Science.gov

Sample records for actual engine testing

  1. J-2 Engine Test

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Smokeless flame juts from the diffuser of a unique vacuum chamber in which the upper stage rocket engine, the hydrogen fueled J-2, was tested at a simulated space altitude in excess of 60,000 feet. The smoke you see is actually steam. In operation, vacuum is established by injecting steam into the chamber and is maintained by the thrust of the engine firing through the diffuser. The engine was tested in this environment for start, stop, coast, restart, and full-duration operations. The chamber was located at Rocketdyne's Propulsion Field Laboratory, in the Santa Susana Mountains, near Canoga Park, California. The J-2 engine was developed by Rocketdyne for the Marshall Space Flight Center.

  2. Virtual Turbine Engine Test Bench Using MGET Test Device

    NASA Astrophysics Data System (ADS)

    Kho, Seonghee; Kong, Changduk; Ki, Jayoung

    2015-05-01

    Test device using virtual engine simulator can help reduce the number of engine tests through tests similar to the actual engine tests and repeat the test under the same condition, and thus reduce the engine maintenance and operating costs [1]. Also, as it is possible to easily implement extreme conditions in which it is hard to conduct actual tests, it can prevent engine damages that may happen during the actual engine test under such conditions. In this study, an upgraded MGET test device was developed that can conduct both real and virtual engine test by applying real-time engine model to the existing MGET test device that was developed and has been sold by the Company. This newly developed multi-purpose MGET test device is expected to be used for various educational and research purposes.

  3. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  4. Stability Tests with Actual Savannah River Site Radioactive Waste

    SciTech Connect

    Walker, D.D.

    2002-09-09

    solutions in two laboratory experiments. The first experiment tested four waste solutions for supersaturation of aluminum by monitoring the aluminum concentration after seeding with gibbsite. The second experiment tested two waste samples for precipitation of aluminosilicates by heating the solutions to accelerate solids formation. The results of the experiments with actual waste solutions are supported in this report.

  5. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  6. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  7. Liquid Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  8. Actualization of Competencies of Graduates-Engineers in Russia

    ERIC Educational Resources Information Center

    Ivashova, Valentina A.; Dub, Galina V.; Kenina, Diana S.; Kosintseva, Yulia F.; Migatcheva, Marina V.

    2016-01-01

    The article presents the results of the empirical research relevant to the labor market competencies of graduates with the major in engineering. Subjective preferences of employers shape requirements for the personal and professional characteristics of a graduate. In authors' opinion, the professional competences of engineers stated in educational…

  9. Actual curriculum development practices instrument: Testing for factorial validity

    NASA Astrophysics Data System (ADS)

    Foi, Liew Yon; Bakar, Kamariah Abu; Hamzah, Mohd Sahandri Gani; Alwi, Nor Hayati

    2014-09-01

    The Actual Curriculum Development Practices Instrument (ACDP-I) was developed and the factorial validity of the ACDP-I was tested (n = 107) using exploratory factor analysis procedures in the earlier work of [1]. Despite the ACDP-I appears to be content and construct valid instrument with very high internal reliability qualities for using in Malaysia, the accumulated evidences are still needed to provide a sound scientific basis for the proposed score interpretations. Therefore, the present study addresses this concern by utilising the confirmatory factor analysis to further confirm the theoretical structure of the variable Actual Curriculum Development Practices (ACDP) and enrich the psychometrical properties of ACDP-I. Results of this study have practical implication to both researchers and educators whose concerns focus on teachers' classroom practices and the instrument development and validation process.

  10. Test pilot and engineer

    NASA Technical Reports Server (NTRS)

    1922-01-01

    Goggles at the ready, this Langley test pilot and engineer conducted research business high above the ground. Photograph published in Winds of Change, 75th Anniversary NASA publication, by James Schultz (page 24). This photograph is also published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen (page 163). In the early years the flight research team was usually made up of a test pilot (Thomas Carroll, front cockpit) and an engineer (John W. Gus Crowley,Jr.).

  11. What do tests of formal reasoning actually measure?

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    Tests of formal operational reasoning derived from Piagetian theory have been found to be effective predictors of academic achievement. Yet Piaget's theory regarding the underlying nature of formal operations and their employment in specific contexts has run into considerable empirical difficulty. The primary purpose of this study was to present the core of an alternative theory of the nature of advanced scientific reasoning. That theory, referred to as the multiple-hypothesis theory, argues that tests of formal operational reasoning actually measure the extent to which persons have acquired the ability to initiate reasoning with more than one specific antecedent condition, or if they are unable to imagine more than one antecedent condition, they are aware that more than one is possible; therefore conclusions that are drawn are tempered by this possibility. As a test of this multiple-hypothesis theory of advanced reasoning and the contrasting Piagetian theory of formal operations, a sample of 922 college students were first classified as concrete operational, transitional, or formal operational, based upon responses to standard Piagetian measures of formal operational reasoning. They were then administered seven logic tasks. Actual response patterns to the tasks were analyzed and found to be similar to predicted response patterns derived from the multiple-hypothesis theory and were different from those predicted by Piagetian theory. Therefore, support was obtained for the multiple-hypothesis theory. The terms intuitive and reflective were suggested to replace the terms concrete operational and formal operational to refer to persons at varying levels of intellectual development.

  12. Space Electronic Test Engineering

    NASA Technical Reports Server (NTRS)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  13. Diesel Engine Idling Test

    SciTech Connect

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  14. Breeder Reprocessing Engineering Test

    SciTech Connect

    Burgess, C.A.; Meacham, S.A.

    1984-01-01

    The Breeder Reprocessing Engineering Test (BRET) is a developmental activity of the US Department of Energy to demonstrate breeder fuel reprocessing technology while closing the fuel cycle for the Fast Flux Test Facility (FFTF). It will be installed in the existing Fuels and Materials Examination Facility (FMEF) at the Hanford Site near Richland, Washington, The major objectives of BRET are: (1) close the US breeder fuel cycle; (2) develop and demonstrate reprocessing technology and systems for breeder fuel; (3) provide an integrated test of breeder reactor fuel cycle technology - rprocessing, safeguards, and waste management. BRET is a joint effort between the Westinghouse Hanford Company and Oak Ridge National Laboratory. 3 references, 2 figures.

  15. Engine Test and Measurements

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou

    1999-01-01

    Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.

  16. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  17. Using lysimeters to test the Penman Monteith actual evapotranspiration.

    NASA Astrophysics Data System (ADS)

    Ben Asher, Jiftah; Volinski, Roman; Zilberman, Arkadi; Bar Yosef, Beni; Silber, Avner

    2015-04-01

    Differences in actual transpiration (ETa) of banana plants were quantified in a lysimeter experiment. ETA was computed using instantaneous data from two weighing lysimeters and compared to PM (Penman-Monteith) model for ETa. Two critical problems were faced in this test. A) Estimating canopy and aerodynamic resistances ("rc" and "ra" respectively ) and B) converting the lysimeter changes in water volume ( LYv cm3 ) to ETa length units ( cm ). The two unknowns " rc" and "ra" were obtained from continuous measurements of the differences between canopy and air temperature (Tc - Ta). This difference was established by means of the infrared thermometry which was followed by numerical and analytical calculation of ETa using the modification suggested by R. Jackson to the PM model. The conversion of lysimeter volumetric units (LYv) to ETa length units was derived from the slope of cumulative LYv/ETa. This relationship was significantly linear (r2=0.97and 0.98.). Its slope was interpreted as "evaporating leaf area" which accounted for 1.8E4 cm2 in lysimeter 1 and 2.3E4 cm2.in lysimeter 2 . The comparison between LYv and PM model was acceptable even under very low ETa. The average of two lysimeters was 1.1mm/day (1.4 mm/day , LYv 1 and 0.8 LYv 2) while ETa calculated on the basis of PM model was 1.2 mm/day. It was concluded that although lysimeters are most accurate systems to measure ETa one of its disadvantages ( beside the high cost) is the volumetric output that in many cases should be supported by a one dimensional energy balance system. The PM model was found to be a reliable complementary tool to convert lysimeters volumetric output into conventional length units of ETa.

  18. Ion Engine Test Firing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image of a xenon ion engine, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Ion propulsion was first proposed in the 1950s and NASA performed experiments on this highly efficient propulsion system in the 1960s, but it was not used aboard an American spacecraft until the 1990s. Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, DC. The California Institute of Technology in Pasadena manages JPL for NASA. The almost imperceptible thrust from the ion propulsion system is equivalent to the pressure exerted by a sheet of paper held in the palm of your hand. The ion engine is very slow to pick up speed, but over the long haul it can deliver 10 times as much thrust per pound of fuel as more traditional rockets. Unlike the fireworks of most chemical rockets using solid or liquid fuels, the ion drive emits only an eerie blue glow as ionized (electrically charged) atoms of xenon are pushed out of the engine. Xenon is the same gas found in photo flash tubes and many lighthouse bulbs.

  19. Comparative Analysis of Thermoeconomic Evaluation Criteria for an Actual Heat Engine

    NASA Astrophysics Data System (ADS)

    Özel, Gülcan; Açıkkalp, Emin; Savaş, Ahmet Fevzi; Yamık, Hasan

    2016-07-01

    In the present study, an actual heat engine is investigated by using different thermoeconomic evaluation criteria in the literature. A criteria that has not been investigated in detail is considered and it is called as ecologico-economical criteria (F_{EC}). It is the difference of power cost and exergy destruction rate cost of the system. All four criteria are applied to an irreversible Carnot heat engine, results are presented numerically and some suggestions are made.

  20. AJ26 Rocket Engine Test

    NASA Video Gallery

    Engineers at NASA’s John C. Stennis Space Center conducts the second in a series of verification tests on an Aerojet AJ26 engine that will power the first stage of the Orbital Sciences Corporatio...

  1. Solar-thermal engine testing

    NASA Astrophysics Data System (ADS)

    Tucker, Stephen; Salvail, Pat

    2002-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle, collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 °F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (Isp). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemically vapor deposited (CVD) rhenium. The engine ``module'' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine Isp. In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects

  2. EUV Engineering Test Stand

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Replogle, W.C.; Klebanoff, L.E.; Wronosky, J.B.; Hale, L.C.; Chapman, H.N.; Taylor, J.S.; Folta, J.A.; Montcalm, C.; Hudyma, R.M.

    2000-02-14

    The Engineering Test Stand (ETS) is an EUV laboratory lithography tool. The purpose of the ETS is to demonstrate EUV full-field imaging and provide data required to support production-tool development. The ETS is configured to separate the imaging system and stages from the illumination system. Environmental conditions can be controlled independently in the two modules to maximize EUV throughput and environmental control. A source of 13.4 nm radiation is provided by a laser plasma source in which a YAG laser beam is focused onto a xenon-cluster target. A condenser system, comprised of multilayer-coated mirrors and grazing-incidence mirrors, collects the EUV radiation and directs it onto a-reflecting reticle. A four-mirror, ring-field optical system, having a numerical aperture of 0.1, projects a 4x-reduction image onto the wafer plane. This design corresponds to a resolution of 70nm at a k{sub 1} of 0.52. The ETS is designed to produce full-field images in step: and-scan mode using vacuum-compatible, one-dimension-long-travel magnetically levitated stages for both reticle and wafer. Reticle protection is incorporated into the ETS design. This paper provides a system overview of the ETS design and specifications.

  3. CHARACTERIZATION AND ACTUAL WASTE TEST WITH TANK 5F SAMPLES

    SciTech Connect

    Hay, M. S.; Crapse, K. P.; Fink, S. D.; Pareizs, J. M.

    2007-08-30

    The initial phase of bulk waste removal operations was recently completed in Tank 5F. Video inspection of the tank indicates several mounds of sludge still remain in the tank. Additionally, a mound of white solids was observed under Riser 5. In support of chemical cleaning and heel removal programs, samples of the sludge and the mound of white solids were obtained from the tank for characterization and testing. A core sample of the sludge and Super Snapper sample of the white solids were characterized. A supernate dip sample from Tank 7F was also characterized. A portion of the sludge was used in two tank cleaning tests using oxalic acid at 50 C and 75 C. The filtered oxalic acid from the tank cleaning tests was subsequently neutralized by addition to a simulated Tank 7F supernate. Solids and liquid samples from the tank cleaning test and neutralization test were characterized. A separate report documents the results of the gas generation from the tank cleaning test using oxalic acid and Tank 5F sludge. The characterization results for the Tank 5F sludge sample (FTF-05-06-55) appear quite good with respect to the tight precision of the sample replicates, good results for the glass standards, and minimal contamination found in the blanks and glass standards. The aqua regia and sodium peroxide fusion data also show good agreement between the two dissolution methods. Iron dominates the sludge composition with other major contributors being uranium, manganese, nickel, sodium, aluminum, and silicon. The low sodium value for the sludge reflects the absence of supernate present in the sample due to the core sampler employed for obtaining the sample. The XRD and CSEM results for the Super Snapper salt sample (i.e., white solids) from Tank 5F (FTF-05-07-1) indicate the material contains hydrated sodium carbonate and bicarbonate salts along with some aluminum hydroxide. These compounds likely precipitated from the supernate in the tank. A solubility test showed the material

  4. Has the connection between polyploidy and diversification actually been tested?

    PubMed

    Kellogg, Elizabeth A

    2016-04-01

    Many major clades of angiosperms have several whole genome duplications (polyploidization events) in their distant past, suggesting that polyploidy drives or at least permits diversification. However, data on recently diverged groups are more equivocal, finding little evidence of elevated diversification following polyploidy. The discrepancy may be attributable at least in part to methodology. Many studies use indirect methods, such as chromosome numbers, genome size, and Ks plots, to test polyploidy, although these approaches can be misleading, and often lack sufficient resolution. A direct test of diversification following polyploidy requires a sequence-based approach that traces the history of nuclear genomes rather than species. These methods identify the point of coalescence of ancestral genomes, but may be misleading about the time and thus the extent of diversification. Limitations of existing methods mean that the connection between polyploidy and diversification has not been rigorously tested and remains unknown.

  5. Systems Engineering, Quality and Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2015-01-01

    AS9100 has little to say about how to apply a Quality Management System (QMS) to aerospace test programs. There is little in the quality engineering Body of Knowledge that applies to testing, unless it is nondestructive examination or some type of lab or bench testing. If one examines how the systems engineering processes are implemented throughout a test program; and how these processes can be mapped to AS9100, a number of areas for involvement of the quality professional are revealed.

  6. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  7. 29 CFR 801.24 - Rights of examinee-actual testing phase.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... examinee and then analyzes the charts derived from the test. Throughout the actual testing phase, the... nature and characteristics of the examination and the instruments involved, as prescribed in section...

  8. 29 CFR 801.24 - Rights of examinee-actual testing phase.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... examinee and then analyzes the charts derived from the test. Throughout the actual testing phase, the... nature and characteristics of the examination and the instruments involved, as prescribed in section...

  9. 29 CFR 801.24 - Rights of examinee-actual testing phase.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... examinee and then analyzes the charts derived from the test. Throughout the actual testing phase, the... nature and characteristics of the examination and the instruments involved, as prescribed in section...

  10. Solar-Thermal Engine Testing

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational

  11. NATO Engine Test AT RRAD

    SciTech Connect

    Harry M. Meyer III

    2003-03-26

    This report details the reasons for and the outcome of a diesel engine test performed at the Red River Army Depot (RRAD) as part of a program called the Bradley Fighting Vehicle Component Reclamation through Thermal spray coating Technology Program.

  12. ENGINEERING TEST REACTOR

    DOEpatents

    De Boisblanc, D.R.; Thomas, M.E.; Jones, R.M.; Hanson, G.H.

    1958-10-21

    Heterogeneous reactors of the type which is both cooled and moderated by the same fluid, preferably water, and employs highly enriched fuel are reported. In this design, an inner pressure vessel is located within a main outer pressure vessel. The reactor core and its surrounding reflector are disposed in the inner pressure vessel which in turn is surrounded by a thermal shield, Coolant fluid enters the main pressure vessel, fiows downward into the inner vessel where it passes through the core containing tbe fissionable fuel assemblies and control rods, through the reflector, thence out through the bottom of the inner vessel and up past the thermal shield to the discharge port in the main vessel. The fuel assemblles are arranged in the core in the form of a cross having an opening extending therethrough to serve as a high fast flux test facility.

  13. Vulcain engine tests prove reliability

    NASA Astrophysics Data System (ADS)

    Covault, Craig

    1994-04-01

    The development of the oxygen/hydrogen Vulcain first-stage engine for the Ariane 5 involves more than 30 European companies and $1.19-billion. These companies are using existing technology to produce a low-cost system with high thrust and reliability. This article describes ground test of this engine, and provides a comparison of the Vulcain's capabilities with the capabilities of other systems. A list of key Vulcain team members is also given.

  14. Pulse Detonation Engine Test Bed Developed

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    2002-01-01

    A detonation is a supersonic combustion wave. A Pulse Detonation Engine (PDE) repetitively creates a series of detonation waves to take advantage of rapid burning and high peak pressures to efficiently produce thrust. NASA Glenn Research Center's Combustion Branch has developed a PDE test bed that can reproduce the operating conditions that might be encountered in an actual engine. It allows the rapid and cost-efficient evaluation of the technical issues and technologies associated with these engines. The test bed is modular in design. It consists of various length sections of both 2- and 2.6- in. internal-diameter combustor tubes. These tubes can be bolted together to create a variety of combustor configurations. A series of bosses allow instrumentation to be inserted on the tubes. Dynamic pressure sensors and heat flux gauges have been used to characterize the performance of the test bed. The PDE test bed is designed to utilize an existing calorimeter (for heat load measurement) and windowed (for optical access) combustor sections. It uses hydrogen as the fuel, and oxygen and nitrogen are mixed to simulate air. An electronic controller is used to open the hydrogen and air valves (or a continuous flow of air is used) and to fire the spark at the appropriate times. Scheduled tests on the test bed include an evaluation of the pumping ability of the train of detonation waves for use in an ejector and an evaluation of the pollutants formed in a PDE combustor. Glenn's Combustion Branch uses the National Combustor Code (NCC) to perform numerical analyses of PDE's as well as to evaluate alternative detonative combustion devices. Pulse Detonation Engine testbed.

  15. 40 CFR 87.60 - Testing engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Testing engines. 87.60 Section 87.60... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures § 87.60 Testing engines. (a) Use the equipment... reference in § 87.8), as applicable, to demonstrate whether engines meet the gaseous emission...

  16. 40 CFR 87.60 - Testing engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Testing engines. 87.60 Section 87.60... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures § 87.60 Testing engines. (a) Use the equipment... reference in § 87.8), as applicable, to demonstrate whether engines meet the gaseous emission...

  17. Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    SciTech Connect

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Geeting, John GH; Hallen, Richard T.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Snow, Lanee A.; Swoboda, Robert G.

    2009-02-20

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.

  18. Characterization, Leaching, and Filtration Testing for Tributyl Phosphate (TBP, Group 7) Actual Waste Sample Composites

    SciTech Connect

    Edwards, Matthew K.; Billing, Justin M.; Blanchard, David L.; Buck, Edgar C.; Casella, Amanda J.; Casella, Andrew M.; Crum, J. V.; Daniel, Richard C.; Draper, Kathryn E.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.; Swoboda, Robert G.

    2009-03-09

    .A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. The tributyl phosphate sludge (TBP, Group 7) is the subject of this report. The Group 7 waste was anticipated to be high in phosphorus as well as aluminum in the form of gibbsite. Both are believed to exist in sufficient quantities in the Group 7 waste to address leaching behavior. Thus, the focus of the Group 7 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  19. Testing two temporal upscaling schemes for the estimation of the time variability of the actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.

    2015-10-01

    Temporal availability of grapes actual evapotranspiration is an emerging issue since vineyards farms are more and more converted from rainfed to irrigated agricultural systems. The manuscript aims to verify the accuracy of the actual evapotranspiration retrieval coupling a single source energy balance approach and two different temporal upscaling schemes. The first scheme tests the temporal upscaling of the main input variables, namely the NDVI, albedo and LST; the second scheme tests the temporal upscaling of the energy balance output, the actual evapotranspiration. The temporal upscaling schemes were implemented on: i) airborne remote sensing data acquired monthly during a whole irrigation season over a Sicilian vineyard; ii) low resolution MODIS products released daily or weekly; iii) meteorological data acquired by standard gauge stations. Daily MODIS LST products (MOD11A1) were disaggregated using the DisTrad model, 8-days black and white sky albedo products (MCD43A) allowed modeling the total albedo, and 8-days NDVI products (MOD13Q1) were modeled using the Fisher approach. Results were validated both in time and space. The temporal validation was carried out using the actual evapotranspiration measured in situ using data collected by a flux tower through the eddy covariance technique. The spatial validation involved airborne images acquired at different times from June to September 2008. Results aim to test whether the upscaling of the energy balance input or output data performed better.

  20. Overview of a stirling engine test project

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1980-01-01

    Tests were conducted on three Stirling engines ranging in size from 1.33 to 53 horsepower (1 to 40 kW). The tests were directed toward developing alternative, backup component concepts to improve engine efficiency and performance or to reduce costs. Some of the activities included investigating attractive concepts and materials for cooler-regenerator units, installing a jet impingement device on a Stirling engine to determine its potential for improved engine performance, and presenting performance maps for initial characterization of Stirling engines. The experiment results of the tests are presented along with predictions of results of future tests to be conducted on the Stirling engines.

  1. Overview of a stirling engine test project

    NASA Astrophysics Data System (ADS)

    Slaby, J. G.

    1980-03-01

    Tests were conducted on three Stirling engines ranging in size from 1.33 to 53 horsepower (1 to 40 kW). The tests were directed toward developing alternative, backup component concepts to improve engine efficiency and performance or to reduce costs. Some of the activities included investigating attractive concepts and materials for cooler-regenerator units, installing a jet impingement device on a Stirling engine to determine its potential for improved engine performance, and presenting performance maps for initial characterization of Stirling engines. The experiment results of the tests are presented along with predictions of results of future tests to be conducted on the Stirling engines.

  2. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  3. Engineering test facility design definition

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  4. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    SciTech Connect

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was

  5. Testing of the Strutjet RBCC Engine

    NASA Technical Reports Server (NTRS)

    Bulman, Mel; Neill, Todd; Yam, Clement

    1999-01-01

    The testing of the Strutjet Rocket-Based Combined Cycle (RBCC) engine is described in this presentation. Since 1996 Aerojet has conducted thousands of tests on its Strutjet RBCC Engine. The Strutjet is specifically designed as an RBCC engine. The tests included: (1) Inlet, (2) Rocket Checkouts, (3) Direct Connect Mach 6 and 8, and (4) Freejet M = 0, 2.4, 4.1. The modes tested include: (1) Air Augmented Rocket (AAR), (2) Ramjet (3) Scramjet (4) Scram/Rocket (5) Ascent/Rocket. The Strutjet RBCC engine has been tested across the complete airbreathing trajectory. The presentation shows the results of the tests, through diagrams, charts and pictures.

  6. All Systems Go for Engine Icing Test

    NASA Video Gallery

    All the pieces came together to recently produce a successful first run of a ground test investigating how ice can accumulate inside a hot jet engine. A full-size engine, spray bars to create the i...

  7. Commercial Rocket Engine Readied for Test

    NASA Video Gallery

    Engineers at NASA’s John C. Stennis Space Center recently installed an Aerojet AJ26 rocket engine for qualification testing as part of a partnership that highlights the space agency’s commitment to...

  8. TESTING OF THE SPINTEK ROTARY MICROFILTER USING ACTUAL HANFORD WASTE SAMPLES

    SciTech Connect

    HUBER HJ

    2010-04-13

    The SpinTek rotary microfilter was tested on actual Hanford tank waste. The samples were a composite of archived Tank 241-AN-105 material and a sample representing single-shell tanks (SST). Simulants of the two samples have been used in non-rad test runs at the 222-S laboratory and at Savannah River National Laboratory (SRNL). The results of these studies are compared in this report. Two different nominal pore sizes for the sintered steel rotating disk filter were chosen: 0.5 and 0.1 {micro}m. The results suggest that the 0.5-{micro}m disk is preferable for Hanford tank waste for the following reasons: (1) The filtrate clarity is within the same range (<<4 ntu for both disks); (2) The filtrate flux is in general higher for the 0.5-{micro}m disk; and (3) The 0.1-{micro}m disk showed a higher likelihood of fouling. The filtrate flux of the actual tank samples is generally in the range of 20-30% compared to the equivalent non-rad tests. The AN-105 slurries performed at about twice the filtrate flux of the SST slurries. The reason for this difference has not been identified. Particle size distributions in both cases are very similar; comparison of the chemical composition is not conclusive. The sole hint towards what material was stuck in the filter pore holes came from the analysis of the dried flakes from the surface of the fouled 0.1-{micro}m disk. A cleaning approach developed by SRNL personnel to deal with fouled disks has been found adaptable when using actual Hanford samples. The use of 1 M nitric acid improved the filtrate flux by approximately two times; using the same simulants as in the non-rad test runs showed that the filtrate flux was restored to 1/2 of its original amount.

  9. Altitude Testing of Large Liquid Propellant Engines

    NASA Technical Reports Server (NTRS)

    Maynard, Bryon; Raines, Nickey

    2008-01-01

    Altitude Testing of the J2-X engine at 100,000 feet (start capability). Chemical Steam Generation for providing vacuum. Project Started Mar 07. Test Stand Activation around Late 2010. J-2X Testing around early 2011.

  10. Outer planet probe engineering model structural tests

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.

    1977-01-01

    A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.

  11. Testing Ceramics for Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1985-01-01

    Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.

  12. Legacy of earthworms' engineering effects enlarges the actual effects of earthworms on plants

    NASA Astrophysics Data System (ADS)

    Mudrák, Obdřej; Frouz, Jan

    2015-04-01

    Earthworms were recognized as key factor responsible for changes from early to late successional plant communities. They incorporate organic matter into the soil and creates there persistent structures, which improves conditions for plant growth. Earthworm activity might be therefore expected to be more important in early stages of the succession, when earthworm colonization of previously earthworm free soil starts, than in the late stages of the succession, where the soil was previously modified by earthworms. However, earthworms affect plants also via other effects such as increase of nutrient availability. The relative importance of soil structure modification and other earthworm effects on plants is poorly known, despite it is important for both theoretical and applied ecology. To test the effect of earthworms (Lumbricus rubellus and Aporrectodea caliginosa) on plants we performed microcosm laboratory experiment, where earthworms were affecting early successional (Poa compressa, Medicago lupulina, and Daucus carota) and late successional (Arrhenatherum elatius, Lotus corniculatus, and Plantago laceolata) plat species in soil previously unaffected by earthworms and in soil with previous long term effect of earthworms. These soils were taken from the early and late successional monitoring sites of the Sokolov coal mining district with known history. Earthworms increased plant biomass proportionally more in late successional soil. It was mainly because they increased availability of nutrients (nitrate and potassium) and plants get higher advantage out of this in late successional soil. Earthworms increased plant biomass of both early and late successional species, but late successional species suppressed early successional species in competition. This suppression was more intensive in presence of earthworms and in late successional soil. We therefore found multiplicative effect between earthworm soil engineering activity and their other effects, which might be

  13. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    SciTech Connect

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  14. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    SciTech Connect

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form

  15. A combined cycle engine test facility

    SciTech Connect

    Engers, R.; Cresci, D.; Tsai, C.

