Science.gov

Sample records for actual evapotranspiration aet

  1. Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration

    USGS Publications Warehouse

    Barclay, Shoemaker W.; Sumner, D.M.

    2006-01-01

    Corrections can be used to estimate actual wetland evapotranspiration (AET) from potential evapotranspiration (PET) as a means to define the hydrology of wetland areas. Many alternate parameterizations for correction coefficients for three PET equations are presented, covering a wide range of possible data-availability scenarios. At nine sites in the wetland Everglades of south Florida, USA, the relatively complex PET Penman equation was corrected to daily total AET with smaller standard errors than the PET simple and Priestley-Taylor equations. The simpler equations, however, required less data (and thus less funding for instrumentation), with the possibility of being corrected to AET with slightly larger, comparable, or even smaller standard errors. Air temperature generally corrected PET simple most effectively to wetland AET, while wetland stage and humidity generally corrected PET Priestley-Taylor and Penman most effectively to wetland AET. Stage was identified for PET Priestley-Taylor and Penman as the data type with the most correction ability at sites that are dry part of each year or dry part of some years. Finally, although surface water generally was readily available at each monitoring site, AET was not occurring at potential rates, as conceptually expected under well-watered conditions. Apparently, factors other than water availability, such as atmospheric and stomata resistances to vapor transport, also were limiting the PET rate. ?? 2006, The Society of Wetland Scientists.

  2. Remote sensing estimates of actual evapotranspiration in an irrigation district

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimates of the spatial distribution of actual evapotranspiration (AET) are useful in hydrology, but can be difficult to obtain. Remote sensing provides a potential capability for routinely monitoring AET by combining remotely sensed surface temperature and vegetation cover observations w...

  3. On the downscaling of actual evapotranspiration maps based on combination of MODIS and landsat-based actual evapotranspiration estimates

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Verdin, James P.

    2014-01-01

     Downscaling is one of the important ways of utilizing the combined benefits of the high temporal resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) images and fine spatial resolution of Landsat images. We have evaluated the output regression with intercept method and developed the Linear with Zero Intercept (LinZI) method for downscaling MODIS-based monthly actual evapotranspiration (AET) maps to the Landsat-scale monthly AET maps for the Colorado River Basin for 2010. We used the 8-day MODIS land surface temperature product (MOD11A2) and 328 cloud-free Landsat images for computing AET maps and downscaling. The regression with intercept method does have limitations in downscaling if the slope and intercept are computed over a large area. A good agreement was obtained between downscaled monthly AET using the LinZI method and the eddy covariance measurements from seven flux sites within the Colorado River Basin. The mean bias ranged from −16 mm (underestimation) to 22 mm (overestimation) per month, and the coefficient of determination varied from 0.52 to 0.88. Some discrepancies between measured and downscaled monthly AET at two flux sites were found to be due to the prevailing flux footprint. A reasonable comparison was also obtained between downscaled monthly AET using LinZI method and the gridded FLUXNET dataset. The downscaled monthly AET nicely captured the temporal variation in sampled land cover classes. The proposed LinZI method can be used at finer temporal resolution (such as 8 days) with further evaluation. The proposed downscaling method will be very useful in advancing the application of remotely sensed images in water resources planning and management.

  4. Impacts of phenology on estimation of actual evapotranspiration with VegET model

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2009-12-01

    The VegET model provides spatially explicit estimation of actual evapotranspiration (AET). Currently, it uses a climatology based on AVHRR NDVI image time series to modulate fluxes during growing seasons (Senay 2008). This step simplifies the model formulation, but it also introduces errors by ignoring the interannual variation in phenology. We report on a study to evaluate the effects of using an NDVI climatology in VegET rather than current season values. Using flux tower data from three sites across the US Corn Belt, we found that currently the model overestimates the duration of season. With the standard deviation of more than one week, the model results in an additional 50 to 70 mm of AET per season, which can account for about 10% of seasonal AET in drier western sites. The model showed only modest sensitivity to variation in growing season weather. This lack of sensitivity greatly decreased model accuracy during drought years: Pearson correlation coefficients between model estimates and observed values dropped from about 0.7 to 0.5, depending on vegetation type. We also evaluated an alternative approach to drive the canopy component of evapotranspiration, the Event Driven Phenology Model (EDPM). The parameterization of VegET with EDPM-simulated canopy dynamics improved the correlation by 0.1 or more and reduced the RMSE on daily AET estimates by 0.3 mm. By accounting for the progress of phenology during a particular growing season, the EDPM improves AET estimation over an NDVI climatology.

  5. Spatio-temporal Characteristics of Actual Evapotranspiration Trends in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.; Funk, C. C.; Michaelsen, J.

    2010-12-01

    Actual evapotranspiration (AET) is an important moisture flux linking the Earth’s surface to the atmospheric hydrologic cycle. Global warming is expected to intensify this cycle, leading to moisture deficits over the sub-tropics, which will influence climate at higher latitudes. The spatio-temporal characterization of tropical AET is critical to understanding regional and global climate. To date, many studies on the temporal characteristics of AET across sub-Saharan Africa have employed vegetation-based indices derived from satellite imagery. Although these studies implicitly reflect trends in AET, they quantify the magnitude of change. In this study, we used the latest developments in remote sensing and land-surface modeling to characterize the magnitude and timing of AET in sub-Saharan Africa. We considered several models were evaluated from 1981-2000 using monthly discharge and precipitation from ten sub-basins representative of hydrology in sub-Saharan Africa. Discharge data was provided by the Global Runoff Data Centre, while precipitation data was comprised of ECMWF, NCAR, NOAA/GDAS, and CMAP reanalysis fields synthesized in the Global Land Data Assimilation System (GLDAS). The AET models included the Community Land Model, Variable Infiltration Capacity (VIC) model, Noah, and two hybrids that we developed driven by a dynamic vegetation component defined in Fisher et al. 2008. The dynamic canopy components in our hybrid models were driven by the LTDR AVHRR daily corrected reflectance data over the evaluation period. The evaluation revealed that VIC was superior to the other models in capturing the magnitude and variability of runoff in the sub-basins. A trend analysis was then performed on VIC AET from 1979-2009 using standard parametric and non-parametric techniques. Linear and median trend analysis was performed on seasonal and annual AET totals to measure the magnitude of change. The analysis revealed several alarming patterns, including large and

  6. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales

    USGS Publications Warehouse

    Stephenson, N.L.

    1998-01-01

    Correlative approaches to understanding the climatic controls of vegetation distribution have exhibited at least two important weaknesses: they have been conceptually divorced across spatial scales, and their climatic parameters have not necessarily represented aspects of climate of broad physiological importance to plants. Using examples from the literature and from the Sierra Nevada of California, I argue that two water balance parameters-actual evapotranspiration (AET) and deficit (D)-are biologically meaningful, are well correlated with the distribution of vegetation types, and exhibit these qualities over several orders of magnitude of spatial scale (continental to local). I reach four additional conclusions. (1) Some pairs of climatic parameters presently in use are functionally similar to AET and D; however, AET and D may be easier to interpret biologically. (2) Several well-known climatic parameters are biologically less meaningful or less important than AET and D, and consequently are poorer correlates of the distribution of vegetation types. Of particular interest, AET is a much better correlate of the distributions of coniferous and deciduous forests than minimum temperature. (3) The effects of evaporative demand and water availability on a site's water balance are intrinsically different. For example, the 'dry' experienced by plants on sunward slopes (high evaporative demand) is not comparable to the 'dry' experienced by plants on soils with low water-holding capacities (low water availability), and these differences are reflected in vegetation patterns. (4) Many traditional topographic moisture scalars-those that additively combine measures related to evaporative demand and water availability are not necessarily meaningful for describing site conditions as sensed by plants; the same holds for measured soil moisture. However, using AET and D in place of moisture scalars and measured soil moisture can solve these problems.

  7. A coupled remote sensing and the Surface Energy Balance based algorithms to estimate actual evapotranspiration over the western and southern regions of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mahmoud, Shereif H.; Alazba, A. A.

    2016-07-01

    In countries with absolute water scarcity such as the Kingdom of Saudi Arabia (KSA), large-scale actual evapotranspiration estimation is of great concern in water use practices. Herein, spatial and temporal distribution of actual evapotranspiration (AET) in the western and southern regions of KSA during 1992-2014 was estimated using the SEBAL model with field observations. Zonal statistics for each land use-cover type were also identified, in order to understand their effects on water consumption. In addition, daily and seasonal water consumption for major crops was computed. Results revealed a gradual increase in monthly AET values from January to April and subsequent decline from May to December. The maximum monthly AET values were observed for irrigated cropland in southwestern, central, and southeastern regions of Asir Province, central and southwestern regions of Al-Baha Province, central and the plains region of Jazan Province, southern portion of Makkah Province, and limited areas in the northern regions of Madinah Province. The annual AET ranged from 418.8 to 3442.3 mm yr-1. The normal distribution of mean annual AET values ranged from 717 to 1020 mm yr-1. Forty-two percent of the study area had an annual AET that ranged from 717 to 1020 mm yr-1. The second highest range of frequencies was concentrated around 1020-1322 mm yr-1, representing the majority of agricultural land. The consumptive water use of the different land cover types in study area indicated that irrigated cropland which occupied 14.6% of the study area had AET rates much higher than other land uses. Water bodies are the next highest, with forest and shrubland and sparse vegetation slightly lower, and very low AET rates from bare soil. Daily and seasonal water consumption of major cropping systems varied spatially depending on cropping practices and climatic conditions.

  8. Drivers of actual evapotranspiration and runoff in East Africa during the mid-Holocene: assessments from an ecosystem model

    NASA Astrophysics Data System (ADS)

    Fer, Istem; Jeltsch, Florian; Tietjen, Britta; Trauth, Martin

    2014-05-01

    Understanding the evolution and response of the hydrological cycle under changing climate is of vital importance for human populations all around the world. Especially so in regions like East Africa, where society largely depends on the availability of water and the hydrologic conditions are highly sensitive to changes in the distribution and amount of precipitation. In this endeavor, studying past hydrological changes provides us realistic scenarios and data to better understand and predict the extent of the future hydrological changes. However while studying the past, paleovegetation, which plays a pivotal role in the paleo-hydrological cycle, is difficult to determine from fossil pollen records as pollen data can provide very limited information on spatial distribution and composition of the vegetation cover. Here ecosystem models driven by paleo-climate conditions can provide spatially-extensive information on the coupled dynamics of past vegetation and hydrological measures such as actual evapotranspiration (AET), potential evapotranspiration (PET) and runoff. In this study, we looked at AET and runoff estimates of an ecosystem model as these are important elements of water transfer in the hydrological cycle and critical for water balance calculations. We applied the ecosystem model, LPJ-GUESS, for present-day with data from Climatic Research Unit CRU TS3.20 climate dataset, and for mid-Holocene (6 kyrs BP) with data from an atmosphere-ocean coupled global climate model EC-Earth. Climate data for both periods were downscaled to a 10 arc min resolution in order to better resolve the impacts of the complex topography on vegetation distribution, AET and runoff. Comparison of the simulated AET and runoff values for East Africa, show similar patterns as annual AET estimates for the period 1961-1990 by Food and Agriculture Organization of the United Nations (FAO), and with the observed runoff data from Cogley (1998), respectively. Comparison of simulated present

  9. Assessing spatiotemporal variation in actual evapotranspiration for semi-arid watersheds in northwest China: Evaluation of two complementary-based methods

    NASA Astrophysics Data System (ADS)

    Matin, Mir A.; Bourque, Charles P.-A.

    2013-04-01

    SummaryWater vapor generated locally by actual evapotranspiration (AET) is important both to the recycling of water regionally and to the long term sustainability of desert-oases in the semi-arid-to-arid region of northwest (NW) China. An accurate assessment of AET is central to describing the hydrologic status of watersheds. Conventional methods of estimating AET from meteorological point data are generally not appropriate for regions with high spatial variability, particularly with respect to landcover and topography. Insufficient monitoring stations make it particularly difficult to estimate AET that is spatially representative of large areas. The objective of this study was to estimate spatially-distributed monthly AET for a complex landscape, consisting of deserts, oases, and mountains, with climate and landcover data generated primarily from remote sensing (RS) data. In this study, we used two complementary relationship (CR)-based methods to estimate monthly reference evapotranspiration (ETo) and AET over a 10-year period (2000-2009) for two large watersheds in NW China. In evaluating the performance of CR-based methods, we compared point-estimates of ETo and AET generated with the two methods (generated either by using climate-station data or by extracting point-estimates from end products produced from RS-data) against (i) climate-station-based estimates of ETo calculated with the FAO Penman-Monteith (P-M) equation and from pan-evaporation data, and (ii) geographically-corresponding point-estimates of AET extracted from the MODIS global product of AET (MOD16) recently developed by Mu et al. (2011, Remote Sensing of Environment, 115, 1781-1800). Point-extractions of AET from MOD16-products were the least representative, when compared to ETo and AET calculated with the other methods. Between CR-based methods, the Venturini et al. (2008, Remote Sensing of Environment, 112, 132-141) method provided the best comparison with ETo calculated with the P-M equation

  10. Fully-automated estimation of actual to potential evapotranspiration in the Everglades using Landsat and air temperature data as inputs to the Vegetation Index-Temperature Trapezoid method

    NASA Astrophysics Data System (ADS)

    Yagci, A. L.; Jones, J. W.

    2014-12-01

    While the greater Everglades contains a vast wetland, evapotranspiration (ET) is a major source of water "loss" from the system. Like other ecosystems, the Everglades is vulnerable to drought. Everglades restoration science and resource management requires information on the spatial and temporal distribution of ET. We developed a fully-automated ET model using the Vegetation Index-Temperature Trapezoid concept. The model was tested and evaluated against in-situ ET observations collected at the Shark River Slough Mangrove Forest eddy-covariance tower in Everglades National Park (Sitename / FLUXNET ID: Florida Everglades Shark River Slough Mangrove Forest / US-Skr). It uses Landsat Surface Reflectance Climate Data from Landsat 5, and Landsat 5 thermal and air temperature data from the Daily Gridded Surface Dataset to output the ratio of actual evapotranspiration (AET) and potential evapotranspiration (PET). When multiplied with a PET estimate, this output can be used to estimate ET at high spatial resolution. Furthermore, it can be used to downscale coarse resolution ET and PET products. Two example outputs covering the agricultural lands north of the major Everglades wetlands extracted from two different dates are shown below along with a National Land Cover Database image from 2011. The irrigated and non-irrigated farms are easily distinguishable from the background (i.e., natural land covers). Open water retained the highest AET/PET ratio. Wetlands had a higher AET/PET ratio than farmlands. The main challenge in this study area is prolonged cloudiness during the growing season.

  11. A 3-D Generalization of the Budyko Framework Captures the Mutual Interdependence Between Long-Term Mean Annual Precipitation, Actual and Potential Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Carmona, A. M.; Poveda, G.

    2012-12-01

    We study the behavior of the 3-D parameter space defined by Φ =PET/P (so-called Aridity Index), Ψ =AET/P, and Ω =AET/PET, where P denotes mean annual precipitation, and PET and AET denote mean annual potential and actual evapotranspiration, respectively. Using information from the CLIMWAT 2.0 database (www.fao.org/nr/water/infores_databases_climwat.html) for P and PET, we estimate AET using both Budyko's and Turc's equations. Our results indicate that the well-known Budyko function that relates Φ vs.Ψ corresponds to a particular bi-dimensional cross-section of a broader coupling existing between Φ, Ψ and Ω (Figure 1a), and in turn of the mutual interdependence between P, PET and AET. The behavior of the three bi-dimensional projections are clearly parameterized by the remaining ortogonal parameter, such that: (i) the relation Φ vs. Ψ is defined by physically consistent varying values of Ω (Figure 1b); (ii) the relation Ω vs. Ψ is defined by physically consistent varying values of the Aridity Index,Φ (Figure 1c), and (iii) the relation Ω vs. Φ is defined by physically consistent varying values of Ψ (Figure 1d). Interestingly, we show that Φ and Ω are related by a power law, Φ~Ω-θ, with scaling exponent θ=1.15 (R2=0.91, n=3420) for the whole world (Figure 1d). Mathematical functions that model the three bi-dimensional projections and the surface defining the interdependence between Φ, Ψ and Ω will be presented. Our results provide a new framework to understand the coupling between the long-term mean annual water and energy balances in river basins, and the hydrological effects brought about by climate change, while taking into account the mutual interdependence between the three non-dimensional parameters Φ, Ψ and Ω, and in turn between P, PET and AET. Figure 1. (a) Three-dimensional rendering of sample values of Φ =PET/P (so-called Aridity Index), Ψ =AET/P, and Ω=AET/PET. Bi-dimensional projections of: (b) relation Φ vs.

  12. Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS Enhanced Vegetation Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in these districts. We developed a general algorithm for estimating actual evapotranspiration (ETa) based on the ...

  13. Establishing seasonal chronicles of actual evapotranspiration under sloping conditions

    NASA Astrophysics Data System (ADS)

    Zitouna Chebbi, R.; Prévot, L.; Jacob, F.; Voltz, M.

    2012-04-01

    Estimation of daily and seasonal actual evapotranspiration (ETa) is strongly needed for hydrological and agricultural purposes. Although the eddy covariance method is well suited for such estimation of land surface fluxes, this method suffers from limitations when establishing long time series. Missing data are often encountered, resulting from bad meteorological conditions, rejection by quality control tests, power failures… Numerous gap fill techniques have been proposed in the literature but there applicability in sloping conditions is not well known. In order to estimate ETa over long periods (agricultural cycle) on crops cultivated in sloping areas, a pluri-annual experiment was conducted in the Kamech catchment, located in North-eastern Tunisia. This Mediterranean site is characterized by a large heterogeneity in topography, soils and crops. Land surface fluxes were measured using eddy covariance systems. Measurements were collected on the two opposite sides of the Kamech V-shaped catchment, within small fields having slopes steeper than 5%. During three different years, four crops were studied: durum wheat, oat, fava bean and pasture. The topography of the catchment and the wind regime induced upslope and downslope flows over the study fields. In this study, we showed that gap filling of the turbulent fluxes (sensible and latent heat) can be obtained through linear regressions against net radiation. To account for the effect of the topography, linear regressions were calibrated by distinguishing upslope and downslope flows. This significantly improved the quality of the reconstructed data over 30 minute intervals. This gap filling technique also improved the energy balance closure at the daily time scale. As a result, seasonal chronicles of daily ETa throughout the growth cycle of the study crops in the Kamech watershed were established, thus providing useful information about the water use of annual crops in a semi-arid rainfed and hilly area.

  14. Testing two temporal upscaling schemes for the estimation of the time variability of the actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.

    2015-10-01

    Temporal availability of grapes actual evapotranspiration is an emerging issue since vineyards farms are more and more converted from rainfed to irrigated agricultural systems. The manuscript aims to verify the accuracy of the actual evapotranspiration retrieval coupling a single source energy balance approach and two different temporal upscaling schemes. The first scheme tests the temporal upscaling of the main input variables, namely the NDVI, albedo and LST; the second scheme tests the temporal upscaling of the energy balance output, the actual evapotranspiration. The temporal upscaling schemes were implemented on: i) airborne remote sensing data acquired monthly during a whole irrigation season over a Sicilian vineyard; ii) low resolution MODIS products released daily or weekly; iii) meteorological data acquired by standard gauge stations. Daily MODIS LST products (MOD11A1) were disaggregated using the DisTrad model, 8-days black and white sky albedo products (MCD43A) allowed modeling the total albedo, and 8-days NDVI products (MOD13Q1) were modeled using the Fisher approach. Results were validated both in time and space. The temporal validation was carried out using the actual evapotranspiration measured in situ using data collected by a flux tower through the eddy covariance technique. The spatial validation involved airborne images acquired at different times from June to September 2008. Results aim to test whether the upscaling of the energy balance input or output data performed better.

  15. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in more humid environments. We measured ET (ETEC) using Eddy Covariance (EC) towers a...

  16. Using lysimeters to test the Penman Monteith actual evapotranspiration.

    NASA Astrophysics Data System (ADS)

    Ben Asher, Jiftah; Volinski, Roman; Zilberman, Arkadi; Bar Yosef, Beni; Silber, Avner

    2015-04-01

    Differences in actual transpiration (ETa) of banana plants were quantified in a lysimeter experiment. ETA was computed using instantaneous data from two weighing lysimeters and compared to PM (Penman-Monteith) model for ETa. Two critical problems were faced in this test. A) Estimating canopy and aerodynamic resistances ("rc" and "ra" respectively ) and B) converting the lysimeter changes in water volume ( LYv cm3 ) to ETa length units ( cm ). The two unknowns " rc" and "ra" were obtained from continuous measurements of the differences between canopy and air temperature (Tc - Ta). This difference was established by means of the infrared thermometry which was followed by numerical and analytical calculation of ETa using the modification suggested by R. Jackson to the PM model. The conversion of lysimeter volumetric units (LYv) to ETa length units was derived from the slope of cumulative LYv/ETa. This relationship was significantly linear (r2=0.97and 0.98.). Its slope was interpreted as "evaporating leaf area" which accounted for 1.8E4 cm2 in lysimeter 1 and 2.3E4 cm2.in lysimeter 2 . The comparison between LYv and PM model was acceptable even under very low ETa. The average of two lysimeters was 1.1mm/day (1.4 mm/day , LYv 1 and 0.8 LYv 2) while ETa calculated on the basis of PM model was 1.2 mm/day. It was concluded that although lysimeters are most accurate systems to measure ETa one of its disadvantages ( beside the high cost) is the volumetric output that in many cases should be supported by a one dimensional energy balance system. The PM model was found to be a reliable complementary tool to convert lysimeters volumetric output into conventional length units of ETa.

  17. Merging raster meteorological data with low resolution satellite images for improved estimation of actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Cherif, Ines; Alexandridis, Thomas; Chambel Leitao, Pedro; Jauch, Eduardo; Stavridou, Domna; Iordanidis, Charalampos; Silleos, Nikolaos; Misopolinos, Nikolaos; Neves, Ramiro; Safara Araujo, Antonio

    2013-04-01

    Actual evapotranspiration (ETa) can be estimated using Energy Balance models and remotely sensed data. In particular, satellite images acquired in visible, near and thermal infrared parts of the spectrum have been used with the Surface Energy Balance Algorithm for Land (SEBAL) to estimate actual evapotranspiration. This algorithm is solving the Energy Balance Equation using data from a meteorological station present in the vicinity, and assumes the meteorological conditions homogeneous over the study area. Most often, data from a representative weather station are used. This assumption may lead to substantial errors in areas with high spatial variability in weather parameters. In this paper, the ITA-MyWater algorithms (Integrated Thermodynamic Algorithms for MyWater project), an adaptation of SEBAL was merged together with spatially distributed meteorological data to increase the accuracy of ETa estimations at regional scale using MODIS satellite images. The major changes introduced to migrate from point to raster are that (i) air temperature and relative humidity maps are used for the estimation of the Energy Balance terms, including instantaneous net radiation and soil heat flux and (ii) the variability of wind speed is taken into account to generate maps of the aerodynamic resistance, sensible heat flux and difference between soil and air temperature at the boundary conditions (at dry and wet pixels). The approach was applied in the river basin of Tamega in Portugal, where actual evapotranspiration was estimated for several MODIS 8-day periods from spring to winter of the same year. The raster meteorological maps were produced by the MM5 weather forecast model. Daily reference evapotranspiration was calculated with MOHID LAND model. Using a temporal integration technique and the daily reference evapotranspiration maps, the cumulative evapotranspiration over the MODIS 8-day period was estimated and compared to the global evapotranspiration MODIS product (MOD16A2

  18. Simultaneous estimation of precipitation and actual evapotranspiration by lysimeters - Comparison with tipping bucket and eddy covariance

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H. J.; Gebler, S.; Puetz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2014-12-01

    Although precipitation and actual evapotranspiration measurements have a long tradition, accurate estimates of precipitation (P) and actual evapotranspiration (ETa) remain a challenge. Our study compares actual evapotranspiration estimates acquired with the Eddy-Covariance (EC) method and ETa measurements by a set of six redundant weighable lysimeters for a managed grassland site at Rollesbroich (Eifel, Western Germany). The comparison of ETa measured by EC (accounting for energy balance deficit correction) and by lysimeters is hardly reported in literature and gains more insight into the performance of both techniques. The evaluation of ETa estimates by both methods for the year 2012 shows a good agreement with a total difference of ca. 4 %, which is mainly related to variations in grass height at the lysimeters and in the EC footprint. We also used the lysimeter records to estimate precipitation amounts in combination with the AWAT filter algorithm. The estimated precipitation volumes of the lysimeter measurements show significant differences compared to the precipitation data of the Hellman type tipping bucket rain gauge at the test site. For the entire year 2012 the lysimeter measurements exhibit a 16 % higher precipitation amount than the tipping bucket data. With help of an on-site video surveillance system the precipitation data of the lysimeters were investigated in more detail. It was found that the precipitation surplus in lysimeter records in part is related to the detection of rime and dew, which contributes 17 % to the yearly difference between both methods. We concluded that weighable lysimeter data can be used to simultaneously estimate precipitation and actual evapotranspiration in a reliable fashion. Furthermore, lysimeter allow a plausible detection of rime and dew in contrast to standard rain gauges.

  19. Modelling bulk surface resistance from MODIS time series data to estimate actual regional evapotranspiration

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Minacapilli, Mario; Provenzano, Giuseppe

    2015-04-01

    Estimation of actual evapotraspiration by means of Penman-Monteith (P-M) equation requires the knowledge of the so-called 'bulk surface resistance', rc,act, representing the vapour flow resistance through the transpiring crop and evaporating soil surface. The accurate parameterization of rc,act still represents an unexploited topic, especially in the case of heterogeneous land surface. In agro-hydrological applications, the P-M equation commonly used to evaluate reference evapotranspiration (ET0) of a well-watered 'standardized crop' (grass or alfalfa), generally assumes for the bulk surface resistance a value of 70 s m-1. Moreover, specific crop coefficients have to be used to estimate maximum and/or actual evapotranspiration based on ET0. In this paper, a simple procedure for the indirect estimation of rc,act as function of a vegetation index computed from remote acquisition of Land Surface Temperature (LST), is proposed. An application was carried out in an irrigation district located near Castelvetrano, in South-West of Sicily, mainly cultivated with olive groves, in which actual evapotranspiration fluxes were measured during two years (2010-2011) by an Eddy Covariance flux tower (EC). Evapotranspiration measurements allowed evaluating rc,actbased on the numerical inversion of the P-M equation. In the same study area, a large time series of MODIS LST data, characterized by a spatial resolution of 1x1 km and a time step of 8-days, was also acquired for the period from 2000 to 2014. A simple Vegetation Index Temperatures (VTI), with values ranging from 0 to 1, was computed using normalized LST values. Evapotranspiration fluxes measured in 2010 were used to calibrate the relationship between rc,act and VTI, whereas data from 2011 were used for its validation. The preliminary results evidenced that, for the considered crop, an almost constant value of rc,act, corresponding to about 250 s m-1, can be considered typical of periods in which the crop is well

  20. Effects of precipitation and potential evaporation on actual evapotranspiration over the Laohahe basin, northern China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Ren, L.; Yang, X.; Ma, M.; Yuan, F.; Jiang, S.

    2015-06-01

    Problems associated with water scarcity are facing new challenges under the climate change. As one of main consumptions in water cycle on the Earth, evapotranspiration plays a crucial role in regional water budget. In this paper, we employ two methods, i.e. hydrological sensitivity analysis and hydrological model simulation, to investigate the effect of climate variability and climatic change on actual evapotranspiration (Ea) within the Laohahe basin during 1964-2009. Calibrations of the two methods are firstly conducted during the baseline period (1964-1979), then with the two benchmarked models, simulations in climatic change duration (1980-2009) are further conducted and quantitative assessments on climatic change-induced variation of Ea are analysed accordingly. The results show that affected by combined impacts of decreased precipitation and potential evapotranspiration, variation of annual Ea in most sub-catchments suffer a downward trend during 1980-2009, with a higher descending rate in northern catchments. At decadal scale, Ea shows significant oscillation in accordance with precipitation patterns. Northern catchments generally suffer more decadal Ea changes than southern catchments, implying the impact of climatic change on decadal Ea is more intense in semi-arid areas than that in semi-humid regions. For whole changed durations, a general 0-20 mm reduction of Ea is found in most parts of studied region. For this water-limited region, Ea shows higher sensitivity to precipitation than to potential evaporation, which confirms the significant role of precipitation in controlling Ea patterns, whereas the impact of potential evapotranspiration variation would be negligible.

  1. [Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the Hun-Taizi River Basin, Northeast China].

    PubMed

    Feng, Xue; Cai, Yan-Cong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Yuan, Feng-Hui

    2014-10-01

    Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis. The results showed that the empirical parameter value of 0.75 of AA model was suitable for the Hun-Taizi River Basin with an error of 11.4%. In the Hun-Taizi River Basin, the average annual actual evapotranspiration was 347.4 mm, which had a slightly upward trend with a rate of 1.58 mm · (10 a(-1)), but did not change significantly. It also indicated that the annual actual evapotranspiration presented a single-peaked pattern and its peak value occurred in July; the evapotranspiration in summer was higher than in spring and autumn, and it was the smallest in winter. The annual average evapotranspiration showed a decreasing trend from the northwest to the southeast in the Hun-Taizi River Basin from 1970 to 2006 with minor differences. Net radiation was largely responsible for the change of actual evapotranspiration in the Hun-Taizi River Basin. PMID:25796880

  2. Estimation of actual evapotranspiration through model coupling and data assimilation with remotely sensed land surface properties

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G.

    2009-05-01

    We report on preliminary results from the coupling of two models and satellite observations to track evapotranspiration (ET) dynamics in Northern Great Plains of the USA. The approach takes advantage of high- quality microclimate and irradiance/radiance measurements in a data assimilation scheme to estimate actual ET through a stepwise simulation of foliage dynamics, corrected by remotely sensed land surface properties. We used a recently developed VegET model that uses water balance principles and phenological constraints (Senay 2008) coupled with an event driven phenology model (EDPM) to simulate canopy dynamics unfolding in response to changing environmental conditions and disturbance events. We used NDVI derived from MODIS Collection 5 Nadir BRDF Adjusted Reflectance (NBAR; MCD43B4V5) to amend the outputs of the EDPM using one-dimensional Kalman filtering to achieve a better representation of changing canopy conditions. The model was trained on level 1 flux tower data from cropland sites at Mead, Nebraska and refined using similar records from Bondville, Illinois. Results from the test runs demonstrated the ability of EDPM to drive the phenological constrains of VegET with reasonable accuracy (RMSE 0.03-0.10 at Nebraska sites). Filtered and unfiltered results from the coupled model were compared with actual evapotranspiration recorded on flux towers and with tower NDVI (Wittich and Kraft 2008). Depending on vegetation type and location, Pearson correlation coefficients between model estimates and observed values ranged between 0.8 and 0.9.

  3. Estimation of Regional-Scale Actual Evapotranspiration in Okayama prefecture in Japan using Complementary Relationship

    NASA Astrophysics Data System (ADS)

    Moroizumi, T.; Yamamoto, M.; Miura, T.

    2008-12-01

    It is important to estimate accurately a water balance in watershed for proposing a reuse of water resources and a proper settlement of water utilization. Evapotranspiration (ET) is an important factor of water balance. Therefore, it is needed to estimate accurately the actual ET. The objective of this study is to estimate accurately monthly actual ET in Yoshii, Asahi, and Takahashi River watersheds in Okayama prefecture from 1999 to 2000. The monthly actual ET was calculated by a Morton and a modified Brutsaert and Stricker (B&S) method, using Automated Meteorological Data Acquisition Systems (AMeDAS) in the basin. The actual ET was estimated using land covers which were classified in 11 categories. The land covers includes the effects of albedo. The actual ET was related to the elevation at each AMeDAS station. Using this relationship, the actual ET at the 1 or 5 km grid-interval mesh in the basin was calculated, and finally, the distribution of actual ET was mapped. The monthly ET estimated by the modified B&S method were smaller than that by Morton method which showed a same tendency as the Penman potential ET (PET). The annual values of Morton"fs ET, modified B&S"fs ET, and PET were estimated as 796, 645, and 800 mm, respectively. The ET by the modified B&S was larger in hilly and mountainous areas than in settlement or city. In general, it was a reasonable result because city or settlement areas were covered with concrete and asphalt and the ET was controlled.

  4. Operational actual wetland evapotranspiration estimation for the Everglades using MODIS imagery

    NASA Astrophysics Data System (ADS)

    Melesse, Assefa; Cereon, Cristobal

    2014-05-01

    Wetlands are one of the most important ecosystems with varied functions and structures. Humans have drained wetlands and altered the structure and functions of wetlands for various uses. Wetland restoration efforts require assessment of the level of ecohydrological restoration for the intended functions. Among the various indicators of success in wetland restoration, achieving the desired water level (hydrology) is the most important, faster to achieve and easier to monitor than the establishment of the hydric soils and wetland vegetation. Monitoring wetland hydrology using remote sensing based evapotranspiration (ET) is a useful tool and approach since point measurements for understanding the temporal (before and after restoration) and spatial (impacted and restored) parts of the wetland are not effective for large areas. Evapotranspiration accounts over 80% of the water budget of the wetlands necessitating the need for spatiotemporal monitoring of ET flux. A study employing remotely sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and modeling tools was conducted for a weekly spatial estimation of Everglades ET. Weekly surface temperature data were generated from the MODIS thermal band and evaporative fraction was estimated using the simplified surface energy balance (SSEB) approach. Based on the Simple Method, potential ET (PET) was estimated. Actual weekly wetland ET was computed as the (product of the PET and evaporative fraction). The ET product will be useful information for environmental restoration and wetland hydrology managers. The on-going restoration and monitoring work in the Everglades will benefit from this product and assist in evaluating progress and success in the restoration.

