by 30% by 2015, with respect to a 2003 baseline. The declining availability of appropriated funding means that energy performance contracting will be key to achieving this goal. Historically however, energy performance contracts have been able to reduce energy use by only about 20% over baseline. Achieving 30% energy reductions using performance contracting will require new approaches and a specific focus on achieving higher energy savings, both by ESCOs and by agencies. This paper describes some of the ways federal agencies are meeting this challenge, and presents results from the efforts of one agency the US General Services Administration -- to achieve deeper energy savings in conventional energy savings performance contracts.

  13. Achieving Deeper Energy Savings in Federal Energy Performance Contracts

    DOE PAGESBeta

    Shonder, John A.; Nasseri, Cyrus

    2015-01-01

    Legislation requires each agency of the US federal government to reduce the aggregate energy use index of its buildings by 30% by 2015, with respect to a 2003 baseline. The declining availability of appropriated funding means that energy performance contracting will be key to achieving this goal. Historically however, energy performance contracts have been able to reduce energy use by only about 20% over baseline. Achieving 30% energy reductions using performance contracting will require new approaches and a specific focus on achieving higher energy savings, both by ESCOs and by agencies. This paper describes some of the ways federal agenciesmore » are meeting this challenge, and presents results from the efforts of one agency the US General Services Administration -- to achieve deeper energy savings in conventional energy savings performance contracts.« less

  14. Performance of statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Hines, D. E.

    1973-01-01

    Statistical energy analysis (SEA) methods have been developed for high frequency modal analyses on random vibration environments. These SEA methods are evaluated by comparing analytical predictions to test results. Simple test methods are developed for establishing SEA parameter values. Techniques are presented, based on the comparison of the predictions with test values, for estimating SEA accuracy as a function of frequency for a general structure.

  15. Procedure to Measure Indoor Lighting Energy Performance

    SciTech Connect

    Deru, M.; Blair, N.; Torcellini, P.

    2005-10-01

    This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

  16. Energy Savings Performance Contract Case Studies.

    ERIC Educational Resources Information Center

    Lefevre, Jessica S.

    Building owners and managers can use performance-contracting Energy Service Companies (ESCOs) to partially or fully fund building renovations that include energy efficiency upgrades. This report provides building owners and managers with an introduction to the energy efficiency and building upgrade services provided by ESCOs. It uses 20 case…

  17. Performance profiles of major energy producers 1989

    SciTech Connect

    Not Available

    1991-01-23

    Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

  18. Evaluating the energy performance of the first generation of LEED-certified commercial buildings

    SciTech Connect

    Diamond, Rick; Opitz, Mike; Hicks, Tom; Von Neida, Bill; Herrera, Shawn

    2006-05-01

    Over three hundred buildings have been certified under the Leadership in Energy and Environmental Design (LEED) rating system for sustainable commercial buildings as of January 2006. This paper explores the modeled and actual energy performance of a sample of 21 of these buildings that certified under LEED between December 2001 and August 2005, including how extensively the design teams pursued LEED energy-efficiency credits, the modeled design and baseline energy performance, and the actual energy use during the first few years of operation. We collected utility billing data from 2003-2005 and compared the billed energy consumption with the modeled energy use. We also calculated Energy Star ratings for the buildings and compared them to peer groups where possible. The mean savings modeled for the sample was 27% compared to their modeled baseline values. For the group of 18 buildings for which we have both modeled and billed energy use, the mean value for actual consumption was 1% lower than modeled energy use, with a wide variation around the mean. The mean Energy Star score was 71 out of a total of 100 points, higher than the average score of 50 but slightly below the Energy Star award threshold of 75 points. The paper discusses the limitations inherent to this type of analysis, such as the small sample size of disparate buildings, the uncertainties in actual floor area, and the discrepancies between metered sections of the buildings. Despite these limitations, the value of the work is that it presents an early view of the actual energy performance for a set of 21 LEED-certified buildings.

  19. The role of visual perception measures used in sports vision programmes in predicting actual game performance in Division I collegiate hockey players.

    PubMed

    Poltavski, Dmitri; Biberdorf, David

    2015-01-01

    Abstract In the growing field of sports vision little is still known about unique attributes of visual processing in ice hockey and what role visual processing plays in the overall athlete's performance. In the present study we evaluated whether visual, perceptual and cognitive/motor variables collected using the Nike SPARQ Sensory Training Station have significant relevance to the real game statistics of 38 Division I collegiate male and female hockey players. The results demonstrated that 69% of variance in the goals made by forwards in 2011-2013 could be predicted by their faster reaction time to a visual stimulus, better visual memory, better visual discrimination and a faster ability to shift focus between near and far objects. Approximately 33% of variance in game points was significantly related to better discrimination among competing visual stimuli. In addition, reaction time to a visual stimulus as well as stereoptic quickness significantly accounted for 24% of variance in the mean duration of the player's penalty time. This is one of the first studies to show that some of the visual skills that state-of-the-art generalised sports vision programmes are purported to target may indeed be important for hockey players' actual performance on the ice. PMID:25142869

  20. Testing an Energy Balance Model for Estimating Actual Evapotranspiration Using Remotely Sensed Data. [Hannover, West Germany barley and wheat fields

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Camillo, P. J.

    1985-01-01

    An energy-balance model is used to estimate daily evapotranspiration for 3 days for a barley field and a wheat field near Hannover, Federal Republic of Germany. The model was calibrated using once-daily estimates of surface temperatures, which may be remotely sensed. The evaporation estimates were within the 95% error bounds of independent eddy correlation estimates for the daytime periods for all three days for both sites, but the energy-balance estimates are generally higher; it is unclear which estimate is biassed. Soil moisture in the top 2 cm of soil, which may be remotely sensed, may be used to improve these evaporation estimates under partial ground cover. Sensitivity studies indicate the amount of ground data required is not excessive.

  1. Performance profiles of major energy producers 1993

    SciTech Connect

    1995-01-01

    Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.

  2. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration under complex terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N. B.

    2010-07-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial scales. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at varying temporal and spatial scales under complex terrain. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can fully account for the dynamic impacts of complex terrain and changing land cover in concert with some varying kinetic parameters (i.e., roughness and zero-plane displacement) over time. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  3. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N.-B.

    2011-01-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement). Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  4. Energy Savings Performance Contract Success Stories

    SciTech Connect

    2009-07-27

    Three case study success stories showcasing energy savings performance contract projects at Dyess Air Force Base, Food and Drug Administration White Oaks Campus, and the Harold Washington Social Security Administration Center.

  5. Application of Artificial Neural Networks to Investigate the Energy Performance of Household Refrigerator-Freezers

    NASA Astrophysics Data System (ADS)

    Saidur, R.; Masjuki, H. H.

    In this study, the energy consumption of 149 domestic refrigerators has been monitored in Malaysian households. A questionnaire was used to get relevant information regarding the usage of this appliance in the actual kitchen environment to feed into neural networks. Prediction performance of Artificial Neural Networks (ANN) approach was investigated using actual monitored and survey data. Statistical analyses in terms of fraction of variance R2, Coefficient of Variation (COV), RMS are calculated to judge the performance of NN model. It has been found that the regression coefficient R2 is very close to unity for the best prediction performance results.

  6. Improving Access to Foundational Energy Performance Data

    SciTech Connect

    Studer, D.; Livingood, W.; Torcellini, P.

    2014-08-01

    Access to foundational energy performance data is key to improving the efficiency of the built environment. However, stakeholders often lack access to what they perceive as credible energy performance data. Therefore, even if a stakeholder determines that a product would increase efficiency, they often have difficulty convincing their management to move forward. Even when credible data do exist, such data are not always sufficient to support detailed energy performance analyses, or the development of robust business cases. One reason for this is that the data parameters that are provided are generally based on the respective industry norms. Thus, for mature industries with extensive testing standards, the data made available are often quite detailed. But for emerging technologies, or for industries with less well-developed testing standards, available data are generally insufficient to support robust analysis. However, even for mature technologies, there is no guarantee that the data being supplied are the same data needed to accurately evaluate a product?s energy performance. To address these challenges, the U.S. Department of Energy funded development of a free, publically accessible Web-based portal, the Technology Performance Exchange(TM), to facilitate the transparent identification, storage, and sharing of foundational energy performance data. The Technology Performance Exchange identifies the intrinsic, technology-specific parameters necessary for a user to perform a credible energy analysis and includes a robust database to store these data. End users can leverage stored data to evaluate the site-specific performance of various technologies, support financial analyses with greater confidence, and make better informed procurement decisions.

  7. Performance Profiles of Major Energy Producers

    EIA Publications

    2011-01-01

    The information and analyses in Performance Profiles of Major Energy Producers is intended to provide a critical review, and promote an understanding, of the possible motivations and apparent consequences of investment decisions made by some of the largest corporations in the energy industry.

  8. Energy Savings Performance Contract (ESPC) ENABLE Program

    SciTech Connect

    2012-06-01

    The Energy Savings Performance Contract (ESPC) ENABLE program, a new project funding approach, allows small Federal facilities to realize energy and water savings in six months or less. ESPC ENABLE provides a standardized and streamlined process to install targeted energy conservation measures (ECMs) such as lighting, water, and controls with measurement and verification (M&V) appropriate for the size and scope of the project. This allows Federal facilities smaller than 200,000 square feet to make progress towards important energy efficiency and water conservation requirements.

  9. Automatic Energy Schemes for High Performance Applications

    SciTech Connect

    Sundriyal, Vaibhav

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  10. Evaluating the performance of reference evapotranspiration equations with scintillometer measurements under Mediterranean climate and effects on olive grove actual evapotranspiration estimated with FAO-56 water balance model

    NASA Astrophysics Data System (ADS)

    Minacapilli, Mario; Cammalleri, Carmelo; Ciraolo, Giuseppe; Provenzano, Giuseppe; Rallo, Giovanni

    2014-05-01

    The concept of reference evapotranspiration (ETo) is widely used to support water resource management in agriculture and for irrigation scheduling, especially under arid and semi-arid conditions. The Penman-Monteith standardized formulations, as suggested by ASCE and FAO-56 papers, are generally applied for accurate estimations of ETo, at hourly and daily scale. When detailed meteorological information are not available, several alternative and simplified equations, using a limited number of variables, have been proposed (Blaney-Criddle, Hargreaves-Samani, Turc, Makkinen and Pristley-Taylor). In this paper, scintillometer measurements collected for six month in 2005, on an experimental plot under "reference" conditions, were used to validate different ETo equations at hourly and daily scale. Experimental plot is located in a typical agricultural Mediterranean environment (Sicily, Italy), where olive groves is the dominant crop. As proved by other researches, the comparison confirmed the best agreement between estimated and measured fluxes corresponds to FAO-56 Penman-Monteith standardized equation, that was characterized by both the lowest average error and the minimum bias. However, the analysis also evidenced a quite good performance of Pristley-Taylor equation, that can be considered as a valid alternative to the more sophisticated Penman-Monteith method. The different ETo series, obtained by the considered simplified equations, were then used as input in the FAO-56 water balance model, in order to evaluate, for olive groves, the errors on estimated actual evapotranspiration ET. To this aim soil and crop model input parameters were settled by considering previous experimental researches already used to calibrate and validate the FAO-56 water balance model on olive groves, for the same study area. Also in this case, assuming as the true values of ET those obtained using the water balance coupled with Penman-Monteith ETo input values, the Priestley-Taylor equation

  11. Performance profiles of major energy producers, 1997

    SciTech Connect

    1999-01-01

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to the FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.

  12. Simulating the energy performance of holographic glazings

    NASA Astrophysics Data System (ADS)

    Papamichael, K.; Beltran, L.; Furler, Reto; Lee, E. S.; Selkowitz, Steven E.; Rubin, Michael

    1994-09-01

    The light diffraction properties of holographic diffractive structures present an opportunity to improve the daylight performance in side-lit office spaces by redirecting and reflecting sunlight off the ceiling, providing adequate daylight illumination up to 30 ft (9.14 m) from the window wall. Prior studies of prototypical holographic glazings, installed above conventional `view' windows, have shown increased daylight levels over a deeper perimeter area than clear glass, for selected sun positions. In this study, we report on the simulation of the energy performance of prototypical holographic glazings assuming a commercial office building in the inland Los Angeles climate. The simulation of the energy performance involved determination of both luminous and thermal performance. Since the optical complexity of holographic glazings prevented the use of conventional algorithms for the simulation of their luminous performance, we used a newly developed method that combines experimentally determined directional workplane illuminance coefficients with computer-based analytical routines to determine a comprehensive set of daylight factors for many sun positions. These daylight factors were then used within the DOE-2.1D energy simulation program to determine hourly daylight and energy performance over the course of an entire year for four window orientations. Since the prototypical holographic diffractive structures considered in this study were applied on single pane clear glass, we also simulated the performance of hypothetical glazings, assuming the daylight performance of the prototype holographic glazings and the thermal performance of double-pane and low-e glazings. Finally, we addressed various design and implementation issues towards potential performance improvement.

  13. Environmental performance of an integrated fixed-film activated sludge (IFAS) reactor treating actual municipal wastewater during start-up phase.

    PubMed

    Singh, Nitin Kumar; Kazmi, Absar Ahmad; Starkl, Markus

    2015-01-01

    The present study summarizes the start-up performance and lessons learned during the start-up and optimization of a pilot-scale plant employing integrated fixed film activated sludge (IFAS) process treating actual municipal wastewater. A comprehensive start-up was tailored and implemented to cater for all the challenges and problems associated with start-up. After attaining desired suspended biomass (2,000-3,000 mg/L) and sludge age (∼7 days), the average biological oxygen demand (BOD) and chemical oxygen demand (COD) removals were observed as 77.3 and 70.9%, respectively, at optimized conditions, i.e. hydraulic retention time (HRT), 6.9 h; return sludge rate, 160%. The influent concentrations of COD, BOD, total suspended solids, NH3-N, total nitrogen and total phosphorus were found to be in the range of 157-476 mg/L, 115-283 mg/L, 152-428 mg/L, 23.2-49.3 mg/L, 30.1-52 mg/L and 3.6-7.8 mg/L, respectively, and the minimum effluent concentrations were achieved as ∼49 mg/L, 23 mg/L, 35 mg/L, 2.2 mg/L, 3.4 mg/L and 2.8 mg/L, respectively, at optimum state. The present system was found effective in the removal of pathogenic bacteria (Escherichia coli, 79%; Salmonella spp., 97.5%; Shigella spp., 92.9%) as well as coliforms (total coliforms, 97.65%; faecal coliforms, 80.35%) without any disinfection unit. Moreover it was observed that the time required for the stabilization of the plant was approximately 3 weeks if other parameters (sludge age, HRT and dissolved oxygen) are set to optimized values. PMID:26540547

  14. Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages

    NASA Astrophysics Data System (ADS)

    Rezaie, Behnaz

    The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance

  15. Alliant Energy sweeps EUCG Best Performer awards

    SciTech Connect

    Peltier, R.

    2008-02-15

    The Fossil Productivity Committee of the EUCG conducts an annual analysis of its member plants' operating results and selects the Best Performer in the categories of small and large coal plants. For 2007, Alliant Energy's Lansing and Edgewater Generating Stations took the top spots-the first time in recent history that a single utility claimed both awards. This paper looks at Alliant Energy's corporate- and plant-level approach to managing its aging coal plant assets.

  16. Incorporating Non-energy Benefits into Energy Savings Performance Contracts

    SciTech Connect

    Larsen, Peter; Goldman, Charles; Gilligan, Donald; Singer, Terry

    2012-06-01

    This paper evaluates the issue of non-energy benefits within the context of the U.S. energy services company (ESCO) industry?a growing industry comprised of companies that provide energy savings and other benefits to customers through the use of performance-based contracting. Recent analysis has found that ESCO projects in the public/institutional sector, especially at K-12 schools, are using performance-based contracting, at the behest of the customers, to partially -- but not fully -- offset substantial accumulated deferred maintenance needs (e.g., asbestos removal, wiring) and measures that have very long paybacks (roof replacement). This trend is affecting the traditional economic measures policymakers use to evaluate success on a benefit to cost basis. Moreover, the value of non-energy benefits which can offset some or all of the cost of the non-energy measures -- including operations and maintenance (O&M) savings, avoided capital costs, and tradable pollution emissions allowances-- are not always incorporated into a formal cost-effectiveness analysis of ESCO projects. Nonenergy benefits are clearly important to customers, but state and federal laws that govern the acceptance of these types of benefits for ESCO projects vary widely (i.e., 0-100percent of allowable savings can come from one or more non-energy categories). Clear and consistent guidance on what types of savings are recognized in Energy Savings agreements under performance contracts is necessary, particularly where customers are searching for deep energy efficiency gains in the building sector.

  17. Rating the energy performance of buildings

    SciTech Connect

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-12-01

    In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

  18. Performance profiles of major energy producers 1992

    SciTech Connect

    Not Available

    1994-01-13

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations.

  19. Developing an Energy Performance Modeling Startup Kit

    SciTech Connect

    Wood, A.

    2012-10-01

    In 2011, the NAHB Research Center began the first part of the multi-year effort by assessing the needs and motivations of residential remodelers regarding energy performance remodeling. The scope is multifaceted - all perspectives will be sought related to remodeling firms ranging in size from small-scale, sole proprietor to national. This will allow the Research Center to gain a deeper understanding of the remodeling and energy retrofit business and the needs of contractors when offering energy upgrade services. To determine the gaps and the motivation for energy performance remodeling, the NAHB Research Center conducted (1) an initial series of focus groups with remodelers at the 2011 International Builders' Show, (2) a second series of focus groups with remodelers at the NAHB Research Center in conjunction with the NAHB Spring Board meeting in DC, and (3) quantitative market research with remodelers based on the findings from the focus groups. The goal was threefold, to: Understand the current remodeling industry and the role of energy efficiency; Identify the gaps and barriers to adding energy efficiency into remodeling; and Quantify and prioritize the support needs of professional remodelers to increase sales and projects involving improving home energy efficiency. This report outlines all three of these tasks with remodelers.

  20. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  1. Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR

    SciTech Connect

    Liaukus, C.

    2014-12-01

    The improvement of existing homes in the United States can have a much greater impact on overall residential energy use than the construction of highly efficient new homes. There are over 130 million existing housing units in the U.S., while annually new construction represents less than two percent of the total supply (U.S. Census Bureau, 2013). Therefore, the existing housing stock presents a clear opportunity and responsibility for Building America (BA) to guide the remodeling and retrofit market toward higher performance existing homes. There are active programs designed to improve the energy performance of existing homes. Home Performance with ENERGY STAR (HPwES) is a market-rate program among them. BARA's research in this project verified that the New Jersey HPwES program is achieving savings in existing homes that meet or exceed BA's goal of 30%. Among the 17 HPwES projects with utility data included in this report, 15 have actual energy savings ranging from 24% to 46%. Further, two of the homes achieved that level of energy savings without the costly replacement of heating and cooling equipment, which indicates that less costly envelope packages could be offered to consumers unable to invest in more costly mechanical packages, potentially creating broader market impact.

  2. Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station

    NASA Astrophysics Data System (ADS)

    Yano, Sachiko; Kasahara, Haruo; Masuda, Daisuke; Tanigaki, Fumiaki; Shimazu, Toru; Suzuki, Hiromi; Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Tayama, Ichiro; Tsuchiya, Yoshikazu; Kamisaka, Seiichiro

    2013-03-01

    In 2004, Japan Aerospace Exploration Agency developed the engineered model of the Plant Experiment Unit and the Cell Biology Experiment Facility. The Plant Experiment Unit was designed to be installed in the Cell Biology Experiment Facility and to support the seed-to-seed life cycle experiment of Arabidopsis plants in space in the project named Space Seed. Ground-based experiments to test the Plant Experiment Unit showed that the unit needed further improvement of a system to control the water content of a seedbed using an infrared moisture analyzer and that it was difficult to keep the relative humidity inside the Plant Experiment Unit between 70 and 80% because the Cell Biology Experiment Facility had neither a ventilation system nor a dehumidifying system. Therefore, excess moisture inside the Cell Biology Experiment Facility was removed with desiccant bags containing calcium chloride. Eight flight models of the Plant Experiment Unit in which dry Arabidopsis seeds were fixed to the seedbed with gum arabic were launched to the International Space Station in the space shuttle STS-128 (17A) on August 28, 2009. Plant Experiment Unit were installed in the Cell Biology Experiment Facility with desiccant boxes, and then the Space Seed experiment was started in the Japanese Experiment Module, named Kibo, which was part of the International Space Station, on September 10, 2009 by watering the seedbed and terminated 2 months later on November 11, 2009. On April 19, 2010, the Arabidopsis plants harvested in Kibo were retrieved and brought back to Earth by the space shuttle mission STS-131 (19A). The present paper describes the Space Seed experiment with particular reference to the development of the Plant Experiment Unit and its actual performance in Kibo onboard the International Space Station. Downlinked images from Kibo showed that the seeds had started germinating 3 days after the initial watering. The plants continued growing, producing rosette leaves, inflorescence

  3. The Business Value of Superior Energy Performance

    SciTech Connect

    McKane, Aimee; Scheihing, Paul; Evans, Tracy; Glatt, Sandy; Meffert, William

    2015-08-04

    Industrial facilities participating in the U.S. Department of Energy’s (US DOE) Superior Energy Performance (SEP) program are finding that it provides them with significant business value. This value starts with the implementation of ISO 50001-Energy management system standard, which provides an internationally-relevant framework for integration of energy management into an organization’s business processes. The resulting structure emphasizes effective use of available data and supports continual improvement of energy performance. International relevance is particularly important for companies with a global presence or trading interests, providing them with access to supporting ISO standards and a growing body of certified companies representing the collective knowledge of communities of practice. This paper examines the business value of SEP, a voluntary program that builds on ISO 50001, inviting industry to demonstrate an even greater commitment through third-party verification of energy performance improvement to a specified level of achievement. Information from 28 facilities that have already achieved SEP certification will illustrate key findings concerning both the value and the challenges from SEP/ISO 50001 implementation. These include the facilities’ experience with implementation, internal and external value of third-party verification of energy performance improvement; attractive payback periods and the importance of SEP tools and guidance. US DOE is working to bring the program to scale, including the Enterprise-Wide Accelerator (SEP for multiple facilities in a company), the Ratepayer-Funded Program Accelerator (supporting tools for utilities and program administrators to include SEP in their program offerings), and expansion of the program to other sectors and industry supply chains.

  4. Energy upgrade as regards quench performance

    SciTech Connect

    MacKay, W.W.; Tepikian, S.

    2011-01-01

    Since the cross section for W production increases rapidly with energy, we consider the possibility of increasing the collision energy of polarized protons at RHIC. The limits of present hardware are examined with a particular emphasis on the quench training performance of magnets. Ignoring the limits of the DX magnets, the short-sample currents for the main arc (8 cm) dipoles could allow an increase of more than 30%, however we estimate 400 to 500 training quenches for the just 8 cm dipoles to reach this level. We propose that a 10% increase in energy might be achieved with the present hardware configuration. Raising the beam energy to 275 GeV ({radical}s = 550 GeV) should increase the W production rate by almost 50% from the 250 GeV level for the same optics with identical {beta}*'s at the collision points.

  5. The energy performance of prototype holographic glazings

    NASA Astrophysics Data System (ADS)

    Papamichael, K.; Beltran, L.; Furler, R.; Lee, E. S.; Selkowitz, S.; Rubin, M.

    1993-02-01

    We report on the simulation of the energy performance of prototype holographic glazings in commercial office buildings in a California climate. These prototype glazings, installed above conventional side windows, are designed to diffract the transmitted solar radiation and reflect it off the ceiling, providing adequate daylight illumination for typical office tasks up to 10m from the window. In this study, we experimentally determined a comprehensive set of solar-optical properties and characterized the contribution of the prototype holographic glazings to workplane illuminance in a scale model of a typical office space. We then used the scale model measurements to simulate the energy performance of the holographic glazings over the course of an entire year for four window orientations (North, East, South and West) for the inland Los Angeles climate, using the DOE-2.lD building energy analysis computer program. The results of our experimental analyses indicate that these prototype holographic glazings diffract only a small fraction of the incident light. The results of this study indicate that these prototype holographic glazings will not save energy in commercial office buildings. Their performance is very similar to that of clear glass, which, through side windows, cannot efficiently illuminate more than a 4-6 m depth of a building's perimeter, because the cooling penalties due to solar heat gain are greater than the electric lighting savings due to daylighting.

  6. Performance of deep geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  7. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  8. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  9. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  10. Annual Cycle Energy System characteristics and performance

    SciTech Connect

    Abbatiello, L.A.

    1980-01-01

    The Annual Cycle Energy System (ACES) provides space heating, air conditioning, and domestic water heating while using substantially less energy than competing systems providing the same services. The ACES is based on an electrically driven, unidirectional heat pump that extracts heat from an insulated tank of water during the heating season. As the heat is extracted, most of the water freezes, and the stored ice provides air conditioning in the summer. A single-family residence near Knoxville, Tennessee is being used to demonstrate the energy conserving features of the ACES. A second similar house, the control house, has been used to compare the performance of the ACES to both an electric resistance heating and hot water with central air conditioning system and an air-to-air heat pump system. The results of the first year's operation from November 1977 through mid-September 1978 showed that the ACES consumed 9012 kWh of electricity while delivering an annual coefficient of performance (COP) of 2.78. The control house consumed 20,523 kWh of electricity while delivering an annual COP of 1.13. The second annual cycle was started on December 1978. The ACES was compared with an air-to-air heat pump during this period. During the ice storage portion of this test year, December 1, 1978 to September 1, 1979, 5705 kWh of electricity was used by the ACES, compared to 12,014 kWh for the control house. The respective COPs are 1.40 for the control house with the heat pump and 2.99 for the ACES house during this period. Annual energy consumption for the test year was 6597 kWh and the annual COPs were 1.41 for the control house and 2.81 for ACES. ACES is achieving its anticipated performance. The ACES concept and its general engineering performance as compared to conventional HVAC system are described and discussed.

  11. Energy performance of net-zero and near net-zero energy homes in New England

    NASA Astrophysics Data System (ADS)

    Thomas, Walter D.

    Net-Zero Energy Homes (NZEHs) are homes that consume no more energy than they produce on site during the course of a year. They are well insulated and sealed, use energy efficient appliances, lighting, and mechanical equipment, are designed to maximize the benefits from day lighting, and most often use a combination of solar hot water, passive solar and photovoltaic (PV) panels to produce their on-site energy. To date, NZEHs make up a miniscule percentage of homes in the United States, and of those, few have had their actual performance measured and analyzed once built and occupied. This research focused on 19 NZEHs and near net-zero energy homes (NNZEHs) built in New England. This set of homes had varying designs, numbers of occupants, and installed technologies for energy production, space heating and cooling, and domestic hot water systems. The author worked with participating homeowners to collect construction and systems specifications, occupancy information, and twelve months of energy consumption, production and cost measurements, in order to determine whether the homes reached their respective energy performance design goals. The author found that six out of ten NZEHs achieved net-zero energy or better, while all nine of the NNZEHs achieved an energy density (kWh/ft 2/person) at least half as low as the control house, also built in New England. The median construction cost for the 19 homes was 155/ft 2 vs. 110/ft2 for the US average, their average monthly energy cost was 84% below the average for homes in New England, and their estimated CO2 emissions averaged 90% below estimated CO2 emissions from the control house. Measured energy consumption averaged 14% below predictions for the NZEHs and 38% above predictions for the NNZEHs, while generated energy was within +/- 10% of predicted for 17 out of 18 on-site PV systems. Based on these results, the author concludes that these types of homes can meet or exceed their designed energy performance (depending on

  12. Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water

    SciTech Connect

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

    1997-09-01

    This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

  13. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  14. Procedure for Measuring and Reporting Commercial Building Energy Performance

    SciTech Connect

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  15. Energy performance analysis of prototype electrochromic windows

    SciTech Connect

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  16. The Self Actualized Reader.

    ERIC Educational Resources Information Center

    Marino, Michael; Moylan, Mary Elizabeth

    A study examined the commonalities that "voracious" readers share, and how their experiences can guide parents, teachers, and librarians in assisting children to become self-actualized readers. Subjects, 25 adults ranging in age from 20 to 67 years, completed a questionnaire concerning their reading histories and habits. Respondents varied in…

  17. 76 FR 74050 - Measured Building Energy Performance Data Taxonomy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... Office of Energy Efficiency and Renewable Energy Measured Building Energy Performance Data Taxonomy AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of request..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000...

  18. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    SciTech Connect

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  19. Monitored energy use of homes with geothermal heat pumps: A compilation and analysis of performance. Final report

    SciTech Connect

    Stein, J.R.; Meier, A.

    1997-12-01

    The performance of residential geothermal heat pumps (GHPs) was assessed by comparing heating, ventilation, and air conditioning (HVAC) system and whole house energy use of GHP houses and control houses. Actual energy savings were calculated and compared to expected savings (based on ARI ratings and literature) and predicted savings (based on coefficient of performance - COP - measurements). Differences between GHP and control houses were normalized for heating degree days and floor area or total insulation value. Predicted savings were consistently slightly below expected savings but within the range of performance cited by the industry. Average rated COP was 3.4. Average measured COP was 3.1. Actual savings were inconsistent and sometimes significantly below predicted savings. No correlation was found between actual savings and actual energy use. This suggests that factors such as insulation and occupant behavior probably have greater impact on energy use than type of HVAC equipment. There was also no clear correlation between climate and actual savings or between climate and actual energy use. There was a trend between GHP installation date and savings. Newer units appear to have lower savings than some of the older units which is opposite of what one would expect given the increase in rated efficiencies of GHPs. There are a number of explanations for why actual savings are repeatedly below rated savings or predicted savings. Poor ground loop sizing or installation procedures could be an issue. Given that performance is good compared to ASHPs but poor compared to electric resistance homes, the shortfall in savings could be due to duct leakage. The takeback effect could also be a reason for lower than expected savings. Occupants of heat pump homes are likely to heat more rooms and to use more air-conditioning than occupants of electric resistance homes. 10 refs., 17 figs., 10 tabs.

  20. System Performance Projections for TPV Energy Conversion

    SciTech Connect

    PF Baldasaro; MW Dashiell; JE Oppenlander; JL Vell; P Fourspring; K Rahner; LR Danielson; S Burger; E Brown

    2004-06-09

    TPV technology has advanced rapidly in the last five years, with diode conversion efficiency approaching >30%, and filter efficiency of {approx}80%. These achievements have enabled repeatable testing of 20% efficient small systems, demonstrating the potential of TPV energy conversion. Near term technology gains support a 25% efficient technology demonstration in the two year timeframe. However, testing of full size systems, which includes efficiency degradation mechanisms, such as: nonuniform diode illumination, diode and filter variability, temperature non-uniformities, conduction/convection losses, and lifetime reliability processes needs to be performed. A preliminary analysis of these differential effects has been completed, and indicates a near term integrated system efficiency of {approx}15% is possible using current technology, with long term growth to 18-20%. This report addresses the system performance issues.

  1. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational simplified surface energy balance model

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Russell L, Scott; Verdin, James P.

    2014-01-01

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. We have developed a first-ever basin-wide actual evapotranspiration (ETa) map of the CRB at the Landsat scale for water use assessment at the field level. We used the operational Simplified Surface Energy Balance (SSEBop) model for estimating ETa using 328 cloud-free Landsat images acquired during 2010. Our results show that cropland had the highest ETa among all land cover classes except for water. Validation using eddy covariance measured ETa showed that the SSEBop model nicely captured the variability in annual ETa with an overall R2 of 0.78 and a mean bias error of about 10%. Comparison with water balance-based ETa showed good agreement (R2 = 0.85) at the sub-basin level. Though there was good correlation (R2 = 0.79) between Moderate Resolution Imaging Spectroradiometer (MODIS)-based ETa (1 km spatial resolution) and Landsat-based ETa (30 m spatial resolution), the spatial distribution of MODIS-based ETa was not suitable for water use assessment at the field level. In contrast, Landsat-based ETa has good potential to be used at the field level for water management. With further validation using multiple years and sites, our methodology can be applied for regular production of ETa maps of larger areas such as the conterminous United States.

  2. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  3. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  4. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... consumption level at or better than the maximum level of energy efficiency that is life-cycle...

  5. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  6. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  7. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  8. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... consumption level at or better than the maximum level of energy efficiency that is life-cycle...

  9. Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.