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  16. Thin film temperature sensors, phase 3. [for engine-test evaluation

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Claing, R. G.; Anderson, W. L.

    1982-01-01

    A thin film thermocouple system installation suitable for engine test evaluation was designed, and an engine test plan was prepared. Film adherence, durability, accuracy, and drift characteristics were improved. Film thickness was increased to 14 microns, and drift was reduced to less than 0.02 percent of Fahrenheit temperature per hour on actual turbine blades at 1255 K.

  17. Space Shuttle Main Engine Test Firing

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A cloud of extremely hot steam boils out of the flame deflector at the A-1 test stand during a test firing of a Space Shuttle Main Engine (SSME) at the John C. Stennis Space Center, Hancock County, Mississippi.

  18. F-1 Engine Gas Generator Testing

    NASA Video Gallery

    The gas generator from an F-1 engine is test-fired at the Marshall Space Flight Center in Huntsville, Ala., on Jan. 24, 2013. Data from the 30 second test will be used in the development of advance...

  19. Engine systems analysis results of the Space Shuttle Main Engine redesigned powerhead initial engine level testing

    NASA Technical Reports Server (NTRS)

    Sander, Erik J.; Gosdin, Dennis R.

    1992-01-01

    Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.

  20. ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE

    SciTech Connect

    Martino, C.; King, W.; Ketusky, E.

    2012-07-10

    In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

  1. Quantitative muscle strength testing: a comparison of job strength requirements and actual worker strength among military technicians.

    PubMed

    Pedersen, D M; Clark, J A; Johns, R E; White, G L; Hoffman, S

    1989-01-01

    In this study the authors investigate the percentage of mismatch between job demands and worker physical capacity in Utah National Guard mechanics. This population had demonstrated a higher incidence of low back trouble than other job descriptions reviewed. The authors utilized onsite still and videotape photography and a computerized biomechanical strength prediction model to assess loads on the lumbosacral spine due to various job tasks. Job demands were then compared to the actual physical capacity of the individual workers based on static strength testing in job-related positions. A load cell on the testing apparatus entered the force generated into a computer which averaged the force of the last three seconds of a five-second lift. It was determined that as much as a 38% mismatch existed within this population for some job tasks which these workers were exposed to. Suggestions for preventing job-related low back cumulative trauma disorders are presented, including: engineering redesign, worker selection programs, work hardening, and others. PMID:2522169

  2. FRACTIONAL CRYSTALLIZATION LABORATORY TESTING FOR INCLUSION & COPRECIPITATION WITH ACTUAL TANK WASTE

    SciTech Connect

    WARRANT, R.W.

    2006-12-11

    Fractional crystallization is being considered as a pretreatment method to support supplemental treatment of retrieved single-shell tank (SST) saltcake waste at the Hanford Site. The goal of the fractional crystallization process is to optimize the separation of the radioactivity (radionuclides) from the saltcake waste and send it to the Waste Treatment and Immobilization Plant and send the bulk of the saltcake to the supplemental treatment plant (bulk vitrification). The primary factors that influence the separation efficiency are (1) solid/liquid separation efficiency, (2) contaminant inclusions, and (3) co-precipitation. This is a report of testing for factors (2) and (3) with actual tank waste samples. For the purposes of this report, contaminant inclusions are defined as the inclusion of supernatant, containing contaminating radionuclides, in a pocket within the precipitating saltcake crystals. Co-precipitation is defined as the simultaneous precipitation of a saltcake crystal with a contaminating radionuclide. These two factors were tested for various potential fractional crystallization product salts by spiking the composite tank waste samples (SST Early or SST Late, external letter CH2M-0600248, ''Preparation of Composite Tank Waste Samples for ME-21 Project'') with the desired target salt and then evaporating to precipitate that salt. SST Early represents the typical composition of dissolved saltcake early in the retrieval process, and SST Late represents the typical composition during the later stages of retrieval.

  3. J-2X Engine Tested at Stennis

    NASA Video Gallery

    Another key component of NASA's new Space Launch System, the J-2X rocket engine, is put to a 500-second firing test at NASA's Stennis Space Center on Nov. 9 The J-2X rocket engine will help carry t...

  4. A study of airplane engine tests

    NASA Technical Reports Server (NTRS)

    Gage, Victor R

    1920-01-01

    This report is a study of the results obtained from a large number of test of an Hispano-Suiza airplane engine in the altitude laboratory of the Bureau of Standards. It was originally undertaken to determine the heat distribution in such an engine, but many other factors are also considered as bearing on this matter.

  5. NASA Tests Rocket Engine for Commercial Vehicle

    NASA Video Gallery

    NASA's John C. Stennis Space Center in Mississippi conducted a successful test firing Wednesday of the liquid-fuel AJ26 engine that will power the first stage of Orbital Sciences Corp.'s Taurus II ...

  6. 24. SATURN V Fl ENGINE TEST FIRING ON TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SATURN V F-l ENGINE TEST FIRING ON TEST STAND 1A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  7. Testing data evaluation strategies for estimating precipitation and actual evaporation from precision lysimeter measurements

    NASA Astrophysics Data System (ADS)

    Schrader, Frederik; Durner, Wolfgang; Fank, Johann; Pütz, Thomas; Wollschläger, Ute

    2014-05-01

    Weighing lysimeters have long been recognized as valuable tools not only for monitoring of groundwater recharge and solute transport, but also for the determination of the soil water balance and quantification of water exchange processes at the soil-plant-atmosphere interface. If well embedded into an equally-vegetated environment, they reach a hitherto unprecedented accuracy in estimating precipitation (P) by rain, dew, fog, rime and snow, as well as actual evapotranspiration (ET). At the same time, they largely avoid errors made by traditional micrometeorological instruments, such as the wind error of Hellman rain samplers or the influence of subsurface heterogeneity on readings from in situ instrumentation of soil water state variables. Beginning in 2008, the Helmholtz Association established a network of terrestrial environmental observatories (TERENO) that aim at long-term monitoring of climate and land-use change consequences. A total of 126 identically designed large weighing lysimeters, operating at a sampling frequency of 1 min-1, were installed for this purpose, which raises the demand for standardized data processing methods. In theory, estimating P and ET from these measurements is straightforward: An increase in the combined mass of the soil monolith and the collected seepage water indicates P, while a decrease indicates ET. However, in practice, lysimeter data are prone to numerous sources of error, including, but not limited to, outliers, systematic errors due to plant growth and removal, data gaps, and stochastic fluctuations. The latter pose a particularly challenging problem - if we would directly calculate P and ET from a time-series that is affected by random noise, every positive fluctuation would be interpreted as P and every negative one as ET. Consequently, we would overestimate both quantities by far. The aim of this study was to evaluate algorithms that focus on eliminating the effect of these fluctuations and to estimate actual fluxes

  8. 40 CFR 1065.401 - Test engine selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the...

  9. 40 CFR 1065.401 - Test engine selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the...

  10. 40 CFR 1065.401 - Test engine selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the...

  11. 40 CFR 1065.401 - Test engine selection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the...

  12. 40 CFR 1065.401 - Test engine selection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the...

  13. Ramjet engine test facility (RJTF). Technical report

    SciTech Connect

    1998-02-01

    The National Aerospace Laboratory of Japan constructed a ramjet engine test facility (RJTF) at the Kakuda Research Center in 1994. It can duplicate engine test conditions in the range of flight Mach numbers from 4 to 8. The facility can supply non-vitiated air for M4 and M6 to identify the contamination effect in the vitiated air, to provide the basis for evaluating engine performance in the M8 flight condition. This paper outlines the unique features and operating characteristics of the RJTF. The quality of air stream obtained during facility calibration, and the facility-engine interaction are described. Finally the authors review tests of an H2-fueled scramjet that are currently underway.

  14. 12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE FOR ENGINE TEST CELL 4. LOOKING NORTH. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  15. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with...

  16. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with...

  17. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with...

  18. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with...

  19. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with...

  20. Vehicle testing of Cummins turbocompound diesel engine

    NASA Technical Reports Server (NTRS)

    Brands, M. C.; Werner, J. R.; Hoehne, J. L.

    1980-01-01

    Two turbocompound diesel engines were installed in Class VIII heavy-duty vehicles to determine the fuel consumption potential and performance characteristics. One turbocompound powered vehicle was evaluated at the Cummins Pilot Center where driveability, fuel consumption, torsional vibration, and noise were evaluated. Fuel consumption testing showed a 14.8% benefit for the turbocompound engine in comparison to a production NTC-400 used as a baseline. The turbocompound engine also achieved lower noise levels, improved driveability, improved gradeability, and marginally superior engine retardation. The second turbocompound engine was placed in commercial service and accumulated 50,000 miles on a cross-country route without malfunction. Tank mileage revealed a 15.92% improvement over a production NTCC-400 which was operating on the same route.

  1. Multispectral scanner system for ERTS: Four band scanner system. Volume 2: Engineering model panoramic pictures and engineering tests

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This document is Volume 2 of three volumes of the Final Report for the four band Multispectral Scanner System (MSS). The results are contained of an analysis of pictures of actual outdoor scenes imaged by the engineering model MSS for spectral response, resolution, noise, and video correction. Also included are the results of engineering tests on the MSS for reflectance and saturation from clouds. Finally, two panoramic pictures of Yosemite National Park are provided.

  2. Altitude Testing of Large Liquid Propellant Engines

    NASA Technical Reports Server (NTRS)

    Maynard, Bryon T.; Raines, Nickey G.

    2010-01-01

    The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight

  3. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  4. Final Report. LAW Glass Formulation to Support AP-101 Actual Waste Testing, VSL-03R3470-2, Rev. 0

    SciTech Connect

    Muller, I. S.; Pegg, I. L.; Rielley, Elizabeth; Carranza, Isidro; Hight, Kenneth; Lai, Shan-Tao T.; Mooers, Cavin; Bazemore, Gina; Cecil, Richard; Kruger, Albert A.

    2015-06-22

    The main objective of the work was to develop and select a glass formulation for vitrification testing of the actual waste sample of LAW AP-101 at Battelle - Pacific Northwest Division (PNWD). Other objectives of the work included preparation and characterization of glasses to demonstrate compliance with contract and processing requirements, evaluation of the ability to achieve waste loading requirements, testing to demonstrate compatibility of the glass melts with melter materials of construction, comparison of the properties of simulant and actual waste glasses, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  5. 40 CFR 90.409 - Engine dynamometer test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine dynamometer test run. 90.409... Test Procedures § 90.409 Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only... practice. (3) For Phase 1 engines, at the manufacturer's option, the engine can be run with the throttle...

  6. 40 CFR 90.409 - Engine dynamometer test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine dynamometer test run. 90.409... Test Procedures § 90.409 Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only... practice. (3) For Phase 1 engines, at the manufacturer's option, the engine can be run with the throttle...

  7. 40 CFR 90.409 - Engine dynamometer test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine dynamometer test run. 90.409... Test Procedures § 90.409 Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only... practice. (3) For Phase 1 engines, at the manufacturer's option, the engine can be run with the throttle...

  8. 40 CFR 90.409 - Engine dynamometer test run.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine dynamometer test run. 90.409... Test Procedures § 90.409 Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only... practice. (3) For Phase 1 engines, at the manufacturer's option, the engine can be run with the throttle...

  9. 40 CFR 90.409 - Engine dynamometer test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine dynamometer test run. 90.409... Test Procedures § 90.409 Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only... practice. (3) For Phase 1 engines, at the manufacturer's option, the engine can be run with the throttle...

  10. 75 FR 34653 - Engine-Testing Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1065 Engine-Testing Procedures CFR Correction In Title 40 of the Code of Federal Regulations, Part 1000 to End, revised as of July 1, 2009, on page 587, in Sec. 1065.340, reinstate...

  11. Engineers Test Roll-Off at JPL

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at JPL shows engineers testing the route by which the Mars Exploration Rover Opportunity will roll off its lander. Opportunity touched down at Meridiani Planum, Mars on Jan. 24, 9:05 p.m. PST, 2004, Earth-received time.

  12. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  13. 8. X15 ENGINE TESTING. A color print showing the engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. X-15 ENGINE TESTING. A color print showing the engine during test firing. View from the rear of the test stand looking northwest. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  14. 1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  15. Knowledge-based Autonomous Test Engineer (KATE)

    NASA Technical Reports Server (NTRS)

    Parrish, Carrie L.; Brown, Barbara L.

    1991-01-01

    Mathematical models of system components have long been used to allow simulators to predict system behavior to various stimuli. Recent efforts to monitor, diagnose, and control real-time systems using component models have experienced similar success. NASA Kennedy is continuing the development of a tool for implementing real-time knowledge-based diagnostic and control systems called KATE (Knowledge based Autonomous Test Engineer). KATE is a model-based reasoning shell designed to provide autonomous control, monitoring, fault detection, and diagnostics for complex engineering systems by applying its reasoning techniques to an exchangeable quantitative model describing the structure and function of the various system components and their systemic behavior.

  16. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed...

  17. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed...

  18. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed...

  19. Software Estimates Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Smith, C. L.

    2003-01-01

    Simulation-Based Cost Model (SiCM), a discrete event simulation developed in Extend , simulates pertinent aspects of the testing of rocket propulsion test articles for the purpose of estimating the costs of such testing during time intervals specified by its users. A user enters input data for control of simulations; information on the nature of, and activity in, a given testing project; and information on resources. Simulation objects are created on the basis of this input. Costs of the engineering-design, construction, and testing phases of a given project are estimated from numbers and labor rates of engineers and technicians employed in each phase, the duration of each phase; costs of materials used in each phase; and, for the testing phase, the rate of maintenance of the testing facility. The three main outputs of SiCM are (1) a curve, updated at each iteration of the simulation, that shows overall expenditures vs. time during the interval specified by the user; (2) a histogram of the total costs from all iterations of the simulation; and (3) table displaying means and variances of cumulative costs for each phase from all iterations. Other outputs include spending curves for each phase.

  20. The primary test of measuremental system for the actual emittance of relativistic electron beams

    SciTech Connect

    Liang Fu; Tai-bin Du; Xin Chen

    1995-12-31

    Recent, a new measuremental system has been established basically in Tsinghua University PRA. This system is able to measure the lower emittance of the electron beams from the RF accelerators for the FEL. It consists of a scanning magnetic field, a slit, a fluorescent screen, and a TV camera, an image processing system, a CAD 386 computer. Using it an actual phase diagram is obtained for 4-10 Mev electron beams, The principle and structure of the facility were reported in the Proceeding of the 15th FEL Conference. This paper describes the performance of the main components and the results of first measurement for the electron gun and 4Mev standing wave LINAC, Some new suggests are related too.

  1. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine overtorque test. 33.84 Section 33.84 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a)...

  2. 40 CFR 91.410 - Engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 91.410 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.410 Engine... in dynamometer operation tests of marine engines. (b) During each non-idle mode the specified...

  3. 40 CFR 91.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 91.410 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.410 Engine... in dynamometer operation tests of marine engines. (b) During each non-idle mode the specified...

  4. 14 CFR 34.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.62 Test procedure... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Test procedure (propulsion engines)....

  5. Designing, engineering, and testing wood structures

    NASA Technical Reports Server (NTRS)

    Gorman, Thomas M.

    1992-01-01

    The objective of this paper is to introduce basic structural engineering concepts in a clear, simple manner while actively involving students. This project emphasizes the fact that a good design uses materials efficiently. The test structure in this experiment can easily be built and has various design options. Even when the structure is loaded to collapsing, only one or two pieces usually break, leaving the remaining pieces intact and reusable.

  6. Characterization and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    SciTech Connect

    Fiskum, Sandra K.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hubler, Timothy L.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; Lumetta, Gregg J.; MacFarlan, Paul J.; McNamara, Bruce K.; Peterson, Reid A.; Sinkov, Sergey I.; Snow, Lanee A.; Swoboda, Robert G.

    2008-07-10

    This report describes processing and analysis results of boehmite waste type (Group 5) and insoluble high Cr waste type (Group 6). The sample selection, compositing, subdivision, physical and chemical characterization are described. Extensive batch leach testing was conducted to define kinetics and leach factors of selected analytes as functions of NaOH concentration and temperature. Testing supports issue M-12 resolution for the Waste Treatment Plant.

  7. 40 CFR 90.410 - Engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and...

  8. 40 CFR 90.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and...

  9. Characterization of Flow Bench Engine Testing

    NASA Astrophysics Data System (ADS)

    Voris, Alex; Riley, Lauren; Puzinauskas, Paul

    2015-11-01

    This project was an attempt at characterizing particle image velocimetry (PIV) and swirl-meter test procedures. The flow direction and PIV seeding were evaluated for in-cylinder steady state flow of a spark ignition engine. For PIV seeding, both wet and dry options were tested. The dry particles tested were baby powder, glass particulate, and titanium dioxide. The wet particles tested were fogs created with olive oil, vegetable oil, DEHS, and silicon oil. The seeding was evaluated at 0.1 and 0.25 Lift/Diameter and at cylinder pressures of 10, 25 and 40 inches of H2O. PIV results were evaluated through visual and fluid momentum comparisons. Seeding particles were also evaluated based on particle size and cost. It was found that baby powder and glass particulate were the most effective seeding options for the current setup. The oil fogs and titanium dioxide were found to deposit very quickly on the mock cylinder and obscure the motion of the particles. Based on initial calculations and flow measurements, the flow direction should have a negligible impact on PIV and swirl-meter results. The characterizations found in this project will be used in future engine research examining the effects of intake port geometry on in-cylinder fluid motion and exhaust gas recirculation tolerances. Thanks to NSF site grant #1358991.

  10. Testing of high-octane fuels in the single-cylinder airplane engine

    NASA Technical Reports Server (NTRS)

    Seeber, Fritz

    1940-01-01

    One of the most important properties of aviation fuels for spark-ignition engines is their knock rating. The CFR engine tests of fuels of 87 octane and above does not always correspond entirely to the actual behavior of these fuels in the airplane engine. A method is therefore developed which, in contrast to the octane number determination, permits a testing of the fuel under various temperatures and fuel mixture conditions. The following reference fuels were employed: 1) Primary fuels; isooctane and n-heptane; 2) Secondary fuels; pure benzene and synthetic benzine.

  11. AiResearch QCGAT engine performance and emissions tests

    NASA Technical Reports Server (NTRS)

    Norgren, W. M.

    1980-01-01

    Results of aerodynamic performance and emission tests, conducted on a specially designed QCGAT engine in the 17,793-N (4,000 lb) thrust class, are presented. Performance of the AiResearch QCGAT engine was excellent throughout all testing. No serious mechanical malfunctions were encountered, and no significant test time was lost due to engine-related problems. Emissions were drastically reduced over similar engines, and the engine exhibited good smoke performance.

  12. 14 CFR 33.53 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.53 Section 33.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.53 Engine system...

  13. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  14. 14 CFR 33.88 - Engine overtemperature test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine overtemperature test. 33.88 Section 33.88 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.88 Engine...

  15. 40 CFR 1065.405 - Test engine preparation and maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aftertreatment device by operating it on a different engine, consistent with good engineering judgment. Note that good engineering judgment requires that you consider both the purpose of the test and how your... evaporative hydrocarbons for eventual combustion in the engine and the test sequence involves a cold-start...

  16. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  17. 14 CFR 34.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Test procedure (propulsion engines). 34.62 Section 34.62 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... (propulsion engines). (a)(1) The engine shall be tested in each of the following engine operating modes...

  18. 14 CFR 34.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Test procedure (propulsion engines). 34.62 Section 34.62 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... (propulsion engines). (a)(1) The engine shall be tested in each of the following engine operating modes...

  19. 40 CFR 91.409 - Engine dynamometer test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine dynamometer test run. 91.409... Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only adjustments in accordance with... manufacturer's option, the engine can be run with the throttle in a fixed position or by using the...

  20. 40 CFR 91.409 - Engine dynamometer test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine dynamometer test run. 91.409... Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only adjustments in accordance with... manufacturer's option, the engine can be run with the throttle in a fixed position or by using the...

  1. 40 CFR 91.409 - Engine dynamometer test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine dynamometer test run. 91.409... Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only adjustments in accordance with... manufacturer's option, the engine can be run with the throttle in a fixed position or by using the...

  2. 40 CFR 91.409 - Engine dynamometer test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine dynamometer test run. 91.409... Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only adjustments in accordance with... manufacturer's option, the engine can be run with the throttle in a fixed position or by using the...

  3. 40 CFR 91.409 - Engine dynamometer test run.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine dynamometer test run. 91.409... Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only adjustments in accordance with... manufacturer's option, the engine can be run with the throttle in a fixed position or by using the...

  4. Worldwide trends in engine coolants, cooling system materials and testing

    SciTech Connect

    Not Available

    1990-01-01

    This book contains the proceedings on worldwide trends in engine coolants, cooling systems, materials and testings. Topics covered include: Internationalization of the Automotive Industry - Global Responses in the Functional Fluid Area; Analysis of Coolants from Diesel Engines; Cavitation Damage of Diesel Engine Wet- Cylinder Liners; and Development of Test Stand to Measure the Effect of Coolant Composition on Engine Coolant Pump Seal Leakage.

  5. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  6. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  7. How Are Mate Preferences Linked with Actual Mate Selection? Tests of Mate Preference Integration Algorithms Using Computer Simulations and Actual Mating Couples

    PubMed Central

    Conroy-Beam, Daniel; Buss, David M.

    2016-01-01

    Prior mate preference research has focused on the content of mate preferences. Yet in real life, people must select mates among potentials who vary along myriad dimensions. How do people incorporate information on many different mate preferences in order to choose which partner to pursue? Here, in Study 1, we compare seven candidate algorithms for integrating multiple mate preferences in a competitive agent-based model of human mate choice evolution. This model shows that a Euclidean algorithm is the most evolvable solution to the problem of selecting fitness-beneficial mates. Next, across three studies of actual couples (Study 2: n = 214; Study 3: n = 259; Study 4: n = 294) we apply the Euclidean algorithm toward predicting mate preference fulfillment overall and preference fulfillment as a function of mate value. Consistent with the hypothesis that mate preferences are integrated according to a Euclidean algorithm, we find that actual mates lie close in multidimensional preference space to the preferences of their partners. Moreover, this Euclidean preference fulfillment is greater for people who are higher in mate value, highlighting theoretically-predictable individual differences in who gets what they want. These new Euclidean tools have important implications for understanding real-world dynamics of mate selection. PMID:27276030

  8. How Are Mate Preferences Linked with Actual Mate Selection? Tests of Mate Preference Integration Algorithms Using Computer Simulations and Actual Mating Couples.

    PubMed

    Conroy-Beam, Daniel; Buss, David M

    2016-01-01

    Prior mate preference research has focused on the content of mate preferences. Yet in real life, people must select mates among potentials who vary along myriad dimensions. How do people incorporate information on many different mate preferences in order to choose which partner to pursue? Here, in Study 1, we compare seven candidate algorithms for integrating multiple mate preferences in a competitive agent-based model of human mate choice evolution. This model shows that a Euclidean algorithm is the most evolvable solution to the problem of selecting fitness-beneficial mates. Next, across three studies of actual couples (Study 2: n = 214; Study 3: n = 259; Study 4: n = 294) we apply the Euclidean algorithm toward predicting mate preference fulfillment overall and preference fulfillment as a function of mate value. Consistent with the hypothesis that mate preferences are integrated according to a Euclidean algorithm, we find that actual mates lie close in multidimensional preference space to the preferences of their partners. Moreover, this Euclidean preference fulfillment is greater for people who are higher in mate value, highlighting theoretically-predictable individual differences in who gets what they want. These new Euclidean tools have important implications for understanding real-world dynamics of mate selection. PMID:27276030

  9. How Are Mate Preferences Linked with Actual Mate Selection? Tests of Mate Preference Integration Algorithms Using Computer Simulations and Actual Mating Couples.

    PubMed

    Conroy-Beam, Daniel; Buss, David M

    2016-01-01

    Prior mate preference research has focused on the content of mate preferences. Yet in real life, people must select mates among potentials who vary along myriad dimensions. How do people incorporate information on many different mate preferences in order to choose which partner to pursue? Here, in Study 1, we compare seven candidate algorithms for integrating multiple mate preferences in a competitive agent-based model of human mate choice evolution. This model shows that a Euclidean algorithm is the most evolvable solution to the problem of selecting fitness-beneficial mates. Next, across three studies of actual couples (Study 2: n = 214; Study 3: n = 259; Study 4: n = 294) we apply the Euclidean algorithm toward predicting mate preference fulfillment overall and preference fulfillment as a function of mate value. Consistent with the hypothesis that mate preferences are integrated according to a Euclidean algorithm, we find that actual mates lie close in multidimensional preference space to the preferences of their partners. Moreover, this Euclidean preference fulfillment is greater for people who are higher in mate value, highlighting theoretically-predictable individual differences in who gets what they want. These new Euclidean tools have important implications for understanding real-world dynamics of mate selection.

  10. J-2X Rocket Engine, 40-Second Test

    NASA Video Gallery

    NASA conducted a 40-second test of the J-2X rocket engine Sept. 28, the most recent in a series of tests of the next-generation engine selected as part of the Space Launch System architecture that ...

  11. 7. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  12. 11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS 2 AND 4. LOOKING SOUTHEAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  13. 13. ENGINE TEST CELL BUILDING INTERIOR. EQUIPMENT ROOM SERVING CELLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. ENGINE TEST CELL BUILDING INTERIOR. EQUIPMENT ROOM SERVING CELLS 2 AND 4. LOOKING SOUTHEAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  14. 9. ENGINE TEST CELL BUILDING INTERIOR. CELL ACCESS ELEVATOR, CELLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. ENGINE TEST CELL BUILDING INTERIOR. CELL ACCESS ELEVATOR, CELLS 2 AND 4, BASEMENT LEVEL. LOOKING SOUTHEAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  15. 10. ENGINE TEST CELL BUILDING INTERIOR. CELL 4, MOUNTING STAND. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. ENGINE TEST CELL BUILDING INTERIOR. CELL 4, MOUNTING STAND. LOOKING NORTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  16. 7. ENGINE TEST CELL BUILDING INTERIOR. WALL MAP IN CENTRAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ENGINE TEST CELL BUILDING INTERIOR. WALL MAP IN CENTRAL BASEMENT OFFICE AREA. LOOKING SOUTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  17. J-2X Engine Ready For Second Test Series

    NASA Video Gallery

    Time-lapse video of the installation of J-2X engine 10001 in the A-2 test-stand at Stennis, complete with clamshell assembly and nozzle extension. With these enhancements test engineers will measur...