  5. Controls over spatial and temporal variations in annual actual evapotranspiration in snow-free California watersheds

    NASA Astrophysics Data System (ADS)

    Clark, Allison Marie

    Actual evapotranspiration (Eta) is one of the largest components of the hydrologic budget and accounts for a majority of water lost from a watershed. It is primarily controlled by soil water availability, which is largely controlled by rainfall, and atmospheric demand (potential evapotranspiration). Consequently, Eta is sensitive to changes in meteorologic conditions. Understanding the relationship between Et a and controlling meteorologic variables across time and space is important for future predictions of Eta under a changing climate, especially in California where demand for surface and groundwater is high. A regression modeling approach was used to (1) determine the relative control of rainfall, rainfall intensity, and potential evapotranspiration (Etp) over annual and long-term mean annual Eta across watersheds in western California, and (2) quantify the sensitivity of watershed annual Eta to changes in these variables. Annual Eta data for 20 snow-free California watersheds was derived using the water balance method for hydrologic years 1982-2011. Independent variables examined in this study were annual rainfall, rainfall intensity, and potential evapotranspiration. These quantities were obtained or calculated from daily PRISM rainfall and temperature datasets. Results indicated that rainfall was the dominant control over variations in mean annual Eta across the study region (Adj. R2 0.935) and was the primary control over interannual variations in Et a for 15 out of 17 study watersheds. Rainfall intensity was a significant but weaker predictor of mean annual Eta (adj. R2 0.833) and was a significant predictor of annual variations in Eta for 12 out of 17 watersheds. A weak relationship between Etp and Eta was observed across the study region (adj. R2 = 0.660) and the relationship was found to be negative. Etp was a significant, though weak, predictor of annual Eta for 8 out of 17 watersheds. The amount of variance in annual Eta explained by rainfall

  6. Vapor pressure deficit is as important as soil moisture in determining limitations to evapotranspiration during drought

    NASA Astrophysics Data System (ADS)

    Novick, K. A.; Williams, C. A.; Phillips, R.; Oishi, A. C.; Sulman, B. N.; Bohrer, G.; Ficklin, D. L.

    2015-12-01

    The decoupling between potential evapotranspiration (PET) and actual evapotranspiration (AET) is a useful metric to characterize ecosystem hydrologic stress. As hydrologic stress evolves, PET increases following increases in incident radiation and vapor pressure deficit (VPD). AET, on the other hand, remains stationary or decreases due to declines in surface conductance imposed by decreasing soil water and stomatal closure under high VPD. Historically, it has been difficult to quantify the extent to which soil moisture as compared to VPD ultimately limits AET during hydrologic stress. Part of this difficulty relates to the strong correlation between soil moisture and VPD at timescales over which hydrologic stress evolves (weekly to monthly). Further, while it is relatively easy to manipulate soil moisture in experimental settings, manipulating VPD is much more difficult. Recently, the proliferation of eddy covariance flux sites has produced a rich collection of AET observations at fine timescales (i.e. hourly to daily) over which VPD and soil moisture are more decoupled. In this study, we leverage such data to quantify the extent to which soil moisture versus VPD constrains AET in more than 25 Ameriflux sites spanning a wide climate gradient. We found that AET was most significantly limited by soil moisture in dry sites where the annual PET was much higher than precipitation. VPD limitations to AET dominated in wetter sites, but even among the driest sites, they were of similar magnitude to soil moisture limitations. Our results highlight the critical, if at time underappreciated, role of VPD in determining ecohydrological functioning during periods of hydrologic stress. We also leverage these results together with future projections for VPD, soil moisture, and other relevant meteorological drivers to explore the extent to which the coherence between VPD and soil moisture, and their relative importance for limiting AET, may shift under future climate conditions.

  7. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2014-12-01

    This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and potential crop evapotranspiration according to FAO (ETc-FAO) for the Rollesbroich site in the Eifel (Western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (<8%) on monthly basis between both methods are found in summer. ETa was close to ETc-FAO, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter, ETc-FAO, and EC were mainly related to differences in grass height caused by harvesting management and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for high precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data show significant differences compared to the precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16% higher precipitation amount than the tipping bucket. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket in part related to the detection of rime and dew, which contributes 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total difference. Larger differences are also recorded for snow and sleet situations. During snowfall, the

  8. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2015-05-01

    This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and evapotranspiration calculated with the full-form Penman-Monteith equation (ETPM) for the Rollesbroich site in the Eifel (western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in the literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (< 8%) on a monthly basis between both methods are found in summer. ETa was close to ETPM, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter and EC were mainly related to differences in grass height caused by harvest and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for the high-precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data differ significantly from precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16 % higher precipitation amount than the tipping bucket. After a correction of the tipping bucket measurements by the method of Richter (1995) this amount was reduced to 3%. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket, in part related to the detection of rime and dew, which contribute 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total

  9. Integrating MODIS and Landsat Data Using the Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration at Multiple Scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating actual evapotranspiration (ETa) in space and time is critical for developing useful basin water balance models and for monitoring vegetation water use and drought severity analysis. In this study, we combined MODIS and Landsat thermal data using a 'time-limited' stable fractional relation...

  10. Soil water availability as controlling factor for actual evapotranspiration in urban soil-vegetation-systems

    NASA Astrophysics Data System (ADS)

    Thomsen, Simon; Reisdorff, Christoph; Gröngröft, Alexander; Jensen, Kai; Eschenbach, Annette

    2015-04-01

    The City of Hamburg is characterized by a large number of greens, parks and roadside trees: 600.000 trees cover about 14% of the city area, and moreover, 245.000 roadside trees can be found here. Urban vegetation is generally known to positively contribute to the urban micro-climate via cooling by evapotranspiration (ET). The water for ET is predominantly stored in the urban soils. Hence, the actual evapotranspiration (ETa) is - beside atmospheric drivers - determined by soil water availability at the soil surface and in the rooting zones of the respective vegetation. The overall aim of this study is to characterize soil water availability as a regulative factor for ETa in urban soil-vegetation systems. The specific questions addressed are: i) What is the spatio-temporal variation in soil water availability at the study sites? ii) Which soil depths are predominantly used for water uptake by the vegetation forms investigated? and iii) Which are the threshold values of soil water tension and soil water content (Θ), respectively, that limit ETa under dry conditions on both grass-dominated and tree-dominated sites? Three study areas were established in the urban region of Hamburg, Germany. We selected areas featuring both single tree stands and grass-dominated sites, both representing typical vegetation forms in Hamburg. The areas are characterized by relatively dry soil conditions. However, they differ in regard to soil water availability. At each area we selected one site dominated by Common Oak (Quercus ruber L.) with ages from 40 to 120 years, and paired each oak tree site with a neighboring grass-dominated site. All field measurements were performed during the years 2013 and 2014. At each site, we continuously measured soil water tension and Θ up to 160 cm depth, and xylem sap flux of each of three oak trees per site in a 15 min-resolution. Furthermore, we measured soil hydraulic properties as pF-curve, saturated and unsaturated conductivity at all sites

  11. Assessing daily actual evapotranspiration through energy balance: an experiment to evaluate the selfpreservation hypothesis with acquisition time

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.; Rallo, G.

    2013-10-01

    An operational use of the actual evapotranspiration estimates requires the integration from instantaneous to daily values. This can commonly be achieved under the hypothesis of daytime self-preservation of the evaporative fraction. In this study, it has been evaluated the effect of this assumption on the assessment of daily evapotranspiration from proximity sensing images acquired at hourly intervals over a homogeneous olive groove. Results have been validated by comparison with observations made by a micrometeorological (EC-flux tower) and an eco-physiological (sap flux) sensor. SEBAL model has been applied to thermal and multispectral images acquired during a clear day on August 2009 trough a FLIR A320G thermal camera and a Tetracam MCA II multispectral camera, installed on a tethered helium balloon. Thermal and multispectral images were characterized by very high spatial resolution. This experiment aims to analyze two effects: 1) the consistency of the self-preservation hypothesis for daily estimates of the actual evapotranspiration from hourly assessments at different times of the day; 2) the effects of the spatial resolution on the performances of the energy balance model. To evaluate the effects of the spatial resolution, semi-hourly observations made by a flux tower and sap-flow measures were compared to the evapotranspiration estimates performed using downscaled images at resolutions close to canopy sizes (2, 5 and 10 m). Results show that the best estimates are obtained with a spatial resolution comparable to the average size of the canopy with images taken approximately at 10 UTC.

  12. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Wang, D.; Tirado-Corbalá, R.; Zhang, H.; Ayars, J. E.

    2015-01-01

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ETEC) using eddy covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET0) and tall (ETr) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley-Taylor ET (ETPT) and ETEC. Reference ET from the ASCE approaches exceeded ETEC during the mid-period (when vegetation coefficients suggest ETEC should exceed reference ET). At the windier tower site, cumulative ETr exceeded ETEC by 854 mm over the course of the mid-period (267 days). At the less windy site, mid-period ETr still exceeded ETEC, but the difference was smaller (443 mm). At both sites, ETPT approximated mid-period ETEC more closely than the ASCE equations ((ETPT-ETEC) < 170 mm). Analysis of applied water and precipitation, soil moisture, leaf stomatal resistance, and canopy cover suggest that the lower observed ETEC was not the result of water stress or reduced vegetation cover. Use of a custom-calibrated bulk canopy resistance improved the reference ET estimate and reduced seasonal ET discrepancy relative to ETPT and ETEC in the less windy field and had mixed performance in the windier field. These divergences suggest that modifications to reference ET equations may be warranted in some tropical regions.

  13. Using the Priestley-Taylor expression for estimating actual evapotranspiration from satellite Landsat ETM + data

    NASA Astrophysics Data System (ADS)

    Khaldi, A.; Khaldi, A.; Hamimed, A.

    2014-09-01

    The quantification of evapotranspiration from irrigated areas is important for agriculture water management, especially in arid and semi-arid regions where water deficiency is becoming a major constraint in economic welfare and sustainable development. Conventional methods that use point measurements to estimate evapotranspiration are representative only of local areas and cannot be extended to large areas because of landscape heterogeneity. Remote sensing-based energy balance models are presently most suited for estimating evapotranspiration at both field and regional scales. In this study, we aim to develop a methodology based on the triangle concept, allowing estimation of evapotranspiration through the classical equation of Priestley and Taylor (1972) where the proportional coefficient α in this equation is ranged using a linear interpolation between surface temperature and Normalized Difference Vegetation Index (NDVI) values. Preliminary results using remotely sensed data sets from Landsat ETM+ over the Habra Plains in west Algeria are in good agreement with ground measurements. The proposed approach appears to be more reliable and easily applicable for operational estimation of evapotranspiration over large areas.

  14. Actual Evapotranspiration using a two source energy balance model and gridded reference ET0

    NASA Astrophysics Data System (ADS)

    Geli, H. M.; Neale, C. M.; Verdin, J. P.; Senay, G. B.; Hobbins, M.

    2013-12-01

    In an ongoing effort to provide estimates of actual evapotranspiration (ETa) at different spatial scales from local to regional this study investigate the use of a newly under development gridded reference ET0 product. This study is conducted within the context of a USGS project aimed to provide a standardized framework for the remote sensing of ETa that can be followed in the implementation of the WaterSMART program. Most thermal remote sensing based models provide instantaneous estimates of latent heat flux which then can be extrapolated to daily ETa. In many cases extrapolation is achieved using the ETref method. At field scales reference ET0, daily and instantaneous values, are obtained from point-based/local scale measurements. When considering regional scale this local scale estimates of ET0 might not be appropriate to account for the corresponding spatial variability. This analysis provides a comparison of ETa estimates based on a two source energy balance approach using point-based and gridded reference ET0 data. The two source energy balance SEBS (Norman et al. 1995) is used to calculate surface energy fluxes and ETa. Data from Palo Verdi Irrigation District (PVID), CA is used during the analysis. The area which extends over 500 km2 covered mostly with alfalfa, cotton and vegetable crops. Ground-based hydrometeorological data including reference ET0 are provided from a nearby weather stations. CONUS wide gridded reference ET0 which being developed by NOAA using NLDAS-phase 2 weather forcing are used. Both estimates of ETa_point and ETa_NLDAS based on ground and gridded ET0 data, respectively, are compared to ground-based measurement. Preliminary results of the comparison will be presented to highlight on the potential use of such gridded ET0 data in the use of remote sensing of ETa at regional scales application. References Norman, J. M., W. P. Kustas, & K. S. Humes, 1995: A two-source approach for estimating soil and vegetation energy fluxes in

  15. Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach

    USGS Publications Warehouse

    Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.

    2013-01-01

    Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0

  16. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    USGS Publications Warehouse

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.

    2012-01-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  17. Actual evapotranspiration estimation by means of airborne and satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Ciraolo, Giuseppe; D'Urso, Guido; Minacapilli, Mario

    2006-09-01

    During the last the two decades, the scientific community developed detailed mathematical models for simulating land surface energy fluxes and crop evapotranspiration rates by means of a energy balance approach. These models can be applied in large areas and with a spatial distributed approach using surface brightness temperature and some ancillary data retrieved from satellite/airborne remote sensed imagery. In this paper a district scale application in combination with multispectral (LandaSat 7 TM data) and hyperspectral airborne MIVIS data has been carried out to test the potentialities of two different energy balance models to estimate evapotranspiration fluxes from a set of typical Mediterranean crops (wine, olive, citrus). The impact of different spatial and radiometric resolutions of MIVIS (3m x 3m) and LandSat (60m x 60m) on models-derived fluxes has been investigated to understand the roles and the main conceptual differences between the two models which respectively use a "single-layer" (SEBAL) and a "two-layer" (TS) schematisation.

  18. Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology - Part 2: The event driven phenology model

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2011-05-01

    Evapotranspiration (ET) flux constitutes a major component of both the water and energy balances at the land surface. Among the many factors that control evapotranspiration, phenology poses a major source of uncertainty in attempts to predict ET. Contemporary approaches to ET modeling and monitoring frequently summarize the complexity of the seasonal development of vegetation cover into static phenological trajectories (or climatologies) that lack sensitivity to changing environmental conditions. The Event Driven Phenology Model (EDPM) offers an alternative, interactive approach to representing phenology. This study presents the results of an experiment designed to illustrate the differences in ET arising from various techniques used to mimic phenology in models of land surface processes. The experiment compares and contrasts two realizations of static phenologies derived from long-term satellite observations of the Normalized Difference Vegetation Index (NDVI) against canopy trajectories produced by the interactive EDPM trained on flux tower observations. The assessment was carried out through validation of predicted ET against records collected by flux tower instruments. The VegET model (Senay, 2008) was used as a framework to estimate daily actual evapotranspiration and supplied with seasonal canopy trajectories produced by the EDPM and traditional techniques. The interactive approach presented the following advantages over phenology modeled with static climatologies: (a) lower prediction bias in crops; (b) smaller root mean square error in daily ET - 0.5 mm per day on average; (c) stable level of errors throughout the season similar among different land cover types and locations; and (d) better estimation of season duration and total seasonal ET.

  19. Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology - Part 2: The event driven phenology model

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2012-01-01

    Evapotranspiration (ET) flux constitutes a major component of both the water and energy balances at the land surface. Among the many factors that control evapotranspiration, phenology poses a major source of uncertainty in attempts to predict ET. Contemporary approaches to ET modeling and monitoring frequently summarize the complexity of the seasonal development of vegetation cover into static phenological trajectories (or climatologies) that lack sensitivity to changing environmental conditions. The Event Driven Phenology Model (EDPM) offers an alternative, interactive approach to representing phenology. This study presents the results of an experiment designed to illustrate the differences in ET arising from various techniques used to mimic phenology in models of land surface processes. The experiment compares and contrasts two realizations of static phenologies derived from long-term satellite observations of the Normalized Difference Vegetation Index (NDVI) against canopy trajectories produced by the interactive EDPM trained on flux tower observations. The assessment was carried out through validation of predicted ET against records collected by flux tower instruments. The VegET model (Senay, 2008) was used as a framework to estimate daily actual evapotranspiration and supplied with seasonal canopy trajectories produced by the EDPM and traditional techniques. The interactive approach presented the following advantages over phenology modeled with static climatologies: (a) lower prediction bias in crops; (b) smaller root mean square error in daily ET - 0.5 mm per day on average; (c) stable level of errors throughout the season similar among different land cover types and locations; and (d) better estimation of season duration and total seasonal ET.

  20. Potential of remote sensing derived soil moisture for the estimation of actual evapotranspiration in cotton ecosystems of Middle Asia

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher; Dech, Stefan

    2013-04-01

    Actual evapotranspiration (ETact) is an essential component of the water balance and its determination for larger areas is difficult on regional scale. Here, remote sensing provides a powerful tool to estimate regional actual evapotranspiration to support regional water management. Particularly, in irrigation agriculture of Middle Asia decision makers have to handle limited water availability and to improve the efficiency of their regional water management systems. The growing interest in quantifying regional actual ET for water resource and irrigation management led to the development of numerous methods to estimate ET from remote sensing data. The study is primarily concerned with the irrigation farming of cotton ecosystems in Middle Asia, in particular with the situation within Khorezm Oblast in Uzbekistan. Regional problems of Khorezm Oblast are e.g. high groundwater levels, soil salinity, and non-sustainable use of land and water. The water for irrigation is taken from the Amu Darya River and then canalled to the agricultural fields. The available water in Khorezm depends on the water demand in the upstream regions. Because of this variation and the historical annual shortage of available irrigation water a sustainable use of water is highly important for the regional water management in Khorezm. Cotton is the major crop in Khorezm region. About 46% of the agricultural area was covered with cotton in 2010 and 2011, among the other main crops winter wheat (30%) and rice (5%). The objective of this study was to investigate the potential of satellite derived surface soil moisture for the optimization of the estimated ETact. Actual evapotranspiration in this study is indirectly derived by solving the surface energy balance equation using the surface energy balance algorithm for land (SEBAL). Due to its high temporal resolution MODIS (1km) data is used to provide the input information to solve the equation. The results were compared with measurements of an eddy

  1. Actual evapotranspiration estimation in a Mediterranean mountain region by means of Landsat-5 TM and TERRA/AQUA MODIS imagery and Sap Flow measurements in Pinus sylvestris forest stands.

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Pons, X.; Llorens, P.

    2009-04-01

    Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994) which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009). To compute actual evapotranspiration (AET) we have used the B-Method proposed by Jakson et al. (1977) and modified by Carlson et al. (1995) and Caselles et al. (1998), based on the energy budget, that needs as an input variables net radiation (Rn) and the difference between land surface temperature (LST) and air temperature (Ta). Air temperature has been modelled by means of multiple regression analysis and GIS interpolation using ground meteorological stations. Net radiation have been computed following two approaches based on the energy balance equation using albedo, land surface temperature, air temperature and solar radiation. Both air temperature and net radiation have been modelled at a regional scale. We have compared remote sensing daily actual evapotranspiration estimates with measured canopy transpiration. Sap flux density was measured by means of Heat dissipation sensors in 12 trees per stand, sampled according to diametric distribution, corrected to account for radial patter of sap flow using the Heat Field Deformation method and then scaled-up to stand level transpiration using tree sapwood areas. Sap flow measurements are comparable with AETd as in the Scots pine stand understorey evaporation is not significant. Measurements with sap flow technique show a mean, minimum and maximum values of AETd = 2.2, 0.6 and 3.6 mm day -1, respectively (Poyatos et al

  2. Evaluating the performance of reference evapotranspiration equations with scintillometer measurements under Mediterranean climate and effects on olive grove actual evapotranspiration estimated with FAO-56 water balance model

    NASA Astrophysics Data System (ADS)

    Minacapilli, Mario; Cammalleri, Carmelo; Ciraolo, Giuseppe; Provenzano, Giuseppe; Rallo, Giovanni

    2014-05-01

    The concept of reference evapotranspiration (ETo) is widely used to support water resource management in agriculture and for irrigation scheduling, especially under arid and semi-arid conditions. The Penman-Monteith standardized formulations, as suggested by ASCE and FAO-56 papers, are generally applied for accurate estimations of ETo, at hourly and daily scale. When detailed meteorological information are not available, several alternative and simplified equations, using a limited number of variables, have been proposed (Blaney-Criddle, Hargreaves-Samani, Turc, Makkinen and Pristley-Taylor). In this paper, scintillometer measurements collected for six month in 2005, on an experimental plot under "reference" conditions, were used to validate different ETo equations at hourly and daily scale. Experimental plot is located in a typical agricultural Mediterranean environment (Sicily, Italy), where olive groves is the dominant crop. As proved by other researches, the comparison confirmed the best agreement between estimated and measured fluxes corresponds to FAO-56 Penman-Monteith standardized equation, that was characterized by both the lowest average error and the minimum bias. However, the analysis also evidenced a quite good performance of Pristley-Taylor equation, that can be considered as a valid alternative to the more sophisticated Penman-Monteith method. The different ETo series, obtained by the considered simplified equations, were then used as input in the FAO-56 water balance model, in order to evaluate, for olive groves, the errors on estimated actual evapotranspiration ET. To this aim soil and crop model input parameters were settled by considering previous experimental researches already used to calibrate and validate the FAO-56 water balance model on olive groves, for the same study area. Also in this case, assuming as the true values of ET those obtained using the water balance coupled with Penman-Monteith ETo input values, the Priestley-Taylor equation

  3. Evaluation of a Modified Priestly-Taylor Model for Actual Evapotranspiration in sub- Saharan Africa

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.; Michaelsen, J.; Funk, C.; Artan, G.

    2008-12-01

    Climate change and the intensification of the water cycle is an important field of study, as global warming is expected to lead to dramatic increases in the frequency and magnitude of storms, floods, and droughts worldwide. In sub-tropical Africa, it is expected that the increase in evaporation and subsequent decrease in surface runoff will increase water demand in an already climate sensitive region. Studies also show that modeled soil moisture, a surrogate for evapotranspiration (ET), can improve rainfall and streamflow forecasts in these areas. Our objective, here therefore, is to evaluate a new ET model (Fisher et al., 2008) at inter- seasonal catchment scales. The Fisher et al. (2008) model uses functional eco-physiological relationships to adjust the Priestly-Taylor formulation of potential ET. It has performed well against several flux towers at tropical, sub-tropical, and temperate latitudes (R2=0.90). Although the model was extrapolated using remote sensing and climate reanalysis data, the validation was performed using site specific monthly average net radiation (Rn), monthly surface vapor pressure, and maximum monthly surface temperature. Two additional inputs are required for the model that can be acquired from remote sensing: the monthly average normalized difference vegetation index and soil-adjusted vegetation index. The vegetation indices will be calculated from a new atmospherically corrected AVHRR dataset of global daily reflectance at 0.05° resolution (NASA Land Long Term Data Record). The climate variables will be extracted from the bias-corrected European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset at 0.05° resolution. The model will be evaluated at a seasonal timestep from 1981-1999 using cumulative runoff and lagged precipitation for seven major catchments in sub-Saharan Africa. It is expected that the highest model performance will be in areas where Rn is the dominant control on ET and advection is relatively small

  4. Evaluation of SEBS for estimation of actual evapotranspiration using ASTER satellite data for irrigation areas of Australia

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Hafeez, Mohsin; Ishikawa, Hirohiko; Ma, Yaoming

    2013-05-01

    Spatial knowledge of land surface evapotranspiration (ET) is of prime interest for environmental applications, such as optimizing irrigation water use, irrigation system performance, crop water deficit, drought mitigation strategies, and accurate initialization of climate prediction models especially in arid and semiarid catchments where water shortage is a critical problem. The recent drought in Australia and concerns about climate change have highlighted the need to manage water resources more sustainably especially in the Murrumbidgee catchment which utilizes bulk water for food production. This study deals with the application of a Surface Energy Balance System (SEBS) algorithm based on Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data and field observations has been proposed and tested for deriving ET over Coleambally Irrigation Area, located in the southwest of NSW, Australia. We have used 12 ASTER scenes covering the time period of 2002, 2003, 2004, 2005, 2006, and 2009 for estimating the actual ET over the study area. To validate the proposed methodology, the ground-measured ET was compared to the ASTER-derived actual ET values for the study area. The derived ET value over the study area is much closer to the field measurement. From the remote sensing results and observations, the root mean square error is 0.89 and the mean absolute percentage difference is 2.87 %, which demonstrate the reasonability of SEBS ET estimation for the study area.

  5. Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Katerji, Nader; Rana, Gianfranco; Ferrara, Rossana Monica

    2016-05-01

    The study compares two formulas for calculating the daily evapotranspiration ET0 for a reference crop. The first formula was proposed by Allen et al. (AL), while the second one was proposed by Katerji and Perrier with the addition of the carbon dioxide (CO2) effect on evapotranspiration (KP). The study analyses the impact of the calculation by the two formulas on the irrigation requirement (IR). Both formulas are based on the Penman-Monteith equation but adopt different approaches for parameterising the canopy resistance r c . In the AL formula, r c is assumed constant and not sensitive to climate change, whereas in the KP formula, r c is first parameterised as a function of climatic variables, then ET0 is corrected for the air CO2 concentration. The two formulas were compared in two periods. The first period involves data from two sites in the Mediterranean region within a measured climate change period (1981-2006) when all the input climatic variables were measured. The second period (2070-2100) involves data from a future climate change period at one site when the input climatic variables were forecasted for two future climate scenarios (A2 and B2). The annual cumulated values of ET0 calculated by the AL formula are systematically lower than those determined by the KP formula. The differences between the ET0 estimation with the AL and KP formulas have a strong impact on the determination of the IR for the reference crop. In fact, for the two periods, the annual values of IR when ET0 is calculated by the AL formula are systematically lower than those calculated by the KP formula. For the actual measured climate change period, this reduction varied from 26 to 28 %, while for the future climate change period, it varied based on the scenario from 16 % (A2) to 20 % (B2).

  6. Actual evapotranspiration estimation in a Mediterranean mountain region by means of Landsat-5 TM and TERRA/AQUA MODIS imagery and Sap Flow measurements in Pinus sylvestris forest stands.

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Pons, X.; Llorens, P.

    2009-04-01

    Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994) which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009). To compute actual evapotranspiration (AET) we have used the B-Method proposed by Jakson et al. (1977) and modified by Carlson et al. (1995) and Caselles et al. (1998), based on the energy budget, that needs as an input variables net radiation (Rn) and the difference between land surface temperature (LST) and air temperature (Ta). Air temperature has been modelled by means of multiple regression analysis and GIS interpolation using ground meteorological stations. Net radiation have been computed following two approaches based on the energy balance equation using albedo, land surface temperature, air temperature and solar radiation. Both air temperature and net radiation have been modelled at a regional scale. We have compared remote sensing daily actual evapotranspiration estimates with measured canopy transpiration. Sap flux density was measured by means of Heat dissipation sensors in 12 trees per stand, sampled according to diametric distribution, corrected to account for radial patter of sap flow using the Heat Field Deformation method and then scaled-up to stand level transpiration using tree sapwood areas. Sap flow measurements are comparable with AETd as in the Scots pine stand understorey evaporation is not significant. Measurements with sap flow technique show a mean, minimum and maximum values of AETd = 2.2, 0.6 and 3.6 mm day -1, respectively (Poyatos et al

  7. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G. M.; Cheema, M. J. M.; Immerzeel, W. W.; Miltenburg, I. J.; Pelgrum, H.

    2012-11-01

    The surface energy fluxes and related evapotranspiration processes across the Indus Basin were estimated for the hydrological year 2007 using satellite measurements. The new ETLook remote sensing model (version 1) infers information on actual Evaporation (E) and actual Transpiration (T) from combined optical and passive microwave sensors, which can observe the land-surface even under persistent overcast conditions. A two-layer Penman-Monteith equation was applied for quantifying soil and canopy evaporation. The novelty of the paper is the computation of E and T across a vast area (116.2 million ha) by using public domain microwave data that can be applied under all weather conditions, and for which no advanced input data are required. The average net radiation for the basin was estimated as being 112 Wm-2. The basin average sensible, latent and soil heat fluxes were estimated to be 80, 32, and 0 Wm-2, respectively. The average evapotranspiration (ET) and evaporative fraction were 1.2 mm d-1 and 0.28, respectively. The basin wide ET was 496 ± 16.8 km3 yr-1. Monte Carlo analysis have indicated 3.4% error at 95% confidence interval for a dominant land use class. Results compared well with previously conducted soil moisture, lysimeter and Bowen ratio measurements at field scale (R2 = 0.70; RMSE = 0.45 mm d-1; RE = -11.5% for annual ET). ET results were also compared against earlier remote sensing and modeling studies for various regions and provinces in Pakistan (R2 = 0.76; RMSE = 0.29 mmd-1; RE = 6.5% for annual ET). The water balance for all irrigated areas together as one total system in Pakistan and India (26.02 million ha) show a total ET value that is congruent with the ET value from the ETLook surface energy balance computations. An unpublished validation of the same ETLook model for 23 jurisdictional areas covering the entire Australian continent showed satisfactory results given the quality of the watershed data and the diverging physiographic and climatic

  8. Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Yinsheng; Xu, Chong-Yu; Szilagyi, Jozsef

    2015-08-01

    Quantitative estimation of actual evapotranspiration (ETa) by in situ measurements and mathematical modeling is a fundamental task for physical understanding of ETa as well as the feedback mechanisms between land and the ambient atmosphere. However, the ETa information in the Tibetan Plateau (TP) has been greatly impeded by the extremely sparse ground observation network in the region. Approaches for estimating ETa solely from routine meteorological variables are therefore important for investigating spatiotemporal variations of ETa in the data-scarce region of the TP. Motivated by this need, the complementary relationship (CR) and Penman-Monteith approaches were evaluated against in situ measurements of ETa on a daily basis in an alpine steppe region of the TP. The former includes the Nonlinear Complementary Relationship (Nonlinear-CR) as well as the Complementary Relationship Areal Evapotranspiration (CRAE) models, while the latter involves the Katerji-Perrier and the Todorovic models. Results indicate that the Nonlinear-CR, CRAE, and Katerji-Perrier models are all capable of efficiently simulating daily ETa, provided their parameter values were appropriately calibrated. The Katerji-Perrier model performed best since its site-specific parameters take the soil water status into account. The Nonlinear-CR model also performed well with the advantage of not requiring the user to choose between a symmetric and asymmetric CR. The CRAE model, even with a relatively low Nash-Sutcliffe efficiency (NSE) value, is also an acceptable approach in this data-scarce region as it does not need information of wind speed and ground surface conditions. In contrast, application of the Todorovic model was found to be inappropriate in the dry regions of the TP due to its significant overestimation of ETa as it neglects the effect of water stress on the bulk surface resistance. Sensitivity analysis of the parameter values demonstrated the relative importance of each parameter in the

  9. Validation of an improved energy balance model to estimate actual evapotranspiration in irrigated cotton ecosystems of Central Asia

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher; Falk, Ulrike; Bauer-Marschallinger, Bernhard

    2014-05-01

    The understanding of the hydrological and the energy cycles are essential in order to describe the complex interactions within the climate system of the earth. Being recognized as an essential component of both the water and the energy cycle, reliable estimation of actual evapotranspiration and its spatial distribution is one outstanding challenge in this context. For instance, in irrigation systems of arid regions, artificial locations of evapotranspiration have been created. An in-depth process understanding is of paramount importance, as irrigated agriculture consumes about 70 % of the available freshwater resources worldwide, with a significant but unsatisfyingly quantified impact on the water cycle, especially on regional scale. Moreover, an exact quantification of ET inside these artificial ecosystems enables assessments of crop water consumptions and hence about water use efficiency (WUE). The withdrawal of water for agricultural use in the countries of Central Asia is more than 90%. Khorezm region in Uzbekistan is a case study region for the problems of irrigated agriculture in CA. For Khorezm the seasonal actual ET was calculated for the years 2003 - 2010 using the partly modified surface energy balance algorithm for land (SEBAL). SEBAL was implemented based on MODIS time series to calculate the energy balance components like net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G). Whilst SEBAL is using an empirical equation for estimating G, a more physically based method was introduced in this study. This method uses microwave soil moisture products (ASAR-SSM and ASCAT-SSM) as additional input information. The modelled energy balance components were intensively validated by field measurements with an eddy covariance system and soil sensors. For turbulent heat fluxes the RMSE is about 40 W/m² for H and 80 W/m² for LE with a coefficient of determination (r²) of 0.64 for H and 0.52 for LE. Soil heat flux estimation could be

  10. A critical analysis of three remote sensing-based actual evapotranspiration assessment methods over sparse crops agricultural areas

    NASA Astrophysics Data System (ADS)

    Cammalleri, Carmelo; Ciraolo, Giuseppe; La Loggia, Goffredo; Minacapilli, Mario

    2010-10-01

    During last two decades the increasing availability of remotely sensed acquisitions in the thermal infrared part of the spectrum has encouraged hydrologist community to develop models and methodologies based on these kind of data. The aim of this paper is to compare three methods developed to assess the actual evapotranspiration spatial distribution by means of remote sensing data. The comparison was focused on the differences between the "single" (SEBAL) and "two" source (TSEB) surface energy balance approaches and the S-SEBI semi-empirical method. The first assumes a semiempirical internal calibration for the sensible heat flux assessment; the second uses a physically based approach in order to assess separately the soil and vegetation fluxes. Finally, the last one is based on the correlation between albedo and surface temperature for evaporative fraction estimations. The models were applied using 7 high resolution images, collected by an airborne platform between June and October 2008, approximately every 3 weeks. The acquired data include multi-spectral images (red, green and near infrared) and thermal infrared images for surface temperature estimation. The study area, located in the south-west cost of Sicily, Italy), is characterised by the presence of typical Mediterranean cultivations: olive, vineyard and citrus. Due to irrigation supplies and rainfall events, the water availability for the crops varies in time and this allowed to perform the comparison in a wide range of the modelled variables. Additionally, the availability of high spatial resolution images allowed the testing of the models performances at field scale despite the high vegetation fragmentation of the study area. The comparison of models performance highlights a good agreements of model estimations, analyzed by means of MAD (Mean Absolute Differences) and MAPD (Mean Absolute Percent Differences) indices, especially in terms of study area averaged fluxes. The analysis in correspondence of

  11. Spatiotemporal variations of actual evapotranspiration over the Lake Selin Co Basin (Tibetan Plateau) during 2003-2012

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Wang, Lei

    2016-04-01

    Actual evapotranspiration (ETa) over the Tibetan Plateau (TP) is an important component of the water cycle, and greatly influences the water budgets of the TP lake basins. Quantitative estimation of ETa within lake basins is fundamental to physically understanding ETa changes, and thus will improve the understanding of the hydrological processes and energy balance throughout the lake basins. In this study, the spatiotemporal dynamic changes of ETa within the Lake Selin Co Basin (the TP's largest lake basin) during 2003-2012 are examined at the basin scale. This was carried out using the previously calibrated and validated Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) for the land area, the Penman-Monteith method for the water area when unfrozen, and a simple sublimation estimation approach for the water area when frozen. The relationship between ETa changes and controlling factors is also discussed. Results indicate that the simulated land ETa from the WEB-DHM reasonably agrees with the estimated ETa values from the nonlinear complementary relationship model using appropriately calibrated parameter values at a point scale. Land ETa displayed an insignificant increase of 7.03 mm/y, and largely depends on precipitation. For the water area, the combined effects of reduced wind speed and net radiation offset the effect of rising temperature and vapor pressure deficit, and contributed to an insignificant decrease in evaporation of 4.17 mm/y. Sensitivity analysis shows that vapor pressure deficit and wind speed are the most sensitive variables to the changes of evaporation from the water area.