    SciTech Connect

    Boyd, G.; Decision and Information Sciences

    2006-07-21

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  10. Performance profiles of major energy producers

    NASA Astrophysics Data System (ADS)

    1980-12-01

    Data for 26 major energy producing companies (coal, oil, gas, nuclear) for 1977 and 1978 are presented. Data were collected using the Financial Reporting System (FRS) reporting Form EIA-28 which collects disaggregated financial data on revenues and expenses, assets and liabilities, and sources and uses of funds. The overall corporate financial performance of 26 FRS companies are compared with the other major industrial companies. Differences in relative commitment and profitability associated with alternative lines of corporate activity are examined. The size composition and international character of FRS companies are examined. Oil and gas resource development efforts in 1978 are traced. Data on resource development expenditures are complemented by information on reserve holdings, changes in reserves, and characteristics of exploration and development efforts. Foreign activity is compared with domestic.

  11. Performance of Tornado Wind Energy Conversion Systems

    SciTech Connect

    Volk, T.

    1982-09-01

    The flow characteristics and power production capabilities of the Tornado Wind Energy Conversion System (TWECS) are examined. Experimental results indicate that the confined vortex in the tower of TWECS rotates approximately as a solid body and only supplements total power production, most of which comes from the tower acting as a bluff body. Wrapped tower experiments were performed by fitting a plastic shroud 360 deg around the tower from the top of the bottom inlet to the tower exit level which transformed the TWECS into a hollow, raised cylinder. Coefficient of power is compared for louvered towers vs. wrapped tower. The fact that the wrapped tower performs as well as the louvered tower suggests that it is the pressure difference between the bottom inlet region and the region above the tower (where the pressure of the ambient flow will be somewhat reduced owing to its acceleration over the bluff body of the tower) which determines the vertical force on the fluid within the tower.

  12. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    SciTech Connect

    Hong, Tianzhen; Yang, Le; Hill, David; Feng, Wei

    2014-01-25

    equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.

  13. Exploring the Effects of Multimedia Learning on Pre-Service Teachers' Perceived and Actual Learning Performance: The Use of Embedded Summarized Texts in Educational Media

    ERIC Educational Resources Information Center

    Wu, Leon Yufeng; Yamanaka, Akio

    2013-01-01

    In light of the increased usage of instructional media for teaching and learning, the design of these media as aids to convey the content for learning can be crucial for effective learning outcomes. In this vein, the literature has given attention to how concurrent on-screen text can be designed using these media to enhance learning performance.…

  14. 'I've used the word cancer but it's actually good news': discursive performativity of cancer and the identity of urological cancer services.

    PubMed

    Kazimierczak, Karolina Agata; Skea, Zoe

    2015-03-01

    Drawing on the ethnographic study of urological cancer services, this article explores how a set of particular discourses embedded in the everyday clinical work in a large teaching hospital in the UK helps materialise particular configurations of cancer and related professional identities. Emerging on the intersection of specific socio-material arrangements (cancer survival rates, treatment regimens, cancer staging classifications, metaphors, clinical specialities) and operating across a number of differential relations (curable/incurable, treatable/untreatable, aggressive/nonaggressive), these configurations help constitute the categories of 'good' and 'bad' cancers as separate and contrasting entities. These categories help materialise particular distributions of power and are thus implicated in the making of specific claims about the identity of urological cancer services as unique and privileged. Exploring these issues in view of feminist and material-semiotic approaches to studying science, technology and medicine, this article seeks to move away from the understanding of cancer discourses as primarily linguistic performances, proposing to see them instead as arrangements of practices and relations simultaneously material and semiotic through which particular categories, entities and phenomena acquire their determinate nature. In doing so, it seeks to contribute to sociology's broader concern with discursive performativity of cancer. PMID:25847531

  15. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  16. Performance profiles of major energy producers 1996

    SciTech Connect

    1998-01-01

    This publication examines developments in the operations of the major US e energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area. In 1996, 24 companies filed Form EIA-28. The analysis and data presented in this report represents the operations of the Financial Reporting System companies in the context of their worldwide operations and in the context of the major energy markets which they serve. Both energy and nonenergy developments of these companies are analyzed. Although the focus is on developments in 1996, important trends prior to that time are also featured. Sections address energy markets in 1996; key financial developments; oil and gas exploration, development, and production; downstream petroleum in 1996; coal and alternative energy; and foreign direct investment in US energy. 30 figs., 104 tabs.

  17. Energy Savings Performance Contracts (ESPC): FEMP Assistance

    SciTech Connect

    2012-11-01

    An ESPC is a working relationship between a Federal agency and an energy service company (ESCO). The ESCO conducts a comprehensive energy audit for the Federal facility and identifies improvements to save energy. In consultation with the Federal agency, the ESCO designs and constructs a project that meets the agency’s needs and arranges the necessary funding. The ESCO guarantees the improvements will generate energy cost savings sufficient to pay for the project over the term of the contract. After the contract ends, all additional cost savings accrue to the agency.

  18. Analysis of Illinois Home Performance with ENERGY STAR(R) Measure Packages

    SciTech Connect

    Baker, J.; Yee, S.; Brand, L.

    2013-09-01

    Through the Chicagoland Single Family Housing Characterization and Retrofit Prioritization report, the Partnership for Advanced Residential Retrofit characterized 15 housing types in the Chicagoland region based on assessor data, utility billing history, and available data from prior energy efficiency programs. Within these 15 groups, a subset showed the greatest opportunity for energy savings based on BEopt Version 1.1 modeling of potential energy efficiency package options and the percent of the housing stock represented by each group. In this project, collected field data from a whole-home program in Illinois are utilized to compare marketplace-installed measures to the energy saving optimal packages previously developed for the 15 housing types. Housing type, conditions, energy efficiency measures installed, and retrofit cost information were collected from 19 homes that participated in the Illinois Home Performance with ENERGY STAR program in 2012, representing eight of the characterized housing groups. Two were selected for further case study analysis to provide an illustration of the differences between optimal and actually installed measures. Taken together, these homes are representative of 34.8% of the Chicagoland residential building stock. In one instance, actual installed measures closely matched optimal recommended measures.

  19. Performance Criteria for Residential Zero Energy Windows

    SciTech Connect

    Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

    2006-10-09

    This paper shows that the energy requirements for today's typical efficient window products (i.e. ENERGY STAR{trademark} products) are significant when compared to the needs of Zero Energy Homes (ZEHs). Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate. In heating dominated climates, windows with U-factors of 0.10 Btu/hr-ft{sup 2}-F (0.57 W/m{sup 2}-K) will become energy neutral. In mixed heating/cooling climates a low U-factor is not as significant as the ability to modulate from high SHGCs (heating season) to low SHGCs (cooling season).

  20. IMPROVING THE ENERGY PERFORMANCE OF RESIDENTIAL CLOTHESDRYERS

    SciTech Connect

    Hekmat, D.; Fisk, W.J.

    1984-02-01

    Experiments were conducted to evaluate four techniques to improve the energy efficiency of electrically-heated domestic clothes dryers. Reduced air flow rate and heater input led to energy savings around 8%, while recirculation of a portion of the exhaust air back into the clothes dryer reduced energy consumption by approximately 18%. These two measures are attractive because of their low cost. Two modes of using an air-to-air heat exchanger for heat recovery were considered. The first is to preheat the inlet air with heat from the exhaust air, which resulted in 20 to 26% energy savings. The second mode is 100% recirculation of air through the dryer and a heat exchanger and condensation of water from this air in the heat exchanger by using indoor air. as a heat sink. This resulted in 100% heat recovery (i.e., all heat was rejected to indoors) but the energy consumption of the dryer was increased by up to 6%. To maximize energy savings, a clothes dryer with a heat exchanger can be equipped to operate in the preheating mode in the summer and in the recirculation/condensation mode in the winter. The last measure investigated recirculation, through a heat pump (i.e., dehumidifier), also resulted in a 100% heat recovery and, in addition, up to a 33% reduction in dryer energy consumption, but this technique also yielded long drying times.

  1. Hydrodynamic Performance of a Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Yang, Yingchen

    2010-11-01

    To harvest energy from ocean waves, a new wave energy converter (WEC) was proposed and tested in a wave tank. The WEC freely floats on the water surface and rides waves. It utilizes its wave-driven angular oscillation to convert the mechanical energy of waves into electricity. To gain the maximum possible angular oscillation of the WEC under specified wave conditions, both floatation of the WEC and wave interaction with the WEC play critical roles in a joint fashion. During the experiments, the submersion condition of the WEC and wave condition were varied. The results were analyzed in terms of the oscillation amplitude, stability, auto-orientation capability, and wave frequency dependency.

  2. A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE DATA

    SciTech Connect

    Maile, Tobias; Bazjanac, Vladimir; O'Donnell, James; Garr, Matthew

    2011-11-01

    Building energy performance is often inadequate when compared to design goals. To link design goals to actual operation one can compare measured with simulated energy performance data. Our previously developed comparison approach is the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured and simulated performance data. In context of this method, we developed a software tool that provides graphing and data processing capabilities of the two performance data sets. The software tool called SEE IT (Stanford Energy Efficiency Information Tool) eliminates the need for manual generation of data plots and data reformatting. SEE IT makes the generation of time series, scatter and carpet plots independent of the source of data (measured or simulated) and provides a valuable tool for comparing measurements with simulation results. SEE IT also allows assigning data points on a predefined building object hierarchy and supports different versions of simulated performance data. This paper briefly introduces the EPCM, describes the SEE IT tool and illustrates its use in the context of a building case study.

  3. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    SciTech Connect

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  4. Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes

    SciTech Connect

    Hewes, Tom; Peeks, Brady

    2015-09-15

    ?This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). The scope of this project involved building four HPMH prototypes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). The HPMH home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.

  5. Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes

    SciTech Connect

    Hewes, Tom; Peeks, Brady

    2015-09-01

    This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH), which is intended to make significant progress toward performing as zero-net-energy ready. The scope of this project involved building four HPMH prototypes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual percent savings varies depending on choice of heating equipment and climate zone). Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.

  6. Solar energy system performance evaluation: Seasonal report for IBM System 1B, Carlsbad, New Mexico

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A hot solar heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. The space heating and hot water loads were near expected values for the year. Solar energy provided 43 percent of the space heating and 53 percent of the hot water energy. The system did not meet the total system solar fraction design value of 69 percent because of a combination of higher estimated space heating load than was actually encountered and the apportioning of solar energy between the space heating and the domestic hot water loads. System losses and high building temperatures also contributed to this deviation. Total net savings were 23.072 million BTUs. Most of the energy savings came during the winter months, but hot water savings were sufficient to justify running the system during the summer months.

  7. Evaluating Performances of Solar-Energy Systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1987-01-01

    CONC11 computer program calculates performances of dish-type solar thermal collectors and power systems. Solar thermal power system consists of one or more collectors, power-conversion subsystems, and powerprocessing subsystems. CONC11 intended to aid system designer in comparing performance of various design alternatives. Written in Athena FORTRAN and Assembler.

  8. A coupled remote sensing and the Surface Energy Balance based algorithms to estimate actual evapotranspiration over the western and southern regions of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mahmoud, Shereif H.; Alazba, A. A.

    2016-07-01

    In countries with absolute water scarcity such as the Kingdom of Saudi Arabia (KSA), large-scale actual evapotranspiration estimation is of great concern in water use practices. Herein, spatial and temporal distribution of actual evapotranspiration (AET) in the western and southern regions of KSA during 1992-2014 was estimated using the SEBAL model with field observations. Zonal statistics for each land use-cover type were also identified, in order to understand their effects on water consumption. In addition, daily and seasonal water consumption for major crops was computed. Results revealed a gradual increase in monthly AET values from January to April and subsequent decline from May to December. The maximum monthly AET values were observed for irrigated cropland in southwestern, central, and southeastern regions of Asir Province, central and southwestern regions of Al-Baha Province, central and the plains region of Jazan Province, southern portion of Makkah Province, and limited areas in the northern regions of Madinah Province. The annual AET ranged from 418.8 to 3442.3 mm yr-1. The normal distribution of mean annual AET values ranged from 717 to 1020 mm yr-1. Forty-two percent of the study area had an annual AET that ranged from 717 to 1020 mm yr-1. The second highest range of frequencies was concentrated around 1020-1322 mm yr-1, representing the majority of agricultural land. The consumptive water use of the different land cover types in study area indicated that irrigated cropland which occupied 14.6% of the study area had AET rates much higher than other land uses. Water bodies are the next highest, with forest and shrubland and sparse vegetation slightly lower, and very low AET rates from bare soil. Daily and seasonal water consumption of major cropping systems varied spatially depending on cropping practices and climatic conditions.

  9. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    SciTech Connect

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  10. Energy and Performance: The Power of Metaphor.

    ERIC Educational Resources Information Center

    Phillips, Bill

    1998-01-01

    "Operating metaphors" that people unconsciously use to understand life and work experiences may limit behavior and performance. A psychometric instrument under development can reveal a person's underlying metaphors as a first step to changing them. (SK)

  11. Appraisal and regulation of the ship energy performance

    NASA Astrophysics Data System (ADS)

    Badea, N.; Epureanu, A.; Badea, G. V.; Frumuşanu, G.

    2015-11-01

    The ship may be viewed as a living environment associated with two industrial environments, one corresponding to the transport industry and other one to the processing, services, or other specific type of industry developed aboard. Each environment has its own energy system and changes energy with the other two. Nowadays, the appraisal and regulation of the ship energy performance is based on the Energy Efficiency Design Index (EEDI). Its definition covers the three mentioned systems, without distinction between them. This paper addresses the assessment and regulation of the ship energy performance, bearing in mind that, by far, the main purpose is to increase the level of performance by selecting, from the available measures of performance improvement, those that are the most effective. The paper highlights the EEDI shortcomings, explaining that they appear mainly due the fact that this index covers a couple of energy systems that are far too different (though these energy systems are intimately interpenetrated).

  12. Building America Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes; Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-05-01

    ?This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). The scope of this project involved building four HPMH prototypes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). The HPMH home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.
    home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.

  13. The State of Energy and Performance Benchmarking for Enterprise Servers

    NASA Astrophysics Data System (ADS)

    Fanara, Andrew; Haines, Evan; Howard, Arthur

    To address the server industry’s marketing focus on performance, benchmarking organizations have played a pivotal role in developing techniques to determine the maximum achievable performance level of a system. Generally missing has been an assessment of energy use to achieve that performance. The connection between performance and energy consumption is becoming necessary information for designers and operators as they grapple with power constraints in the data center. While industry and policy makers continue to strategize about a universal metric to holistically measure IT equipment efficiency, existing server benchmarks for various workloads could provide an interim proxy to assess the relative energy efficiency of general servers. This paper discusses ideal characteristics a future energy-performance benchmark might contain, suggests ways in which current benchmarks might be adapted to provide a transitional step to this end, and notes the need for multiple workloads to provide a holistic proxy for a universal metric.

  14. Missing transverse energy performance of the CMS detector

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2011-09-01

    During 2010 the LHC delivered pp collisions with a centre-of-mass energy of 7 TeV. In this paper, the results of comprehensive studies of missing transverse energy as measured by the CMS detector are presented. The results cover the measurements of the scale and resolution for missing transverse energy, and the effects of multiple pp interactions within the same bunch crossings on the scale and resolution. Anomalous measurements of missing transverse energy are studied, and algorithms for their identification are described. The performances of several reconstruction algorithms for calculating missing transverse energy are compared. An algorithm, called missing-transverse-energy significance, which estimates the compatibility of the reconstructed missing transverse energy with zero, is described, and its performance is demonstrated.

  15. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  16. Performance outcomes and unwanted side effects associated with energy drinks.

    PubMed

    Mora-Rodriguez, Ricardo; Pallarés, Jesús G

    2014-10-01

    Energy drinks are increasingly popular among athletes and others. Advertising for these products typically features images conjuring great muscle power and endurance; however, the scientific literature provides sparse evidence for an ergogenic role of energy drinks. Although the composition of energy drinks varies, most contain caffeine; carbohydrates, amino acids, herbs, and vitamins are other typical ingredients. This report analyzes the effects of energy drink ingredients on prolonged submaximal (endurance) exercise as well as on short-term strength and power (neuromuscular performance). It also analyzes the effects of energy drink ingredients on the fluid and electrolyte deficit during prolonged exercise. In several studies, energy drinks have been found to improve endurance performance, although the effects could be attributable to the caffeine and/or carbohydrate content. In contrast, fewer studies find an ergogenic effect of energy drinks on muscle strength and power. The existing data suggest that the caffeine dose given in studies of energy drinks is insufficient to enhance neuromuscular performance. Finally, it is unclear if energy drinks are the optimal vehicle to deliver caffeine when high doses are needed to improve neuromuscular performance. PMID:25293550

  17. Energy Performance Evaluation of a Low-Energy Academic Building: Preprint

    SciTech Connect

    Pless, S.; Torcellini, P.

    2005-10-01

    This paper considers the energy performance analyses conducted to document and verify progress toward the building's design objectives. The authors present and discuss energy performance data and draw lessons that can be applied to improve the design of this and future low-energy buildings.

  18. Acquisition of building geometry in the simulation of energy performance

    SciTech Connect

    Bazjanac, Vladimir

    2001-06-28

    Building geometry is essential to any simulation of building performance. This paper examines the importing of building geometry into simulation of energy performance from the users' point of view. It lists performance requirements for graphic user interfaces that input building geometry, and discusses the basic options in moving from two- to three-dimensional definition of geometry and the ways to import that geometry into energy simulation. The obvious answer lies in software interoperability. With the BLIS group of interoperable software one can interactively import building geometry from CAD into EnergyPlus and dramatically reduce the effort otherwise needed for manual input.The resulting savings may greatly increase the value obtained from simulation, the number of projects in which energy performance simulation is used, and expedite decision making in the design process.

  19. Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint

    SciTech Connect

    Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

    2014-08-01

    One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

  20. Building thermography and energy performance directive of buildings

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo; Siikanen, Sami

    2012-06-01

    Energy Performance of Buildings Directive came in to the force in Europe couple of years ago and it had an immediate effect on Building Codes in Europe. Finland have changed its building codes since 2007 - the insulation requirements have been tightened and the requirements have been specified. The biggest change is energy efficient calculations and determination of energy efficiency and energy label for buildings. This has caused a boom of new service providers (thermography services, air-tightness measurements and other services like new calculation tools). Thermography is used in verification in performance of buildings. In this presentation some examples of building thermography in walk-through energy audits combined with the results of energy efficiency calculations are presented - also some special problems in buildings of specific use (e.g. an art museum) and use of thermography to solve them.

  1. Energy Conservation in the Home. Performance Based Lesson Plans.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery. Home Economics Service.

    These ten performance-based lesson plans concentrate on tasks related to energy conservation in the home. They are (1) caulk cracks, holes, and joints; (2) apply weatherstripping to doors and windows; (3) add plastic/solar screen window covering; (4) arrange furniture for saving energy; (5) set heating/cooling thermostat; (6) replace faucet…

  2. Performance Characterization of High Energy Commercial Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Schneidegger, Brianne T.

    2010-01-01

    The NASA Glenn Research Center Electrochemistry Branch performed characterization of commercial lithium-ion cells to determine the cells' performance against Exploration Technology Development Program (ETDP) Key Performance Parameters (KPP). The goals of the ETDP Energy Storage Project require significant improvements in the specific energy of lithium-ion technology over the state-of-the-art. This work supports the high energy cell development for the Constellation customer Lunar Surface Systems (LSS). In support of these goals, testing was initiated in September 2009 with high energy cylindrical cells obtained from Panasonic and E-One Moli. Both manufacturers indicated the capability of their cells to deliver specific energy of at least 180 Wh/kg or higher. Testing is being performed at the NASA Glenn Research Center to evaluate the performance of these cells under temperature, rate, and cycling conditions relevant to the ETDP goals for high energy cells. The cell-level specific energy goal for high energy technology is 180 Wh/kg at a C/10 rate and 0 C. The threshold value is 165 Wh/kg. The goal is to operate for at least 2000 cycles at 100 percent DOD with greater than 80 percent capacity retention. The Panasonic NCR18650 cells were able to deliver nearly 200 Wh/kg at the aforementioned conditions. The E-One Moli ICR18650J cells also met the specific energy goal by delivering 183 Wh/kg. Though both cells met the goal for specific energy, this testing was only one portion of the testing required to determine the suitability of commercial cells for the ETDP. The cells must also meet goals for cycle life and safety. The results of this characterization are summarized in this report.

  3. Energy Efficient Engine core design and performance report

    NASA Technical Reports Server (NTRS)

    Stearns, E. Marshall

    1982-01-01

    The Energy Efficient Engine (E3) is a NASA program to develop fuel saving technology for future large transport aircraft engines. Testing of the General Electric E3 core showed that the core component performance and core system performance necessary to meet the program goals can be achieved. The E3 core design and test results are described.

  4. Deep Energy Retrofit Performance Metric Comparison: Eight California Case Studies

    SciTech Connect

    Walker, Iain; Fisher, Jeremy; Less, Brennan

    2014-06-01

    In this paper we will present the results of monitored annual energy use data from eight residential Deep Energy Retrofit (DER) case studies using a variety of performance metrics. For each home, the details of the retrofits were analyzed, diagnostic tests to characterize the home were performed and the homes were monitored for total and individual end-use energy consumption for approximately one year. Annual performance in site and source energy, as well as carbon dioxide equivalent (CO2e) emissions were determined on a per house, per person and per square foot basis to examine the sensitivity to these different metrics. All eight DERs showed consistent success in achieving substantial site energy and CO2e reductions, but some projects achieved very little, if any source energy reduction. This problem emerged in those homes that switched from natural gas to electricity for heating and hot water, resulting in energy consumption dominated by electricity use. This demonstrates the crucial importance of selecting an appropriate metric to be used in guiding retrofit decisions. Also, due to the dynamic nature of DERs, with changes in occupancy, size, layout, and comfort, several performance metrics might be necessary to understand a project’s success.

  5. An evaluation of the Fort Polk energy savings performance contract

    SciTech Connect

    Hughes, P.J.; Shonder, J.A.

    1998-11-01

    The US Army, in cooperation with an energy services company (ESCO), used private capital to retrofit 4,003 family housing units on the Fort Polk, Louisiana, military base with geothermal heat pumps (GHPs). The project was performed under an energy savings performance contract (ESPC) that provides for the Army and the ESCO to share the cost savings realized through the energy retrofit over the 20-year life of the contract. Under the terms of the contract, the ESCO is responsible for maintaining the GHPs and provides ongoing measurement and verification (M and V) to assure cost and energy savings to the Army. An independent evaluation conducted by the Department of Energy`s Oak Ridge National Laboratory indicates that the GHP systems in combination with other energy retrofit measures have reduced annual whole-community electrical consumption by 33%, and natural gas consumption by 100%. These energy savings correspond to an estimated reduction in CO{sub 2} emissions of 22,400 tons per year. Peak electrical demand has been reduced by 43%. The electrical energy and demand savings correspond to an improvement in the whole-community annual electric load factor from 0.52 to 0.62. As a result of the project, Fort Polk saves about $450,000 annually and benefits from complete renewal of the major energy consuming systems in family housing and maintenance of those systems for 20 years. Given the magnitude of the project, the cost and energy savings achieved, and the lessons learned during its design and implementation, the Fort Polk ESPC can provide a model for other housing-related energy savings performance contracts in both the public and private sectors.

  6. Performance calculation and simulation system of high energy laser weapon

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke

    2014-12-01

    High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.

  7. Performance of Scramjet Engine with MHD Energy Bypass System

    NASA Astrophysics Data System (ADS)

    Kaminaga, Susumu; Tomioka, Sadatake; Yamasaki, Hiroyuki

    Flow behavior and thrust performance of MHD energy bypass scramjet engine was examined numerically. MHD generator was placed at the isolator to enhance the flow compression. Kinetic energy was converted to electrical energy in the MHD generator. Extracted electrical energy was consumed at the MHD accelerator placed at the downstream of the combustor. When MHD energy bypass system was used, the flow was decelerated and compressed in the MHD generator. Effect of velocity and Mach number on wall friction was analyzed and decrease of friction force was pointed out. Also, high pressure in the combustor resulted in increase of pressure contribution to net thrust. Despite of positive effects, decelerating Lorentz force in the MHD generator was comparably large and no significant difference in net thrust performance is observed.

  8. BigHorn Home Improvement Center Energy Performance

    SciTech Connect

    Deru, M.; Pless, S. D.; Torcellini, P. A.

    2006-01-01

    The BigHorn Development Project, located in Silverthorne, Colorado, is one of the nation's first commercial building projects to integrate extensive high-performance design into a retail space. The BigHorn Home Improvement Center, completed in the spring of 2000, is a 42,366-ft2 (3,936 m2) hardware store, warehouse, and lumberyard. The authors were brought in at the design stage of the project to provide research-level guidance to apply an integrated design process and perform a postoccupancy evaluation. An aggressive energy design goal of 60% energy cost saving was set early in the process, which focused the efforts of the design team and provided a goal for measuring the success of the project. The extensive use of natural light, combined with energy-efficient electrical lighting design, provides good illumination and excellent energy savings. The reduced lighting loads, management of solar gains, and cool climate allow natural ventilation to meet the cooling loads. A hydronic radiant floor system, gas-fired radiant heaters, and a transpired solar collector deliver heat. An 8.9-kW roof-integrated photovoltaic (PV) system offsets a portion of the electricity. After construction, the authors installed monitoring equipment to collect energy performance data and analyzed the building's energy performance for two and one-half years. The authors also helped program the building controls and provided recommendations for improving operating efficiency. The building shows an estimated 53% energy cost saving and a 54% source energy saving. These savings were determined with whole-building energy simulations that were calibrated with measured data. This paper discusses lessons learned related to the design process, the daylighting performance, the PV system, and the heating, ventilating, and air-conditioning system.

  9. Measure Guideline. Energy-Efficient Window Performance and Selection

    SciTech Connect

    Carmody, John; Haglund, Kerry

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  10. Development of new methodologies for evaluating the energy performance of new commercial buildings

    NASA Astrophysics Data System (ADS)

    Song, Suwon

    The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: (1) The development of a method to synthesize weather-normalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, (2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and (3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: (1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, (2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and (3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: (1) Energy Use Index (EUI) comparisons with sub-metered data, (2) New comparisons against

  11. Analysis of Photovoltaic System Energy Performance Evaluation Method

    SciTech Connect

    Kurtz, S.; Newmiller, J.; Kimber, A.; Flottemesch, R.; Riley, E.; Dierauf, T.; McKee, J.; Krishnani, P.

    2013-11-01

    Documentation of the energy yield of a large photovoltaic (PV) system over a substantial period can be useful to measure a performance guarantee, as an assessment of the health of the system, for verification of a performance model to then be applied to a new system, or for a variety of other purposes. Although the measurement of this performance metric might appear to be straight forward, there are a number of subtleties associated with variations in weather and imperfect data collection that complicate the determination and data analysis. A performance assessment is most valuable when it is completed with a very low uncertainty and when the subtleties are systematically addressed, yet currently no standard exists to guide this process. This report summarizes a draft methodology for an Energy Performance Evaluation Method, the philosophy behind the draft method, and the lessons that were learned by implementing the method.

  12. Performance of fuel cell for energy supply of passive house

    NASA Astrophysics Data System (ADS)

    Badea, G.; Felseghi, R. A.; Rǎboacǎ, S. M.; Aşchilean, I.; Mureşan, D.; Naghiu, G.

    2015-12-01

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  13. Performance of fuel cell for energy supply of passive house

    SciTech Connect

    Badea, G.; Felseghi, R. A. Mureşan, D.; Naghiu, G.; Răboacă, S. M.; Aşchilean, I.

    2015-12-23

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  14. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central element in a metaphysical…

  15. Energy performance of evacuated glazings in residential buildings

    SciTech Connect

    Sullivan, R.; Beck, F.; arasteh, D.; Selkowitz, S.

    1995-09-01

    This paper presents the results of a study investigating the energy performance of evacuated glazings or glazings which maintain a vacuum between two panes of glass. Their performance is determined by comparing results to prototype highly insulated superwindows as well as a more conventional. insulating glass unit with a low-E coating and argon gas fill. We used the DOE2.1E energy analysis simulation program to analyze the annual and hourly heating energy use due to the windows of a prototypical single-story house located in Madison, Wisconsin. Cooling energy performance was also investigated. Our results show that for highly insulating windows, the solar heat gain coefficient is as important as the window`s U-factor in determining heating performance for window orientations facing west-south-east. For other orientations in which there is not much direct solar radiation, the window`s U-factor primarily governs performance. The vacuum glazings had lower heating requirements than the superwindows for most window orientations. The conventional low-E window outperformed the superwindows for southwest-south-southeast orientations These performance differences are directly related to the solar heat gain coefficients of the various windows analyzed. The cooling performance of the windows was inversely related to the heating performance. The lower solar heat gain coefficients of the superwindows resulted in the best cooling performance. However, we were able to mitigate the cooling differences of the windows by using an interior shading device that reduced the amount of solar gain at appropriate times.

  16. Energy performance of evacuated glazings in residential buildings

    SciTech Connect

    Sullivan, R.; Beck, F.; Arasteh, D.; Selkowitz, S.

    1996-10-01

    This paper presents the results of a study investigating the energy performance of evacuated glazings or glazings which maintain a vacuum between two panes of glass. Their performance is determined by comparing results to prototype highly insulated superwindows as well as a more conventional insulating glass unit with a low-E coating and argon gas fill. The authors used the DOE-2.1E energy analysis simulation program to analyze the annual and hourly heating energy use due to the windows of a prototypical single-story house located in Madison, Wisconsin. Cooling energy performance was also investigated. The results show that for highly insulating windows, the solar heat gain coefficient is as important as the window`s U-factor in determining heating performance for window orientations facing west-south-east. For other orientations in which there is not much direct solar radiation, the window`s U-factor primarily governs performance. The vacuum glazings had lower heating requirements than the superwindows for most window orientations. The conventional low-E window outperformed the superwindows for southwest-south-southeast orientations. These performance differences are directly related to the solar heat gain coefficients of the various windows analyzed. The cooling performance of the windows was inversely related to the heating performance. The lower solar heat gain coefficients of the superwindows resulted in the best cooling performance. However, the authors were able to mitigate the cooling differences of the windows by using an interior shading device that reduced the amount of solar gain at appropriate times.

  17. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  18. Performance of an angular flange aeroelastic wind energy converter

    SciTech Connect

    Ahmadi, G.

    1983-05-01

    ALL conventional wind turbines operate on the principles of turbomachinaries, with wind being made to flow over a set of rotating vanes. Recently, a new concept for wind energy conversion based on aeroelastic instability was introduced. It is well known that couplings between the vibration of an elastic structure and fluid stream may lead to aeroelastic instability. Energy then is transferred from the airstream into the elastic structure, which results in a destructive monotonic increase of the vibration amplitude of the structure. The failure of the Tacoma Narrows Bridge is one of the well-known examples of such a disaster. The use of an aeroelastic instability (or flutter) mechanism for constructing a wind energy converter was suggested. The theory for a torsional wind energy converter and the results of some model tests were also presented. Recently, some studies on similar types of wind energy converters using oscillating airfoils were reported. In the present study an angular flange H-section model of a torsional aeroelastic wind energy converter is constructed, and its performances under various conditions are investigated. The effects of the variations of the flange angle and the flange width on the performance of the model are studied. The weight of the pendulum is also varied, and its effects on the power coefficient of the model are investigated. It is observed that the efficiency of energy conversion decreases with an increase in wind speed. A method for possible improvement of the theoretical prediction is suggested and discussed.