  18. Modeling and testing of fractionation effects with refrigerant blends in an actual residential heat pump system

    SciTech Connect

    Biancardi, F.R.; Pandy, D.R.; Sienel, T.H.; Michels, H.H.

    1997-12-31

    The heating, ventilating, and air-conditioning (HVAC) industry is actively evaluating and testing hydrofluorocarbon (HFC) refrigerant blends as a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants that contribute to the global ozone-depletion effects. While analyses and system performance tools have shown that HFC refrigerant blends offer certain performance, capacity, and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objective of this program was to conduct analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects, and convey to the industry safe and reliable approaches. As a result, analytical models verified by laboratory data have been developed that predict the fractionation effects of HFC refrigerant blends (1) when exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system start-up, operation, and shutdown within various system components (where two-phase refrigerant exists) and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing R-32, R-134a, and R-125 and the data are generalized for various operating conditions and scenarios.

  19. Does verbal encouragement actually improve performance in the 6-minute walk test?

    PubMed

    Marinho, Patrícia E M; Raposo, Maria Cristina; Dean, Elizabeth; Guerra, Ricardo O; de Andrade, Arméle Dornelas

    2014-11-01

    The purpose of this study was to evaluate the performance in the 6-minute walk test (6 MWT) of elderly patients with chronic obstructive pulmonary disease (COPD) by comparing to a group of healthy elderly patients, performed with and without verbal encouragement. This cross-sectional study compared 40 patients with COPD (forced expiratory volume in the first second (FEV1%) = 53.7 ± 23.8%; forced vital capacity (FVC%) = 65.5 ± 20.8%; and the FEV1/FVC ratio = 55.4 ± 12.4) and 40 healthy elderly patients (control). The 6 MWT's were performed with and without verbal encouragement according to the American Thoracic Society (ATS), monitoring the distance walked (6 MWD), the duration of walking (TW) and the perceived effort index (PEI) through the Borg scale between the groups. No differences were observed in patients with COPD when the tests were performed with and without verbal encouragement for the 6 MWD, TW and PEI, the same occurring in the control group for the 6 MWD, TW and PEI, respectively. The use of verbal encouragement was not sufficient to promote improvement in the performance of the 6 MWT (6 MWD, TW and PEI) of patients with COPD and healthy elderly patients.

  20. 40 CFR 87.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.62 Test procedure (propulsion... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Test procedure (propulsion...

  1. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer...

  2. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer...

  3. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer...

  4. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer...

  5. 2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  6. 40 CFR 1054.505 - How do I test engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm that the test... dynamometer with the test procedures for constant-speed engines in 40 CFR part 1065 while using one of the... engines, hold engine speed at maximum test speed, as defined in 40 CFR 1065.1001. (2) For...

  7. 40 CFR 89.407 - Engine dynamometer test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine dynamometer test run. 89.407... Test Procedures § 89.407 Engine dynamometer test run. (a) Measure and record the temperature of the air... repeated, as long as the engine is preconditioned by running the previous mode. In the case of the...

  8. 40 CFR 89.407 - Engine dynamometer test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine dynamometer test run. 89.407... Test Procedures § 89.407 Engine dynamometer test run. (a) Measure and record the temperature of the air... repeated, as long as the engine is preconditioned by running the previous mode. In the case of the...

  9. 40 CFR 89.407 - Engine dynamometer test run.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine dynamometer test run. 89.407... Test Procedures § 89.407 Engine dynamometer test run. (a) Measure and record the temperature of the air... repeated, as long as the engine is preconditioned by running the previous mode. In the case of the...

  10. 40 CFR 89.407 - Engine dynamometer test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine dynamometer test run. 89.407... Test Procedures § 89.407 Engine dynamometer test run. (a) Measure and record the temperature of the air... repeated, as long as the engine is preconditioned by running the previous mode. In the case of the...

  11. 40 CFR 89.407 - Engine dynamometer test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine dynamometer test run. 89.407... Test Procedures § 89.407 Engine dynamometer test run. (a) Measure and record the temperature of the air... repeated, as long as the engine is preconditioned by running the previous mode. In the case of the...

  12. Testing of organic acids in engine coolants

    SciTech Connect

    Weir, T.W.

    1999-08-01

    The effectiveness of 30 organic acids as inhibitors in engine coolants is reported. Tests include glassware corrosion of coupled and uncoupled metals. FORD galvanostatic and cyclic polarization electrochemistry for aluminum pitting, and reserve alkalinity (RA) measurements. Details of each test are discussed as well as some general conclusions. For example, benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In general, the organic acids provide little RA when titrated to a pH of 5.5, titration to a pH of 4.5 can result in precipitation of the acid. Trends with respect to acid chain length are reported also.

  13. Engineering design of vertical test stand cryostat

    SciTech Connect

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  14. PTA test bed aircraft engine inlet model test report, revised

    NASA Technical Reports Server (NTRS)

    Hancock, J. P.

    1985-01-01

    The inlet duct test for the Propfan Testbed Assessment (PTA) program was completed in November 1984. The basic test duct was designed using the Lockheed QUADPAN computational code. Test objectives were to experimentally evaluate, modify as required, and eventually verify satisfactory performance as well as duct/engine compatibility. Measured total pressure recovery for the basic duct was 0.993 with no swirl and 0.989 for inflow with a 30 degree simulated swirl angle. This compared to a predicted recovery of 0.979 with no swirl. Measured circumferential distortion with swirl, based on a least-square curve fit of the data, was 0.204 compared to a maximum allowable value of 0.550. Other measured distortion parameters did as well or better relative to their respective maximum allowable values. The basic duct configuration with no refinements is recommended for the PTA inlet as a minimum cost installation.

  15. Evolving desiderata for validating engineered-physics systems without full-scale testing

    SciTech Connect

    Langenbrunner, James R; Booker, Jane M; Hemez, Francois M; Ross, Timothy J

    2010-01-01

    Theory and principles of engineered-physics designs do not change over time, but the actual engineered product does evolve. Engineered components are prescient to the physics and change with time. Parts are never produced exactly as designed, assembled as designed, or remain unperturbed over time. For this reason, validation of performance may be regarded as evolving over time. Desired use of products evolves with time. These pragmatic realities require flexibility, understanding, and robustness-to-ignorance. Validation without full-scale testing involves engineering, small-scale experiments, physics theory and full-scale computer-simulation validation. We have previously published an approach to validation without full-scale testing using information integration, small-scale tests, theory and full-scale simulations [Langenbrunner et al. 2008]. This approach adds value, but also adds complexity and uncertainty due to inference. We illustrate a validation example that manages evolving desiderata without full-scale testing.

  16. X-1E Engine Ground Test Run

    NASA Technical Reports Server (NTRS)

    1956-01-01

    The Bell Aircraft Corporation X-1E during a ground engine test run on the NACA High-Speed Flight Station ramp near the Rogers Dry Lake. The rocket technician is keeping the concrete cool by hosing it with water during the test. This also helps in washing away any chemicals that might spill. The test crew worked close to the aircraft during ground tests. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about

  17. 40 CFR 610.61 - Engine dynamometer tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine dynamometer tests. The Administrator will choose a test procedure or procedures from various...

  18. 40 CFR 610.61 - Engine dynamometer tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine dynamometer tests. The Administrator will choose a test procedure or procedures from various...

  19. Anticipated and Actual Reactions to Receiving HIV Positive Results Through Self-Testing Among Gay and Bisexual Men

    PubMed Central

    Carballo-Diéguez, Alex; Ibitoye, Mobolaji; Frasca, Timothy; Brown, William; Balan, Iván

    2014-01-01

    We explored anticipated and actual reactions to receiving HIV positive results through self-testing with a diverse group of 84 gay and bisexual men in New York City. Grounded Theory was used to investigate these reactions in a two-phase study, one hypothetical, followed by a practical phase in which self-tests were distributed and used. Three major themes emerged when participants were asked about their anticipated reactions to an HIV positive self-test result: managing emotional distress, obtaining HIV medical care, and postponing sexual activity. When participants were asked about their anticipated reactions to a partner’s HIV positive self-test result, five themes emerged: provide emotional support; refrain from engaging in sex with casual partner; avoid high-risk sexual activity with both main and casual partners; seek medical services; and obtain a confirmatory test result. Although none of the participants tested positive, seven of their partners did. Participants provided emotional support and linked their partners to support services. The availability of HIV self-testing kits offers potential opportunities to tackle HIV infection among individuals with high-risk practices. PMID:24858480

  20. The hard start phenomena in hypergolic engines. Volume 5: RCS engine deformation and destruct tests

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    Tests were conducted to determine the causes of Apollo Reaction Control (RCS) engine failures. Stainless steel engines constructed for use in the destructive tests are described. The tests conducted during the three phase investigation are discussed. It was determined that the explosive reaction that destroys the RCS engines occurs at the time of engine ignition and is apparently due to either the detonation of the heterogeneous constituents of the rocket engine, consisting primarily of unreacted propellant droplets and vapors, and/or the detonation of explosive materials accumulated on the engine walls from previous pulses. Photographs of the effects of explosions on the simulated RCS engines are provided.

  1. Modern Experimental Techniques in Turbine Engine Testing

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Bruckner, R. J.; Bencic, T. J.; Braunscheidel, E. P.

    1996-01-01

    The paper describes application of two modern experimental techniques, thin-film thermocouples and pressure sensitive paint, to measurement in turbine engine components. A growing trend of using computational codes in turbomachinery design and development requires experimental techniques to refocus from overall performance testing to acquisition of detailed data on flow and heat transfer physics to validate these codes for design applications. The discussed experimental techniques satisfy this shift in focus. Both techniques are nonintrusive in practical terms. The thin-film thermocouple technique improves accuracy of surface temperature and heat transfer measurements. The pressure sensitive paint technique supplies areal surface pressure data rather than discrete point values only. The paper summarizes our experience with these techniques and suggests improvements to ease the application of these techniques for future turbomachinery research and code verifications.

  2. Ares I Upper Stage Subscale Engine Test

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)

  3. Ion Engine Service Life Validation by Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Polk, James E.; Rawlin, Vincent K.

    1996-01-01

    Assessment of the NSTAR ion engine service life is being accomplished through a combination of long duration testing and probabilistic analyses of the credible failure modes. A literature review that examined 65 ion engine endurance tests perfromed over the past 35 years was conducted to compile a list of possible ion engine failure modes.

  4. Ion Engine Service Life Validation by Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Polk, James E.; Rawlin, Vincent K.

    1997-01-01

    Assessment of the NSTAR ion engine service life is being accomplished through a combination of long duration testing and probabilistic analyses of the credible failure modes. A literature review that examined 65 ion engine endurance tests perfromed over the past 35 years was conducted to compile a list of possible ion engine failure modes.

  5. 40 CFR 86.1724-99 - Test vehicles and engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Test vehicles and engines. 86.1724-99... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General... Trucks § 86.1724-99 Test vehicles and engines. The provisions of § 86.096-24 and subsequent model...

  6. 40 CFR 86.1724-99 - Test vehicles and engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Test vehicles and engines. 86.1724-99... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General... Trucks § 86.1724-99 Test vehicles and engines. The provisions of § 86.096-24 and subsequent model...

  7. 14 CFR 33.88 - Engine overtemperature test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.88 Engine overtemperature... this run, the turbine assembly must be within serviceable limits. (b) In addition to the test... this run, the turbine assembly may exhibit distress beyond the limits for an overtemperature...

  8. 14 CFR 33.88 - Engine overtemperature test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.88 Engine overtemperature... this run, the turbine assembly must be within serviceable limits. (b) In addition to the test... this run, the turbine assembly may exhibit distress beyond the limits for an overtemperature...

  9. 14 CFR 33.88 - Engine overtemperature test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.88 Engine overtemperature... this run, the turbine assembly must be within serviceable limits. (b) In addition to the test... this run, the turbine assembly may exhibit distress beyond the limits for an overtemperature...

  10. Design of a fusion engineering test facility

    SciTech Connect

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m/sup 2/. In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V.

  11. Application of differential similarity to finding nondimensional groups important in tests of cooled engine components

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1977-01-01

    The method of differential similarity is applied to the partial differential equations and boundary conditions which govern the temperature, velocity, and pressure fields in the flowing gases and the solid stationary components in air-cooled engines. This procedure yields the nondimensional groups which must have the same value in both the test rig and the engine to produce similarity between the test results and the engine performance. These results guide the experimentalist in the design and selection of test equipment that properly scales quantities to actual engine conditions. They also provide a firm fundamental foundation for substantiation of previous similarity analyses which employed heuristic, physical reasoning arguments to arrive at the nondimensional groups.

  12. Criterion-Referenced Test Items for Small Engines.

    ERIC Educational Resources Information Center

    Herd, Amon

    This notebook contains criterion-referenced test items for testing students' knowledge of small engines. The test items are based upon competencies found in the Missouri Small Engine Competency Profile. The test item bank is organized in 18 sections that cover the following duties: shop procedures; tools and equipment; fasteners; servicing fuel…

  13. 1. Photographic copy of original engineering drawing for Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of original engineering drawing for Test Stand 'C.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'New Test Stand Plan -- Edwards Test Station' drawing no. E18/2-3, 18 January 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  14. DESCRIPTION OF RISK REDUCTION ENGINEERING LABORATORY TEST AND EVALUATION FACILITIES

    EPA Science Inventory

    An onsite team of multidisciplined engineers and scientists conduct research and provide technical services in the areas of testing, design, and field implementation for both solid and hazardous waste management. Engineering services focus on the design and implementation of...

  15. Double-blind photo lineups using actual eyewitnesses: an experimental test of a sequential versus simultaneous lineup procedure.

    PubMed

    Wells, Gary L; Steblay, Nancy K; Dysart, Jennifer E

    2015-02-01

    Eyewitnesses (494) to actual crimes in 4 police jurisdictions were randomly assigned to view simultaneous or sequential photo lineups using laptop computers and double-blind administration. The sequential procedure used in the field experiment mimicked how it is conducted in actual practice (e.g., using a continuation rule, witness does not know how many photos are to be viewed, witnesses resolve any multiple identifications), which is not how most lab experiments have tested the sequential lineup. No significant differences emerged in rates of identifying lineup suspects (25% overall) but the sequential procedure produced a significantly lower rate (11%) of identifying known-innocent lineup fillers than did the simultaneous procedure (18%). The simultaneous/sequential pattern did not significantly interact with estimator variables and no lineup-position effects were observed for either the simultaneous or sequential procedures. Rates of nonidentification were not significantly different for simultaneous and sequential but nonidentifiers from the sequential procedure were more likely to use the "not sure" response option than were nonidentifiers from the simultaneous procedure. Among witnesses who made an identification, 36% (41% of simultaneous and 32% of sequential) identified a known-innocent filler rather than a suspect, indicating that eyewitness performance overall was very poor. The results suggest that the sequential procedure that is used in the field reduces the identification of known-innocent fillers, but the differences are relatively small. PMID:24933175

  16. High Altitude Small Engine Test Techniques at the NASA Glenn Propulsion Systems Lab

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Wyzykowski, John; Chiapetta, Santo

    2001-01-01

    A High Altitude Test was performed in the Propulsion Systems Lab (PSL) at the NASA Glenn Research Center using a Pratt and Whitney Canada PW545 jet engine. This engine was tested to develop a highaltitude database on small, high-bypass ratio, engine performance and operability. Industry is interested in the use of high-bypass engines for Uninhabited Aerial Vehicles (UAV's) to perform high altitude surveillance. The tests were a combined effort between Pratt & Whitney Canada (PWC) and NASA Glenn Research Center. A large portion of this test activity was to collect performance data with a highly instrumented low-pressure turbine. Low-pressure turbine aerodynamic performance at low Reynolds numbers was collected and compared to analytical models developed by NASA and PWC. This report describes the test techniques implemented to obtain high accuracy turbine performance data in an altitude test facility, including high accuracy airflow at high altitudes, very low mass flow, and low air temperatures. Major accomplishments from this test activity were to collect accurate and repeatable turbine performance data at high altitudes to within 1 percent. Data were collected at 19,800m, 16,750m, and 13,700m providing documentation of diminishing LPT performance with reductions in Reynolds number in an actual engine flight environment. The test provided a unique database for the development of engine analysis codes to be used for future LPT performance improvements.

  17. Initial testing of a variable-stroke Stirling engine

    SciTech Connect

    Thieme, L.G.

    1985-02-01

    In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. This report describes the engine, presents initial steady-state test data taken at Lewis, and describes a major drive system failure and subsequent modifications. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  18. Initial testing of a variable-stroke Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.

    1985-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  19. TESTING AND CHARACTERIZATION OF ENGINEERED FORMS OF MONOSODIUM TITANATE (MST)

    SciTech Connect

    Taylor-Pashow, K.; Nash, C.; Hobbs, D.

    2012-05-14

    Engineered forms of MST and mMST were prepared at ORNL using an internal gelation process. Samples of these two materials were characterized at SRNL to examine particle size and morphology, peroxide content, tapped densities, and Na, Ti, and C content. Batch contact tests were also performed to examine the performance of the materials. The {sup E}mMST material was found to contain less than 10% of the peroxide found in a freshly prepared batch of mMST. This was also evidenced in batch contact testing with both simulated and actual waste, where little difference in performance was seen between the two engineered materials, {sup E}MST and {sup E}mMST. Based on these results, attempts were made to increase the peroxide content of the materials by post-treatment with hydrogen peroxide. The peroxide treatment resulted in a slight ({approx}10%) increase in peroxide content; however, the peroxide:Ti molar ratio was still much lower ({approx}0.1 X) than what is seen in a freshly prepared batch of mMST. Testing with simulated waste showed the performance of the peroxide treated materials was improved. Batch contact tests were also performed with an earlier (2003) prepared lot of {sup E}MST to examine the effect of ionic strength on the performance of the material. In general the results showed a decrease in removal performance with increasing ionic strength, which is consistent with previous testing with MST. A Sr loading isotherm was also determined, and the {sup E}MST material was found to reach a Sr loading as high as 13.2 wt % after 100 days of contact at a phase ratio of 20000 mL/g. At the typical MST phase ratio of 2500 mL/g (0.4 g/L), a Sr loading of 2.64 wt % was reached after 506 hours of contact. Samples of {sup E}MST and the post-peroxide treated {sup E}mMST were also tested in a column configuration using simulated waste solution. The breakthrough curves along with analysis of the sorbent beds at the conclusion of the experiments showed that the peroxide treated

  20. 1. Photographic copy of engineering drawing showing structure of Test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of engineering drawing showing structure of Test Stand 'B' (4215/E-16), also known as the 'Short Snorter.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Structural Addition - Bldg. E-12, Edwards Test Station,' drawing no. E12/1-1, 8 August 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA

  1. 29. Historic view of twentythousandpound rocket test stand with engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45870. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  2. 30. Historic view of twentythousandpound rocket test stand with engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, looking down from elevated location, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45872. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  3. 40 CFR 87.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Test procedure (propulsion engines). 87.62 Section 87.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Test Procedures § 87.62 Test procedure (propulsion engines). Link to...

  4. 40 CFR 1054.505 - How do I test engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in 40 CFR Part 1065. You must use the same modal testing method for certification and all other... as specified in 40 CFR 1065.514 to confirm that the test is valid. (ii) Evaluate each mode separately... the engine on a dynamometer with the test procedures for constant-speed engines in 40 CFR part...

  5. 40 CFR 89.609 - Final admission of modification nonroad engines and test nonroad engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... valid certificate of conformity for the same nonroad engine class and fuel type as the nonroad engine... section may be tested or inspected by EPA at any time during the recall period specified in §...

  6. Component test program for variable-cycle engines

    NASA Technical Reports Server (NTRS)

    Powers, A. G.; Whitlow, J. B.; Stitt, L. E.

    1976-01-01

    Variable cycle engine (VCE) concepts for a supersonic cruise aircraft were studied. These VCE concepts incorporate unique critical components and flow path arrangements that provide good performance at both supersonic and subsonic cruise and appear to be economically and environmentally viable. Certain technologies were identified as critical to the successful development of these engine concepts and require considerable development and testing. The feasibility and readiness of the most critical VCE technologies, was assessed, a VCE component test program was initiated. The variable stream control engine (VSCE) component test program, tested and evaluated an efficient low emission duct burner and a quiet coannular ejector nozzle at the rear of a rematched F100 engine.

  7. 40 CFR 86.098-24 - Test vehicles and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test vehicles and engines. 86.098-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled,...

  8. 40 CFR 86.001-24 - Test vehicles and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test vehicles and engines. 86.001-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled,...

  9. 40 CFR 86.096-24 - Test vehicles and engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.096-24 Test vehicles and engines. (a... inlet cooler (for example, intercoolers and after-coolers) for diesel heavy-duty engines. (3)(i)...

  10. Thermal lag test engines evaluated and compared to equivalent Stirling engines

    SciTech Connect

    Tailer, P.L.

    1995-12-31

    Thermal lag engines run both free piston and with pistons kinematically linked. Free piston, a thermal lag engine may be the simplest of all piston engines as it is valveless and has only one moving part, the piston. Horizontal and vertical thermal lag engines with substantially identical cooled pistons and cylinders are tested and evaluated, particularly as to power density. The horizontal engine has an elongated, small diameter heated chamber and the vertical engine has a large diameter flat heated chamber. Both heated chambers may be altered in volume to maximize engine power at optimum compression ratios. The power density of unpressurized thermal lag engines is compared to that of early commercial Stirling cycle unpressurized air engines. The comparison indicates the potential for applying well-known modern Stirling technology to thermal lag engines.

  11. Leach tests on grouts made with actual and trace metal-spiked synthetic phosphate/sulfate waste

    SciTech Connect

    Serne, R.J.; Martin, W.J.; LeGore, V.L.; Lindenmeier, C.W.; McLaurine, S.B.; Martin, P.F.C.; Lokken, R.O.

    1989-10-01

    Pacific Northwest Laboratory conducted experiments to produce empirical leach rate data for phosphate-sulfate waste (PSW) grout. Effective diffusivities were measured for various radionuclides ({sup 90}Sr, {sup 99}Tc, {sup 14}C, {sup 129}I, {sup 137}Cs, {sup 60}Co, {sup 54}Mn, and U), stable major components (NO{sub 3}{sup {minus}}, SO{sub 4}{sup 2{minus}}, H{sub 3}BO{sub 3}, K and Na) and the trace constituents Ag, As, Cd, Hg, Pb, and Se. Two types of leach tests were used on samples of actual PSW grout and synthetic PSW grout: the American Nuclear Society (ANS) 16.1 intermittent replacement leach test and a static leach test. Grout produced from both synthetic and real PSW showed low leach rates for the trace metal constituents and most of the waste radionuclides. Many of the spiked trace metals and radionuclides were not detected in any leachates. None of the effluents contained measurable quantities of {sup 137}Cs, {sup 60}Co, {sup 54}Mn, {sup 109}Cd, {sup 51}Cr, {sup 210}Pb, {sup 203}Hg, or As. For those trace species with detectable leach rates, {sup 125}I appeared to have the greatest leach rate, followed by {sup 99}Tc, {sup 75}Se, and finally U, {sup 14}C, and {sup 110m}Ag. Leach rates for nitrate are between those for I and Tc, but there is much scatter in the nitrate data because of the very low nitrate inventory. 32 refs., 6 figs., 15 tabs.

  12. Initial tests of thermoacoustic space power engine.

    SciTech Connect

    Backhaus, S. N.

    2002-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (Wikg). Thennoacoustic engines at the -1-kW scale have converted high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, thennoacoustic engines are low mass and promise to be highly reliable. Coupling a thennoacoustic engine to a low mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Conversion efficiency data will be presented on a demonstration thennoacoustic engine designed for the 1 00-Watt power range.

  13. SpaceX Test Fires Engine Prototype

    NASA Video Gallery

    One of NASA's industry partners, SpaceX, fires its new SuperDraco engine prototype in preparation for the ninth milestone to be completed under SpaceX's funded Space Act Agreement (SAA) with NASA's...

  14. Blue Origin Tests BE-3 Engine

    NASA Video Gallery

    Blue Origin successfully fires the thrust chamber assembly for its new 100,000 pound thrust BE-3 liquid oxygen, liquid hydrogen rocket engine. As part of the company's Reusable Booster System (RBS)...

  15. NASA Now: Engineering Design: Wind Tunnel Testing

    NASA Video Gallery

    Dr. Norman W. Schaeffler, a NASA aerospace research engineer, describes how wind tunnels work and how aircraft designers use them to understand aerodynamic forces at low speeds. Learn the advantage...

  16. Environmental Testing of the NEXT PM1R Ion Engine

    NASA Technical Reports Server (NTRS)

    Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2007-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test

  17. Single shaft automotive gas turbine engine characterization test

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1979-01-01

    An automotive gas turbine incorporating a single stage centrifugal compressor and a single stage radial inflow turbine is described. Among the engine's features is the use of wide range variable geometry at the inlet guide vanes, the compressor diffuser vanes, and the turbine inlet vanes to achieve improved part load fuel economy. The engine was tested to determine its performance in both the variable geometry and equivalent fixed geometry modes. Testing was conducted without the originally designed recuperator. Test results were compared with the predicted performance of the nonrecuperative engine based on existing component rig test maps. Agreement between test results and the computer model was achieved.

  18. Test plan for engineering scale electrostatic enclosure demonstration

    SciTech Connect

    Meyer, L.C.

    1993-02-01

    This test plan describes experimental details of an engineering-scale electrostatic enclosure demonstration to be performed at the Idaho National Engineering Laboratory in fiscal year (FY)-93. This demonstration will investigate, in the engineering scale, the feasibility of using electrostatic enclosures and devices to control the spread of contaminants during transuranic waste handling operations. Test objectives, detailed experimental procedures, and data quality objectives necessary to perform the FY-93 experiments are included in this plan.

  19. Rover nuclear rocket engine program: Overview of rover engine tests

    NASA Technical Reports Server (NTRS)

    Finseth, J. L.