  12. Bowen ratio measurements above various vegetation covers and its comparison with actual evapotranspiration estimated by SoilClim model

    NASA Astrophysics Data System (ADS)

    Hlavinka, P.; Trnka, M.; Fischer, M.; Kucera, J.; Mozny, M.; Zalud, Z.

    2010-09-01

    The principle of Bowen ratio is one of the available techniques for measurements of actual evapotranspiration (ETa) as one of essential water balance fractions. The main aims of submitted study were: (i) to compare the water balance of selected crops, (ii) to compare outputs of SoilClim model with observed parameters (including ETa on Bowen ratio basis). The measurements were conducted at two experimental stations in the Czech Republic (Polkovice 49°23´ (N), 17°17´ (E), 205 m a.s.l.; Domanínek 49°32´ (N), 16°15´ (E), 544 m a.s.l.) during the years 2009 and 2010. Together with Bowen ratio the global solar radiation, radiation balance, soil heat flux, volumetric soil moisture and temperature within selected depths, precipitation and wind speed were measured. The measurements were conducted simultaneously above various covers within the same soil conditions: spring barley vs. winter wheat, spring barley vs. winter rape; grass vs. poplars; harvested field after tillage vs. harvested field after cereals without any tillage. The observed parameters from different covers were compared with SoilClim estimates. SoilClim model is modular software for water balance and soil temperature modelling and finally could be used for soil Hydric and Thermic regimes (according to USDA classification) identification. The core of SoilClim is based on modified FAO Penman-Monteith methodology. Submitted study proved the applicability of SoilClim model for ETa, soil moisture within two defined layers and soil temperature (in 0.5 m depth) estimates for various crops, covers, selected soil types and climatic conditions. Acknowledgement: We gratefully acknowledge the support of the Grant Agency of the Czech Republic (no. 521/09/P479) and the project NAZV QI91C054. The study was also supported by Research plan No. MSM6215648905 "Biological and technological aspects of sustainability of controlled ecosystems and their adaptability to climate change".

  13. Improving Evapotranspiration Estimates Using Multi-Platform Remote Sensing

    NASA Astrophysics Data System (ADS)

    Knipper, Kyle; Hogue, Terri; Franz, Kristie; Scott, Russell

    2016-04-01

    Understanding the linkages between energy and water cycles through evapotranspiration (ET) is uniquely challenging given its dependence on a range of climatological parameters and surface/atmospheric heterogeneity. A number of methods have been developed to estimate ET either from primarily remote-sensing observations, in-situ measurements, or a combination of the two. However, the scale of many of these methods may be too large to provide needed information about the spatial and temporal variability of ET that can occur over regions with acute or chronic land cover change and precipitation driven fluxes. The current study aims to improve the spatial and temporal variability of ET utilizing only satellite-based observations by incorporating a potential evapotranspiration (PET) methodology with satellite-based down-scaled soil moisture estimates in southern Arizona, USA. Initially, soil moisture estimates from AMSR2 and SMOS are downscaled to 1km through a triangular relationship between MODIS land surface temperature (MYD11A1), vegetation indices (MOD13Q1/MYD13Q1), and brightness temperature. Downscaled soil moisture values are then used to scale PET to actual ET (AET) at a daily, 1km resolution. Derived AET estimates are compared to observed flux tower estimates, the North American Land Data Assimilation System (NLDAS) model output (i.e. Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model, Mosiac Model, and Noah Model simulations), the Operational Simplified Surface Energy Balance Model (SSEBop), and a calibrated empirical ET model created specifically for the region. Preliminary results indicate a strong increase in correlation when incorporating the downscaling technique to original AMSR2 and SMOS soil moisture values, with the added benefit of being able to decipher small scale heterogeneity in soil moisture (riparian versus desert grassland). AET results show strong correlations with relatively low error and bias when compared to flux tower

  14. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    PubMed Central

    Senay, Gabriel B.; Budde, Michael; Verdin, James P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  15. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    USGS Publications Warehouse

    Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  16. Global patterns of annual actual evapotranspiration with land-cover type: knowledge gained from a new observation-based database

    NASA Astrophysics Data System (ADS)

    Ambrose, S. M.; Sterling, S. M.

    2014-10-01

    The process of evapotranspiration (ET) plays a critical role in the earth system, driving key land-surface processes in the energy, water and carbon cycles. Land-cover (LC) exerts multiple controls on ET, yet the global distribution of ET by LC and the related physical variables are poorly understood. The lack of quantitative understanding of global ET variation with LC begets considerable uncertainties regarding how ET and key land-surface processes will change alongside ongoing anthropogenic LC transformations. Here we apply statistical analysis and models to a new global ET database to advance our understanding of how annual actual ET varies with LC type. We derive global fields for each LC using linear mixed effect models (LMMs) that use geographical and meteorological variables as possible independent regression variables. Our inventory of ET observations reveals important gaps in spatial coverage that overlie hotpots of global change. There is a spatial bias of observations towards the mid latitudes, and LCs with large areas in the high latitudes (lakes, wetlands and barren land) are poorly represented. From the distribution of points as well as the uncertainty analysis completed by bootstrapping we identify high priority regions in need of more data collection. Our analysis of the new database provides new insights into how ET varies globally, providing more robust estimates of global ET rates for a broad range of LC types. Results reveal that different LC types have distinct global patterns of ET. Furthermore, zonal ET means among LCs reveal new patterns: ET rates in low latitudinal bands are more sensitive to LC change than in higher latitude bands; LCs with a higher evaporation component show higher variability of ET at the global scale; and LCs with dispersed rather than contiguous global locations have a higher variability of ET at the global scale. Results from this study indicate two major advancements are required to improve our ability to predict

  17. Testing an Energy Balance Model for Estimating Actual Evapotranspiration Using Remotely Sensed Data. [Hannover, West Germany barley and wheat fields

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Camillo, P. J.

    1985-01-01

    An energy-balance model is used to estimate daily evapotranspiration for 3 days for a barley field and a wheat field near Hannover, Federal Republic of Germany. The model was calibrated using once-daily estimates of surface temperatures, which may be remotely sensed. The evaporation estimates were within the 95% error bounds of independent eddy correlation estimates for the daytime periods for all three days for both sites, but the energy-balance estimates are generally higher; it is unclear which estimate is biassed. Soil moisture in the top 2 cm of soil, which may be remotely sensed, may be used to improve these evaporation estimates under partial ground cover. Sensitivity studies indicate the amount of ground data required is not excessive.

  18. Estimating long-term changes in actual evapotranspiration and water storage using a one-parameter model

    NASA Astrophysics Data System (ADS)

    Sharma, Asha N.; Walter, M. Todd

    2014-11-01

    Estimations of long-term regional trends in evapotranspiration (E) and water storage are key to our understanding of hydrology in a changing environment. Yet they are difficult to make due to the lack of long-term measurements of these quantities. Here we use a simple one-parameter model in conjunction with Gravity Recovery and Climate Experiment (GRACE) data to estimate long-term E and storage trends in the Missouri River Basin. We find that E has increased in the river basin over the period 1929-2012, consistent with other studies that have suggested increases in E with a warming climate. The increase in E appears to be driven by an increase in precipitation and water storage because potential E has not changed substantially. The simplicity of the method and its minimal data requirements provide a transparent approach to assessing long-term changes in hydrological fluxes and storages, and may be applicable to regions where meteorological and hydrological data are scarce.

  19. Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States

    NASA Astrophysics Data System (ADS)

    Wan, Zhanming; Zhang, Ke; Xue, Xianwu; Hong, Zhen; Hong, Yang; Gourley, Jonathan J.

    2015-08-01

    The objective of this study is to produce an observationally based monthly evapotranspiration (ET) product using the simple water balance equation across the conterminous United States (CONUS). We adopted the best quality ground and satellite-based observations of the water budget components, i.e., precipitation, runoff, and water storage change, while ET is computed as the residual. Precipitation data are provided by the bias-corrected PRISM observation-based precipitation data set, while runoff comes from observed monthly streamflow values at 592 USGS stream gauging stations that have been screened by strict quality controls. We developed a land surface model-based downscaling approach to disaggregate the monthly GRACE equivalent water thickness data to daily, 0.125° values. The derived ET computed as the residual from the water balance equation is evaluated against three sets of existing ET products. The similar spatial patterns and small differences between the reconstructed ET in this study and the other three products show the reliability of the observationally based approach. The new ET product and the disaggregated GRACE data provide a unique, important hydro-meteorological data set that can be used to evaluate the other ET products as a benchmark data set, assess recent hydrological and climatological changes, and terrestrial water and energy cycle dynamics across the CONUS. These products will also be valuable for studies and applications in drought assessment, water resources management, and climate change evaluation.

  20. Determination of actual crop evapotranspiration (ETc) and dual crop coefficients (Kc) for cotton, wheat and maize in Fergana Valley: integration of the FAO-56 approach and BUDGET

    NASA Astrophysics Data System (ADS)

    Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina

    2014-05-01

    Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.

  1. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration under complex terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N. B.

    2010-07-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial scales. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at varying temporal and spatial scales under complex terrain. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can fully account for the dynamic impacts of complex terrain and changing land cover in concert with some varying kinetic parameters (i.e., roughness and zero-plane displacement) over time. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  2. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N.-B.

    2011-01-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement). Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  3. Evaluation of Physically and Empirically Based Models for the Estimation of Green Roof Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Digiovanni, K. A.; Montalto, F. A.; Gaffin, S.; Rosenzweig, C.

    2010-12-01

    Green roofs and other urban green spaces can provide a variety of valuable benefits including reduction of the urban heat island effect, reduction of stormwater runoff, carbon sequestration, oxygen generation, air pollution mitigation etc. As many of these benefits are directly linked to the processes of evaporation and transpiration, accurate and representative estimation of urban evapotranspiration (ET) is a necessary tool for predicting and quantifying such benefits. However, many common ET estimation procedures were developed for agricultural applications, and thus carry inherent assumptions that may only be rarely applicable to urban green spaces. Various researchers have identified the estimation of expected urban ET rates as critical, yet poorly studied components of urban green space performance prediction and cite that further evaluation is needed to reconcile differences in predictions from varying ET modeling approaches. A small scale green roof lysimeter setup situated on the green roof of the Ethical Culture Fieldston School in the Bronx, NY has been the focus of ongoing monitoring initiated in June 2009. The experimental setup includes a 0.6 m by 1.2 m Lysimeter replicating the anatomy of the 500 m2 green roof of the building, with a roof membrane, drainage layer, 10 cm media depth, and planted with a variety of Sedum species. Soil moisture sensors and qualitative runoff measurements are also recorded in the Lysimeter, while a weather station situated on the rooftop records climatologic data. Direct quantification of actual evapotranspiration (AET) from the green roof weighing lysimeter was achieved through a mass balance approaches during periods absent of precipitation and drainage. A comparison of AET to estimates of potential evapotranspiration (PET) calculated from empirically and physically based ET models was performed in order to evaluate the applicability of conventional ET equations for the estimation of ET from green roofs. Results have

  4. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Muys, B.; Feyen, J.; Veroustraete, F.; Minnaert, M.; Meiresonne, L.; de Schrijver, A.

    2005-05-01

    This paper focuses on the quantification of the green - vegetation related - water flux of a forest stand in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The approach tested for calculating the water consumption by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU) components - transpiration, soil and interception evaporation - between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000-August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L.), but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.). A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time-series. With an average annual rainfall of 819 mm, the results show that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively). Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  5. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Muys, B.; Feyen, J.; Veroustraete, F.; Minnaert, M.; Meiresonne, L.; de Schrijver, A.

    2005-09-01

    This paper focuses on the quantification of the green - vegetation related - water flux of forest stands in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The tested approach for calculating the water use by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU) components - transpiration, soil and interception evaporation - between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000-August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L.), but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.). A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time series. With an average annual rainfall of 819 mm, the results reveal that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively). Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  6. Assessing the impact of end-member selection on the accuracy of satellite-based spatial variability models for actual evapotranspiration estimation

    NASA Astrophysics Data System (ADS)

    Long, Di; Singh, Vijay P.

    2013-05-01

    This study examines the impact of end-member (i.e., hot and cold extremes) selection on the performance and mechanisms of error propagation in satellite-based spatial variability models for estimating actual evapotranspiration, using the triangle, surface energy balance algorithm for land (SEBAL), and mapping evapotranspiration with high resolution and internalized calibration (METRIC) models. These models were applied to the soil moisture-atmosphere coupling experiment site in central Iowa on two Landsat Thematic Mapper/Enhanced Thematic Mapper Plus acquisition dates in 2002. Evaporative fraction (EF, defined as the ratio of latent heat flux to availability energy) estimates from the three models at field and watershed scales were examined using varying end-members. Results show that the end-members fundamentally determine the magnitudes of EF retrievals at both field and watershed scales. The hot and cold extremes exercise a similar impact on the discrepancy between the EF estimates and the ground-based measurements, i.e., given a hot (cold) extreme, the EF estimates tend to increase with increasing temperature of cold (hot) extreme, and decrease with decreasing temperature of cold (hot) extreme. The coefficient of determination between the EF estimates and the ground-based measurements depends principally on the capability of remotely sensed surface temperature (Ts) to capture EF (i.e., depending on the correlation between Ts and EF measurements), being slightly influenced by the end-members. Varying the end-members does not substantially affect the standard deviation and skewness of the EF frequency distributions from the same model at the watershed scale. However, different models generate markedly different EF frequency distributions due to differing model physics, especially the limiting edges of EF defined in the remotely sensed vegetation fraction (fc) and Ts space. In general, the end-members cannot be properly determined because (1) they do not

  7. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational simplified surface energy balance model

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Russell L, Scott; Verdin, James P.

    2014-01-01

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. We have developed a first-ever basin-wide actual evapotranspiration (ETa) map of the CRB at the Landsat scale for water use assessment at the field level. We used the operational Simplified Surface Energy Balance (SSEBop) model for estimating ETa using 328 cloud-free Landsat images acquired during 2010. Our results show that cropland had the highest ETa among all land cover classes except for water. Validation using eddy covariance measured ETa showed that the SSEBop model nicely captured the variability in annual ETa with an overall R2 of 0.78 and a mean bias error of about 10%. Comparison with water balance-based ETa showed good agreement (R2 = 0.85) at the sub-basin level. Though there was good correlation (R2 = 0.79) between Moderate Resolution Imaging Spectroradiometer (MODIS)-based ETa (1 km spatial resolution) and Landsat-based ETa (30 m spatial resolution), the spatial distribution of MODIS-based ETa was not suitable for water use assessment at the field level. In contrast, Landsat-based ETa has good potential to be used at the field level for water management. With further validation using multiple years and sites, our methodology can be applied for regular production of ETa maps of larger areas such as the conterminous United States.

  8. Estimation of total available water in the soil layer by integrating actual evapotranspiration data in a remote sensing-driven soil water balance

    NASA Astrophysics Data System (ADS)

    Campos, Isidro; González-Piqueras, Jose; Carrara, Arnaud; Villodre, Julio; Calera, Alfonso

    2016-03-01

    The total available water (τ) by plants that could be stored in its root soil layer is a key parameter when applying soil water balance models. Since the transpiration rate of a vegetation stand could be the best proxy about the soil water content into the root soil layer, we propose a methodology for estimating τ by using as basic inputs the evapotranspiration rate of the stand and time series of multispectral imagery. This methodology is based on the inverted formulation of the soil water balance model. The inversion of the model was addressed by using an iterative approach, which optimizes the τ parameter to minimize the difference between measured and modeled ET. This methodology was tested for a Mediterranean holm oak savanna (dehesa) for which eddy covariance measurements of actual ET were available. The optimization procedure was performed by using a continuous dataset (in 2004) of daily ET measurements and 16 sets of 8 daily ET measurements, resulting in τ values of 325 and 305 mm, respectively. The use of these τ values in the RSWB model for the validation period (2005-2008) allowed us to estimate dehesa ET with a RMSE = 0.48 mm/day. The model satisfactorily reproduces the water stress process. The sensitivity of τ estimates was evaluated regarding two of the more uncertain parameters in the RSWB model. These parameters are the average fraction of τ that can be depleted from the root zone without producing moisture stress (pτ) and the soil evaporation component. The results of this analysis indicated relatively little influence from the evaporation component and the need for adequate knowledge about pτ for estimating τ.

  9. Method for automatic determination of soybean actual evapotranspiration under open top chambers (OTC) subjected to effects of water stress and air ozone concentration.

    PubMed

    Rana, Gianfranco; Katerji, Nader; Mastrorilli, Marcello

    2012-10-01

    The present study describes an operational method, based on the Katerji et al. (Eur J Agron 33:218-230, 2010) model, for determining the daily evapotranspiration (ET) for soybean inside open top chambers (OTCs). It includes two functions, calculated day par day, making it possible to separately take into account the effects of concentrations of air ozone and plant water stress. This last function was calibrated in function of the daily values of actual water reserve in the soil. The input variables of the method are (a) the diurnal values of global radiation and temperature, usually measured routinely in a standard weather station; (b) the daily values of the AOT40 index accumulated (accumulated ozone over a threshold of 40 ppb during daylight hours, when global radiation exceeds 50 Wm(-2)) determined inside the OTC; and (c) the actual water reserve in the soil, at the beginning of the trial. The ensemble of these input variables can be automatable; thus, the proposed method could be applied in routine. The ability of the method to take into account contrasting conditions of ozone air concentration and water stress was evaluated over three successive years, for 513 days, in ten crop growth cycles, excluding the days employed to calibrate the method. Tests were carried out in several chambers for each year and take into account the intra- and inter-year variability of ET measured inside the OTCs. On the daily scale, the slope of the linear regression between the ET measured by the soil water balance and that calculated by the proposed method, under different water conditions, are 0.98 and 1.05 for the filtered and unfiltered (or enriched) OTCs with root mean square error (RMSE) equal to 0.77 and 1.07 mm, respectively. On the seasonal scale, the mean difference between measured and calculated ET is equal to +5% and +11% for the filtered and unfiltered OTCs, respectively. The ability of the proposed method to estimate the daily and seasonal ET inside the OTCs is

  10. Evaluation of a Modified SEBAL Algorithm to Estimate Actual Evapotranspiration in Cotton Ecosystems of Central Asia using Microwave and Optical Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher

    2015-04-01

    Being recognized as an essential component of both the water and the energy cycle, actual evapotranspiration (ETa) plays in important role in order to describe the complex interactions within the climate system of the Earth. Here, remote sensing is a powerful tool to estimate regional ETa to support the regional water management. For instance, the water withdrawal of the agricultural sector in OECD countries is on average about 44 %, but in the states of Central Asia it achieves more than 90 %. This fact is identified as one of the main reasons for the increasing water scarcity in this region. An accuracy assessment of the methods used for determining ETa is necessary concerning an appropriate use of the model results to support agriculture and irrigation management. Within Central Asia the Khorezm region in Uzbekistan is a case study region for the problems of irrigated agriculture. For Khorezm the seasonal ETa based on MODIS data was calculated for the years 2009 - 2011 using a partly modified surface energy balance algorithm for land (SEBAL). SEBAL was implemented based on MODIS time series to calculate the energy balance components like net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G). Whilst SEBAL is using an empirical equation for the estimation of G, a more physically based method was introduced in this study. This method uses microwave soil moisture products (ASAR and ASCAT-SSM) as an additional model input. The input parameters and the model results of all energy balance components (Rn, H, LE, and G) were intensively validated by field measurements with an eddy covariance system and soil sensors. The model shows very good performance for Rn with average model efficiency (NSE) of 0.68 and small relative errors (rRMSE) of about 10%. For turbulent heat fluxes good results can be achieved with NSE of 0.31 for H and 0.55 for LE, the rRMSE are about 21% (H) and 18% (LE). Soil heat flux estimation could be improved using the

  11. [Determination of the optimal proportions as regards toxicity of AET, ATP and serotonin used in combination].

    PubMed

    Benova, D K; Ptev, I Kh

    1985-01-01

    In experiments on mice, a study was made of the quantitative dependence of toxicity of AET, ATP and serotonin applied in combinations. The toxicity decreased when ATP was combined with AET and increased when ATP of AET were combined with serotonin. The toxicity of a combination of all three substances was reduced by introducing high doses of ATP. PMID:3975373

  12. AET's new energy-efficient facility gears up for production

    SciTech Connect

    Pucci, A.

    1993-01-01

    American Energy Technologies, Inc. (AET), a company based just north of Green Cove Springs, Florida, has become the largest manufacturer of solar thermal products in the U.S. Phase 1 of the construction of AET's new manufacturing facility, which commenced in October 1992, was completed in April 1993. It houses high-output tooling designed by AET to ensure affordable, high-quality solar thermal hardware which is rated among the most efficient in the world today. The AET facility has integrated a number of energy-efficient design considerations and conservation measures. The passive-solar design of the building minimizes direct solar gain in the summer and maximizes tropical winds for passive cooling. Strategically placed native landscaping requires minimal maintenance, thus reducing water consumption, and provides natural shading for the offices. The exterior walls are constructed of Poly Steel hollow-core styrofoam forms filled with pumped concrete. This design provides an insulation rate of R-22, a wind load of 160 mph, and a two-hour fire rating. The light-colored office and the plant's exterior skin assist in reducing the cooling load with the protection of Lomit, a spray-applied radiant barrier manufactured by SOLEC Corporation, which coats the office roof decks. Climate control for the manufacturing area is provided by an AET solar heating system which works in tandem with two LPG Amana Command Aire 80s for back up. Office space heating is supplied by a warm forced-air system by US Solar Corporation which utilizes a 320-square-foot solar array with a 1,000-gallon storage tank. Circulation is powered by a Siemens Solar Pro photovoltaic array and the thermal system also provides solar hot water for the manufacturing process.

  13. Comment on 'Shang S. 2012. Calculating actual crop evapotranspiration under soil water stress conditions with appropriate numerical methods and time step. Hydrological Processes 26: 3338-3343. DOI: 10.1002/hyp.8405'

    NASA Technical Reports Server (NTRS)

    Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James

    2014-01-01

    A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.

  14. Seasonal water storage and delayed evapotranspiration across continents: Patterns and drivers

    NASA Astrophysics Data System (ADS)

    Kuppel, Sylvain; Fan, Ying; Jobbagy, Esteban

    2016-04-01

    Storage and delayed evapotranspiration (ET) of precipitation (P) inputs by land ecosystems is critical regulating the timing and stability of plant production and the multiple ecological and economic processes that it supports. The extent to which actual ET (AET) can decouple from P inputs depends on the ecohydrologic system capacity to store water. This decoupling and its associated storage requirement can be particularly relevant at the seasonal scale in regions where, for instance, rainfalls are highly seasonal and/or P and potential ET (PET) are seasonally out of phase. Focusing on the 2003-2010 period, we explore, first, where on Earth this decoupling is likely to occur from a climate perspective by assessing the magnitude and duration of the expected seasonal land water transfers. These climate-based predictions are then compared with independent evidence derived from satellite observations of vegetation activity (MODIS) and water storage (GRACE), together with datasets of terrain attributes. We assess how land surface processes alter the "potential" seasonal hydrologic buffer provided by the local climatic conditions, in terms of volume and residence time. This analysis helps outlining the expected seasonal response of the land water cycle in the frame of likely climate and land use changes.

  15. SPIN ASYMMETRIES A(ET) AND A(T) IN EXCLUSIVE ETA ELECTROPRODUCTION FROM THE PROTON

    SciTech Connect

    P.E. Bosted

    2004-10-10

    For the first time, measurements were made of the double-spin asymmetry A_et and the target single-spin asymmetry A_t in the exclusive reaction p(e,e'p)eta in kinematics dominated by the excitation of the S_11 (1535) resonance. Both A_et and A_t are found to be in agreement with the Eta-MAID model, which predicts strong dominance of S_11 (1535) excitation in the region studied, 0.3 < Q^2 < 1 GeV^2 and 1.49 < W < 1.59 GeV.

  16. An Analysis of the Secondary School Science Curriculum and Directions for Action in the 1980's. 1982 AETS Yearbook.

    ERIC Educational Resources Information Center

    Staver, John R., Ed.

    The 1982 Yearbook of the Association for the Education of Teachers in Science (AETS) is the second in a series of three AETS yearbooks in which Ralph Tyler's 1949 curriculum rationale is used to analyze science curriculum. This publication is focused on the secondary school science curriculum (the 1981 yearbook was concerned with teaching science…

  17. A comparison of estimates of basin-scale soil-moisture evapotranspiration and estimates of riparian groundwater evapotranspiration with implications for water budgets in the Verde Valley, Central Arizona, USA

    USGS Publications Warehouse

    Tillman, Fred; Wiele, Stephen M.; Pool, Donald R.

    2015-01-01

    Population growth in the Verde Valley in Arizona has led to efforts to better understand water availability in the watershed. Evapotranspiration (ET) is a substantial component of the water budget and a critical factor in estimating groundwater recharge in the area. In this study, four estimates of ET are compared and discussed with applications to the Verde Valley. Higher potential ET (PET) rates from the soil-water balance (SWB) recharge model resulted in an average annual ET volume about 17% greater than for ET from the basin characteristics (BCM) recharge model. Annual BCM PET volume, however, was greater by about a factor of 2 or more than SWB actual ET (AET) estimates, which are used in the SWB model to estimate groundwater recharge. ET also was estimated using a method that combines MODIS-EVI remote sensing data and geospatial information and by the MODFLOW-EVT ET package as part of a regional groundwater-flow model that includes the study area. Annual ET volumes were about same for upper-bound MODIS-EVI ET for perennial streams as for the MODFLOW ET estimates, with the small differences between the two methods having minimal impact on annual or longer groundwater budgets for the study area.

  18. 1980 AETS Yearbook: The Psychology of Teaching for Thinking and Creativity.

    ERIC Educational Resources Information Center

    Lawson, Anton E., Ed.

    The theme of the seventh yearbook of the Association for the Education of Teachers in Science (AETS) involves the relationship of psychology of teaching thinking and creativity as this activity is performed in a science education context. Eleven chapters follow a foreword by Jean Piaget and the reproduction of Part I of "The Central Purpose of…

  19. Observation of the impacts of both geology and vegetation environment on evapotranspiration regime : a case study under sudanian climate

    NASA Astrophysics Data System (ADS)

    Cohard, J.; Descloitres, M.; Guyot, A.; Galle, S.; Séguis, L.; Anquetin, S.

    2010-12-01

    Soil-Vegetation-Atmosphere interactions are difficult to predict because they are the combination of many hydrological, biological and atmospheric processes. It results in an interface composed of imbricate soil, vegetation and atmospheric layers and not only a simple superposition of these layers. Therefore, it is necessary to study the compartments all together to understand the hydrological behaviour of a watershed. More over lateral variability in each water compartments add to the complexity of natural landscapes. To address this complexity, we have instrumented in the framework of the AMMA-CATCH experiment, a 12km2 watershed situated in a rocky context in north Benin. It is part of a larger hydrological device to understand the water cycle in West Africa and the feedback of the continental surface on the monsoon system. The Ara watershed has been instrumented with several ground stations to monitor the water table, the vadose zone, the precipitations and the river discharge. We also implement instrumentation that gives aggregated characteristics such as geophysical prospecting methods. Electromagnetic and MRS (magnetic resonance sounding) have been used to characterize the hydrodynamic ground properties. Also, a Large Aperture Scintillometer together with a flux station are installed on a 2.4km transect over the catchments,from which are measured aggregated sensible and latent heat flux at a km2 scale. At catchments scale, it has been shown from water table level and scintillometry measurements that the AET (Actual Evapo-Transpiration) regime lasts the entire dry period from November till the next wet season in June. As no runoff is observed during this period, a simple pattern is considered and consists in a direct link between water table and transpiration. However we first can’t conclude on the average porosity necessary to drain the water table through transpiration because it varies during the season. In this study, a detailed footprint analysis is

  20. Fuzzy-Probabilistic Calculations of Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.

    2011-12-01

    Given the difficulty involved in field hydrologic and meteorological measurements, as well as a large number of empirical and semi-empirical equations, forecasting potential and actual evapotranspiration is subject to numerous uncertainties. The objective of this presentation is to illustrate the application of a conceptual-mathematical approach, based on fuzzy-probabilistic predictions of evapotranspiration and its uncertainty, and to compare the results of calculations with field evapotranspiration measurements. Calculations of potential evapotranspiration are conducted using the Bair-Robertson, Blaney-Criddle, Caprio, Hargreaves-Samani, Hamon, Jensen-Haise, Linacre, Makkink, Penman, Penman-Monteith, Priestly-Taylor, Thornthwaite, and Turc equations, and the evapotranspiration is then determined based on the modified Budyko (1974) model. As a case study, statistics from historical monthly averaged and annual climatic data from the Hanford site, Washington, USA, are used as input parameters for the RAMAS Risk Calc code. The effect of aleatory uncertainty on evapotranspiration calculations is considered by assigning probability distributions of input meteorological parameters, and the effect of epistemic (model) uncertainty is assessed by assigning different evapotranspiration models.

  1. [Antiradiation and toxic effect of ATP, AET and serotonin administered in combination to mice. Optimal relations between component doses].

    PubMed

    Benova, D K

    1983-01-01

    It was established that the optimal dose ratio (high effectiveness and minimum toxicity) between the components in the combination: serotonin/AET/ATP was 1/3/45. It was shown that the radioprotective effect was conditioned by AET and serotonin the latter being more significant. ATP played a minor role in the total protective effect decreasing however, the toxicity of the combination. PMID:6611880

  2. EVAPOTRANSPIRATION RATES AND CROP COEFFICIENTS FOR LOWBUSH BLUEBERRY (Vaccinium angustifolium)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lowbush blueberry (Vaccinium angustifolium) yield is strongly influenced by water availability; however, growers need more specific irrigation recommendations in order to optimize water use efficiency. Weighing lysimeters were used to determine actual evapotranspiration (ET) rates of lowbush bluebe...

  3. Engineering Design and Automation in the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory.

    SciTech Connect

    Wantuck, P. J.; Hollen, R. M.

    2002-01-01

    This paper provides an overview of some design and automation-related projects ongoing within the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory. AET uses a diverse set of technical capabilities to develop and apply processes and technologies to applications for a variety of customers both internal and external to the Laboratory. The Advanced Recovery and Integrated Extraction System (ARIES) represents a new paradigm for the processing of nuclear material from retired weapon systems in an environment that seeks to minimize the radiation dose to workers. To achieve this goal, ARIES relies upon automation-based features to handle and process the nuclear material. Our Chemical Process Development Team specializes in fuzzy logic and intelligent control systems. Neural network technology has been utilized in some advanced control systems developed by team members. Genetic algorithms and neural networks have often been applied for data analysis. Enterprise modeling, or discrete event simulation, as well as chemical process simulation has been employed for chemical process plant design. Fuel cell research and development has historically been an active effort within the AET organization. Under the principal sponsorship of the Department of Energy, the Fuel Cell Team is now focusing on technologies required to produce fuel cell compatible feed gas from reformation of a variety of conventional fuels (e.g., gasoline, natural gas), principally for automotive applications. This effort involves chemical reactor design and analysis, process modeling, catalyst analysis, as well as full scale system characterization and testing. The group's Automation and Robotics team has at its foundation many years of experience delivering automated and robotic systems for nuclear, analytical chemistry, and bioengineering applications. As an integrator of commercial systems and a developer of unique custom-made systems, the team currently supports the automation

  4. Life span and tumor incidence in rats receiving postradiation treatment with ATP-AET-mexamine mixture

    SciTech Connect

    Benova, D.K.; Kiradzhiev, G.D.; Troitskaya, M.N.; Anisimov, V.N.

    1985-01-01

    Rat females were exposed to a single 4.0-Gy ..gamma..-ray dose and treated postradiation with a mixture of ATP-AET-mexamine at daily doses of 24, 12, and 3 mg/kg body wt, respectively, in drinking water throughout the period of their survival. With the radiation dose used, life shortening appeared primarily attributable to nonstochastic effects. The mixture of chemical protectors failed to show modification of long-term radiation effects with regard to either life span or tumor incidence.

  5. Life span and tumor incidence in rats receiving postradiation treatment with ATP-AET-mexamine mixture.

    PubMed

    Benova, D K; Kiradzhiev, G D; Troitskaya, M N; Anisimov, V N

    1985-01-01

    Rat females were exposed to a single 4.0-Gy gamma-ray dose and treated postradiation with a mixture of ATP-AET-mexamine at daily doses of 24, 12, and 3 mg/kg body wt, respectively, in drinking water throughout the period of their survival. With the radiation dose used, life shortening appeared primarily attributable to nonstochastic effects. The mixture of chemical protectors failed to show modification of long-term radiation effects with regard to either life span or tumor incidence. PMID:3855570

  6. Timescales of Land Surface Evapotranspiration Response

    NASA Technical Reports Server (NTRS)

    Scott, Russell; Entekhabi, Dara; Koster, Randal; Suarez, Max

    1997-01-01

    Soil and vegetation exert strong control over the evapotranspiration rate, which couples the land surface water and energy balances. A method is presented to quantify the timescale of this surface control using daily general circulation model (GCM) simulation values of evapotranspiration and precipitation. By equating the time history of evaporation efficiency (ratio of actual to potential evapotranspiration) to the convolution of precipitation and a unit kernel (temporal weighting function), response functions are generated that can be used to characterize the timescales of evapotranspiration response for the land surface model (LSM) component of GCMS. The technique is applied to the output of two multiyear simulations of a GCM, one using a Surface-Vegetation-Atmosphere-Transfer (SVAT) scheme and the other a Bucket LSM. The derived response functions show that the Bucket LSM's response is significantly slower than that of the SVAT across the globe. The analysis also shows how the timescales of interception reservoir evaporation, bare soil evaporation, and vegetation transpiration differ within the SVAT LSM.