  19. Creating high performance buildings: Lower energy, better comfort

    NASA Astrophysics Data System (ADS)

    Brager, Gail; Arens, Edward

    2015-03-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64-84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  20. Creating high performance buildings: Lower energy, better comfort

    SciTech Connect

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  1. Performance Contracting and Energy Efficiency in the State Government Market

    SciTech Connect

    Bharvirkar, Ranjit; Goldman, Charles; Gilligan, Donald; Singer, Terry E.; Birr, David; Donahue, Patricia; Serota, Scott

    2008-11-14

    There is growing interest in energy efficiency (EE) among state policymakers as a result of increasing environmental concerns, rising electricity and natural gas prices, and lean economic times that motivate states to look more aggressively for cost-saving opportunities in public sector buildings. One logical place for state policymakers to demonstrate their commitment to energy efficiency is to 'lead by example' by developing and implementing strategies to reduce the energy consumption of state government facilities through investments in energy efficient technologies. Traditionally, energy efficiency improvements at state government facilities are viewed as a subset in the general category of building maintenance and construction. These projects are typically funded through direct appropriations. However, energy efficiency projects are often delayed or reduced in scope whereby not all cost-effective measures are implemented because many states have tight capital budgets. Energy Savings Performance Contracting (ESPC) offers a potentially useful strategy for state program and facility managers to proactively finance and develop energy efficiency projects. In an ESPC project, Energy Service Companies (ESCOs) typically guarantee that the energy and cost savings produced by the project will equal or exceed all costs associated with implementing the project over the term of the contract. ESCOs typically provide turnkey design, installation, and maintenance services and also help arrange project financing. Between 1990 and 2006, U.S. ESCOs reported market activity of {approx}$28 Billion, with about {approx}75-80% of that activity concentrated in the institutional markets (K-12 schools, colleges/universities, state/local/federal government and hospitals). In this study, we review the magnitude of energy efficiency investment in state facilities and identify 'best practices' while employing performance contracting in the state government sector. The state government

  2. Long term performance of wearable transducer for motion energy harvesting

    NASA Astrophysics Data System (ADS)

    McGarry, Scott A.; Behrens, Sam

    2010-04-01

    Personal electronic devices such as cell phones, GPS and MP3 players have traditionally depended on battery energy storage technologies for operation. By harvesting energy from a person's motion, these devices may achieve greater run times without increasing the mass or volume of the electronic device. Through the use of a flexible piezoelectric transducer such as poly-vinylidene fluoride (PVDF), and integrating it into a person's clothing, it becomes a 'wearable transducer'. As the PVDF transducer is strained during the person's routine activities, it produces an electrical charge which can then be harvested to power personal electronic devices. Existing wearable transducers have shown great promise for personal motion energy harvesting applications. However, they are presently physically bulky and not ergonomic for the wearer. In addition, there is limited information on the energy harvesting performance for wearable transducers, especially under realistic conditions and for extended cyclic force operations - as would be experienced when worn. In this paper, we present experimental results for a wearable PVDF transducer using a person's measured walking force profile, which is then cycled for a prolonged period of time using an experimental apparatus. Experimental results indicate that after an initial drop in performance, the transducer energy harvesting performance does not substantially deteriorate over time, as less than 10% degradation was observed. Longevity testing is still continuing at CSIRO.

  3. Energy Proportionality and Performance in Data Parallel Computing Clusters

    SciTech Connect

    Kim, Jinoh; Chou, Jerry; Rotem, Doron

    2011-02-14

    Energy consumption in datacenters has recently become a major concern due to the rising operational costs andscalability issues. Recent solutions to this problem propose the principle of energy proportionality, i.e., the amount of energy consumedby the server nodes must be proportional to the amount of work performed. For data parallelism and fault tolerancepurposes, most common file systems used in MapReduce-type clusters maintain a set of replicas for each data block. A coveringset is a group of nodes that together contain at least one replica of the data blocks needed for performing computing tasks. In thiswork, we develop and analyze algorithms to maintain energy proportionality by discovering a covering set that minimizesenergy consumption while placing the remaining nodes in lowpower standby mode. Our algorithms can also discover coveringsets in heterogeneous computing environments. In order to allow more data parallelism, we generalize our algorithms so that itcan discover k-covering sets, i.e., a set of nodes that contain at least k replicas of the data blocks. Our experimental results showthat we can achieve substantial energy saving without significant performance loss in diverse cluster configurations and workingenvironments.

  4. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... CFR 85.36(d)(3)). In identifying the evaluation factors and their relative importance, as required by... single source, noncompetitive proposals (see 24 CFR 85.36(d)(4)(i)(A)). (b) HUD Review. Solicitations for... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Energy performance contracts....

  5. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CFR 85.36(d)(3)). In identifying the evaluation factors and their relative importance, as required by... single source, noncompetitive proposals (see 24 CFR 85.36(d)(4)(i)(A)). (b) HUD Review. Solicitations for... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Energy performance contracts....

  6. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CFR 85.36(d)(3)). In identifying the evaluation factors and their relative importance, as required by... single source, noncompetitive proposals (see 24 CFR 85.36(d)(4)(i)(A)). (b) HUD Review. Solicitations for... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Energy performance contracts....

  7. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CFR 85.36(d)(3)). In identifying the evaluation factors and their relative importance, as required by... single source, noncompetitive proposals (see 24 CFR 85.36(d)(4)(i)(A)). (b) HUD Review. Solicitations for... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Energy performance contracts....

  8. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CFR 85.36(d)(3)). In identifying the evaluation factors and their relative importance, as required by... single source, noncompetitive proposals (see 24 CFR 85.36(d)(4)(i)(A)). (b) HUD Review. Solicitations for... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Energy performance contracts....

  9. Program optimizations: The interplay between power, performance, and energy

    DOE PAGESBeta

    Leon, Edgar A.; Karlin, Ian; Grant, Ryan E.; Dosanjh, Matthew

    2016-05-16

    Practical considerations for future supercomputer designs will impose limits on both instantaneous power consumption and total energy consumption. Working within these constraints while providing the maximum possible performance, application developers will need to optimize their code for speed alongside power and energy concerns. This paper analyzes the effectiveness of several code optimizations including loop fusion, data structure transformations, and global allocations. A per component measurement and analysis of different architectures is performed, enabling the examination of code optimizations on different compute subsystems. Using an explicit hydrodynamics proxy application from the U.S. Department of Energy, LULESH, we show how code optimizationsmore » impact different computational phases of the simulation. This provides insight for simulation developers into the best optimizations to use during particular simulation compute phases when optimizing code for future supercomputing platforms. Here, we examine and contrast both x86 and Blue Gene architectures with respect to these optimizations.« less

  10. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  11. Hierarchical nanowires for high-performance electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Dong, Yi-Fan; Wang, Dan-Dan; Chen, Wei; Huang, Lei; Shi, Chang-Wei; Mai, Li-Qiang

    2014-06-01

    Nanowires are promising candidates for energy storage devices such as lithium-ion batteries, supercapacitors and lithium-air batteries. However, simple-structured nanowires have some limitations hence the strategies to make improvements need to be explored and investigated. Hierarchical nanowires with enhanced performance have been considered as an ideal candidate for energy storage due to the novel structures and/or synergistic properties. This review describes some of the recent progresses in the hierarchical nanowire merits, classification, synthesis and performance in energy storage applications. Herein we discuss the hierarchical nanowires based on their structural design from three major categories, including exterior design, interior design and aligned nanowire assembly. This review also briefly outlines the prospects of hierarchical nanowires in morphology control, property enhancement and application versatility.

  12. The effects of caffeinated "energy shots" on time trial performance.

    PubMed

    Schubert, Matthew Mark; Astorino, Todd Anthony; Azevedo, John Leal

    2013-06-01

    An emerging trend in sports nutrition is the consumption of energy drinks and "energy shots". Energy shots may prove to be a viable pre-competition supplement for runners. Six male runners (mean ± SD age and VO2max: 22.5 ± 1.8 years and 69.1 ± 5.7 mL·kg-1·min-1) completed three trials [placebo (PLA; 0 mg caffeine), Guayakí Yerba Maté Organic Energy Shot™ (YM; 140 mg caffeine), or Red Bull Energy Shot™ (RB; 80 mg caffeine)]. Treatments were ingested following a randomized, placebo-controlled crossover design. Participants ran a five kilometer time trial on a treadmill. No differences (p > 0.05) in performance were detected with RB (17.55 ± 1.01 min) or YM ingestion (17.86 ± 1.59 min) compared to placebo (17.44 ± 1.25 min). Overall, energy shot ingestion did not improve time-trial running performance in trained runners. PMID:23743969

  13. New Whole-House Solutions Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes - Pacific Northwest

    SciTech Connect

    2015-05-01

    This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). In this project, the Northwest Energy Efficient Manufactured Housing Program worked with Building America Partnership for Improved Residential Construction and Bonneville Power Administration to help four factory homebuilders build prototype zero energy ready manufactured homes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This case study describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability. Monitoring is expected to continue into 2016.

  14. Optimization of Transient Heat Exchanger Performance for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Wirz, Richard

    2014-11-01

    Heat exchangers are used in a multitude of applications within systems for energy generation, energy conversion, or energy storage. Many of these systems (e.g. solar power plants) function under transient conditions, but the design of the heat exchangers is typically optimized assuming steady state conditions. There is a potential for significant energy savings if the transient behavior of the heat exchanger is taken into account in designing the heat exchanger by optimizing its operating conditions in relation to the transient behavior of the overall system. The physics of the transient behavior of a heat exchanger needs to be understood to provide design parameters for transient heat exchangers to deliver energy savings. A numerical model was used to determine the optimized mass flow rates thermal properties for a thermal energy storage system. The transient behavior is strongly linked to the dimensionless parameters relating fluid properties, the mass flow rates, and the temperature of the fluids at the inlet of each stream. Smart metals, or advanced heat exchanger surface geometries and methods of construction will be used to meet the three goals mentioned before: 1) energy and cost reduction, 2) size reduction, and 3) optimal performance for all modes of operation.

  15. A New Method for the Performance Analysis of a Concentrating Solar Power Energy Plant Using Remotely Sensed Optical Images

    NASA Astrophysics Data System (ADS)

    Morelli, Marco; Masini, Andrea; Potenza, Marco Alberto Carlo

    2012-11-01

    In the framework of the GMES project FP7-ENDORSE, we developed a new method for the performance analysis of a Concentrating Solar Power (CSP) energy plant. We use a detailed model of a CSP parabolic trough plant and the solar radiation values at ground level derived from satellite imagery. This information, together with in-situ measured air temperature, allows to calculate every 15 minutes the expected power yield of the plant and, comparing it to the actual one measured, readily assess a possible malfunctioning and perform an overall plant performance analysis.Using this method we could monitor in near-real-time the daily behavior of the alternate current produced by the CSP plant and finally, using a temporal integration, obtain the expected daily energy yield by the plant.

  16. Energy and daylight performance of angular selective glazings

    SciTech Connect

    Sullivan, R.; Beltran,; Lee, E.S.; Rubin, M.; Selkowitz, S.E.

    1998-11-01

    This paper presents the results of a study investigating the energy and daylight performance of anisotropic angular selective glazings. The DOE-2.1E energy simulation program was used to determine the annual cooling, lighting and total electricity use, and peak electric demand. RADIANCE, a lighting simulation program, was used to determine daylight illuminance levels and distribution. We simulated a prototypical commercial office building module located in Blythe, California. We chose three hypothetical conventional windows for comparison: a single-pane tinted window, a double-pane low-E window, and a double-pane spectrally selective window. Daylighting controls were used. No interior shades were modeled in order to isolate the energy effects of the angular selective glazing. Our results show that the energy performance of the prototype angular selective windows is about the same as conventional windows for a 9.14 m (30 ft) deep south-facing perimeter zone with a large-area window in the hot, sunny climate of Blythe. It is theoretically possible to tune the angular selectivity of the glazing to achieve annual cooling energy reductions of 18%, total electricity use reductions of 15%, and peak electric demand reductions of 11% when compared to a conventional glazing with the same solar-optical properties at normal incidence. Angular selective glazings can provide more uniformly distributed daylight, particularly in the area next to the window, which will result in a more visually comfortable work environment.

  17. Boehmite Actual Waste Dissolutions Studies

    SciTech Connect

    Snow, Lanee A.; Lumetta, Gregg J.; Fiskum, Sandra K.; Peterson, Reid A.

    2008-07-15

    The U.S. Department of Energy plans to vitrify approximately 60,000 metric tons of high-level waste (HLW) sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of HLW requiring treatment, a goal has been set to remove a significant quantity of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum is found in the form of gibbsite, sodium aluminate and boehmite. Gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic. Boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. Samples were taken from four Hanford tanks and homogenized in order to give a sample that is representative of REDOX (Reduction Oxidation process for Pu recovery) sludge solids. Bench scale testing was performed on the homogenized waste to study the dissolution of boehmite. Dissolution was studied at three different hydroxide concentrations, with each concentration being run at three different temperatures. Samples were taken periodically over the 170 hour runs in order to determine leaching kinetics. Results of the dissolution studies and implications for the proposed processing of these wastes will be discussed.

  18. BigHorn Home Improvement Center Energy Performance: Preprint

    SciTech Connect

    Deru, M.; Pless, S.; Torcellini, P.

    2006-04-01

    This is one of the nation's first commercial building projects to integrate extensive high-performance design into a retail space. The extensive use of natural light, combined with energy-efficient electrical lighting design, provides good illumination and excellent energy savings. The reduced lighting loads, management of solar gains, and cool climate allow natural ventilation to meet the cooling loads. A hydronic radiant floor system, gas-fired radiant heaters, and a transpired solar collector deliver heat. An 8.9-kW roof-integrated photovoltaic (PV) system offsets a portion of the electricity.

  19. Methods of performing downhole operations using orbital vibrator energy sources

    DOEpatents

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  20. Interim performance criteria for photovoltaic energy systems. [Glossary included

    SciTech Connect

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  1. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    SciTech Connect

    2010-06-25

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency proj

  2. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    SciTech Connect

    2010-06-25

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project.

  3. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    SciTech Connect

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof; Chen, Yixing; Piette, Mary Ann

    2015-05-01

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct

  4. Influence of energy drink ingredients on mood and cognitive performance.

    PubMed

    Childs, Emma

    2014-10-01

    Sales of energy products have grown enormously in recent years. Manufacturers claim that the products, in the form of drinks, shots, supplements, and gels, enhance physical and cognitive performance, while users believe the products promote concentration, alertness, and fun. Most of these products contain caffeine, a mild psychostimulant, as their foremost active ingredient. However, they also contain additional ingredients, e.g., carbohydrates, amino acids, herbal extracts, vitamins, and minerals, often in unspecified amounts and labeled as an "energy blend." It is not clear whether these additional ingredients provide any physical or cognitive enhancement beyond that provided by caffeine alone. This article reviews the available empirical data on the interactive effects of these ingredients and caffeine on sleep and cognitive performance and suggests objectives for future study. PMID:25293543

  5. Building integrated semi-transparent photovoltaics: energy and daylighting performance

    NASA Astrophysics Data System (ADS)

    Kapsis, Konstantinos; Athienitis, Andreas K.

    2011-08-01

    This paper focuses on modeling and evaluation of semi-transparent photovoltaic technologies integrated into a coolingdominated office building façade by employing the concept of three-section façade. An energy simulation model is developed, using building simulation software, to investigate the effect of semi-transparent photovoltaic transmittance on the energy performance of an office in a typical office building in Montreal. The analysis is performed for five major façade orientations and two façade configurations. Using semi-transparent photovoltaic integrated into the office façade, electricity savings of up to 53.1% can be achieved compared to a typical office equipped with double glazing with Argon filling and a low emissivity coating, and lighting controlled based on occupancy and daylight levels.e.c

  6. Energy harvesting performance of piezoelectric ceramic and polymer nanowires

    NASA Astrophysics Data System (ADS)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-01

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  7. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.

    PubMed

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-28

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  8. Speed Scaling for Energy and Performance with Instantaneous Parallelism

    NASA Astrophysics Data System (ADS)

    Sun, Hongyang; He, Yuxiong; Hsu, Wen-Jing

    We consider energy-performance tradeoff for scheduling parallel jobs on multiprocessors using dynamic speed scaling. The objective is to minimize the sum of energy consumption and certain performance metric, including makespan and total flow time. We focus on designing algorithms that are aware of the jobs' instantaneous parallelism but not their characteristics in the future. For total flow time plus energy, it is known that any algorithm that does not rely on instantaneous parallelism is Ω(ln 1/α P)-competitive, where P is the total number of processors. In this paper, we demonstrate the benefits of knowing instantaneous parallelism by presenting an O(1)-competitive algorithm. In the case of makespan plus energy, which is considered in the literature for the first time, we present an O(ln 1 - 1/α P)-competitive algorithm for batched jobs consisting of fully-parallel and sequential phases. We show that this algorithm is asymptotically optimal by providing a matching lower bound.

  9. Modeling Windows in Energy Plus with Simple Performance Indices

    SciTech Connect

    Arasteh, Dariush; Kohler, Christian; Griffith, Brent

    2009-10-12

    The building energy simulation program, Energy Plus (E+), cannot use standard window performance indices (U, SHGC, VT) to model window energy impacts. Rather, E+ uses more accurate methods which require a physical description of the window. E+ needs to be able to accept U and SHGC indices as window descriptors because, often, these are all that is known about a window and because building codes, standards, and voluntary programs are developed using these terms. This paper outlines a procedure, developed for E+, which will allow it to use standard window performance indices to model window energy impacts. In this 'Block' model, a given U, SHGC, VT are mapped to the properties of a fictitious 'layer' in E+. For thermal conductance calculations, the 'Block' functions as a single solid layer. For solar optical calculations, the model begins by defining a solar transmittance (Ts) at normal incidence based on the SHGC. For properties at non-normal incidence angles, the 'Block' takes on the angular properties of multiple glazing layers; the number and type of layers defined by the U and SHGC. While this procedure is specific to E+, parts of it may have applicability to other window/building simulation programs.

  10. Vintage-level energy and environmental performance of manufacturing establishments

    SciTech Connect

    Boyd, G.A.; Bock, M.J.; Neifer, M.J.; Karlson, S.H.; Ross, M.H.

    1994-05-01

    This report examines the relationship between an industrial plant`s vintage and its energy and environmental performance. Basic questions related to defining vintage and measuring the effects of the manufacturing industry`s vintage distribution of plant-level capacity and energy intensity are explored in general for six energy-intensive sectors (paper, chlorine, nitrogenous fertilizer, aluminum, steel, and cement) at the four-digit standard industrial classification (SIC) level and in detail for two sectors (steel and cement). Results show that greenfield (i.e., newly opened) plants in the paper, steel, and cement industries exhibit low fossil fuel intensities. These results are consistent with expectations. New plants in the paper and steel industries, where processes are undergoing electrification, exhibit high electricity intensities. An analysis of a subsector of the steel industry -- minimills that use scrap-based, electric arc furnaces -- reveals a decline in electricity intensity of 6.2 kilowatt-hours per ton for each newer year of installed vintage. This estimate is consistent with those of engineering studies and raises confidence that analyses of vintage effects in other industries could be conducted. When a vintage measure is assigned on the basis of investment data rather than trade association data, the vintage/performance relationship results for the cement industry are reasonably robust; thus, the analysis of vintage and performance could be extended to sectors for which only US Bureau of the Census data are available.

  11. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    SciTech Connect

    Belzer, D.; Mosey, G.; Plympton, P.; Dagher, L.

    2007-07-01

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest National Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.

  12. Development of a frequency regulation duty-cycle for standardized energy storage performance testing

    DOE PAGESBeta

    Rosewater, David; Ferreira, Summer

    2016-05-25

    The US DOE Protocol for uniformly measuring and expressing the performance of energy storage systems, first developed in 2012 through inclusive working group activities, provides standardized methodologies for evaluating an energy storage system’s ability to supply specific services to electrical grids. This article elaborates on the data and decisions behind the duty-cycle used for frequency regulation in this protocol. Analysis of a year of publicly available frequency regulation control signal data from a utility was considered in developing the representative signal for this use case. Moreover, this showed that signal standard deviation can be used as a metric for aggressivenessmore » or rigor. From these data, we select representative 2 h long signals that exhibit nearly all of dynamics of actual usage under two distinct regimens, one for average use and the other for highly aggressive use. Our results were combined into a 24-h duty-cycle comprised of average and aggressive segments. The benefits and drawbacks of the selected duty-cycle are discussed along with its potential implications to the energy storage industry.« less

  13. Regression analysis to predict growth performance from dietary net energy in growing-finishing pigs.

    PubMed

    Nitikanchana, S; Dritz, S S; Tokach, M D; DeRouchey, J M; Goodband, R D; White, B J

    2015-06-01

    Data from 41 trials with multiple energy levels (285 observations) were used in a meta-analysis to predict growth performance based on dietary NE concentration. Nutrient and energy concentrations in all diets were estimated using the NRC ingredient library. Predictor variables examined for best fit models using Akaike information criteria included linear and quadratic terms of NE, BW, CP, standardized ileal digestible (SID) Lys, crude fiber, NDF, ADF, fat, ash, and their interactions. The initial best fit models included interactions between NE and CP or SID Lys. After removal of the observations that fed SID Lys below the suggested requirement, these terms were no longer significant. Including dietary fat in the model with NE and BW significantly improved the G:F prediction model, indicating that NE may underestimate the influence of fat on G:F. The meta-analysis indicated that, as long as diets are adequate for other nutrients (i.e., Lys), dietary NE is adequate to predict changes in ADG across different dietary ingredients and conditions. The analysis indicates that ADG increases with increasing dietary NE and BW but decreases when BW is above 87 kg. The G:F ratio improves with increasing dietary NE and fat but decreases with increasing BW. The regression equations were then evaluated by comparing the actual and predicted performance of 543 finishing pigs in 2 trials fed 5 dietary treatments, included 3 different levels of NE by adding wheat middlings, soybean hulls, dried distillers grains with solubles (DDGS; 8 to 9% oil), or choice white grease (CWG) to a corn-soybean meal-based diet. Diets were 1) 30% DDGS, 20% wheat middlings, and 4 to 5% soybean hulls (low energy); 2) 20% wheat middlings and 4 to 5% soybean hulls (low energy); 3) a corn-soybean meal diet (medium energy); 4) diet 2 supplemented with 3.7% CWG to equalize the NE level to diet 3 (medium energy); and 5) a corn-soybean meal diet with 3.7% CWG (high energy). Only small differences were observed

  14. Investigation of beamed-energy ERH thruster performance

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.; Strayer, T. Darton; Bossard, John A.; Richard, Jacques C.; Gallimore, Alec D.

    1986-01-01

    The objective of this study was to determine the performance of an External Radiation Heated (ERH) thruster. In this thruster, high intensity laser energy is focused to ignite either a Laser Supported Combustion (LSC) wave or a Laser Supported Detonation (LSD) wave. Thrust is generated as the LSC or LSD wave propagates over the thruster's surface, or in the proposed thruster configuration, the vehicle afterbody. Thrust models for the LSC and LSD waves were developed and simulated on a computer. Performance parameters investigated include the effect of laser intensity, flight Mach number, and altitude on mean-thrust and coupling coefficient of the ERH thruster. Results from these models suggest that the ERH thruster using LSC/LSD wave ignition could provide propulsion performance considerably greater than any propulsion system currently available.

  15. Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Jang, Sung-Soo; Kim, Sung-Hoon; Lee, Sang-Ryool; Choi, Jaeho

    2010-09-01

    The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

  16. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  17. District Heating Systems Performance Analyses. Heat Energy Tariff

    NASA Astrophysics Data System (ADS)

    Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.

  18. Analysis of latency performance of bluetooth low energy (BLE) networks.

    PubMed

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2015-01-01

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes. PMID:25545266

  19. Analysis of Latency Performance of Bluetooth Low Energy (BLE) Networks

    PubMed Central

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2015-01-01

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes. PMID:25545266

  20. MEASURING AND EXPRESSING THE PERFORMANCE OF ENERGY STORAGE SYSTEMS

    SciTech Connect

    Schoenwald, David; Conover, David R.

    2013-12-03

    Until late 2012, there was no uniform methodology to measure and express the performance of energy storage systems (ESS). A void in this area can affect the acceptance of ESS in the marketplace because different systems cannot be equitably compared and ESS cost-benefit analysis may be challenging due to a lack of verified and relevant ESS performance. The lack of such criteria also furthers the probability that each ESS customer or user will make up their own; necessitating “custom validation” to a unique set of criteria each time an ESS is to be considered or installed. To address this need and foster the acceptance of ESS, the U.S. Department of Energy’s (DOE) Energy Storage Systems Program facilitated the development of a protocol to measure and express ESS performance and is supporting its updating, enhancement and use in formal consensus standards development. Of particular interest is the development of the document through an open and transparent process that saved considerable time.

  1. MHD Energy Bypass Scramjet Performance with Real Gas Effects

    NASA Technical Reports Server (NTRS)

    Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.

    2000-01-01

    The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.

  2. Measuring Performance of Energy-Dispersive X-ray Systems.

    PubMed

    Statham

    1998-11-01

    : As Si(Li) detector technology has matured, many of the fundamental problems have been addressed in the competition among manufacturers and there is now an expectation, implied by many textbooks, that all energy-dispersive X-ray (EDX) detectors are made and will perform in the same way. Although there has been some convergence in Si(Li) systems and these are still the most common, manufacturing recipes still differ and there are many alternative EDX devices, such as microcalorimeters and room temperature detectors, that have both advantages and disadvantages over Si(Li). Rather than emphasizing differences in technologies, performance measures should reveal benefits relevant to the intended application. The instrument is inevitably going to be a "black box" of integrated components; this article reviews some of the methods that have been applied and introduces some new techniques that can be used to assess performance without resorting to complex software or sophisticated mathematical algorithms. Sensitivity, resolution, artefacts, and stability are discussed with particular application to compositional analysis using electron beam excitation of X-rays in the 100-eV to 10-keV energy region. PMID:10087283

  3. Development of EnergyPlus Utility to Batch Simulate Building Energy Performance on a National Scale

    SciTech Connect

    Valencia, Jayson F.; Dirks, James A.

    2008-08-29

    EnergyPlus is a simulation program that requires a large number of details to fully define and model a building. Hundreds or even thousands of lines in a text file are needed to run the EnergyPlus simulation depending on the size of the building. To manually create these files is a time consuming process that would not be practical when trying to create input files for thousands of buildings needed to simulate national building energy performance. To streamline the process needed to create the input files for EnergyPlus, two methods were created to work in conjunction with the National Renewable Energy Laboratory (NREL) Preprocessor; this reduced the hundreds of inputs needed to define a building in EnergyPlus to a small set of high-level parameters. The first method uses Java routines to perform all of the preprocessing on a Windows machine while the second method carries out all of the preprocessing on the Linux cluster by using an in-house built utility called Generalized Parametrics (GPARM). A comma delimited (CSV) input file is created to define the high-level parameters for any number of buildings. Each method then takes this CSV file and uses the data entered for each parameter to populate an extensible markup language (XML) file used by the NREL Preprocessor to automatically prepare EnergyPlus input data files (idf) using automatic building routines and macro templates. Using a Linux utility called “make”, the idf files can then be automatically run through the Linux cluster and the desired data from each building can be aggregated into one table to be analyzed. Creating a large number of EnergyPlus input files results in the ability to batch simulate building energy performance and scale the result to national energy consumption estimates.

  4. Analysis Methods for Post Occupancy Evaluation of Energy-Use in High Performance Buildings Using Short-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Singh, Vipul

    2011-12-01

    The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of 'green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility

  5. Composite materials for thermal energy storage: enhancing performance through microstructures.

    PubMed

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  6. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    SciTech Connect

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training

  7. Smith Newton Vehicle Performance Evaluation – Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect

    2015-04-29

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles.

  8. Testing two temporal upscaling schemes for the estimation of the time variability of the actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.

    2015-10-01

    Temporal availability of grapes actual evapotranspiration is an emerging issue since vineyards farms are more and more converted from rainfed to irrigated agricultural systems. The manuscript aims to verify the accuracy of the actual evapotranspiration retrieval coupling a single source energy balance approach and two different temporal upscaling schemes. The first scheme tests the temporal upscaling of the main input variables, namely the NDVI, albedo and LST; the second scheme tests the temporal upscaling of the energy balance output, the actual evapotranspiration. The temporal upscaling schemes were implemented on: i) airborne remote sensing data acquired monthly during a whole irrigation season over a Sicilian vineyard; ii) low resolution MODIS products released daily or weekly; iii) meteorological data acquired by standard gauge stations. Daily MODIS LST products (MOD11A1) were disaggregated using the DisTrad model, 8-days black and white sky albedo products (MCD43A) allowed modeling the total albedo, and 8-days NDVI products (MOD13Q1) were modeled using the Fisher approach. Results were validated both in time and space. The temporal validation was carried out using the actual evapotranspiration measured in situ using data collected by a flux tower through the eddy covariance technique. The spatial validation involved airborne images acquired at different times from June to September 2008. Results aim to test whether the upscaling of the energy balance input or output data performed better.

  9. Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem

    NASA Technical Reports Server (NTRS)

    Moore, D. M.

    1984-01-01

    The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.

  10. High-Performance Permanent Magnets for Energy-Efficient Devices

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George

    2012-02-01

    Permanent magnets (PMs) are indispensable for many commercial applications including the electric, electronic and automobile industries, communications, information technologies and automatic control engineering. In most of these applications, an increase in the magnetic energy density of the PM, usually presented via the maximum energy product (BH)max, immediately increases the efficiency of the whole device and makes it smaller and lighter. Worldwide demand for high performance permanent magnets has increased dramatically in the past few years driven by hybrid and electric cars, wind turbines and other power generation systems. New energy challenges in the world require devices with higher energy efficiency and minimum environmental impact. The potential of 3d-4f compounds which revolutionized the PM science and technology is almost fully utilized, and the supply of 4f rare earth elements does not seem to be much longer assured. This talk will address the major principles guiding the development of PMs and overview state-of-the-art theoretical and experimental research. Recent progress in the development of nanocomposite PMs, consisting of a fine (at the scale of the magnetic exchange length) mixture of phases with high magnetization and large magnetic hardness will be discussed. Fabrication of such PMs is currently the most promising way to boost the (BH)max, while simultaneously decreasing, at least partially, the reliance on the rare earth elements. Special attention will be paid to the impact which the next-generation high-(BH)max magnets is expected to have on existing and proposed energy-saving technologies.

  11. From Energy Audits to Home Performance: 30 Years of Articles in Home Energy Magazine

    SciTech Connect

    Meier, Alan

    2014-08-11

    Home Energy Magazine has been publishing articles about residential energy efficiency for 30 years. Its goal has been to disseminate technically reliable and neutral information to the practitioners, that is, professionals in the business of home energy efficiency. The articles, editorials, letters, and advertisements are a kind of window on the evolution of energy conservation technologies, policies, and organizations. Initially, the focus was on audits and simple retrofits, such as weatherstripping and insulation. Instrumentation was sparse sometimes limited to a ruler to measure depth of attic insulation and a blower door was exotic. CFLs were heavy, awkward bulbs which might, or might not, fit in a fixture. Saving air conditioning energy was not a priority. Solar energy was only for the most adventurous. Thirty years on, the technologies and business have moved beyond just insulating attics to the larger challenge of delivering home performance and achieving zero net energy. This shift reflects the success in reducing space heating energy and the need to create a profitable industry by providing more services. The leading edge of the residential energy services market is becoming much more sophisticated, offering both efficiency and solar systems. The challenge is to continue providing relevant and reliable information in a transformed industry and a revolutionized media landscape.

  12. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  13. Effect of electrode configurations on piezoelectric vibration energy harvesting performance

    NASA Astrophysics Data System (ADS)

    Kim, Miso; Dugundji, John; Wardle, Brian L.

    2015-04-01

    Piezoelectric vibration energy harvesting is an attractive technology for self-powered wireless sensor networks because of the potential to deliver power to the sensor nodes from mechanical vibration sources in the surrounding medium. Systematic device designs are required in order to increase performance along with materials development of high piezoelectric coefficients and design of circuits with high power transfer efficiency. In this work, we present refined structural and electrical modeling of interdigitated electrodes (IDEs) for piezoelectric vibration energy harvesting, followed by parametric case studies on MEMS devices. Differences in geometric parameters including the size of the electrode and the number of IDE fingers for given device dimensions lead to substantial changes in harvesting performance such as capacitance, system coupling, voltage and power. When compared with parallel plate electrodes, use of IDEs results in much higher voltage generation by a factor of ten times while similar power levels are observed for both {3-1} and {3-3} configurations at optimal electrical loading conditions.

  14. Securing Gender Equality through a Nexus of Energy Policy Performance and Relative Political Performance

    NASA Astrophysics Data System (ADS)

    Perkins-Ozuagiemhe, Andrea Christen

    This dissertation presents what is believed to be the first empirical study that measures the effect of increasing access to modern household energy sources upon advancing gender equality within developing countries. As a powerful and fundamental public infrastructural socio-economic building block, improved access to modern energy in developing countries delivers the necessary economic ingredient of time as a major component of household production and consumption and captures the interdependence between market and household economies. Thus, because it has been empirically proven that men and women differ in their utilization of household energy with women spending more time engaged in non-market household labor than men, improving access to modern household energy in developing countries, especially in rural areas, theoretically would disproportionately affect women's lives. Essentially, the element of "time" not only extends the day for women to use towards more economically and educationally productive activities, but also lessens the burden of domestic chores from women with technological advancements in more time-efficient household appliances and cleaner modern energy sources. This dissertation introduces gender differentiation in a model in the form of a gender relative status composite measure comparing socio-economic achievements in secondary education, life expectancy, and labor force participation rates by varying degree of demographic transition, thereby, measuring the effect of improved access to modern household energy upon overall gender equality. Fixed effects panel regressions employing a Driscoll-Kraay non-parametric covariance matrix, and estimated and interpreted adjusted predictions and marginal effects of the two-way interaction between a country's available access to residential electric power (kWh per capita) and the level of relative political performance against predicted values of gender relative status are employed. The models confirm

  15. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    SciTech Connect

    Not Available

    2013-12-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.