    1991-01-01

    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  20. 40 CFR 86.1337-96 - Engine dynamometer test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... rate is fixed by the venturi design. (7) For diesel engines tested for particulate emissions, carefully install a clean particulate sample filter into each of the filter holders and install the assembled...

  1. 40 CFR 86.1337-96 - Engine dynamometer test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... rate is fixed by the venturi design. (7) For diesel engines tested for particulate emissions, carefully install a clean particulate sample filter into each of the filter holders and install the assembled...

  2. 5. Historic photo of scale model of rocket engine test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic photo of scale model of rocket engine test facility, June 18, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45264. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  3. 8. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  4. 9. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  5. 11. Historic photo of cutaway rendering of rocket engine test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Historic photo of cutaway rendering of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-74433. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  6. 6. Historic photo of rocket engine test facility Building 202 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic photo of rocket engine test facility Building 202 complex in operation at night, September 12, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45924. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  7. 13. Historic drawing of rocket engine test facility layout, including ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Historic drawing of rocket engine test facility layout, including Buildings 202, 205, 206, and 206A, February 3, 1984. NASA GRC drawing number CF-101539. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  8. 10. Historic photo of rendering of rocket engine test facility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  9. 40 CFR 1065.405 - Test engine preparation and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Depending on which type of testing is being conducted, different preparation and maintenance requirements... maintenance. 1065.405 Section 1065.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance §...

  10. 40 CFR 1065.405 - Test engine preparation and maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Depending on which type of testing is being conducted, different preparation and maintenance requirements... maintenance. 1065.405 Section 1065.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance §...

  11. Thousands gather to watch a Space Shuttle Main Engine Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Approximately 13,000 people fill the grounds at NASA's John C. Stennis Space Center for the first-ever evening public engine test of a Space Shuttle Main Engine. The test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  12. 40 CFR 87.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test procedure (propulsion engines). 87.62 Section 87.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.62 Test procedure...

  13. Testing a dual-mode ramjet engine with kerosene combustion

    NASA Astrophysics Data System (ADS)

    Levin, V. M.; Karasev, V. N.; Kartovitskii, L. L.; Krymov, E. A.; Skachkov, O. A.

    2015-09-01

    Results of life firing tests of a dual-mode ramjet engine intended for operation in the speed range M = 3-6 are discussed. The tests were carried out on a test bench under freestream conditions typical of Mach 6 flight at 27.6-km altitude. In the tests, the adopted design and technological solutions were verified, and efficient operation of the ramjet engine with kerosene combustion during 110 s was demonstrated.

  14. Stand for testing the electrical race car engine

    NASA Astrophysics Data System (ADS)

    Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.

    2015-11-01

    An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.

  15. The Nutating Engine-Prototype Engine Progress Report and Test Results

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.; Boruta, Mike

    2006-01-01

    A prototype of a new, internal combustion (IC) engine concept has been completed. The Nutating Engine features an internal disk nutating (wobbling) on a Z-shaped power shaft. The engine is exceedingly compact, and several times more power dense than any conventional (reciprocating or rotary) IC engine. This paper discusses lessons learned during the prototype engine's development and provides details of its construction. In addition, results of the initial performance tests of the various components, as well as the complete engine, are summarized.

  16. NEXT Ion Engine 2000 Hour Wear Test Results

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Kamhawi, Hani; Patterson, Michael J.; Britton, Melissa A.; Frandina, Michael M.

    2004-01-01

    The results of the NEXT 2000 h wear test are presented. This test was conducted with a 40 cm engineering model ion engine, designated EM1, at a 3.52 A beam current and 1800 V beam power supply voltage. Performance tests, which were conducted over a throttling range of 1.1 to 6.9 kW throughout the wear test, demonstrated that EM1 satisfied all thruster performance requirements. The ion engine accumulated 2038 h of operation at a thruster input power of 6.9 kW, processing 43 kg of xenon. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The ion engine was also inspected following the test. This paper presents these findings.

  17. 75 FR 37310 - Engine-Testing Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... the entries for ``Hydrocarbon composition'' to read as follows: Sec. 1065.710 Gasoline... Units General testing testing \\1\\ * * * * * Hydrocarbon composition: Olefins m\\3\\/m\\3\\....... Maximum,...

  18. Initial test results using the GEOS-3 engineering model altimeter

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.; Clary, J. B.

    1977-01-01

    Data from a series of experimental tests run on the engineering model of the GEOS 3 radar altimeter using the Test and Measurement System (TAMS) designed for preflight testing of the radar altimeter are presented. These tests were conducted as a means of preparing and checking out a detailed test procedure to be used in running similar tests on the GEOS 3 protoflight model altimeter systems. The test procedures and results are also included.

  19. ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID

    SciTech Connect

    Martino, C.; King, W.; Ketusky, E.

    2012-01-12

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

  20. NASA Teams With Army in Vortex Combustion Chamber Engine Test

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photograph depicts one of over thirty tests conducted on the Vortex Combustion Chamber Engine at Marshall Space Flight Center's (MSFC) test stand 115, a joint effort between NASA's MSFC and the U.S. Army AMCOM of Redstone Arsenal. The engine tests were conducted to evaluate an irnovative, 'self-cooled', vortex combustion chamber, which relies on tangentially injected propellants from the chamber wall producing centrifugal forces that keep the relatively cold liquid propellants near the wall.

  1. Viking '75 spacecraft design and test summary. Volume 3: Engineering test summary

    NASA Technical Reports Server (NTRS)

    Holmberg, N. A.; Faust, R. P.; Holt, H. M.

    1980-01-01

    The engineering test program for the lander and the orbiter are presented. The engineering program was developed to achieve confidence that the design was adequate to survive the expected mission environments and to accomplish the mission objective.

  2. Definition study for variable cycle engine testbed engine and associated test program

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.

    1978-01-01

    The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.

  3. Engineering model development and test results

    NASA Astrophysics Data System (ADS)

    Wellman, John A.

    1993-08-01

    The correctability of the primary mirror spherical error in the Wide Field/Planetary Camera (WF/PC) is sensitive to the precise alignment of the incoming aberrated beam onto the corrective elements. Articulating fold mirrors that provide +/- 1 milliradian of tilt in 2 axes are required to allow for alignment corrections in orbit as part of the fix for the Hubble space telescope. An engineering study was made by Itek Optical Systems and the Jet Propulsion Laboratory (JPL) to investigate replacement of fixed fold mirrors within the existing WF/PC optical bench with articulating mirrors. The study contract developed the base line requirements, established the suitability of lead magnesium niobate (PMN) actuators and evaluated several tilt mechanism concepts. Two engineering model articulating mirrors were produced to demonstrate the function of the tilt mechanism to provide +/- 1 milliradian of tilt, packaging within the space constraints and manufacturing techniques including the machining of the invar tilt mechanism and lightweight glass mirrors. The success of the engineering models led to the follow on design and fabrication of 3 flight mirrors that have been incorporated into the WF/PC to be placed into the Hubble Space Telescope as part of the servicing mission scheduled for late 1993.

  4. A chassis test procedure to mimic the heavy-duty engine transient emissions certification test.

    PubMed

    Clark, N N; McKain, D L

    2001-03-01

    In-use emissions from vehicles using heavy-duty diesel engines can be significantly higher than the levels obtained during engine certification. These higher levels may be caused by a combination of degradation of engine components, poor engine maintenance, degradation or failure of emissions after-treatment devices, and engine and emissions system tampering. A direct comparison of in-use vehicle emissions with engine certification levels, however, is not possible without removing an engine from the vehicle in order to perform engine dynamometer emissions testing. The goal of this research was to develop a chassis test procedure that mimics the engine performance, and as such the expected emissions levels, from the engine certification emissions test prescribed in the U.S. Code of Federal Regulations. Emissions measurements were taken from two engines during testing on an engine dynamometer using the transient heavy-duty Federal Test Procedure (FTP). Additionally, each engine was installed in an appropriate vehicle, and emissions measurements were taken using a chassis dynamometer while employing a vehicle driving schedule intended to match closely the instantaneous torque and speed schedule of the engine FTP. Engine and chassis testing was performed with the engines in stock (unmodified) condition as well as in several modes to simulate either tampered or poorly maintained conditions. The use of a chassis test as a predictive tool for determining whether an engine in a vehicle would pass the engine certification test has proven to be worthwhile. Analysis of the data shows that identification of chassis-mounted engines with NOx emissions above certification levels is possible by employing engine-specific correction factors. In the case of PM emissions, significant data scatter allowed only the identification of gross PM emitters. Engine tampering and poor maintenance can raise PM and NOx emissions, and these increases can be correctly identified by a chassis test

  5. Recent tests on the Carter small reciprocating steam engines

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.; Wingenbach, W.

    1982-01-01

    The Jay Carter Enterprises (JCE) Paratransit Vehicle steam engine was tested over a range of conditions which might be experienced by the power converter subsystem of the Small Community Solar Thermal Power Experiment. Some difficulties were encountered getting the engine ready for testing. These difficulties were related to the five year dormancy of the entire system and to incomplete development work that had been going on at the time of cessation of steam engine work at JCE. Other difficulties were related to the fact that the particular expander being tested never ran before and possessed some manufacturing defects. Nevertheless, the engine was operated successfully and results of testing do verify results of computer simulations of the engine in regard to the effect of temperature and power level variations. Engine efficiency was good but generally lower than expected and performance dropped as testing continued. The effect of change in expansion ratio was not demonstrated because of deterioration in engine performance. Post-test inspection revealed numerous correctable defects.

  6. Recent tests on the Carter small reciprocating steam engines

    NASA Astrophysics Data System (ADS)

    Kiceniuk, T.; Wingenbach, W.

    1982-07-01

    The Jay Carter Enterprises (JCE) Paratransit Vehicle steam engine was tested over a range of conditions which might be experienced by the power converter subsystem of the Small Community Solar Thermal Power Experiment. Some difficulties were encountered getting the engine ready for testing. These difficulties were related to the five year dormancy of the entire system and to incomplete development work that had been going on at the time of cessation of steam engine work at JCE. Other difficulties were related to the fact that the particular expander being tested never ran before and possessed some manufacturing defects. Nevertheless, the engine was operated successfully and results of testing do verify results of computer simulations of the engine in regard to the effect of temperature and power level variations. Engine efficiency was good but generally lower than expected and performance dropped as testing continued. The effect of change in expansion ratio was not demonstrated because of deterioration in engine performance. Post-test inspection revealed numerous correctable defects.

  7. Uprated OMS Engine Status-Sea Level Testing Results

    NASA Technical Reports Server (NTRS)

    Bertolino, J. D.; Boyd, W. C.

    1990-01-01

    The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.

  8. Tests Of A Stirling-Engine Power Converter

    NASA Technical Reports Server (NTRS)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  9. 40 CFR 92.104 - Locomotive and engine testing; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... restriction within 1 inch of water of the upper limit of a typical engine as installed with clean air filters...; overview. 92.104 Section 92.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures §...

  10. 40 CFR 92.104 - Locomotive and engine testing; overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... restriction within 1 inch of water of the upper limit of a typical engine as installed with clean air filters...; overview. 92.104 Section 92.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures §...

  11. 40 CFR 86.000-24 - Test vehicles and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family groupings. Within each engine family, one test vehicle is selected. If air conditioning is... to engine codes which have air conditioning available and will require that any vehicle selected under this section has air conditioning installed and operational. The Administrator selects as the...

  12. 40 CFR 86.098-24 - Test vehicles and engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Test vehicles and engines. 86.098-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and...

  13. 40 CFR 86.000-24 - Test vehicles and engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Test vehicles and engines. 86.000-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and...

  14. 40 CFR 86.096-24 - Test vehicles and engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Test vehicles and engines. 86.096-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and...

  15. 40 CFR 86.001-24 - Test vehicles and engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Test vehicles and engines. 86.001-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and...

  16. 40 CFR 86.000-24 - Test vehicles and engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test vehicles and engines. 86.000-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and...

  17. 40 CFR 86.000-24 - Test vehicles and engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Test vehicles and engines. 86.000-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and...

  18. 40 CFR 86.001-24 - Test vehicles and engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test vehicles and engines. 86.001-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and...

  19. 40 CFR 86.001-24 - Test vehicles and engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Test vehicles and engines. 86.001-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and...

  20. 40 CFR 86.000-24 - Test vehicles and engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Test vehicles and engines. 86.000-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and...

  1. Ground test facility for SEI nuclear rocket engines

    SciTech Connect

    Harmon, C.D.; Ottinger, C.A.; Sanchez, L.C.; Shipers, L.R.

    1992-08-01

    Nuclear Thermal Propulsion (NTP) has been identified as a critical technology in support of the NASA Space Exploration Initiative (SEI). In order to safely develop a reliable, reusable, long-lived flight engine, facilities are required that will support ground tests to qualify the nuclear rocket engine design. Initial nuclear fuel element testing will need to be performed in a facility that supports a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power of a flight weight reactor/engine. Ground testing of nuclear rocket engines is not new. New restrictions mandated by the National Environmental Protection Act of 1970, however, now require major changes to be made in the manner in which reactor engines are now tested. These new restrictions now preclude the types of nuclear rocket engine tests that were performed in the past from being done today. A major attribute of a safely operating ground test facility is its ability to prevent fission products from being released in appreciable amounts to the environment. Details of the intricacies and complications involved with the design of a fuel element ground test facility are presented in this report with a strong emphasis on safety and economy.

  2. High Stability Engine Control (HISTEC) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.

    1998-01-01

    The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.

  3. 24. Photocopy of engineering drawing. CAPTIVE TEST STANDS AT PADS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of engineering drawing. CAPTIVE TEST STANDS AT PADS 17A AND 17B-FLAME DEFLECTOR PIPING, MAY 1956. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  4. J-2X Engine Test Goes Full Duration

    NASA Video Gallery

    NASA conducted a 260-second J-2X engine test at the Stennis Space Center in southern Mississippi on June 13 marking another step in developing the Space Launch System, the next-generation rocket th...

  5. 40 CFR 86.098-24 - Test vehicles and engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.098-24 Test vehicles and engines. (a)(1.... (viii) Vapor/liquid separator usage. (ix) Purge system (valve, purge strategy and calibrations)....

  6. Testing for the J-2X Upper Stage Engine

    NASA Technical Reports Server (NTRS)

    Buzzell, James C.

    2010-01-01

    NASA selected the J-2X Upper Stage Engine in 2006 to power the upper stages of the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Based on the proven Saturn J-2 engine, this new engine will provide 294,000 pounds of thrust and a specific impulse of 448 seconds, making it the most efficient gas generator cycle engine in history. The engine's guiding philosophy emerged from the Exploration Systems Architecture Study (ESAS) in 2005. Goals established then called for vehicles and components based, where feasible, on proven hardware from the Space Shuttle, commercial, and other programs, to perform the mission and provide an order of magnitude greater safety. Since that time, the team has made unprecedented progress. Ahead of the other elements of the Constellation Program architecture, the team has progressed through System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of February 2010, more than 100,000 development engine parts have been ordered and more than 18,000 delivered. Approximately 1,300 of more than 1,600 engine drawings were released for manufacturing. A major factor in the J-2X development approach to this point is testing operations of heritage J-2 engine hardware and new J-2X components to understand heritage performance, validate computer modeling of development components, mitigate risk early in development, and inform design trades. This testing has been performed both by NASA and its J-2X prime contractor, Pratt & Whitney Rocketdyne (PWR). This body of work increases the likelihood of success as the team prepares for testing the J-2X powerpack and first development engine in calendar 2011. This paper will provide highlights of J-2X testing operations, engine test facilities, development hardware, and plans.

  7. 40 CFR 610.61 - Engine dynamometer tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Engine dynamometer tests. 610.61 Section 610.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61...

  8. 40 CFR 610.61 - Engine dynamometer tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Engine dynamometer tests. 610.61 Section 610.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61...

  9. 40 CFR 610.61 - Engine dynamometer tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Engine dynamometer tests. 610.61 Section 610.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61...

  10. High-Speed Tests of Conventional Radial-Engine Cowlings

    NASA Technical Reports Server (NTRS)

    Robinson, Russell G; Becker, John V

    1942-01-01

    The drag characteristics of eight radial-engine cowlings have been determined over a wide speed range in the NACA 8-foot high-speed wind tunnel. The pressure distribution over all cowlings was measured, to and above the speed of the compressibility burble, as an aid in interpreting the force tests. One-fifth-scale models of radial-engine cowlings on a wing-nacelle combination were used in the tests.

  11. 6. "EXPERIMENTAL ROCKET ENGINE TEST STATION AT AFFTC." A low ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. "EXPERIMENTAL ROCKET ENGINE TEST STATION AT AFFTC." A low oblique aerial view of Test Area 1-115, looking south, showing Test Stand 1-3 at left, Instrumentation and Control building 8668 at center, and Test Stand 15 at right. The test area is under construction; no evidence of railroad line in photo. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  12. Labyrinth seal testing for lift fan engines

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    An abradable buffered labyrinth seal for the control of turbine gas path leakage in a tip-turbine driven lift fan was designed, tested, and analyzed. The seal configuration was not designed to operate in any specific location but was sized to be evaluated in an existing test rig. The final sealing diameter selected was 28 inches. Results of testing indicate that the flow equations predicted seal air flows consistent with measured values. Excellent sealing characteristics of the abradable coating on the stator land were demonstrated when a substantial seal penetration of .030 inch into the land surface was encountered without appreciable wear on the labyrinth knife edges.

  13. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, Tim; Turner, James E. (Technical Monitor)

    2000-01-01

    This presentation consists of viewgraph which review the test program and the results of the tests for the Gas Generator (GG) component for the Fastrac Engine. Included are pictures of the Fastrac (MC-1) Engine and the GG, diagrams of the flight configuration, and schematics of the LOX, and the RP-1 systems and the injector assembly. The normal operating parameters are reviewed, as are the test instrumentation. Also shown are graphs of the hot gas temperature, and the test temperature profiles. The results are summarized.

  14. Reducing the Time and Cost of Testing Engines

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Producing a new aircraft engine currently costs approximately $1 billion, with 3 years of development time for a commercial engine and 10 years for a military engine. The high development time and cost make it extremely difficult to transition advanced technologies for cleaner, quieter, and more efficient new engines. To reduce this time and cost, NASA created a vision for the future where designers would use high-fidelity computer simulations early in the design process in order to resolve critical design issues before building the expensive engine hardware. To accomplish this vision, NASA's Glenn Research Center initiated a collaborative effort with the aerospace industry and academia to develop its Numerical Propulsion System Simulation (NPSS), an advanced engineering environment for the analysis and design of aerospace propulsion systems and components. Partners estimate that using NPSS has the potential to dramatically reduce the time, effort, and expense necessary to design and test jet engines by generating sophisticated computer simulations of an aerospace object or system. These simulations will permit an engineer to test various design options without having to conduct costly and time-consuming real-life tests. By accelerating and streamlining the engine system design analysis and test phases, NPSS facilitates bringing the final product to market faster. NASA's NPSS Version (V)1.X effort was a task within the Agency s Computational Aerospace Sciences project of the High Performance Computing and Communication program, which had a mission to accelerate the availability of high-performance computing hardware and software to the U.S. aerospace community for its use in design processes. The technology brings value back to NASA by improving methods of analyzing and testing space transportation components.

  15. Field test comparison of natural gas engine exhaust valves

    SciTech Connect

    Bicknell, W.B.; Hay, S.C.; Shade, W.N.; Statler, G.R.

    1996-12-31

    As part of a product improvement program, an extensive spark-ignited, turbocharged, natural gas engine exhaust valve test program was conducted using laboratory and field engines. Program objectives were to identify a valve and seat insert combination that increased mean time between overhauls (MTBO) while reducing the risk of premature valve cracking and failure. Following a thorough design review, a large number of valve and seat insert configurations were tested in a popular 900 RPM, 166 BHP (0.123 Mw) per cylinder industrial gas engine series. Material, head geometry, seat angle and other parameters were compared. Careful in-place measurements and post-test inspections compared various configurations and identified optimal exhaust valving for deployment in new units and upgrades of existing engines.

  16. A retrospective survey of the use of laboratory tests to simulate internal combustion engine materials tribology problems

    SciTech Connect

    Blau, P.J.

    1992-12-31

    Progress in the Field of tribology strongly parallels, and has always been strongly driven by, developments and needs in transportation and related industries. Testing of candidate materials for internal combustion engine applications has historically taken several routes: (1) replacement of parts in actual engines subjected to daily use, (2) testing in special, instrumented test engines, (3) and simulative testing in laboratory tribometers using relatively simple specimens. The advantages and disadvantages of each approach are reviewed using historical examples. A four-decade, retrospective survey of the tribomaterials literature focused on the effectiveness of laboratory simulations for engine materials screening. Guidelines for designing and ducting successful tribology laboratory simulations will be discussed. These concepts were used to design a valve wear simulator at Oak Ridge National Laboratory.

  17. Test results of the highly instrumented Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; Leopard, J. L.; Lightfoot, R. M.

    1992-01-01

    Test results of a highly instrumented Space Shuttle Main Engine (SSME) are presented. The instrumented engine, when combined with instrumented high pressure turbopumps, contains over 750 special measurements, including flowrates, pressures, temperatures, and strains. To date, two different test series, accounting for a total of sixteen tests and 1,667 seconds, have been conducted with this engine. The first series, which utilized instrumented turbopumps, characterized the internal operating environment of the SSME for a variety of operating conditions. The second series provided system-level validation of a high pressure liquid oxygen turbopump that had been retrofitted with a fluid-film bearing in place of the usual pump-end ball bearings. Major findings from these two test series are highlighted in this paper. In addition, comparisons are made between model predictions and measured test data.

  18. Energy efficient engine sector combustor rig test program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.

    1981-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.

  19. Pretreatment Engineering Platform Phase 1 Final Test Report

    SciTech Connect

    Kurath, Dean E.; Hanson, Brady D.; Minette, Michael J.; Baldwin, David L.; Rapko, Brian M.; Mahoney, Lenna A.; Schonewill, Philip P.; Daniel, Richard C.; Eslinger, Paul W.; Huckaby, James L.; Billing, Justin M.; Sundar, Parameshwaran S.; Josephson, Gary B.; Toth, James J.; Yokuda, Satoru T.; Baer, Ellen BK; Barnes, Steven M.; Golovich, Elizabeth C.; Rassat, Scot D.; Brown, Christopher F.; Geeting, John GH; Sevigny, Gary J.; Casella, Amanda J.; Bontha, Jagannadha R.; Aaberg, Rosanne L.; Aker, Pamela M.; Guzman-Leong, Consuelo E.; Kimura, Marcia L.; Sundaram, S. K.; Pires, Richard P.; Wells, Beric E.; Bredt, Ofelia P.

    2009-12-23

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.

  20. Environmental Testing of the NEXT PM1 Ion Engine

    NASA Technical Reports Server (NTRS)

    Synder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2008-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The Prototype Model engine PM1 was subjected to qualification-level environmental testing to demonstrate compatibility with environments representative of anticipated mission requirements. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 minutes in each of three axes. Thermal-vacuum testing included a deep cold soak of the engine to temperatures of -168 C and thermal cycling from -120 to 203 C. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. Thruster performance was nominal throughout the test program, with minor variations in some engine operating parameters likely caused by facility effects. In general, the NEXT PM1 engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. After resolution of the findings from this test program the hardware environmental qualification program can proceed with confidence.

  1. Research engine test of coal slurry fuels. Final report

    SciTech Connect

    Not Available

    1985-02-01

    The program discussed in this report involved evaluation of the combustion characteristics of several coal slurry fuels in a single cylinder test engine operating under conditions simulating medium size and speed commercial diesel engines. Baseline performance was established using a reference DF-2 test fuel. Slurry fuels tested included: (1) 45% of a low volatile coal in diesel fuel; (2) 40% of cleaned of a cleaned high-volatile coal in a carrier containing 91% methanol and 9% water; and (3) 41% cleaned, high volatile coal in methanol. The testing program demonstrated the importance of several engine operating and fuel composition parameters on engine and ancillary system performance: (1) coal particle top size of 38 microns was identified as the limiting value for the test equipment utilized in this study; coal volatility affects burnout, but ignition is unaffected as long as the slurry carrier provides the ignition source; coal ash content affects the wear rate, but wear rate is not linear with ash content or total ash throughput; and engine components may require modifications in order to handle fuels containing abrasive solid materials. These tests demonstrated that slurry fuels are a viable alternative to highly refined petroleum fuels in medium speed diesel engine applications. However, additional research is required before widespread application of these fuels can occur. The study demonstrated the lack of available information on the microscale mechanisms of slurry fuel atomization, ignition, and combustion in the diesel engine combustion chamber environment. Also, the problems of burning a coal/water slurry in the engine were not addressed. 12 references, 51 figures, 14 tables.

  2. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    SciTech Connect

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-02-19

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  3. Characterization and Leach Testing for PUREX Cladding Waste Sludge (Group 3) and REDOX Cladding Waste Sludge (Group 4) Actual Waste Sample Composites

    SciTech Connect

    Snow, Lanee A.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-02-13

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.(a) The testing program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual wastetesting program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR)—are the subjects of this report. Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, requiring caustic leaching. Characterization of the composite Group 3 and Group 4 waste samples confirmed them to be high in gibbsite. The focus of the Group 3 and 4 testing was on determining the behavior of gibbsite during caustic leaching. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  4. Spacecraft Testing Programs: Adding Value to the Systems Engineering Process

    NASA Technical Reports Server (NTRS)

    Britton, Keith J.; Schaible, Dawn M.

    2011-01-01

    Testing has long been recognized as a critical component of spacecraft development activities - yet many major systems failures may have been prevented with more rigorous testing programs. The question is why is more testing not being conducted? Given unlimited resources, more testing would likely be included in a spacecraft development program. Striking the right balance between too much testing and not enough has been a long-term challenge for many industries. The objective of this paper is to discuss some of the barriers, enablers, and best practices for developing and sustaining a strong test program and testing team. This paper will also explore the testing decision factors used by managers; the varying attitudes toward testing; methods to develop strong test engineers; and the influence of behavior, culture and processes on testing programs. KEY WORDS: Risk, Integration and Test, Validation, Verification, Test Program Development

  5. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, T.

    2000-01-01

    Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.

  6. Lean mixture engine testing and evaluation program. [for automobile engine pollution and fuel performances

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.

    1975-01-01

    Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.

  7. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  8. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2003-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  9. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2004-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  10. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merion M.

    2002-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  11. ISTAR: Project Status and Ground Test Engine Design

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2003-01-01

    Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.

  12. 40 CFR 1054.505 - How do I test engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... paragraph (d)(1) of this section until the engine reaches thermal stability as described in 40 CFR 1065.530... statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm that the test... end of the last mode. Calculate emissions and cycle statistics the same as for transient testing...