  7. Global investigation of vegetation impact on mean annual catchment evapotranspiration

    NASA Astrophysics Data System (ADS)

    Peel, Murray C.; McMahon, Thomas A.; Finlayson, Brian L.

    2010-05-01

    Historically, relationships between catchment vegetation type, evapotranspiration and runoff have been assessed primarily through paired catchment studies. The literature contains results from over 200 of these studies from around the world but two factors limit the applicability of the results to the wider domain. Firstly, catchment areas are generally small (<10 km2). Secondly, the range of climate types is narrow, with temperate (Köppen C) and cold (Köppen D) climate types in the majority. Here we present results from a global assessment of the impact of vegetation type on mean annual catchment evapotranspiration for a large, spatially and climatically diverse dataset of 699 catchments. This assessment is based on analysis of areal precipitation, temperature, runoff, and land cover information from each catchment, which differs from the paired catchment methodology where streamflow responses to a controlled land cover change are assessed. When catchments are grouped by vegetation type, any evidence of differing vegetation impact on actual evapotranspiration will be observed through differences in mean annual actual evapotranspiration, defined as precipitation minus runoff. Stratifying catchments by climate type was observed to be important when assessing the vegetation impact on evapotranspiration. Tropical and temperate forested catchments had significantly higher median evapotranspiration (~170mm and ~130mm, respectively) than non-forested catchments. Cold forested catchments unexpectedly had significantly lower median evapotranspiration (~90mm) than non-forested catchments. No significant difference in median evapotranspiration was found between temperate evergreen and deciduous forested catchments, though sample sizes were small. Temperate evergreen needleleaf forested catchments had significantly higher median evapotranspiration than evergreen broadleaf forested catchments, though again sample sizes were small. The significant difference in median

  8. Evapotranspiration and soil heterogeneity

    SciTech Connect

    Luxmoore, R J; Sharma, M L

    1982-01-01

    In a previous computer simulation study of a grassland catchment in Oklahoma, evapotranspiration was predicted to increase up to 25% for soils with finer textures than the silt loam reference soil. Results are further analyzed to illustrate plant water responses to scaled soil physical characteristics from the simulations with the Terrestrial Ecosystem Hydrology Model. Finer soils were shown to have higher soil water capacities over wider ranges of soil matric pressures than the reference soil which increased the water supply to vegetation. The water potential and stomatal conductance of foliage were generally higher on soils with higher soil water capacities. The analysis suggests that areal variation in soil hydraulic characteristics may significantly influence areal evapotranspiration.

  9. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  10. Comparison of prognostic and diagnostic approached to modeling evapotranspiration in the Nile river basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Actual evapotranspiration (ET) can be estimated using both prognostic and diagnostic modeling approaches, providing independent yet complementary information for hydrologic applications. Both approaches have advantages and disadvantages. When provided with temporally continuous atmospheric forcing d...

  11. Modeling Evapotranspiration in Subtropical Climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration loss is estimated at about 80% of annual precipitation in south Florida. Accurate prediction of evapotranspiration is important during and beyond the implementation of the Comprehensive Everglades Restoration Project(CERP). In the USDA’s Everglades Agro-Hydrology Model (EAHM) the...

  12. Protection of the mouse from genetic radiation damage by an optimal-dose-ratio combination of ATP, AET, and serotonin.

    PubMed

    Benova, D; Baev, I

    1978-07-15

    The study concerned antiradiation effects in germ-cell genetic structures produced by a combination of ATP, AET, and serotonin at dose ratio optimal for lethality namely, 45:3:1, as arrived at in our previous work. Such a combination was found to reduce by a factor of 2 the translocation yields observed after 400 R X-rays to mouse spermatogonia. In terms of animal survival, ATP has been shown to contribute little to total protection achieved by the same combination; in terms of genetic damage; however, the role of ATP proved essential. Removal of ATP from the combination led to a significant reduction in protective effect. PMID:668857

  13. Evapotranspiration Modeling and Measurements at Ecosystem Level

    NASA Astrophysics Data System (ADS)

    Sirca, C.; Snyder, R. L.; Mereu, S.; Kovács-Láng, E.; Ónodi, G.; Spano, D.

    2012-12-01

    In recent years, the availability of reference evapotranspiration (ETo) data is greatly increased. ETo, in conjunction with coefficients accounting for the difference between the vegetation and the reference surface, provides estimation of the actual evapotranspiration (ETa). The coefficients approach was applied in the past mainly for crops, due the lack of experimental data and difficulties to account for terrain and vegetation variability in natural ecosystems. Moreover, the assessment of ETa over large spatial scale by measurements is often time consuming, and requires several measurement points with relatively expensive and sophisticated instrumentation and techniques (e.g. eddy covariance). The Ecosystem Water Program (ECOWAT) was recently developed to help estimates of ETa of ecosystems by accounting for microclimate, vegetation type, plant density, and water stress. ETa on natural and semi-natural ecosystems has several applications, e.g. water status assessment, fire danger estimation, and ecosystem management practices. In this work, results obtained using ECOWAT to assess ETa of a forest ecosystem located in Hungary are reported. The site is a part of the EU-FP7 INCREASE project, which aims to study the effects of climate change on European shrubland ecosystems. In the site, a climate manipulation experiment was setted up to have a warming and a drought treatment (besides the control). Each treatment was replicated three times We show how the ECOWAT model performed when the predicted actual evapotranspiration is compared with actual evapotranspiration obtained from Surface Renewal method and with soil moisture measurements. ECOWAT was able to capture the differences in the water balance at treatment level, confirming its potential as a tool for water status assessment. For the Surface Renewal method, high frequency temperature data were collected to estimate the sensible heat flux (H'). The net radiation (Rn) and soil heat flux density (G) were also

  14. An annual evapotranspiration model by combining Budyko curve and complementary relationship

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Tian, Fuqiang; Shao, Weiwei

    2015-04-01

    The complementary relationship and Budyko curve together describe the tight connections and feedbacks between water-energy balances and the landscape (Yang et al., 2006). The evapotranspiration models based on Budyko curve and complementary relationship are two kinds of parsimonious approaches for predicting mean annual catchment-scale evapotranspiration. Under the Budyko framework, actual evapotranspiration is partitioned from the precipitation as a functional balance between the water availability and the evaporative demand, and modified by catchment property parameter. The catchment property parameter was thought to be related to catchment landscape properties such as vegetation, soil, geological features, and rainfall distribution, etc.. The catchment properties seem change over time, and are difficult to be quantified (Roderick and Farquhar, 2011). Under the complementary relationship framework, actual evapotranspiration is estimated using only the routinely measured climatological variables, and the catchment properties were thought to be indirectly reflected by the relative magnitude of the aerodynamic and radiation terms of potential evapotranspiration because of the climate-vegetation-soil interactions. A implicit combination of the two approaches was conducted with the aim to represent the changing catchment properties using the relative magnitude of the aerodynamic and radiation terms of potential evapotranspiration. Actual evapotranspiration estimation of 99 non-humid catchments in China under varying environments was improved by this method.

  15. Radioprotective effectiveness and toxicity of ATP, AET and serotonin applied individually or simultaneously to mice. III. Radioprotective effects of pair combinations.

    PubMed

    Benova, D

    1977-08-01

    The work reported was done as part of an intensive investigation on toxic and radioprotective properties of three substances, ATP, AET and serotonin, administered singly or in combination to mice, with a view to identifying optimal dose ratios for cocktails. Male C57BL mice were exposed to 850 R X-rays (LD100/11) following pretreatment with drug pairs at various dose ratios. Thirty-day survival was scored. For ATP-AET, protection increased with the amount of ATP in the combination; this pair was found to be most effective at an ATP-to-AET ratio of 11:1. A similar trend was observed with ATP-Serotonin, though only up to a certain ATP level beyond which no further increase in protective effect were produced; the most favorable ratio was of 24:1. A maximum synergistic action was displayed by the AET-Serotonin pair as compared to the other two pairs; its best ratio was of 4:1. Using probit analysis, a number of PD50 (protectant dose affording 50% survival in lethal irradiation) values were estimated for the three pairs of protective agents. PMID:898225

  16. Evapotranspiration studies for protective barriers: Experimental plans

    SciTech Connect

    Link, S.O.; Waugh, W.J.

    1989-11-01

    This document describes a general theory and experimental plans for predicting evapotranspiration in support of the Protective Barrier Program. Evapotranspiration is the combined loss of water from plants and soil surfaces to the atmosphere. 45 refs., 1 fig., 4 tabs.

  17. Potential Evapotranspiration on Tutuila, American Samoa

    USGS Publications Warehouse

    Izuka, Scott K.; Giambelluca, Thomas W.; Nullet, Michael A.

    2005-01-01

    Data from nine widely distributed climate stations were used to assess the distribution of potential evapotranspiration on the tropical South Pacific island of Tutuila, American Samoa. Seasonal patterns of climate data in this study differed in detail from available long-term data because the monitoring period of each station in this study was only 1 to 5 years, but overall climate conditions during the monitoring period (1999-2004) are representative of normal conditions. Potential evapotranspiration shows a diurnal pattern. On average, potential evapotranspiration in the daytime, when net radiation is the dominant controlling factor, constitutes 90 percent or more of the total daily potential evapotranspiration at each station. Positive heat advection from the ocean contributes to potential evapotranspiration at at least one station, and possibly other stations, in this study. Seasonal variation of potential evapotranspiration is linked to seasonal daylight duration. Spatial variation of potential evapotranspiration, however, is linked primarily to orographic cloud cover. Potential evapotranspiration on Tutuila is lowest in the interior of the island, where rainfall is higher, cloud cover is more frequent, and net radiation is lower than along the coasts. Potential evapotranspiration is highest along the southern and eastern coasts of the island, where rainfall is lower and cloud cover less frequent. The gradient from areas of high to low potential evapotranspiration is steepest in November and December, when island-wide potential evapotranspiration is highest, and less steep in June and July, when island-wide potential evapotranspiration is lowest. Comparison of potential evapotranspiration to rainfall indicates that evapotranspiration processes on Tutuila have the potential to remove from 23 to 61 percent of the water brought by rainfall. In lower-rainfall coastal locations, potential evapotranspiration can be 50 percent or more of rainfall, whereas in higher

  18. Evapotranspiration (ET) covers.

    PubMed

    Rock, Steve; Myers, Bill; Fiedler, Linda

    2012-01-01

    Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information

  19. Radioprotective effectiveness and toxicity of ATP, AET and serotonin applied individually or simultaneously to mice. II. Dose depending protection by single agents.

    PubMed

    Benova, D

    1976-03-01

    The work reported was done as a part of a detailed study on the antiradiation effects of three chemical agents-ATP, AET and serotonin-given individually or simultaneously, the ultimate aim being the identification of an optimally effective and non-toxic dose ratio for the triple combination of protectants. Individual PD50 (protectant dose ensuring 50% survival after lethal irradiation) values were found to be 166 mg/kg and 37 mg/kg for AET and serotonin, respectively. ATP was most effective (45% of 30-day-survival) at 1200 mg/kg in face of a level of X-irradiation above the minimum lethal dose. Some sex differences were observed in protection provided by everyone of the three agents, females being more susceptible to the protective action. PMID:1258098

  20. Exploring the use of multi-sensor data fusion for daily evapotranspiration mapping at field scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern practices of water management in agriculture can significantly benefit from accurate mapping of crop water consumption at field scale. Assuming that actual evapotranspiration (ET) is the main water loss in land hydrological balance, remote sensing data represent an invaluable tool for water u...

  1. A comparison of operational remote sensing-based models for estimating crop evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integration of remotely sensed data into models of actual evapotranspiration has allowed for the estimation of water consumption across agricultural regions. Two modeling approaches have been successfully applied. The first approach computes a surface energy balance using the radiometric surface...

  2. Influence of potential evapotranspiration on the water balance of sugarcane fields in Maui, Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The year-long warm temperatures and other climatic characteristics of the Pacific Ocean Islands have made Hawaii an optimum place for growing sugarcane; however, irrigation is essential to satisfy the large water demand of sugarcane. Under the Hawaiian tropical weather, actual evapotranspiration (A...

  3. Evaluation of Pan Coefficients for Estimating Reference Evapotranspiration in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, H.

    2006-12-01

    Evapotranspiration is an important process of water transfer in the hydrosphere and atmosphere, which plays an active role in the hydrological cycle. Evaporation pan (Epan) data are often used to estimate reference evapotranspiration (ETref) for use in water resource planning. Generally, ETref is estimated as the product of the Epan data and a pan coefficient (Kpan). However, reliable estimation of ETref using Epan depends on the accurate determination of pan coefficients Kpan. Many different methods for estimating ETref have been developed, among which the Penman-Monteith method is demonstrated to be especially excellent by the Food and Agriculture Organization (FAO). In this study, the Penman-Monteith reference evapotranspiration, pan evaporation, and pan coefficient are calculated, compared and regionally mapped at nine meteorological stations during 1990-2004 in Southern Taiwan. The results show the reference evapotranspiration and pan evaporation have similar regional distribution patterns in the southern Taiwan both with the highest values being in the lower region and the lowest values being in the upper region. In addition, the pan coefficient, Kpan, varies both regionally and seasonally. Smallest Kpan values are found in the upper reach of the southern Taiwan, meaning that the relative difference between the reference evapotranspiration and pan evaporation is the biggest in the region, the largest Kpan values are obtained in the western area of southern Taiwan. This distribution pattern provides valuable information for regional hydrological studies since it is one of the most important factors determining regional actual evapotranspiration.

  4. NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.

    1989-01-01

    NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.

  5. Assessing Macroscopic Evapotranspiration Function Response to Climate

    NASA Astrophysics Data System (ADS)

    Gharun, M.; Vervoort, R. W.; Turnbull, T.; Henry, J.; Adams, M.

    2012-12-01

    Evapotranspiration (ET) by forests can reach up to 100% of rainfall in Australia, and is a substantial component of the water balance. Transpiration is a major part of the ET and it is well-known that transpiration depends on a combination of physiological and environmental controls. As a consequence of well-ventilated canopies of eucalypt forests and close decoupling to the atmosphere, atmospheric conditions exert a large control over transpiration. We measured a suit of environmental variables including temperature, humidity, radiation, and soil moisture concurrently with transpiration in a range of eucalypt forests. We observed that atmospheric demand (VPD) exerts the strongest control over transpiration. Experimental evidence also showed a strong dependency of the control on soil moisture abundance in the top soil layer. In many eco-hydrological models actual ET is represented with a linear transformation of potential ET based on the soil moisture condition, a so-called macroscopic approach. Such ET functions lump various soil and plant factors, are not experimentally supported and therefore quite poorly validated. Different combinations of atmospheric demand and soil moisture availability lead to diverse behaviour of the macroscopic ET function. Based on our observations in this study, we propose a novel approach that improves portray of transpiration, evaporation, drainage and hence the loss of water from the root zone. We used a modified version of the Norwegian HBV model to test our approach over a medium size catchment (150 km2) in south east Australia.

  6. The Texas High Plains Evapotranspiration (TXHPET) network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The newly developed Texas High Plains Evapotranspiration (TXHPET) network is comprised of the North Plains and South Plains evapotranspiration (ET) networks. The TXHPET network currently entails the operation of 18 meteorological stations located in 15 Texas counties and regional coverage is estima...

  7. THE ASCE STANDARDIZED REFERENCE EVAPOTRANSPIRATION EQUATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the standardization of calculation of reference evapotranspiration (ET) as recommended by the Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute of the American Society of Civil Engineers. The purpose of the stan...

  8. Antimutagenic properties of WR 2721 and of a radioprotective mixture, ATP-AET-serotonin, with regard to X ray induced reciprocal translocations in mouse spermatogonia

    SciTech Connect

    Benova, D.

    1987-01-01

    Pretreatment by intraperitoneal administration of WR 2721 at 400 mg/kg body weight in mice receiving 4.0 Gy X rays was found to have an appreciable antimutagenic effect with regard to reciprocal translocation induction in spermatogonia. The effectiveness of the product tested proved superior to that of a radioprotective mixture of ATP-AET-serotonin given at optimal dose ratio--360, 24, and 8 mg/kg body weight, respectively. The RF (Reduction Factor) was 2.4 for WR 2721 and 1.8 for the mixture. The effect observed indicated WR 2721 to have potential capabilities for reducing the genetic risk of radiation in male individuals.

  9. Antimutagenic properties of WR 2721 and of a radioprotective mixture, ATP-AET-serotonin, with regard to X ray induced reciprocal translocations in mouse spermatogonia.

    PubMed

    Benova, D

    1987-01-01

    Pretreatment by intraperitoneal administration of WR 2721 at 400 mg/kg body weight in mice receiving 4.0 Gy X rays was found to have an appreciable antimutagenic effect with regard to reciprocal translocation induction in spermatogonia. The effectiveness of the product tested proved superior to that of a radioprotective mixture of ATP-AET-serotonin given at optimal dose ratio--360, 24, and 8 mg/kg body weight, respectively. The RF (Reduction Factor) was 2.4 for WR 2721 and 1.8 for the mixture. The effect observed indicated WR 2721 to have potential capabilities for reducing the genetic risk of radiation in male individuals. PMID:3027009

  10. Recharge and Evapotranspiration Assessment In Kalahari

    NASA Astrophysics Data System (ADS)

    Lubczynski, M.; Obakeng, O.

    2006-12-01

    Sustainability of groundwater resources in Kalahri is constrained not only by recharge to the aquifers but also by discharge from them. Natural groundwater discharge takes place in 3 different ways, as aquifer groundwater outflow, direct tree root water uptake called groundwater transpiration (Tg) and as upward vapor-liquid water movement called groundwater evaporation (Eg), the latter two called groundwater evapotranspiration (ETg). The evaluation of ETg and recharge was the main goal of this study. Due to generally large depth of groundwater table in Kalahari, >60 m, Eg was assumed as negligible component of groundwater balances while in contrast Tg has been considered significant already since 90-ties. This was because of fragments of tree roots of Boscia albitrunca and Acacia erioloba found in borehole cores at depth of >60 m. Some of those roots reach groundwater, which allow them to remain green throughout dry seasons. This study was carried out using hydrological monitoring consisting of 10 multi-sensor towers and 17 groundwater monitoring points. Soil moisture movement was investigated by profile monitoring. The deepest profile was down to 76 m depth. The soil moisture results revealed complicated pattern characterized by a combination of diffuse and preferential flow. The actual evapotranspiration was estimated by the Bowen-ratio and temperature-profile methods which provided overestimated results as compared with rainfall so the recharge could not be deduced directly. Therefore recharge was derived indirectly, through 1D lumped parameter model that used rainfall and PET as input and heads as calibration reference. That model indicated recharge 0-50 mm/yr. For understanding tree impact upon groundwater recharge, tree sap velocity was monitored for 2 years using the Granier method on 41 trees of 9 species in 8 plots of 30x30m. The estimated plot transpirations showed large spatio-temporal variability, 3-71 mm/yr and occasionally exceeded recharge. In order

  11. Estimation of Evapotranspiration of Almond orchards using Remote Sensing based SEBAL model in Central Valley, California

    NASA Astrophysics Data System (ADS)

    Roy, S.; Ustin, S.; Kefauver, S. C.

    2009-12-01

    Evapotranspiration is one of the main components of the hydrologic cycle and its impact to hydrology, agriculture,forestry and environmental studies is very crucial. SEBAL (Surface Energy Balance Algorithm for Land) is an image-processing model comprised of twenty-five computational sub-models that computes actual evapotranspiration (ETa) and other energy exchanges as a component of energy balance which is used to derive the surface radiation balance equation for the net surface radiation flux (Rn) on a pixel-by-pixel basis. For this study, SEBAL method is applied to Level 1B dataset of visible, near-infrared and thermal infrared radiation channels of MASTER instrument on-board NASA-DC 8 flight. This paper uses the SEBAL method to (1) investigate the spatial distribution property of land surface temperature (Ls), NDVI, and ETa over the San Joaquin valley. (2) Estimate actual evapotranspiration of almond class on pixel-by-pixel basis in the Central valley, California. (3) Comparison of actual Evapotranspiration obtained from SEBAL model with reference evapotranspiration (Eto) using Penman Monteiths method based on the procedures and available data from California Irrigation Management Information System (CIMIS) stations. The results of the regression between extracted land surface temperature, NDVI and, evapotranspiration show negative (-) correlation. On the other hand Ls possessed a slightly stronger negative correlation with the ETa than with NDVI for Almond class. The correlation coefficient of actual ETa estimates from remote sensing with Reference ETo from Penmann Monteith are 0.8571. ETa estimated for almond crop from SEBAL were found to be almost same with the CIMIS_Penman Monteith method with bias of 0.77 mm and mean percentage difference is 0.10%. These results indicate that combination of MASTER data with surface meteorological data could provide an efficient tool for the estimation of regional actual ET used for water resources and irrigation scheduling

  12. Evapotranspiration from the Lower Walker River Basin, West-Central Nevada, Water Years 2005-07

    USGS Publications Warehouse

    Allander, Kip K.; Smith, J. LaRue; Johnson, Michael J.

    2009-01-01

    evapotranspiration station in a saltcedar grove, measurements indicated a possible decrease in evapotranspiration of about 50 percent due to defoliation of the saltcedar by the saltcedar leaf beetle. Total evapotranspiration from the evapotranspiration units identified in the Lower Walker River basin was about 231,000 acre-feet per year (acre-ft/yr). Of this amount, about 45,000 acre-ft/yr originated from direct precipitation, resulting in net evapotranspiration of about 186,000 acre-ft/yr. More than 80 percent of net evapotranspiration in the Lower Walker River basin was through evaporation from Walker Lake. Total evaporation from Walker Lake was about 161,000 acre-ft/yr and net evaporation was about 149,000 acre-ft/yr. Some previous estimates of evaporation from Walker Lake based on water-budget analysis actually represent total evaporation minus ground-water inflow to the lake. Historical evaporation rates determined on the basis of water budget analysis were less than the evaporation rate measured directly during this study. The difference could represent ground-water inflow to Walker Lake of 16,000 to 26,000 acre-ft/yr or could indicate that ground-water inflow to Walker Lake is decreasing over time as the lake perimeter recedes.

  13. Evapotranspiration estimation in heterogeneous urban vegetation

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Nouri, H.; Beecham, S.; Anderson, S.; Sutton, P.; Chavoshi, S.

    2015-12-01

    Finding a valid approach to measure the water requirements of mixed urban vegetation is a challenge. Evapotranspiration (ET) is the main component of a plant's water requirement. A better understanding of the ET of urban vegetation is essential for sustainable urbanisation. Increased implementation of green infrastructure will be informed by this work. Despite promising technologies and sophisticated facilities, ET estimation of urban vegetation remains insufficiently characterized. We reviewed the common field, laboratory and modelling techniques for ET estimation, mostly agriculture and forestry applications. We opted for 3 approaches of ET estimation: 1) an observational-based method using adjustment factors applied to reference ET, 2) a field-based method of Soil Water Balance (SWB) and 3) a Remote Sensing (RS)-based method. These approaches were applied to an experimental site to evaluate the most suitable ET estimation approach for an urban parkland. To determine in-situ ET, 2 lysimeters and 4 Neutron Moisture Meter probes were installed. Based on SWB principles, all input water (irrigation, precipitation and upward groundwater movements) and output water (ET, drainage, soil moisture and runoff) were measured monthly for 14 months. The observation based approach and the ground-based approach (SWB) were compared. Our predictions were compared to the actual irrigation rates (data provided by the City Council). Results suggest the observational-based method is the most appropriate urban ET estimation. We examined the capability of RS to estimate ET for urban vegetation. Image processing of 5 WorldView2 satellite images enabled modelling of the relationship between urban vegetation and vegetation indices derived from high resolution images. Our results indicate that an ETobservational-based -NDVI modelling approach is a reliable method of ET estimation for mixed urban vegetation. It also has the advantage of not depending on extensive field data collection.

  14. Evapotranspiration information reporting: II. Recommended documentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and journal authors, reviewers, and readers can benefit from more complete documentation of published evapotranspiration (ET) information, including a description of field procedures, instrumentation, data filtering, model parameterization, and site review. This information is important ...

  15. Mapping evapotranspiration in the Texas Panhandle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the Texas High Plains accounts for approximately 92% of groundwater withdrawals. Because groundwater levels are declining in the region, efficient agricultural water use is imperative for sustainability and regional economic viability. Accurate regional evapotranspiration (ET) maps ...

  16. Estimating potential evapotranspiration with improved radiation estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential evapotranspiration (PET) is of great importance to estimation of surface energy budget and water balance calculation. The accurate estimation of PET will facilitate efficient irrigation scheduling, drainage design, and other agricultural and meteorological applications. However, accuracy o...

  17. Remote Sensing of Snow and Evapotranspiration

    NASA Technical Reports Server (NTRS)

    Schmugge, T. (Editor)

    1985-01-01

    The use of snowmelt runoff models from both the U.S. and Japan for simulating discharge on basins in both countries is discussed as well as research in snowpack properties and evapotranspiration using remotely sensed data.

  18. First insights into disassembled "evapotranspiration"

    NASA Astrophysics Data System (ADS)

    Chormański, Jarosław; Kleniewska, Małgorzata; Berezowski, Tomasz; Szporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatyłowicz, Jan; Batelaan, Okke

    2015-04-01

    In this work we present an initial data analysis obtained from a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them fromthe total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its component transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project

  19. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  20. The Self Actualized Reader.

    ERIC Educational Resources Information Center

    Marino, Michael; Moylan, Mary Elizabeth

    A study examined the commonalities that "voracious" readers share, and how their experiences can guide parents, teachers, and librarians in assisting children to become self-actualized readers. Subjects, 25 adults ranging in age from 20 to 67 years, completed a questionnaire concerning their reading histories and habits. Respondents varied in…

  1. Measuring Evapotranspiration in Urban Irrigated Lawns in Two Kansas Cities

    NASA Astrophysics Data System (ADS)

    Shonkwiler, K. B.; Bremer, D.; Ham, J. M.

    2011-12-01

    Conservation of water is becoming increasingly critical in many metropolitan areas. The use of automated irrigation systems for the maintenance of lawns and landscapes is rising and these systems are typically maladjusted to apply more water than necessary, resulting in water wastage. Provision of accurate estimates of actual lawn water use may assist urbanites in conserving water through better adjustment of automatic irrigation systems. Micrometeorological methods may help determine actual lawn water use by measuring evapotranspiration (ET) from urban lawns. From April - August of 2011, four small tripod-mounted weather stations (tripods, five total) were deployed in twelve residential landscapes in the Kansas cities of Manhattan (MHK) and Wichita (ICT) in the USA (six properties in each city). Each tripod was instrumented to estimate reference crop evapotranspiration (ETo) via the FAO-56 method. During tripod deployment in residential lawns, actual evapotranspiration (ETactual) was measured nearby using a stationary, trailer-mounted eddy covariance (EC) station. The EC station sampled well-watered turf at the K-State Rocky Ford Turfgrass Center within 5 km of the study properties in MHK, and was also deployed at a commercial sod farm 15 - 40 km from the study residences in the greater ICT metro area. The fifth tripod was deployed in the source area of the EC station to estimate ETo in conjunction with tripods in the lawns (i.e., to serve as a reference). Data from EC allowed for computation of a so-called lawn coefficient (Kc) by determining the ratio of ETo from the tripods in residential lawns to ETo from the EC station (ETo,EC); hence, Kc = ETo,tripod / ETo,EC. Using this method, ETactual can be estimated for individual tripods within a lawn. Data suggests that it may be more accurate to quantify ET within individual lawns by microclimate (i.e., determine coefficients for "shaded" and "open/unshaded" portions of a lawn). By finding microclimate coefficients

  2. Automated calculation of the evapotranspiration and crop coefficients for a large number of peatland sites using diurnal groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Maurer, Eike; Bechtold, Michel; Dettmann, Ullrich; Tiemeyer, Bärbel

    2014-05-01

    values were determined from precipitation events and the related water level increase. Parameter values in this routine were systematically varied to obtain the lowest standard error of Sy. Errors were obtained by bootstrapping. The resulting Sy-values correspond well to peatland type and soil properties. After rule-based filtering of the time series, in a third step, the actual evapotranspiration ETa is calculated by the original White-method and a modification by Hays (2003). Daily values of ETa and ET0 are used to derive crop coefficients, which are then aggregated to monthly and annual Kc-values. Applying the method to a large number of sites resulted in plausible crop coefficients which compare well to previously published values of peatland evapotranspiration, as far as information on similar vegetation is available.

  3. The effect of background hydrometeorological conditions on the sensitivity of evapotranspiration to model parameters: analysis with measurements from an Italian alpine catchment

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Toninelli, V.; Albertson, J. D.; Mancini, M.; Troch, P. A.

    Recent developments have made land-surface models (LSMs) more complex through the inclusion of more processes and controlling variables, increasing numbers of parameters and uncertainty in their estimates. To overcome these uncertainties, prior to applying a distributed LSM over the whole Toce basin (Italian Alps), a field campaign was carried out at an experimental plot within the basin before exploring the skill and parameter importance (sensitivity) using the TOPLATS model, an existing LSM. In the summer and autumn of 1999, which included both wet (atmosphere controlled) and dry (soil controlled) periods, actual evapotranspiration estimates were performed using Bowen ratio and, for a short period, eddy correlation methods. Measurements performed with the two methods are in good agreement. The calibrated LSM predicts actual evapotranspiration quite well over the whole observation period. A sensitivity analysis of the evapotranspiration to model parameters was performed through the global multivariate technique during both wet and dry periods of the campaign. This approach studies the influence of each parameter without conditioning on certain values of the other variables. Hence, all parameters are varied simultaneously using, for instance, a uniform sampling strategy through a Monte Carlo simulation framework. The evapotranspiration is highly sensitive to the soil parameters, especially during wet periods. However, the evapotranspiration is also sensitive to some vegetation parameters and, during dry periods, wilting point is the most critical for evapotranspiration predictions. This result confirms the importance of correct representation of vegetation properties which, in water-limited conditions, control evapotranspiration.

  4. Improved seasonal drought forecasts using reference evapotranspiration anomalies

    NASA Astrophysics Data System (ADS)

    McEvoy, Daniel J.; Huntington, Justin L.; Mejia, John F.; Hobbins, Michael T.

    2016-01-01

    A novel contiguous United States (CONUS) wide evaluation of reference evapotranspiration (ET0; a formulation of evaporative demand) anomalies is performed using the Climate Forecast System version 2 (CFSv2) reforecast data for 1982-2009. This evaluation was motivated by recent research showing ET0 anomalies can accurately represent drought through exploitation of the complementary relationship between actual evapotranspiration and ET0. Moderate forecast skill of ET0 was found up to leads of 5 months and was consistently better than precipitation skill over most of CONUS. Forecasts of ET0 during drought events revealed high categorical skill for notable warm-season droughts of 1988 and 1999 in the central and northeast CONUS, with precipitation skill being much lower or absent. Increased ET0 skill was found in several climate regions when CFSv2 forecasts were initialized during moderate-to-strong El Niño-Southern Oscillation events. Our findings suggest that ET0 anomaly forecasts can improve and complement existing seasonal drought forecasts.

  5. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role.

    PubMed

    Ruairuen, Watcharee; Fochesatto, Gilberto J; Sparrow, Elena B; Schnabel, William; Zhang, Mingchu; Kim, Yongwon

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  6. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role

    PubMed Central

    Ruairuen, Watcharee

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  7. Concerning the relationship between evapotranspiration and soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1987-01-01

    The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.

  8. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration's Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ???100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world

  9. Evaluation of Water Stress Coefficient Methods to Estimate Actual Corn Evapotranspiration in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract for Kullberg Hydrology Days: Abstract. Increased competition for water resources is placing pressure on the agricultural sector to remain profitable while reducing water use. Remote sensing techniques have been developed to monitor crop water stress and produce information for evapotranspi...

  10. Estimation of actual evapotranspiration using measured and calculated values of bulk surface resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently the United Nations-Food and Agriculture Organization (FAO) recommends using the Penman-Monteith method for estimating ET over all other meteorological methods. The principal limitation of using the generalized form of the Penman-Monteith equation is in obtaining accurate values for the bu...

  11. Impact of Atmospheric Albedo on Amazon Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lopes, A. V.; Thompson, S. E.; Dracup, J. A.

    2013-12-01

    The vulnerability of the Amazon region to climate and anthropogenic driven disturbances has been the subject of extensive research efforts, given its importance in the global and regional climate and ecologic systems. The evaluation of such vulnerabilities requires the proper understanding of physical mechanisms controlling water and energy balances and how the disturbances change them. Among those mechanisms, the effects of atmospheric albedo on evapotranspiration have not been fully explored yet and are explored in this study. Evapotranspiration in the Amazon is sustained at high levels across all seasons and represents a large fraction of water and energy surface budgets. In this study, statistical analysis of data from four flux towers installed at Amazon primary forest sites was employed to quantify the impact of atmospheric albedo, mostly resulted from cloudiness, on evapotranspiration and to compare it to the effect of water limitation. Firstly, the difference in eddy-flux derived evapotranspiration at the flux towers under rainy and non-rainy antecedent conditions was tested for significance. Secondly, the same statistical comparison was performed under cloudy and clear sky conditions at hourly and daily time scales, using the reduction in incoming solar radiation as an indicator of cloudiness. Finally, the sensitivity of seasonal evapotranspiration totals to atmospheric albedo resulted from rainfall patterns is evaluated. That was done by sampling daily evapotranspiration estimates from empirical probability distribution functions conditioned to rainfall occurrence and then varying the number of dry days in each season. It was found that light limitation is much more important than water limitation in the Amazon, resulting in up to 43% reduction in daily evapotranspiration. Also, this effect varies by location and by season, the largest impact being in wet season, from December do January. Moreover, seasonal evapotranspiration totals were found to be

  12. Estimation of regional evapotranspiration for clear sky days over the North China Plain

    NASA Astrophysics Data System (ADS)

    Shu, Y.; Stisen, S.; Sandholt, I.; Jensen, K. H.