  16. Energy efficient mechanisms for high-performance Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Alsaify, Baha'adnan

    2009-12-01

    Due to recent advances in microelectronics, the development of low cost, small, and energy efficient devices became possible. Those advances led to the birth of the Wireless Sensor Networks (WSNs). WSNs consist of a large set of sensor nodes equipped with communication capabilities, scattered in the area to monitor. Researchers focus on several aspects of WSNs. Such aspects include the quality of service the WSNs provide (data delivery delay, accuracy of data, etc...), the scalability of the network to contain thousands of sensor nodes (the terms node and sensor node are being used interchangeably), the robustness of the network (allowing the network to work even if a certain percentage of nodes fails), and making the energy consumption in the network as low as possible to prolong the network's lifetime. In this thesis, we present an approach that can be applied to the sensing devices that are scattered in an area for Sensor Networks. This work will use the well-known approach of using a awaking scheduling to extend the network's lifespan. We designed a scheduling algorithm that will reduce the delay's upper bound the reported data will experience, while at the same time keeps the advantages that are offered by the use of the awaking scheduling -- the energy consumption reduction which will lead to the increase in the network's lifetime. The wakeup scheduling is based on the location of the node relative to its neighbors and its distance from the Base Station (the terms Base Station and sink are being used interchangeably). We apply the proposed method to a set of simulated nodes using the "ONE Simulator". We test the performance of this approach with three other approaches -- Direct Routing technique, the well known LEACH algorithm, and a multi-parent scheduling algorithm. We demonstrate a good improvement on the network's quality of service and a reduction of the consumed energy.

  17. [Actuality with the breast implants].

    PubMed

    Duchateau, J

    2013-09-01

    The author presents the history of breast implants, and the modern evolution where breast implants are largely used in both cosmetic and reconstructive surgery. Breast augmentation is one of the most performed cosmetic procedures, with a high satisfaction rate. However, one needs to remind that breast implants have a limited duration of life. The estimated rate of breast implant rupture after 10 years is of 10% in the current literature, This rate will probably become lower with the new more cohesive implants recently available on the market. It is therefore essential to propose a regular follow-up to all patients having breast implants. This follow-up is performed using a combination of physical examination, mammograms, ultrasound and MRI. The more specific therapeutic approach for patients having a PIP prosthesis will also be discussed. PMID:24195240

  18. Energy and visual comfort performance of electrochromic windowswith overhangs

    SciTech Connect

    Lee, E.S.; Tavil, A.

    2005-11-03

    DOE-2 building energy simulations were conducted to determine if there were practical architectural and control strategy solutions that would enable electrochromic (EC) windows to significantly improve visual comfort without eroding energy-efficiency benefits. EC windows were combined with overhangs since opaque overhangs provide protection from direct sun which EC windows are unable to do alone. The window wall was divided into an upper and lower aperture so that various combinations of overhang position and control strategies could be considered. The overhang was positioned either at the top of the upper window aperture or between the upper and lower apertures. Overhang depth was varied. EC control strategies were fully bleached at all times, modulated based on incident vertical solar radiation limits, or modulated to meet the design work plane illuminance with daylight. The EC performance was compared to a state-of-the-art spectrally selective low-e window with the same divided window wall, window size, and overhang as the EC configuration. The reference window was also combined with an interior shade which was manually deployed to control glare and direct sun. Both systems had the same daylighting control system to dim the electric lighting. Results were given for south-facing private offices in a typical commercial building. In hot and cold climates such as Houston and Chicago, EC windows with overhangs can significantly reduce the average annual daylight glare index (DGI) and deliver significant annual energy use savings if the window area is large. Total primary annual energy use was increased by 2-5% for moderate-area windows in either climate but decreased by 10% in Chicago and 5% in Houston for large-area windows. Peak electric demand can be reduced by 7-8% for moderate-area windows and by 14-16% for large-area windows in either climate. Energy and peak demand reductions can be significantly greater if the reference case does not have exterior shading or

  19. Altitude control performance of a natural energy driven stratospheric aerostat

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Wang, Chao; Wang, Lei; Ma, Rong; Lu, Xiaochen; Yao, Wei

    2015-12-01

    The superheating induced overpressure is one of the key obstacles for long-endurance station-keeping of stratospheric aerostats. A novel stratospheric aerostat by utilizing the natural energy is presented and discussed in this paper. A thermo-mechanical dynamic model is established to analyze the altitude control performance of this novel aerostat. The simulation results show that the novel stratospheric aerostat can ascend to a high altitude about 25.8 km due to the combined heating effects of the solar radiation, the Earth albedo and the infrared radiation from the Earth's surface and keeps at an altitude about 22 km by the infrared radiation from the Earth's surface. In addition, the aerostat can be controlled within the desired altitude range by the simple open/close valve control strategy.

  20. Power/energy use cases for high performance computing.

    SciTech Connect

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  1. Predicting the Drop Performance of Solder Joints by Evaluating the Elastic Strain Energy from High-Speed Ball Pull Tests

    NASA Astrophysics Data System (ADS)

    You, Taehoon; Kim, Yunsung; Kim, Jina; Lee, Jaehong; Jung, Byungwook; Moon, Jungtak; Choe, Heeman

    2009-03-01

    Despite being expensive and time consuming, board-level drop testing has been widely used to assess the drop or impact resistance of the solder joints in handheld microelectronic devices, such as cellphones and personal digital assistants (PDAs). In this study, a new test method, which is much simpler and quicker, is proposed. The method involves evaluating the elastic strain energy and relating it to the impact resistance of the solder joint by considering the Young’s modulus of the bulk solder and the fracture stress of the solder joint during a ball pull test at high strain rates. The results show that solder joints can be ranked in order of descending elastic strain energy as follows: Sn-37Pb, Sn-1Ag-0.5Cu, Sn-3Ag-0.5Cu, and Sn-4Ag-0.5Cu. This order is consistent with the actual drop performances of the samples.

  2. Realizing High-Performance Buildings; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-02

    High-performance buildings (HPBs) are exceptional examples of both design and practice. Their energy footprints are small, and these are buildings that people want to work in because of their intelligent structure, operations, and coincident comfort. However, the operation of most buildings, even ones that are properly constructed and commissioned at the start, can deviate significantly from the original design intent over time, particularly due to control system overrides and growing plug and data center loads. With early planning for systems such as submetering and occupant engagement tools, operators can identify and remedy the problems. This guide is a primer for owners and owners’ representatives who are pursuing HPBs. It describes processes that have been successful in the planning, procurement, and operation of HPBs with exceptional energy efficiency. Much of the guidance offered results from a series of semi-structured conference calls with a technical advisory group of 15 owners and operators of prominent HPBs in the United States. The guide provides a prescription for planning, achieving, and maintaining an HPB. Although the guide focuses on the operations stage of buildings, many of the operations practices are specified during the planning stage.

  3. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provided in 10 CFR part 436, subpart B; at http://www1.eere.energy.gov/femp/financing/espcs_regulations... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205...

  4. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provided in 10 CFR part 436, subpart B; at http://www1.eere.energy.gov/femp/financing/espcs_regulations... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205...

  5. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... provided in 10 CFR part 436, subpart B; at http://www1.eere.energy.gov/femp/financing/espcs_regulations... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205...

  6. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings... savings that result. (2) Except as provided in 10 CFR 436.34, ESPC's are subject to subpart 17.1. (c)...

  7. Smith Newton Vehicle Performance Evaluation – Gen 2 – Cumulative; Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  8. Window performance and building energy use: Some technical options for increasing energy efficiency

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    1985-11-01

    Window system design and operation has a major impact on energy use in buildings as well as on occupants' thermal and visual comfort. Window performance will be a function of optical and thermal properties, window management strategies, climate and orientation, and building type and occupancy. In residences, heat loss control is a primary concern, followed by sun control in more southerly climates. In commercial buildings, the daylight provided by windows may be the major energy benefits but solar gain must be controlled so that increased cooling loads do not exceed daylighting savings. Reductions in peak electrical demand and HVAC system size may also be possible in well-designed daylighted buildings.

  9. Smith Newton Vehicle Performance Evaluation – Cumulative; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  10. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    SciTech Connect

    Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

    2013-09-01

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

  11. Solar energy system performance evaluation: A seasonal report for SEMCO, Macon, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system for heating water in a single-family residence for a family of four is described. The system operation, the operating energy, energy savings, maintenance, and performance are analyzed.

  12. Impact of regenerative braking on battery performance and energy cost in electric vehicles in urban driving patterns

    SciTech Connect

    Hornstra, F.; Christianson, C.; Cannon, P.; Fredrickson, D.; Swoboda, C.; Webster, C.; Yao, N.P.

    1981-01-01

    Studies on the effects of regenerative braking on battery performance indicate that an electric vehicle designed to return an important fraction of its kinetic energy to the battery during deceleration and braking can significantly extend the range of the electric vehicle. Achieving the equivalent range in a vehicle without regenerative braking would require a battery having a higher energy density. The battery itself exhibits an effective energy recovery capability. This capability provides that energy, which would otherwise be irreversibly lost to heat and wear of the vehicle brakes, can be efficiently recovered by the battery, stored, and made available for subsequent use. Consequently, the net energy required from the battery per mile of vehicle travel is reduced, as is the energy required at the wall plug to charge the battery. Therefore, for a given vehicle range, the actual depth-of-discharge to which the battery is subjected is less with regenerative braking, and an increase in battery cycle life should result. Data are presented to support these observations on improved lead-acid, nickel/iron and nickel/zinc batteries being developed by private industry under DOE contracts managed by Argonne National Laboratory.

  13. 48 CFR 570.117-1 - Federal leadership in environmental, energy, and economic performance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROPERTY General 570.117-1 Federal leadership in environmental, energy, and economic performance. In order to create a clean energy economy that will increase our Nation's prosperity, promote energy security... environmental, energy, and economic performance. 570.117-1 Section 570.117-1 Federal Acquisition...

  14. 48 CFR 570.117-1 - Federal leadership in environmental, energy, and economic performance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROPERTY General 570.117-1 Federal leadership in environmental, energy, and economic performance. In order to create a clean energy economy that will increase our Nation's prosperity, promote energy security... environmental, energy, and economic performance. 570.117-1 Section 570.117-1 Federal Acquisition...

  15. 48 CFR 570.117-1 - Federal leadership in environmental, energy, and economic performance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROPERTY General 570.117-1 Federal leadership in environmental, energy, and economic performance. In order to create a clean energy economy that will increase our Nation's prosperity, promote energy security... environmental, energy, and economic performance. 570.117-1 Section 570.117-1 Federal Acquisition...

  16. 48 CFR 570.117-1 - Federal leadership in environmental, energy, and economic performance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROPERTY General 570.117-1 Federal leadership in environmental, energy, and economic performance. In order to create a clean energy economy that will increase our Nation's prosperity, promote energy security... environmental, energy, and economic performance. 570.117-1 Section 570.117-1 Federal Acquisition...

  17. 76 FR 33329 - Energy Performance Contracting-Request for Comments on Proposed Guidance and Policy Clarifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... URBAN DEVELOPMENT Energy Performance Contracting--Request for Comments on Proposed Guidance and Policy... forthcoming guidance on the Energy Performance Contracting (EPC) program. HUD will consider all comments as it updates its guidebook entitled ``Energy Performance Contracting for Public and Indian Housing''...

  18. Comparison of simulated and actual wind shear radar data products

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  19. Visual and energy performance of switchable windows with antireflection coatings

    SciTech Connect

    Jonsson, Andreas; Roos, Arne

    2010-08-15

    The aim of this project was to investigate how the visual appearance and energy performance of switchable or smart windows can be improved by using antireflective coatings. For this study clear float glass, low-e glass and electrochromic glass were treated with antireflection (AR) coatings. Such a coating considerably increases the transmittance of solar radiation in general and the visible transmittance in particular. For switchable glazing based on absorptive electrochromic layers in their dark state it is necessary to use a low-emissivity coating on the inner pane of a double glazed window in order to reject the absorbed heat. In principle all surfaces can be coated with AR coatings, and it was shown that a thin AR coating on the low-e surface neither influences the thermal emissivity nor the U-value of the glazing. The study showed that the use of AR coatings in switchable glazing significantly increases the light transmittance in the transparent state. It is believed that this is important for a high level of user acceptance of such windows. (author)

  20. Energy deposition via magnetoplasmadynamic acceleration: II. modeling and performance predictions

    NASA Astrophysics Data System (ADS)

    Mikellides, P. G.; England, B.; Gilland, J. H.

    2009-02-01

    A time-dependent, two-dimensional, axisymmetric magnetohydrodynamics code is employed to model, validate and extend the experimentally-limited performance characteristics of a gigawatt-level plasma source that utilized magnetoplasmadynamic (MPD) acceleration for gas energy deposition. Accurate modeling required an upgrade of the code's circuit routines to properly capture the pulse-forming-network current waveform which also serves as the primary variable for validation. Comparisons with experimentally deduced current waveforms were in good agreement for all power levels. The simulations also produced values for the plasma voltage which were compared with the measured voltage across the electrodes. The trend agreement was encouraging while the magnitude of the discrepancy is approximately constant and interpreted as a representation of the electrode fall voltage. Force computations captured the expected electromagnetic acceleration trends and serve as further verification. They also allow examination of the device as a very high power MPD thruster operating at power levels in excess of 180 MW. The computations offer insights into the plasma's characteristics at different power levels through two-dimensional distributions of pertinent parameters and identify design guidelines for effective stagnation temperature values as a function of the mass-flow rate.

  1. Measuring market performance in restructured electricity markets: An empirical analysis of the PJM energy market

    NASA Astrophysics Data System (ADS)

    Tucker, Russell Jay

    2002-09-01

    Today the electric industry in the U.S. is transitioning to competitive markets for wholesale electricity. Independent system operators (ISOs) now manage broad regional markets for electrical energy in several areas of the U.S. A recent rulemaking by the Federal Energy Regulatory Commission (FERC) encourages the development of regional transmission organizations (RTOs) and restructured competitive wholesale electricity markets nationwide. To date, the transition to competitive wholesale markets has not been easy. The increased reliance on market forces coupled with unusually high electricity demand for some periods have created conditions amenable to market power abuse in many regions throughout the U.S. In the summer of 1999, hot and humid summer conditions in Pennsylvania, New Jersey, Maryland, Delaware, and the District of Columbia pushed peak demand in the PJM Interconnection to record levels. These demand conditions coincided with the introduction of market-based pricing in the wholesale electricity market. Prices for electricity increased on average by 55 percent, and reached the $1,000/MWh range. This study examines the extent to which generator market power raised prices above competitive levels in the PJM Interconnection during the summer of 1999. It simulates hourly market-clearing prices assuming competitive market behavior and compares these prices with observed market prices in computing price markups over the April 1-August 31, 1999 period. The results of the simulation analysis are supported with an examination of actual generator bid data of incumbent generators. Price markups averaged 14.7 percent above expected marginal cost over the 5-month period for all non-transmission-constrained hours. The evidence presented suggests that the June and July monthly markups were strongly influenced by generator market power as price inelastic peak demand approached the electricity generation capacity constraint of the market. While this analysis of the

  2. Navistar eStar Vehicle Performance Evaluation - Cumulative; Energy Efficiency & Renewable Energy (EERE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. This cumulative report covers the project from initiation through the second quarter of 2013.

  3. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  4. A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.

    SciTech Connect

    Less, Brennan; Walker, Iain

    2014-08-01

    The current state of Deep Energy Retrofit (DER) performance in the U.S. has been assessed in 116 homes in the United States, using actual and simulated data gathered from the available domestic literature. Substantial airtightness reductions averaging 63% (n=48) were reported (two- to three-times more than in conventional retrofits), with average post-retrofit airtightness of 4.7 Air Changes per House at 50 Pascal (ACH50) (n=94). Yet, mechanical ventilation was not installed consistently. In order to avoid indoor air quality (IAQ) issues, all future DERs should comply with ASHRAE 62.2-2013 requirements or equivalent. Projects generally achieved good energy results, with average annual net-site and net-source energy savings of 47%±20% and 45%±24% (n=57 and n=35), respectively, and carbon emission reductions of 47%±22% (n=23). Net-energy reductions did not vary reliably with house age, airtightness, or reported project costs, but pre-retrofit energy usage was correlated with total reductions (MMBtu).

  5. Energy Savings Performance Contracts (ESPC): Frequently Asked Questions

    SciTech Connect

    2012-11-01

    An ESPC is a working relationship between a Federal agency and an energy service company (ESCO). The ESCO conducts a comprehensive energy audit for the Federal facility and identifies improvements to save energy. The following sections present a number of frequently asked questions from ESPC end-users and stakeholders.

  6. Optimizing lighting, thermal performance, and energy production of building facades by using automated blinds and PV cells

    NASA Astrophysics Data System (ADS)

    Alzoubi, Hussain Hendi

    Energy consumption in buildings has recently become a major concern for environmental designers. Within this field, daylighting and solar energy design are attractive strategies for saving energy. This study seeks the integrity and the optimality of building envelopes' performance. It focuses on the transparent parts of building facades, specifically, the windows and their shading devices. It suggests a new automated method of utilizing solar energy while keeping optimal solutions for indoor daylighting. The method utilizes a statistical approach to produce mathematical equations based on physical experimentation. A full-scale mock-up representing an actual office was built. Heat gain and lighting levels were measured empirically and correlated with blind angles. Computational methods were used to estimate the power production from photovoltaic cells. Mathematical formulas were derived from the results of the experiments; these formulas were utilized to construct curves as well as mathematical equations for the purpose of optimization. The mathematical equations resulting from the optimization process were coded using Java programming language to enable future users to deal with generic locations of buildings with a broader context of various climatic conditions. For the purpose of optimization by automation under different climatic conditions, a blind control system was developed based on the findings of this study. This system calibrates the blind angles instantaneously based upon the sun position, the indoor daylight, and the power production from the photovoltaic cells. The functions of this system guarantee full control of the projected solar energy on buildings' facades for indoor lighting and heat gain. In winter, the system automatically blows heat into the space, whereas it expels heat from the space during the summer season. The study showed that the optimality of building facades' performance is achievable for integrated thermal, energy, and lighting

  7. Moral Reasoning in Hypothetical and Actual Situations.

    ERIC Educational Resources Information Center

    Sumprer, Gerard F.; Butter, Eliot J.

    1978-01-01

    Results of this investigation suggest that moral reasoning of college students, when assessed using the DIT format, is the same whether the dilemmas involve hypothetical or actual situations. Subjects, when presented with hypothetical situations, become deeply immersed in them and respond as if they were actual participants. (Author/BEF)

  8. Factors Related to Self-Actualization.

    ERIC Educational Resources Information Center

    Hogan, H. Wayne; McWilliams, Jettie M.

    1978-01-01

    Provides data to further support the notions that females score higher in self-actualization measures and that self-actualization scores correlate inversely to the degree of undesirability individuals assign to their heights and weights. Finds that, contrary to predictions, greater androgyny was related to lower, not higher, self-actualization…

  9. Methodology for Modeling Building Energy Performance across the Commercial Sector

    SciTech Connect

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  10. Energy budgets and masonry houses: a preliminary analysis of the comparative energy performance of masonry and wood-frame houses

    SciTech Connect

    Goldstein, D.B.; Levine, M.D.; Mass, J.

    1980-09-01

    Energy Performance Standards require the establishment of energy budgets - maximum values of predicted building energy consumption assuming standard building operating conditions. Energy budgets based on minimizing life-cycle-costs to consumers have been computed in earlier reports. The prototype buildings for those studies used wood-frame construction. The energy performance of masonry houses is explored. Theoretical aspects of the modelling of masonry buildings on the DOE-2 program are discussed. Results of DOE-2 simulations are presented. Energy budgets which correspond to cost-minimizing masonry houses are found to be approximately equal to those for frame houses. The same energy performance requires only slightly less insulation in masonry walls than in frame walls for the climates studied. It is concluded that separate energy budgets for frame and masonry houses do not appear to be warranted.

  11. A Flawed Argument Against Actual Infinity in Physics

    NASA Astrophysics Data System (ADS)

    Perez Laraudogoitia, Jon

    2010-12-01

    In “Nonconservation of Energy and loss of Determinism II. Colliding with an Open Set” (2010) Atkinson and Johnson argue in favour of the idea that an actual infinity should be excluded from physics, at least in the sense that physical systems involving an actual infinity of component elements should not be admitted. In this paper I show that the argument Atkinson and Johnson use is erroneous and that an analysis of the situation considered by them is possible without requiring any type of rejection of the idea of infinity.

  12. Covariant energy density functionals: The assessment of global performance across the nuclear landscape

    SciTech Connect

    Afanasjev, A. V.

    2015-10-15

    The assessment of the global performance of the state-of-the-art covariant energy density functionals and related theoretical uncertainties in the description of ground state observables has recently been performed. Based on these results, the correlations between global description of binding energies and nuclear matter properties of covariant energy density functionals have been studied in this contribution.

  13. The use of energy management and control systems to monitor the energy performance of commercial buildings

    SciTech Connect

    Heinemeier, K E

    1994-12-01

    Monitored data play a very important part in the implementation and evaluation of energy conservation technologies and programs. However, these data can be expensive to collect, so there is a need for lower-cost alternatives. In many situations, using the computerized Energy Management and Control Systems (EMCSs)--already installed in many buildings--to collect these commercial building performance data has advantages over more conventional methods. This method provides data without installing incremental hardware, and the large amounts of available operational data can be a very rich resource for understanding building performance. This dissertation addresses several of these issues. One specific objective is to describe a monitoring-project planning process that includes definition of objectives, constraints, resources and approaches for the monitoring. The choice of tools is an important part of this process. The dissertation goes on to demonstrate, through eight case studies, that EMCS monitoring is possible, and to identify and categorize the problems and issues that can be encountered. These issues lead to the creation, use, and testing of a set of methods for evaluation of EMCS monitoring, in the form of guidelines. Finally, EMCS monitoring is demonstrated and compared with conventional monitoring more methodically in a detailed case study.

  14. High energy-density liquid rocket fuel performance

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse and propellant density specific impulse.

  15. High energy-density liquid rocket fuel performance

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse, and propellant density specific impulse.

  16. Performances of JEM-EUSO: energy and X max reconstruction

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    The Extreme Universe Space Observatory (EUSO) on-board the Japanese Experimental Module (JEM) of the International Space Station aims at the detection of ultra high energy cosmic rays from space. The mission consists of a UV telescope which will detect the fluorescence light emitted by cosmic ray showers in the atmosphere. The mission, currently developed by a large international collaboration, is designed to be launched within this decade. In this article, we present the reconstruction of the energy of the observed events and we also address the X max reconstruction. After discussing the algorithms developed for the energy and X max reconstruction, we present several estimates of the energy resolution, as a function of the incident angle, and energy of the event. Similarly, estimates of the X max resolution for various conditions are presented.

  17. Improving building energy system performance by continuous commissioning

    SciTech Connect

    Liu, M.

    1999-10-01

    Commissioning has played an important role in improved building comfort and reduced energy consumption. This article presents an advanced form of commissioning for existing buildings, called continuous commissioning (CC), which has produced energy savings comparable to those produced by the traditional audit/retrofit process at a third of the cost. It has also increased operating staff skills, reduced maintenance costs, and improved building comfort--extras which are not provided by usual retrofit programs. This article will present the philosophy, process, cost, and savings. Continuous commissioning is a process developed by the Energy Systems Laboratory (ESL) to: (1) optimize the operation of existing systems to improve building comfort and reduce building energy cost; (2) solve existing comfort and IAQ problems; (3) guarantee continuous optimal operation by operational staff in future years; and (4) provide optimal energy retrofit suggestions to owners to minimize the project costs.

  18. Energy Resources Performance Report, FY 1991 and FY 1992.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-07-01

    Once the Federal Columbia River Power System provided all the power our customers needed and surplus energy, which we sold to others. However, we planned for the time when the surplus would disappear. With our customers, we developed centralized, region-wide conservation programs to conserve energy and build the knowledge and ability to save more energy when needed. We began to look at conservation as a resource, comparing it with supply-side alternatives. Much was accomplished. In Bonneville`s service area in the 1980s, our customers acquired 300 average megawatts (aMW) of conservation savings. How? By weatherizing about 240,000 homes, by making aluminum plants, other industrial plants and commercial buildings more efficient, and also by encouraging states to adopt energy-efficient building codes. Now, our energy surplus is gone. Our customers need energy, and in a hurry. While we plan how much energy will be needed, when and by which customers, we must concurrently accelerate our efforts to acquire resources. Our 1990 Resource Program launched a strategy to do just that, starting in 1991 and 1992, with continuing activities in 1993--1995. The goals and plans of the 1990 Resource Program are still being implemented.

  19. Examination of implementation strategies for the Building Energy Performance Standards

    SciTech Connect

    Reilly, Lawrence J.

    1980-03-01

    Since the passage of the Energy Conservation Standards for New Buildings Act, research has been concentrated in two distinct areas. The first area of research has involved developing the energy budget standards for different building types and climatic conditions, and refining computer programs which will be needed to evaluate the energy consumption of proposed building designs. The second major area of research has been related to developing plans for implementing these standards once they are developed. The approaches taken in each of these two areas and the problems that were encountered are described and the proposed standards are briefly examined.

  20. ESPC Overview. Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts

    SciTech Connect

    Tetreault, T.; Regenthal, S.

    2011-05-01

    This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

  1. Preliminary Performance Evaluation of a Near Zero Energy Home in Callaway, Florida

    SciTech Connect

    Martin, Eric; Parker, Danny; Sherwin, John; Colon, Carlos

    2009-02-20

    This case study reports on a near zero energy home in Callaway, FL. This paper briefly reviews the design and then focuses on the first four months of energy performance during the second half of 2008.

  2. ESPC Overview: Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts

    SciTech Connect

    Tetreault, T.; Regenthal, S.

    2011-05-01

    This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

  3. Performance profiles of major energy producers 1995, January 1997

    SciTech Connect

    1997-02-01

    This publication examines developments in the operations of the major U.S. energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area.

  4. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect

    Not Available

    2005-04-01

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  5. PERFORMANCE LIMITATIONS IN HIGH-ENERGY ION COLLIDERS

    SciTech Connect

    FISCHER, W.

    2005-05-16

    High-energy ion colliders (hadron colliders operating with ions other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams limits are set by space charge, charge exchange, and intrabeam scattering effects. The latter leads to luminosity lifetimes of only a few hours for intense heavy ions beams. Currently, the Relativistic Heavy Ion Collider (RHIC) at BNL is the only operating high-energy ion collider. Later this decade the Large Hadron Collider (LHC), under construction at CERN, will also run with heavy ions.

  6. Experimental philosophy of actual and counterfactual free will intuitions.

    PubMed

    Feltz, Adam

    2015-11-01

    Five experiments suggested that everyday free will and moral responsibility judgments about some hypothetical thought examples differed from free will and moral responsibility judgments about the actual world. Experiment 1 (N=106) showed that free will intuitions about the actual world measured by the FAD-Plus poorly predicted free will intuitions about a hypothetical person performing a determined action (r=.13). Experiments 2-5 replicated this result and found the relations between actual free will judgments and free will judgments about hypothetical determined or fated actions (rs=.22-.35) were much smaller than the differences between them (ηp(2)=.2-.55). These results put some pressure on theoretical accounts of everyday intuitions about freedom and moral responsibility. PMID:26126174

  7. Project on restaurant energy performance: end-use monitoring and analysis. Appendixes I and II

    SciTech Connect

    Claar, C.N.; Mazzucchi, R.P.; Heidell, J.A.

    1985-05-01

    This is the second volume of the report, ''The Porject on Restaurant Energy Performance - End-Use Monitoring and Analysis''. The first volume (PNL-5462) contains a summary and analysis of the metered energy performance data collected by the Project on Restaurant Energy Performance (PREP). Appendix I, presented here, contains monitoring site descriptions, measurement plans, and data summaries for the seven restaurants metered for PREP. Appendix II, also in this volume, is a description of the PREP computer system.

  8. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    SciTech Connect

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  9. Assessing the Costs and Benefits of the Superior Energy Performance Program

    SciTech Connect

    Therkelsen, Peter; McKane, Aimee; Sabouini, Ridah; Evans, Tracy

    2013-07-01

    Industrial companies are seeking to manage energy consumption and costs, mitigate risks associated with energy, and introduce transparency into reports of their energy performance achievements. Forty industrial facilities are participating in the U.S. DOE supported Superior Energy Performance (SEP) program in which facilities implement an energy management system based on the ISO 50001 standard, and pursue third-party verification of their energy performance improvements. SEP certification provides industrial facilities recognition for implementing a consistent, rigorous, internationally recognized business process for continually improving energy performance and achievement of established energy performance improvement targets. This paper focuses on the business value of SEP and ISO 50001, providing an assessment of the costs and benefits associated with SEP implementation at nine SEP-certified facilities across a variety of industrial sectors. These cost-benefit analyses are part of the U.S. DOE?s contribution to the Global Superior Energy Performance (GSEP) partnership, a multi-country effort to demonstrate, using facility data, that energy management system implementation enables companies to improve their energy performance with a greater return on investment than business-as-usual (BAU) activity. To examine the business value of SEP certification, interviews were conducted with SEP-certified facilities. The costs of implementing the SEP program, including internal facility staff time, are described and a marginal payback of SEP certification has been determined. Additionally, more qualitative factors with regard to the business value and challenges related to SEP and ISO 50001 implementation are summarized.

  10. The Influence of Early Protein Energy Malnutrition on Subsequent Behavior and Intellectual Performance.

    ERIC Educational Resources Information Center

    Gupta, Sarita

    1990-01-01

    Protein-energy malnutrition in early childhood, as seen in many developing countries, influences subsequent behavior and intellectual performance. These impairments are associated with further reduction in fine motor skills and academic performance. (Author)

  11. Performance analysis of TCP traffic and its influence on ONU's energy saving in energy efficient TDM-PON

    NASA Astrophysics Data System (ADS)

    Alaelddin, Fuad Yousif Mohammed; Newaz, S. H. Shah; Lee, Joohyung; Uddin, Mohammad Rakib; Lee, Gyu Myoung; Choi, Jun Kyun

    2015-12-01

    The majority of the traffic over the Internet is TCP based, which is very sensitive to packet loss and delay. Existing research efforts in TDM-Passive Optical Networks (TDM-PONs) mostly evaluate energy saving and traffic delay performances under different energy saving solutions. However, to the best of our knowledge, how energy saving mechanisms could affect TCP traffic performance in TDM-PONs has hardly been studied. In this paper, by means of our state-of-art OPNET Modular based TDM-PON simulator, we evaluate TCP traffic delay, throughput, and Optical Network Unit (ONU) energy consumption performances in a TDM-PON where energy saving mechanisms are employed in ONUs. Here, we study the performances under commonly used energy saving mechanisms defined in standards for TDM-PONs: cyclic sleep and doze mode. In cyclic sleep mode, we evaluate the performances under two well-known sleep interval length deciding algorithms (i.e. fixed sleep interval (FSI) and exponential sleep interval deciding (ESID)) that an OLT uses to decide sleep interval lengths for an ONU. Findings in this paper put forward the strong relationship among TCP traffic delay, throughput and ONU energy consumption under different sleep interval lengths. Moreover, we reveal that under high TCP traffic, both FSI and ESID will end up showing similar delay, energy and throughput performance. Our findings also show that doze mode can offer better TCP throughput and delay performance at the price of consuming more energy than cyclic sleep mode. In addition, our results provide a glimpse on understanding at what point doze mode becomes futile in improving energy saving of an ONU under TCP traffic. Furthermore, in this paper, we highlight important research issues that should be studied in future research to maximize energy saving in TDM-PONs while meeting traffic Quality of Service requirements.

  12. Alkali metal/halide thermal energy storage systems performance evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1986-01-01

    A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.

  13. Energy Efficient Engine: Control system component performance report

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Bennett, G. W.

    1984-01-01

    An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.

  14. Energy prices and short-run economic performance

    SciTech Connect

    Tatom, J.A.

    1981-01-01

    Mr. Tatom observes that increasing energy prices since late 1978 are responsible for lower output and productivity, general inflation, tight investment capital, consumer spending cuts, and unemployment. He examines the magnitude of these changes empirically, using a reduced-form model to determine growth in gross national product (GNP) by linking money-stock growth to economic activity. After energy price effects are assessed, the estimates imply that there was no significant shift in this linkage after 1978. The simulation appears to provide explanations for economic developments that are consistent with those made for the periods before 1978. 21 references, 5 tables. (DCK)

  15. Surface effects on the energy-generating performance of piezoelectric circular nanomembrane energy harvesters under pressure loading

    NASA Astrophysics Data System (ADS)

    Wang, K. F.; Wang, B. L.