  13. Pretest uncertainty analysis for chemical rocket engine tests

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1987-01-01

    A parametric pretest uncertainty analysis has been performed for a chemical rocket engine test at a unique 1000:1 area ratio altitude test facility. Results from the parametric study provide the error limits required in order to maintain a maximum uncertainty of 1 percent on specific impulse. Equations used in the uncertainty analysis are presented.

  14. X-34 40K Fastrac II Engine Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photo of an X-34 40K Fastrac II duration test performed at the Marshall Space Flight Center test stand 116 (TS116) in June 1997. Engine ignition is started with Tea-Gas which makes the start burn green. The X-34 program was cancelled in 2001.

  15. 40 CFR 1054.505 - How do I test engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specified in 40 CFR part 1065. Unless we specify otherwise, you may simulate the governor for ramped-modal... statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm that the test... dynamometer with the test procedures for constant-speed engines in 40 CFR part 1065 while using one of...

  16. 40 CFR 1054.505 - How do I test engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specified in 40 CFR part 1065. Unless we specify otherwise, you may simulate the governor for ramped-modal... statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm that the test... dynamometer with the test procedures for constant-speed engines in 40 CFR part 1065 while using one of...

  17. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.128 Tests:...

  18. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  19. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  20. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.128 Tests:...

  1. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.128 Tests:...

  2. Engine Gimbal Requirements for Ground Testing of J-2X

    NASA Technical Reports Server (NTRS)

    Kovalcik, Julia; Leahy, Joe

    2009-01-01

    Based on the Apollo-era J-2 that powered the second and third stages of the Saturn V, the current J-2X is the liquid hydrogen and oxygen high-altitude rocket engine in development for both the Ares I Upper Stage and Ares V Earth Departure Stage. During my summer 2009 internship, J-2X was at a stage in its design maturity where verification testing needed to be considered for the benefit of adequate test facility preparation. My task was to focus on gimbal requirements and gimbal related hot-fire test plans. Facility capabilities were also of interest, specifically for hot-fire testing slated to occur at test stands A-1, A-2, and A-3 at Stennis Space Center(SSC) in Bay St. Louis, Mississippi. Gimbal requirements and stage interface conditions were investigated by applying a top-to-bottom systems engineering approach, which involved system level requirements, engine level requirements from both government and engine contractor perspectives, component level requirements, and the J-2X to Upper Stage and Earth Departure Stage interface control documents. Previous hydrogen and oxygen liquid rocket engine gimbal verification methods were researched for a glimpse at lessons learned. Discussion among the J-2X community affected by gimballing was organized to obtain input relative to proper verification of their respective component. Implementing suggestions such as gimbal pattern, angulated dwell time, altitude testing options, power level, and feed line orientation, I was able to match tests to test stands in the A Complex at SSC. Potential test capability gaps and risks were identified and pursued. The culmination of all these efforts was to coordinate with SSC to define additional facility requirements for both the A-3 altitude test stand that is currently under construction and the A-1 sea level test stand which is being renovated

  3. Aviation Engine Test Facilities (AETF) fire protection study

    NASA Astrophysics Data System (ADS)

    Beller, R. C.; Burns, R. E.; Leonard, J. T.

    1989-07-01

    An analysis is presented to the effectiveness of various types of fire fighting agents in extinguishing the kinds of fires anticipated in Aviation Engine Test Facilities (AETF), otherwise known as Hush Houses. The agents considered include Aqueous Film-Forming Foam, Halon 1301, Halon 1211 and water. Previous test work has shown the rapidity with which aircraft, especially high performance aircraft, can be damaged by fire. Based on this, tentative criteria for this evaluation included a maximum time of 20 s from fire detection to extinguishment and a period of 30 min in which the agent would prevent reignition. Other issues examined included: toxicity, corrosivity, ease of personnel egress, system reliability, and cost effectiveness. The agents were evaluated for their performance in several fire scenarios, including: under frame fire, major engine fire, engine disintegration fire, high-volume pool fire with simultaneous spill fire, internal electrical fire, and runaway engine fire.

  4. Preliminary test results with a Stirling Laboratory Research Engine

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.; Nguyen, B. D.; Schmit, D. D.

    1979-01-01

    The Jet Propulsion Laboratory has designed, assembled, and initiated testing of a Stirling Laboratory Research Engine (SLRE). This preprototype engine provides a research tool to support the development of a broad range of analytical modeling and experimental efforts. The SLRE is a horizontally opposed, two-piston, single-acting Stirling engine with a split crankshaft drive mechanism. The paper discusses the preliminary results obtained during engine motoring tests and compares these results with two different analytical prediction models. Comparisons are made between experiment, the classical Schmidt analysis, and the JPL Stirling Cycle Analysis Model (SCAM). SCAM is a computerized one-dimensional, cyclic, compressible flow model of the SLRE and consists of a compilation of individual component subroutines. The formulation and current state of development of the SCAM program is briefly described.

  5. Status of the NEXT Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Domonkos, Matthew T.; Kamhawi, Hani; Patterson, Michael J.; Gardner, Michael M.

    2003-01-01

    The status of the NEXT 2000 hour wear test is presented. This test is being conducted with a 40 cm engineering model ion engine, designated EM1, at a beam current higher than listed on the NEXT throttle table. Pretest performance assessments demonstrated that EM1 satisfies all thruster performance requirements. As of 7/3/03, the ion engine has accumulated 406 hours of operation at a thruster input power of 6.9 kW. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with no indications of performance degradation. Images of the downstream discharge cathode, neutralizer, and accelerator aperture surfaces have exhibited no significant erosion to date.

  6. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep; Pfefferle, William

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines

  7. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  8. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  9. The Design and Testing of a Miniature Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.; Murray, James E.

    2009-01-01

    Off-the-shelf jet propulsion in the 50 - 500 lb thrust class sparse. A true twin-spool turbofan in this range does not exist. Adapting an off-the-shelf turboshaft engine is feasible. However the approx.10 Hp SPT5 can t quite make 50 lbs. of thrust. Packaging and integration is challenging, especially the exhaust. Building on our engine using a 25 Hp turboshaft seems promising if the engine becomes available. Test techniques used, though low cost, adequate for the purpose.

  10. In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 µm infrared laser absorption method: application to an actual engine

    NASA Astrophysics Data System (ADS)

    Tomita, Eiji; Kawahara, Nobuyuki; Nishiyama, Atsushi; Shigenaga, Masahiro

    2003-08-01

    An infrared absorption method with a 3.392 µm He-Ne laser was used to determine the hydrocarbon fuel concentration near the spark plug in a spark-ignition engine. Iso-octane was used for the fuel. The pressure and temperature dependence of the molar absorption coefficient was clarified. The molar absorption coefficients of a multi-component fuel such as gasoline were estimated by using the coefficient of each component and considering the mass balance. A sensor was developed and installed in a spark plug, which was substituted in place of an ordinary spark plug in a spark-ignition engine. Light can pass from the sensor through the engine cylinder to measure the fuel concentration. The effects of liquid droplets inside the engine cylinder, mechanical vibrations and other gases such as H2O and CO2 on the measurement accuracy were considered. Four main conclusions were drawn from this study. First, the pressure and temperature effects on the molar absorption coefficient of liquid fuel vapour were determined independently in advance using a constant-volume vessel. The pressure and temperature dependence of the molar absorption coefficient was determined under engine firing conditions. Second, the molar absorption coefficients of a multi-component hydrocarbon fuel such as gasoline were estimated by considering the molar fraction of each component. Third, in situ measurements of the hydrocarbon fuel concentration in an actual engine were obtained using the spark plug sensor and the molar absorption coefficient of iso-octane. The concentration near the spark plug just before ignition was almost in agreement with the mean value that was obtained from the measurement of the flow rate made with a burette, which represented the mean value averaged over many cycles. And fourth, no liquid droplets were observed at near-idling conditions. The effects of other gases, such as CO, CO2 and H2O, can be neglected.

  11. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Astrophysics Data System (ADS)

    Ennix, Kimberly A.

    1994-02-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  12. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.

    1994-01-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  13. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.

    1993-01-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  14. Prototype Engineered Barrier System Field Tests; Progress report

    SciTech Connect

    Ramirez, A.L.; Beatty, J.; Buscheck, T.A.; Carlson, R.; Daily, W.; LaTorre, V.R.; Lee, K.; Lin, Wunan; Mao, Nai-hsien; Nitao, J.J.; Towse, D.; Ueng, Tzou-Shin; Watwood, D.; Wilder, D.

    1989-07-26

    This paper presents selected preliminary results obtained during the first 54 days of the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT). The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures for future investigations that will be conducted in the Exploratory Shaft Facilities of the Yucca Mountain Project (YMP). The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures, gas pressures, and rock mass gas-phase humidity. 10 refs., 12 figs.

  15. Actual-Waste Tests of Enhanced Chemical Cleaning for Retrieval of SRS HLW Sludge Tank Heels and Decomposition of Oxalic Acid - 12256

    SciTech Connect

    Martino, Christopher J.; King, William D.; Ketusky, Edward T.

    2012-07-01

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge. During ECC actual waste testing, the introduction of ozone was successful in decomposing oxalate to below the target levels. This testing did not identify physical or chemical changes in the ECC product sludge that would impact downstream processing. The results from these tests confirm observations made by AREVA NP during larger scale testing with waste simulants. This testing, however, had a decreased utilization of ozone, requiring approximately 5 moles of ozone per mole of oxalate decomposed. Decomposition of oxalates in sludge dissolved in 2 wt% OA to levels near 100 ppm oxalate using ECC process conditions required 8 to 12.5 hours without the aid of UV light and 4.5 to 8 hours with the aid of UV light. The pH and ORP were tracked during decomposition testing. Sludge components were tracked during OA decomposition, showing that most components have the highest soluble levels in the initial dissolved sludge and early decomposition samples and exhibit lower soluble levels as OA decomposition progresses. The Deposition Tank storage conditions that included pH adjustment to approximately 1 M free hydroxide tended to bring the soluble concentrations in the ECC product to nearly the same level for each test regardless of storage time, storage temperature, and contact with other tank sludge material. (authors)

  16. Testing of a variable-stroke Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Allen, David J.

    1986-01-01

    Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the DOE Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hours total with both He and H2 as working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke (VS) and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent with the VS concept but do emphasize the need for careful design in the area of the crossheads.

  17. Testing of a variable-stroke Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.; Allen, D. J.

    1986-01-01

    Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the DOE Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hours total with both He and H2 working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke (VS) and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent with the VS concept but do emphasize the need for careful design in the area of the crossheads.

  18. Deimos Methane-Oxygen Rocket Engine Test Results

    NASA Astrophysics Data System (ADS)

    Engelen, S.; Souverein, L. J.; Twigt, D. J.

    This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.

  19. Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands

    NASA Technical Reports Server (NTRS)

    Sachdev, Jai S.; Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel C.

    2010-01-01

    The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling.

  20. Tests of the Daimler D-IVa Engine at a High Altitude Test Bench

    NASA Technical Reports Server (NTRS)

    Noack, W G

    1920-01-01

    Reports of tests of a Daimler IVa engine at the test-bench at Friedrichshafen, show that the decrease of power of that engine, at high altitudes, was established, and that the manner of its working when air is supplied at a certain pressure was explained. These tests were preparatory to the installation of compressors in giant aircraft for the purpose of maintaining constant power at high altitudes.

  1. DEVELOPMENT AND TESTING OF A PRE-PROTOTYPE RAMGEN ENGINE

    SciTech Connect

    Aaron Koopman

    2003-07-01

    The research and development effort of a new kind of compressor and engine is presented. The superior performance of these two products arises from the superior performance of rotating supersonic shock-wave compression. Several tasks were performed in compliance with the DOE award objectives. A High Risk Technology review was conducted and evaluated by a team of 20 senior engineers and scientists representing various branches of the federal government. The conceptual design of a compression test rig, test rotors, and test cell adaptor was completed. The work conducted lays the foundation for the completed design and testing of the compression test rig, and the design of a supersonic shock-wave compressor matched to a conventional combustor and turbine.

  2. Drive Rig Mufflers for Model Scale Engine Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2010-01-01

    Testing of air breathing propulsion systems in the 9x15 foot wind tunnel at NASA Glenn Research Center depends on compressed air turbines for power. The drive rig turbines exhaust directly to the wind tunnel test section, and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the model being tested. In order to mitigate this acoustic contamination, a muffler can be attached downstream of the drive rig turbine. The modern engine designs currently being tested produce much less noise than traditional engines, and consequently a lower noise floor is required of the facility. An acoustic test of a muffler designed to mitigate this extraneous noise is presented, and a noise reduction of 8 dB between 700 Hz and 20 kHz was documented, significantly improving the quality of acoustic measurements in the facility.

  3. 7. COMPLETE X15 VEHICLE TEST STAND AFTER AN ENGINE FIRE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. COMPLETE X-15 VEHICLE TEST STAND AFTER AN ENGINE FIRE OR EXPLOSION. Wreckage of engine is still fixed in its clamp; X-15 vehicle lies on the ground detached from engine. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  4. Full scale technology demonstration of a modern counterrotating unducted fan engine concept. Engine test

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Unducted Fan (UDF) engine is an innovative aircraft engine concept based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio power plant with exceptional fuel efficiency for subsonic aircraft application. This report covers the successful ground testing of this engine. A test program exceeding 100-hr duration was completed, in which all the major goals were achieved. The following accomplishments were demonstrated: (1) full thrust (25,000 lb); (2) full counterrotating rotor speeds (1393+ rpm); (3) low specific fuel consumption (less than 0.24 lb/hr/lb); (4) new composite fan design; (5) counterrotation of structures, turbines, and fan blades; (6) control system; (7) actuation system; and (8) reverse thrust.

  5. Disk Crack Detection for Seeded Fault Engine Test

    NASA Technical Reports Server (NTRS)

    Luo, Huageng; Rodriguez, Hector; Hallman, Darren; Corbly, Dennis; Lewicki, David G. (Technical Monitor)

    2004-01-01

    Work was performed to develop and demonstrate vibration diagnostic techniques for the on-line detection of engine rotor disk cracks and other anomalies through a real engine test. An existing single-degree-of-freedom non-resonance-based vibration algorithm was extended to a multi-degree-of-freedom model. In addition, a resonance-based algorithm was also proposed for the case of one or more resonances. The algorithms were integrated into a diagnostic system using state-of-the- art commercial analysis equipment. The system required only non-rotating vibration signals, such as accelerometers and proximity probes, and the rotor shaft 1/rev signal to conduct the health monitoring. Before the engine test, the integrated system was tested in the laboratory by using a small rotor with controlled mass unbalances. The laboratory tests verified the system integration and both the non-resonance and the resonance-based algorithm implementations. In the engine test, the system concluded that after two weeks of cycling, the seeded fan disk flaw did not propagate to a large enough size to be detected by changes in the synchronous vibration. The unbalance induced by mass shifting during the start up and coast down was still the dominant response in the synchronous vibration.

  6. Software for Preprocessing Data From Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2002-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC "E" test-stand complex and utilize the SSC file format. The programs are the following: 1) Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel; 2) QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris); and 3) EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PVWAVE based plotting software.

  7. Software for Preprocessing Data from Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2004-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris). EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PV-WAVE based plotting software.

  8. Software for Preprocessing Data From Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2003-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: (1) Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. (2) QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot. (3) EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PVWAVE based plotting software.

  9. Compression-ignition engine tests of several fuels

    NASA Technical Reports Server (NTRS)

    Spanogle, J A

    1932-01-01

    The tests reported in this paper were made to devise simple engine tests which would rate fuels as to their comparative value and their suitability for the operating conditions of the individual engine on which the tests are made. Three commercial fuels were used in two test engines having combustion chambers with and without effective air flow. Strictly comparative performance tests gave almost identical results for the three fuels. Analysis of indicator cards allowed a differentiation between fuels on a basis of rates of combustion. The same comparative ratings were obtained by determining the consistent operating range of injection advance angle for the three fuels. The difference in fuels is more pronounced in a quiescent combustion chamber than in one with high-velocity air flow. A fuel is considered suitable for the operating conditions of an engine with a quiescent combustion chamber if it permits the injection of the fuel to be advanced beyond the optimum without exceeding allowable knock or allowable maximum cylinder pressures.

  10. Development of the Engineering Test Satellite-3 (ETS-3) ion engine system

    NASA Technical Reports Server (NTRS)

    Kitamura, S.

    1984-01-01

    The ion engine system onboard the ETS-3 is discussed. The system consists of two electron bombardment type mercury ion engines with 2 mN thrust and 2,000 sec specific impulse and a power conditioner with automatic control functions. The research and development of the system, development of its EM, PM and FM, the system test and the technical achievements leading up to final launch are discussed.

  11. Standard and modified electrode engineering-scale in situ vitrification tests

    SciTech Connect

    Thompson, L.E.; Tixier, J.S. ); Winkelman, R.G. )

    1992-09-01

    This report describes engineering-scale in situ vitrification (ISV) electrode tests conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE).(a) The purpose of these tests was to establish baseline data to serve as a foundation on which to improve the design of standard graphite rod electrodes, which are currently used in all applications. Changes in electrode design are proposed as one method to increase ISV melt depths that typically reach about 5 m. Melt depths of 10 m are needed to remediate some contaminated soil sites within the DOE complex. To establish baseline data, we performed a thermal distribution analysis and tested three electrode designs: (1) the standard graphite rod electrodes, (2) a modified design referred to as the composite graphite/molybdenum electrode, and (3) a second modified design, the dilated-tip graphite electrode. In total we performed six tests, two of each design. Within the scope of these tests, there were four specific objectives. Our first objective was to determine the influence of electrode design on monolith mass and shape. Our second objective was to determine the correlation between the actual test results and the results of the numerical heat distribution analysis using the TEMPEST code. Our third objective was to qualitatively evaluate the melt resistance and the electrode contact resistance that resulted from the three electrode designs. Finally, our fourth objective was to verify the reproducibility of the engineering-scale test results.

  12. English Skills for Engineers Required by the English Technical Writing Test

    NASA Astrophysics Data System (ADS)

    Kyouno, Noboru

    Japanese English education has focused mainly on teaching passive skills such as reading and listening, whereas actual business activities in society require active skills such as writing and speaking in addition to the passive skills. This educational situation is estimated to be a reason Japanese engineers are less confident in writing and speaking than in reading and listening. This paper focuses on details of the English Technical Writing Test provided by the Japan Society of Technical Communication and emphasizes the importance of the active skills, mainly focusing on what skills should be taught in the future and how to develop these skills. This paper also stresses the necessity of learning rhetoric-related skills, concept of information words, as well as paragraph reading and writing skills based on the concept of the 3Cs (Correct, Clear, and Concise) as a means to develop technical writing skills for engineers.

  13. 40 CFR 1048.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hours you operated your emission-data engine for certifying the engine family (see 40 CFR part... family. (a) Test procedures. Test your production-line engines using either the steady-state or...

  14. Artificial intelligence techniques for ground test monitoring of rocket engines

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Gupta, U. K.

    1990-01-01

    An expert system is being developed which can detect anomalies in Space Shuttle Main Engine (SSME) sensor data significantly earlier than the redline algorithm currently in use. The training of such an expert system focuses on two approaches which are based on low frequency and high frequency analyses of sensor data. Both approaches are being tested on data from SSME tests and their results compared with the findings of NASA and Rocketdyne experts. Prototype implementations have detected the presence of anomalies earlier than the redline algorithms that are in use currently. It therefore appears that these approaches have the potential of detecting anomalies early eneough to shut down the engine or take other corrective action before severe damage to the engine occurs.

  15. On the Engineering Mathematics Test (EMaT)

    NASA Astrophysics Data System (ADS)

    Watanabe, Toshimasa

    The aim of Engineering Mathematics Test (EMaT) is to assess university students' core academic competence and acheivement of Engineering Mathematics. It is useful for professors to evaluate teaching effect of the classes. This evaluation would help them improve curricula, and scores can be available for graduate school entrance examination. The scope includes fundamentals in Calculus, Linear Algebra, Differetial Equations, and Probability and Statistics. It is open to all students free of charge, and is annually given once at least 40 (increasing every year) universities in December. Currently, it is administered by the Engineering Mathematics Test Steering Committee, supported by the Good Practice Promotion Program for University Education of the Ministry of Education, Culture, Sports, Science and Technology.

  16. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    NASA Technical Reports Server (NTRS)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  17. Oscillating flow loss test results in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.

    1990-01-01

    The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.

  18. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  19. 40 CFR 86.1337-2007 - Engine dynamometer test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test..., loaded particulate sample filter cartridge into the filter holder assembly. It is recommended that this... period. For particulate measurements, carefully remove the filter holder from the sample flow...

  20. 40 CFR 86.1337-2007 - Engine dynamometer test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test..., loaded particulate sample filter cartridge into the filter holder assembly. It is recommended that this... period. For particulate measurements, carefully remove the filter holder from the sample flow...

  1. Product evaluation of in situ vitrification engineering, Test 4

    SciTech Connect

    Loehr, C.A.; Weidner, J.R.; Bates, S.O.

    1991-09-01

    This report is one of several that evaluates the In Situ Vitrification (ISV) Engineering-Scale Test 4 (ES-4). This document describes the chemical and physical composition, microstructure, and leaching characteristics of ES-4 product samples; these data provide insight into the expected performance of a vitrified product in an ISV buried waste application similar to that studied in ES-4.

  2. Improved Exhaust Diffuser for Jet-Engine Testing

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Sarohia, V. S.

    1985-01-01

    High-altitude simulator reduced power requirements. Test cell uses its exhaust-capture duct only to remove gases from engine; cooling air evacuated through separate path by auxiliary suction system. This way, capture duct cross-sectional area kept close to exhaust jet area, leading to greatly improved recovery performance.

  3. 40 CFR 86.001-24 - Test vehicles and engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Test vehicles and engines. 86.001-24 Section 86.001-24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and...

  4. Stennis Holds Last Planned Space Shuttle Engine Test

    NASA Technical Reports Server (NTRS)

    2009-01-01

    With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

  5. Long term testing of peanut oil in engines

    SciTech Connect

    Goodrum, J.W.

    1985-01-01

    Durability tests of engines using crude peanut oil blended with no. 2 diesel were conducted, using the E.M.A. screening procedure. Direct and indirect injection designs were operated on 20:80 and 80:28 fuel blends. Time-dependent exhaust temperature changes, mechanical wear, and crank-case oil viscosity changes were evaluated.

  6. 25. Photocopy of engineering drawing. CAPTIVE TEST STANDS AT PADS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of engineering drawing. CAPTIVE TEST STANDS AT PADS 17A AND 17B-PLANS AND SECTIONS OF MISSILE SERVICE PIPING, APRIL 1956. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  7. Deep Downhole Seismic Testing for Earthquake Engineering Studies

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh; Rohay, Alan C.

    2008-10-17

    Downhole seismic testing is one field test that is commonly used to determine compression-wave (P) and shear-wave (S) velocity profiles in geotechnical earthquake engineering investigations. These profiles are required input in evaluations of the responses to earthquake shaking of geotechnical sites and structures at these sites. In the past, traditional downhole testing has generally involved profiling in the 30- to 150-m depth range. As the number of field seismic investigations at locations with critical facilities has increased, profiling depths have also increased. An improved downhole test that can be used for wave velocity profiling to depths of 300 to 600 m or more is presented.

  8. Testing of bellows for engineering systems. Part II

    SciTech Connect

    McCoy, H.E. Jr.; McNabb, B.

    1981-04-01

    Techniques were developed for performing elastic, creep, fatigue, and squirm tests on several specific geometries of Hastelloy X and type 347 stainless steel bellows. The fatigue cycle studies was complex and included time, temperature strain, and internal pressure as variables. A programmable calculator was used to control the test and record data. Fatigue failures occurred by typical high-temperature deformation modes, and observed lifetimes were close to those predicted by the designer. In creep tests where bellows length was restrained, individual convolutions widened while the gaps between convolutions contracted. Deformation during creep was often very inhomogeneous. Nevertheless, this test program showed that bellows can be designed and characterized for engineering service.

  9. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  10. Optimization applications in aircraft engine design and test

    NASA Technical Reports Server (NTRS)

    Pratt, T. K.

    1984-01-01

    Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.

  11. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  12. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  13. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  14. Test/QA plan for the verification testing of diesel exhaust catalysts, particulate filters and engine modification control technologies for highway and nonroad use diesel engines

    EPA Science Inventory

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  15. Description of the NACA Universal Test Engine and Some Test Results

    NASA Technical Reports Server (NTRS)

    Ware, Marsden

    1927-01-01

    This report describes the 5-inch bore by 7-inch stroke single cylinder test engine used at the Langley Field Laboratory of the National Advisory Committee for Aeronautics in laboratory research on internal-combustion engine problems and presents some results of tests made therewith. The engine is arranged for variation over wide ranges, of the compression ratio and lift and timing of both inlet and exhaust valves while the engine is in operation. Provision is also made for the connection of a number of auxiliaries. These features tend to make the engine universal in character, and especially suited for the study of certain problems involving change in compression ratio, valve timing, and lift.

  16. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  17. A personal sampler for aircraft engine cold start particles: laboratory development and testing.

    PubMed

    Armendariz, Alfredo; Leith, David

    2003-01-01

    Industrial hygienists in the U.S. Air Force are concerned about exposure of their personnel to jet fuel. One potential source of exposure for flightline ground crews is the plume emitted during the start of aircraft engines in extremely cold weather. The purpose of this study was to investigate a personal sampler, a small tube-and-wire electrostatic precipitator (ESP), for assessing exposure to aircraft engine cold start particles. Tests were performed in the laboratory to characterize the sampler's collection efficiency and to determine the magnitude of adsorption and evaporation artifacts. A low-temperature chamber was developed for the artifact experiments so tests could be performed at temperatures similar to actual field conditions. The ESP collected particles from 0.5 to 20 micro m diameter with greater than 98% efficiency at particle concentrations up to 100 mg/m(3). Adsorption artifacts were less than 5 micro g/m(3) when sampling a high concentration vapor stream. Evaporation artifacts were significantly lower for the ESP than for PVC membrane filters across a range of sampling times and incoming vapor concentrations. These tests indicate that the ESP provides more accurate exposure assessment results than traditional filter-based particle samplers when sampling cold start particles produced by an aircraft engine.