    2009-04-01

    The triangle method combined with thermal inertia for estimation of regional evapotranspiration based on Feng Yun-2C(FY-2C) satellite data and MODIS products over the North China Plain is presented. FY-2C, China's first operational geostationary meteorological satellite which features 5 spectral bands (1 VIS and 4 IR), can acquire one full disc image of China (60° N - 60° S ,45° E - 165° E) per hour every day. Two thermal red channels (IR1: 10.3-11.3 μm) and (IR2:11.5-12.5 μm) were used for surface temperature estimation using a split window algorithm originally proposed for the MSG-SEVIRI sensor assuming the channel response function range of the two split-window channels for MSG SEVIRI and FY-2C are similar and that the center of channels are the same. For application of the improved triangle method taking thermal inertia into account, the surface-air temperature gradient in the Ts-NDVI space, was replaced by the surface temperature temporal change estimated from the Land Surface Temperature at hours 8:00 and 12:00 in local time (ΔTs). Combined with the 16 days composite MODIS Vegetation Indices product (MOD 13) at spatial resolution of 5 km, evaporative fraction was estimated by interpolation in the ΔTs-NDVI triangular-shaped parameter space. Subsequently, regional actual evapotranspiration was estimated based on the derived evaporative fraction and available energy estimated from satellite data. In the piedmont plain with high NDVI and low ΔTs, evapotranspiration rate is high because of irrigation of winter wheat. In the coastal plain NDVI is low and also ΔTs is low as high evapotranspiration rates are sustained water supply from shallow water table. Ground-based measurements of evapotranspiration were retrieved from a lysimeter at the Luancheng eco-agricultural station of China Academy of Sciences. These data are representative for evapotranspiration in the piedmont plain and were used for validation of the actual evapotranspiration retrievals from

  13. Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins

    NASA Astrophysics Data System (ADS)

    Gurtz, Joachim; Baltensweiler, Andri; Lang, Herbert

    1999-12-01

    River basins in mountainous regions are characterized by strong variations in topography, vegetation, soils, climatic conditions and snow cover conditions, and all are strongly related to altitude. The high spatial variation needs to be considered when modelling hydrological processes in such catchments. A complex hydrological model, with a great potential to account for spatial variability, was developed and applied for the hourly simulation of evapotranspiration, soil moisture, water balance and the runoff components for the period 1993 and 1994 in 12 subcatchments of the alpine/pre-alpine basin of the River Thur (area 1703 km2). The basin is located in the north-east of the Swiss part of the Rhine Basin and has an elevation range from 350 to 2500 m a.s.l. A considerable part of the Thur Basin is high mountain area, some of it above the tree-line and a great part of the basin is snow covered during the winter season.In the distributed hydrological model, the 12 sub-basins of the Thur catchment were spatially subdivided into sub-areas (hydrologically similar response units - HRUs or hydrotopes) using a GIS. Within the HRUs a hydrologically similar behaviour was assumed. Spatial interpolations of the meteorological input variables wereemployed for each altitudinal zone. The structure of the model components for snow accumulation and melt, interception, soil water storage and uptake by evapotranspiration, runoff generation and flow routing are briefly outlined. The results of the simulated potential evapotranspiration reflect the dominant role of altitudinal change in radiation and albedo of exposure, followed by the influence of slope. The actual evapotranspiration shows, in comparison with the potential evapotranspiration, a greater variability in the lower and medium altitudinal zones and a smaller variability in the upper elevation zones, which was associated with limitations of available moisture in soil and surface depression storages as well as with the

  14. Vegetation impact on mean annual evapotranspiration at a global catchment scale

    NASA Astrophysics Data System (ADS)

    Peel, Murray C.; McMahon, Thomas A.; Finlayson, Brian L.

    2010-09-01

    Research into the role of catchment vegetation within the hydrologic cycle has a long history in the hydrologic literature. Relationships between vegetation type and catchment evapotranspiration and runoff were primarily assessed through paired catchment studies during the 20th century. Results from over 200 paired catchment studies from around the world have been reported in the literature. Two constraints on utilizing the results from paired catchment studies in the wider domain have been that the catchment areas studied are generally (1) small (<10 km2) and (2) from a narrow range of climate types. The majority of reported paired catchment studies are located in the USA (˜47%) and Australia (˜27%) and experience mainly temperate (Köppen C) and cold (Köppen D) climate types. In this paper we assess the impact of vegetation type on mean annual evapotranspiration through a large, spatially, and climatically diverse data set of 699 catchments from around the world. These catchments are a subset of 861 unregulated catchments considered for the analysis. Spatially averaged precipitation and temperature data, in conjunction with runoff and land cover information, are analyzed to draw broad conclusions about the vegetation impact on mean annual evapotranspiration. In this analysis any vegetation impact signal is assessed through differences in long-term catchment average actual evapotranspiration, defined as precipitation minus runoff, between catchments grouped by vegetation type. This methodology differs from paired catchment studies where vegetation impact is assessed through streamflow responses to a controlled, within catchment, land cover change. The importance of taking the climate type experienced by the catchments into account when assessing the vegetation impact on evapotranspiration is demonstrated. Tropical and temperate forested catchments are found to have statistically significant higher median evapotranspiration, by about 170 mm and 130 mm

  15. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  16. Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Yinsheng; Szilagyi, Jozsef; Guo, Yanhong; Zhai, Jianqing; Gao, Haifeng

    2015-02-01

    The complementary relationship (CR) of evapotranspiration allows the estimation of the actual evapotranspiration rate (ETa) of the land surface using only routine meteorological data, which is of great importance in the Tibetan Plateau (TP) due to its sparse observation network. With the highest in situ automatic climate observation system in a typical semiarid alpine steppe region of the TP, the wind function of Penman was replaced by one based on the Monin-Obukhov Similarity theory for calculating the potential evapotranspiration rate (ETp); the Priestley-Taylor coefficient, α, was estimated using observations in wet days; and the slope of the saturation vapor pressure curve was evaluated at an estimate of the wet surface temperature, provided the latter was smaller than the actual air temperature. A symmetric CR was obtained between the observed daily actual and potential evapotranspiration. Local calibration of the parameter value (in this order) is key to obtaining a symmetric CR: α, wet environment air temperature (Twea), and wind function. Also, present symmetric CR contradicts previous research that used default parameter values for claiming an asymmetric CR in arid and semiarid regions of the TP. The effectiveness of estimating the daily ETa via symmetric CR was greatly improved when local calibrations were implemented. At the same time, an asymmetric CR was found between the observed daily ETa and pan evaporation rates (Epan), both for D20 aboveground and E601B sunken pans. The daily ETa could also be estimated by coupling the Epan of D20 aboveground and/or E601B sunken pan through CR. The former provided good descriptors for observed ETa, while the latter still tended to overestimate it to some extent.

  17. Comparison of wetland evapotranspiration estimates using diurnal groundwater fluctuations and measurements of a groundwater lysimeter

    NASA Astrophysics Data System (ADS)

    Fahle, Marcus; Dietrich, Ottfried; Lischeid, Gunnar

    2013-04-01

    Sound water management in wetlands requires knowledge of on-going processes and estimates of the water balance components. Specifically evapotranspiration is of crucial importance, as it is often the main water extracting quantity. To avoid elaborate and expensive equipment, which is often required for estimating actual values, potential evapotranspiration is frequently used, which can be easily derived from standard meteorological measurements. However, the potential values may under- or overestimate actual evapotranspiration significantly. A cheap and easy-to-use method for estimating actual values in shallow groundwater environments relies on diurnal groundwater fluctuation. Basically the 24 hours groundwater level decline, considering in some way the prevalent groundwater recovery, is multiplied by the readily available specific yield. Various varieties of this approach have been employed for that purpose, above all differing in their assumptions on groundwater recovery, i.e. lateral or vertical in- or outflow. The objective of our study is therefore to compare these different methods. For this purpose we use data of a weighable groundwater lysimeter situated at a ditch drained grassland site in the Spreewald wetland in Northeastern Germany. The groundwater level in the lysimeter was adjusted to a reference gauge and simulated the conditions of the surrounding area. Hence the lysimeter reflected near natural conditions and provided measurements of all water balance components with high temporal resolution (up to 10 minute intervals). Suitable days, i.e. with a pronounced diurnal fluctuation, of the vegetation periods 2011 and 2012 are chosen and used to prove common assumptions about groundwater recharge, e.g. if the values remain constant during the day or if diurnal variations resulting from gradient changes exist. Finally, based on the lysimeter measurements, the evapotranspiration estimates gained from different approaches that employ diurnal groundwater

  18. A review of approaches for evapotranspiration partitioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partitioning of evapotranspiration (ET) into evaporation from the soil surface (E) and transpiration (T) is challenging but important in order to assess biomass production and the allocation of increasingly scarce water resources. Generally T is the desired component with the water being used to enh...

  19. Assessment of Texas evapotranspiration (ET) networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the current status of evapotranspiration (ET) data and networks in Texas for potential and beneficial conservation use with irrigation decision support systems. Objectives of this study included (1) identification of existing networks and the meteorological param...

  20. Evapotranspiration in Subtropical Climate: Measurements and predictions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) loss is estimated at about 80-85% of annual precipitation in South Florida. Accurate prediction of ET is an important part of the implementation of the Comprehensive Everglades Restoration Plan (CERP). In the USDA's Everglades Agro-Hydrology Model (EAHM), the daily soil root...

  1. Field measurement of cotton seedling evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on cotton evapotranspiration (ET) during the seedling growth stage and under field conditions is scarce because ET is a difficult parameter to measure. Our objective was to use weighable lysimeters to measure daily values of cotton seedling ET. We designed and built plastic weighable mic...

  2. Spatial and temporal variation in evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial and temporal variation in evapotranspiration occurs at multiple scales as the result of several different spatial and temporal patterns in precipitation, soil water holding capacity, cloudiness (available energy), types of crops, and residue and tillage management practices. We have often as...

  3. Evapotranspiration estimates using ASTER thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Schmugge, Thomas J.; French, Andrew; Kustas, William P.

    2002-01-01

    The recent availability of multi-band thermal infrared imagery from the Advanced Spaceborne Thermal Emission & Reflection radiometer (ASTER) on NASA's Terra satellite has made feasible the estimation of evapotranspiration at 90 meter resolution. One critical variable in evapotranspiration models is surface temperature. With ASTER the temperature can be reliably determined over a wide range of vegetative conditions. The requirements for accurate temperature measurement include minimization of atmospheric effects, correction for surface emissivity variations and sufficient resolution for the type of vegetative cover. When ASTER imagery are combined with meteorological observations, these requirements are usually met and result in surface temperatures accurate within 1-2 C. ASTER-based evapotranspiration estimates were made during September 2000 over a sub-humid regions at the USDA/ARS Grazinglands research laboratory near El Reno in central Oklahoma. Daily evapotranspiration was estimated by applying instantaneous ASTER surface temperatures, as well as ASTER-based vegetation indices from visible-near infrared bands, to a two-source energy flux model and combining the result with separately acquired hourly solar radiation data. The estimates of surface fluxes show reasonable agreement (within 50-100 W/m2) with ground-based Bowen Ratio Energy Balance measurements and illustrate how ASTER measurements can be applied to heterogeneous terrain. There are some significant discrepancies, however, and these may in part be due to difficulty quantifying fractional cover of senescent vegetation.

  4. Drought trends indicated by evapotranspiration deficit over the contiguous United States during 1896-2013

    NASA Astrophysics Data System (ADS)

    Kim, Daeha; Rhee, Jinyoung

    2016-04-01

    Evapotranspiration (ET) has received a great attention in drought assessment as it is closely related to atmospheric water demand. The hypothetical potential ET (ETp) has been predominantly used, nonetheless it does not actually exist in the hydrologic cycle. In this work, we used a complementary method for ET estimation to obtain wet-environment ET (ETw) and actual ET (ETa) from routinely observed climatic data. By combining ET deficits (ETw minus ETa) and the structure of the Standardized Precipitation-Evapotranspiration Index (SPEI), we proposed a novel ET-based drought index, the Standardized Evapotranspiration Deficit Index (SEDI). We carried out historical drought identification for the contiguous United States using temperature datasets of the PRISM Climate Group. SEDI presented spatial distributions of drought areas similar to the Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI) for major drought events. It indicates that SEDI can be used for validating other drought indices. Using the non-parametric Mann-Kendall test, we found a significant decreasing trend of SEDI (increasing drought risk) similar to PDSI and SPI in the western United States. This study suggests a potential of ET-based indices for drought quantification even with no involvement of precipitation data.

  5. Reference Crop Evapotranspiration obtained from the geostationary satellite MSG (METEOSAT).

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Trigo, I. F.; Lorite, I. J.; Cruz-Blanco, M.; Gavilán, P.

    2012-04-01

    Among others, the scope of the Land Surface Analysis Satellite Applications Facility (LSA SAF) is to increase benefit from the EUMETSAT geostationary Satellites MSG data related to land, land-atmosphere interactions and biophysical applications. This is achieved by developing techniques, products and algorithms that will allow an effective use of MSG data, if needed, combined with data from numerical weather prediction models (e.g., ECMWF). Although directly designed to improve the observation of meteorological systems, the spectral characteristics, time resolution and area coverage offered by MSG allow for their use in a broad spectrum of other applications, for instance in agro- and hydrometeorology. This study concerns a method to determine how much water is needed for irrigation. Note that this is complementary to the actual evapotranspiration LSA SAF product. The objective of this study is to present a novel semi-empirical method to determine the Reference Crop Evapotranspiration (ET0) from the down-welling shortwave radiation and air temperature obtained through LSF SAF. ET0 is defined in the FAO Irrigation and Drainage report 56 (FAO56) and it is used to determine water requirements of agricultural crops in irrigated regions. It is evaluated with a special version of the Penman-Monteith equation (PM_FAO56) using data of a weather station installed over non-stressed grass. Such stations are expensive and very labor consuming. We developed our method for semi-arid regions where appropriate weather stations needed for FAO56 ET0 are missing. This concerns huge areas in the world. High-quality FAO-grass station near Cordoba, Spain were used, where, besides all input for PM-FAO56, independent lysimeter data are collected. In addition, it will be shown that significant errors in ET0 can occur if meteorological gathered over dry terrain will be used as input of PM-FAO56. For this purpose data sets obtained in different semi-arid regions will be analyzed.

  6. Simple analytical model of evapotranspiration in the presence of roots

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare M.; Hough, L. A.; Castaing, Jean-Christophe; Frétigny, Christian; Dreyfus, Rémi

    2014-10-01

    Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer. Water is pumped by the roots, channeled to the leaf surface, and released into the surrounding air by a process called transpiration. Prediction of the evapotranspiration of water over time in the presence of roots helps keep track of the amount of water that remains in the soil. Using a controlled visual setup of a two-dimensional model soil consisting of monodisperse glass beads, we perform experiments on actual roots grown under different relative humidity conditions. We record the total water mass loss in the medium and the position of the evaporating front that forms within the medium. We then develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation fluxes and includes empirical assumptions on the quantity of open stomata in the leaves, where water transpiration occurs. Comparison between the model and experimental results shows excellent prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of roots. The model also provides a way to predict the lifetime of a plant.

  7. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration

    USGS Publications Warehouse

    Sumner, D.M.; Jacobs, J.M.

    2005-01-01

    Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

  8. Inteligent estimation of daily evapotranspiration susing

    NASA Astrophysics Data System (ADS)

    Sharifan, H.; Dehghani, A. A.

    2009-04-01

    Evapotranspiration (ET) is one of the parameters in water resources management which is attractive for design of irrigation systems. Due to interaction between meteorology parameter, there are nonlinear relations for assessing the evapotraqnspiration. Artifical neural networks are innovative approaches for estimation and prediction by using learning concept. In this study, by using the daily data of Gorgan synoptical station in Golestan province/ Iran the multilayer perceptron with back propagation learning rule was trained. Five different ANN models comprision various combinations of daily climate variable, i. e. air temperature, sunshine, wind speed and humidity was developed to evaluate degree of effect of each input variables on ET. A comparison is made between the estimated provide by ANN models and ET-values estimated by FAO-Penman-Monteith (F-P-M) method. The results show that ANN models perform better than experimental relation. Keyword : Evapotranspiration, Artifical neural network, Penman-Manteith, Gorgan.

  9. The Artificial Neural Network Estimation for Daily and Hourly Rice Evapotranspiration in the Region of Red Soil, South China

    NASA Astrophysics Data System (ADS)

    Jing, Yuanshu; Ruthaikarn, Buaphean; Jin, Xinyi; Pang, Bo

    The evapotranspiration estimation is a key item for irrigation program. It has the important practical significance for high stable yield and water-saving in the region of red soil, South China. Penman-Monteith equation, recommended by FAO, is verified to be the most effective calculation to actual evaporation in many regions of the world. The only default is it has to use complete meteorological factors. To solve this problem, we are trying to find out a artificial neural network model (ANN) which can easily get its information and easy to calculate as well as guaranteed accuracy. A Bowen ratio energy balance (BREB) system and automatic weather station were employed for simultaneous measurement of actual evapotranspiration above the rice field. The frequency of 20-min recording provided the possibility for the estimation of daily and hourly evapotranspiration. The determined coefficient from the artificial neural network model on daily scale R2 is 0.9642, while hourly scale R2 is 0.9880. The reason was that the hourly scale training samples was greater than the daily scale measures. In general, the model gives an effective and feasible way for the evaluation of paddy rice evapotranspiration by the conventional parameters.

  10. Investigation of Valiantzas' evapotranspiration equation in Iran

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-07-01

    Several methods are available to estimate the reference evapotranspiration including mass transfer-based, radiation-based, temperature-based, and pan evaporation-based methods. The most important weather parameters are solar radiation, temperature, relative humidity, and wind speed for evapotranspiration models. This study aims to compare five forms of Valiantzas' evapotranspiration methods (one of the newest models) as well as Priestley-Taylor and Turc models to detect the best one under different weather conditions. For this purpose, weather data were gathered from 181 synoptic stations in 31 provinces of Iran. The reference evapotranspiration was compared with the FAO Penman-Monteith method. The results show that they are suitable for provinces of Iran (coefficient of determination ( R 2) was more than 0.9900). The Valiantzas 1 ( T, R s, RH, u) is more suitable for centre and south of Iran (9 provinces), and the Valiantzas 2 ( T, R s, RH, u) is suitable for west, east, and north of Iran (22 provinces). The most precise method was the Valiantzas 1 ( T, R s, RH, u) for ES. In addition, among limited data methods, the Valiantzas 2 ( T, R s, RH) is the best method (18 provinces). Finally, a list of the best performances of each method was presented to use other regions according to values of temperature, relative humidity, solar radiation, and wind speed. The best weather conditions for use in Valiantzas' methods are >24.2 MJ m-2 day-1, 16-18 °C, 40-50 %, and 1.50-2.50 m s-1 for solar radiation, temperature, relative humidity, and wind speed, respectively. Results are also useful for selecting the best model when researchers must apply these models on the basis of the available data.

  11. Evapotranspiration: Challenges in Measurement and Modeling

    NASA Astrophysics Data System (ADS)

    Amatya, Devendra; Sun, Ge; Gowda, Prasanna

    2014-07-01

    Evapotranspiration (ET) processes at the leaf-to-landscape scales have important controls and feedbacks for the regional and global climate systems through complex interactions among the Earth's atmospheric, hydrological, and biogeochemical cycles. Innovative methods, tools, and technologies for improved understanding and quantifying of ET are critical for adapting more effective management strategies to cope with the increasing demand for freshwater resources under global change.

  12. Comparative Analysis of Evapotranspiration Using Eddy Covariance

    NASA Astrophysics Data System (ADS)

    BAE, H.; Ji, H.; Lee, B.; Nam, K.; Jang, B.; Lee, C.; Jung, H.

    2013-12-01

    The eddy covariance method has been widely used to quantify evapotranspiration. However, independent measurements of energy components such as latent heat flux, sensible heat flux often lead to under-measurements, this is commonly known as a lack of closure of the surface energy balance. In response to this methodological problem, this study is addressed specifically to correction of the latent and heat sensible fluxes. The energy components observed in agricultural and grassland from January 2013 were measured using the eddy covariance method. As a result of the comparison of the available energy (Rn-G) with the sum of the latent and sensible heat fluxes, R-Squared values were 0.72 in the agricultural land, 0.78 in the grassland, indicating that the latent and sensible heat fluxes were under-measured. The obtained latent and sensible heat fluxes were then modified using the Bowen-ratio closure method. After this correction process, the values of the sum of the latent and sensible heat fluxes have increased by 39.7 percent in the agricultural land, 32.2 percent in the grassland respectively. Evapotranspiration will be calculated with both the unmodified and modified latent heat flux values, the results will be then thoroughly compared. The results will be finally verified by comparison with evapotranspiration obtained from energy balance based model.

  13. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, Alex M., Jr.

    1989-01-01

    From July 1982 through June 1984, a study was made of the evapotranspiration and microclimate at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily awnless brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy budget with the Bowen ratio, (2) an aerodynamic profile, and (3) a soil-based water budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data and then summed by days and months. Yearly estimates (for March through November) by these methods were in close agreement: 648 and 626 millimeters, respectively. Daily estimates reach a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of total precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soilmoisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) at the Sheffield site were virtually identical to long-term averages from nearby National Weather Service

  14. Investigating Landsat-derived forest evapotranspiration in the Amazon

    NASA Astrophysics Data System (ADS)

    Khand, K. B.; Numata, I.; Kjaersgaard, J.; Cochrane, M. A.

    2015-12-01

    Nearly half of annual rainfall in the Amazon rainforest region is returned to the atmosphere through evapotranspiration (ET). However, this land-atmosphere water vapor feedback in Amazonia has been continuously disturbed by anthropogenic influence and climate change such as severe drought events. While forest ET dynamics in the Amazon have been studied from both point estimates (or in-situ measurements) and regional land-surface models as well as coarse-spatial satellite data, finer spatial data is required to address the spatial variability of forest ET associated with both forest disturbances and extreme climate events. We use Landsat-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model to generate high-resolution (30 m) ET products and investigate its potential to characterize local and regional ET behavior by comparison to ET calculated from flux tower data. METRIC estimates actual ET as residual of the surface energy balance and is applied to capture the spatial variability of forest ET. The flux tower data were collected at two sites with different forest types: Para with wet equatorial forest and Rondônia with seasonally dry tropical forest. Our study was conducted on the dry season of the years 2003 and 2005 for Para, and 2000 through 2002 for Rondônia as a function of data availability of both cloud-free Landsat images and meteorological data for METRIC processing. Daily gridded actual ET estimates from METRIC during the dry season were obtained using a cubic spline interpolation of ETrF (fraction of reference ET) values between the satellite image dates and multiplying by daily reference ET. Across the all study years, differences between the daily ET estimates for the selected image dates from METRIC and the flux towers were less than 1.2 mm/day, while on monthly basis, these averaged daily ET differences were much lower (< 0.5 mm). At Para, the correlation (R2) between the daily ET rates from METRIC and the

  15. Study of evapotranspiration and evaporation beneath the canopy in a buckwheat field

    NASA Astrophysics Data System (ADS)

    Yan, Haofang; Zhang, Chuan; Oue, Hiroki; Wang, Guoqing; He, Bin

    2015-11-01

    The determination of evaporation and transpiration separately is very important in improving water use efficiency and developing exact irrigation scheduling. Hourly crop evapotranspiration ( ET c) and soil evaporation ( E g) beneath the buckwheat canopy were measured using Bowen ratio energy balance method and micro-lysimeters, respectively. The total ET c and E g in the whole growth season of buckwheat were 187.4 and 72.1 mm, respectively. Crop coefficient of buckwheat plant was simulated by days after sowing (DAS) and leaf area index (LAI), the average values for four growth stages were 0.58, 0.59, 1.10, and 0.74; and soil evaporation coefficient (the ratio of soil evaporation to reference evapotranspiration) was modeled by soil water content at 5-cm depth by dividing the LAI into two stages. The relationship between the ratio of soil evaporation to actual evapotranspiration ( E g/ ET c) and LAI was decided. It was found that E g/ ET c decreased from 1 to 0.3 with the increase in LAI.

  16. The Role of Evapotranspiration on Soil Moisture Depletion in a Small Alaskan Subarctic Farm

    NASA Astrophysics Data System (ADS)

    Ruairuen, W.; Fochesatto, G. J.; Sparrow, E. B.; Schnabel, W.; Zhang, M.

    2013-12-01

    At high latitudes the period for agriculture production is very short (110 frost-free days) and strongly depends on the availability of soil water content for vegetables to grow. In this context the evapotranspiration (ET) cycle is key variable underpinning mass and energy balance modulating therefore moisture gradients and soil dryness. Evapotranspiration (ET) from field-grown crops water stress is virtually unknown in the subarctic region. Understanding ET cycles in high latitude agricultural ecosystem is essential in terms of water management and sustainability and projection of agricultural activity. To investigate the ET cycle in farming soils a field experiment was conducted in the summer of 2012 and 2013 at the University of Alaska Fairbanks Agricultural and Forestry Experiment Station combining micrometeorological and hydrological measurements. In this case experimental plots of lettuce (Lactuca sativa) plants were grown. The experiment evaluated several components of the ET cycle such as actual evapotranspiration, reference evaporation, pan evaporation as well as soil water content and temperature profiles to link them to the vegetable growing functions. We investigated the relationship of soil moisture content and crop water use across the growing season as a function of the ET cycle. Soil water depletion was compared to daily estimates of water loss by ET during dry and wet periods. We also investigated the dependence of ET on the atmospheric boundary layer flow patterns set by the synoptic large scale weather patterns.

  17. Remote sensing of evapotranspiration using automated calibration: Development and testing in the state of Florida

    NASA Astrophysics Data System (ADS)

    Evans, Aaron H.

    Thermal remote sensing is a powerful tool for measuring the spatial variability of evapotranspiration due to the cooling effect of vaporization. The residual method is a popular technique which calculates evapotranspiration by subtracting sensible heat from available energy. Estimating sensible heat requires aerodynamic surface temperature which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for this problem by calibrating the relationship between sensible heat and retrieved surface temperature. Disadvantage of these calibrations are 1) user must manually identify extremely dry and wet pixels in image 2) each calibration is only applicable over limited spatial extent. Producing larger maps is operationally limited due to time required to manually calibrate multiple spatial extents over multiple days. This dissertation develops techniques which automatically detect dry and wet pixels. LANDSAT imagery is used because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet pixels are developed. Snapshots of retrieved evaporative fraction and actual evapotranspiration are compared to eddy covariance measurements for five study areas in Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available energy, roughness length and wind speed is tested. A technique for temporally interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and tested. The automated algorithm is successful at detecting wet and dry pixels (if they exist). Including wet pixels in calibration and assuming constant atmospheric conductance significantly improved results for all but Big Cypress and Gainesville. Evaporative fraction is not very sensitive to instantaneous available energy but it is sensitive to temperature when wet pixels are included because temperature is required for estimating wet pixel

  18. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, A.M.

    1987-01-01

    From July 1982 through June 1984, a study was made of the microclimate and evapotranspiration at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy-budget with the Bowen ratio, (2) an aerodynamic-profile, and (3) a soil-based water-budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data, then summed by days and months. Yearly estimates for March through November, by these methods, were quite close--648 and 626 millimeters, respectively. Daily estimates range up to a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soil-moisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) were virtually identical to long-term averages from nearby National Weather Service stations. Solar radiation averaged 65

  19. A new DSSAT-CSM evapotranspiration module: ASCE standardized reference evapotranspiration with dual crop coefficient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the DSSAT-CSM series of crop models have been used for decades, new focus has been put on improving evapotranspiration (ET) simulation in crop models. A new ET module was added to the model code to calculate potential ET, which combines the ASCE Standardized Reference ET (both grass and alf...

  20. Annual evapotranspiration retrieved solely from satellites' vegetation indices

    NASA Astrophysics Data System (ADS)

    Helman, David; Lensky, Itamar; Givati, Amir

    2015-04-01

    We present a simple model to retrieve annual actual evapotranspiration (ETannual) solely from satellites. The model is based on empirical relationships between vegetation indices (NDVI & EVI from MODIS) and ETannual from 16 fluxnet sites. These sites represent a wide range of plant functional types and ETannual. A multiple regression model is applied separately for (a) annuals vegetation systems (i.e., croplands and grasslands), and (b) combined annuals and perennials vegetation systems (i.e., woodlands, forests, savanna and shrublands). It explained 80% of the variance in ETannual for annuals, and 91% for combined annuals and perennials systems. We used this model to retrieve ETannual at 250 m spatial resolution for the Eastern Mediterranean from 2000 to 2013. The models estimates were highly correlated (R = 0.96, N = 7) with ETannual calculated from water catchments balances along the rainfall gradient of Israel. Models estimates were also comparable to the coarser resolution ET products of MSG (LSA-SAF MSG ETA, 3.1 km) and MODIS (MOD16, 1 km) in 148 Eastern Mediterranean basins, with a correlation coefficient (R) of 0.79 (N = 148), for both.

  1. Adequacy of selected evapotranspiration approximations for hydrologic simulation

    USGS Publications Warehouse

    Sumner, D.M.

    2006-01-01

    Evapotranspiration (ET) approximations, usually based on computed potential ET (PET) and diverse PET-to-ET conceptualizations, are routinely used in hydrologic analyses. This study presents an approach to incorporate measured (actual) ET data, increasingly available using micrometeorological methods, to define the adequacy of ET approximations for hydrologic simulation. The approach is demonstrated at a site where eddy correlation-measured ET values were available. A baseline hydrologic model incorporating measured ET values was used to evaluate the sensitivity of simulated water levels, subsurface recharge, and surface runoff to error in four ET approximations. An annually invariant pattern of mean monthly vegetation coefficients was shown to be most effective, despite the substantial year-to-year variation in measured vegetation coefficients. The temporal variability of available water (precipitation minus ET) at the humid, subtropical site was largely controlled by the relatively high temporal variability of precipitation, benefiting the effectiveness of coarse ET approximations, a result that is likely to prevail at other humid sites.

  2. Evaluation of different methods to estimate daily reference evapotranspiration in ungauged basins in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Fontoura, Jessica; Allasia, Daniel; Herbstrith Froemming, Gabriel; Freitas Ferreira, Pedro; Tassi, Rutineia

    2016-04-01

    Evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance. Due to the higher information requirements of the Penman-Monteith method and the existing data uncertainty, simplified empirical methods for calculating potential and actual evapotranspiration are widely used in hydrological models. This is especially important in Brazil, where the monitoring of meteorological data is precarious. In this study were compared different methods for estimating evapotranspiration for Rio Grande do Sul, the Southernmost State of Brazil, aiming to suggest alternatives to the recommended method (Penman-Monteith-FAO 56) for estimate daily reference evapotranspiration (ETo) when meteorological data is missing or not available. The input dataset included daily and hourly-observed data from conventional and automatic weather stations respectively maintained by the National Weather Institute of Brazil (INMET) from the period of 1 January 2007 to 31 January 2010. Dataset included maximum temperature (Tmax, °C), minimum temperature (Tmin, °C), mean relative humidity (%), wind speed at 2 m height (u2, m s‑1), daily solar radiation (Rs, MJ m‑ 2) and atmospheric pressure (kPa) that were grouped at daily time-step. Was tested the Food and Agriculture Organization of the United Nations (FAO) Penman-Monteith method (PM) at its full form, against PM assuming missing several variables not normally available in Brazil in order to calculate daily reference ETo. Missing variables were estimated as suggested in FAO56 publication or from climatological means. Furthermore, PM was also compared against the following simplified empirical methods: Hargreaves-Samani, Priestley-Taylor, Mccloud, McGuiness-Bordne, Romanenko, Radiation-Temperature, Tanner-Pelton. The statistical analysis indicates that even if just Tmin and Tmax are available, it is better to use PM estimating missing variables from syntetic data than

  3. Estimating seasonal evapotranspiration from temporal satellite images

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.

  4. Seasonal evapotranspiration patterns in mangrove forests

    NASA Astrophysics Data System (ADS)

    Barr, Jordan G.; DeLonge, Marcia S.; Fuentes, Jose D.

    2014-04-01

    Diurnal and seasonal controls on water vapor fluxes were investigated in a subtropical mangrove forest in Everglades National Park, Florida. Energy partitioning between sensible and latent heat fluxes was highly variable during the 2004-2005 study period. During the dry season, the mangrove forest behaved akin to a semiarid ecosystem as most of the available energy was partitioned into sensible heat, which gave Bowen ratio values exceeding 1.0 and minimum latent heat fluxes of 5 MJ d-1. In contrast, during the wet season the mangrove forest acted as a well-watered, broadleaved deciduous forest, with Bowen ratio values of 0.25 and latent heat fluxes reaching 18 MJ d-1. During the dry season, high salinity levels (> 30 parts per thousand, ppt) caused evapotranspiration to decline and correspondingly resulted in reduced canopy conductance. From multiple linear regression, daily average canopy conductance to water vapor declined with increasing salinity, vapor pressure deficit, and daily sums of solar irradiance but increased with air temperature and friction velocity. Using these relationships, appropriately modified Penman-Monteith and Priestley-Taylor models reliably reproduced seasonal trends in daily evapotranspiration. Such numerical models, using site-specific parameters, are crucial for constructing seasonal water budgets, constraining hydrological models, and driving regional climate models over mangrove forests.

  5. Satellite-based monitoring of cotton evapotranspiration

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  6. National Weather Service Forecast Reference Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Osborne, H. D.; Palmer, C. K.; Krone-Davis, P.; Melton, F. S.; Hobbins, M.

    2013-12-01

    The National Weather Service (NWS), Weather Forecasting Offices (WFOs) are producing daily reference evapotranspiration (ETrc) forecasts or FRET across the Western Region and in other selected locations since 2009, using the Penman - Monteith Reference Evapotranspiration equation for a short canopy (12 cm grasses), adopted by the Environmental Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI, 2004). The sensitivity of these daily calculations to fluctuations in temperatures, humidity, winds, and sky cover allows forecasters with knowledge of local terrain and weather patterns to better forecast in the ETrc inputs. The daily FRET product then evolved into a suite of products, including a weekly ETrc forecast for better water planning and a tabular point forecast for easy ingest into local water management-models. The ETrc forecast product suite allows water managers, the agricultural community, and the public to make more informed water-use decisions. These products permit operational planning, especially with the impending drought across much of the West. For example, the California Department of Water Resources not only ingests the FRET into their soil moisture models, but uses the FRET calculations when determining the reservoir releases in the Sacramento and American Rivers. We will also focus on the expansion of FRET verification, which compares the daily FRET to the observations of ETo from the California Irrigation Management Information System (CIMIS) across California's Central Valley for the 2012 water year.