    2014-10-01

    The influence of surface effects on the energy-generating performance of piezoelectric circular nanomembrane energy harvesters under blood pressure is studied. The effects of surface elasticity, surface piezoelectricity, residual surface stress and geometry nonlinear strain are incorporated in the present model. An approximated closed-form solution for the electrical energy of the nanomembrane is derived by using the energy method. Results show that positive surface elasticity and residual surface stress reduce the electrical energy and the surface piezoelectricity effect increases the electrical energy. The influence of surface effect on the energy-generating performance of piezoelectric circular membranes is more significant for a membrane with a small thickness and a large radius-to-thickness ratio.

  16. Campus Energy Model for Control and Performance Validation

    2014-09-19

    The core of the modeling platform is an extensible block library for the MATLAB/Simulink software suite. The platform enables true co-simulation (interaction at each simulation time step) with NREL's state-of-the-art modeling tools and other energy modeling software.

  17. Research of performance prediction to energy on hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Quan, H.; Li, R. N.; Li, Q. F.; Han, W.; Su, Q. M.

    2012-11-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  18. Energy performance standards for new buildings: economic analysis

    SciTech Connect

    Not Available

    1980-01-01

    This assessment determines the major economic impacts of the implementation of the standards on affected groups, and evaluates the effectiveness of the standards as an investment in energy conservation. The analyses examine the impacts on individual owners, construction industry, and the Nation. Chapter 2, Summary, briefly displays the results of the analysis. Chapter 3, Approach, describes the methodology used to evaluate the standards for the various building types and perspectives. The basis and structure for evaluating the standards' impacts on occupants and the Nation are described. Chapter 4, Building Microeconomics, evaluates the net economic effects of changes in building cost and energy use for three categories of buildings: single family residential, commercial and multifamily residential, and mobile homes. Chapter 5, Primary National Impacts, develops forecasts of energy savings and national costs and benefits both with and without implementation of the standards. Chapter 6, Impacts on Selected Building Industries, estimates changes in labor and material use in building construction and assesses the importance of these changes. Chapter 7, Net National Impacts, assesses the effects of changes in energy consumption and construction of new buildings on the national economy, including such factors as national income, investment, employment, and balance of trade. Details of models and data bases used in the analysis are included in Appendixes A through I. (MCW)

  19. Enhanced performance of joint cooling and energy production

    NASA Astrophysics Data System (ADS)

    Entin-Wohlman, O.; Imry, Y.; Aharony, A.

    2015-02-01

    The efficiencies and coefficients of performance of three-terminal devices, comprising two electronic terminals and a thermal one (e.g., a boson bath), are discussed. In particular, two procedures are analyzed. (a) One of the electronic terminals is cooled by investing thermal power (from the thermal bath) and electric power (from voltage applied across the electronic junction); (b) the invested thermal power from the boson bath is exploited to cool one electronic terminal and to produce electric power. Rather surprisingly, the coefficient of performance of (b) can be enhanced as compared to that of (a).

  20. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  1. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    SciTech Connect

    Wang, Na

    2013-03-13

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  2. Thermal Performance Benchmarking; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Moreno, Gilbert

    2015-06-09

    This project proposes to seek out the SOA power electronics and motor technologies to thermally benchmark their performance. The benchmarking will focus on the thermal aspects of the system. System metrics including the junction-to-coolant thermal resistance and the parasitic power consumption (i.e., coolant flow rates and pressure drop performance) of the heat exchanger will be measured. The type of heat exchanger (i.e., channel flow, brazed, folded-fin) and any enhancement features (i.e., enhanced surfaces) will be identified and evaluated to understand their effect on performance. Additionally, the thermal resistance/conductivity of the power module’s passive stack and motor’s laminations and copper winding bundles will also be measured. The research conducted will allow insight into the various cooling strategies to understand which heat exchangers are most effective in terms of thermal performance and efficiency. Modeling analysis and fluid-flow visualization may also be carried out to better understand the heat transfer and fluid dynamics of the systems.

  3. Corrosion performance of iron aluminides in fossil energy environments

    SciTech Connect

    Natesan, K.

    1997-12-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification and combustion is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S or SO{sub 2} and chlorine as HCl. This paper presents a comprehensive review of the current status of the corrosion performance of alumina scales that are thermally grown on Fe-base alloys, including iron aluminides, in multicomponent gas environments of typical coal-conversion systems. Mechanisms of scale development/breakdown, performance envelopes for long-term usage of these materials, approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics, and in-service experience with these materials are emphasized. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the electrospark deposition process or by weld overlay techniques.

  4. Energy Design Guidelines for High Performance Schools: Temperate and Humid Climates.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  5. Energy Design Guidelines for High Performance Schools: Cool and Humid Climates.

    ERIC Educational Resources Information Center

    National Renewable Energy Lab. (DOE), Golden, CO.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  6. Energy Design Guidelines for High Performance Schools: Temperate and Mixed Climates.

    ERIC Educational Resources Information Center

    National Renewable Energy Lab. (DOE), Golden, CO.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  7. Energy Design Guidelines for High Performance Schools: Cool and Dry Climates.

    ERIC Educational Resources Information Center

    National Renewable Energy Lab. (DOE), Golden, CO.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  8. Energy Design Guidelines for High Performance Schools: Hot and Humid Climates.

    ERIC Educational Resources Information Center

    National Renewable Energy Lab. (DOE), Golden, CO.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  9. Energy Design Guidelines for High Performance Schools: Cold and Humid Climates.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    The U.S. Department of Energy's EnergySmart Schools provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. The design guidelines presented in this document outline high performance principles for the new or…

  10. U.S. Department of Energy FY 1994 and 1995 annual performance report

    SciTech Connect

    1996-12-31

    This is the Department of Energy`s first Annual Performance Report. The topics of the report include a new era for the US DOE, sustainable energy, science and technology, national security--reducing the global nuclear danger, environmental quality, economic productivity through a competitive economy and the critical success factors--assessing the way the US DOE does business.

  11. Meeting the Challenge: Providing High-Quality School Environments through Energy Performance Contracting.

    ERIC Educational Resources Information Center

    Birr, David

    2000-01-01

    Energy performance contracting allows schools to pay for needed new energy equipment and modernization improvements with savings from reduced utility and maintenance costs. Improved energy efficiency reduces demand for burning fossil fuels, which reduces air pollution, leading to improved learning environments and budgets (through improved average…

  12. Radiant Energy Power Source for Jet Aircraft. Final performance report

    SciTech Connect

    Doellner, O.L.

    1992-02-01

    This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

  13. Environmental Performance Report 2014. NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Rukavina, Frank; Myers, Lissa; Elmore, Adrienne; Ruckman, Kathryn; Gray, Lori; Margason, Laura; Jorgensen, Lisa; Smith, Robert; Sweeney, Robin

    2015-08-01

    The purpose of this report is to ensure that the U.S. Department of Energy (DOE) and the public receive timely, accurate information about events that have affected or could adversely affect the health, safety, and security of the public or workers, the environment, or the operations of DOE facilities. This report meets the DOE requirements of the Annual Site Environmental Report and has been prepared in accordance with the DOE Order 231.1B Chg 1, Environment, Safety and Health Reporting.

  14. Performance Results from a Cold Climate Case Study for Affordable Zero Energy Homes: Preprint

    SciTech Connect

    Norton, P.; Christensen, C.

    2007-11-01

    The design of this 1280 square foot, 3-bedroom Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, a photovoltaic system, and passive and active solar thermal features to exceed the net zero energy goal. In January 2006, a data acquisition system was installed in the home to monitor its performance over the course of a year. This paper presents full year of energy performance data on the home.

  15. A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.

    SciTech Connect

    Less, Brennan; Walker, Iain

    2014-03-01

    The current state of Deep Energy Retrofit (DER) performance in the U.S. has been assessed in 116 homes in the United States (US), using actual and simulated data gathered from the available domestic literature. Substantial airtightness reductions averaging 63% (n=48) were reported (two- to three-times more than in conventional retrofits), with average post-retrofit airtightness of 4.7 Air Changes per House at 50 Pascal (ACH50) (n=94). Yet, mechanical ventilation was not installed consistently. In order to avoid indoor air quality (IAQ) issues, all future DERs should comply with ASHRAE 62.2-2013 requirements or equivalent. Projects generally achieved good energy results, with average annual net-site and net-source energy savings of 47%±20% and 45%±24% (n=57 and n=35), respectively, and carbon emission reductions of 47%±22% (n=23). Net-energy reductions did not vary reliably with house age, airtightness, or reported project costs, but pre-retrofit energy usage was correlated with total reductions (MMBtu). Annual energy costs were reduced $1,283±$804 (n=31), from a pre-retrofit average of $2,738±$1,065 to $1,588±$561 post-retrofit (n=25 and n=39). The average reported incremental project cost was $40,420±$30,358 (n=59). When financed on a 30-year term, the median change in net-homeownership cost was only $1.00 per month, ranging from $149 in savings to an increase of $212 (mean=$15.67±$87.74; n=28), and almost half of the projects resulted in reductions in net-cost. The economic value of a DER may be much greater than is suggested by these net-costs, because DERs entail substantial non-energy benefits (NEBs), and retrofit measures may add value to a home at resale similarly to general remodeling, PV panel installation, and green/energy efficient home labels. These results provide estimates of the potential of DERs to address energy use in existing homes across climate zones that can be used in future estimates of the technical potential to reduce household

  16. Solar energy system performance evaluation. Crown Realty 1, Lakewood, Colorado, December 1981 through March 1982

    NASA Astrophysics Data System (ADS)

    Welch, K. M.

    The Crown Realty 1 site is a small office building in Colorado. Its active solar space heating system is equipped with 907 square feet of liquid flat-plate collectors, 2500-gallon water storage tank, and several solar-assisted heat pumps with electric resistance strip auxiliary heating. Solar system performance data given include the solar fraction solar savings ratio, conventional fuel savings, system performance factor and coefficient of performance. Although the solar fraction was 29%, the solar savings ratio reflects a 9% penalty due to operating energy expense. Monthly system performance data are tabulated, as well as performance data for each subsystem - the collector, storage, and space heating subsystems. Monthly solar operating energy, energy savings, and weather conditions data are also tabulated. Typical system operation data are also graphed and discussed, as is solar energy utilization. Among the appendices are a system description, performance evaluation techniques, typical monthly data, long-term weather data, and a brief discussion of the sensor technology.

  17. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  18. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  19. Humanistic Education and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  20. Children's Rights and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1982-01-01

    Educators need to seriously reflect upon the concept of children's rights. Though the idea of children's rights has been debated numerous times, the idea remains vague and shapeless; however, Maslow's theory of self-actualization can provide the children's rights idea with a needed theoretical framework. (Author)

  1. Culture Studies and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1983-01-01

    True citizenship education is impossible unless students develop the habit of intelligently evaluating cultures. Abraham Maslow's theory of self-actualization, a theory of innate human needs and of human motivation, is a nonethnocentric tool which can be used by teachers and students to help them understand other cultures. (SR)

  2. Group Counseling for Self-Actualization.

    ERIC Educational Resources Information Center

    Streich, William H.; Keeler, Douglas J.

    Self-concept, creativity, growth orientation, an integrated value system, and receptiveness to new experiences are considered to be crucial variables to the self-actualization process. A regular, year-long group counseling program was conducted with 85 randomly selected gifted secondary students in the Farmington, Connecticut Public Schools. A…

  3. Racial Discrimination in Occupations: Perceived and Actual.

    ERIC Educational Resources Information Center

    Turner, Castellano B.; Turner, Barbara F.

    The relationship between the actual representation of Blacks in certain occupations and individual perceptions of the occupational opportunity structure were examined. A scale which rated the degree of perceived discrimination against Blacks in 21 occupations was administered to 75 black male, 70 black female, 1,429 white male and 1,457 white…

  4. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  5. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    SciTech Connect

    Laali, A.R.; Meyer, J.L.; Bellot, C.; Louche, A.

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  6. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  7. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  8. Performance analysis of the Jersey City Total Energy Site

    NASA Astrophysics Data System (ADS)

    Hurley, C. W.; Ryan, J. D.; Phillips, C. W.

    1982-08-01

    Engineering, economic, environmental, and reliability data from a 486 - unit apartment/commercial complex was gathered. The complex was designed to recover waste heat from diesel engines to make the central equipment building a total energy (TE) plant. Analysis of the data indicates that a significant savings in fuel is possible by minor modifications in plant procedures. The results of an analysis of the quality of utility services supplied to the consumers on the site and an analysis of a series of environmental tests made the effects of the plant on air quality and noise are included. In general, although those systems utilizing the TE concept showed a significant savings in fuel, such systems do not represent attractive investments compared to conventional systems.

  9. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  10. Web-based remote sensing of building energy performance

    NASA Astrophysics Data System (ADS)

    Martin, William; Nassiopoulos, Alexandre; Le Cam, Vincent; Kuate, Raphaël; Bourquin, Frédéric

    2013-04-01

    The present paper describes the design and the deployment of an instrumentation system enabling the energy monitoring of a building in a smart-grid context. The system is based on a network of wireless low power IPv6 sensors. Ambient temperature and electrical power for heating are measured. The management, storage, visualisation and treatment of the data is done through a web-based application that can be deployed as an online web service. The same web-based framework enables the acquisition of distant measured data such as those coming from a nearby weather station. On-site sensor and weather station data are then adequately treated based on inverse identification methods. The algorithms aim at determining the parameters of a numerical model suitable for a short-time horizon prediction of indoor climate. The model is based on standard multi-zone modelling assumptions and takes into account solar, airflow and conductive transfers. It was specially designed to render accurately inertia effects that are used in a demand-response strategy. All the hardware or software technologies that are used in the system are open and low cost so that they comply with the constraints of on-site deployment in buildings. The measured data as well as the model predictions can be accessed ubiquously through the web. This feature enables to consider a wide range of energy management applications at the disctrict, city or national level. The entire system has been deployed and tested in an experimental office building in Angers, France. It demonstrates the potential of ICT technologies to enable remotely controlled monitoring and surveillance in real time.

  11. Optimizing Performance of a Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Subirats Soler, Monica

    In this thesis, the problem of electricity demand shifting for the cooling needs of a large institution using a thermal energy storage (TES) tank is considered. The system is formed by electric chillers, cooling towers and a TES tank that can store energy for the cooling demand of most days, but not for the hottest ones. The goal is to supply all the cooling needed while minimizing the cost. This is done by shifting the cooling demand to night and early morning hours, when electricity is cheaper and due to lower temperatures, the chillers work more efficiently. This is all done with the help of the TES tank, that acts as a buffer storing chilled water. After a series of assumptions and simplifications, the cost function becomes convex and thus a minimum solution exists. However, from previous work only the chillers were considered, omitting the negative effect that other components of the system, such as cooling towers, had on the overall cost of operation. Using data from the operation of the power plant under real conditions, a method to model the whole system is presented in this thesis. In addition, the algorithm relied on the knowledge of an accurate prediction of the cooling demand, which obviously is not known in advance. A method to predict it starting from a forecasting of the temperature is presented. Finally, the algorithm can be easily modified to allow the imposition constraints that limit the maximum power use of chillers, during specific periods, in response to the overall needs of the micro-grid.

  12. Solar energy system performance evaluation. Seasonal report for Wormser, Columbia, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Wormser Solar Energy System's operational performance from April 1979 through March 1980 was evaluated. The space heating subsystem met 42 percent of the measured space heating load and the hot water subsystem met 23 percent of the measured hot water demand. Net electrical energy savings were 4.36 million Btu's or 1277 kwh. Fossil energy savings will increase considerably if the uncontrolled solar energy input to the building is considered.

  13. Very Low Energy Homes in the United States: Perspectivies on Performance from Measured Data

    SciTech Connect

    Parker, Danny S.

    2008-09-28

    This report describes how Florida Solar Energy Center measured annual performance data from a dozen recent-vintage very low energy homes in North America. Many of the designs combine greater energy efficiency with solar electric photovoltaic power in an attempt to create Zero Energy Homes. Data was also provided from the first home constructed to the German Passivhaus standard in the U.S.

  14. Modelling actual, reference and equilibrium evaporation from a temperate wet grassland

    NASA Astrophysics Data System (ADS)

    Gavin, H.; Agnew, C. A.

    2004-02-01

    Actual and reference evaporation from a wet grassland in Southeast England was studied over the spring and summer of 1999 (March to September) through changes in surface wetness. The Penman-Monteith (using resistance values for reference grass surface), equilibrium evaporation and Priestley-Taylor models were compared with output from the Bowen ratio energy balance (BREB) method. On field visits, inundation of the grazing marsh was mapped and surface soil moisture monitored in a regular grid using a capacitance probe. During the study period, the extent of flooding fell from approximately 10% to 0% and the surface soil moisture declined from over 38% to 15%. Daily averaged Bowen ratios displayed large variation but were below unity, indicating that latent energy flux was the dominant energy sink. The Penman-Monteith and equilibrium evaporation models underestimated during periods of surface inundation and overestimated when no surface water was present. Computed values of the Priestley-Taylor parameter showed daily variability, but was predictable with surface wetness such an average value of = 1.25 characterized periods of inundation, and an average values of = 0.80 represented periods of no surface water. The performance of the models in computing actual evaporation was compared with the BREB using the root-mean-square error and index of agreement. The optimal model was the Priestley-Taylor model.

  15. Energy Design Guidelines for High Performance Schools: Hot and Dry Climates.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    This guide contains recommendations for designing high performance, energy efficient schools located in hot and dry climates. A high performance checklist for designers is included along with several case studies of projects that successfully demonstrated high performance design solutions for hot and dry climates. The guide's 10 sections…

  16. Energy savings estimates and cost benefit calculations for high performance relocatable classrooms

    SciTech Connect

    Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.; Shendell, Derek G.; Fisk, Wlliam J.

    2003-12-01

    This report addresses the results of detailed monitoring completed under Program Element 6 of Lawrence Berkeley National Laboratory's High Performance Commercial Building Systems (HPCBS) PIER program. The purpose of the Energy Simulations and Projected State-Wide Energy Savings project is to develop reasonable energy performance and cost models for high performance relocatable classrooms (RCs) across California climates. A key objective of the energy monitoring was to validate DOE2 simulations for comparison to initial DOE2 performance projections. The validated DOE2 model was then used to develop statewide savings projections by modeling base case and high performance RC operation in the 16 California climate zones. The primary objective of this phase of work was to utilize detailed field monitoring data to modify DOE2 inputs and generate performance projections based on a validated simulation model. Additional objectives include the following: (1) Obtain comparative performance data on base case and high performance HVAC systems to determine how they are operated, how they perform, and how the occupants respond to the advanced systems. This was accomplished by installing both HVAC systems side-by-side (i.e., one per module of a standard two module, 24 ft by 40 ft RC) on the study RCs and switching HVAC operating modes on a weekly basis. (2) Develop projected statewide energy and demand impacts based on the validated DOE2 model. (3) Develop cost effectiveness projections for the high performance HVAC system in the 16 California climate zones.

  17. Evaluation of Model Results and Measured Performance of Net-Zero Energy Homes in Hawaii: Preprint

    SciTech Connect

    Norton, P.; Kiatreungwattana, K.; Kelly, K. J.

    2013-03-01

    The Kaupuni community consists of 19 affordable net-zero energy homes that were built within the Waianae Valley of Oahu, Hawaii in 2011. The project was developed for the native Hawaiian community led by the Department of Hawaiian Homelands. This paper presents a comparison of the modeled and measured energy performance of the homes. Over the first year of occupancy, the community as a whole performed within 1% of the net-zero energy goals. The data show a range of performance from house to house with the majority of the homes consistently near or exceeding net-zero, while a few fall short of the predicted net-zero energy performance. The impact of building floor plan, weather, and cooling set point on this comparison is discussed. The project demonstrates the value of using building energy simulations as a tool to assist the project to achieve energy performance goals. Lessons learned from the energy performance monitoring has had immediate benefits in providing feedback to the homeowners, and will be used to influence future energy efficient designs in Hawaii and other tropical climates.

  18. Solar energy system performance evaluation. Seasonal report for Fern Lansing, Lansing, Michigan

    SciTech Connect

    Not Available

    1980-06-01

    The Solar Energy System was designed by Fern Engineering Company, Bourne, Massachusetts to provide space heating and domestic hot water preheating for a 1300 square foot single-family residence located in Lansing, Michigan. The Solar Energy System consists of a 278 square foot flat-plate air collector subsystem, a three 120-gallon tank storage subsystem, a 40 gallon domestic hot water tank subsystem, a liquid/air heat exchanger, an energy transport module, pumps, controls and heat transfer medium lines. Natural gas provides the auxiliary energy for the space heating (100,000 Btu/h) and hot water (70,000 Btu/h) subsystems. The system is shown schematically and has five modes of operation. Typical system operation, system operating sequence, performance assessment, system performance, subsystems performance (collector array, storage, hot water, space heating), operating energy, energy savings, and maintenance are discussed. A brief summary of all pertinent parameters is presented.

  19. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    SciTech Connect

    Not Available

    2013-02-01

    The U.S. Department of Energy developed the K-12 Advanced Energy Retrofit Guide to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. We emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluation of the most promising retrofit measure for each building type. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings.

  20. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)

    SciTech Connect

    Hendron, B.

    2013-07-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

  1. Summerwood Associates, House M, Old Saybrook, Connecticut: Solar energy system performance evaluation, June 1980-May 1981

    SciTech Connect

    Raymond, M.

    1981-01-01

    Summerwood Associates, House M is a single-family rowhouse residence in Connecticut. The active solar energy system is designed to supply 78% of the space heating and 100% of the hot water loads. It is equipped with 378 square feet of flat plate collectors, a 600-gallon concrete storage tank, and for auxiliary heating, a heat pump and electrical resistance heater. The system and subsystem performance are measured, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Also given are the system operating energy, energy savings, and weather conditions. (LEW)

  2. Simultaneous estimation of precipitation and actual evapotranspiration by lysimeters - Comparison with tipping bucket and eddy covariance

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H. J.; Gebler, S.; Puetz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2014-12-01

    Although precipitation and actual evapotranspiration measurements have a long tradition, accurate estimates of precipitation (P) and actual evapotranspiration (ETa) remain a challenge. Our study compares actual evapotranspiration estimates acquired with the Eddy-Covariance (EC) method and ETa measurements by a set of six redundant weighable lysimeters for a managed grassland site at Rollesbroich (Eifel, Western Germany). The comparison of ETa measured by EC (accounting for energy balance deficit correction) and by lysimeters is hardly reported in literature and gains more insight into the performance of both techniques. The evaluation of ETa estimates by both methods for the year 2012 shows a good agreement with a total difference of ca. 4 %, which is mainly related to variations in grass height at the lysimeters and in the EC footprint. We also used the lysimeter records to estimate precipitation amounts in combination with the AWAT filter algorithm. The estimated precipitation volumes of the lysimeter measurements show significant differences compared to the precipitation data of the Hellman type tipping bucket rain gauge at the test site. For the entire year 2012 the lysimeter measurements exhibit a 16 % higher precipitation amount than the tipping bucket data. With help of an on-site video surveillance system the precipitation data of the lysimeters were investigated in more detail. It was found that the precipitation surplus in lysimeter records in part is related to the detection of rime and dew, which contributes 17 % to the yearly difference between both methods. We concluded that weighable lysimeter data can be used to simultaneously estimate precipitation and actual evapotranspiration in a reliable fashion. Furthermore, lysimeter allow a plausible detection of rime and dew in contrast to standard rain gauges.

  3. Energy Performance Testing of Asetek's RackCDU System at NREL's High Performance Computing Data Center

    SciTech Connect

    Sickinger, D.; Van Geet, O.; Ravenscroft, C.

    2014-11-01

    In this study, we report on the first tests of Asetek's RackCDU direct-to-chip liquid cooling system for servers at NREL's ESIF data center. The system was simple to install on the existing servers and integrated directly into the data center's existing hydronics system. The focus of this study was to explore the total cooling energy savings and potential for waste-heat recovery of this warm-water liquid cooling system. RackCDU captured up to 64% of server heat into the liquid stream at an outlet temperature of 89 degrees F, and 48% at outlet temperatures approaching 100 degrees F. This system was designed to capture heat from the CPUs only, indicating a potential for increased heat capture if memory cooling was included. Reduced temperatures inside the servers caused all fans to reduce power to the lowest possible BIOS setting, indicating further energy savings potential if additional fan control is included. Preliminary studies manually reducing fan speed (and even removing fans) validated this potential savings but could not be optimized for these working servers. The Asetek direct-to-chip liquid cooling system has been in operation with users for 16 months with no necessary maintenance and no leaks.

  4. Laboratory evaluation of fan/filter units' aerodynamic and energy performance

    SciTech Connect

    Xu, Tengfang; Jeng, Ming-Shan

    2004-07-27

    The paper discusses the benefits of having a consistent testing method to characterize aerodynamic and energy performance of FFUs. It presents evaluation methods of laboratory-measured performance of ten relatively new, 1220 mm x 610 mm (or 4 ft x 2 ft) fan-filter units (FFUs), and includes results of a set of relevant metrics such as energy performance indices (EPI) based upon the sample FFUs tested. This paper concludes that there are variations in FFUs' performance, and that using a consistent testing and evaluation method can generate compatible and comparable FFU performance information. The paper also suggests that benefits and opportunities exist for our method of testing FFU energy performance to be integrated in future recommended practices.

  5. The Actual Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The actual Apollo 13 lunar landing mission prime crew from left to right are: Commander, James A. Lovell Jr., Command Module pilot, John L. Swigert Jr.and Lunar Module pilot, Fred W. Haise Jr. The original Command Module pilot for this mission was Thomas 'Ken' Mattingly Jr. but due to exposure to German measles he was replaced by his backup, Command Module pilot, John L. 'Jack' Swigert Jr.

  6. Energy-Discriminative Performance of a Spectral Micro-CT System

    PubMed Central

    He, Peng; Yu, Hengyong; Bennett, James; Ronaldson, Paul; Zainon, Rafidah; Butler, Anthony; Butler, Phil; Wei, Biao; Wang, Ge

    2013-01-01

    Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristic of some known materials to calibrate the detector’s photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT. PMID:24004864

  7. Energy-delay performance of giant spin Hall effect switching for dense magnetic memory

    NASA Astrophysics Data System (ADS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2014-10-01

    We show that the giant spin Hall effect (GSHE) magnetoresistive random access memory (MRAM) can enable better energy delay and voltage performance than MTJ spin torque devices at 10-30 nm scaled nanomagnet dimensions. We propose a dense bit cell composed of a folded electrode to enable scaling to sub-10 nm CMOS. We derive the energy-delay trajectory and energy-delay product of GSHE and MTJ devices with an energy minimum at the magnetic characteristic time. Optimized GSHE devices with PMA can enable low voltage (<0.1 V), scaled dimensions, and fast switching time (100 ps) at an average switching energy approaching 100 aJ/bit.

  8. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    SciTech Connect

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  9. Solar energy system performance evaluation: Seasonal report for Fern Lansing, Lansing, Michigan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar space heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. Solar energy satisfied 15 percent of the total measured load (hot water plus space heating). Net savings were approximately 21 million BTUs.

  10. Predicted versus monitored performance of energy-efficiency measures in new commercial buildings from energy edge

    SciTech Connect

    Piette, M.A.; Nordman, B.; deBuen, O.; Diamond, R.

    1993-08-01

    Energy Edge is a research-oriented demonstration program involving 28 new commercial buildings in the Pacific Northwest. This paper discusses the energy savings and cost-effectiveness of energy-efficiency measures for the first 12 buildings evaluated using simulation models calibrated with measured end-use data. Average energy savings per building from the simulated code baseline building was 19%, less than the 30% target. The most important factor for the lower savings is that many of the installed measures differ from the measures specified in the design predictions. Only one of the first 12 buildings met the project objective of reducing energy use by more than 30% at a cost below the target of 56 mills/kWh (in 1991 dollars). Based on results from the first 12 calibrated simulation models, 29 of the 66 energy-efficiency measures, or 44%, met the levelized cost criterion. Despite the lower energy savings from individual measures, the energy-use intensities of the buildings are lower than other regional comparison data for new buildings. The authors review factors that contribute to the uncertainty regarding measured savings and suggest methods to improve future evaluations.

  11. Austin's Home Performance with Energy Star Program: Making a Compelling Offer to a Financial Institution Partner

    SciTech Connect

    Zimring, Mark

    2011-03-18

    Launched in 2006, over 8,700 residential energy upgrades have been completed through Austin Energy's Home Performance with Energy Star (HPwES) program. The program's lending partner, Velocity Credit Union (VCU) has originated almost 1,800 loans, totaling approximately $12.5 million. Residential energy efficiency loans are typically small, and expensive to originate and service relative to larger financing products. National lenders have been hesitant to deliver attractive loan products to this small, but growing, residential market. In response, energy efficiency programs have found ways to partner with local and regional banks, credit unions, community development finance institutions (CDFIs) and co-ops to deliver energy efficiency financing to homeowners. VCU's experience with the Austin Energy HPwES program highlights the potential benefits of energy efficiency programs to a lending partner.

  12. DOE's Energy Savings Performance Contracts Stretch Budgets in the Bureau of Indian Affairs

    SciTech Connect

    Not Available

    2001-10-01

    The U.S. Department of the Interior's Bureau of Indian Affairs has found a good way to reduce energy costs, replace inefficient lighting and aging building equipment, and install renewable energy systems-all without huge increases in the BIA budget. The agency is doing this by making use of the U.S. Department of Energy's Super Energy Savings Performance Contracts (Super ESPCs) at BIA schools and other facilities throughout the country. This two-page case study describes how one BIA facility-the Sherman Indian School in Riverside, California-is cutting its energy costs with badly needed new lighting and heating and cooling equipment, and installing a new photovoltaic energy system, under a DOE Super ESPC, in which the energy services provider pays up-front costs and is repaid out of the facility's resulting energy cost savings.

  13. Improvements in the energy resolution and high-count-rate performance of bismuth germanate

    SciTech Connect

    Koehler, P.E.; Wender, S.A.; Kapustinsky, J.S.

    1985-01-01

    Several methods for improving the energy resolution of bismuth germanate (BGO) have been investigated. It is shown that some of these methods resulted in a substantial improvement in the energy resolution. In addition, a method to improve the performance of BGO at high counting rates has been systematically studied. The results of this study are presented and discussed.

  14. Using EnergyPlus to Perform Dehumidification Analysis on Building America Homes

    SciTech Connect

    Fang, Xia; Winkler, Jon; Christensen, Dane

    2011-03-01

    This study used EnergyPlus to investigate humidity issues on a typical mid-1990s reference home, a 2006 International Energy Conservation Code home, and a high-performance home in a hot-humid climate; the study confirmed that supplemental dehumidification should be provided to maintain space relative humidity below 60% in a hot-humid climate.

  15. Earth-covered buildings: An exploratory analysis for hazard and energy performance

    NASA Astrophysics Data System (ADS)

    Moreland, F. L.

    1981-11-01

    The performance of earth covered buildings is examined regarding storms, nuclear detonations, earthquakes, fire, nuclear radiation, energy consumption, compatibility with solar energy systems, peak load effects, soil and groundwater effects, air and climate effects, occupant evaluation, and resource management. Potential longterm benefits are assessed, including the areas of economic benefits, community benefits and security benefits.

  16. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  17. Development of an Enhanced Payback Function for the Superior Energy Performance Program

    SciTech Connect

    Therkelsen, Peter; Rao, Prakash; McKane, Aimee; Sabouni, Ridah; Sheihing, Paul

    2015-08-03

    The U.S. DOE Superior Energy Performance (SEP) program provides recognition to industrial and commercial facilities that achieve certification to the ISO 50001 energy management system standard and third party verification of energy performance improvements. Over 50 industrial facilities are participating and 28 facilities have been certified in the SEP program. These facilities find value in the robust, data driven energy performance improvement result that the SEP program delivers. Previous analysis of SEP certified facility data demonstrated the cost effectiveness of SEP and identified internal staff time to be the largest cost component related to SEP implementation and certification. This paper analyzes previously reported and newly collected data of costs and benefits associated with the implementation of an ISO 50001 and SEP certification. By disaggregating “sunk energy management system (EnMS) labor costs”, this analysis results in a more accurate and detailed understanding of the costs and benefits of SEP participation. SEP is shown to significantly improve and sustain energy performance and energy cost savings, resulting in a highly attractive return on investment. To illustrate these results, a payback function has been developed and is presented. On average facilities with annual energy spend greater than $2M can expect to implement SEP with a payback of less than 1.5 years. Finally, this paper also observes and details decreasing facility costs associated with implementing ISO 50001 and certifying to the SEP program, as the program has improved from pilot, to demonstration, to full launch.