  18. A personal sampler for aircraft engine cold start particles: laboratory development and testing.

    PubMed

    Armendariz, Alfredo; Leith, David

    2003-01-01

    Industrial hygienists in the U.S. Air Force are concerned about exposure of their personnel to jet fuel. One potential source of exposure for flightline ground crews is the plume emitted during the start of aircraft engines in extremely cold weather. The purpose of this study was to investigate a personal sampler, a small tube-and-wire electrostatic precipitator (ESP), for assessing exposure to aircraft engine cold start particles. Tests were performed in the laboratory to characterize the sampler's collection efficiency and to determine the magnitude of adsorption and evaporation artifacts. A low-temperature chamber was developed for the artifact experiments so tests could be performed at temperatures similar to actual field conditions. The ESP collected particles from 0.5 to 20 micro m diameter with greater than 98% efficiency at particle concentrations up to 100 mg/m(3). Adsorption artifacts were less than 5 micro g/m(3) when sampling a high concentration vapor stream. Evaporation artifacts were significantly lower for the ESP than for PVC membrane filters across a range of sampling times and incoming vapor concentrations. These tests indicate that the ESP provides more accurate exposure assessment results than traditional filter-based particle samplers when sampling cold start particles produced by an aircraft engine. PMID:14674798

  19. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2014-01-01

    On the surface, it appears that AS9100 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK) that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness. The Systems Engineering (SE) discipline is widely used in aerospace to ensure the progress from Stakeholder Expectations (the President, Congress, the taxpayers) to a successful, delivered product or service. Although this is well known, what is not well known is that these same SE processes are implemented in varying complexity, to prepare for and implement test projects that support research, development, verification and validation, qualification, and acceptance test projects. Although the test organization's terminology may vary from the SE terminology, and from one test service provider to another, the basic process is followed by successful, reliable testing organizations. For this analysis, NASA Procedural Requirements (NPR) 7123.1, NASA Systems Engineering Processes and Requirements is used to illustrate the SE processes that are used for major aerospace testing. Many of these processes

  20. LOX/Methane Main Engine Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.; Ajmani, Kumund

    2008-01-01

    The LOX/methane propellant combination is being considered for the Lunar Surface Access Module ascent main engine propulsion system. The proposed switch from the hypergolic propellants used in the Apollo lunar ascent engine to LOX/methane propellants requires the development of igniters capable of highly reliable performance in a lunar surface environment. An ignition test program was conducted that used an in-house designed LOX/methane spark torch igniter. The testing occurred in Cell 21 of the Research Combustion Laboratory to utilize its altitude capability to simulate a space vacuum environment. Approximately 750 ignition test were performed to evaluate the effects of methane purity, igniter body temperature, spark energy level and frequency, mixture ratio, flowrate, and igniter geometry on the ability to obtain successful ignitions. Ignitions were obtained down to an igniter body temperature of approximately 260 R with a 10 torr back-pressure. The data obtained is also being used to anchor a CFD based igniter model.

  1. 40 CFR 1065.410 - Maintenance limits for stabilized test engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering grade tools to identify bad engine components. Any equipment, instruments, or tools used for... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure... your test engine has a major mechanical failure that requires you to take it apart, you may no...

  2. Testing and performance characteristics of a 1-kW free piston Stirling engine

    NASA Technical Reports Server (NTRS)

    Schreiber, J.

    1983-01-01

    A 1 kW single cylinder free piston Stirling engine, configured as a research engine, was tested with helium working gas. The engine features a posted displacer and dashpot load. The test results show the engine power output and efficiency to be lower than those observed during acceptance tests by the manufacturer. Engine tests results are presented for operation at the two heater head temperatures and with two regenerator porosities, along with flow test results for the heat exchangers.

  3. High altitude aerodynamic platform concept evaluation and prototype engine testing

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1984-01-01

    A design concept has been developed for maintaining a 150-pound payload at 60,000 feet altitude for about 50 hours. A 600-pound liftoff weight aerodynamic vehicle is used which operates at sufficient speeds to withstand prevailing winds. It is powered by a turbocharged four-stoke cycle gasoline fueled engine. Endurance time of 100 hours or more appears to be feasible with hydrogen fuel and a lighter payload. A prototype engine has been tested to 40,000 feet simulated altitude. Mismatch of the engine and the turbocharger system flow and problems with fuel/air mixture ratio control characteristics prohibited operation beyond 40,000 feet. But there seems to be no reason why the concept cannot be developed to function as analytically predicted.

  4. Engine testing of ceramic cam-roller followers. Final report

    SciTech Connect

    Kalish, Y.

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  5. Engine testing of ceramic cam-roller followers

    SciTech Connect

    Kalish, Y. )

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  6. Definition study of a Variable Cycle Experimental Engine (VCEE) and associated test program and test plan

    NASA Technical Reports Server (NTRS)

    Allan, R. D.

    1978-01-01

    The Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associated Test Program and Test Plan, was initiated to identify the most cost effective program for a follow-on to the AST Test Bed Program. The VCEE Study defined various subscale VCE's based on different available core engine components, and a full scale VCEE utilizing current technology. The cycles were selected, preliminary design accomplished and program plans and engineering costs developed for several program options. In addition to the VCEE program plans and options, a limited effort was applied to identifying programs that could logically be accomplished on the AST Test Bed Program VCE to extend the usefulness of this test hardware. Component programs were provided that could be accomplished prior to the start of a VCEE program.

  7. The development of a test system for investigating the performances of personal aerosol samplers under actual workplace conditions.

    PubMed

    Botham, R A; Hughson, G W; Vincent, J H; Mark, D

    1991-10-01

    The performances of new "total" aerosol samplers for use in workplaces are required to match the inhalability criteria as contained in the latest recommendations of the International Standards Organization (ISO) and the American Conference of Governmental Industrial Hygienists (ACGIH). In the past, practical evaluations have been carried out under idealized conditions in wind tunnels, and there is now the need to extend these to more realistic workplace conditions. This paper describes a new test system that was designed and built for this purpose. It consisted of a life-size mannequin mounted on a trolley so that it can be taken to and wheeled around in workplaces. The mannequin itself incorporated a robotic arm so that, under joystick control, it can be made to simulate a range of worker movements, orientations, and attitudes. An electronically controlled, compact breathing machine provided a range of typical breathing parameters for the mannequin. The pump also provided air movement for a number of personal samplers that were mounted on the torso of the mannequin and tested in that position. Sampler performance should be assessed by comparing directly the aerosol collected by the sampler with that inhaled by the mannequin (and collected on filters inside the head).

  8. Joint US/Russia TU-144 Engine Ground Tests

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.; Balser, Jeffrey S.; McCartney, Timothy P.; Richter, Charles A.; Woike, Mark R.

    1997-01-01

    Two engine research experiments were recently completed in Moscow, Russia using an engine from the Tu-144 supersonic transport airplane. This was a joint project between the United States and Russia. Personnel from the NASA Lewis Research Center, General Electric Aircraft Engines, Pratt & Whitney, the Tupolev Design Bureau, and EBP Aircraft LTD worked together as a team to overcome the many technical and cultural challenges. The objective was to obtain large scale inlet data that could be used in the development of a supersonic inlet system for a future High Speed Civil Transport (HSCT). The-first experiment studied the impact of typical inlet structures that have trailing edges in close proximity to the inlet/engine interface plane on the flow characteristics at that plane. The inlet structure simulated the subsonic diffuser of a supersonic inlet using a bifurcated splitter design. The centerbody maximum diameter was designed to permit choking and slightly supercritical operation. The second experiment measured the reflective characteristics of the engine face to incoming perturbations of pressure amplitude. The basic test rig from the first experiment was used with a longer spacer equipped with fast actuated doors. All the objectives set forth at the beginning of the project were met.

  9. Engineers conduct key water test for A-3 stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.

  10. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    SciTech Connect

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  11. 40 CFR 91.116 - Certification procedure-test engine selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-specific fuel consumption over the appropriate engine test cycle. (c) The test engine must be constructed... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Certification procedure-test engine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Standards...

  12. Test results and facility description for a 40-kilowatt stirling engine

    NASA Technical Reports Server (NTRS)

    Kelm, G. G.; Cairelli, J. E.; Walter, R. J.

    1981-01-01

    A 40 kilowatt Stirling engine, its test support facilities, and the experimental procedures used for these tests are described. Operating experience with the engine is discussed, and some initial test results are presented

  13. Integrity testing of brush seal in a T-700 engine

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Griffin, Thomas A.; Bobula, George A.; Bill, Robert C.; Howe, Harold W.

    1993-01-01

    A split-ring brush seal was fabricated, installed between two labyrinth-honeycomb shroud seals, and tested in the fourth-stage turbine of a T-700 engine. The annealed Haynes 25 bristles rubbed directly against the nonconditioned, irregular Rene 80 turbine blade shroud surface. A total of 21 hr of cyclic and steady-state data were taken with surface speeds of 335 m/s (1100 ft/s) and shroud temperatures to 620 C (1150 F). Wear appeared to be rapid initially, with an orange flash of hot brush fragments during the first engine startup, to minimal after 10 hr of operation. The brush survived the testing but experienced some bristle pullouts and severe bristle wear; some turbine interface wear and possible material transfer was noted. Future design concerns center on tribological behavior at the interface with or without lubricants.

  14. Integrity testing of brush seal in a T-700 engine

    NASA Astrophysics Data System (ADS)

    Hendricks, Robert C.; Griffin, Thomas A.; Bobula, George A.; Bill, Robert C.; Howe, Harold W.

    1993-10-01

    A split-ring brush seal was fabricated, installed between two labyrinth-honeycomb shroud seals, and tested in the fourth-stage turbine of a T-700 engine. The annealed Haynes 25 bristles rubbed directly against the nonconditioned, irregular Rene 80 turbine blade shroud surface. A total of 21 hr of cyclic and steady-state data were taken with surface speeds of 335 m/s (1100 ft/s) and shroud temperatures to 620 C (1150 F). Wear appeared to be rapid initially, with an orange flash of hot brush fragments during the first engine startup, to minimal after 10 hr of operation. The brush survived the testing but experienced some bristle pullouts and severe bristle wear; some turbine interface wear and possible material transfer was noted. Future design concerns center on tribological behavior at the interface with or without lubricants.

  15. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2015-01-01

    On the surface, it appears that AS91001 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK)2 that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness.

  16. Temperature measurement. [liquid monopropellant rocket engine performance tests

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design, installation, checkout, calibration, and operation of a temperature measuring system to be used during tests of a liquid monopropellant rocket engine are discussed. Appendixes include: (1) temperature measurement system elemental uncertainties, and (2) tables and equations for use with thermocouples and resistance thermometers. Design guidelines are given for the critical components of each portion of the system to provide an optimum temperature measurement system which meets the performance criteria specified.

  17. Convert Ten Foot Environmental Test Chamber into an Ion Engine Test Chamber

    NASA Technical Reports Server (NTRS)

    VanVelzer, Paul

    2006-01-01

    The 10 Foot Space Simulator at the Jet Propulsion Laboratory has been used for the last 40 years to test numerous spacecraft, including the Ranger series, several Mariner class, among many others and finally, the Spirit and Opportunity Mars Rovers. The request was made to convert this facility to an Ion Engine test facility, with a possible long term life test. The Ion engine was to propel the Prometheus spacecraft to Jupiter's moons. This paper discusses the challenges that were met, both from a procedural and physical standpoint. The converted facility must operate unattended, support a 30 Kw Ion Engine, operate economically, and be easily converted back to former operation as a spacecraft test facility.

  18. Subscale Injector Testing to Support J-2X Engine Development

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Elam, Sandy; Weber, Jim; Miller, Ken

    2008-01-01

    The J-2X engine being pursued for the Ares I will be a derivative of the J-2 engine developed by Pratt & Whitney Rocketdyne (PWR). As part of the engine development, a subscale injector was fabricated by PWR and hot-fire tested at NASA s Marshall Space Flight Center (MSFC) to evaluate performance data. This subscale injector had a reduced injector diameter and fewer elements than the full scale design, but the element density (#elements / injector area), and element geometries nearly identical to the full scale design. Three different materials were used for the LOX posts in order to test for durability. The subscale injector included 46 standard elements and 6 baffle elements, corresponding to the ratio of baffled elements to core elements in the full scale design. The baffle elements were included to demonstrate thermal compatibility of the baffles and to more closely represent the full scale performance. Fifteen hot-fire tests were conducted totaling over 200 seconds of mainstage time on the injector. Chamber pressures with oxygen/hydrogen propellants ranged from 870-1380 psig with mixture ratios ranging from 4.8-6.1. Fuel manifold inlet temperatures were varied from 190 to 300 R. Modular, water cooled, calorimeter chamber assemblies were used to provide heating rate data and evaluate the effects of characteristic length (L*). Performance was evaluated relative to the resulting characteristic velocity (C*) efficiency. Performance met the value required in order to proceed with this design for the full scale hardware. Hardware inspections show no evidence of cracking at the tip of the LOX post for any of the materials tested. Minor erosion of the baffle element tips was observed in the early testing. A design change was quickly implemented and tested, and this change resolved the issue. Development of the J-2X is continuing with this element density and design.

  19. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  20. Speckle interferometry measurements in testing halls for civil engineering applications

    NASA Astrophysics Data System (ADS)

    Facchini, Mauro; Jacquot, Pierre M.

    1999-08-01

    Speckle interferometry is an interesting tool for the measurement of micro-deformations and has found application in many different fields ranging from material testing to structural assessment. This kind of applications, however, has often been confined inside optical laboratories where operational conditions are optimal. This paper is devoted to the extension of speckle interferometry to various measurements--performed not inside well protected rooms but in testing halls dedicated to experimentation in civil engineering--where the environmental conditions are severe for an interferometric method.

  1. Competency Areas for Certification Testing of Manufacturing Technologists and Entry-Level Manufacturing Engineers.

    ERIC Educational Resources Information Center

    Tillman, Tracy S.

    1992-01-01

    Fifty-one manufacturing experts selected 48 competencies that should be included in competency tests for manufacturing technologists and engineers. Areas include mathematics, physics, sciences, engineering drawing and blueprint reading, engineering materials, and statics and strength of materials. (SK)

  2. The methods of formaldehyde emission testing of engine: A review

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Geng, Peng; Cao, Erming; Wei, Lijiang

    2015-12-01

    A number of measurements have been provided to detect formaldehyde in the atmosphere, but there are no clear unified standards in engine exhaust. Nowadays, formaldehyde, an unregulated emission from methanol engine, has been attracting increasing attention by researchers. This paper presents the detection techniques for formaldehyde emitted from the engines applied in recent market, introducing the approaches in terms of unregulated emission tests of formaldehyde, which involved gas chromatography, liquid chromatography, chromatography-mass spectrometry, chromatography-spectrum, Fourier infrared spectroscopy and spectrophotometry. The author also introduces the comparison regarding to the advantages of the existing detection techniques based on the principle, to compare with engine exhaust sampling method, the treatment in advance of detection, obtaining approaches accessing to the qualitative and quantitative analysis of chromatograms or spectra. The accuratest result obtained was chromatography though it cannot be used continuously. It also can be utilized to develop high requirements of emissions and other regulations. Fourier infrared spectroscopy has the advantage of continuous detection for a variety of unregulated emissions and can be applied to the bench in variable condition. However, its accuracy is not as good as chromatography. As the conclusion, a detection technique is chosen based on different requirements.

  3. Fault Tree Based Diagnosis with Optimal Test Sequencing for Field Service Engineers

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; George, Laurence L.; Patterson-Hine, F. A.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    When field service engineers go to customer sites to service equipment, they want to diagnose and repair failures quickly and cost effectively. Symptoms exhibited by failed equipment frequently suggest several possible causes which require different approaches to diagnosis. This can lead the engineer to follow several fruitless paths in the diagnostic process before they find the actual failure. To assist in this situation, we have developed the Fault Tree Diagnosis and Optimal Test Sequence (FTDOTS) software system that performs automated diagnosis and ranks diagnostic hypotheses based on failure probability and the time or cost required to isolate and repair each failure. FTDOTS first finds a set of possible failures that explain exhibited symptoms by using a fault tree reliability model as a diagnostic knowledge to rank the hypothesized failures based on how likely they are and how long it would take or how much it would cost to isolate and repair them. This ordering suggests an optimal sequence for the field service engineer to investigate the hypothesized failures in order to minimize the time or cost required to accomplish the repair task. Previously, field service personnel would arrive at the customer site and choose which components to investigate based on past experience and service manuals. Using FTDOTS running on a portable computer, they can now enter a set of symptoms and get a list of possible failures ordered in an optimal test sequence to help them in their decisions. If facilities are available, the field engineer can connect the portable computer to the malfunctioning device for automated data gathering. FTDOTS is currently being applied to field service of medical test equipment. The techniques are flexible enough to use for many different types of devices. If a fault tree model of the equipment and information about component failure probabilities and isolation times or costs are available, a diagnostic knowledge base for that device can be

  4. Predictive tests to evaluate oxidative potential of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Ghiazza, Mara; Carella, Emanuele; Oliaro-Bosso, Simonetta; Corazzari, Ingrid; Viola, Franca; Fenoglio, Ivana

    2013-04-01

    Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.

  5. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed...

  6. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed...

  7. The B.A.R. Demonstration Project: A Comparative Evaluation Trial of Computer-Based, Multimedia Simulation Testing and "Hands-on," Actual Equipment Testing.

    ERIC Educational Resources Information Center

    Maher, Thomas G.

    A general evaluation design was developed to examine the effectiveness of a computer-based, multimedia simulation test on California smog check mechanics. The simulation test operated on an Apple Macintosh IIci, with a single touchscreen color monitor controlling a videodisc player; it had three parts: introduction-tutorial-help, data, and test.…

  8. Monopropellant hydrazine resistoject: Engineering model fabrication and test task

    NASA Technical Reports Server (NTRS)

    Murch, C. K.

    1973-01-01

    The monopropellant hydrazine resistojet, termed the electrothermal hydrazine thruster (EHT) by TRW systems, thermally decomposes anhydrous hydrazine propellant to produce a high-temperature, low-molecular-weight gas for expulsion through a propulsive nozzle. The EHT developed for this program required about 3-5 watts of electrical power and produced 0.020 to 0.070 pound of thrust over the inlet pressure range of 100 to 400 psia. The thruster was designed for both pulsed and steady state operation. A summary of the GSFC original requirements and GSFC modified requirements, and the performance of the engineering model EHT is given. The experimental program leading to the engineering model EHT design, modifications necessary to achieve the required thruster life capability, and the results of the life test prgram. Other facets of the program, including analyses, preliminary design, specifications, data correlation, and recommendations for a flight model are discussed.

  9. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  10. Pop tests of storable biopropellant liquid apogee engine

    NASA Astrophysics Data System (ADS)

    Kuroda, Yukio; Tadano, Makoto; Sato, Masahiro; Kusaka, Kazuo; Kobayashi, Hideyuki; Iihara, Sigeyasu; Ban, Hiroyuki

    1994-10-01

    A pressure-fed, blowdown, hydrazine/NTO apogee propulsion system had been selected for the ETS-6. One of the problems encountered during the development of the engine was the occurrence of pops (popping) at the higher operating chamber pressures. Pops are irregular high amplitude pressure pulses. It is generally agreed that pops is a liquid spray/gas two-phase explosion triggered by a local explosion near the jet impingement region. The effects of operating parameters on pops observed in the development tests of the apogee engine for the ETS-6 were inconsistent with those reported earlier for single impingement injectors; pops with the apogee engine injectors was more likely to occur at higher chamber pressures, higher injection velocities, and higher propellant temperatures. Pops data were correlated fairly well in chamber pressures (bar-P(sub c)) vs. fuel Reynolds number (R(sub ef)) plane. However, the range of operating parameters for the above correlation were very narrow since they were obtained during injector screening tests for a particular application to the apogee engine. It was also felt that the above correlation was too simplistic to capture any effect of design parameters of multi-element injectors. In the present study, the demarcation between pops and the pops-free region was determined in broader operating ranges and design parameters. The range of bar-P(sub c) and R(sub ef) was extended by exchanging graphite nozzle throat inserts with different throat diameters. The injectors were carefully selected to obtain effects, if any, of (1) film cooling fraction, (2) secondary mixing, and (3) number of elements and/or fuel orifice diameters. It was found that there was a threshold fuel Reynolds number below which no pops were observed at any chamber pressures and that the pops region curve in the bar-P(sub c)-R(sub ef) plane had two branches: upper branches and lower branches.

  11. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    NASA Technical Reports Server (NTRS)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  12. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  13. Integrated System Health Management (ISHM) Implementation in Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera

    2010-01-01

    A pilot operational ISHM capability has been implemented for the E-2 Rocket Engine Test Stand (RETS) and a Chemical Steam Generator (CSG) test article at NASA Stennis Space Center. The implementation currently includes an ISHM computer and a large display in the control room. The paper will address the overall approach, tools, and requirements. It will also address the infrastructure and architecture. Specific anomaly detection algorithms will be discussed regarding leak detection and diagnostics, valve validation, and sensor validation. It will also describe development and use of a Health Assessment Database System (HADS) as a repository for measurements, health, configuration, and knowledge related to a system with ISHM capability. It will conclude with a discussion of user interfaces, and a description of the operation of the ISHM system prior, during, and after testing.

  14. Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward; Schreiber, Jeffrey

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.

  15. Capturing flight system test engineering expertise: Lessons learned

    NASA Technical Reports Server (NTRS)

    Woerner, Irene Wong

    1991-01-01

    Within a few years, JPL will be challenged by the most active mission set in history. Concurrently, flight systems are increasingly more complex. Presently, the knowledge to conduct integration and test of spacecraft and large instruments is held by a few key people, each with many years of experience. JPL is in danger of losing a significant amount of this critical expertise, through retirement, during a period when demand for this expertise is rapidly increasing. The most critical issue at hand is to collect and retain this expertise and develop tools that would ensure the ability to successfully perform the integration and test of future spacecraft and large instruments. The proposed solution was to capture and codity a subset of existing knowledge, and to utilize this captured expertise in knowledge-based systems. First year results and activities planned for the second year of this on-going effort are described. Topics discussed include lessons learned in knowledge acquisition and elicitation techniques, life-cycle paradigms, and rapid prototyping of a knowledge-based advisor (Spacecraft Test Assistant) and a hypermedia browser (Test Engineering Browser). The prototype Spacecraft Test Assistant supports a subset of integration and test activities for flight systems. Browser is a hypermedia tool that allows users easy perusal of spacecraft test topics. A knowledge acquisition tool called ConceptFinder which was developed to search through large volumes of data for related concepts is also described and is modified to semi-automate the process of creating hypertext links.

  16. On the use of cyclostationary indicators in IC engine quality control by cold tests

    NASA Astrophysics Data System (ADS)

    Delvecchio, S.; D'Elia, G.; Dalpiaz, G.

    2015-08-01

    This paper addresses the use of first- and second-order cyclostationary (CS1 and CS2) tools to process the vibration signals picked up from internal combustion (IC) engines during cold tests. This type of analysis is needed in order to detect and diagnose irregular operations for quality control purposes. The effectiveness of indicators such as Mean Instantaneous Power (MIP), Degree of Cyclostationarity (DCSα) and Indicator of Cyclostationarity (ICSnx) in detecting assembly faults has been tested on real signals concerning three faulty conditions: inverted piston, connecting rod with incorrectly tightened screws, connecting rod without one bearing cap. In the past several authors have mainly used cyclostationary metrics for diagnostics purposes in rolling bearings and gear systems. Moreover, a signal model, qualitatively reproducing the features of actual cold test signals, has been formulated and used in order to preliminarily study the influence of signal parameters on the Indicators of Cyclostationarity. The results indicate that the cyclostationary tools - mainly CS2 tools - are effective in detecting and diagnosing all tested faulty conditions. In particular, indicator IC⌢S2x is highly sensitive to faults and it is suitable as pass/fail tool in quality control at the end of the engine assembly line. As a further second-order cyclostationary metric, the MIP is effective for detection, as well for fault identification, since it is able to localize regular and fault events within the engine cycle. In addition DCSα effectively characterizes the CS2 periodicities, giving the cyclic order distribution. Since these CS2 tools require a moderate computation cost, they can be considered ready for on-line industrial applications.

  17. Pacer Comet 4: Automated Jet Engine Testing of a TF33-P100 Pratt & Whitney Engine

    NASA Astrophysics Data System (ADS)

    Mason, Rex Bolding

    Pacer Comet 4 found its life out of necessity to replace an obsolescent Pacer Comet 3 engine test system at Tinker AFB in Oklahoma City, OK. Pacer Comet 3 (PC3) was created and installed in the early 1980's to test jet engines from a wide range of planes. PC3 had several problems from a maintenance standpoint: contractors designed and installed the system but the contract did not include the OEM data package. Without drawings or design knowledge, fixing the smallest of problems could turn into a multi-day project. In addition to high cost, as the OEM companies of proprietary parts went out of business, it became impossible to find a replacement for a failed part. These issues set the framework for the Pacer Comet 4 (PC4) system. PC4 was created as an organic AF and Department of Defense collaboration to fix the issues with PC3. PC4 provides the customer with a complete data package including multiple drawing sets and data sheets for all parts used, as well as design files for all PCBs created in house. PC4 has a standard to use commercially available off the shelf parts (COTS). The reason for this is sustainability in maintenance. If a part is to fail, it should be able to be purchased from any manufacturer that meets the specs of the original product. No proprietary parts are used, except as directed by the engine's OEM. This thesis will focus on the design and installation of the on-frame data acquisition PC4 system for the Pratt & Whitney TF33-P100A-QEC engine that is currently in use on the E3 Sentry. This thesis will show efficiency improvements for maintenance sustainability (70% cabling reduction) as well as discuss performance improvements in both test and production environments.

  18. Development Testing of 1-Newton ADN-Based Rocket Engines

    NASA Astrophysics Data System (ADS)

    Anflo, K.; Gronland, T.-A.; Bergman, G.; Nedar, R.; Thormählen, P.

    2004-10-01

    With the objective to reduce operational hazards and improve specific and density impulse as compared with hydrazine, the Research and Development (R&D) of a new monopropellant for space applications based on AmmoniumDiNitramide (ADN), was first proposed in 1997. This pioneering work has been described in previous papers1,2,3,4 . From the discussion above, it is clear that cost savings as well as risk reduction are the main drivers to develop a new generation of reduced hazard propellants. However, this alone is not enough to convince a spacecraft builder to choose a new technology. Cost, risk and schedule reduction are good incentives, but a spacecraft supplier will ask for evidence that this new propulsion system meets a number of requirements within the following areas: This paper describes the ongoing effort to develop a storable liquid monopropellant blend, based on AND, and its specific rocket engines. After building and testing more than 20 experimental rocket engines, the first Engineering Model (EM-1) has now accumulated more than 1 hour of firing-time. The results from test firings have validated the design. Specific impulse, combustion stability, blow-down capability and short pulse capability are amongst the requirements that have been demonstrated. The LMP-103x propellant candidate has been stored for more than 1 year and initial material compatibility screening and testing has started. 1. Performance &life 2. Impact on spacecraft design &operation 3. Flight heritage Hereafter, the essential requirements for some of these areas are outlined. These issues are discussed in detail in a previous paper1 . The use of "Commercial Of The Shelf" (COTS) propulsion system components as much as possible is essential to minimize the overall cost, risk and schedule. This leads to the conclusion that the Technology Readiness Level (TRL) 5 has been reached for the thruster and propellant. Furthermore, that the concept of ADN-based propulsion is feasible.