  7. Dynamic Modeling of an Evapotranspiration Cap

    SciTech Connect

    Jacob J. Jacobson; Steven Piet; Rafael Soto; Gerald Sehlke; Harold Heydt; John Visser

    2005-10-01

    The U.S. Department of Energy is scheduled to design and install hundreds of landfill caps/barriers over the next several decades and these caps will have a design life expectancy of up to 1,000 years. Other landfill caps with 30 year design lifetimes are reaching the end of their original design life; the changes to these caps need to be understood to provide a basis for lifetime extension. Defining the attributes that make a successful cap (one that isolates the waste from the environment) is crucial to these efforts. Because cap systems such as landfill caps are dynamic in nature, it is impossible to understand, monitor, and update lifetime predictions without understanding the dynamics of cap degradation, which is most often due to multiple interdependent factors rather than isolated independent events. In an attempt to understand the dynamics of cap degradation, a computer model using system dynamics is being developed to capture the complex behavior of an evapotranspiration cap. The specific objectives of this project are to capture the dynamic, nonlinear feedback loop structures underlying an evapotranspiration cap and, through computer simulation, gain a better understanding of long-term behavior, influencing factors, and, ultimately, long-term cap performance.

  8. Hourly and daily evapotranspiration of alfalfa under regional advection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regional advection often affects the evapotranspiration rates of irrigated crops in the Southern High Plains. In 1998, during a 10-day period (13-22 June) of unusually strong advection, high evapotranspiration (ET) rates for unstressed, irrigated alfalfa (Medicago sativa) were measured with two prec...

  9. Evapotranspiration information reporting: I. Factors governing measurement accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More and more evapotranspiration (ET) models, ET crop coefficients, and associated measurements of ET are being reported in the literature and used to develop, calibrate, and test important ET process models. Evapotranspiration data are derived from a range of measurement systems including lysimeter...

  10. Prediction of the Reference Evapotranspiration Using a Chaotic Approach

    PubMed Central

    Wang, Wei-guang; Zou, Shan; Luo, Zhao-hui; Zhang, Wei; Kong, Jun

    2014-01-01

    Evapotranspiration is one of the most important hydrological variables in the context of water resources management. An attempt was made to understand and predict the dynamics of reference evapotranspiration from a nonlinear dynamical perspective in this study. The reference evapotranspiration data was calculated using the FAO Penman-Monteith equation with the observed daily meteorological data for the period 1966–2005 at four meteorological stations (i.e., Baotou, Zhangbei, Kaifeng, and Shaoguan) representing a wide range of climatic conditions of China. The correlation dimension method was employed to investigate the chaotic behavior of the reference evapotranspiration series. The existence of chaos in the reference evapotranspiration series at the four different locations was proved by the finite and low correlation dimension. A local approximation approach was employed to forecast the daily reference evapotranspiration series. Low root mean square error (RSME) and mean absolute error (MAE) (for all locations lower than 0.31 and 0.24, resp.), high correlation coefficient (CC), and modified coefficient of efficiency (for all locations larger than 0.97 and 0.8, resp.) indicate that the predicted reference evapotranspiration agrees well with the observed one. The encouraging results indicate the suitableness of chaotic approach for understanding and predicting the dynamics of the reference evapotranspiration. PMID:25133221

  11. Prediction of the reference evapotranspiration using a chaotic approach.

    PubMed

    Wang, Wei-guang; Zou, Shan; Luo, Zhao-hui; Zhang, Wei; Chen, Dan; Kong, Jun

    2014-01-01

    Evapotranspiration is one of the most important hydrological variables in the context of water resources management. An attempt was made to understand and predict the dynamics of reference evapotranspiration from a nonlinear dynamical perspective in this study. The reference evapotranspiration data was calculated using the FAO Penman-Monteith equation with the observed daily meteorological data for the period 1966-2005 at four meteorological stations (i.e., Baotou, Zhangbei, Kaifeng, and Shaoguan) representing a wide range of climatic conditions of China. The correlation dimension method was employed to investigate the chaotic behavior of the reference evapotranspiration series. The existence of chaos in the reference evapotranspiration series at the four different locations was proved by the finite and low correlation dimension. A local approximation approach was employed to forecast the daily reference evapotranspiration series. Low root mean square error (RSME) and mean absolute error (MAE) (for all locations lower than 0.31 and 0.24, resp.), high correlation coefficient (CC), and modified coefficient of efficiency (for all locations larger than 0.97 and 0.8, resp.) indicate that the predicted reference evapotranspiration agrees well with the observed one. The encouraging results indicate the suitableness of chaotic approach for understanding and predicting the dynamics of the reference evapotranspiration. PMID:25133221

  12. Evaluation of alternative methods for estimating reference evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration is an important component in water-balance and irrigation scheduling models. While the FAO-56 Penman-Monteith method has become the de facto standard for estimating reference evapotranspiration (ETo), it is a complex method requiring several weather parameters. Required weather ...

  13. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  14. Basin Scale Estimates of Evapotranspiration Using GRACE and other Observations

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Famiglietti, J. S.; Chen, J.; Seneviratne, S. I.; Viterbo, P.; Holl, S.; Wilson, C. R.

    2004-01-01

    Evapotranspiration is integral to studies of the Earth system, yet it is difficult to measure on regional scales. One estimation technique is a terrestrial water budget, i.e., total precipitation minus the sum of evapotranspiration and net runoff equals the change in water storage. Gravity Recovery and Climate Experiment (GRACE) satellite gravity observations are now enabling closure of this equation by providing the terrestrial water storage change. Equations are presented here for estimating evapotranspiration using observation based information, taking into account the unique nature of GRACE observations. GRACE water storage changes are first substantiated by comparing with results from a land surface model and a combined atmospheric-terrestrial water budget approach. Evapotranspiration is then estimated for 14 time periods over the Mississippi River basin and compared with output from three modeling systems. The GRACE estimates generally lay in the middle of the models and may provide skill in evaluating modeled evapotranspiration.

  15. Daily lsa-saf evapotranspiration product

    NASA Astrophysics Data System (ADS)

    Arboleda Rodallega, Alirio; Ghilain, Nicolas; Meulenberghs, Francoise

    2010-05-01

    In the framework of the EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA-SAF), some models have been implemented in view to characterize continental surfaces by using information obtained from MSG and EPS satellites. In this context a method has been developed in order to monitor the flux of water (Evapotranspiration) between the land surface and the atmosphere. The method is based on a physical approach in which radiative data derived from Meteosat Second Generation (MSG) satellites together with land-cover information are used to constrain a physical model of energy exchange between the soil-vegetation system and the atmosphere. The implemented algorithm provides instantaneous ET estimates over four regions defined in the MSG FOV (the defined regions cover Europe, Africa and the west of south America), with MSG spatial resolution (3km at sub satellite point) and a temporal time step of 30 minutes. The scope of the method is limited to evaporation from terrestrial surfaces rather than from lakes or oceans. The instantaneous product has been validated over different vegetation cover and climatic conditions, providing evidence that the algorithm is able to reproduce ET estimates with accuracy equivalent to the accuracy of ET obtained from observations. In 2009 the instantaneous ET product has been declared pre-operational by EUMETSAT, allowing the product to be disseminated to a larger community of users (http://landsaf.meteo.pt). In some areas like agriculture, hydrology, water management, ecology and climate studies the main concern is not instantaneous but accumulated values over days, months or longer periods. To encompass the need for these community of users, a daily ET product in which daily evapotranspiration is obtained as temporal integration of instantaneous values has been developed. In this contribution we will present the methodology used to obtain instantaneous ET estimates and the procedure applied to derive daily

  16. Estimating evapotranspiration in natural and constructed wetlands

    USGS Publications Warehouse

    Lott, R. Brandon; Hunt, Randall J.

    2001-01-01

    Difficulties in accurately calculating evapotranspiration (ET) in wetlands can lead to inaccurate water balances—information important for many compensatory mitigation projects. Simple meteorological methods or off-site ET data often are used to estimate ET, but these approaches do not include potentially important site-specific factors such as plant community, root-zone water levels, and soil properties. The objective of this study was to compare a commonly used meterological estimate of potential evapotranspiration (PET) with direct measurements of ET (lysimeters and water-table fluctuations) and small-scale root-zone geochemistry in a natural and constructed wetland system. Unlike what has been commonly noted, the results of the study demonstrated that the commonly used Penman combination method of estimating PET underestimated the ET that was measured directly in the natural wetland over most of the growing season. This result is likely due to surface heterogeneity and related roughness efffects not included in the simple PET estimate. The meterological method more closely approximated season-long measured ET rates in the constructed wetland but may overestimate the ET rate late in the growing season. ET rates also were temporally variable in wetlands over a range of time scales because they can be influenced by the relation of the water table to the root zone and the timing of plant senescence. Small-scale geochemical sampling of the shallow root zone was able to provide an independent evaluation of ET rates, supporting the identification of higher ET rates in the natural wetlands and differences in temporal ET rates due to the timing of senescence. These discrepancies illustrate potential problems with extrapolating off-site estimates of ET or single measurements of ET from a site over space or time.

  17. Water Footprint of a Super-intensive Olive Grove Under Mediterranean Climate using Ground-based Evapotranspiration Measurements and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Nogueira, A. M.; Paço, T. A.; Silvestre, J. C.; Gonzalez, L. F.; Santos, F. L.; Pereira, L. S.

    2012-04-01

    measurements were used to calculate water footprint instead of the common procedure (using evapotranspiration estimates), this might have also introduced some differences. The potential of using remote sensing techniques for the assessment of water footprint of crops has been discussed in recent literature. It can provide estimates of actual evapotranspiration, of precipitation, of surface runoff and of irrigation needs when associated with modelling. In this study we further compare the water footprint estimates using in situ evapotranspiration measurements and water footprint estimates using remote sensing techniques. A comparison with the irrigation records for this particular olive orchard will be used to validate the approaches.

  18. Evapotranspiration studies for protective barriers: FY 1988 status report

    SciTech Connect

    Link, S.O.; Thiede, M.E.; Evans, R.D.; Downs, J.L.; Waugh, W.J.

    1990-05-01

    In FY 1988, evapotranspiration studies in support of the Protective Barrier Development Program focused on developing instruments to measure evapotranspiration and on conducting natural analog studies. This report describes a has exchange chamber being developed that will control internal temperature and relative humidity to simulate outdoor conditions. This device will measure evapotranspiration rates unambiguously from any surface and measure carbon dioxide exchange rates, which will provide information on plant growth processes. The report also describes ecophysiological experiments that were conducted to determine water and carbon dynamics of shrubs. 5 refs., 24 figs.

  19. Assessment of actual transpiration rate in olive tree field combining sap-flow, leaf area index and scintillometer measurements

    NASA Astrophysics Data System (ADS)

    Agnese, C.; Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G.; Rallo, G.; de Bruin, H. A. R.

    2009-09-01

    Models to estimate the actual evapotranspiration (ET) in sparse vegetation area can be fundamental for agricultural water managements, especially when water availability is a limiting factor. Models validation must be carried out by considering in situ measurements referred to the field scale, which is the relevant scale of the modelled variables. Moreover, a particular relevance assumes to consider separately the components of plant transpiration (T) and soil evaporation (E), because only the first is actually related to the crop stress conditions. Objective of the paper was to assess a procedure aimed to estimate olive trees actual transpiration by combining sap flow measurements with the scintillometer technique at field scale. The study area, located in Western Sicily (Italy), is mainly cultivated with olive crop and is characterized by typical Mediterranean semi-arid climate. Measurements of sap flow and crop actual evapotranspiration rate were carried out during 2008 irrigation season. Crop transpiration fluxes, measured on some plants by means of sap flow sensors, were upscaled considering the leaf area index (LAI). The comparison between evapotranspiration values, derived by displaced-beam small-aperture scintillometer (DBSAS-SLS20, Scintec AG), with the transpiration fluxes obtained by the sap flow sensors, also allowed to evaluate the contribute of soil evaporation in an area characterized by low vegetation coverage.

  20. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central element in a metaphysical…

  1. Spatially distributed evapotranspiration and recharge estimation for sand regions of Hungary in the context of climate change

    NASA Astrophysics Data System (ADS)

    Csáki, Péter; Kalicz, Péter; Gribovszki, Zoltán

    2016-04-01

    Water balance of sand regions of Hungary was analysed using remote-sensing based evapotranspiration (ET) maps (1*1 km spatial resolution) by CREMAP model over the 2000-2008 period. The mean annual (2000-2008) net groundwater recharge (R) estimated as the difference in mean annual precipitation (P) and ET, taking advantage that for sand regions the surface runoff is commonly negligible. For the examined nine-year period (2000-2008) the ET and R were about 90 percent and 10 percent of the P. The mean annual ET and R were analysed in the context of land cover types. A Budyko-model was used in spatially-distributed mode for the climate change impact analysis. The parameters of the Budyko-model (α) was calculated for pixels without surplus water. For the extra-water affected pixels a linear model with β-parameters (actual evapotranspiration / pan-evapotranspiration) was used. These parameter maps can be used for evaluating future ET and R in spatially-distributed mode (1*1 km resolution). By using the two parameter maps (α and β) and data of regional climate models (mean annual temperature and precipitation) evapotranspiration and net groundwater recharge projections have been done for three future periods (2011-2040, 2041-2070, 2071-2100). The expected ET and R changes have been determined relative to a reference period (1981-2010). According to the projections, by the end of the 21th century, ET may increase while in case of R a heavy decrease can be detected for the sand regions of Hungary. This research has been supported by Agroclimate.2 VKSZ_12-1-2013-0034 project. Keywords: evapotranspiration, net groundwater recharge, climate change, Budyko-model

  2. The application of a Hybrid Evapotranspiration approach in rainfed wheat

    NASA Astrophysics Data System (ADS)

    Geli, Hatim; González-Piqueras, Jose; Torrres, Enrique; Campos, Isidro; Neale, Christopher; Calera, Alfonso

    2013-04-01

    The spatio-temporal estimates of evapotranspiration (ET) have been traditionally addressed applying the water balance (WB) model of the root zone using the FAO-56 approach. The WB model is a prognostic approach of obtaining estimates of the ET and soil moisture on a daily basis. The reflectance based basal-crop coefficient Ksbrf in the WB model is determined from remote sensing data instead of the tabulated averaged basal crop coefficients (Kcb). This improvement over tabulated Kc describes the actual temporal and spatial variability and the growing conditions pattern within the field. Maps of spatially distributed actual ET are obtained applying a two source energy balance (TSEB) Model of Norman et al. (1995), which provides instantaneous estimates of surface energy fluxes including the latent heat flux that can be extrapolated to daily estimates of ET. The soil moisture (SM) plays a key-role in understanding the spatial and temporal variability for improved estimates of both SM and ET. A multiple layer model simulating the dynamics in the soil profile has been used in order to better describe the SM status obtained using the FAO-56 model that considers a single value in the root zone. The SM content is very important in semiarid areas where the crops can develop their roots under water stress environments. Estimates of ET from the TSEB and WB models are independent and can be combined using data assimilation techniques. This hybrid ET approach as described by Geli (2012) and Neale et al. (2012) provides improved estimates of both ET and SM of the root zone and was also applied to irrigated and non-irrigated cotton grown under highly convective conditions. In this work the hybrid ET approach is applied to a rainfed wheat area of 18 ha in extension in La Mancha, Spain (39° 17´N, 1° 59'W, 700 m amsl) during the growing season of 2006. The area has a Mediterranean climate, considered semi-arid with scarce rain with a total of 122 mm measured throughout the growing

  3. Evapotranspiration Parameterizations at a Grass Site in Florida, USA

    NASA Astrophysics Data System (ADS)

    Rizou, M.; Sumner, D. M.; Nnadi, F.

    2007-05-01

    In spite of the fact that grasslands account for about 40% of the ice-free global terrestrial land cover, their contribution to the surface exchanges of energy and water in local and regional scale is so far uncertain. In this study, the sensitivity of evapotranspiration (ET) and other energy fluxes to wetness variables, namely the volumetric Soil Water Content (SWC) and Antecedent Precipitation Index (API), over a non-irrigated grass site in Central Florida, USA (28.049 N, 81.400 W) were investigated. Eddy correlation and soil water content measurements were taken by USGS (U.S. Geological Survey) at the grass study site, within 100 m of a SFWMD (South Florida Water Management District) weather station. The soil is composed of fine sands and it is mainly covered by Paspalum notatum (bahia grass). Variable soil wetness conditions with API bounds of about 2 to 160 mm and water table levels of 0.03 to 1.22 m below ground surface, respectively, were observed throughout the year 2004. The Bowen ratio exhibited an average of 1 and values larger than 2 during few dry days. The daytime average ET was classified into two stages, first stage (energy-limited) and second stage (water- limited) based on the water availability. The critical values of API and SWC were found to be about 56 mm and 0.17 respectively, with the second one being approximately 33% of the SWC at saturation. The ET values estimated by the simple Priestley-Taylor (PT) method were compared to the actual values. The PT coefficient varied from a low bound of approximately 0.4 to a peak of 1.21. Simple relationships for the PT empirical factor were employed in terms of SWC and API to improve the accuracy of the second stage observations. The results of the ET parameterizations closely match eddy-covariance flux values on daily and longer time steps.

  4. Evapotranspiration parameterizations at a grass site in Florida, USA

    USGS Publications Warehouse

    Rizou, M.; Sumner, David M.; Nnadi, F.

    2007-01-01

    In spite of the fact that grasslands account for about 40% of the ice-free global terrestrial land cover, their contribution to the surface exchanges of energy and water in local and regional scale is so far uncertain. In this study, the sensitivity of evapotranspiration (ET) and other energy fluxes to wetness variables, namely the volumetric Soil Water Content (SWC) and Antecedent Precipitation Index (API), over a non-irrigated grass site in Central Florida, USA (28.049 N, 81.400 W) were investigated. Eddy correlation and soil water content measurements were taken by USGS (U.S. Geological Survey) at the grass study site, within 100 m of a SFWMD (South Florida Water Management District) weather station. The soil is composed of fine sands and it is mainly covered by Paspalum notatum (bahia grass). Variable soil wetness conditions with API bounds of about 2 to 160 mm and water table levels of 0.03 to 1.22 m below ground surface, respectively, were observed throughout the year 2004. The Bowen ratio exhibited an average of 1 and values larger than 2 during few dry days. The daytime average ET was classified into two stages, first stage (energy-limited) and second stage (water- limited) based on the water availability. The critical values of API and SWC were found to be about 56 mm and 0.17 respectively, with the second one being approximately 33% of the SWC at saturation. The ET values estimated by the simple Priestley-Taylor (PT) method were compared to the actual values. The PT coefficient varied from a low bound of approximately 0.4 to a peak of 1.21. Simple relationships for the PT empirical factor were employed in terms of SWC and API to improve the accuracy of the second stage observations. The results of the ET parameterizations closely match eddy-covariance flux values on daily and longer time steps.

  5. Divergence of reference evapotranspiration observations with windy tropical conditions

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Wang, D.; Tirado-Corbalá, R.; Zhang, H.; Ayars, J. E.

    2014-06-01

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ETEC) using Eddy Covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET0) and tall (ETr) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley-Taylor ET (ETPT) and ETEC. Reference ET from the ASCE approaches exceeded ETEC during the mid-period (when vegetation coefficients suggest ETEC should exceed reference ET). At the windier tower site, cumulative ETr exceeded ETEC by 854 mm over the course of the mid-period (267 days). At the less windy site, mid-period ETr still exceeded ETEC, but the difference was smaller (443 mm). At both sites, ETPT approximated mid-period ETEC more closely than the ASCE equations ((ETPT-ETEC) < 170 mm). Analysis of applied water and precipitation, soil moisture, leaf stomatal resistance, and canopy cover suggest that the lower observed ETEC was not the result of water stress or reduced vegetation cover. Use of a custom calibrated bulk canopy resistance improved the reference ET estimate and reduced seasonal ET discrepancy relative to ETPT and ETEC for the less windy field and had mixed performance at the windier field. These divergences suggest that modifications to reference ET equations may be warranted in some tropical regions.

  6. Educational Software for Illustration of Drainage, Evapotranspiration, and Crop Yield.

    ERIC Educational Resources Information Center

    Khan, A. H.; And Others

    1996-01-01

    Describes a study that developed a software package for illustrating drainage, evapotranspiration, and crop yield as influenced by water conditions. The software is a tool for depicting water's influence on crop production in western Kansas. (DDR)

  7. Simulation of crop evapotranspiration and crop coefficient in weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  8. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  9. Value of using remotely sensed evapotranspiration for SWAT model calibration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic models are useful management tools for assessing water resources solutions and estimating the potential impact of climate variation scenarios. A comprehensive understanding of the water budget components and especially the evapotranspiration (ET) is critical and often overlooked for adeq...

  10. Radiometric surface temperature calibration effects on satellite based evapotranspiration estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture on the Texas High Plains (THP) uses approximately 89% of groundwater withdrawals from the Ogallala Aquifer, leading to steady decline in water table levels. Therefore, efficient water management is essential for sustaining agricultural production in the THP. Accurate evapotranspiration (...

  11. Potential Evapotranspiration Trends over South America

    NASA Astrophysics Data System (ADS)

    Maske, B. B.; Goncalves, L.

    2013-05-01

    Evapotranspiration (ET) is a key variable for energy and mass flux estimation from the land surface, and consequent water balance over regional to global scales. It also affects the atmosphere dynamics from weather to climate scales due to its link between the hydrological and energy cycles. Many studies investigating global ET trends have found a consistently positive signal in the period between 1982-1997 followed by a decline until 2008, which proved consistent with the acceleration of the hydrological cycle, caused by the global increase of temperature and radiative forcing. The large El nino in 1998, for instance, resulted in a negative trend of ET due in part to the limitation of soil moisture availability. However some researchers emphasize the importance of treating ET trends regionally and thus already found two distinct scenarios with inclusion of the regional dimension of evapotranspiration drivers for global studies: one where ET decreases following decreasing in pan evaporation in regions with ample supply of water and, the other scenario with a positive trend in observed ET following decreasing in pan evaporation, with indication of the latter being induced only by the tendency of precipitation. Studies about ET trend in the western United States, using data from the hydrologic model Variable Infiltration Capacity (VIC), also found significant seasonal variations associated with changes of temperature, snow accumulation and melting. Moreover, Canada researchers indicate strong correlation between ET variations and temperature, although temperature alone can not be related to changes of ET, since it not considers the heat flux in soil and cycles of freezing and melting of snow. Considering the importance of understanding variations of ET regionally, this study aims to analyze ET trends over South America. The data used are potential evapotranspiration estimated by the Penman-Monteith method, computed using data from meteorological stations for the

  12. The hysteretic evapotranspiration - vapor pressure deficit relation

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Manzoni, S.; Katul, G. G.; Porporato, A. M.; Yang, D.

    2013-12-01

    Diurnal hysteresis between evapotranspiration (ET) and vapor pressure deficit (VPD) was reported in many ecosystems but justification for its onset and magnitude remain incomplete with biotic and abiotic factors invoked as possible explanations. To place these explanations within a mathematical framework, ';rate-dependent' hysteresis originating from a phase angle difference between periodic input and output time series is first considered. Lysimeter evaporation (E) measurements from wet bare soils and model calculations using the Penman equation demonstrate that the E-VPD hysteresis emerges without any biotic effects due to a phase angle difference (or time lag) between net radiation the main driver of E, and VPD. Modulations originating from biotic effects on the ET-VPD hysteresis were then considered. The phase angle difference representation earlier employed was mathematically transformed into a storage problem and applied to the soil-plant system. The transformed system shows that soil moisture storage within the root zone can produce an ET-VPD hysteresis prototypical of those generated by phase-angle differences. To explore the interplay between all the lags in the soil-plant-atmosphere system and phase angle differences among forcing and response variables, a detailed soil-plant-atmosphere continuum (SPAC) model was developed and applied to a grassland ecosystem. The results of the SPAC model suggest that the hysteresis magnitude depends on the radiation-VPD lag. The soil moisture dry-down simulations also suggest that modeled root water potential and leaf water potential are both better indicators of the hysteresis magnitude than soil moisture, suggesting that plant water status is the main factor regulating the hysteretic relation between ET and VPD. Hence, the genesis and magnitude of the ET-VPD hysteresis are controlled directly by both biotic factors and abiotic factors such as time lag between radiation and VPD originating from boundary layer processes

  13. Evapotranspiration and runoff in a forest watershed, western Japan

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Shimizu, T.; Miyabuchi, Y.; Ogawa, Y.

    2003-10-01

    Both water and heat balances were studied in a conifer plantation watershed in south-west Japan, within the warm-temperate East Asia monsoon area. Forest cover in the watershed consists mainly of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) plantations. Precipitation and runoff have been observed since 1991, so evapotranspiration can be compared with the water balance. Two meteorological observation towers were built to monitor evapotranspiration in the watershed. The annual average precipitation, amount of runoff and losses were 2166, 1243 and 923 mm, respectively. The evapotranspiration (latent heat flux) agreed well with the water balance losses. The average annual evapotranspiration at the tower built in the centre of the watershed was 902 mm; evapotranspiration at the other tower, further upslope, was 875 mm. The observed evapotranspiration was 39% to 40% of the average precipitation (2166 mm). The mean net radiation was c. 2·6 GJ m-2 year-1, and is considered a representative value of the net radiation (Rn) in coniferous plantations in this region. This region is classified in the humid zone based on the ratio of net radiation (Rn) to the energy required to evaporate the rainfall (R). The mean annual evaporation of canopy-intercepted water was 356 mm or about 15% of the average precipitation. Copyright

  14. Comparison of Crop Evapotranspiration Estimates from Reference Evapotranspiration Equations and a Variational Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Bateni, S. M.; Michalik, T.; Multsch, S.; Breuer, L.

    2015-12-01

    Crop evapotranspiration (ETc) is a key component of water resources management in irrigation of farmlands as it determines the crop water consumption. Numerous methods have been used to estimate ETc for scheduling irrigation and evaluating the soil water balance. However, there is a significant difference in ETc estimates from various models, which leads to a large uncertainty in the soil water balance, crop water consumption, and irrigation scheduling. In this study, several commonly-used ETc equations (Turc, Priestley-Taylor, Hargreaves-Samani, Penman-Monteith) are compared with the variational data assimilation approach (VDA) of Bateni et al. (2013). The ETc equations initially estimate the reference evapotranspiration (ETo), which is the evapotranspiration from a healthy and actively-transpiring grass field with ample water in the soil. Thereafter, ETc is calculated by multiplying ETo by the crop coefficient (Kc), which accounts for the crop type and soil water stress. To properly apply the Kc to non-standard conditions, a daily water balance estimation for the root zone is required, which is done by two soil water budget models (Cropwat, Hydrus-1D) that compute incoming and outgoing water flows in the soil profile. In contrast to these methods that estimate ETc in two steps, the VDA approach directly predicts ETc by assimilating sequences of land surface temperature into the heat diffusion equation and thus it is expected to provide more accurate ETc estimates. All approaches are applied over three cropland sites namely, Bondville, Fermi, and Mead in the summer of 2006 and 2007. These sites are part of the AmeriFlux network and provide a wide variety of hydrological conditions. The results show that the variational data assimilation approach performs better compared to other equations.

  15. Potential Evapotranspiration as a Source of Uncertainty and Bias in Hydrologic Impact Analyses

    NASA Astrophysics Data System (ADS)

    Milly, P. C. D.

    2015-12-01

    The diversity of commonly used potential evapotranspiration (PET) models contributes uncertainty in the estimation of hydrologic response to anthropogenic climate change. The temperature sensitivity of six commonly used PET equations (Hamon, Oudin, Penman-Monteith, Priestley-Taylor, Samani-Hargreaves, and Thornthwaite) is readily shown to vary by almost an order of magnitude, with energy-unconstrained (i.e., temperature-based) methods showing the largest sensitivity. The change in annual multimodel (Coupled Model Intercomparison Project, Phase 5) PET under Representative Concentration Pathway 8.5 from 1981-2000 to 2081-2100 is typically 10-20% (20-40%) in the low (high) latitudes according to the physics-based Penman-Monteith (ASCE Standardized Reference Evapotranspiration) equation, but 20-40% (20-80%) according to the empirical, temperature-based Hamon equation. Radiation-based Priestley-Taylor changes are smaller than both of these, while empirical, temperature-based Thornthwaite changes are larger than both. These differences in PET change translate to large differences in change of water availability; when combined with a form of the Budyko water-balance relation, the PET methods predict a wide range of runoff changes. Furthermore, all PET methods result in bias that indicates drier conditions globally than those computed by the climate models themselves, and all PET methods overestimate the changes in actual evapotranspiration in non-water-stressed seasons/regions relative to the changes in the climate models. We conclude that use of PET methods that are inappropriate for climate-change applications is a source not only of uncertainty, but also of more drying than suggested by climate models, in hydrologic impact analyses. In view of the bias, it is advised that a no-PET-change analysis be used to define a wet upper bound on potential hydrologic impacts.

  16. Estimating Evapotranspiration with Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, C. D.; Kumar, S. V.; Mocko, D. M.; Tian, Y.

    2011-01-01

    Advancements in both land surface models (LSM) and land surface data assimilation, especially over the last decade, have substantially advanced the ability of land data assimilation systems (LDAS) to estimate evapotranspiration (ET). This article provides a historical perspective on international LSM intercomparison efforts and the development of LDAS systems, both of which have improved LSM ET skill. In addition, an assessment of ET estimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 (NLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.

  17. NASA GLDAS Evapotranspiration Data and Climatology

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko Kato; Teng, William L.; Vollmer, Bruce; Rodell, Matthew

    2012-01-01

    Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.

  18. Mapping Evapotranspiration on Vineyards: The SENTINEL-2 Potentiality

    NASA Astrophysics Data System (ADS)

    Ciraolo, Giuseppe; Capodici, Fulvio; D'Urso, Guido; La Loggia, Goffredo; Maltese, Antonino

    2012-04-01

    Estimation of actual evapotranspiration in Sicilian vineyards, is an emerging issue since these agricultural systems. Indeed unlike other agricultural species (Vitis vinifera L.) are generally cultivated under mild water stress, in order to enhance quality (Guadillère et al., 2002. This has significant impacts on the management of the scarce water resources of the region. The choice of the most appropriate methodology for assessing water use in these systems is still an issue of debating, due to the complexity of canopy and root systems and for their high spatial fragmentation. In vineyards, quality and quantity of the final product are dependent on the controlled stress conditions to be set trough irrigation. This paper reports an application of the well-known Penman-Monteith approach, applied in a distributed way, using high resolution remote sensing data to map the potential evapotranspiration (ETp). In 2008 a series of airborne multispectral images were acquired on the "Tenute Rapitalà", a wine farm located in the northwest of Sicily. Five airborne remote sensing scenes were collected using a SKY ARROW 351 650 TC/TCNS aircraft, at a height of about 1000 m a.g.l.. The acquisitions encompassed almost a whole phenological period, between June and September 2008 (approximately one each three weeks). The platform had on board a multi-spectral camera with 3 spectral bands in the green (G, 530-570 nm), red (R, 650-690 nm) and near infrared (NIR, 767-832 nm) wavelengths, and a thermal camera with a broad band in the range 7.5-13 μm. The nominal pixel resolution was approximately 0.7 m for VIS/NIR acquisitions, and 1.7 m for the thermal-IR data. Field data were acquired simultaneously to airborne acquisitions. The former include spectral reflectance in visible, near infrared, middle infrared (VIS, NIR, MIR) regions of the spectrum, leaf area index (LAI), soil moisture at different depths (both in row and below plants). Moreover, meteorological variables and fluxes

  19. Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains

    PubMed Central

    Gowda, Prasanna H.; Chávez, José L.; Howell, Terry A.; Marek, Thomas H.; New, Leon L.

    2008-01-01

    Agriculture on the Texas High Plains (THP) uses approximately 89% of groundwater withdrawals from the Ogallala Aquifer. Consequently, groundwater levels are declining faster than the recharge rate. Therefore, efficient agricultural water use is essential for economic viability and sustainability of the THP. Accurate regional evapotranspiration (ET) maps would provide valuable information on actual crop water use. In this study, METRIC (Mapping Evapotranspiration at High Resolution using Internalized Calibration), a remote sensing based ET algorithm, was evaluated for mapping ET in the THP. Two Landsat 5 Thematic Mapper images acquired on 27 June (DOY 178) and 29 July (DOY 210) 2005 were used for this purpose. The performance of the ET model was evaluated by comparing the predicted daily ET with values derived from soil moisture budget at four commercial agricultural fields. Daily ET estimates resulted with a prediction error of 12.7±8.1% (mean bias error ± root mean square error) on DOY 178 and -4.7±9.4% on DOY 210 when compared with ET derived from measured soil moisture through the soil water balance. These results are good considering the prevailing advective conditions in the THP. METRIC have the potential to be used for mapping regional ET in the THP region. However, more evaluation is needed under different agroclimatological conditions.

  20. Comparing SEBAL and METRIC: Evapotranspiration Models Applied to Paramount Farms Almond Orchards

    NASA Astrophysics Data System (ADS)

    Furey, B. J.; Kefauver, S. C.

    2011-12-01

    Two evapotranspiration models were applied to almond and pistachio orchards in California. The SEBAL model, developed by W.G.M. Bastiaanssen, was programmed in MatLab for direct comparison to the METRIC model, developed by R.G. Allen and the IDWR. Remote sensing data from the NASA SARP 2011 Airborne Research Program was used in the application of these models. An evaluation of the models showed that they both followed the same pattern in evapotranspiration (ET) rates for different types of ground cover. The models exhibited a slightly different range of values and appeared to be related (non-linearly). The models both underestimated the actual ET at the CIMIS weather station. However, SEBAL overestimated the ET of the almond orchards by 0.16 mm/hr when applying its crop coefficient to the reference ET. This is compared to METRIC, which underestimated the ET of the almond orchards by only 0.10 mm/hr. Other types of ground cover were similarly compared. Temporal variability in ET rates between the morning and afternoon were also observed.

  1. Using Satellite-based Evapotranspiration Estimation to Characterize Agricultural Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Myint, S. W.; Hendrickx, J. M. H.

    2014-12-01

    The satellite-based evapotranspiration (ET) model permits estimation of water consumption across space and time in a systematic way. Developing tools to monitor water availability and water use is critical to meet future water shortage challenges in the American West. This study applied METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) to 2001 Landsat imagery to estimate ET of various crop types in Phoenix. The total annual ET estimates are correlated well with the actual water use at the irrigation district level (r=0.99). We further incorporated a crop type map to estimate annual ET for the major crop types in the region, and to examine variability in crop water use among different irrigation districts. Our results show that alfalfa and double crops consume more water than other crop types with mean annual ET estimations of 1300 to 1580 mm/year, and that cotton uses more water (1162 mm/year) than corn (838 mm/year) and sorghum (829 mm/year) as expected. Crop water use varies from one irrigation district to another due to differences in soil quality, water quality, and farming practices. Results from our study suggest that the ET maps derived from METRIC can be used to quantify the spatial distribution of ET and to characterize agricultural water use by crop types at different spatial scales.