  18. Energy performance indicators of wastewater treatment: a field study with 17 Portuguese plants.

    PubMed

    Silva, Catarina; Rosa, Maria João

    2015-01-01

    The energy costs usually represent the second largest part of the running costs of a wastewater treatment plant (WWTP). It is therefore crucial to increase the energy efficiency of these infrastructures and to implement energy management systems, where quantitative performance metrics, such as performance indicators (PIs), play a key role. This paper presents energy PIs which cover the unit energy consumption, production, net use from external sources and costs, and the results used to validate them and derive their reference values. The results of a field study with 17 Portuguese WWTPs (5-year period) were consistent with the results obtained through an international literature survey on the two key parcels of the energy balance--consumption and production. The unit energy consumption showed an overall inverse relation with the volume treated, and the reference values reflect this relation for trickling filters and for activated sludge systems (conventional, with coagulation/filtration (C/F) and with nitrification and C/F). The reference values of electrical energy production were derived from the methane generation potential (converted to electrical energy) and literature data, whereas those of energy net use were obtained by the difference between the energy consumption and production. PMID:26247748

  19. Republic of Korea Reduction of Financing Barriers for Energy Savings Performance Contracts

    SciTech Connect

    Howard, D. L.

    2005-11-01

    This paper discusses the findings developed for strengthening the role of performance contracting in improving energy efficiency in the Republic of Korea. The U.S. Environmental Protection Agency (EPA) sponsored development of this paper by the National Renewable Energy Laboratory (NREL), as a part of the Korean-U.S. Climate Technology Partnerships (CTP) program. The results and recommendations outlined in this paper together with other efforts are designed to assist other countries striving to improve their efficient use of energy.

  20. Methodology, verification, and performance of the continuous-energy nuclear data sensitivity capability in MCNP6

    SciTech Connect

    Kiedrowski, B. C.; Brown, F. B.

    2013-07-01

    A continuous-energy sensitivity coefficient capability has been introduced into MCNP6. The methods for generating energy-resolved and energy-integrated sensitivity profiles are discussed. Results from the verification exercises that were performed are given, and these show that MCNP6 compares favorably with analytic solutions, direct density perturbations, and comparisons to TSUNAMI-3D and MONK. Run-time and memory requirements are assessed for typical applications, and these are shown to be reasonable with modern computing resources. (authors)

  1. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  2. Energy Efficiency Investments in Public Facilities - Developing a Pilot Mechanism for Energy Performance Contracts (EPCs) in Russia

    SciTech Connect

    Evans, Meredydd; Roshchanka, Volha; Parker, Steven A.; Baranovskiy, Aleksandr

    2012-02-01

    : Russian public sector buildings tend to be very inefficient, which creates vast opportunities for savings. This report overviews the latest developments in the Russian legislation related to energy efficiency in the public sector, describes the major challenges the regulations pose, and proposes ways to overcome these challenges. Given Russia’s limited experience with energy performance contracts (EPCs), a pilot project can help test an implementation mechanism. This paper discusses how EPCs and other mechanisms can help harness energy savings opportunities in Russia in general, and thus, can be applicable to any Russian region.

  3. Fuzzy Performance between Surface Fitting and Energy Distribution in Turbulence Runner

    PubMed Central

    Liang, Zhongwei; Liu, Xiaochu; Ye, Bangyan; Brauwer, Richard Kars

    2012-01-01

    Because the application of surface fitting algorithms exerts a considerable fuzzy influence on the mathematical features of kinetic energy distribution, their relation mechanism in different external conditional parameters must be quantitatively analyzed. Through determining the kinetic energy value of each selected representative position coordinate point by calculating kinetic energy parameters, several typical algorithms of complicated surface fitting are applied for constructing microkinetic energy distribution surface models in the objective turbulence runner with those obtained kinetic energy values. On the base of calculating the newly proposed mathematical features, we construct fuzzy evaluation data sequence and present a new three-dimensional fuzzy quantitative evaluation method; then the value change tendencies of kinetic energy distribution surface features can be clearly quantified, and the fuzzy performance mechanism discipline between the performance results of surface fitting algorithms, the spatial features of turbulence kinetic energy distribution surface, and their respective environmental parameter conditions can be quantitatively analyzed in detail, which results in the acquirement of final conclusions concerning the inherent turbulence kinetic energy distribution performance mechanism and its mathematical relation. A further turbulence energy quantitative study can be ensured. PMID:23213287

  4. 2012 ARPA-E Energy Innovation Summit: Profiling Foro Energy: High Power Lasers - Long Distances (Performer Video)

    ScienceCinema

    None Available

    2012-03-21

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video from Foro Energy are Joel Moxley, Founder and CEO, Mark Zediker, Founder and CTO, and Paul Deutch, President and COO. Steven Chu, Secretary of Energy, also appears briefly in this video to praise the accomplishment of a high powered laser that can transmit that power long distances for faster and more powerful drilling of geothermal, oil, and gas wells.

  5. 2012 ARPA-E Energy Innovation Summit: Profiling Foro Energy: High Power Lasers - Long Distances (Performer Video)

    SciTech Connect

    None Available

    2012-02-28

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video from Foro Energy are Joel Moxley, Founder and CEO, Mark Zediker, Founder and CTO, and Paul Deutch, President and COO. Steven Chu, Secretary of Energy, also appears briefly in this video to praise the accomplishment of a high powered laser that can transmit that power long distances for faster and more powerful drilling of geothermal, oil, and gas wells.

  6. Greater Energy Savings through Building Energy Performance Policy: Four Leading Policy and Program Options

    SciTech Connect

    SEE Action Existing Commercial Buildings Working Group

    2014-05-30

    This paper lays out recommendations for linking existing policies and developing new policies, such that their success is based on the real energy savings achieved in buildings. This approach has the potential to affect the entire building lifecycle.

  7. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  8. The Frictional Force with Respect to the Actual Contact Surface

    NASA Technical Reports Server (NTRS)

    Holm, Ragnar

    1944-01-01

    Hardy's statement that the frictional force is largely adhesion, and to a lesser extent, deformation energy is proved by a simple experiment. The actual contact surface of sliding contacts and hence the friction per unit of contact surface was determined in several cases. It was found for contacts in normal atmosphere to be about one-third t-one-half as high as the macroscopic tearing strength of the softest contact link, while contacts annealed in vacuum and then tested, disclosed frictional forces which are greater than the macroscopic strength.

  9. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  10. Geothermal Heat Pump Energy Savings Performance Contract at Fort Polk, LA: Lessons Learned

    SciTech Connect

    Hughes, Patrick; Shonder, John A; Gordon, Richard; Giffin, Tom

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of 4,003 military family housing units have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorecent lights, low-flow shower heads, and attic insulation, were installed. An independent evaluation of the Fort Polk energy savings performance contract was carried out. Findings indicate that the project has resulted in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing, for a typical meteorological year. Peak electrical demand has also been reduced by about 6,761 kW, which is 40.2% of the pre-retrofit peak demand. Natural gas savings are about 260,000 therms per year. In addition, the energy savings performance contract has allowed the Army to effectively cap its future expenditures for family housing HVAC maintenance at about 77% of its previous costs. Given these successful results, the Fort Polk performance contract can provide a model for other contracts in both the public and private sectors. The purpose of this paper is to outline the method by which the contract was engineed and implemented, both from the standpoint of the facility owner (the U.S. Army) and the energy services company that is carrying out the contract. The lessons learned from this experience should be useful to other owners, service companies, and investors in the implementation of future service contracts. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and not to be mistaken for the 'contract' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in the indoor temperature performance criteria, additions of ceiling fans, and other factors.

  11. Measured Field Performance and Energy Savings of Occupancy Sensors: Three Case Studies.

    ERIC Educational Resources Information Center

    Floyd, David B.; Parker, Danny S.; Sherwin, John R.

    A study determined the performance levels, energy savings, and occupant acceptance of occupancy sensors that were installed in a Florida small office building and two elementary schools. Performance data was collected in 15-minute intervals. Aggregate time-of-day lighting load profiles were compared before and after the installation and throughout…

  12. Energy efficient engine core design and performance report. Report, January 1978-December 1982

    SciTech Connect

    Stearns, E.M.

    1982-12-01

    The Energy Efficient Engine (E3) is a NASA program to develop fuel saving technology for future large transport aircraft engines. Testing of the General Electric E3 core showed that the core component performance and core system performance necessary to meet the program goals can be achieved. The E3 core design and test results are described.

  13. The actual citation impact of European oncological research.

    PubMed

    López-Illescas, Carmen; de Moya-Anegón, Félix; Moed, Henk F

    2008-01-01

    This study provides an overview of the research performance of major European countries in the field Oncology, the most important journals in which they published their research articles, and the most important academic institutions publishing them. The analysis was based on Thomson Scientific's Web of Science (WoS) and calculated bibliometric indicators of publication activity and actual citation impact. Studying the time period 2000-2006, it gives an update of earlier studies, but at the same time it expands their methodologies, using a broader definition of the field, calculating indicators of actual citation impact, and analysing new and policy relevant aspects. Findings suggest that the emergence of Asian countries in the field Oncology has displaced European articles more strongly than articles from the USA; that oncologists who have published their articles in important, more general journals or in journals covering other specialties, rather than in their own specialist journals, have generated a relatively high actual citation impact; and that universities from Germany, and--to a lesser extent--those from Italy, the Netherlands, UK, and Sweden, dominate a ranking of European universities based on number of articles in oncology. The outcomes illustrate that different bibliometric methodologies may lead to different outcomes, and that outcomes should be interpreted with care. PMID:18039565

  14. Solar energy system performance evaluation: Summerwood Associates, House G, Old Saybrook, connecticut, June 1980 - May 1981

    NASA Astrophysics Data System (ADS)

    Raymond, M.

    An active solar energy system designed to supply 62% of the space heating and 100% of the hot water is described. It is equipped with flat plate collectors with pyramidal optics reflectors, a 600-gallon concrete storge tank, and an auxiliary system consisting of a dual-source heat pump with electrical resistance heater. The solar fraction of space and water heating was 36%, substantially less than was expected, due to less solar energy being collected than was calculated. The solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance are also given as well as outdoor temperature, heating degree-days, and daily insolation. The performance of the total system and of the collector, storage, hot water and space heating subsystems is analyzed, and the system operating energy, energy savings, and weather conditions are reported. The system is described and the sensors used are discussed.

  15. Increased energy and nutrient intake during training and competition improves elite triathletes' endurance performance.

    PubMed

    Frentsos, J A; Baer, J T

    1997-03-01

    Dietary habits were evaluated in 6 elite triathletes (4 male, 2 female). Analysis of 7-day diet records showed mean daily energy and carbohydrate intake to be insufficient to support estimated requirements. Mean intakes of vitamins and most minerals exceeded the Recommended Dietary Allowances (RDAs) except zinc chromium, which did not meet 66% of recommended amounts. Individualized nutrition intervention using the Diabetic Food Exchange System to support performance during training and competition was provided. To improve dietary intake, subjects consumed fortified nutrition supplements (Reliv, Inc.) before and after daily training. Follow-up 7-day diet records showed that average energy intake and percentage of energy from carbohydrate increased, as did intakes of zinc and chromium. Triathletes' performance in a short course triathlon was improved compared to a similar competition completed prior to the nutrition intervention. Following the intervention, triathletes were able to meet recommended daily energy, macronutrient, and micronutrient intakes and improve endurance performance. PMID:9063765

  16. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.

  17. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect

    Hewes, T.; Peeks, B.

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  18. Relational energy at work: Implications for job engagement and job performance.

    PubMed

    Owens, Bradley P; Baker, Wayne E; Sumpter, Dana McDaniel; Cameron, Kim S

    2016-01-01

    Energy is emerging as a topic of importance to organizations, yet we have little understanding of how energy can be useful at an interpersonal level toward achieving workplace goals. We present the results of 4 studies aimed at developing, validating, and testing the relational energy construct. In Study 1, we report qualitative insights from 64 individuals about the experience and functioning of relational energy in the workplace. Study 2 draws from 3 employee samples to conduct exploratory and confirmatory factor analyses on a measure of relational energy, differentiating relational energy from related constructs. To test the predictive validity of the new relational energy scale, Study 3 comprises data from employees rating the level of relational energy they experienced during interactions with their leaders in a health services context. Results showed that relational energy employees experienced with their leaders at Time 1 predicted job engagement at Time 2 (1 month later), while controlling for the competing construct of perceived social support. Study 4 shows further differentiation of relational energy from leader-member exchange (LMX), replicates the positive relationship between relational energy (Time 1) and job engagement (Time 2), and shows that relational energy is positively associated with employee job performance (Time 3) through the mechanism of job engagement. We discuss the theoretical implications of our findings and highlight areas for future research. PMID:26098165

  19. Performance criteria for dynamic window systems using nanostructured behaviors for energy harvesting and environmental comfort

    NASA Astrophysics Data System (ADS)

    Andow, Brandon C.; Krietemeyer, Bess; Stark, Peter R. H.; Dyson, Anna H.

    2013-04-01

    Contemporary commercial building types continue to incorporate predominantly glazed envelope systems, despite the associated challenges with thermal regulation, visual comfort, and increased energy consumption. The advantage of window systems that could adaptively respond to changes in the environment while meeting variable demands for building energy use and occupant comfort has led to considerable investment towards the advancement of dynamic window technologies. Although these technologies demonstrate cost warranting improvements in building energy performance, they face challenges with visible clarity, color variability and response time. Furthermore, they remain challenged with respect to their ability to adequately control important qualitative criteria for daylighting such as glare and balanced light redistribution within occupied spaces. The material dependent limitations of advanced glazing technologies have initiated a search for new thin film solutions, with new device possibilities emerging across many fields. Idealized window performance has traditionally been defined as the dynamic control of solar transmittance, glare, solar gain and daylighting at any time to manage energy, comfort and view. However, in the context of wider goals towards building energy self-sufficiency through the achievement of on-site net zero energy, emerging material systems point towards other physical phenomena for achieving transparency modulation and energy harvesting, demanding a broader range of criteria for advanced glazing controls that allow the glazed building envelope to exist as a transfer function that can address and potentially accommodate the following five principal criteria: 1. Thermal management; 2. Daylighting harvesting and modulation; 3. Maintenance of views; 4. Active power capture, transfer, storage and redistribution; 5. Information Display. Building upon the existing set of performance requirements for high-performance glazing, this paper prescribes

  20. Determining the performance of energy wheels: Part 2 -- Experimental data and numerical validation

    SciTech Connect

    Simonson, C.J.; Ciepliski, D.L.; Besant, R.W.

    1999-07-01

    Experimentally measured and numerically simulated performance data are presented for an energy wheel operating in a wide range of conditions for mass flux, temperature, and humidity. Typically, the agreement between simulated and measured results is well within the experimental uncertainty. Both the simulated and numerical results show that the three effectiveness values (i.e., sensible, latent, and total) are unequal and each has its own unique sensitivity to operating conditions. Also, total effectiveness is shown to be a poor measurement of performance when the supply and exhaust inlet air enthalpies are nearly equal. Simulated results with the numerical model show that experimental results measured using half of the energy wheel, to reduce equipment sizes, underpredict the measured sensible effectiveness by up to 7%. The proposed method of determining energy wheel performance is to validate a detailed numerical model with a range of accurate experimental data and then use the model to predict performance for other operating conditions.

  1. Real estate market and building energy performance: Data for a mass appraisal approach

    PubMed Central

    Bonifaci, Pietro; Copiello, Sergio

    2015-01-01

    Mass appraisal is widely considered an advanced frontier in the real estate valuation field. Performing mass appraisal entails the need to get access to base information conveyed by a large amount of transactions, such as prices and property features. Due to the lack of transparency of many Italian real estate market segments, our survey has been addressed to gather data from residential property advertisements. The dataset specifically focuses on property offer prices and dwelling energy efficiency. The latter refers to the label expressed and exhibited by the energy performance certificate. Moreover, data are georeferenced with the highest possible accuracy: at the neighborhood level for a 76.8% of cases, at street or building number level for the remaining 23.2%. Data are related to the analysis performed in Bonifaci and Copiello [1], about the relationship between house prices and building energy performance, that is to say, the willingness to pay in order to benefit from more efficient dwellings. PMID:26793751

  2. Real estate market and building energy performance: Data for a mass appraisal approach.

    PubMed

    Bonifaci, Pietro; Copiello, Sergio

    2015-12-01

    Mass appraisal is widely considered an advanced frontier in the real estate valuation field. Performing mass appraisal entails the need to get access to base information conveyed by a large amount of transactions, such as prices and property features. Due to the lack of transparency of many Italian real estate market segments, our survey has been addressed to gather data from residential property advertisements. The dataset specifically focuses on property offer prices and dwelling energy efficiency. The latter refers to the label expressed and exhibited by the energy performance certificate. Moreover, data are georeferenced with the highest possible accuracy: at the neighborhood level for a 76.8% of cases, at street or building number level for the remaining 23.2%. Data are related to the analysis performed in Bonifaci and Copiello [1], about the relationship between house prices and building energy performance, that is to say, the willingness to pay in order to benefit from more efficient dwellings. PMID:26793751

  3. Energy Design Guidelines for High Performance Schools: Hot and Dry Climates (CD-ROM)

    SciTech Connect

    Not Available

    2002-03-01

    School districts around the country are finding that smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs. The design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  4. Energy Design Guidelines for High Performance Schools: Cool and Dry Climates

    SciTech Connect

    Not Available

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  5. Energy Design Guidelines for High Performance Schools: Cold and Humid Climates

    SciTech Connect

    Not Available

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  6. Energy Design Guidelines for High Performance Schools: Hot and Dry Climates

    SciTech Connect

    Not Available

    2002-01-01

    School districts around the country are finding that smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create an exemplary building that is both energy and resource efficient.

  7. Energy Design Guidelines for High Performance Schools: Cool and Humid Climates

    SciTech Connect

    Not Available

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  8. Energy Design Guidelines for High Performance Schools: Hot and Humid Climates

    SciTech Connect

    Not Available

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  9. Energy Design Guidelines for High Performance Schools: Temperate and Humid Climates

    SciTech Connect

    Not Available

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  10. Energy Design Guidelines for High Performance Schools: Temperate and Mixed Climates

    SciTech Connect

    Not Available

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  11. Energy Design Guidelines for High Performance Schools: Hot and Dry Climates (Revision)

    SciTech Connect

    Not Available

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  12. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions; Chicago, Illinois (Fact Sheet)

    SciTech Connect

    Not Available

    2014-07-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt-recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  13. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    SciTech Connect

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR® (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for 15 Chicagoland single family housing archetypes. In the present study, 800 IHP homes are first matched to one of these 15 housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost effectiveness.

  14. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    SciTech Connect

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR(R) (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  15. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  16. Whole-body task energy metrics for robots performing useful work in unstructured environments

    NASA Astrophysics Data System (ADS)

    Hofmann, Andreas; Theobald, Daniel

    2010-04-01

    When considering energy requirements and optimization for robots, it is important to consider mission requirements, and the type of robot performing the mission. For example, the small robots used in today's reconnaissance and explosive ordnance disposal applications have weak manipulators, and do not perform significant physical work on their surrounding environment. In this paper, we focus on robots that will be required to do much more physically demanding tasks, such as manipulating large heavy objects in unstructured environments, and carrying such objects over challenging terrain. Energy considerations for such systems must include models of physical work performed for basic manipulation, pose transition, and locomotion maneuvers. Given the scarcity of robots that can perform useful work in unstructured environments, it is useful to begin the investigation of energy optimization for such robots by considering typical tasks they might perform. This paper makes three contributions in this direction. First, we develop a set of standard tasks that would be useful in unstructured environments. The tasks are expressed in terms of the objects being manipulated, and the work being done, so they are independent of robot morphology. Second, we develop energy metrics and analytical results for theoretical energy requirements for these tasks. These requirements assume no losses due to friction, so they give a best-case estimate of what is achievable. Such metrics are useful in subsequent evaluation of real systems that are not as efficient. Third, we perform preliminary comparisons between different actuation technologies in performing these tasks. These actuation technologies will include electro-mechanical and hydraulic systems. We compare these technologies in terms of power density, and evaluate expected energy efficiency when performing the metric tasks.

  17. Energy Performance Analysis of Ultra-Efficient Homes at Solar Decathlon 2013

    NASA Astrophysics Data System (ADS)

    Garkhail, Rahul

    The objective of this thesis is to investigate the various types of energy end-uses to be expected in future high efficiency single family residences. For this purpose, this study has analyzed monitored data from 14 houses in the 2013 Solar Decathlon competition, and segregates the energy consumption patterns in various residential end-uses (such as lights, refrigerators, washing machines, ...). The analysis was not straight-forward since these homes were operated according to schedules previously determined by the contest rules. The analysis approach allowed the isolation of the comfort energy use by the Heating, Venting and Cooling (HVAC) systems. HVAC are the biggest contributors to energy consumption during operation of a building, and therefore are a prime concern for energy performance during the building design and the operation. Both steady state and dynamic models of comfort energy use which take into account variations in indoor and outdoor temperatures, solar radiation and thermal mass of the building were explicitly considered. Steady State Inverse Models are frequently used for thermal analysis to evaluate HVAC energy performance. These are fast, accurate, offer great flexibility for mathematical modifications and can be applied to a variety of buildings. The results are presented as a horizontal study that compares energy consumption across homes to arrive at a generic rather than unique model - to be used in future discussions in the context of ultra efficient homes. It is suggested that similar analyses of the energy-use data that compare the performance of variety of ultra efficient technologies be conducted to provide more accurate indications of the consumption by end use for future single family residences. These can be used alongside the Residential Energy Consumption Survey (RECS) and the Leading Indicator for Remodeling Activity (LIRA) indices to assist in planning and policy making related to residential energy sector.

  18. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Shengxi; Cao, Junyi; Inman, Daniel J.; Lin, Jing; Li, Dan

    2016-07-01

    Nonlinear energy harvesters are very sensitive to ambient vibrations. If the excitation level is too low, their large-amplitude oscillations for high-energy voltage output cannot be obtained. A nonlinear tristable energy harvester has been previously proposed to achieve more effective broadband energy harvesting for low-level excitations. However, the sensitivity of its dynamic characteristics to the system parameters remains uninvestigated. Therefore, this paper theoretically analyzes the influence of the external load, the external excitation, the internal system parameters and the equilibrium positions on the dynamic responses of nonlinear tristable energy harvesters by using the harmonic balance method. In addition, numerical acceleration excitation thresholds and basins of attraction are provided to investigate the potential for energy harvesting performance enhancement using the suitable equilibrium positions, appropriate initial conditions or external disturbances, due to high-energy interwell oscillations in the multi-solution ranges. More importantly, experimental voltage responses of a given tristable energy harvester versus the external excitation frequency and amplitude verify the existence of experimental multi-solution ranges and the effectiveness of the theoretical analysis. It is also revealed that achieving high-energy interwell oscillations in the multi-solution ranges of tristable energy harvesters will be feasible for improving energy harvesting from low-level ambient excitations.

  19. Near optimal energy selective x-ray imaging system performance with simple detectors

    SciTech Connect

    Alvarez, Robert E.

    2010-02-15

    Purpose: This article describes a method to achieve near optimal performance with low energy resolution detectors. Tapiovaara and Wagner [Phys. Med. Biol. 30, 519-529 (1985)] showed that an energy selective x-ray system using a broad spectrum source can produce images with a larger signal to noise ratio (SNR) than conventional systems using energy integrating or photon counting detectors. They showed that there is an upper limit to the SNR and that it can be achieved by measuring full spectrum information and then using an optimal energy dependent weighting. Methods: A performance measure is derived by applying statistical detection theory to an abstract vector space of the line integrals of the basis set coefficients of the two function approximation to the x-ray attenuation coefficient. The approach produces optimal results that utilize all the available energy dependent data. The method can be used with any energy selective detector and is applied not only to detectors using pulse height analysis (PHA) but also to a detector that simultaneously measures the total photon number and integrated energy, as discussed by Roessl et al. [Med. Phys. 34, 959-966 (2007)]. A generalization of this detector that improves the performance is introduced. A method is described to compute images with the optimal SNR using projections in a ''whitened'' vector space transformed so the noise is uncorrelated and has unit variance in both coordinates. Material canceled images with optimal SNR can also be computed by projections in this space. Results: The performance measure is validated by showing that it provides the Tapiovaara-Wagner optimal results for a detector with full energy information and also a conventional detector. The performance with different types of detectors is compared to the ideal SNR as a function of x-ray tube voltage and subject thickness. A detector that combines two bin PHA with a simultaneous measurement of integrated photon energy provides near ideal

  20. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  1. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  2. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  3. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  4. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  5. The actual status of Astronomy in Moldova

    NASA Astrophysics Data System (ADS)

    Gaina, A.

    The astronomical research in the Republic of Moldova after Nicolae Donitch (Donici)(1874-1956(?)) were renewed in 1957, when a satellites observations station was open in Chisinau. Fotometric observations and rotations of first Soviet artificial satellites were investigated under a program SPIN put in action by the Academy of Sciences of former Socialist Countries. The works were conducted by Assoc. prof. Dr. V. Grigorevskij, which conducted also research in variable stars. Later, at the beginning of 60-th, an astronomical Observatory at the Chisinau State University named after Lenin (actually: the State University of Moldova), placed in Lozovo-Ciuciuleni villages was open, which were coordinated by Odessa State University (Prof. V.P. Tsesevich) and the Astrosovet of the USSR. Two main groups worked in this area: first conducted by V. Grigorevskij (till 1971) and second conducted by L.I. Shakun (till 1988), both graduated from Odessa State University. Besides this research areas another astronomical observations were made: Comets observations, astroclimate and atmospheric optics in collaboration with the Institute of the Atmospheric optics of the Siberian branch of the USSR (V. Chernobai, I. Nacu, C. Usov and A.F. Poiata). Comets observations were also made since 1988 by D. I. Gorodetskij which came to Chisinau from Alma-Ata and collaborated with Ukrainean astronomers conducted by K.I. Churyumov. Another part of space research was made at the State University of Tiraspol since the beggining of 70-th by a group of teaching staff of the Tiraspol State Pedagogical University: M.D. Polanuer, V.S. Sholokhov. No a collaboration between Moldovan astronomers and Transdniestrian ones actually exist due to War in Transdniestria in 1992. An important area of research concerned the Radiophysics of the Ionosphere, which was conducted in Beltsy at the Beltsy State Pedagogical Institute by a group of teaching staff of the University since the beginning of 70-th: N. D. Filip, E

  6. What Galvanic Vestibular Stimulation Actually Activates

    PubMed Central

    Curthoys, Ian S.; MacDougall, Hamish Gavin

    2012-01-01

    In a recent paper in Frontiers Cohen et al. (2012) asked “What does galvanic vestibular stimulation actually activate?” and concluded that galvanic vestibular stimulation (GVS) causes predominantly otolithic behavioral responses. In this Perspective paper we show that such a conclusion does not follow from the evidence. The evidence from neurophysiology is very clear: galvanic stimulation activates primary otolithic neurons as well as primary semicircular canal neurons (Kim and Curthoys, 2004). Irregular neurons are activated at lower currents. The answer to what behavior is activated depends on what is measured and how it is measured, including not just technical details, such as the frame rate of video, but the exact experimental context in which the measurement took place (visual fixation vs total darkness). Both canal and otolith dependent responses are activated by GVS. PMID:22833733

  7. Modulation of energy transfer pathways between mitochondria and myofibrils by changes in performance of perfused heart.

    PubMed

    Vendelin, Marko; Hoerter, Jacqueline A; Mateo, Philippe; Soboll, Sibylle; Gillet, Brigitte; Mazet, Jean-Luc

    2010-11-26

    In the heart, the energy supplied by mitochondria to myofibrils is continuously and finely tuned to the contraction requirement over a wide range of cardiac loads. This process is mediated both by the creatine kinase (CK) shuttle and by direct ATP transfer. The aim of this study was to identify the contribution of energy transfer pathways at different cardiac performance levels. For this, five protocols of (31)P NMR inversion and saturation transfer experiments were performed at different performance levels on Langendorff perfused rat hearts. The cardiac performance was changed either through variation of external calcium in the presence or absence of isoprenaline or through variation of LV balloon inflation. The recordings were analyzed by mathematical models composed on the basis of different energy transfer pathway configurations. According to our results, the total CK unidirectional flux was relatively stable when the cardiac performance was changed by increasing the calcium concentration or variation of LV balloon volume. The stability of total CK unidirectional flux is lost at extreme energy demand levels leading to a rise in inorganic phosphate, a drop of ATP and phosphocreatine, a drop of total CK unidirectional flux, and to a bypass of CK shuttle by direct ATP transfer. Our results provide experimental evidence for the existence of two pathways of energy transfer, direct ATP transfer, and PCr transfer through the CK shuttle, whose contribution may vary depending on the metabolic status of the heart. PMID:20847056

  8. Optimizing Irregular Applications for Energy and Performance on the Tilera Many-core Architecture

    SciTech Connect

    Chavarría-Miranda, Daniel; Panyala, Ajay R.; Halappanavar, Mahantesh; Manzano Franco, Joseph B.; Tumeo, Antonino

    2015-05-20

    Optimizing applications simultaneously for energy and performance is a complex problem. High performance, parallel, irregular applications are notoriously hard to optimize due to their data-dependent memory accesses, lack of structured locality and complex data structures and code patterns. Irregular kernels are growing in importance in applications such as machine learning, graph analytics and combinatorial scientific computing. Performance- and energy-efficient implementation of these kernels on modern, energy efficient, multicore and many-core platforms is therefore an important and challenging problem. We present results from optimizing two irregular applications { the Louvain method for community detection (Grappolo), and high-performance conjugate gradient (HPCCG) { on the Tilera many-core system. We have significantly extended MIT's OpenTuner auto-tuning framework to conduct a detailed study of platform-independent and platform-specific optimizations to improve performance as well as reduce total energy consumption. We explore the optimization design space along three dimensions: memory layout schemes, compiler-based code transformations, and optimization of parallel loop schedules. Using auto-tuning, we demonstrate whole node energy savings of up to 41% relative to a baseline instantiation, and up to 31% relative to manually optimized variants.

  9. Department of Energy research in utilization of high-performance computers

    SciTech Connect

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-08-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programmatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models, the execution of which is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex, and consequently it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure.

  10. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  11. Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings

    SciTech Connect

    Matson, Nance E.; Piette, Mary Ann

    2005-09-05

    This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

  12. Navistar eStar Vehicle Performance Evaluation - 1st Quarter 2014; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect

    Ragatz, A.

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  13. Smith Newton Vehicle Performance Evaluation -- Gen 2 -- Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  14. Navistar eStar Vehicle Performance Evaluation - Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. This cumulative report covers the period through the third quarter of 2013.

  15. Navistar eStar Vehicle Performance Evaluation - 4th Quarter 2012; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect

    2013-05-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  16. Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2013; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  17. Smith Newton Vehicle Performance Evaluation – 2nd Quarter 2013; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  18. Smith Newton Vehicle Performance Evaluation – 1st Quarter 2013; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  19. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    NASA Astrophysics Data System (ADS)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  20. Controlling Energy Performance on the Big Stage - The New York Times Company

    SciTech Connect

    Settlemyre, Kevin; Regnier, Cindy

    2015-08-01

    The Times partnered with the U.S. Department of Energy (DOE) as part of DOE’s Commercial Building Partnerships (CBP) Program to develop a post-occupancy evaluation (POE) of three EEMs that were implemented during the construction of The Times building between 2004-2006. With aggressive goals to reduce energy use and carbon emissions at a national level, one strategy of the US Department of Energy is looking to exemplary buildings that have already invested in new approaches to achieving the energy performance goals that are now needed at scale. The Times building incorporated a number of innovative technologies, systems and processes that make their project a model for widespread replication in new and existing buildings. The measured results from the post occupancy evaluation study, the tools and processes developed, and continuous improvements in the performance and cost of the systems studied suggest that these savings are scalable and replicable in a wide range of commercial buildings nationwide.

  1. Theoretical studies on performance evaluation of solar thermoelectronic energy converter with graphene emitter

    NASA Astrophysics Data System (ADS)

    Olawole, Olukunle; de, Dilip

    In this paper we consider detailed energy dynamics of solar thermoelectronic energy converter using graphene as the emitter. The emitter is heated by solar energy concentrated by a parabolic mirror concentrator. We study the performance evaluation of the energy conversion using temperature dependent work function of graphene and model the space charge problem by introducing a factor in the emitter and collector current densities. We present computations on power output and efficiency as function of solar insolation, height of emitter from the base of the mirror, reflection coefficient of the mirror, temperature and work function of collector. Effect of molecular doping on the performance of the graphene solar tech is also discussed. Please schedule our papers so that they are well separated in time for presentations.