  19. A&M. TAN609. Jet engine test pad and control building. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-609. Jet engine test pad and control building. Camera facing southeast. Date: July 19, 1954. INEEL negative no. 11344 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  20. Orbit transfer rocket engine technology program: Oxygen materials compatibility testing

    NASA Technical Reports Server (NTRS)

    Schoenman, Leonard

    1989-01-01

    Particle impact and frictional heating tests of metals in high pressure oxygen, are conducted in support of the design of an advanced rocket engine oxygen turbopump. Materials having a wide range of thermodynamic properties including heat of combustion and thermal diffusivity were compared in their resistance to ignition and sustained burning. Copper, nickel and their alloys were found superior to iron based and stainless steel alloys. Some materials became more difficult to ignite as oxygen pressure was increased from 7 to 21 MPa (1000 to 3000 psia).

  1. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., except constant speed engines, engines rated under 19 kW, and propulsion marine diesel engines. (2) The 5... this subpart shall be used for propulsion marine diesel engines. (5) Notwithstanding the provisions of... rated under 19 kW; or (B) Propulsion marine diesel engines, provided the propulsion marine...

  2. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., except constant speed engines, engines rated under 19 kW, and propulsion marine diesel engines. (2) The 5... this subpart shall be used for propulsion marine diesel engines. (5) Notwithstanding the provisions of... rated under 19 kW; or (B) Propulsion marine diesel engines, provided the propulsion marine...

  3. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., except constant speed engines, engines rated under 19 kW, and propulsion marine diesel engines. (2) The 5... this subpart shall be used for propulsion marine diesel engines. (5) Notwithstanding the provisions of... rated under 19 kW; or (B) Propulsion marine diesel engines, provided the propulsion marine...

  4. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., except constant speed engines, engines rated under 19 kW, and propulsion marine diesel engines. (2) The 5... this subpart shall be used for propulsion marine diesel engines. (5) Notwithstanding the provisions of... rated under 19 kW; or (B) Propulsion marine diesel engines, provided the propulsion marine...

  5. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    SciTech Connect

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  6. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  7. MoSi2-Base Hybrid Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Hebsur, Mohan

    1998-01-01

    important property measured was impact resistance. Aircraft engine components require sufficient toughness to resist manufacturing defects, assembly damage, stress concentrations at notches, and foreign object damage. Engine company designers indicated that impact resistance would have to be measured before they would seriously consider these types of composites. The Charpy V-notch test was chosen to assess impact resistance, and both monolithic and composite versions Of MOSi2 were tested from -300 to 1400 C. The results (see the following graphs) show that nitride-particulate-reinforced MoSi2 exhibited impact resistance higher than that of many monolithic ceramics and intermetallics, and that the fiber-reinforced composites had even higher values, approaching that of cast superalloys.

  8. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  9. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  10. 40 CFR 86.1327-98 - Engine dynamometer test procedures; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Engine dynamometer test procedures... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1327-98 Engine dynamometer test procedures; overview. Section...

  11. 40 CFR 90.1204 - Maintenance, aging and testing of engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Maintenance, aging and testing of... Voluntary In-Use Testing § 90.1204 Maintenance, aging and testing of engines. (a) Prior to aging the engines... assure that the engines and equipment were properly used and maintained during the field aging...

  12. 40 CFR 90.1204 - Maintenance, aging and testing of engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Maintenance, aging and testing of... Voluntary In-Use Testing § 90.1204 Maintenance, aging and testing of engines. (a) Prior to aging the engines... assure that the engines and equipment were properly used and maintained during the field aging...

  13. 40 CFR 90.1204 - Maintenance, aging and testing of engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Maintenance, aging and testing of... Voluntary In-Use Testing § 90.1204 Maintenance, aging and testing of engines. (a) Prior to aging the engines... assure that the engines and equipment were properly used and maintained during the field aging...

  14. 40 CFR 90.1204 - Maintenance, aging and testing of engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Maintenance, aging and testing of... Voluntary In-Use Testing § 90.1204 Maintenance, aging and testing of engines. (a) Prior to aging the engines... assure that the engines and equipment were properly used and maintained during the field aging...

  15. 40 CFR 90.1204 - Maintenance, aging and testing of engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Maintenance, aging and testing of... Voluntary In-Use Testing § 90.1204 Maintenance, aging and testing of engines. (a) Prior to aging the engines... assure that the engines and equipment were properly used and maintained during the field aging...

  16. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials.

    PubMed

    Holden, Patricia A; Gardea-Torresdey, Jorge L; Klaessig, Fred; Turco, Ronald F; Mortimer, Monika; Hund-Rinke, Kerstin; Cohen Hubal, Elaine A; Avery, David; Barceló, Damià; Behra, Renata; Cohen, Yoram; Deydier-Stephan, Laurence; Ferguson, P Lee; Fernandes, Teresa F; Herr Harthorn, Barbara; Henderson, W Matthew; Hoke, Robert A; Hristozov, Danail; Johnston, John M; Kane, Agnes B; Kapustka, Larry; Keller, Arturo A; Lenihan, Hunter S; Lovell, Wess; Murphy, Catherine J; Nisbet, Roger M; Petersen, Elijah J; Salinas, Edward R; Scheringer, Martin; Sharma, Monita; Speed, David E; Sultan, Yasir; Westerhoff, Paul; White, Jason C; Wiesner, Mark R; Wong, Eva M; Xing, Baoshan; Steele Horan, Meghan; Godwin, Hilary A; Nel, André E

    2016-06-21

    Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test end points, duration, and study conditions-including ENM test concentrations-that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia.

  17. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials.

    PubMed

    Holden, Patricia A; Gardea-Torresdey, Jorge L; Klaessig, Fred; Turco, Ronald F; Mortimer, Monika; Hund-Rinke, Kerstin; Cohen Hubal, Elaine A; Avery, David; Barceló, Damià; Behra, Renata; Cohen, Yoram; Deydier-Stephan, Laurence; Ferguson, P Lee; Fernandes, Teresa F; Herr Harthorn, Barbara; Henderson, W Matthew; Hoke, Robert A; Hristozov, Danail; Johnston, John M; Kane, Agnes B; Kapustka, Larry; Keller, Arturo A; Lenihan, Hunter S; Lovell, Wess; Murphy, Catherine J; Nisbet, Roger M; Petersen, Elijah J; Salinas, Edward R; Scheringer, Martin; Sharma, Monita; Speed, David E; Sultan, Yasir; Westerhoff, Paul; White, Jason C; Wiesner, Mark R; Wong, Eva M; Xing, Baoshan; Steele Horan, Meghan; Godwin, Hilary A; Nel, André E

    2016-06-21

    Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test end points, duration, and study conditions-including ENM test concentrations-that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia. PMID:27177237

  18. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  19. Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Shrading, Nicholas J.

    2012-01-01

    The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  20. Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Schrading, J. Nicolas

    2013-01-01

    The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  1. Flight testing the digital electronic engine control in the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  2. NASA/GE quiet engine C acoustic test results

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Pass, J. E.

    1974-01-01

    The acoustic investigation and evaluation of the C propulsion turbofan engine are discussed. The engine was built as a part of the Quiet Engine Program. The objectives of the program are as follows: (1) to determine the noise levels produced turbofan bypass engines, (2) to demonstrate the technology and innovations which will reduce the production and radiation of noise in turbofan engines, and (3) to acquire experimental acoustic and aerodynamic data for high bypass turbofan engines to provide a better understanding of noise production mechanisms. The goals of the program called for a turbofan engine 15 to 20 PNdB quieter than currently available engines in the same thrust class.

  3. Acoustic-Structure Interaction in Rocket Engines: Validation Testing

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.

    2009-01-01

    While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.

  4. Impact Testing of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2001-01-01

    Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.

  5. Engineering evaluation of SSME dynamic data from engine tests and SSV flights

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An engineering evaluation of dynamic data from SSME hot firing tests and SSV flights is summarized. The basic objective of the study is to provide analyses of vibration, strain and dynamic pressure measurements in support of MSFC performance and reliability improvement programs. A brief description of the SSME test program is given and a typical test evaluation cycle reviewed. Data banks generated to characterize SSME component dynamic characteristics are described and statistical analyses performed on these data base measurements are discussed. Analytical models applied to define the dynamic behavior of SSME components (such as turbopump bearing elements and the flight accelerometer safety cut-off system) are also summarized. Appendices are included to illustrate some typical tasks performed under this study.

  6. Wireless Data-Acquisition System for Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lin, Chujen; Lonske, Ben; Hou, Yalin; Xu, Yingjiu; Gang, Mei

    2007-01-01

    A prototype wireless data-acquisition system has been developed as a potential replacement for a wired data-acquisition system heretofore used in testing rocket engines. The traditional use of wires to connect sensors, signal-conditioning circuits, and data acquisition circuitry is time-consuming and prone to error, especially when, as is often the case, many sensors are used in a test. The system includes one master and multiple slave nodes. The master node communicates with a computer via an Ethernet connection. The slave nodes are powered by rechargeable batteries and are packaged in weatherproof enclosures. The master unit and each of the slave units are equipped with a time-modulated ultra-wide-band (TMUWB) radio transceiver, which spreads its RF energy over several gigahertz by transmitting extremely low-power and super-narrow pulses. In this prototype system, each slave node can be connected to as many as six sensors: two sensors can be connected directly to analog-to-digital converters (ADCs) in the slave node and four sensors can be connected indirectly to the ADCs via signal conditioners. The maximum sampling rate for streaming data from any given sensor is about 5 kHz. The bandwidth of one channel of the TM-UWB radio communication system is sufficient to accommodate streaming of data from five slave nodes when they are fully loaded with data collected through all possible sensor connections. TM-UWB radios have a much higher spatial capacity than traditional sinusoidal wave-based radios. Hence, this TM-UWB wireless data-acquisition can be scaled to cover denser sensor setups for rocket engine test stands. Another advantage of TM-UWB radios is that it will not interfere with existing wireless transmission. The maximum radio-communication range between the master node and a slave node for this prototype system is about 50 ft (15 m) when the master and slave transceivers are equipped with small dipole antennas. The range can be increased by changing to

  7. The Analysis of Exhaust Gas Thermal Energy Recovery Through a TEG Generator in City Traffic Conditions Reproduced on a Dynamic Engine Test Bed

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Wojciechowski, Krzysztof T.

    2015-06-01

    We present an analysis of thermal energy recovery through a proprietary thermoelectric generator (TEG) in an actual vehicle driving cycle reproduced on a dynamic engine test bed. The tests were performed on a 1.3-L 66-kW diesel engine. The TEG was fitted in the vehicle exhaust system. In order to assess the thermal energy losses in the exhaust system, advanced portable emission measurement system research tools were used, such as Semtech DS by Sensors. Aside from the exhaust emissions, the said analyzer measures the exhaust mass flow and exhaust temperature, vehicle driving parameters and reads and records the engine parameters. The difficulty related to the energy recovery measurements under actual traffic conditions, particularly when passenger vehicles and TEGs are used, spurred the authors to develop a proprietary method of transposing the actual driving cycle as a function V = f( t) onto the engine test bed, opn which the driving profile, previously recorded in the city traffic, was reproduced. The length of the cycle was 12.6 km. Along with the motion parameters, the authors reproduced the parameters of the vehicle and its transmission. The adopted methodology enabled high repeatability of the research trials while still ensuring engine dynamic states occurring in the city traffic.

  8. The FENIX (Fusion ENgineering International EXperimental) test facility

    SciTech Connect

    Slack, D.S.; Patrick, R.E.; Chaplin, M.R.; Miller, J.R.; Shen, S.S.; Summers, L.T.; Kerns, J.A.

    1989-08-30

    The Fusion ENgineering International EXperimental Magnet Facility (FENIX), under construction at Lawrence Livermore National Laboratory (LLNL), is a significant step forward in meeting the testing requirements necessary for the development of superconductor for large-scale, superconducting magnets. A 14-T, transverse field over a test volume of 150 {times} 60 {times} 150 mm in length will be capable of testing conductors the size of the International Thermonuclear Experimental Reactor (ITER). Proposed conductors for ITER measure {approximately}35 mm on one side and will operate at currents of up to 40 kA at fields of {approximately}14 T. The testing of conductors and associated components, such as joints, will require large-bore, high-field magnet facilities. FENIX is being constructed using the existing A{sub 2o} and A{sub 2i} magnets from the idle MFTF. The east and west A{sub 2} pairs will be mounted together to form a split-pair solenoid. The pairs of magnets will be installed in a 4.0-m cryostat vessel located in the HFTF building at LLNL. Each magnet is enclosed in its own cryostat, the existing 4.0-m vessel serving only as a vacuum chamber. 4 refs., 8 figs.

  9. Underground tank vitrification: Engineering-scale test results

    SciTech Connect

    Campbell, B.E.; Timmerman, C.L.; Bonner, W.F.

    1990-06-01

    Contamination associated with underground tanks at US Department of Energy sites and other sites may be effectively remediated by application of in situ vitrification (ISV) technology. In situ vitrification converts contaminated soil and buried wastes such as underground tanks into a glass and crystalline block, similar to obsidian with crystalline phases. A radioactive engineering-scale test performed at Pacific Northwest Laboratory in September 1989 demonstrated the feasibility of using ISV for this application. A 30-cm-diameter (12-in.-diameter) buried steel and concrete tank containing simulated tank sludge was vitrified, producing a solid block. The tank sludge used in the test simulated materials in tanks at Oak Ridge National Laboratory. Hazardous components of the tank sludge were immobilized or removed and captured in the off-gas treatment system. The steel tank was converted to ingots near the bottom of the block and the concrete walls were dissolved into the resulting glass and crystalline block. Although one of the four moving electrodes froze'' in place about halfway into the test, operations were able to continue. The test was successfully completed and all the tank sludge was vitrified. 7 refs., 12 figs., 5 tabs.

  10. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  11. 40 CFR 1065.410 - Maintenance limits for stabilized test engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering grade tools to identify bad engine components. Any equipment, instruments, or tools used for... dealerships and other service outlets. (d) If we determine that a part failure, system malfunction, or... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical...

  12. 40 CFR 1065.410 - Maintenance limits for stabilized test engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering grade tools to identify bad engine components. Any equipment, instruments, or tools used for... dealerships and other service outlets. (d) If we determine that a part failure, system malfunction, or... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical...

  13. 40 CFR 94.104 - Test procedures for Category 2 marine engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... using the test procedures specified in 40 CFR part 92, except as otherwise specified in this subpart. (b)(1) The requirements of 40 CFR part 92 related to charge air temperatures, engine speed and load, and engine air inlet restriction pressures do not apply for marine engines. (2) For marine engine...

  14. 24. CLOSEUP OF MOUNT FOR F1 ENGINE ON STATIC TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. CLOSE-UP OF MOUNT FOR F-1 ENGINE ON STATIC TEST TOWER WITH STRUCTURAL DYNAMICS TEST STAND IN DISTANCE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  15. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    SciTech Connect

    Linker, K.L.; Rawlinson, K.S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has as one of its program elements the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc., kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  16. The attenuation characteristics of four specially designed mufflers tested on a practical engine setup

    NASA Technical Reports Server (NTRS)

    Stokes, George M; Davis, Don D , Jr

    1953-01-01

    Attenuation characteristics of four different resonator mufflers were determined in both cold tests and engine field tests and compared with the theoretical calculations. These mufflers were specifically designed for a helicopter. Engine-exhaust sound pressures, temperatures, and noise levels from the helicopter were measured. The experimental muffler cold tests indicated close a agreement with theory, whereas the engine tests indicated some discrepancies. Test results show the usefulness of the theoretical equation used for predicting muffler attenuation characteristics.

  17. Liquid Rocket Engine Testing - Historical Lecture: Simulated Altitude Testing at AEDC

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.

    2010-01-01

    The span of history covered is from 1958 to the present. The outline of this lecture draws from historical examples of liquid propulsion testing done at AEDC primarily for NASA's Marshall Space Flight Center (NASA/MSFC) in the Saturn/Apollo Program and for USAF Space and Missile Systems dual-use customers. NASA has made dual use of Air Force launch vehicles, Test Ranges and Tracking Systems, and liquid rocket altitude test chambers / facilities. Examples are drawn from the Apollo/ Saturn vehicles and the testing of their liquid propulsion systems. Other examples are given to extend to the family of the current ELVs and Evolved ELVs (EELVs), in this case, primarily to their Upper Stages. The outline begins with tests of the XLR 99 Engine for the X-15 aircraft, tests for vehicle / engine induced environments during flight in the atmosphere and in Space, and vehicle staging at high altitude. The discussion is from the author's perspective and background in developmental testing.

  18. "I Actually Contributed to Their Research": The Influence of an Abbreviated Summer Apprenticeship Program in Science and Engineering for Diverse High-School Learners

    ERIC Educational Resources Information Center

    Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III

    2015-01-01

    This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research…

  19. A Hydrogen Containment Process For Nuclear Thermal Engine Ground Testing

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    A hydrogen containment process was proposed for ground testing of a nuclear thermal engine. The hydrogen exhaust from the engine is contained in two unit operations: an oxygen-rich burner and a tubular heat exchanger. The burner burns off the majority of the hydrogen, and the remaining hydrogen is removed in the tubular heat exchanger through the species recombination mechanism. A multi-dimensional, pressure-based multiphase computational fluid dynamics methodology was used to conceptually sizing the oxygen-rich burner, while a one-dimensional thermal analysis methodology was used to conceptually sizing the heat exchanger. Subsequently, a steady-state operation of the entire hydrogen containment process, from pressure vessel, through nozzle, diffuser, burner and heat exchanger, was simulated numerically, with the afore-mentioned computational fluid dynamics methodology. The computational results show that 99% of hydrogen reduction is achieved at the end of the burner, and the rest of the hydrogen is removed to a trivial level in the heat exchanger. The computed flammability at the exit of the heat exchanger is less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  20. Engineering data transfer test with EDCARS using MIL-R-28002 (Raster). Laboratory Acceptance Test and User Application Test

    SciTech Connect

    Not Available

    1992-04-17

    This paper documents the results of a sequence of tests conducted to evaluate the DoD Computer-aided Acquisition and Logistic Support (CALS) data interchange capability of the Air Force Engineering Data Computer-Assisted Retrieval System (EDCARS). The CALS initiative specifies a standard digital interface to streamline the interchange of technical data between the DoD and the commercial sector. The CALS Test Network (CTN) is tasked to conduct tests of military standards which specify this digital interface. The testing results outlined in this report are intended to evaluate the EDCARS systems`s ability to sport CALS data interchanges and establish the level of technical data interoperability implemented at this DoD engineering data repository.

  1. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2012-01-01

    The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.

  2. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  3. Study of fueling requirements for the Engineering Test Reactor

    SciTech Connect

    Ho, S.K.; Perkins, L.J.

    1987-10-16

    An assessment of the fueling requirement for the TIBER Engineering Test Reactor is studied. The neutral shielding pellet ablation model with the inclusion of the effects of the alpha particles is used for our study. The high electron temperature in a reactor-grade plasma makes pellet penetration very difficult. The launch length has to be very large (several tens of meters) in order to avoid pellet breakage due to the low inertial strength of DT ''ice.'' The minimum repetition rate corresponding to the largest allowable pellet, is found to be about 1 Hz. A brief survey is done on the various operational and conceptual pellet injection schemes for plasma fueling. The underlying conclusion is that an alternative fueling scheme of coaxial compact-toroid plasma gun is very likely needed for effective central fueling of reactor-grade plasmas. 16 refs.

  4. Improved CPAS Photogrammetric Capabilities for Engineering Development Unit (EDU) Testing

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Bretz, David R.

    2013-01-01

    This paper focuses on two key improvements to the photogrammetric analysis capabilities of the Capsule Parachute Assembly System (CPAS) for the Orion vehicle. The Engineering Development Unit (EDU) system deploys Drogue and Pilot parachutes via mortar, where an important metric is the muzzle velocity. This can be estimated using a high speed camera pointed along the mortar trajectory. The distance to the camera is computed from the apparent size of features of known dimension. This method was validated with a ground test and compares favorably with simulations. The second major photogrammetric product is measuring the geometry of the Main parachute cluster during steady-state descent using onboard cameras. This is challenging as the current test vehicles are suspended by a single-point attachment unlike earlier stable platforms suspended under a confluence fitting. The mathematical modeling of fly-out angles and projected areas has undergone significant revision. As the test program continues, several lessons were learned about optimizing the camera usage, installation, and settings to obtain the highest quality imagery possible.

  5. Testing of the Multi-Fluid Evaporator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David

    2007-01-01

    Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.

  6. Lunar Landing Research Vehicle (LLRV) engine test firing on ramp

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This 1964 NASA Flight Reserch Center photograph shows a ground engine test underway on the Lunar Landing Research Vehicle (LLRV) number 1. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw

  7. A&M. Jet engine test pad and control building (TAN609). Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Jet engine test pad and control building (TAN-609). Camera facing westerly. Engine pad at left, control section (pumice block) on right. Date: September 19, 1955. INEEL negative no. 55-2766 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    SciTech Connect

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  9. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project...

  10. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project...

  11. 40 CFR 86.341-79 - Diesel engine dynamometer test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Diesel engine dynamometer test run. 86.341-79 Section 86.341-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....341-79 Diesel engine dynamometer test run. (a) This section applies to Diesel engines only....

  12. 40 CFR 86.341-79 - Diesel engine dynamometer test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Diesel engine dynamometer test run. 86.341-79 Section 86.341-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....341-79 Diesel engine dynamometer test run. (a) This section applies to Diesel engines only....

  13. 40 CFR 86.341-79 - Diesel engine dynamometer test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine dynamometer test run. 86.341-79 Section 86.341-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....341-79 Diesel engine dynamometer test run. (a) This section applies to Diesel engines only....

  14. 40 CFR 86.341-79 - Diesel engine dynamometer test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine dynamometer test run. 86.341-79 Section 86.341-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....341-79 Diesel engine dynamometer test run. (a) This section applies to Diesel engines only....

  15. Measurement uncertainty for the Uniform Engine Testing Program conducted at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Abdelwahab, Mahmood; Biesiadny, Thomas J.; Silver, Dean

    1987-01-01

    An uncertainty analysis was conducted to determine the bias and precision errors and total uncertainty of measured turbojet engine performance parameters. The engine tests were conducted as part of the Uniform Engine Test Program which was sponsored by the Advisory Group for Aerospace Research and Development (AGARD). With the same engines, support hardware, and instrumentation, performance parameters were measured twice, once during tests conducted in test cell number 3 and again during tests conducted in test cell number 4 of the NASA Lewis Propulsion Systems Laboratory. The analysis covers 15 engine parameters, including engine inlet airflow, engine net thrust, and engine specific fuel consumption measured at high rotor speed of 8875 rpm. Measurements were taken at three flight conditions defined by the following engine inlet pressure, engine inlet total temperature, and engine ram ratio: (1) 82.7 kPa, 288 K, 1.0, (2) 82.7 kPa, 288 K, 1.3, and (3) 20.7 kPa, 288 K, 1.3. In terms of bias, precision, and uncertainty magnitudes, there were no differences between most measurements made in test cells number 3 and 4. The magnitude of the errors increased for both test cells as engine pressure level decreased. Also, the level of the bias error was two to three times larger than that of the precision error.

  16. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project...

  17. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project...

  18. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project...

  19. Systems Engineering and Point of Care Testing: Report from the NIBIB POCT/Systems Engineering Workshop

    PubMed Central

    Stahl, James E; McGowan, Heather; DiResta, Ellen; Gaydos, Charlotte A.; Klapperich, Catherine; Parrish, John; Korte, Brenda

    2015-01-01

    The first part of this manuscript is an introduction to systems engineering and how it may be applied to health care and point of care testing (POCT). Systems engineering is an interdisciplinary field that seeks to better understand and manage changes in complex systems and projects as whole. Systems are sets of interconnected elements which interact with each other, are dynamic, change over time and are subject to complex behaviors. The second part of this paper reports on the results of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) workshop exploring the future of point of care testing and technologies and the recognition that these new technologies do not exist in isolation. That they exist within ecosystems of other technologies and systems; and these systems influence their likelihood of success or failure and their effectiveness. In this workshop, a diverse group of individuals from around the country, from disciplines ranging from clinical care, engineering, regulatory affairs and many others to members of the three major National Institutes of Health (NIH) funded efforts in the areas the Centers for POCT for sexually transmitted disease, POCT for the future of Cancer Care, POCT primary care research network, gathered together for a modified deep dive workshop exploring the current state of the art, mapping probable future directions and developing longer term goals. The invitees were broken up into 4 thematic groups: Home, Outpatient, Public/shared space and Rural/global. Each group proceeded to explore the problem and solution space for point of care tests and technology within their theme. While each thematic area had specific challenges, many commonalities also emerged. This effort thus helped create a conceptual framework for POCT as well as identifying many of the challenges for POCT going forward. Four main dimensions were identified as defining the functional space for both point of care testing and treatment, these are

  20. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    SciTech Connect

    A. B. Culp

    2007-01-26

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  1. Evaluation of passenger car gasoline engine oils by JASO test procedures - Report by JASO engine oil subcommittee

    SciTech Connect

    Takano, T.; Nakamura, K.; Sakamoto, K.

    1987-01-01

    Japan Automobile Standards Organization (JASO) Engine Oil Sub-committee have been working on the unification of the engine oil evaluation test procedures in Japan. The Engine Oil Sub-committee participated in the recent activity of the worldwide engine oil standardization of SAE and ISO. As one of the chain of activities, JASO tests M328, M331, and M333 (valve train wear, detergency and high temperature oxidation respectively) were conducted on the REOs of ASTM and CEC to find the correlation. The detergency tests (varnish and sludge) showed good correlation with the ASTM REOs. CEC good and poor reference oils seemed to give good results in JASO valve train wear test, while ASTM reference oils unexpectedly gave opposite results in Japanese valve train wear tests.