  2. Statistical Analysis of Meteorological Data to Assess Evapotranspiration and Infiltration at the Rifle Site, CO, USA

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Long, P. E.; Tokunaga, T. K.; Christensen, J. N.

    2015-12-01

    Net infiltration to the vadose zone, especially in arid or semi-arid climates, is an important control on microbial activity and solute and green house gas fluxes. To assess net infiltration, we performed a statistical analysis of meteorological data as the basis for hydrological and climatic investigations and predictions for the Rifle site, Colorado, USA, located within a floodplain in a mountainous region along the Colorado River, with a semi-arid climate. We carried out a statistical analysis of meteorological 30-year time series data (1985-2015), including: (1) precipitation data, taking into account the evaluation of the snowmelt, (2) evaluation of the evapotranspiration (reference and actual), (3) estimation of the multi-time-scalar Standardized Precipitation-Evapotranspiration Index (SPEI), (4) evaluation of the net infiltration rate, and (5) corroborative analysis of calculated net infiltration rate and groundwater recharge from radioisotopic measurements from samples collected in 2013. We determined that annual net infiltration percentage of precipitation varies from 4.7% to ~18%, with a mean of ~10%, and concluded that calculations of net infiltration based on long-term meteorological data are comparable with those from strontium isotopic investigations. The evaluation of the SPEI showed the intermittent pattern of droughts and wet periods over the past 30 years, with a detectable decreasein the duration of droughts with time. Local measurements within the floodplain indicate a recharge gradient with increased recharge closer to the Colorado River.

  3. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  4. Recent changes in reference evapotranspiration in Romania

    NASA Astrophysics Data System (ADS)

    Croitoru, Adina-Eliza; Piticar, Adrian; Dragotă, Carmen Sofia; Burada, Doina Cristina

    2013-12-01

    In the last few decades, climate changes have become the most important topic in the field of climatology. Reference evapotranspiration (ET0) is often used to identify regions prone to drought or aridity. In this paper, we used monthly data recorded in 57 weather stations in Romania over the period 1961-2007. The FAO Penman-Monteith method, based on air temperature, sunshine duration, relative humidity and wind speed, was employed in order to calculate ET0. Seasonal, annual, winter wheat and maize growing seasons data sets of ET0 were generated. The trends were detected using the Mann-Kendall test and Sen's slope, while an ArcGIS software was employed for mapping the results. The main findings of the study are: positive slopes were found in 71% of the data series considered and almost 30% of the total number of series were found significant at α = 0.05; the highest frequency of the increasing trends as well as their absolute maximum magnitude were detected during summer and maize growing season; in winter, significant increasing changes are specific mainly to the extra-Carpathians regions; in autumn decreasing ET0 is specific to more than 80% of the locations, but the significant decrease characterizes mainly the southern half of the country; during the growing seasons of maize and winter wheat, the increase of the ET0 is dominant for the entire country. The relative change decreases with the increase of the length of the period considered: the most intense changes were detected for climatic seasons, followed by crop growing seasons and annual values. Among the climatic seasons, the highest relative increase is specific to winter followed by summer, spring and autumn, while for the crop growing seasons the values detected are similar.

  5. Evapotranspiration of tropical peat swamp forests.

    PubMed

    Hirano, Takashi; Kusin, Kitso; Limin, Suwido; Osaki, Mitsuru

    2015-05-01

    In Southeast Asia, peatland is widely distributed and has accumulated a massive amount of soil carbon, coexisting with peat swamp forest (PSF). The peatland, however, has been rapidly degraded by deforestation, fires, and drainage for the last two decades. Such disturbances change hydrological conditions, typically groundwater level (GWL), and accelerate oxidative peat decomposition. Evapotranspiration (ET) is a major determinant of GWL, whereas information on the ET of PSF is limited. Therefore, we measured ET using the eddy covariance technique for 4-6 years between 2002 and 2009, including El Niño and La Niña events, at three sites in Central Kalimantan, Indonesia. The sites were different in disturbance degree: a PSF with little drainage (UF), a heavily drained PSF (DF), and a drained burnt ex-PSF (DB); GWL was significantly lowered at DF, especially in the dry season. The ET showed a clear seasonal variation with a peak in the mid-dry season and a large decrease in the late dry season, mainly following seasonal variation in net radiation (Rn ). The Rn drastically decreased with dense smoke from peat fires in the late dry season. Annual ET forced to close energy balance for 4 years was 1636 ± 53, 1553 ± 117, and 1374 ± 75 mm yr(-1) (mean ± 1 standard deviation), respectively, at UF, DF, and DB. The undrained PSF (UF) had high and rather stable annual ET, independently of El Niño and La Niña events, in comparison with other tropical rainforests. The minimum monthly-mean GWL explained 80% of interannual variation in ET for the forest sites (UF and DF); the positive relationship between ET and GWL indicates that drainage by a canal decreased ET at DF through lowering GWL. In addition, ET was decreased by 16% at DB in comparison with UF chiefly because of vegetation loss through fires. PMID:24912043

  6. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    NASA Astrophysics Data System (ADS)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  7. Bryophyte Evapotranspiration in a Boreal Forest Chronosequence

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Ewers, B.; Angstmann, J.; Gower, S.

    2008-12-01

    Forest water fluxes, in particular evapotranspiration (ET), are less well constrained than are carbon fluxes, and the effect of changing stand age on forest ET is not well understood. We combined field and lab measurements to estimate the bryophyte contribution to ET in a black spruce-dominated boreal chronosequence in Manitoba, Canada. Site ages were 17, 42, 76 and 156 years, and each site contained separate well- and poorly-drained stands (bogs). Field plots (N=4) were surveyed for moss diversity and microtopography; meteorological variables were recorded continuously. Field measurements were made 3-4 times during the growing season using a custom chamber attached to a LI-COR 6400. In addition, large tubs of moss were incubated in a controlled-environment chamber and water loss rates measured via weighing; these tubs were also measured using the same protocol as performed in the field. In the lab, fully-saturated feathermoss and Sphagnum lost water at rates as high as 1.5 and 4.5 mm day-1, respectively, at 25 °C. Over the entire year, modeled bryophyte ET ranged from 0.2-0.3 and 0.2-0.5 mm day-1 in the well- and poorly-drained stands, respectively. During the growing season, these rates were 0.7-0.8 and 0.6- 1.4 mm day-1. Ignoring bog microtopography would have resulted in underestimation of fluxes by ~10%. There was no clear trend of moss ET flux with stand age, except at the very youngest stands, where bryophyte spatial coverage was low. Our results emphasize the important contribution that bryophytes make to the ET flux of boreal forests.

  8. Validating HYLARSMET: a Hydrologically Consistent Land Surface Model for Soil Moisture and Evapotranspiration Modelling over Southern Africa using Remote Sensing and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Sinclair, Scott; Pegram, Geoff; Mengitsu, Michael; Everson, Colin

    2015-04-01

    Timeous knowledge of the spatial distribution of soil moisture and evapotranspiration over a large region in fine detail has great value for coping with two weather extremes: flash floods and droughts, since the state of the wetness of the land surface has a major impact on runoff response. Also, the ability to monitor the wetness of the soil and the actual evapotranspiration over large regions, without having to laboriously take expensive samples, is a bonus for agricultural managers who need to predict crop yields. We present samples of the daily national Soil Moisture and Evapotranspiration estimates on a grid of 7300 locations centred in 12 km squares, then move on to the results of a validation study for soil moisture and evapotranspiration estimated using the PyTOPKAPI hydrological model in Land Surface Modelling mode, a system called HYLARSMET. The HYLARSMET estimates are compared with detailed evapotranspiration and soil moisture measurements made at the Baynesfield experimental farm in the KwaZulu-Natal province of South Africa, run by the University of KZN. The HYLARSMET evapotranspiration estimates compared very well with the measured estimates for the two chosen crop types, in spite of the fact that the HYLARSMET estimates were not designed to explicitly account for the crop types at each site. The same seasonality effects were evident in all 3 estimates, and there was a stronger ET relationship between HYLARSMET and the Soybean site (Pearson r = 0.81) than for Maize, (r = 0.59). The soil moisture relationship was stronger between the two in situ measured estimates (r = 0.98 at 0.5 m depth) than it was between HYLARSMET and the field estimates (r about 0.52 in both cases). Overall there was a reasonably good relationship between HYLARSMET and the in situ measurements of ET and SM at each site, indicating the value of the modelling procedure.

  9. Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity

    PubMed Central

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917

  10. Spatial and temporal variation in evapotranspiration using Raman lidar

    NASA Astrophysics Data System (ADS)

    Eichinger, W. E.; Cooper, D. I.; Hipps, L. E.; Kustas, W. P.; Neale, C. M. U.; Prueger, J. H.

    2006-02-01

    The Los Alamos Raman lidar has been used to make high resolution (25 m) estimates of the evapotranspiration rate over adjacent corn and soybean canopies. The lidar makes three-dimensional measurements of the water vapor content of the atmosphere directly above the canopy that are inverted using Monin-Obukhov similarity theory. This may be used to examine the relationship between evapotranspiration and surface moisture/soil type. Lidar estimates of evapotranspiration reveal a high degree of spatial variability over corn and soybean fields that may be associated with small elevation changes in the area. The spatial structure of the variability is characterized using a structure function and correlation function approach. The power law relationship found by other investigators for soil moisture is not clear in the data for evapotranspiration, nor is the data a straight line over the measured lags. The magnitude of the structure function and the slope changes with time of day, with a probable connection to the amount of evapotranspiration and the spatial variability of the water vapor source. The data used was taken during the soil moisture-atmosphere coupling experiment (SMACEX) conducted in the Walnut Creek Watershed near Ames, Iowa in June and July 2002.

  11. Penman-Monteith Evapotranspiration under Soil Moisture Limiting Conditions across California

    NASA Astrophysics Data System (ADS)

    Purdy, A. J.; Famiglietti, J. S.

    2014-12-01

    In arid and semi-arid regions soil moisture often limits the flux of water to meet the atmospheric evapotranspiration (ET) demand. Potentially drier conditions and more variable precipitation and snow in California create a need to better understand how this reservoir limits ET across the state. The upcoming Soil Moisture Active Passive (SMAP) mission's surface and root zone soil moisture data will provide additional information to force observation based ET models at spatial scales ranging from 3-36 km2. To support application of SMAP data to ET modeling we investigate the role of soil moisture within the Penman-Monteith representation at FLUXNET and agricultural sites across California. We present findings on actual ET under soil moisture limiting conditions that do not violate assumptions within this modeling framework.

  12. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    USGS Publications Warehouse

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  13. NOAA Introduces its First-Generation Reference Evapotranspiration Product

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.

    2013-12-01

    NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally

  14. Estimation of Evapotranspiration as a function of Photosynthetic Active Radiation

    NASA Astrophysics Data System (ADS)

    Wesley, E.; Migliaccio, K.; Judge, J.

    2012-12-01

    The purpose of this research project is to more accurately measure the water balance and energy movements to properly allocate water resources at the Snapper Creek Site in Miami-Dade County, FL, by quantifying and estimating evapotranspiration (ET). ET is generally estimated using weather based equations, this project focused on estimating ET as a function of Photosynthetic Active Radiation (PAR). The project objectives were first to compose a function of PAR and calculated coefficients that can accurately estimate daily ET values with the least amount of variables used in its estimation equation, and second, to compare the newly identified ET estimation PAR function to TURC estimations, in comparison to our actual Eddy Covariance (EC) ET data and determine the differences in ET values. PAR, volumetric water content (VWC), and temperature (T) data were quality checked and used in developing singular and multiple variable regression models fit with SigmaPlot software. Fifteen different ET estimation equations were evaluated against EC ET and TURC estimated ET using R2 and slope factors. The selected equation that best estimated EC ET was cross validated using a 5 month data set; its daily and monthly ET values and sums were compared against the commonly used TURC equation. Using a multiple variable regression model, an equation with three variables (i.e., VWC, T, and PAR) was identified that best fit EC ET daily data. However, a regression was also found that used only PAR and provided ET predictions of similar accuracy. The PAR based regression model predicted daily EC ET more accurately than the traditional TURC method. Using only PAR to estimate ET reduces the input variables as compared to using the TURC model which requires T and solar radiation. Thus, not only is the PAR approach more accurate but also more cost effective. The PAR-based ET estimation equation derived in this study may be over fit considering only 5 months of data were used to produce the PAR

  15. Offsetting Streamflow Depletion from Well Pumpage by Capture of Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Konikow, L. F.

    2014-12-01

    It is well established that groundwater pumpage must be balanced by a loss of water elsewhere. This loss comes primarily from storage depletion at early times and increasingly from capture at later times. Capture includes some combination of increases in recharge to the aquifer and decreases in discharge from the aquifer induced by the pumpage. Most capture is manifested as streamflow depletion (e.g., through induced infiltration and/or reductions in baseflow). However, decreasing evapotransirative discharge from an aquifer would constitute a type of capture that does not affect streamflow. In his classic 1940 paper Theis recommends that wells be placed in areas where groundwater "is being lost by evaporation or transpiration by non-productive vegetation," thereby utilizing this "lost" water with a minimal lowering of the water table. This study uses numerical simulation of a hypothetical unconfined stream-aquifer system in an arid climate, where streamflow depletion is typically a major concern, to assess how capture of evapotranspiration (ET) can influence the sources of water for a pumping well when the ET losses are directly affected by spatial and temporal changes in the depth to the water table. Consequently, streamflow depletion for a given pumping rate can be affected by capture of ET and how that varies with well location and the history of development and drawdown. We assume the standard MODFLOW linear model for changes in groundwater ET as the water table declines to a specified extinction depth. In one scenario in which about half the recharge to the aquifer is lost to ET under predevelopment conditions, the percentage of well discharge balanced by decreased ET changed from 1.1% after one year to 18% after 200 years of simulated pumpage. The actual ET rate decreased from 5,372 m3/d under predevelopment conditions to 5,001 m3/d after 200 years of development (a 7% reduction in total ET losses). At this same time, 77% of pumpage is derived from streamflow

  16. Evaporation and reference evapotranspiration trends in Spain

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Vicente-Serrano, Sergio M.; Wild, Martin; Azorin-Molina, Cesar; Calbó, Josep; Revuelto, Jesús; López-Moreno, Juan I.; Moran-Tejeda, Enrique; Martín-Hernández, Natalia; Peñuelas, Josep

    2015-04-01

    Interest is growing in the trends of atmospheric evaporation demand, increasing the need for long-term time series. In this study, we first describe the development of a dataset on evaporation in Spain based on long-term series of Piché and pan measurement records. Piché measurements have been reported for >50 stations since the 1960s. Measurements of pan evaporation, which is a much more widely studied variable in the literature, are also available, but only since 1984 for 21 stations. Particular emphasis was placed on the homogenization of this dataset (for more details, we refer to Sanchez-Lorenzo et al., 2014, Clim Res, 61: 269-280). Both the mean annual Piché and pan series over Spain showed evaporative increases during the common study period (1985-2011). Furthermore, using the annual Piché records since the 1960s, an evaporation decline was detected from the 1960s to the mid-1980s, which resulted in a non-significant trend over the entire 1961-2011 period. Our results indicate agreement between the decadal variability of reference evapotranspiration (Vicente-Serrano et al., 2014, Glob Planet Chang, 121: 26-40) and surface solar radiation (Sanchez-Lorenzo et al., 2013, Glob Planet Chang, 100: 343-352) and the evaporation from Piché and pan measurements since the mid-1980s, especially during summer. Nevertheless, this agreement needs attention, as Piché evaporimeters are inside meteorological screens and not directly exposed to radiation. Thus, as Piché readings are mainly affected by the aerodynamic term in Penman's evaporation equation and pan records are affected by both the heat balance and aerodynamic terms, the results suggest that both terms must be highly and positively correlated in Spain. In order to check this hypothesis, the radiative and aerodynamic components were estimated using the Penman's equation. The results show that the relationship with the radiative components is weaker than that with the aerodynamic component for both pan and

  17. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    NASA Astrophysics Data System (ADS)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  18. Regional evaluation of evapotranspiration in the Everglades

    USGS Publications Warehouse

    German, E.R.

    2000-01-01

    Nine sites in the Florida Everglades were selected and instrumented for collection of data necessary for evapotranspiration-determination using the Bowen-ratio energy-budget method. The sites were selected to represent the sawgrass or cattail marshes, wet prairie, and open-water areas that constitute most of the natural Everglades system. At each site, measurements necessary for evapotranspiration (ET) calculation and modeling were automatically made and stored on-site at 15- or 30-minute intervals. Data collected included air temperature and humidity at two heights, wind speed and direction, incoming solar radiation, net solar radiation, water level and temperature, soil moisture content, soil temperature, soil heat flux, and rainfall. Data summarized in this report were collected from January 1996 through December 1997, and the development of site-specific and regional models of ET for this period is described. Latent heat flux is the energy flux density equivalent of the ET rate. Modified Priestley-Taylor models of latent heat flux as a function of selected independent variables were developed at each site. These models were used to fill in periods of missing latent heat flux measurement, and to develop regional models of the entire Everglades region. The regional models may be used to estimate ET in wet prairie, sawgrass or cattail marsh, and open-water portions of the natural Everglades system. The models are not applicable to forested areas or to the brackish areas adjacent to Florida Bay. Two types of regional models were developed. One type of model uses measurements of available energy at a site, together with incoming solar energy and water depth, to estimate hourly ET. This available-energy model requires site data for net radiation, water heat storage, and soil heat flux, as well as data for incoming solar radiation and water depth. The other type of model requires only incoming solar energy, air temperature, and water depth data to provide estimates of

  19. Assessing reference evapotranspiration in a subhumid climate in NE Austria

    NASA Astrophysics Data System (ADS)

    Nolz, Reinhard; Eitzinger, Josef; Cepuder, Peter

    2015-04-01

    Computing reference evapotranspiration and multiplying it with a specific crop coefficient as recommended by the Food and Agriculture Organization of the United Nations (FAO) is the most widely accepted approach to estimate plant water requirements. The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on local environmental conditions. Consequently, it seems advisable to evaluate the model under local environmental conditions. Evapotranspiration was determined at a subhumid site in Austria (48°12'N, 16°34'E; 157 m asl) using a large weighing lysimeter operated at (limited) reference conditions and compared with calculations according to ASCE-EWRI. The lysimeter had an inner diameter of 1.9 m and a hemispherical bottom with a maximum depth of 2.5 m. Seepage water was measured at a free draining outlet using a tipping bucket. Lysimeter mass changes were sensed by a weighing facility with an accuracy of ±0.1 mm. Both rainfall and evapotranspiration were determined directly from lysimeter data using a simple water balance equation. Meteorological data for the ASCE-EWRI model were obtained from a weather station of the Central Institute for Meteorology and Geodynamics, Austria (ZAMG). The study period was from 2005 to 2010, analyses were based upon daily time steps. Daily calculated reference evapotranspiration was generally overestimated at small values, whereas it was rather underestimated when evapotranspiration was large, which is supported also by other studies. In the given case, advection of sensible heat proved

  20. Influence of land-surface evapotranspiration on the earth's climate

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Mintz, Y.

    1982-01-01

    Land-surface evapotranspiration is shown to strongly influence global fields of rainfall, temperature and motion by calculations using a numerical model of the atmosphere, confirming the general belief in the importance of evapotranspiration-producing surface vegetation for the earth's climate. The current version of the Goddard Laboratory atmospheric general circulation model is used in the present experiment, in which conservation equations for mass, momentum, moisture and energy are expressed in finite-difference form for a spherical grid to calculate (1) surface pressure field evolution, and (2) the wind, temperature, and water vapor fields at nine levels between the surface and a 20 km height.

  1. Drought impacts and resilience on crops via evapotranspiration estimations

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Asadollahi Dolatabad, Saeid

    2015-04-01

    Currently, the global needs for food and water is at a critical level. It has been estimated that 12.5 % of the global population suffers from malnutrition and 768 million people still do not have access to clean drinking water. This need is increasing because of population growth but also by climate change. Changes in precipitation patterns will result either in flooding or droughts. Consequently availability, usability and affordability of water is becoming challenge and efficient use of water and water management is becoming more important, particularly during severe drought events. Drought monitoring for agricultural purposes is very hard. While meteorological drought can accurately be monitored using precipitation only, estimating agricultural drought is more difficult. This is because agricultural drought is dependent on the meteorological drought, the impacts on the vegetation, and the resilience of the crops. As such not only precipitation estimates are required but also evapotranspiration at plant/plot scale. Evapotranspiration (ET) describes the amount of water evaporated from soil and vegetation. As 65% of precipitation is lost by ET, drought severity is highly linked with this variable. In drought research, the precise quantification of ET and its spatio-temporal variability is therefore essential. In this view, remote sensing based models to estimate ET, such as SEBAL and SEBS, are of high value. However the resolution of current evapotranspiration products are not good enough for monitoring the impact of the droughts on the specific crops. This limitation originates because plot scales are in general smaller than the resolution of the available satellite ET products. As such remote sensing estimates of evapotranspiration are always a combination of different land surface types and cannot be used for plant health and drought resilience studies. The goal of this research is therefore to enable adequate resolutions of daily evapotranspiration estimates

  2. Heterogeneous terrain: a challenge to derive evapotranspiration with remote sensing and scintillometry

    NASA Astrophysics Data System (ADS)

    Thiem, Christina; Sun, Liya; Müller, Benjamin; Bernhardt, Matthias; Schulz, Karsten

    2014-05-01

    Despite the importance of evapotranspiration for Meteorology, Hydrology and Agronomy, obtaining area-averaged evapotranspiration estimates is cost as well as maintenance intensive: usually area-averaged evapotranspiration estimates are obtained by distributed sensor networks or remotely sensed with a scintillometer. A low cost alternative for evapotranspiration estimates are satellite images, as many of them are freely available. This approach has been proven to be worthwhile above homogeneous terrain, and typically evapotranspiration data obtained with scintillometry are applied for validation. We will extend this approach to heterogeneous terrain: evapotranspiration estimates from ASTER 2013 images will be compared to scintillometer derived evapotranspiration estimates. The goodness of the correlation will be presented as well as an uncertainty estimation for both the ASTER derived and the scintillometer derived evapotranspiration.

  3. Sub-canopy evapotranspiration from floating vegetation and open water in a swamp forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have demonstrated large discrepancies in the difference between evapotranspiration from wetland vegetation and evaporation from open water. In this study, we investigate evapotranspiration differences between water and vegetation in a scenario that has otherwise not been extensively...

  4. Evapotranspiration from areas of native vegetation in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Woodham, W.M.; Lopez, Miguel Angel

    1996-01-01

    The micrometeorological methods of energy-balance Bowen ratio and eddy correlation probably are suitable for determining evapotranspiration from unforested sites, but the aerodynamic effects of tall tree canopies need to be considered when the methods are used for forested sites. Potential evapotranspiration methods might not yield reliable estimates of evapotranspiration for all areas of native vegetation. Estimates of annual evapotranspiration ranged from 970 millimeters for a cypress swamp site to 1,060 millimeters for a pine flatwood site.

  5. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  6. Operational evapotranspiration based on Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  7. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  8. FIELD EVALUATION OF EVAPO-TRANSPIRATION (ET) CAPS

    EPA Science Inventory

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid W...

  9. Ecosystem evapotranspiration: Challenges in measurements, estimates, and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) processes at the leaf-to-landscape scales in multiple land uses have important controls and feedbacks for the local, regional and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and cro...

  10. Using Thermal Remote Sensing for Drought and Evapotranspiration Monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status affecting evapotranspiration and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as...

  11. Using Thermal Remote Sensing for Drought and Evapotranspiration Monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status for estimating evapotranspiration and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g...

  12. Seasonal energy and evapotranspiration partitioning in a desert vineyard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The challenge of partitioning energy and evapotranspiration (ET) components was addressed over a season (bud break till harvest) in a wine grape vineyard located in an extreme arid region. A below canopy energy balance approach was applied to continuously estimate evaporation from the soil (E) while...

  13. Partitioning evapotranspiration into evaporation and transpiration in a corn field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is a main component of the hydrology cycle. It consists of soil water evaporation (E) and plant transpiration (T). Accurate partitioning of ET into E and T is challenging. We measured soil water E using heat pulse sensors and a micro-Bowen ratio system, T using stem flow gaug...

  14. Partitioning evapotranspiration using diurnal surface temperature variation 1861

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The encroachment of woody plants in grasslands across the Western U.S. will affect soil water availability by altering the contributions of evaporation (E) and transpiration (T) to total evapotranspiration (ET). To study this phenomenon, a network of flux stations is in place to measure ET in grass...

  15. Evapotranspiration: Progress in measurement and modeling in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the water resources available for agriculture become limiting due to population growth, competition from other water users, drought and water quality degradation, the importance of evapotranspiration (ET) as a major component of water use in agriculture grows. This paper provides a focused survey...

  16. Deriving hourly evapotranspiration (ET) rates with SEBS: A lysimetric evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous energy balance (EB) algorithms have been developed to use remote sensing data for mapping evapotranspiration (ET) on a regional basis. Adopting any single or combination of these models for an operational ET remote sensing program requires a thorough evaluation. The Surface Energy Balance S...

  17. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    NASA Astrophysics Data System (ADS)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  18. Bushland Evapotranspiration and Agricultural Remote Sensing EXperiment 2007 (BEAREX07)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Texas High Plains, every millimeter of irrigation water saved greatly affects profit margins. If available, high-resolution daily evapotranspiration (ET) maps would help producers plan their irrigation schedule effectively. The ET maps derived from satellite sensors with daily coverage such a...

  19. ADVECTION INFLUENCES ON EVAPOTRANSPIRATION OF ALFALFA IN A SEMIARID ENVIRONMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advective enhancement of crop evapotranspiration (ET) occurs when drier, hotter air is transported into the crop by wind and can be an important factor in the water balance of irrigated crops in a semiarid climate. Thirteen days of moderate to extremely high ET rates of irrigated alfalfa (Medicago ...

  20. Bushland evapotranspiration and agricultural remote sensing system (BEARS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution daily evapotranspiration (ET) maps would greatly assist irrigation scheduling and hydrologic modeling. Numerous remote sensing-based ET algorithms that vary in complexity are available for estimating spatially and temporally variable daily ET at a regional scale. However, implementat...

  1. Experimental verification of a recursive method to calculate evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, a recursive combination method (RCM) to calculate potential and crop evapotranspiration (ET) was given by Lascano and Van Bavel (Agron. J. 2007, 99:585–590). The RCM differs from the Penman-Monteith (PM) method, the main difference being that the assumptions made regarding the temperature ...

  2. A field test of recursive calculation of crop evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous methods to calculate the evapotranspiration (ET) rate from field crops have been proposed, but few have convincingly demonstrated to be usefully accurate. The direct measurement of ET requires weighable lysimeters. However, the use of a surface energy balance to calculate ET requires a corr...

  3. Evapotranspiration model of different complexity for multiple land cover types

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparison between half-hourly and daily measured and computed evapotranspiration (ET) using three models of different complexity, namely the Priestley-Taylor (P-T), reference Penman-Monteith (P-M), and Common Land Model (CLM) was conducted using three AmeriFlux sites under different land cover an...

  4. Remote sensing estimation of evapotranspiration for SWAT Model Calibration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrological models are used to assess many water resource problems from water quantity to water quality issues. The accurate assessment of the water budget, primarily the influence of precipitation and evapotranspiration (ET), is a critical first-step evaluation, which is often overlooked in hydro...

  5. Crop coefficient development and application to an evapotranspiration network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop coefficients derived from properly designed, operated, and maintained lysimeters provide the most accurate values throughout the growing season and are critical in the computation of hourly and daily,regionally based, crop evapotranspiration (ET) values. Multi-stage crop coefficients can be der...

  6. ESTIMATION OF POTENTIAL EVAPOTRANSPIRATION FROM MERGED CERES and MODIS OBSERVATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and timely estimates of potential evapotranspiration (ET) and knowledge of their spatial and temporal distribution are essential for agriculture and water resource management as well as for understanding the impacts of climate variability on terrestrial systems. Because of the paucity and i...

  7. EVAPOTRANSPIRATION OVER A CAMELINA CROP AT MARICOPA, ARIZONA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) over an oilseed crop, Camelina sativa, was evaluated for an experimental plot in Maricopa, Arizona between December 2006 and April 2007. Camelina (cv. Robinson) was grown in a 1.1 ha field in a randomized design containing 32 plots replicated for 4 levels of water depletion: ...

  8. Daily time series evapotranspiration maps for Oklahoma and Texas panhandle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...

  9. GOES Solar Radiation for Evapotranspiration Estimation and Streamflow Predictions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Weather Service River Forecast System uses the Sacramento Soil Moisture Accounting (SAC-SMA) rainfall-runoff model to produce daily river and flood forecasts and issue flood warnings. The manual observations of total sky cover used to estimate solar radiation and potential evapotranspir...

  10. Calculation of canopy resistance with a recursive evapotranspiration model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calculation of hourly and daily crop evapotranspiration (ETc) from weather variables requires a corresponding hourly or daily value of canopy resistance (rc). An iterative method first proposed by MI Budyko to calculate ETc finds the surface canopy temperature (Ts) that satisfies the crop’s ener...

  11. Determining the oxygen isotope composition of evapotranspiration with eddy covariance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oxygen isotope componsition of evapotranspiration (dF) represents an important tracer in the study of biosphere-atmosphere interactions, hydrology, paleoclimate, and carbon cycling. Here we demonstrate direct measurement of dF based on eddy covariance (EC) and tunable diode laser (EC-TDL) techni...

  12. TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses

    PubMed Central

    Janik, Grzegorz; Wolski, Karol; Daniel, Anna; Albert, Małgorzata; Skierucha, Wojciech; Wilczek, Andrzej; Szyszkowski, Paweł; Walczak, Amadeusz

    2015-01-01

    The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form ETR(θ2.5 cm, T2.5 cm) = A/(1 + B · e−C·(θ2.5 cm · T2.5 cm)), where: ETR(θ2.5 cm, T2.5 cm) is evapotranspiration [mm·h−1], θ2.5 cm is volumetric moisture of soil at the depth of 2.5 cm [m3·m−3], T2.5 cm is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm·h1], and [—], [(m3·m−3·°C)−1]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards. PMID:26448964

  13. Changes in reference evapotranspiration over an agricultural region in the Qinghai-Tibetan plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Cungui; Shen, Yanjun; Liu, Fenggui; Meng, Lei

    2016-01-01

    Reference evapotranspiration (ET0), as an estimate of the evaporative demand of the atmosphere, has been receiving extensive attention in researches on hydrological cycle. Sensitivity of ET0 to major climatic variables has significant applications in climatology, hydrology, and agrometeorology and is also important to improve our understanding of the connections between climatic conditions and ET0 variability. In this study, we used the Penman-Monteith equation to calculate ET0 and adopted a nondimensional sensitivity coefficient formula to analyze sensitivities of ET0 to four climatic variables based on daily meteorological data from eight meteorological sites in the Huangshui River basin and surrounding areas during 1961-2010. The results indicated that (1) strong correlations with R 2 up to 0.76 exist between observed E pan and calculated annual ET0; (2) ET0 had a decreasing trend in the Huangshui River basin (HRB) during 1961-2010; (3) Spatially, distribution of ET0 was largely correlated with altitude, for instance, the average annual ET0 was larger in low-altitude areas than in high-altitude areas; (4) ET0 was more sensitive to actual vapor pressure in high-altitude areas while it was more sensitive to temperature in low-altitude areas; and (5) ET0 showed a decreasing trend and was consistent with the decreases in net radiation and wind speed at seasonal and annual time scales in HRB during 1961-2010. Sensitivity analysis of ET0 to major climatic variables revealed that temperature was primarily responsible for changes in ET0 in the growing season while actual vapor pressure was the dominating factor causing changes in ET0 in the nongrowing season. However, annual averaged ET0 was more sensitive to actual vapor pressure ( R 2 = 0.63), indicating that actual vapor pressure was possibly the primary climatic variable that causes changes in annual ET0.

  14. Spatial evapotranspiration, rainfall and land use data in water accounting - Part 1: Review of the accuracy of the remote sensing data

    NASA Astrophysics Data System (ADS)

    Karimi, P.; Bastiaanssen, W. G. M.

    2014-01-01

    The scarcity of water encourages scientists to develop new analytical tools to enhance water resource management. Water accounting and distributed hydrological models are examples of such tools. Water accounting needs accurate input data for adequate descriptions of water distribution and water depletion in river basins. Ground-based observatories are decreasing, and remote sensing data is a suitable alternative to measure the required input variables. This paper reviews the reliability of remote sensing algorithms to accurately determine the spatial distribution of actual evapotranspiration, rainfall and land use. For our validation we used only those papers that covered study periods of one season to annual cycles because the accumulated water balance is the primary concern. Review papers covering shorter periods only (days, weeks) were not included in our review. Our review shows that by using remote sensing, the spatial distribution of evapotranspiration can be mapped with an overall accuracy of 95% (STD 5%) and rainfall with an overall accuracy of 82% (STD 15%). Land use can be identified with an overall accuracy of 85% (STD 7%). Hence, more scientific work is needed to improve spatial mapping of rainfall using multiple space-borne sensors. Actual evapotranspiration maps can be used with confidence in water accounting and hydrological modeling.

  15. Changes in effective moisture on the Tibetan Plateau during the period 1981-2010

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Wu, S.; Zhao, D.

    2013-12-01

    Observed evaporative demand has decreased worldwide during the past several decades. This trend is also noted on the Tibetan Plateau, a region that is particularly sensitive to climate change. However, actual evapotranspiration trends and their relationship to drought stress on the Tibetan Plateau are poorly understood. We analyzed the spatiotemporal changes in potential evapotranspiration(PET), actual evapotranspiration(AET) and effective moisture (defined as AET/PET) during 1981-2010. Climate data from 80 meteorological stations on the Tibetan Plateau were compiled for the period 1981-2010. New plant functional types were defined for the Tibetan Plateau and evapotranspiration is simulated by the modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ). The results show regional trends towards decreasing PET and statistically significant increases in AET (p < 0.05) and effective moisture (p < 0.001) during the period 1981-2010. A transition from significant negative to positive PET occurred in 1997. Additionally, a pronounced increase in effective moisture occurred during the period 1981-1997 because of significant decreased PET before 1997.