  2. Evaluation of resolution performance of high energy x-ray CT

    NASA Astrophysics Data System (ADS)

    Abe, Makoto; Fujimoto, Hiroyuki; Sato, Osamu; Sato, Katsutoshi; Takatsuji, Toshiyuki

    2015-07-01

    Dimensional X-ray CT has attracted production industry due to its nature [1] enabling not only external dimensional measurement but also internal dimensional measurement which has been difficult for pre-existing dimensional measurement instruments. However, because the reconstruction process of three dimensional volume image may be affected by various kinds of error sources of the hardware and also the software, performance evaluation of dimensional X-ray CT has become one of the major issues [2], especially for X-ray CT system with higher energy such as several MeV. Resolution performance of high energy X-ray CT was evaluated by using a series of phantoms which equip regular line-and-space structures with various pitch sizes down to 100 micrometer. These phantoms were prototyped in the identical pitch sizes with three different materials. These phantoms were practically measured by a high energy X-ray CT. Results and perspective of the resolution performance is presented.

  3. Stress and performance: do service orientation and emotional energy moderate the relationship?

    PubMed

    Smith, Michael R; Rasmussen, Jennifer L; Mills, Maura J; Wefald, Andrew J; Downey, Ronald G

    2012-01-01

    The current study examines the moderating effect of customer service orientation and emotional energy on the stress-performance relationship for 681 U.S. casual dining restaurant employees. Customer service orientation was hypothesized to moderate the stress-performance relationship for Front-of-House (FOH) workers. Emotional energy was hypothesized to moderate stress-performance for Back-of-House (BOH) workers. Contrary to expectations, customer service orientation failed to moderate the effects of stress on performance for FOH employees, but the results supported that customer service orientation is likely a mediator of the relationship. However, the hypothesis was supported for BOH workers; emotional energy was found to moderate stress performance for these employees. This finding suggests that during times of high stress, meaningful, warm, and empathetic relationships are likely to impact BOH workers' ability to maintain performance. These findings have real-world implications in organizational practice, including highlighting the importance of developing positive and meaningful social interactions among workers and facilitating appropriate person-job fits. Doing so is likely to help in alleviating worker stress and is also likely to encourage worker performance. PMID:22122550

  4. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  5. Solar energy system performance evaluation. Seasonal report for SEECO Lincoln, Lincoln, Nebraska

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar Engineering and Equipment Company (SEECO) Lincoln solar energy system, designed for space heating only, is described and its operational performance for a 12 month period from April 1979 through March 1980 is evaluated. The system met 27 percent of the space heating load; however, system losses into the heated space from the storage bin and ductwork were significant. Reducing these losses would add appreciably to the system's efficiency. Net fossil energy savings were 11.31 million BTUs.

  6. Solar energy system performance evaluation: Seasonal report for Contemporary Newman, Newman, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A hot solar heating and hot water system's operational performance from June 1979 through April 1980 is evaluated. Solar energy satisfied 42 percent of the total measure load (hot water plus space heating), which was somewhat higher than the solar fraction of 32 percent. When system losses into the heating space from duct leaks and storage are included, the heating solar fraction increases from 42 to 64 percent. Net electrical energy savings were 5.47 million BTUs.

  7. Solar energy system performance evaluaton: Seasonal report for Solaron-Akron, Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of the solar energy system by Solaron Corporation is described. The system was designed to provide an 1940 square foot floor area with space heating and domestic hot water for a dual-level single family residence in Akron, Ohio. The solar energy system uses air as the heat transport medium, has a 546 square foot flat plate collector array subsystem, a 270 cubic foot rock thermal storage bin subsystem, a domestic hot water preheat tank, pumps, controls and transport lines. In general, the performance of the Solaron Akron solar energy system was somewhat difficult to assess for the November 1978 through October 1979 time period. The problems relating to the control systems, various solar energy leakages, air flow correction factors and instrumentation cause a significant amount of subjectivity to be involved in the performance assessment for this solar energy system. Had these problems not been present, it is felt that this system would have exhibited a resonably high level of measured performance.

  8. Determining the performance of energy wheels: Part 1 -- Experimental and numerical methods

    SciTech Connect

    Simonson, C.J.; Ciepliski, D.L.; Besant, R.W.

    1999-07-01

    Measuring and modeling the performance of energy recovery devices is difficult and, in some cases, may result in unacceptably high uncertainties. In this paper, controlled laboratory experiments and a detailed numerical model are presented, which, together with uncertainty analysis, can quantify the performance of energy wheels. A numerical model that has been developed from physical principles and an experimental method for determining the performance of energy wheels with acceptable uncertainties are detailed. Included is a pre-test, during-test, and post-test uncertainty analysis that allows the experimenter to estimate accurately precision (random) and bias (fixed) errors a priori, during, and a posteriori each experiment using energy and mass balances on the air-to-air energy recovery device as well as the characteristics of each instrument and the data acquisition system. A comprehensive set of measured data for the sensible, latent, and total effectiveness of an energy wheel is compared with the corresponding simulation results in Part 2 of this paper.

  9. Solar energy system performance evaluation: Seasonal report for fern, Tunkhannock, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is reported, and technical contributions to the definition of techniques and requirements for solar energy system design are made. The solar energy system was designed to supply space heating and domestic hot water for single-family residences. The system consists of air flat plate collectors, storage tank, pumps, heat exchangers, associated plumbing, and controls.

  10. Data of cost-optimality and technical solutions for high energy performance buildings in warm climate

    PubMed Central

    Zacà, Ilaria; D’Agostino, Delia; Maria Congedo, Paolo; Baglivo, Cristina

    2015-01-01

    The data reported in this article refers to input and output information related to the research articles entitled Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area by Zacà et al. (Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area, in press.) and related to the research article Cost-optimal analysis and technical comparison between standard and high efficient mono residential buildings in a warm climate by Baglivo et al. (Energy, 2015, 10.1016/j.energy.2015.02.062, in press). PMID:26217793

  11. Performance Results for Massachusetts and Rhode Island Deep Energy Retrofit Pilot Community

    SciTech Connect

    Gates, C.; Neuhauser, K.

    2014-03-01

    Between December, 2009 and December, 2012, 42 deep energy retrofit (DER) projects were completed through a pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. Thirty-seven of these projects were comprehensive retrofits while five were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. Building Science Corporation developed a consistent "package" of measures in terms of the performance targeted for major building components. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average.

  12. A modified method of vibration surveillance by using the optimal control at energy performance index

    NASA Astrophysics Data System (ADS)

    Kaliński, Krzysztof J.; Galewski, Marek A.

    2015-06-01

    A method of vibration surveillance by using the optimal control at energy performance index has been creatively modified. The suggested original modification depends on consideration of direct relationship between the measured acceleration signal and the optimal control command. The paper presents the results of experiments and Hardware-in-the-loop simulations of a new active vibration reduction algorithm based on the energy performance index idea modified in such a way, that it directly utilises the acceleration feedback signal. Promising prospects towards real application of the modified method in case of the high speed milling are predicted as well.

  13. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  14. Solar energy system performance evaluation: Seasonal report for SEMCO, Loxahatchee, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system and the technical contributions to the definition of techniques and requirements solar energy system design are analyzed. The solar energy system was designed to supply domestic hot water for a family of four, single-family residences. It consists of two liquid flat plate collectors, single tank, controls, and transport lines.

  15. Measuring savings in energy savings performance contracts using in-place energy management systems -- A case study

    SciTech Connect

    Heinemeier, K.E.; Akbari, H.; Kromer, S.

    1996-08-01

    Energy Management Control Systems (EMCSs) have been used in many projects as a monitoring device to provide information necessary for estimating savings from efficiency measures. This paper discusses a case study that looked in great depth at that use for evaluating savings in Energy Savings Performance Contracting (ESPC). ESPC is one of the increasingly important mechanisms for profiting from energy efficiency in commercial buildings. With ESPC, a contractor finances and installs energy-conversion measures, and the resulting savings in energy bills are shared between the contractor and the building owner. Hence, the method used for determining savings is key to the success of this financing scheme. As a part of their effort to establish measurement and verification methods, the Federal Energy Management Program (FEMP) carried out a pilot study of ESPC, and the EMCS was used in the savings verification for this ESPC contract. This case study also serves as a detailed and quantitative comparison of EMCS and conventional monitoring techniques, according to the guidelines developed in earlier work. This paper discusses the concept of different levels of monitoring savings for ESPC and presents an assessment of the use of EMCS for these levels of monitoring.

  16. Energy harvesting performance of a broadband electromagnetic vibration energy harvester for powering industrial wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ren, Long; Chen, Renwen; Xia, Huakang; Zhang, Xiaoxiao

    2016-04-01

    To supply power to wireless sensor networks, a type of broadband electromagnetic vibration energy harvester (VEH) using bistable vibration scavenging structure is proposed. It consists of a planar spring, an electromagnetic transducer with an annular magnetic circuit, and a coil assembly with a ferrite bobbin inside. A nonlinear magnetic force respecting to the relative displacement is generated by the ferrite bobbin, and to broaden the working frequency bandwidth of the VEH. Moreover, the ferrite bobbin increases the magnetic flux linkage gradient of the coil assembly in its moving region, and further to improve its output voltage. The dynamic behaviors of the VEH are analyzed and predicted by finite element analysis and ODE calculation. Validation experiments are carried out and show that the VEH can harvest high energy in a relatively wide excitation frequency band. The further test shows that the load power of the VEH with a load resistor of 90Ω can reach 10mW level in a wide frequency bandwidth when the acceleration level of the harmonic excitation is 1g. It can ensure the intermittent work of many sensors as well as wireless communication modules at least.

  17. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  18. Spearfish High School, Sparfish, South Dakota solar energy system performance evaluation, September 1980-June 1981

    SciTech Connect

    Howard, B.D.

    1981-01-01

    Spearfish High School in South Dakota contains 43,000 square feet of conditioned space. Its active solar energy system is designed to supply 57% of the space heating and 50% of the hot water demand. The system is equipped with 8034 square feet of flat plate collectors, 4017 cubic feet of rock bin sensible heat storage, and auxiliary equipment including 8 heat pumps, 6 of which are solar supplied and instrumented, air conditioning units, and natural-gas-fired boilers. Performance data are given for the system including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor and solar system coefficient of performance. Insolation, solar energy utilization and operation data are also given. The performance of the collector, storage, domestic hot water and space heating subsystems, the operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, long-term weather data, sensor technology, and typical monthly data. (LEW)

  19. Merging raster meteorological data with low resolution satellite images for improved estimation of actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Cherif, Ines; Alexandridis, Thomas; Chambel Leitao, Pedro; Jauch, Eduardo; Stavridou, Domna; Iordanidis, Charalampos; Silleos, Nikolaos; Misopolinos, Nikolaos; Neves, Ramiro; Safara Araujo, Antonio

    2013-04-01

    Actual evapotranspiration (ETa) can be estimated using Energy Balance models and remotely sensed data. In particular, satellite images acquired in visible, near and thermal infrared parts of the spectrum have been used with the Surface Energy Balance Algorithm for Land (SEBAL) to estimate actual evapotranspiration. This algorithm is solving the Energy Balance Equation using data from a meteorological station present in the vicinity, and assumes the meteorological conditions homogeneous over the study area. Most often, data from a representative weather station are used. This assumption may lead to substantial errors in areas with high spatial variability in weather parameters. In this paper, the ITA-MyWater algorithms (Integrated Thermodynamic Algorithms for MyWater project), an adaptation of SEBAL was merged together with spatially distributed meteorological data to increase the accuracy of ETa estimations at regional scale using MODIS satellite images. The major changes introduced to migrate from point to raster are that (i) air temperature and relative humidity maps are used for the estimation of the Energy Balance terms, including instantaneous net radiation and soil heat flux and (ii) the variability of wind speed is taken into account to generate maps of the aerodynamic resistance, sensible heat flux and difference between soil and air temperature at the boundary conditions (at dry and wet pixels). The approach was applied in the river basin of Tamega in Portugal, where actual evapotranspiration was estimated for several MODIS 8-day periods from spring to winter of the same year. The raster meteorological maps were produced by the MM5 weather forecast model. Daily reference evapotranspiration was calculated with MOHID LAND model. Using a temporal integration technique and the daily reference evapotranspiration maps, the cumulative evapotranspiration over the MODIS 8-day period was estimated and compared to the global evapotranspiration MODIS product (MOD16A2

  20. Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Hafeez, Mohsin; Rabbani, Umair; Ishikawa, Hirohiko; Ma, Yaoming

    2012-11-01

    The idea of ground-based evapotranspiration (ET) is of the most interesting for land-atmosphere interactions, such as water-saving irrigation, the performance of irrigation systems, crop water deficit, drought mitigation strategies and accurate initialization of climate prediction models especially in arid and semiarid catchments where water shortage is a critical problem. The recent year's drought in Australia and concerns about climate change has prominent the need to manage water resources more sustainably especially in the Murrumbidgee catchment which utilizes bulk water for food security and production. This paper discusses the application of a Surface Energy Balance System (SEBS) model based on Landsat-5 TM data and field observations has been used and tested for deriving ET over Coleambally Irrigation Area (CIA), located in the southwest of NSW, Australia. 16 Landsat-5 TM scenes were selected covering the time period of 2009, 2010 and 2011 for estimating the actual ET in CIA. To do the validation the used methodology, the ground-measured ET was compared to the Landsat-5 TM retrieved actual ET results for CIA. The derived ET value over CIA is much closer to the field measurement. From the remote sensing results and observations, the root mean square error (RMSE) is 0.74 and the mean APD is 7.5%. The derived satellite remote sensing values belong to reasonable range.

  1. Resonance-induced enhancement of the energy harvesting performance of piezoelectric flags

    NASA Astrophysics Data System (ADS)

    Xia, Yifan; Michelin, Sébastien; Doaré, Olivier

    2015-12-01

    The spontaneous flapping of a flag can be used to produce electrical energy from a fluid flow when coupled to a generator. In this paper, the energy harvesting performance of a flag covered by a single pair of polyvinylidene difluoride piezoelectric electrodes is studied both experimentally and numerically. The electrodes are connected to a resistive-inductive circuit that forms a resonant circuit with the piezoelectric's intrinsic capacitance. Compared with purely resistive circuits, the resonance between the circuit and the flag's flapping motion leads to a significant increase in the harvested energy. Our experimental study also validates our fluid-solid-electric nonlinear numerical model.

  2. Solar energy system performance evaluation-seasonal report for Elcam San Diego, San Diego, California

    NASA Astrophysics Data System (ADS)

    1980-05-01

    The solar energy system, Elcam San Diego, was designed to supply domestic hot water heating for a single family residence located in Encinitas, California. System description, performance assessment, operating energy, energy savings, maintenance, and conclusions are presented. The system is a 'Sunspot' two tank cascade type, where solar energy is supplied to either a 66 gallon preheat tank (solar storage) or a 40 gallon domestic hot water tank. Water is pumped directly from one of the two tanks, through the 65 square feet collector array and back into the same tank. Freeze protection is provided by automatically circulating hot water from the hot water tank through the collectors and exposed plumbing when freezing conditions exist. Auxiliary energy is supplied by natural gas. Analysis is based on instrumented system data monitored and collected for one full season of operation.

  3. Assessing the performance of popular QM methods for calculation of conformational energies of trialanine

    NASA Astrophysics Data System (ADS)

    Li, Yongxiu; Zhang, Saiqun; Zhang, John Z. H.; He, Xiao

    2016-05-01

    Accurate description of the conformational energies of the amino acids is essential for molecular dynamics simulation of protein structures. In this study, we compute the relative energies at 51 conformations for a trialanine tetrapeptide at different levels of theory. The computed energies at various theoretical levels, including the semiempirical DFTB method, HF, DFT, MP2 and CCSD(T), are compared with each other. The calculated energies from density-fitting local CCSD(T)/CBS (complete basis set) calculations are taken as the benchmark. The accuracy of the theoretical methods is highly dependent on the electronic correlation and dispersion corrections as well as the size of the basis sets. The involvement of the empirical dispersion energies in HF and DFT methods consistently improves their performance. Considering both the accuracy and computational efficiency, the Minnesota density functional M06-L-D and M06-2X-D are efficient and accurate for modeling of trialanine structures.

  4. Solar energy system performance evaluation-seasonal report for Elcam San Diego, San Diego, California

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system, Elcam San Diego, was designed to supply domestic hot water heating for a single family residence located in Encinitas, California. System description, performance assessment, operating energy, energy savings, maintenance, and conclusions are presented. The system is a 'Sunspot' two tank cascade type, where solar energy is supplied to either a 66 gallon preheat tank (solar storage) or a 40 gallon domestic hot water tank. Water is pumped directly from one of the two tanks, through the 65 square feet collector array and back into the same tank. Freeze protection is provided by automatically circulating hot water from the hot water tank through the collectors and exposed plumbing when freezing conditions exist. Auxiliary energy is supplied by natural gas. Analysis is based on instrumented system data monitored and collected for one full season of operation.

  5. Effects of commercial energy drink consumption on athletic performance and body composition.

    PubMed

    Ballard, Stephanie L; Wellborn-Kim, Jennifer J; Clauson, Kevin A

    2010-04-01

    Energy drinks are frequently marketed to individuals interested in athletics and an active lifestyle. From 2001 to 2008, estimates of energy drink use in adolescent to middle-aged populations ranged from 24% to 56%. Most energy drinks feature caffeine and a combination of other components, including taurine, sucrose, guarana, ginseng, niacin, pyridoxine, and cyanocobalamin. This article examines the evidence for 2 commonly purported uses of energy drinks: athletic performance enhancement and weight loss. Observed ergogenic benefits of energy drinks are likely attributable to caffeine and glucose content. There is conflicting evidence regarding the impact of energy drinks on weight loss, although some data suggest that combining energy drink use with exercise may enhance body fat reduction. As with any pharmacologically active substance, energy drinks are associated with adverse effects. Combining energy drinks with alcohol exacerbates safety concerns and is an increasingly common practice contributing to toxic jock identity among college-aged male athletes. Practitioners should monitor identified populations likely to consume these loosely regulated beverages. PMID:20424408

  6. Exploring the roles of standard rectifying circuits on the performance of a nonlinear piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Tang, Lihua; Han, Yue; Hand, James; Harne, Ryan L.

    2016-04-01

    To enhance the energy conversion performance of piezoelectric vibration energy harvesters, such structures have been recently designed to leverage bandwidth-enhancing nonlinear dynamics. While key findings have been made, the majority of researchers have evaluated the opportunities when the harvesters are connected to pure resistive loads (AC interface). The alternating voltage generated by such energy harvesting systems cannot be directly utilized to power conventional electronics. Rectifying circuits are required to interface the device and electronic load but few efforts have considered how a standard rectifying DC interface circuit (DC interface) connected to a nonlinear piezoelectric energy harvester influences the system performance. The aim of this research is to begin exploring this critical feature of the nonlinear energy harvesting system. A nonlinear, monostable piezoelectric energy harvester (MPEH) is fabricated and evaluated to determine the generated power and useful operating bandwidth when connected to a DC interface. The nonlinearity is introduced into the harvester design by tuneable magnetic force. An equivalent circuit model of the MPEH is implemented with a user-defined nonlinear behavioral voltage source representative of the magnetic interaction. The model is validated comparing the open circuit voltage from circuit simulation and experiment. The practical energy harvesting capability of the MPEH connected to the AC and DC interface circuits are then investigated and compared, focusing on the influence of the varying load on the nonlinear dynamics and subsequent bandwidth and harvested power.

  7. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    NASA Technical Reports Server (NTRS)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  8. FEMP fiscal year 1999 ESPC business strategy development summary report[Energy Saving Performance Contract

    SciTech Connect

    KL McMordie-Stoughton; WDM Hunt

    2000-05-04

    The mission of the US Department of Energy's Federal Energy Management Program (FEMP) is to reduce the cost of Government by advancing energy efficiency, water conservation, and the use of solar and other renewable technologies. This is accomplished by creating partnerships, leveraging resources, transferring technology, and providing training and technical guidance and assistance to agencies. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Act of 1992 and the goals that have been established in Executive Order 13123 (June 1999), but also those that are inherent in sound management of Federal financial and personnel resources. The Pacific Northwest National Laboratory (PNNL) supports the FEMP mission in all activity areas. This responsibility includes working with various Federal energy managers to identify, monitor, and evaluate the performance of new energy efficiency technologies suitable for installation at Federal sites. This report provides the results of a Energy Saving Performance Contracting (ESPC) Business Strategy Development project that PNNL conducted for FEMP. The project provides information regarding the development of Federal market scenarios for FEMP Super-ESPC delivery orders. Two market scenarios were developed. The initial scenario resulted in an estimated delivery order target that was much lower than initially estimated in the spring of 1998. The second scenario yielded a lower estimated number of delivery orders. The main difference between these two scenarios was an estimated increase in utility financed projects in the Federal sector.

  9. Optimal control of 2-wheeled mobile robot at energy performance index

    NASA Astrophysics Data System (ADS)

    Kaliński, Krzysztof J.; Mazur, Michał

    2016-03-01

    The paper presents the application of the optimal control method at the energy performance index towards motion control of the 2-wheeled mobile robot. With the use of the proposed method of control the 2-wheeled mobile robot can realise effectively the desired trajectory. The problem of motion control of mobile robots is usually neglected and thus performance of the realisation of the high level control tasks is limited.

  10. Solar energy system performance evaluation: Seasonal report for Colt Yosemite, Yosemite National Park, California

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The system's operational performance from May 1979 through April 1980 is described. Solar energy satisfied 23 percent of the total performance load, which was significantly below the design value of 56 percent. A fossil savings of 80.89 million Btu's or 578 gallons of fuel oil is estimated. If uncontrolled losses could have been reduced to an inconsequential level, the system's efficiency would have been improved considerably.

  11. Performance characterization and optimization of microgrid-based energy generation and storage technologies

    NASA Astrophysics Data System (ADS)

    Guggenberger, Joe David, II

    Renewable energy-powered microgrids have proven to be a valuable technology for self-contained (off-grid) energy systems. Characterizing microgrid system performance pre-deployment would allow the system to be appropriately sized to meet all required electrical loads at a given renewable source operational time frequency. A vanadium redox battery was empirically characterized to determine operating efficiency as a function of charging characteristics and parasitic load losses. A model was developed to iteratively determine system performance based on known weather conditions and load requirements. A case study was performed to compare modeled system performance to measurements taken during operation of the microgrid system. Another iterative model was developed to incrementally predict the microgrid operating performance as a function of diesel generator operating frequency. Calibration of the model was performed to determine accurate PV panel and inverter efficiencies. A case study was performed to estimate the constant loads the system could power at varying diesel generator operating frequencies. Typical Meteorological Year 3 (TMY3) data from 217 Class I locations throughout the United States was inserted into the model to determine the quantity of external AC and DC load the system could supply at intermittent diesel generator variable operational frequencies. Ordinary block Kriging analysis was performed using ArcGIS to interpolate AC and DC load power between TMY3 Class I locations for each diesel generator operating frequency. Figures representing projected AC and DC external load were then developed for each diesel generator operating frequency.

  12. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers.

    PubMed

    Lara, Beatriz; Ruiz-Vicente, Diana; Areces, Francisco; Abián-Vicén, Javier; Salinero, Juan José; Gonzalez-Millán, Cristina; Gallo-Salazar, César; Del Coso, Juan

    2015-09-28

    This study investigated the effect of a caffeinated energy drink on various aspects of performance in sprint swimmers. In a randomised and counterbalanced order, fourteen male sprint swimmers performed two acute experimental trials after the ingestion of a caffeinated energy drink (3 mg/kg) or after the ingestion of the same energy drink without caffeine (0 mg/kg; placebo). After 60 min of ingestion of the beverages, the swimmers performed a countermovement jump, a maximal handgrip test, a 50 m simulated competition and a 45 s swim at maximal intensity in a swim ergometer. A blood sample was withdrawn 1 min after the completion of the ergometer test. In comparison with the placebo drink, the intake of the caffeinated energy drink increased the height in the countermovement jump (49.4 (SD 5.3) v. 50.9 (SD 5.2) cm, respectively; P<0.05) and maximal force during the handgrip test with the right hand (481 (SD 49) v. 498 (SD 43) N; P<0.05). Furthermore, the caffeinated energy drink reduced the time needed to complete the 50 m simulated swimming competition (27.8 (SD 3.4) v. 27.5 (SD 3.2) s; P<0.05), and it increased peak power (273 (SD 55) v. 303 (SD 49) W; P <0.05) and blood lactate concentration (11.0 (SD 2.0) v. 11.7 (SD 2.1) mM; P<0.05) during the ergometer test. The caffeinated energy drink did not modify the prevalence of insomnia (7 v. 7%), muscle pain (36 v. 36%) or headache (0 v. 7%) during the hours following its ingestion (P>0.05). A caffeinated energy drink increased some aspects of swimming performance in competitive sprinters, whereas the side effects derived from the intake of this beverage were marginal at this dosage. PMID:26279580

  13. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  14. ASTM Photovoltaic Performance Standards: Their Use at the National Renewable Energy Lab

    SciTech Connect

    Emery, K.

    2007-07-01

    The performance of photovoltaic devices is typically rated in terms of their peak power with respect to a specific spectrum, total irradiance and temperature. The PV Cell and Module Performance Laboratory at the National Renewable Energy Laboratory in Golden, Colo., has been measuring the performance of cells and modules for the U.S. terrestrial PV community since 1980. NREL typically calibrates 200 cells and modules per month. The laboratory follows the procedures described in ASTM International standards for calibrating its primary reference cells (E 1125), spectral responsivity measurements (E 1021), secondary reference cells (E 948), secondary modules (E 1036), concentrator modules (E 2527), and multi-junction cells and modules (E 2236).

  15. Effects of Temperature and Feed-energy on Performance of Juvenile Red Drum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Work with Ecophys.Fish, an ecophysiological model of fish performance, led to development of this hypothesis: Fish exposed to high temperatures can be growth-limited by the concentration of energy in available food; whereas, fish exposed to lower temperatures can be limited by their metabolic capaci...

  16. Design and measured performance of a solar chimney for natural circulation solar energy dryers

    SciTech Connect

    Ekechukwu, O.V.; Norton, B.

    1996-02-01

    An experimental solar chimney consisted of a cylindrical polyethylene-clad vertical chamber supported by steel framework and draped internally with a selectively absorbing surface. The performance of the chimney which was monitored extensively is reported. Issues related to the design and construction of solar chimneys for natural circulation solar energy dryers are discussed.

  17. CHANGES IN THE PHYSIOLOGICAL PERFORMANCE AND ENERGY METABOLISM OF AN ESTUARINE MYSID

    EPA Science Inventory

    Measures of physiological performance and energy metabolism were made on an estuarine mysid (Mysidopsis bahia) exposed throughout a life cycle to the defoliant DEF. EF concentrations > 0.246 ug/l reduced survival through release of the first brood. oung production was completely ...

  18. Federal High Performance Computing and Communications Program. The Department of Energy Component.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Research.

    This report, profusely illustrated with color photographs and other graphics, elaborates on the Department of Energy (DOE) research program in High Performance Computing and Communications (HPCC). The DOE is one of seven agency programs within the Federal Research and Development Program working on HPCC. The DOE HPCC program emphasizes research in…

  19. Solar energy system performance evaluation: Seasonal report for IBM System 2, Togus, Maine

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system, SIMS Prototype System 2, was designed to supply domestic hot water to single family residences. The system consists of flat plate collectors, silicone working fluid, storage tanks, pumps, heat exchanger, controls, and associated plumbing. The long term field performance of the installed system was analyzed and the results are described.

  20. Solar energy system performance evaluation report for IBM System 3, Glendo, Wyoming

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The analysis used was based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is described. Technical contributions to the definition of techniques and requirements for solar energy system design are given.

  1. Perceived Stress, Energy Drink Consumption, and Academic Performance among College Students

    ERIC Educational Resources Information Center

    Pettit, Michele L.; DeBarr, Kathy A.

    2011-01-01

    Objective: This study explored relationships regarding perceived stress, energy drink consumption, and academic performance among college students. Participants: Participants included 136 undergraduates attending a large southern plains university. Methods: Participants completed surveys including items from the Perceived Stress Scale and items to…

  2. Consequences of Predicted or Actual Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  3. Solar energy system performance evaluation. Seasonal report for Colt Pueblo, Pueblo, Colorado

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Colt-Pueblo solar energy system, designed to provide space heating and hot water preheating, is described and its operational performance for a 12 month period from February 1979 through January 1980 is evaluated. The space heating subsystem met 31 percent of the measured space heating load which was close to the expected 34 percent solar fraction. Although the hot water solar fraction was 79 percent, the overall energy saving capability was reduced because of the low hot water demand. The measured heating subsystem performance would have improved considerably if the uncontrolled losses primarily from transport piping could have been reduced to an inconsequential level. Fossil energy savings of 70.31 million BTUs are estimated.

  4. Standard performance contracting: A tool for both energy efficiency and market transformation?

    SciTech Connect

    Rubinstein, E.; Schiller, S.R.; Jump, D.A.

    1998-07-01

    The California Public Utilities Commission has decided that energy efficiency Public Goods Charges will be used for market transformation programs. During 1998 about 40% of those funds have been allocated to implement Standard Performance Contracting (SPC) projects in the residential and non-residential markets. SPCs are being sold as a means of providing energy efficiency services while transforming and strengthening the market for the service providers. The SPC programs offer standardized pay-for-performance agreements between program administrators and Project Sponsors. This paper reviews the history and design of California SPC programs and evaluates results to date as well as the effectiveness of this program concept. The authors described features of the SPC as well as options that can make SPCs both market transformation and energy efficiency resource programs. Conclusions and recommendations focus on whether SPCs are effective market transformation tools, in which markets can they be effective, and which design features are of key importance.