  2. 40 CFR 85.2211 - Engine restart idle test-EPA 81.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Engine restart idle test-EPA 81. 85... Tests § 85.2211 Engine restart idle test—EPA 81. (a)(1) General calendar year applicability. The test..., according to the schedule specified in § 51.373 of this chapter, the test procedure described in...

  3. Uniform engine testing program. Phase 1: NASA Lewis Research Center participation

    NASA Technical Reports Server (NTRS)

    Blesiadny, T.; Burkardt, L.; Braithwaite, W.

    1982-01-01

    Two jet engines were tested under identical conditions in a variety of altitude and ground level facilities as a means to correlating these facilities. Two J57-19W turbojet engines were tested in an altitude test facility. The test results are summarized.

  4. Thermal Cycle Testing of the Powersphere Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Curtis, Henry; Piszczor, Mike; Kerslake, Thomas W.; Peterson, Todd T.; Scheiman, David A.; Simburger, Edward J.; Giants, Thomas W.; Matsumoto, James H.; Garcia, Alexander; Liu, Simon H.; Lin, John K.; Scarborough, Stephen E.; Gleeson, Daniel J.; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.

    2007-01-01

    During the past three years the team of The Aerospace Corporation, Lockheed Martin Space Systems, NASA Glenn Research Center, and ILC Dover LP have been developing a multifunctional inflatable structure for the PowerSphere concept under contract with NASA (NAS3-01115). The PowerSphere attitude insensitive solar power-generating microsatellite, which could be used for many different space and Earth science purposes, is ready for further refinement and flight demonstration. The development of micro- and nanosatellites requires the energy collection system, namely the solar array, to be of lightweight and small size. The limited surface area of these satellites precludes the possibility of body mounting the solar array system for required power generation. The use of large traditional solar arrays requires the support of large satellite volumes and weight and also requires a pointing apparatus. The current PowerSphere concept (geodetic sphere), which was envisioned in the late 1990 s by Mr. Simburger of The Aerospace Corporation, has been systematically developed in the past several years.1-7 The PowerSphere system is a low mass and low volume system suited for micro and nanosatellites. It is a lightweight solar array that is spherical in shape and does not require a pointing apparatus. The recently completed project culminated during the third year with the manufacturing of the PowerSphere Engineering Development Unit (EDU). One hemisphere of the EDU system was tested for packing and deployment and was subsequently rigidized. The other hemisphere was packed and stored for future testing in an uncured state. Both cured and uncured hemisphere components were delivered to NASA Glenn Research Center for thermal cycle testing and long-term storage respectively. This paper will discuss the design, thermal cycle testing of the PowerSphere EDU.

  5. Test of an improved gas engine-driven heat pump

    SciTech Connect

    Chen, F.C.; Mei, V.C.; Domitrovic, R.

    1998-01-01

    A new generation of natural gas engine-driven heat pump (GEHP) was introduced to the marketplace recently. While the units installed have performed exceptionally well and earned rave reviews for comfort and savings on utility bills, the higher initial cost and relatively long payback time have affected the wide commercialization of this advanced technology. According to a study done for the southeastern US in the Atlanta metropolitan area, the annual operating cost of the GEHP is less than that of a baseline system consisting of a 92% efficiency gas furnace and a SEER 12 air conditioner. The estimated payback time is around 10 years to cover the difference in initial equipment price between the new and the baseline system. It has been projected that a liquid overfeed (LOF) recuperative cycle concept can simplify the hardware design of a GEHP, resulting in reduced cost and improved performance. Laboratory tests have shown that LOF would improve the energy efficiency of a vapor compression unit by 10%. In addition, LOF will reduce the compressor pressure ratio and thereby improve equipment reliability. Based on the assumed performance improvements and cost reduction, a simple payback calculation indicates LOF can reduce the payback time for an improved GEHP considerably in the Atlanta metropolitan area. Laboratory testing of an improved GEHP has been carried out at Oak Ridge National Laboratory. This paper reports on the equipment design modifications required to implement LOF and the results of performance tests at steady-state conditions. The preliminary cooling test results have indicated that the LOF in conjunction with orifice-type expander can be applied to GEHP for cost and performance enhancements. The improvements in energy efficiency will be dependent upon several controlling parameters including the proper refrigeration charge, the selected ambient temperature, and the system operating condition.

  6. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this section. (g) If the Administrator determines that an engine shall be tested as an automatic transmission code engine, then a load shall be applied by the dynamometer during the idle modes (1 and 18)...

  7. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this section. (g) If the Administrator determines that an engine shall be tested as an automatic transmission code engine, then a load shall be applied by the dynamometer during the idle modes (1 and 18)...

  8. 40 CFR 91.116 - Certification procedure-test engine selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... select, from each engine family, a test engine of a configuration that the manufacturer deems to be most likely to exceed the Family Emission Limit (FEL). (b) At the manufacturer's option, the criterion...

  9. 40 CFR 91.116 - Certification procedure-test engine selection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... select, from each engine family, a test engine of a configuration that the manufacturer deems to be most likely to exceed the Family Emission Limit (FEL). (b) At the manufacturer's option, the criterion...

  10. 40 CFR 91.116 - Certification procedure-test engine selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... select, from each engine family, a test engine of a configuration that the manufacturer deems to be most likely to exceed the Family Emission Limit (FEL). (b) At the manufacturer's option, the criterion...

  11. 40 CFR 91.116 - Certification procedure-test engine selection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... select, from each engine family, a test engine of a configuration that the manufacturer deems to be most likely to exceed the Family Emission Limit (FEL). (b) At the manufacturer's option, the criterion...

  12. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of take-off or OEI ratings longer than 2 minutes. (3) For engines incorporating a reduction gearbox, a gearbox oil temperature equal to the maximum temperature when the maximum engine overtorque could occur in service; and for all other engines, an oil temperature within the normal operating range. (4)...

  13. Subscale Injector Testing to Support Ares Engines Development

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Elam, Sandy

    2008-01-01

    The J-2X and RS-68B rocket engines are being developed for NASA's Ares I and Ares V launch vehicles. In support of the development of these engines, hot-fire testing on subscale coaxial injectors has been performed at NASA s Marshall Space Flight Center (MSFC) to evaluate performance data relative to injector type, liquid oxygen (LOX) post tip design features, element density and various operating conditions. Shear coaxial injectors with element densities of 1.1, 1.6, and 2.3 elements/in2 and a swirl coaxial injector with element density of 1.6 elements/in2 were evaluated at conditions relevant to the Ares applications. Chamber pressures with oxygen/hydrogen propellants ranged from 815-1630 psig with mixture ratios ranging from 4.7-6.9. Fuel manifold inlet temperatures were varied from 90 to 270 R. Shear coaxial LOX post tip thicknesses ranged from 0.006 in. to 0.0175 in. Modular, water cooled, calorimeter chamber assemblies were used to provide heating rate data and evaluate the effects of characteristic length (L*). Performance was evaluated relative to the resulting characteristic velocity (C*) efficiency. Testing with both the 2.3 and 1.1 elements/in2 shear coaxial injectors demonstrated no improvement in performance of the "thin" tip configuration versus the "thick" tip configuration. The loss in chamber pressure and associated performance loss seen in previous testing at low fuel temperatures could not be reliably repeated, indicating that this loss is not the result of a fluidic process in the injector elements. Further, no performance loss could be demonstrated once a faceplate seal specifically designed for operation with low temperature hydrogen was implemented in the 1.1 elements/sq in shear coaxial injector. Results for the 1.6 elements/sq in swirl injector at cold fuel temperatures showed performance higher than both the 1.6 elements/in2 shear coaxial injector and the 2.3 elements/in2 shear coaxial injector.

  14. Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments

    NASA Technical Reports Server (NTRS)

    Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet

    2004-01-01

    This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.

  15. Design considerations for the CELSS test facility engineering development unit

    NASA Technical Reports Server (NTRS)

    Kliss, M.; Borchers, B.; Drews, M.

    1993-01-01

    The NASA Controlled Ecological Life Support System (CELSS) Program has the goal of developing life support systems for humans in space based on the use of higher plants. The program has supported research at universities with a primary focus of increasing the productivity of candidate crop plants. To understand the effects of the space environment on plant productivity, the CELSS Test Facility (CTF) has been developed as an instrument that will permit the evaluation of plant productivity on Space Station Freedom. The CFT will maintain specific environmental conditions and collect data on gas exchange rates and biomass accumulation over the growth period of several crop plants grown sequentially from seed to harvest. To better understand the systems needed to support plants and maintain the evironmental conditions required by CTF, an Engineering Development Unit (EDU) is being constructed at NASA Ames Research Center (ARC) in the Advanced Life Support Division. The EDU will provide the means of testing and evaluating hardware solutions to CTF requirements. This paper reviews the CTF science and functional requirements, and provides a description of the EDU objectives, design approach, subsystem descriptions, and some of the technology tools employed in accomplishing the design.

  16. Bus development for a multitask engineering test satellite: SATEX

    NASA Astrophysics Data System (ADS)

    Peralta-Fabi, Ricardo; Mendieta-Jiminez, J.; Prado, Jorge M.; Peralta, Armando; Navarrete, Margarita; Fairuzov, Y.

    1993-09-01

    Multitask bus for small satellites is being developed at the University of Mexico (UNAM) for the conduction of LEO communications, remote sensing, and astronomical missions. The first prototype, SATEX-1, to be launched by Ariane in mid 1994, is a 50 Kg engineering test satellite with a primary communications payload and a CCD camera for low resolution imaging, as a secondary payload. SATEX-1 has been under design and development for several years and will be constructed by several research institutions, under finance from the Ministry of Communications (SCT/IMC). The structure is made of hybrid materials, including light aluminum alloys and composites. It has a three axis stabilization system. Attitude detection is realized by means of several sun and earth sensors. Electrical power is collected by two solar panels that are stowed for take-off, and deployed after separation. Thermal design is based mostly on passive components including radiators, shielding and orientation, but flat heaters are used in several places. Solid-state temperature sensors are used throughout the s/c to test and calibrate thermal models.

  17. Plasma Propulsion Testing Capabilities at Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Dawbarn, Albert; Moeller, Trevor

    2007-01-01

    This paper describes the results of a series of experiments aimed at quantifying the plasma propulsion testing capabilities of a 12-ft diameter vacuum facility (12V) at USAF-Arnold Engineering Development Center (AEDC). Vacuum is maintained in the 12V facility by cryogenic panels lining the interior of the chamber. The pumping capability of these panels was shown to be great enough to support plasma thrusters operating at input electrical power >20 kW. In addition, a series of plasma diagnostics inside the chamber allowed for measurement of plasma parameters at different spatial locations, providing information regarding the chamber's effect on the global plasma thruster flowfield. The plasma source used in this experiment was Hall thruster manufactured by Busek Co. The thruster was operated at up to 20 kW steady-state power in both a lower current and higher current mode. The vacuum level in the chamber never rose above 9 x 10(exp -6) torr during the course of testing. Langmuir probes, ion flux probes, and Faraday cups were used to quantify the plasma parameters in the chamber. We present the results of these measurements and estimates of pumping speed based on the background pressure level and thruster propellant mass flow rate.

  18. Engineering in software testing: statistical testing based on a usage model applied to medical device development.

    PubMed

    Jones, P L; Swain, W T; Trammell, C J

    1999-01-01

    When a population is too large for exhaustive study, as is the case for all possible uses of a software system, a statistically correct sample must be drawn as a basis for inferences about the population. A Markov chain usage model is an engineering formalism that represents the population of possible uses for which a product is to be tested. In statistical testing of software based on a Markov chain usage model, the rich body of analytical results available for Markov chains provides numerous insights that can be used in both product development and test planing. A usage model is based on specifications rather than code, so insights that result from model building can inform product decisions in the early stages of a project when the opportunity to prevent problems is the greatest. Statistical testing based on a usage model provides a sound scientific basis for quantifying the reliability of software. PMID:10459417

  19. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  20. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  1. `I Actually Contributed to Their Research': The influence of an abbreviated summer apprenticeship program in science and engineering for diverse high-school learners

    NASA Astrophysics Data System (ADS)

    Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III

    2015-02-01

    This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research practices within working university chemistry and engineering laboratories. The experience was supplemented by discussions and activities intended to impact nature of science (NOS) and inquiry understandings and to allow for an exploration of STEM careers and issues of self-identity. Participants completed a NOS questionnaire before and after the experience, were interviewed multiple times, and were observed while working in the laboratories. Findings revealed that as a result of the program, participants (1) demonstrated positive changes in their understandings of certain NOS aspects many of which were informed by their laboratory experiences, (2) had an opportunity to explore and strengthen STEM-related future plans, and (3) examined their self-identities. A majority of participants also described a sense of belonging within the laboratory groups and believed that they were making significant contributions to the ongoing work of those laboratories even though their involvement was necessarily limited due to the short duration of the program. For students who were most influenced by the program, the belonging they felt was likely related to issues of identity and career aspirations.

  2. Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design and testing of high bypass geared turbofan engines with nacelles forming the propulsion systems for short haul passenger aircraft are considered. The test results demonstrate the technology required for externally blown flap aircraft for introduction into passenger service in the 1980's. The equipment tested is described along with the test facility and instrumentation. A chronological history of the test and a summary of results are given.

  3. Test Results of the Modified Space Shuttle Main Engine at the Marshall Space Flight Center Technology Test Bed Facility

    NASA Technical Reports Server (NTRS)

    Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.

    1990-01-01

    A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.

  4. 40 CFR 85.2210 - Engine restart 2500 rpm/idle test-EPA 81.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Engine restart 2500 rpm/idle test-EPA... Warranty Short Tests § 85.2210 Engine restart 2500 rpm/idle test—EPA 81. (a)(1) General calendar year applicability. The test procedure described in this section may be used to establish Emissions...

  5. A&M. Jet engine test building (TAN609). Exterior. Equipment inside rollup ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Jet engine test building (TAN-609). Exterior. Equipment inside roll-up door is blowdown test facility, part of loft-semiscale program. Note width of central section serving as blast protection for operator on left side. Photographer: Cahoon. Date: July 22, 1965. INEEL negative no. 65-3703 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    SciTech Connect

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-08-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs.

  7. High-power baseline and motoring test results for the GPU-3 Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.

    1981-01-01

    Test results are given for the full power range of the engine with both helium and hydrogen working fluids. Comparisons are made to previous testing using an alternator and resistance load bank to absorb the engine output. Indicated power results are presented as determined by several methods. Motoring tests were run to aid in determining engine mechanical losses. Comparisons are made between the results of motoring and energy-balance methods for finding mechanical losses.

  8. ENGINEERING TEST REACTOR (ETR) BUILDING, TRA642. CONTEXTUAL VIEW, CAMERA FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ENGINEERING TEST REACTOR (ETR) BUILDING, TRA-642. CONTEXTUAL VIEW, CAMERA FACING EAST. VERTICAL METAL SIDING. ROOF IS SLIGHTLY ELEVATED AT CENTER LINE FOR DRAINAGE. WEST SIDE OF ETR COMPRESSOR BUILDING, TRA-643, PROJECTS TOWARD LEFT AT FAR END OF ETR BUILDING. INL NEGATIVE NO. HD46-37-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. Alterations and Tests of the "Farnboro" Engine Indicator

    NASA Technical Reports Server (NTRS)

    Collins, John H , Jr

    1930-01-01

    The 'Farnboro' electric indicator was tested as received from the manufacturers, and modifications made to the instrument to improve its operation. The original design of disk valve was altered so as to reduce the mass, travel, and seat area. Changes were made to the recording mechanism, which included a new method of locating the top center position on the record. The effect of friction on the motion of the pointer while taking motoring and power cards was eliminated by providing a means of putting pressure lines on the record. The modified indicator gives a complete record of the average cyclic variation in pressure per crank degree for any set of engine operating conditions which can be held constant for the period of time required to build up the composite card. The value of the record for accurate quantitative measurement is still questioned, although the maximum indicated pressure recorded on the motoring and power cards checks the readings of the balanced diaphragm type of maximum cylinder pressure indicator.

  10. System integration and performance of the EUV engineering test stand

    SciTech Connect

    Tichenor, Daniel A.; Ray-Chaudhuri, Avijit K.; Replogle, William C.; Stulen, Richard H.; Kubiak, Glenn D.; Rockett, Paul D.; Klebanoff, Leonard E.; Jefferson, Karen L.; Leung, Alvin H.; Wronosky, John B.; Hale, Layton C.; Chapman, Henry N.; Taylor, John S.; Folta, James A.; Montcalm, Claude; Soufli, Regina; Spiller, Eberhard; Blaedel, Kenneth; Sommargren, Gary E.; Sweeney, Donald W.; Naulleau, Patrick; Goldberg, Kenneth A.; Gullikson, Eric M.; Bokor, Jeffrey; Batson, Phillip J.; Attwood, David T.; Jackson, Keith H.; Hector, Scott D.; Gwyn, Charles W.; Yan, Pei-Yang; Yan, P.

    2001-03-01

    The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k{sub 1} of 0.52. The illuminator produces 13.4 nm radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features.

  11. X-1-2 on ramp during ground engine test

    NASA Technical Reports Server (NTRS)

    1947-01-01

    Ground engine test run on the Bell Aircraft Corporation X-1-2 airplane at NACA Muroc Flight Test Unit service area. Notice the front on the lower part of the aircraft aft of the nose section. The frost forms from the mixture of the propellants (including liquid oxygen) in the internal tanks. This photograph was taken in 1947. The aircraft shown is still painted in its original saffron (orange) paint finish. This was later changed to white, which was more visible against the dark blue sky than saffron turned out to be. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December

  12. Study of parameters affecting the correlation of engine and chassis dynamometers emission tests

    SciTech Connect

    Salem, M.I.; Bata, R.M.

    1996-12-31

    The inventory of exhaust gas emissions data of mobile sources is currently based on vehicle tailpipe testing techniques. However, heavy duty engines are used in numerous applications such as vehicles, boats, power generation units, ... etc. Consequently, engine emissions data based on vehicle tailpipe testing for a given engine is different for non-vehicle applications of that same engine. For this reason Environmental Protection Agency (EPA) engine certification standards are based on engine tests. Finding a correlation between the emissions of engine tests and the emissions of engine in vehicle chassis tests is the subject of this study. Efforts have been underway to study possible parameters affecting this cumbersome correlation of a particular power train configuration. Literature has been surveyed on related topics such as simulating road loads, power train components, and effects of engine accessories. This has been done as an initial step toward developing a correlation between the exhaust gas emission results of Chassis Dynamometer (CD) and Engine Dynamometer (ED) tests for a specific vehicle. This study could be conducted on a specific power train system, using specific testing cycles that will make this correlation possible.

  13. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1047 Cooling test procedures for reciprocating engine powered... negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  14. 14 CFR 25.934 - Turbojet engine thrust reverser system tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet engine thrust reverser system... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.934 Turbojet engine thrust reverser system tests. Thrust reversers installed on turbojet engines must meet...

  15. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1047 Cooling test procedures for reciprocating engine powered... negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  16. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbojet and turbofan engine...

  17. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet and turbofan engine...

  18. 14 CFR 25.934 - Turbojet engine thrust reverser system tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbojet engine thrust reverser system... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.934 Turbojet engine thrust reverser system tests. Thrust reversers installed on turbojet engines must meet...

  19. HEAVY-DUTY TRUCK TEST CYCLES: COMBINING DRIVEABILITY WITH REALISTIC ENGINE EXERCISE

    EPA Science Inventory

    Heavy-duty engine certification testing uses a cycle that is scaled to the capabilities of each engine. As such, every engine should be equally challenged by the cycle's power demands. It would seem that a chassis cycle, similarly scaled to the capabilities of each vehicle, could...

  20. 40 CFR 1048.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hours you operated your emission-data engine for certifying the engine family (see 40 CFR part 1065, subpart E). (f) Damage during shipment. If shipping an engine to a remote facility for production... determine that you improperly invalidated a test, we may require you to ask for our approval for...

  1. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... projected annual production of more than 75,000 engines destined for the United States market for that model... production of small SI engines destined for the United States market for that model year by 50,000, and round... engines or less destined for the United States market for that model year may test a minimum of...

  2. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which will allow the propeller to be brought to a stop while the gas generator portion of the engine remains...) Ground locking: A total of 45 hours with the propeller brake engaged in a manner which...

  3. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which will allow the propeller to be brought to a stop while the gas generator portion of the engine remains...) Ground locking: A total of 45 hours with the propeller brake engaged in a manner which...

  4. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which will allow the propeller to be brought to a stop while the gas generator portion of the engine remains...) Ground locking: A total of 45 hours with the propeller brake engaged in a manner which...

  5. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which will allow the propeller to be brought to a stop while the gas generator portion of the engine remains...) Ground locking: A total of 45 hours with the propeller brake engaged in a manner which...

  6. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which will allow the propeller to be brought to a stop while the gas generator portion of the engine remains...) Ground locking: A total of 45 hours with the propeller brake engaged in a manner which...

  7. 40 CFR 86.1337-2007 - Engine dynamometer test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine and begin exhaust and dilution air sampling. For petroleum-fueled diesel engines (and natural gas...-2007 Section 86.1337-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...) Connect evacuated sample collection bags to the dilute exhaust and dilution air sample collection...

  8. 40 CFR 86.1337-2007 - Engine dynamometer test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engine and begin exhaust and dilution air sampling. For petroleum-fueled diesel engines (and natural gas...-2007 Section 86.1337-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...) Connect evacuated sample collection bags to the dilute exhaust and dilution air sample collection...

  9. 40 CFR 86.096-24 - Test vehicles and engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... expected to have similar emission characteristics throughout their useful life. Each group of engines with similar emission characteristics is defined as a separate engine family. (2) To be classed in the same... cycle. (viii) Catalytic converter characteristics. (ix) Thermal reactor characteristics. (x) Type of...

  10. 40 CFR 86.096-24 - Test vehicles and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cycle. (viii) Catalytic converter characteristics. (ix) Thermal reactor characteristics. (x) Type of air... Administrator. The vehicle selected is the vehicle expected to exhibit the highest emissions of those vehicles remaining in the engine family. (v) For high-altitude exhaust emission compliance for each engine...

  11. 40 CFR 86.1724-99 - Test vehicles and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards, if air conditioning is projected to be available on any vehicles within the engine family, the selection of engine codes will be limited selections which have air conditioning available and would require that any vehicle selected under this section has air conditioning installed and operational....

  12. Alternative-engine-fuels demonstration and materials test

    SciTech Connect

    Thimsen, D.

    1981-01-01

    A portable demonstration was constructed to measure peak power and specific fuel consumption of a gasoline engine burning gasoline and ethanol, and a diesel engine burning No. 2 diesel and sunflower oil. The demonstrations were given at farm field days. Several metals were subjected to wet ethanol fuels to measure corrosion.

  13. Project Morpheus Main Engine Development and Preliminary Flight Testing

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.

    2011-01-01

    A LOX/Methane rocket engine was developed for a prototype terrestrial lander and then used to fly the lander at Johnson Space Center. The development path of this engine is outlined, including unique items such as variable acoustic damping and variable film cooling.

  14. 40 CFR 86.096-24 - Test vehicles and engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (non-catalyst, oxidation catalyst only, three-way catalyst equipped). (9) Engine families identical in..., within a 20g range. (v) Number of storage devices. (vi) Method of purging stored vapors. (vii) Method of..., provided that the number of vehicles (or engines) selected may not increase the size of either the...

  15. 40 CFR 1065.405 - Test engine preparation and maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not specified a value, use good engineering judgment to select the most common setting. If information on the most common setting is not available, select the setting representing the engine's original shipped configuration. If information on the most common and original settings is not available, set...

  16. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the discrete-mode duty cycles specified in this section, as described in 40 CFR 1039.505. ... shall be used for variable speed engines rated under 19 kW. (4) Notwithstanding the provisions of... in table 1 of appendix B of this subpart for: (A) Constant speed engines, or variable speed...

  17. Diesel engine endurance tests using JP-8 fuel blended with used engine oil. Interim report November 1996--December 1997

    SciTech Connect

    Frame, E.A.; Yost, D.M.; Palacios, C.F.

    1998-07-01

    Tests were done to examine the feasibility of disposing of used engine oil from military vehicles by blending it with JP-8 engine fuel to be used in diesel vehicles. Two Army diesel engines were evaluated in cyclic endurance dynamometer test procedures using JP-8 fuel blended with 7.5% vol used oil. Results were compared to baseline performance using neat JP-8 fuel. The following major differences were observed when using blended fuel: Significant ashy deposits were found in the pre-combustion chamber of the 4-cycle diesel engine; indications of imminent exhaust valve burning (streaking) were found on the exhaust valves in the 2-cycle diesel engine. For both engines, condition was such that continuous use of 7.5 %vol blend would not be recommended. Considering it would take between 19--68 years for an Army engine to reach the end of endurance test condition, use of blended fuel 1 or 2 times per year is judged acceptable from an endurance standpoint.

  18. Development and Testing of a High Stability Engine Control (HISTEC) System

    NASA Technical Reports Server (NTRS)

    Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.

    1998-01-01

    Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.

  19. Test results of applicative 100 W Stirling engine

    SciTech Connect

    Hirata, Koichi; Kagawa, Noboru; Takeuchi, Makoto; Yamashita, Iwao; Isshiki, Naotsugu; Hamaguchi, Kazuhiro

    1996-12-31

    A small 100 W displacer-type Stirling engine, Ecoboy-SCM81, has been developed by a committee of the Japan Society of Mechanical Engineers (JSME). The engine contains unique features, including an expansion cylinder which is heated by either combustion gas or direct solar energy. Also, a simple cooling system rejects heat from the working fluid. A displacer piston has both heating and cooling inner tubes for the working fluid which flows to and from outer tubes. The outer tubes for heating were located at the top of the expansion cylinder and the outer tubes for cooling were located in the middle of the cylinder. A regenerator is located in the displacer piston. The components of the engine adopted some new technologies. For instance, a porous type matrix consisting of pressed zigzag stainless steel wires were adopted for the regenerator. The matrix is practical for Stirling engines because it can be made at low cost and the assembling process is simplified.

  20. Development of the ASTM sequence IIIE engine oil oxidation and wear test

    SciTech Connect

    Smolenski, D.J.; Bergin, S.P

    1988-01-01

    The ASTM Sequence IIID engine-dynamometer test has been used to evaluate the high-temperature protection provided by engine oils with respect to valve train wear, viscosity increase (oil thickening), deposits, and oil consumption. The obsolescence of the engine used in this test along with the need to define even higher levels of performance associated with a new oil category (SG) prompted efforts at developing a replacement test. This paper describes the hardware and procedure development of this replacement test, the ASTM Sequence IIIE test. Test precision and correlation with field and Sequence IIID results on a series of reference oils is also discussed.