  5. Leasing-Based Performance Analysis in Energy Harvesting Cognitive Radio Networks.

    PubMed

    Zeng, Fanzi; Xu, Jisheng

    2016-01-01

    In this paper, we consider an energy harvesting cognitive radio network (CRN), where both of primary user (PU) and secondary user (SU) are operating in time slotted mode, and the SU powered exclusively by the energy harvested from the radio signal of the PU. The SU can only perform either energy harvesting or data transmission due to the hardware limitation. In this case, the entire time-slot is segmented into two non-overlapping fractions. During the first sub-timeslot, the SU can harvest energy from the ambient radio signal when the PU is transmitting. In order to obtain more revenue, the PU leases a portion of its time to SU, while the SU can transmit its own data by using the harvested energy. According to convex optimization, we get the optimal leasing time to maximize the SU's throughput while guaranteeing the quality of service (QoS) of PU. To evaluate the performance of our proposed spectrum leasing scheme, we compare the utility of PU and the energy efficiency ratio of the entire networks in our framework with the conventional strategies respectively. The numerical simulation results prove the superiority of our proposed spectrum leasing scheme. PMID:26927131

  6. Leasing-Based Performance Analysis in Energy Harvesting Cognitive Radio Networks

    PubMed Central

    Zeng, Fanzi; Xu, Jisheng

    2016-01-01

    In this paper, we consider an energy harvesting cognitive radio network (CRN), where both of primary user (PU) and secondary user (SU) are operating in time slotted mode, and the SU powered exclusively by the energy harvested from the radio signal of the PU. The SU can only perform either energy harvesting or data transmission due to the hardware limitation. In this case, the entire time-slot is segmented into two non-overlapping fractions. During the first sub-timeslot, the SU can harvest energy from the ambient radio signal when the PU is transmitting. In order to obtain more revenue, the PU leases a portion of its time to SU, while the SU can transmit its own data by using the harvested energy. According to convex optimization, we get the optimal leasing time to maximize the SU’s throughput while guaranteeing the quality of service (QoS) of PU. To evaluate the performance of our proposed spectrum leasing scheme, we compare the utility of PU and the energy efficiency ratio of the entire networks in our framework with the conventional strategies respectively. The numerical simulation results prove the superiority of our proposed spectrum leasing scheme. PMID:26927131

  7. Caffeine-containing energy drink improves physical performance in female soccer players.

    PubMed

    Lara, Beatriz; Gonzalez-Millán, Cristina; Salinero, Juan Jose; Abian-Vicen, Javier; Areces, Francisco; Barbero-Alvarez, Jose Carlos; Muñoz, Víctor; Portillo, Luis Javier; Gonzalez-Rave, Jose Maria; Del Coso, Juan

    2014-05-01

    There is little information about the effects of caffeine intake on female team-sport performance. The aim of this study was to investigate the effectiveness of a caffeine-containing energy drink to improve physical performance in female soccer players during a simulated game. A double-blind, placebo controlled and randomized experimental design was used in this investigation. In two different sessions, 18 women soccer players ingested 3 mg of caffeine/kg in the form of an energy drink or an identical drink with no caffeine content (placebo). After 60 min, they performed a countermovement jump (CMJ) and a 7 × 30 m sprint test followed by a simulated soccer match (2 × 40 min). Individual running distance and speed were measured using GPS devices. In comparison to the placebo drink, the ingestion of the caffeinated energy drink increased the CMJ height (26.6 ± 4.0 vs 27.4 ± 3.8 cm; P < 0.05) and the average peak running speed during the sprint test (24.2 ± 1.6 vs 24.5 ± 1.7 km/h; P < 0.05). During the simulated match, the energy drink increased the total running distance (6,631 ± 1,618 vs 7,087 ± 1,501 m; P < 0.05), the number of sprints bouts (16 ± 9 vs 21 ± 13; P < 0.05) and the running distance covered at >18 km/h (161 ± 99 vs 216 ± 103 m; P < 0.05). The ingestion of the energy drink did not affect the prevalence of negative side effects after the game. An energy drink with a dose equivalent to 3 mg of caffeine/kg might be an effective ergogenic aid to improve physical performance in female soccer players. PMID:24615239

  8. Performance optimization of total momentum filtering double-resonance energy selective electron heat pump

    NASA Astrophysics Data System (ADS)

    Ding, Ze-Min; Chen, Lin-Gen; Ge, Yan-Lin; Sun, Feng-Rui

    2016-04-01

    A theoretical model for energy selective electron (ESE) heat pumps operating with two-dimensional electron reservoirs is established in this study. In this model, a double-resonance energy filter operating with a total momentum filtering mechanism is considered for the transmission of electrons. The optimal thermodynamic performance of the ESE heat pump devices is also investigated. Numerical calculations show that the heating load of the device with two resonances is larger, whereas the coefficient of performance (COP) is lower than the ESE heat pump when considering a single-resonance filter. The performance characteristics of the ESE heat pumps in the total momentum filtering condition are generally superior to those with a conventional filtering mechanism. In particular, the performance characteristics of the ESE heat pumps considering a conventional filtering mechanism are vastly different from those of a device with total momentum filtering, which is induced by extra electron momentum in addition to the horizontal direction. Parameters such as resonance width and energy spacing are found to be associated with the performance of the electron system.

  9. Performance.

    PubMed

    Chambers, David W

    2006-01-01

    High performance is difficult to maintain because it is dynamic and not well understood. Based on a synthesis of many sources, a model is proposed where performance is a function of the balance between capacity and challenge. Too much challenge produces coping (or a crash); excess capacity results in boredom. Over time, peak performance drifts toward boredom. Performance can be managed by adjusting our level of ability, our effort, the opportunity to perform, and the challenge we agree to take on. Coping, substandard but acceptable performance, is common among professionals and its long-term side effects can be debilitating. A crash occurs when coping mechanisms fail. PMID:17020177

  10. Fenestration guideline for energy and daylight efficiency: Evaluation and prediction of performance in office buildings

    NASA Astrophysics Data System (ADS)

    Ko, Dong-Hwan

    The primary significance of this paper is the development of guidelines that can help in defining fenestration properties and design factors to increase building performances. Since the influence of fenestration on energy consumption is well known and proved, in order to encourage the development of appropriate designs to ensure high performance office buildings, fenestration guidelines have been developed. This research consisted of the following two parts. First, in relation to window design of typical office buildings, the main design parameters were considered for (1) daylight simulation using RADIANCE and (2) energy performance using eQUEST, based on the characteristics of the typical office building. Second, window area and properties such as U-factor, SHGC, and VT were considered, because building performance depends on a good configuration of fenestration factors. The main results of this research provide the necessary criteria with respect to fenestration in order to meet daylight requirements and conserve energy. These fenestration criteria are targeted at architects and designers to facilitate them in the selection of the U-factor, SHGC, VT, and window-to-wall ratio (WWR). Further, the application of the abovementioned method can result in more energy-efficient buildings, which, in turn, can assist in attaining an LEED green building rating system certification. In sum, in this research, guidelines to estimate energy conservation and daylight performance have been presented. Further, the use of the simplified method developed in this study can help in designing green buildings and obtaining more LEED credits. It is hoped that these criteria will enable architects to achieve better fenestration designs and ensure that they consider window properties and local climate types in the design process.

  11. Exploring the optimal performances of irreversible single resonance energy selective electron refrigerators

    NASA Astrophysics Data System (ADS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-05-01

    Applying finite-time thermodynamics (FTT) and electronic transport theory, the optimal performances of irreversible single resonance energy selective electron (ESE) refrigerator are analyzed. The effects of heat leakage between two electron reservoirs on optimal performances are discussed. The influences of system operating parameters on cooling load, coefficient of performance (COP), figure of merit and ecological function are demonstrated using numerical examples. Comparative performance analyses among different objective functions show that performance characteristics at maximum ecological function and maximum figure of merit are of great practical significance. Combining the two optimization objectives of maximum ecological function and maximum figure of merit together, more specific optimal ranges of cooling load and COP are obtained. The results can provide some advices to the design of practical electronic machine systems.

  12. Performance of primary repair on colon injuries sustained from low-versus high-energy projectiles.

    PubMed

    Lazovic, Ranko; Radojevic, Nemanja; Curovic, Ivana

    2016-04-01

    Among various reasons, colon injuries may be caused by low- or high-energy firearm bullets, with the latter producing a temporary cavitation phenomenon. The available treatment options include primary repair and two-stage management, but recent studies have shown that primary repair can be widely used with a high success rate. This paper investigates the differences in performance of primary repair on these two types of colon injuries. Two groups of patients who sustained colon injuries due to single gunshot wounds, were retrospectively categorized based on the type of bullet. Primary colon repair was performed in all patients selected based on the inclusion and exclusion criteria (Stone and Fabian's criteria). An almost absolute homogeneity was attained among the groups in terms of age, latent time before surgery, and four trauma indexes. Only one patient from the low-energy firearm projectile group (4%) developed a postsurgical complication versus nine patients (25.8%) from the high-energy group, showing statistically significant difference (p = 0.03). These nine patients experienced the following postsurgical complications: pneumonia, abscess, fistula, suture leakage, and one multiorgan failure with sepsis. Previous studies concluded that one-stage primary repair is the best treatment option for colon injuries. However, terminal ballistics testing determined the projectile's path through the body and revealed that low-energy projectiles caused considerably lesser damage than their high-energy counterparts. Primary colon repair must be performed definitely for low-energy short firearm injuries but very carefully for high-energy injuries. Given these findings, we suggest that the treatment option should be determined based not only on the bullet type alone but also on other clinical findings. PMID:26874437

  13. Performance Results for Massachusetts and Rhode Island Deep Energy Retrofit Pilot Community

    SciTech Connect

    Gates, C.; Neuhauser, K.

    2014-03-01

    Between December, 2009 and December, 2012 42 deep energy retrofit (DER) projects were completed through a DER pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. 37 of these projects were comprehensive retrofits while 5 were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. The 42 DER projects represent 60 units of housing. The comprehensive projects all implemented a consistent 'package' of measures in terms of the performance targeted for major building components. Projects exhibited some variations in the approach to implementing the retrofit package. Pre- and post-retrofit air leakage measurements were performed for each of the projects. Each project also reported information about project costs including identification of energy-related costs. Post-retrofit energy-use data was obtained for 29 of the DER projects. Post-retrofit energy use was analyzed based on the net energy used by the DER project regardless of whether the energy was generated on site or delivered to the site. Homeowner surveys were returned by 12 of the pilot participants. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average. Larger to medium sized homes that successful implement these retrofits can be expected to achieve source EUI that is comparable to Passive House targets for new construction. The community of DER projects show post-retrofit airtightness below 1.5 ACH50 to be eminently achievable.

  14. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  15. Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems

    SciTech Connect

    Conover, David R.; Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Ferreira, Summer; Schoenwald, David

    2014-06-01

    The Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems (PNNL-22010) was first issued in November 2012 as a first step toward providing a foundational basis for developing an initial standard for the uniform measurement and expression of energy storage system (ESS) performance. Its subsequent use in the field and review by the protocol working group and most importantly the users’ subgroup and the thermal subgroup has led to the fundamental modifications reflected in this update of the 2012 Protocol. As an update of the 2012 Protocol, this document (the June 2014 Protocol) is intended to supersede its predecessor and be used as the basis for measuring and expressing ESS performance. The foreword provides general and specific details about what additions, revisions, and enhancements have been made to the 2012 Protocol and the rationale for them in arriving at the June 2014 Protocol.

  16. Engineering Spectral Control Using Front Surface Filters for Maximum TPV Energy Conversion System Performance

    SciTech Connect

    T Rahmlow, Jr; J Lazo-Wasem, E Gratrix; J Azarkevich; E Brown; D DePoy; D Eno; P Fourspring; J Parrington; R Mahorter; B Wernsman

    2004-10-14

    Energy conversion efficiencies of better than 23% have been demonstrated for small scale tests of a few thermophotovoltaic (TPV) cells using front surface, tandem filters [1, 2]. The engineering challenge is to build this level of efficiency into arrays of cells that provide useful levels of energy. Variations in cell and filter performance will degrade TPV array performance. Repeated fabrication runs of several filters each provide an initial quantification of the fabrication variation for front surface, tandem filters for TPV spectral control. For three performance statistics, within-run variation was measured to be 0.7-1.4 percent, and run-to-run variation was measured to be 0.5-3.2 percent. Fabrication runs using a mask have been shown to reduce variation across interference filters from as high as 8-10 percent to less than 1.5 percent. Finally, several system design and assembly approaches are described to further reduce variation.

  17. Audit Report on "Work for Others Performed by the Department of Energy for the Department of Defense"

    SciTech Connect

    2009-10-01

    Pursuant to the Atomic Energy Act of 1954, as amended, and the Economy Act of 1932, the Department of Energy and its semi-autonomous National Nuclear Security Administration (NNSA) provide research and technical assistance to other Federal agencies on a reimbursable, full cost recovery basis through the Work for Others (WFO) program. For the vast majority of WFO technical projects, Department Federal officials furnish administrative project oversight while the actual detailed scientific or technical work is completed by the Department's 'management and operating' contractors. These contractors are awarded a special contract type specifically created under the Federal Acquisition Regulation to manage and operate Department sites and facilities, including sophisticated laboratories and technical centers, on a government-owned, contractor-operated basis. With annual expenditures exceeding $1 billion, the Department of Defense (DoD) is one of the Department's largest WFO customers. Work performed for DoD at the Department's national laboratories and other facilities includes highly technical research in areas such as nuclear weapons systems, counter-terrorism, and in-theater troop support. The National Defense Authorization Act for Fiscal Year (FY) 2009, required the Inspectors General of the DoD and the Department to review procurement methods to determine whether the Department complied with DoD procurement requirements and/or whether alternative procurement policies were in place. In response, we focused our review on projects performed by NNSA because it completes the vast majority (approximately $900 million in FY 2008) of the Department's work for DoD. As part of this effort, and, at the specific request of the DoD Office of Inspector General (DoD OIG), we identified the universe of WFO technical projects that received new funding in the fourth quarter of FY 2008 at NNSA sites. We independently reviewed a judgmental sample of 11 projects selected by the DoD OIG

  18. Active Flash: Performance-Energy Tradeoffs for Out-of-Core Processing on Non-Volatile Memory Devices

    SciTech Connect

    Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S; Desnoyers, Peter; Shipman, Galen M

    2012-01-01

    Tensilica core). Efforts that take advantage of the available computing cycles on the processors on SSDs to run auxiliary tasks other than actual I/O requests are beginning to emerge. Kim et al. investigate database scan operations in the context of processing on the SSDs, and propose dedicated hardware logic to speed up scans. Also, cluster architectures have been explored, which consist of low-power embedded CPUs coupled with small local flash to achieve fast, parallel access to data. Processor utilization on SSD is highly dependent on workloads and, therefore, they can be idle during periods with no I/O accesses. We propose to use the available processing capability on the SSD to run tasks that can be offloaded from the host. This paper makes the following contributions: (1) We have investigated Active Flash and its potential to optimize the total energy cost, including power consumption on the host and the flash device; (2) We have developed analytical models to analyze the performance-energy tradeoffs for Active Flash, by treating the SSD as a blackbox, this is particularly valuable due to the proprietary nature of the SSD internal hardware; and (3) We have enhanced a well-known SSD simulator (from MSR) to implement 'on-the-fly' data compression using Active Flash. Our results provide a window into striking a balance between energy consumption and application performance.

  19. Effects of dietary lysine and energy density on performance and carcass characteristics of finishing pigs fed ractopamine.

    PubMed

    Apple, J K; Maxwell, C V; Brown, D C; Friesen, K G; Musser, R E; Johnson, Z B; Armstrong, T A

    2004-11-01

    Two hundred sixteen crossbred barrows and gilts (84.3 kg BW) were used to test the effects of dietary energy density and lysine:energy ratio (Lys:ME) on the performance, carcass characteristics, and pork quality of finishing pigs fed 10 ppm ractopamine. Pigs were blocked by BW and gender, allotted to 36 pens (six pigs per pen), and pens were assigned randomly within blocks to dietary treatments (as-fed basis) arranged in a 2 x 3 factorial design, with two levels of energy (3.30 or 3.48 Mcal/kg) and three Lys:ME (1.7, 2.4, or 3.1 g lysine/Mcal) levels. Pigs were fed experimental diets for 28 d, and weights and feed disappearance were recorded weekly to calculate ADG, ADFI, and G:F. Upon completion of the feeding trial, pigs were slaughtered and carcass data were collected before fabrication. During carcass fabrication, hams were analyzed for lean composition using a ham electrical conductivity (TOBEC) unit, and loins were collected, vacuum-packaged, and boxed for pork quality data collection. Energy density had no (P > 0.22) effect on ADG or ADFI across the entire 28-d feeding trial; however, pigs fed 3.48 Mcal of ME were more (P < 0.02) efficient than pigs fed 3.30 Mcal of ME. In addition, ADG and G:F increased linearly (P < 0.01) as Lys:ME increased from 1.7 to 3.1 g/Mcal. Carcasses of pigs fed 3.48 Mcal of ME were fatter at the last lumbar vertebrae (P < 0.08) and 10th rib (P < 0.04), resulting in a lower (P < 0.03) predicted fat-free lean yield (FFLY). Conversely, 10th-rib fat thickness decreased linearly (P = 0.02), and LM depth (P < 0.01) and area (P < 0.01) increased linearly, with increasing Lys:ME. Moreover, FFLY (P < 0.01) and actual ham lean yield (P < 0.01) increased as Lys:ME increased in the diet. Dietary energy density had no (P > 0.19) effect on pork quality, and Lys:ME did not (P > 0.20) affect muscle pH, drip loss, color, and firmness scores. Marbling scores, as well as LM lipid content, decreased linearly (P < 0.01) as Lys:ME increased from 1.7 to

  20. Solar energy system performance evaluation: seasonal report for Solaron-Akron, Akron, Ohio

    SciTech Connect

    Not Available

    1980-05-01

    The long-term field performance of the installed system and technical contributions to the definition of techniques and requirements for solar energy system design are reported. The Solar Energy System was designed by Solaron Corporation, Denver, Colorado, to provide an 1840 square foot floor area with space heating and domestic hot water (DHW) for a dual-level single family residence in Akron, Ohio. The Solar Energy System uses air as the heat transport medium, has a 546 square foot flat plate collector array subsystem, a 270 cubic foot rock thermal storage bin subsystem, a domestic hot water preheat tank, pumps, controls and transport lines. The auxiliary space heating subsystem is an air to liquid heat pump coupled with a 1000 gallon water storage tank. Electricity provides auxiliary energy for both space heating and DHW subsystems.

  1. Solar energy system performance evaluation: final report for Honeywell OTS 41, Shenandoah (Newnan), Georgia

    SciTech Connect

    Mathur, A K; Pederson, S

    1982-08-01

    The operation and technical performance of the Solar Operational Test Site (OTS 41) located at Shenandoah, Georgia, are described, based on the analysis of data collected between January and August 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 41 is a hydronic heating and cooling system consisting of 702 square feet of liquid-cooled flat-plate collectors; a 1000-gallon thermal storage tank; a 3-ton capacity organic Rankine-cycle-engine-assisted air conditioner; a water-to-air heat exchanger for solar space heating; a finned-tube coil immersed in the storage tank to preheat water for a gas-fired hot water heater; and associated piping, pumps, valves, and controls. The solar system has six basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 7 months of the Operational Test Period, the solar system collected 53 MMBtu of thermal energy of the total incident solar energy of 219 MMBtu and provided 11.4 MMBtu for cooling, 8.6 MMBtu for heating, and 8.1 MMBtu for domestic hot water. The projected net annual energy savings due to the solar system were approximately 50 MMBtu of fossil energy (49,300 cubic feet of natural gas) and a loss of 280 kWh(e) of electrical energy.

  2. Geothermal heat pump energy savings performance contract at Fort Polk, LA: Lessons learned

    SciTech Connect

    Shonder, J.A.; Hughes, P.J.; Gordon, R.; Giffin, T.

    1997-08-01

    At Fort Polk, LA the space conditioning systems of 4,003 military family housing units have been converted to geothermal heat pumps (GHP) under an energy savings performance contract (ESPC). At the same time, other efficiency measures, such as compact fluorescent lights (CFLs), low-flow shower heads, and attic insulation, were installed. An independent evaluation of the Fort Polk ESPC was carried out. Findings indicate that the project has resulted in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing, for a typical meteorological year. Peak electrical demand has also been reduced by 6,541 kW, which is 39.6% of the pre-retrofit peak demand. Natural gas savings are about 260,000 therms per year. In addition, the ESPC has allowed the Army to effectively cap its future expenditures for family housing HVAC maintenance at about 77% of its previous costs. Given these successful results, the Fort Polk ESPC can provide a model for other ESPCs in both the public and the private sectors. The purpose of this paper is to outline the method by which the ESPC was engineered and implemented, both from the standpoint of the facility owner (the US Army) and the energy services company (ESCO) which is carrying out the contract. The lessons learned from this experience should be useful to other owners, ESCOs and investors in the implementation of future ESPCs. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  3. Project on Restaurant Energy Performance: end-use monitoring and analysis

    SciTech Connect

    Claar, C.N.; Mazzucchi, R.P.; Heidell, J.A.

    1985-05-01

    Although energy bills for restaurants throughout the United States exceed 5 billion dollars annually, very little has been documented with respect to when and how restaurants use energy, or how such use can be reduced cost-effectively. This report summarizes the results of a multiyear collaborative research effort, designed to collect information on end-use energy consumption. Objective is to reveal the quantities and profiles of energy consumption of typical food service operations by time of day and end use. This information, when examined in conjunction with building characteristics, allows detailed study of energy use cause and effect and energy conservation potential. Seven representative monitoring sites were selected, a computerized data acquisition network was designed and implemented, and detailed energy performance was compiled for a 1 year period (July 1983 through June 1984). Each of the seven facilities monitored was selected to represent the seven most common restaurant types and to provide information on a wide variety of commonly used restaurant equipment. Preliminary findings are presented.

  4. Evaluating the performance of a MOSFET dosimeter at diagnostic X-ray energies for interventional radiology.

    PubMed

    Chida, Koichi; Inaba, Youhei; Masuyama, Hanako; Yanagawa, Isao; Mori, Issei; Saito, Haruo; Maruoka, Shin; Zuguchi, Masayuki

    2009-01-01

    For reducing the risk of skin injury during interventional radiology (IR) procedures, it has been suggested that physicians track patients' exposure doses. The metal-oxide semiconductor field effect transistor (MOSFET) dosimeter is designed to measure patient exposure dose during radiotherapy applications at megavoltage photon energies. Our purpose in this study was to evaluate the feasibility of using a MOSFET dosimeter (OneDose system) to measure patients' skin dose during exposure to diagnostic X-ray energies used in IR. The response of the OneDose system was almost constant at diagnostic X-ray energies, although the sensitivity was higher than that at megavoltage photon energies. We found that the angular dependence was minimal at diagnostic X-ray energies. The OneDose is almost invisible on X-ray images at diagnostic energies. Furthermore, the OneDose is easy to handle. The OneDose sensor performs well at diagnostic X-ray energies, although real-time measurements are not feasible. Thus, the OneDose system may prove useful in measuring patient exposure dose during IR. PMID:20821130

  5. The energy performance of electrochromic windows in heating-dominated geographic locations

    SciTech Connect

    Sullivan, R.; Lee, E.S.; Rubin, M.; Selkowitz, S.

    1996-01-01

    This paper presents the results of a study investigating the energy performance of electrochromic windows in heating-dominated geographic locations under a variety of state-switching control strategies. The authors used the DOE-2.1E energy simulation program to analyze the annual heating, cooling and lighting energy use and performance as a function of glazing type, size, and electrochromic control strategy. They simulated a prototypical commercial office building module located in Madison, Wisconsin. Control strategies analyzed were based on daylight illuminance, incident total solar radiation, and space cooling load. The results show that overall energy performance is best if the electrochromic is left in its clear or bleached state during the heating season, but controlled during the cooling season using daylight illuminance as a control strategy. Even in such heating dominated locations as madison, there is still a well-defined cooling season when electrochromic switching will be beneficial. However, having the electrochromic remain in its bleached state during the winter season may result in glare and visual comfort problems for occupants much in the same way as conventional glazings.

  6. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    NASA Technical Reports Server (NTRS)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  7. Using EnergyPlus to Perform Dehumidification Analysis on Building America Homes: Preprint

    SciTech Connect

    Fang, X.; Winkler, J.; Christensen, D.

    2011-03-01

    A parametric study was conducted using EnergyPlus version 6.0 to investigate humidity issues on a typical mid-1990s reference home, a 2006 International Energy Conservation Code home, and a high-performance home in a hot-humid climate. The impacts of various dehumidification equipment and controls are analyzed on the high performance home. The study examined the combined effects of infiltration and mechanical ventilation with balanced and unbalanced mechanical ventilation systems. Indoor relative humidity excursions were examined; specifically, the number of excursions, average excursion length, and maximum excursion length. Space relative humidity, thermal comfort, and whole-house source energy consumption were analyzed for indoor relative humidity set points of 50%, 55%, and 60%. The study showed and explained why similar trends of high humidity were observed in all three homes regardless of energy efficiency, and why humidity problems are not necessarily unique in high-performance homes. Thermal comfort analysis indicated that occupants are unlikely to notice indoor humidity problems. The study confirmed that supplemental dehumidification should be provided to maintain space relative humidity below 60% in a hot-humid climate.

  8. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    SciTech Connect

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar; Fueyo, Norberto

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)

  9. Standardization of the energy performance of photovoltaic modules in real operating conditions

    NASA Astrophysics Data System (ADS)

    Viganó, Davide; Kenny, Robert P.; Müllejans, Harald; Alimonti, Gianluca

    2014-12-01

    The performance of a PV module at STC [1] is a useful indicator for comparing the peak performance of different module types, but on its own is not sufficient to accurately predict how much energy a module will deliver in the field when subjected to a wide range of real operating conditions [2]. An Energy Rating approach has to be preferred for that aim. It is currently under development the standard series IEC 61853 on Energy Rating, for which only part 1 [3] has been issued. It describes methods to characterize the module performance as a function of irradiance and temperature. The reproducibility of the power matrix measurements obtained by the three different methods specified in the standard, namely: under natural sunlight using a tracking system; under natural sunlight without tracker; and a large area pulsed solar simulator of Class AAA were evaluated and discussed [4,5]. The work here presented is focused on the second method listed above, which explores the real working conditions for a PV device and therefore it represents the situation where Energy Rating procedures are expected to give the largest deviations from the STC predictions. The system for continuous monitoring of module performances, already implemented at ESTI, has been recently replaced with a new system having a number of improvements described in the following. The two system results have been compared showing a discrete compatibility. The two power matrices are then merged together using a weighted average and compared to those acquired with the other two remaining "ideal" systems. An interesting tendency seems to come up from this comparison, making the power rating under real operating conditions an essential procedure for energy rating purposes.

  10. Navistar eStar Vehicle Performance Evaluation - Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect

    Ragatz, Adam

    2013-07-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  11. Implementing the Data Center Energy Productivity Metric in a High Performance Computing Data Center

    SciTech Connect

    Sego, Landon H.; Marquez, Andres; Rawson, Andrew; Cader, Tahir; Fox, Kevin M.; Gustafson, William I.; Mundy, Christopher J.

    2013-06-30

    As data centers proliferate in size and number, the improvement of their energy efficiency and productivity has become an economic and environmental imperative. Making these improvements requires metrics that are robust, interpretable, and practical. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented, high-performance computing data center. We found that DCeP was successful in clearly distinguishing different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and between data centers.

  12. Energy consumption and performance models of small Philippine-built rice mills

    SciTech Connect

    Paras, A.S. Jr.

    1984-01-01

    Two simulation models were developed for small rice mills of the conventional disc-cone and rubber-roll equipped designs that range from 0.3 to 1.8 tons-per-hour capacity. These sizes comprise a large proportion of the rice mills in the Philippines. The first, a computer model, evaluated these two types of mills with regard to energy consumption, total and head grain recovery, and processing time. Field and laboratory data taken by research workers and direct measurements by the author were compiled and employed in the development of equations and distribution functions for the variables that make up the subroutines for the models. The results indicated that the energy consumption of small rice mills in the Philippines could be reduced by 5 to 19%, depending on size, without loss of quality in good-performance mills by using one bigger huller and an adjustable separator, and that the output quality of poor performance mills could be improved with just 4% increase in energy consumption by adding a second stage whitener. The second model estimated the cost of milled rice by utilizing Kirchoff's current and voltage laws and energy conservation principles to derive a cost equation involving the material energy and processing cost.

  13. An Overview of Brazilian Developments in Beamed Energy Aerospace Propulsion and Vehicle Performance Control

    NASA Astrophysics Data System (ADS)

    Minucci, M. A. S.

    2008-04-01

    Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies—IEAv, in collaboration with the Rensselaer Polytechnic Institute—RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO2 TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO2 TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.

  14. Data in support of energy performance of double-glazed windows.

    PubMed

    Shakouri, Mahmoud; Banihashemi, Saeed

    2016-06-01

    This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows. PMID:27115028

  15. An Overview of Brazilian Developments in Beamed Energy Aerospace Propulsion and Vehicle Performance Control

    SciTech Connect

    Minucci, M. A. S.

    2008-04-28

    Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies--IEAv, in collaboration with the Rensselaer Polytechnic Institute--RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO{sub 2} TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO{sub 2} TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.

  16. Data in support of energy performance of double-glazed windows

    PubMed Central

    Shakouri, Mahmoud; Banihashemi, Saeed

    2016-01-01

    This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy (“Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network” (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], “Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates” (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows. PMID:27115028

  17. Environmental and Economic Performance of Commercial-scale Solar Photovoltaic Systems: A Field Study of Complex Energy Systems at the Desert Research Institute (DRI)

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2014-12-01

    Solar photovoltaic (PV) systems are being aggressively deployed at residential, commercial, and utility scales to complement power generation from conventional sources. This is motivated both by the desire to reduce carbon footprints and by policy-driven financial incentives. Although several life cycle analyses (LCA) have investigated environmental impacts and energy payback times of solar PV systems, most results are based on hypothetical systems rather than actual, deployed systems that can provide measured performance data. Over the past five years, Desert Research Institute (DRI) in Nevada has installed eight solar PV systems of scales from 3 to 1000 kW, the sum of which supply approximately 40% of the total power use at DRI's Reno and Las Vegas campuses. The goal of this work is to explore greenhouse gas (GHG) impacts and examine the economic performance of DRI's PV systems by developing and applying a comprehensive LCA and techno-economic (TEA) model. This model is built using data appropriate for each type of panel used in the DRI systems. Power output is modeled using the National Renewable Energy Laboratory (NREL) model PVWatts. The performance of PVWatts is verified by the actual measurements from DRI's PV systems. Several environmental and economic metrics are quantified for the DRI systems, including life cycle GHG emissions and energy return. GHG results are compared with Nevada grid-based electricity. Initial results indicate that DRI's solar-derived electricity offers clear GHG benefits compared to conventional grid electricity. DRI's eight systems have GHG intensity values of 29-56 gCO2e/kWh, as compared to the GHG intensity of 212 gCO2e/kWh of national average grid power. The major source of impacts (82-92% of the total) is the upstream life cycle burden of manufacturing PV panels, which are made of either mono-crystalline or multi-crystalline silicon. Given the same type of PV panel, GHG intensity decreases as the scale of the system increases

  18. Enhancing physical performance in elite junior tennis players with a caffeinated energy drink.

    PubMed

    Gallo-Salazar, César; Areces, Francisco; Abián-Vicén, Javier; Lara, Beatriz; Salinero, Juan José; Gonzalez-Millán, Cristina; Portillo, Javier; Muñoz, Victor; Juarez, Daniel; Del Coso, Juan

    2015-04-01

    The aim of this study was to investigate the effectiveness of a caffeinated energy drink to enhance physical performance in elite junior tennis players. In 2 different sessions separated by 1 wk, 14 young (16 ± 1 y) elite-level tennis players ingested 3 mg caffeine per kg body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed a handgrip-strength test, a maximal-velocity serving test, and an 8 × 15-m sprint test and then played a simulated singles match (best of 3 sets). Instantaneous running speed during the matches was assessed using global positioning (GPS) devices. Furthermore, the matches were videotaped and notated afterward. In comparison with the placebo drink, the ingestion of the caffeinated energy drink increased handgrip force by ~4.2% ± 7.2% (P = .03) in both hands, the running pace at high intensity (46.7 ± 28.5 vs 63.3 ± 27.7 m/h, P = .02), and the number of sprints (12.1 ± 1.7 vs 13.2 ± 1.7, P = .05) during the simulated match. There was a tendency for increased maximal running velocity during the sprint test (22.3 ± 2.0 vs 22.9 ± 2.1 km/h, P = .07) and higher percentage of points won on service with the caffeinated energy drink (49.7% ± 9.8% vs 56.4% ± 10.0%, P = .07) in comparison with the placebo drink. The energy drink did not improve ball velocity during the serving test (42.6 ± 4.8 vs 42.7 ± 5.0 m/s, P = .49). The preexercise ingestion of caffeinated energy drinks was effective to enhance some aspects of physical performance of elite junior tennis players. PMID:25158287

  19. Solar-energy-system performance evaluation. San Anselmo School, San Jose, California, April 1981-March 1982

    NASA Astrophysics Data System (ADS)

    Pakkala, P. A.

    The San Anselmo School is a one story brick elementary school building in San Jose, California. The active solar energy system is designed to supply 70% of the space heating and 72% of the cooling load. It is equipped with 3740 square feet of evacuated tube collectors, a 2175 gallon tank for heat storage, a solar supplied absorption chiller, and four auxiliary gas fired absorption chillers/heaters. The measured solar fraction of 19% is far below the expected values and is attributed to severe system control and HVAC problems. Other performance data given for the year include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Also tabulated are monthly performance data for the overall solar energy system, collector subsystem, space heating and cooling subsystems. Typical hourly operation data for a day are tabulated, including hourly isolation, collector array temperatures (inlet and outlet), and storage fluid temperatures. The solar energy use and percentage of losses are also graphed.

  20. Protocol for uniformly measuring and expressing the performance of energy storage systems.

    SciTech Connect

    Ferreira, Summer Rhodes; Rose, David Martin; Schoenwald, David Alan; Bray, Kathy; Conover, David; Kintner-Meyer, Michael; Viswanathan, Vilayanur

    2013-08-01

    The U.S. Department of Energy's Energy Storage Systems (ESS) Program, through the support of Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL), facilitated the development of the protocol provided in this report. The focus of the protocol is to provide a uniform way of measuring, quantifying, and reporting the performance of ESSs in various applications; something that does not exist today and, as such, is hampering the consideration and use of this technology in the market. The availability of an application-specific protocol for use in measuring and expressing performance-related metrics of ESSs will allow technology developers, power-grid operators and other end-users to evaluate the performance of energy storage technologies on a uniform and comparable basis. This will help differentiate technologies and products for specific application(s) and provide transparency in how performance is measured. It also will assist utilities and other consumers of ESSs to make more informed decisions as they consider the potential application and use of ESSs, as well as form the basis for documentation that might be required to justify utility investment in such technologies.