  16. Evapotranspiration as a component of water footprint: use of conventional and satellite data for better estimation of spatial and temporal pattern

    NASA Astrophysics Data System (ADS)

    Struzik, Piotr; Kepinska-Kasprzak, Malgorzata

    2014-08-01

    One of the main scientific goals of the COST Action ES1106 ("Assessment of European Agriculture Water use and Trade under Climate Change" EURO-AGRIWAT) is the analysis of the global water footprint (WF) in agriculture and virtual water trade (VWT). The starting point for further activities is analyses and inventory of data and tools which could be helpful for WF and WFT assessments. Evaporation values (ET) are crucial for agriculture where estimates of water reserves available for crops are the basis for scheduling the time and intensity of irrigation, yield prognoses, etc. Detail evapotranspiration data are, therefore, of essential value. However, stations performing direct measurements of evapotranspiration are very scarcely distributed in Poland for which reason the interpolation of the data is necessarily biased. Hence, evapotranspiration values are calculated using indirect methods (usually empirical formulas). Data from geostationary meteorological satellites are used operationally for determination of evapotranspiration with good spatial and temporal resolution (e.g. Land-SAF product). Study of relation between evapotranspiration values determined with use of satellite data and calculated using Penman-Monteith formula was performed for the study area in Poland. Daily values and cumulated (i.e. decadal, monthly and yearly) values were analyzed to determine quality and possible added value of the satellite product. Relation between reference ET and actual ET in two consecutive years was discussed, both for whole test area and individual stations, taking into account land use and possible water deficit in the root region, represented by H-SAF soil wetness index product. The differences were presented and discussed.

  17. Use of the Aquacrop model for the simulation of wheat evapotranspiration in north-eastern Tunisia

    NASA Astrophysics Data System (ADS)

    Aloui, A.; Masmoudi, M.; Jacob, F.; Ben Mechlia, N.

    2012-04-01

    Improvement of rainfed cropping systems is based on the use of rainfall water for crop transpiration. This could be achieved by the appropriate partitioning of rainfall between green water and blue water. Under semiarid conditions, the AquaCrop model which has a driving engine based on the direct link between dry matter production and crop evapotranspiration, seems to be a powerful tool to perform this task. For this purposes, an experimental work was conducted on the wheat crop, grown under various farming conditions, to determine how simulation modeling could be used to monitor canopy changes and actual crop evapotranspiration. The study area -CapBon- is located in north eastern Tunisia where rainfall is about 500 mm and ET0 around 1200mm Field monitoring consisted in regular measurements of the leaf area index (LAI), vegetation cover changes (CC) and soil moisture content profiles over the cropping season December 2009-April 2010. The usefulness of using hemispherical and standard images to determine LAI and CC was also investigated for their adoption as a standard methods for the assessment of these important parameter as input data. Results show that good estimates of LAI and CC could be obtained from digital images. Fairly reliable linear relationships were obtained between measurements on samples using a leaf area meter and indirect assessments (r2 = 0.78) Aqua-Crop simulations where also mostly accurate in estimating soil moisture temporal variations and soil water content of well textured soils. However for soils with high clay content, important differences were observed between simulation outputs and direct gravimetric measurements.

  18. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign

    NASA Astrophysics Data System (ADS)

    Anderson, Martha C.; Kustas, William P.; Alfieri, Joseph G.; Gao, Feng; Hain, Christopher; Prueger, John H.; Evett, Steven; Colaizzi, Paul; Howell, Terry; Chávez, José L.

    2012-12-01

    Robust spatial information about environmental water use at field scales and daily to seasonal timesteps will benefit many applications in agriculture and water resource management. This information is particularly critical in arid climates where freshwater resources are limited or expensive, and groundwater supplies are being depleted at unsustainable rates to support irrigated agriculture as well as municipal and industrial uses. Gridded evapotranspiration (ET) information at field scales can be obtained periodically using land-surface temperature-based surface energy balance algorithms applied to moderate resolution satellite data from systems like Landsat, which collects thermal-band imagery every 16 days at a resolution of approximately 100 m. The challenge is in finding methods for interpolating between ET snapshots developed at the time of a clear-sky Landsat overpass to provide complete daily time-series over a growing season. This study examines the efficacy of a simple gap-filling algorithm designed for applications in data-sparse regions, which does not require local ground measurements of weather or rainfall, or estimates of soil texture. The algorithm relies on general conservation of the ratio between actual ET and a reference ET, generated from satellite insolation data and standard meteorological fields from a mesoscale model. The algorithm was tested with ET retrievals from the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance model and associated DisALEXI flux disaggregation technique, which uses Landsat-scale thermal imagery to reduce regional ALEXI maps to a finer spatial resolution. Daily ET at the Landsat scale was compared with lysimeter and eddy covariance flux measurements collected during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment of 2008 (BEAREX08), conducted in an irrigated agricultural area in the Texas Panhandle under highly advective conditions. The simple gap-filling algorithm performed

  19. RIP-ET: A riparian evapotranspiration package for MODFLOW-2005

    USGS Publications Warehouse

    Maddock, Thomas, III; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori

    2012-01-01

    A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting

  20. Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California

    SciTech Connect

    1990-12-01

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab.

  1. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    SciTech Connect

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.

  2. Soil moisture and evapotranspiration predictions using Skylab data

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Moore, D. G.; Horton, M. L.; Russell, M. J.

    1975-01-01

    The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling.

  3. On estimating total daily evapotranspiration from remote surface temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Buffum, Martha J.

    1989-01-01

    A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.

  4. How do alternative root water uptake models affect the inverse estimation of soil hydraulic parameters and the prediction of evapotranspiration?

    NASA Astrophysics Data System (ADS)

    Gayler, Sebastian; Salima-Sultana, Daisy; Selle, Benny; Ingwersen, Joachim; Wizemann, Hans-Dieter; Högy, Petra; Streck, Thilo

    2016-04-01

    equation combined with the Mualem-van Genuchten approach to parametrize the soil hydraulic functions was coupled to three different root-water uptake modules according to Nimah & Hanks, Feddes, and van Genuchten. Potential evapotranspiration was estimated following Penman-Monteith, whereas leaf area index and rooting depth were predefined model inputs derived from observations. Simulation results were compared to 3-year time-series of time-domain reflectometry measurements of soil moisture in two to five different depths (depending on solum thickness) and eddy-covariance measurements of evapotranspiration. Data of two growing seasons (2010, 2011) were used for the inverse estimation of saturated water content, saturated hydraulic conductivity and the van Genuchten parameters α and n using the universal optimization tool UCODE. Data from the growing season 2012 were used for model validation. The model calibration results showed a similar and acceptable goodness of fit between simulated and observed soil water contents and actual evapotranspiration for all there models. There was no substantial difference in model performance between the alternative root water uptake models during the calibration phase 2010-2011. However, the values of the optimized soil hydraulic parameters substantially differed in some cases, resulting in an increased model uncertainty during the prediction phase 2012, especially during phases of strong drying out of the soil. Albeit single model combinations are superior over the others for single locations with respect to the different observables (soil moisture, evapotranspiration), none of the models outcompeted the others over all years, locations and observables. We conclude that model solutions cannot be considered unique when different process representations are selected and the respective soil hydraulic parameters fitted (equifinality problem).

  5. Climate Change Impact on Evapotranspiration, Heat Stress and Chill Requirements

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Marras, S.; Spano, D.

    2013-12-01

    Carbon dioxide concentration scenarios project an increase in CO2 from 372 ppm to between 500 and 950 ppm by the year 2100, and the potential effect on temperature, humidity, and plant responses to environmental factors are complex and concerning. For 2100, mean daily temperature increase projections range from 1.2oC to 6.8oC depending on greenhouse gas emissions. On the bad side, higher temperatures are often associated with increases in evapotranspiration (ET), heat stress, and pest infestations. On the good side, increased temperature is commonly related to less frost damage, faster growth, and higher production in some cases. One misconception is that global warming will increase evapotranspiration and, hence, agricultural water demand. As the oceans and other water bodies warm, evaporation and humidity are likely to increase globally, but higher humidity tends to reduce plant transpiration and hence ET. Higher CO2 concentrations also tend to reduce ET, and, in the end, the increase in ET due to higher temperature is likely to be offset by a decrease in ET due to higher humidity and CO2. With a decrease in daytime evapotranspiration, the canopy temperature is likely to rise relative to the air temperature, and this implies that heat stress could be worse than predicted by increased air temperature. Daily minimum temperatures are generally increasing about twice as fast as maximum temperatures presumably because of the increasing dew point temperatures as more water vapor is added to the atmosphere. This could present a serious problem to meet the chill requirement for fruit and nut crops. Growing seasons, i.e., from the last spring to the first fall frost, are likely to increase, but the crop growth period is likely to shorten due to higher temperature. Thus, spring frost damage is unlikely to change but there should be fewer damaging fall frost events. In this paper, we will present some ideas on the possible impact of climate change on evapotranspiration and

  6. Evamapper: A Novel Matlab Toolbox For Evapotranspiration Mapping

    NASA Astrophysics Data System (ADS)

    Atasever, Ü. H.; Kesikoğlu, M. H.; Özkan, C.

    2013-10-01

    Water consumption has been exceeding as the world population increases. Therefore, it is very important to manage water resources with care as it is not an endless resource. The Water loss in regional scale is the key phenomena to accomplish this goal. One of the main components of this phenomenon is evapotraspiration (ET) due to being one of the most important parameter for the management of water resources. Until recent years, evapotranspiration calculations were performed locally, using data obtained from weather stations. But for a successful water management, regional evapotranspiration maps are required. Different approaches are used to compute regional ETs. Among them, the direct measurement methods are not cost-effective and regionalized. For costeffective and regional ET mapping, Surface Energy Balance Algorithm (SEBAL) is the most known and effective technique. In this study, EvaMapper Toolbox which is based on SEBAL approach are developed for regional evapotranspiration mapping in MATLAB. By this toolbox, researchers can apply SEBAL technique which has a very complex structure to their study area easily through entering regional parameter values.

  7. Evapotranspiration studies for protective barriers: FY 1990 status report

    SciTech Connect

    Link, S.O.; Downs, J.L.; Thiede, M.E.; Lettau, D.J.; Twaddell, T.R.; Black, R.A.

    1992-05-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (Westinghouse Hanford) are working together to develop for the US Department of Energy (DOE) protective barriers for the near-surface disposal of hazardous waste at the Hanford Site. The proposed barrier design consists of a layer of fine-textured soil overlying a series of layers grading from sand to basalt riprap. A multiyear research program is being conducted to assess the long-term performance of barrier configurations in restricting plants, animals, and water from contacting buried wastes. The purpose of this report is to review work done up to July 31 in FY 1990 on the evapotranspiration subtask of the water infiltration task. As stated in the test plan, specific objectives of PNL`s evapotranspiration work were to (1) develop and test an environmentally controlled whole-plant gas exchange system, (2) collect evapotranspiration data at the whole-plant level on the small-tube lysimeters, (3) collect transpiration data on the shrubs at McGee Ranch, (4) collect data necessary to parameterize the plant component of the UNSAT-H code.

  8. Evapotranspiration studies for protective barriers: FY 1990 status report

    SciTech Connect

    Link, S.O.; Downs, J.L.; Thiede, M.E.; Lettau, D.J.; Twaddell, T.R. ); Black, R.A. )

    1992-05-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (Westinghouse Hanford) are working together to develop for the US Department of Energy (DOE) protective barriers for the near-surface disposal of hazardous waste at the Hanford Site. The proposed barrier design consists of a layer of fine-textured soil overlying a series of layers grading from sand to basalt riprap. A multiyear research program is being conducted to assess the long-term performance of barrier configurations in restricting plants, animals, and water from contacting buried wastes. The purpose of this report is to review work done up to July 31 in FY 1990 on the evapotranspiration subtask of the water infiltration task. As stated in the test plan, specific objectives of PNL's evapotranspiration work were to (1) develop and test an environmentally controlled whole-plant gas exchange system, (2) collect evapotranspiration data at the whole-plant level on the small-tube lysimeters, (3) collect transpiration data on the shrubs at McGee Ranch, (4) collect data necessary to parameterize the plant component of the UNSAT-H code.

  9. Analysis of potential evapotranspiration using limited weather data

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2014-09-01

    The most important weather variations are temperature (T), relative humidity (RH), and wind speed (u) for evapotranspiration models in limited data conditions. This study aims to compare three T-based formula, T/RH-based formula, and T/RH/u-based formula to detect the performance of them under limited data and different weather conditions. For this purpose, weather data were gathered from 181 synoptic stations in 31 provinces of Iran. The potential evapotranspiration was compared with the FAO Penman-Monteith method. The results showed that T-based formula, T/RH-based formula, and T/RH/u-based formula estimated potential evapotranspiration with R 2 >0.93 for 6, 12, and 30 provinces of Iran, respectively. They are more suitable for southeast of Iran (YA, KE, SB, and SK). The best precise method was the T/RH/u-based formula for SK and GO. Finally, a list of the best performance of each method has been presented to use other regions and next researches according to values of temperature, relative humidity, and wind speed. The best weather conditions to use the formulas are 14-26 °C and 2.50-3.50 m/s for temperature and wind speed, respectively.

  10. Moral Reasoning in Hypothetical and Actual Situations.

    ERIC Educational Resources Information Center

    Sumprer, Gerard F.; Butter, Eliot J.

    1978-01-01

    Results of this investigation suggest that moral reasoning of college students, when assessed using the DIT format, is the same whether the dilemmas involve hypothetical or actual situations. Subjects, when presented with hypothetical situations, become deeply immersed in them and respond as if they were actual participants. (Author/BEF)

  11. Factors Related to Self-Actualization.

    ERIC Educational Resources Information Center

    Hogan, H. Wayne; McWilliams, Jettie M.

    1978-01-01

    Provides data to further support the notions that females score higher in self-actualization measures and that self-actualization scores correlate inversely to the degree of undesirability individuals assign to their heights and weights. Finds that, contrary to predictions, greater androgyny was related to lower, not higher, self-actualization…

  12. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 1: Measurement of Evapotranspiration at the Environmental Research Center and Determination of Priestley-taylor Parameter

    NASA Technical Reports Server (NTRS)

    Kotada, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In order to study the distribution of evapotranspiration in the humid region using remote sensing technology, the parameter (alpha) in the Priestley-Taylor model was determined. The daily means of the parameter alpha = 1.14 can be available from summer to autumn and alpha = to approximately 2.0 in winter. The results of the satellite and the airborne sensing done on 21st and 22nd January, 1983, are described. Using the vegetation distribution in the Tsukuba Academic New Town, as well as the radiation temperature obtained by remote sensing and the radiation data observed at the ground surface, the evapotranspiration was calculated for each vegetation type by the Priestley-Taylor method. The daily mean evapotranspiration on 22nd January, 1983, was approximately 0.4 mm/day. The differences in evapotranspiration between the vegetation types were not detectable, because the magnitude of evapotranspiration is very little in winter.

  13. Effects of Daily Precipitation and Evapotranspiration Patterns on Flow and VOC Transport to Groundwater along a Watershed Flow Path

    USGS Publications Warehouse

    Johnson, R.L.; Thoms, R.B.; Zogorski, J.S.

    2003-01-01

    MTBE and other volatile organic compounds (VOCs) are widely observed in shallow groundwater in the United States, especially in urban areas. Previous studies suggest that the atmosphere and/or nonpoint surficial sources could be responsible for some of those VOCs, especially in areas where there is net recharge to groundwater. However, in semiarid locations where annual potential evapotranspiration can exceed annual precipitation, VOC detections in groundwater can be frequent. VOC transport to groundwater under net discharge conditions has not previously been examined. A numerical model is used here to demonstrate that daily precipitation and evapotranspiration (ET) patterns can have a significant effect on recharge to groundwater, water table elevations, and VOC transport. Ten-year precipitation/ET scenarios from six sites in the United States are examined using both actual daily observed values and "average" pulsed precipitation. MTBE and tetrachloroethylene transport, including gas-phase diffusion, are considered. The effects of the precipitation/ET scenarios on net recharge and groundwater flow are significant and complicated, especially under low-precipitation conditions when pulsed precipitation can significantly underestimate transport to groundwater. In addition to precipitation and evapotranspiration effects, location of VOC entry into the subsurface within the watershed is important for transport in groundwater. This is caused by groundwater hydraulics at the watershed scale as well as variations in ET within the watershed. The model results indicate that it is important to consider both daily precipitation/ET patterns and location within the watershed in order to interpret VOC occurrence in groundwater, especially in low-precipitation settings.

  14. Uncertainty Quantification of Evapotranspiration and Infiltration from Modeling and Historic Time Series at the Savannah River F-Area

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Flach, G. P.

    2012-12-01

    The objectives of this presentation are: (a) to illustrate the application of Monte Carlo and fuzzy-probabilistic approaches for uncertainty quantification (UQ) in predictions of potential evapotranspiration (PET), actual evapotranspiration (ET), and infiltration (I), using uncertain hydrological or meteorological time series data, and (b) to compare the results of these calculations with those from field measurements at the U.S. Department of Energy Savannah River Site (SRS), near Aiken, South Carolina, USA. The UQ calculations include the evaluation of aleatory (parameter uncertainty) and epistemic (model) uncertainties. The effect of aleatory uncertainty is expressed by assigning the probability distributions of input parameters, using historical monthly averaged data from the meteorological station at the SRS. The combined effect of aleatory and epistemic uncertainties on the UQ of PET, ET, and Iis then expressed by aggregating the results of calculations from multiple models using a p-box and fuzzy numbers. The uncertainty in PETis calculated using the Bair-Robertson, Blaney-Criddle, Caprio, Hargreaves-Samani, Hamon, Jensen-Haise, Linacre, Makkink, Priestly-Taylor, Penman, Penman-Monteith, Thornthwaite, and Turc models. Then, ET is calculated from the modified Budyko model, followed by calculations of I from the water balance equation. We show that probabilistic and fuzzy-probabilistic calculations using multiple models generate the PET, ET, and Idistributions, which are well within the range of field measurements. We also show that a selection of a subset of models can be used to constrain the uncertainty quantification of PET, ET, and I.

  15. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    NASA Astrophysics Data System (ADS)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  16. A parabolic function to modify Thornthwaite estimates of potential evapotranspiration for the eastern United States

    USGS Publications Warehouse

    McCabe, G.J., Jr.

    1989-01-01

    Errors of the Thornthwaite model can be analyzed using adjusted pan evaporation as an index of potential evapotranspiration. An examination of ratios of adjusted pan evaporation to Thornthwaite potential evapotranspiration indicates that the ratios are highest in the winter and lowest during summer months. This trend suggests a parabolic pattern. In this study a parabolic function is used to adjust Thornthwaite estimates of potential evapotranspiration. Forty locations east of the Rocky Mountains are analyzed. -from Author

  17. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis

    NASA Astrophysics Data System (ADS)

    McMahon, T. A.; Peel, M. C.; Lowe, L.; Srikanthan, R.; McVicar, T. R.

    2013-04-01

    This guide to estimating daily and monthly actual, potential, reference crop and pan evaporation covers topics that are of interest to researchers, consulting hydrologists and practicing engineers. Topics include estimating actual evaporation from deep lakes and from farm dams and for catchment water balance studies, estimating potential evaporation as input to rainfall-runoff models, and reference crop evapotranspiration for small irrigation areas, and for irrigation within large irrigation districts. Inspiration for this guide arose in response to the authors' experiences in reviewing research papers and consulting reports where estimation of the actual evaporation component in catchment and water balance studies was often inadequately handled. Practical guides using consistent terminology that cover both theory and practice are not readily available. Here we provide such a guide, which is divided into three parts. The first part provides background theory and an outline of the conceptual models of potential evaporation of Penman, Penman-Monteith and Priestley-Taylor, as well as discussions of reference crop evapotranspiration and Class-A pan evaporation. The last two sub-sections in this first part include techniques to estimate actual evaporation from (i) open-surface water and (ii) landscapes and catchments (Morton and the advection-aridity models). The second part addresses topics confronting a practicing hydrologist, e.g. estimating actual evaporation for deep lakes, shallow lakes and farm dams, lakes covered with vegetation, catchments, irrigation areas and bare soil. The third part addresses six related issues: (i) automatic (hard wired) calculation of evaporation estimates in commercial weather stations, (ii) evaporation estimates without wind data, (iii) at-site meteorological data, (iv) dealing with evaporation in a climate change environment, (v) 24 h versus day-light hour estimation of meteorological variables, and (vi) uncertainty in evaporation

  18. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: A paleo-water-balance approach

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-12-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotranspiration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404-1905 period for the Upper Colorado River Basin.

  19. Comparison of evapotranspiration rates for flatwoods and ridge citrus

    USGS Publications Warehouse

    Jia, X.; Swancar, A.; Jacobs, J.M.; Dukes, M.D.; Morgan, K.

    2007-01-01

    Florida citrus groves are typically grown in two regions of the state: flatwoods and ridge. The southern flatwoods citrus area has poorly drained fine textured sands with low organic matter in the shallow root zone. Ridge citrus is located in the northern ridge citrus zone and has fine to coarse textured sands with low water-holding capacity. Two commercial citrus groves, selected from each region, were studied from 15 July 2004 to 14 July 2005. The flatwoods citrus (FC) grove had a grass cover and used drainage ditches to remove excess water from the root zone. The ridge citrus (RC) grove had a bare soil surface with weeds periodically eliminated by tillage. Citrus crop evapotranspiration (ETc) rates at the two citrus groves were measured by the eddy correlation method, and components in the energy balance were also examined and compared. The study period had higher than average rainfall, and as a result, the two locations had similar annual ETc rates (1069 and 1044 mm for RC and FC, respectively). The ETc rates were 59% (RC) and 47% (FC) of the rainfall amounts during the study period. The annual reference crop evapotranspiration (ETo) rates were 1180 mm for RC and 1419 mm for FC, estimated using the standardized reference evapotranspiration equation. The citrus crop coefficients (Kc, ratio of ETc to ET o) were different between the two locations because of differences in latitude, ground cover, and rainfall amounts. The Kc values ranged from 0.70 between December and March to 1.05 between July and November for RC, and from 0.65 between November and May to 0.85 between June and October for FC. The results are consistent with other Kc values reported from field studies on citrus in both Florida and elsewhere using these and alternate methods.

  20. Direct Measurement of Daily Evapotranspiration From a Deciduous Forest Using a Superconducting Gravimeter

    NASA Astrophysics Data System (ADS)

    Van Camp, M. J.; de Viron, O.; Pajot-Métivier, G.; Cazenave, F.; Watlet, A.; Dassargues, A.; Vanclooster, M.

    2015-12-01

    The conversion of liquid water into water vapor strongly controls the energy transfer between the Earth and the atmosphere, and plays one of the most important roles in the hydrological cycle. This process, called evapotranspiration (ET), deeply constraints the amount of green water in the total global water balance. However, assessing the ET from terrestrial ecosystems remains a key challenge in hydrology. We show that the liquid water mass losses can be directly inferred from continuous gravity measurements: as water evaporates and transpires from terrestrial ecosystems, the mass distribution varies through the system, changing its gravity field. Using continuous superconducting gravity measurements, we were able to identify a daily changes in gravity at the level of, or smaller than 10-10 g per day. This corresponds to 2.0 mm of water over an area of 50 ha.The strength of this method is its ability to ensure a direct, traceable and continuous monitoring of actual ET for years at the mesoscale (~50 ha) with a precision of a few tenths of mm of water. This paves the way for the development of the method in different land-use, land-cover and geological contexts, using superconducting and coming quantum gravimeters.

  1. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    USGS Publications Warehouse

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  2. Estimation of Spatially Distributed Evapotranspiration Using Remote Sensing and a Relevance Vector Machine

    NASA Astrophysics Data System (ADS)

    Maslova, I.; Bachour, R.; Walker, W. R.; Ticlavilca, A. M.; McKee, M.

    2014-12-01

    With the development of surface energy balance analyses, remote sensing has become a spatially explicit and quantitative methodology for understanding evapotranspiration (ET), a critical requirement for water resources planning and management. Limited temporal resolution of satellite images and cloudy skies present major limitations that impede continuous estimates of ET. This study introduces a practical approach that overcomes (in part) the previous limitations by implementing machine learning techniques that are accurate and robust. The analysis was applied to the Canal B service area of the Delta Canal Company in central Utah using data from the 2009-2011 growing seasons. Actual ET was calculated by an algorithm using data from satellite images. A relevance vector machine (RVM), which is a sparse Bayesian regression, was used to build a spatial model for ET. The RVM was trained with a set of inputs consisting of vegetation indexes, crops, and weather data. ET estimated via the algorithm was used as an output. The developed RVM model provided an accurate estimation of spatial ET based on a Nash-Sutcliffe coefficient (E) of 0.84 and a root-mean-squared error (RMSE) of 0.5 mmday-1. This methodology lays the groundwork for estimating ET at a spatial scale for the days when a satellite image is not available. It could also be used to forecast daily spatial ET if the vegetation indexes model inputs are extrapolated in time and the reference ET is forecasted accurately.

  3. Spatiotemporal Variability in Potential Evapotranspiration across an Urban Monitoring Network

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; Long, M. R.; Fipps, G.; Swanson, C.; Traore, S.

    2015-12-01

    Evapotranspiration in urban and peri-urban environments is difficult to measure and predict. Barriers to accurate assessment include: the wide range of microclimates caused by urban canyons, heat islands, and park cooling; limited instrument fetch; and the patchwork of native soils, engineered soils, and hardscape. These issues combine to make an accurate assessment of the urban water balance difficult, as evapotranspiration calculations require accurate meteorological data. This study examines nearly three years of data collected by a network of 18 weather stations in Dallas, Texas, designed to measure potential evapotranspiration (ETo) in support of the WaterMyYard conservation program (http://WaterMyYard.org). Variability amongst stations peaked during the summer irrigation months, with a maximum standard deviation of 0.3 mm/hr and 4 mm/d. However, we found a significant degree of information overlap in the network. Most stations had a high correlation (>0.75) with at least one other station in the network, and many had a high correlation with at least 10 others. Correlation strength between station ETo measurements did not necessarily decrease with Euclidean distance, as expected, but was more closely related to differences in station elevation and longitude. Stations that had low correlations with others in the network typically had siting and fetch issues. ETo showed a strong temporal persistence; average station autocorrelation was 0.79 at a 1-hour lag and 0.70 at a 24-hour lag. To supplement the larger-scale network data, we deployed a mobile, vehicle-mounted weather station to quantify deviations present in the atmospheric drivers of evapotranspiration: temperature, humidity, wind, and solar radiation. Data were collected at mid-day during the irrigation season. We found differences in mobile and station ETo predictions up to 0.2 mm/hr, primarily driven by wind speed variations. These results suggest that ETo variation at the neighborhood to municipality

  4. Using Landsat data to estimate evapotranspiration of winter wheat

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Heilman, J. L.; Bagley, J. O.; Powers, W. L.

    1977-01-01

    Results obtained from an evapotranspiration model as applied to Kansas winter wheatfields were compared with results determined by a weighing lysimeter, and the standard deviation was found to be less than 0.5 mm/day (however, the 95% confidence interval was between plus and minus 0.2 mm/day). Model inputs are solar radiation, temperature, precipitation, and leaf area index; an equation was developed to estimate the leaf area index from Landsat data. The model provides estimates of transpiration, evaporation, and soil moisture.

  5. Evaluation of different interpolation schemes for precipitation and reference evapotranspiration and the impact on simulated large-scale water balance in Slovenia

    NASA Astrophysics Data System (ADS)

    He, Qianwen; Molkenthin, Frank; Wendland, Frank; Herrmann, Frank

    2016-04-01

    Precipitation and reference evapotranspiration (ET0) are two main climate input components for hydrological models, which are often recorded or calculated based on measuring stations. Interpolation schemes are implemented to regionalize data from measuring stations for distributed hydrological models. This study had been conducted for 5 months, with the aim of: (1) evaluating three interpolation schemes for precipitation and reference evapotranspiration (ET0); (2) assessing the impact of the interpolation schemes on actual evapotranspiration and total runoff simulated by a distributed large-scale water balance model - mGROWA. The study case was the Republic of Slovenia, including a high variability in topography and climatic conditions, with daily meteorological data measured in 20 stations for a period of 44 years. ET0 were computed by both FAO Penman-Monteith equation and Hargreaves equation. The former equation is recommended as the standard equation, while the ET0 calculated by the latter one for Slovenia had a certain deviation (+150 mm/a) from it. Ordinary Kriging, Regression Kriging and Linear Regression were selected to regionalize precipitation and ET0. Reliability of the three interpolation schemes had been assessed based on the residual obtained from cross-validation. Monthly regionalized precipitation and ET0 were subsequently used as climate input for mGROWA model simulation. Evaluation of the interpolation schemes showed that the application of Regression Kriging and Linear Regression led to an acceptable interpolation result for reference evapotranspiration, especially in case the FAO Penman-Monteith equation was used. On the other hand, Regression Kriging also provided a more convincing interpolated result for precipitation. Meanwhile, mGROWA simulation results were affected by climate input data sets generated by applying difference interpolation schemes. Therefore, it is essential to select an appropriate interpolation scheme, in order to generate

  6. Monitoring Tamarisk Defoliation and Scaling Evapotranspiration Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Dennison, P. E.; Hultine, K. R.; Nagler, P. L.; Miura, T.; Glenn, E. P.; Ehleringer, J. R.

    2008-12-01

    Non-native tamarisk (Tamarix spp.) has invaded riparian ecosystems throughout the Western United States. Another non-native species, the saltcedar leaf beetle (Diorhabda elongata), has been released in an attempt to control tamarisk infestations. Most efforts directed towards monitoring tamarisk defoliation by Diorhabda have focused on changes in leaf area or sap flux, but these measurements only give a local view of defoliation impacts. We are assessing the ability of remote sensing data for monitoring tamarisk defoliation and measuring resulting changes in evapotranspiration over space and time. Tamarisk defoliation by Diorhabda has taken place during the past two summers along the Colorado River and its tributaries near Moab, Utah. We are using 15 meter spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 250 meter spatial resolution Moderate Resolution Imaging Spectrometer (MODIS) data to monitor tamarisk defoliation. An ASTER normalized difference vegetation index (NDVI) time series has revealed large drops in index values associated with loss of leaf area due to defoliation. MODIS data have superior temporal monitoring abilities, but at the sacrifice of much lower spatial resolution. A MODIS enhanced vegetation index time series has revealed that for pixels where the percentage of riparian cover is moderate or high, defoliation is detectable even at 250 meter spatial resolution. We are comparing MODIS vegetation index time series to site measurements of leaf area and sap flux. We are also using an evapotranspiration model to scale potential water savings resulting from the biocontrol of tamarisk.

  7. Evapotranspiration of applied water, Central Valley, California, 1957-78

    USGS Publications Warehouse

    Williamson, Alex K.

    1982-01-01

    In the Central Valley, Calif., where 57% of the 20,000 square miles of land is irrigated, ground-water recharge from agricultural lands is an important input to digital simulation models of ground-water flow. Several methods of calculating recharge were explored for the Central Valley Aquifer Project and a simplified water budget was designed where net recharge (recharge minus pumpage) equals net surface water diverted minus evapotranspiration of applied water (ETAW). This equation eliminates the need to determine pumpage from the water-table aquifer, assuming that the time lag for infiltration is not longer than the time intervals of interest for modeling. This study evaluates only the evapotranspiration of applied water. Future reports will describe the other components of the water budget. ETAW was calculated by summing the products of ETAW coefficients and respective crop areas for each 7 1/2-minute quadrangle area in the valley, for each of three land-use surveys between 1957 and 1978. In 1975 total ETAW was 15.2 million acre-feet, a 43% increase since 1959. The largest increases were in the south, especially Kern County, which had a sixfold increase, which was caused by the import of surface water in the California Aqueduct. (USGS)

  8. Effect of elevation resolution on evapotranspiration simulations using MODFLOW.

    PubMed

    Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J

    2012-01-01

    Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth. PMID:21916891

  9. Variability of Precipitation and Evapotranspiration across an Andean Paramo

    NASA Astrophysics Data System (ADS)

    Jaimes, J. C.; Riveros-Iregui, D.; Avery, W. A.; Gaviria, S.; Peña-Quemba, C.; Herran, G.

    2012-12-01

    Paramos are alpine grasslands that occur mostly in the Andes Mountains of South America. Typically soils in the paramo have a volcanic origin, which leads to high permeability and high water yield and makes the paramo a reliable drinking water supply for many highland cities. Because hydrological measurements in these humid systems are rare, current understanding of the hydrologic behavior of paramos relies on modeling studies with little validation against ground observations. We present measurements of evapotranspiration (ET) and precipitation (P) across Chingaza Paramo, near Bogotá, Colombia. This paramo supplies water for ~80% of Bogotá's population (a total of 8 million people). Meteorological variables such us air temperature, relative humidity, wind speed, precipitation, and solar radiation were monitored using five weather stations located at various elevations from 3000m to 3600m. Our results show that ET varies from 500 to 700 mm y-1 as a function of elevation, whereas precipitation commonly exceeds ET, ranging between 1500 and 1800 mm y-1. These spatial differences between P and ET make water yield highly variable across this mountainous environment. Our results demonstrate that while paramos play an important role in the hydrologic cycle of tropical environments, understanding their hydrologic behavior requires characterization and monitoring of the pronounced spatial gradients of precipitation and evapotranspiration.

  10. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

    PubMed

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-01-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373

  11. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    NASA Astrophysics Data System (ADS)

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr-1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  12. Mapping Subfield-Scale Evapotranspiration to Assess Agricultural Drought Sensitivity

    NASA Astrophysics Data System (ADS)

    Zipper, S. C.; Loheide, S. P., III

    2014-12-01

    Assessing crop response to drought on the subfield-scale is critical for efficient agricultural water management and yield forecasting. Evapotranspiration provides a direct physical link between the soil, crop canopy, and the atmosphere, and is hence highly sensitive to changes in water availability. Here, we introduce a new surface energy balance model (High Resolution Mapping of Evapotranspiration; HRMET) that can map ET at very high resolution (meter-scale) requiring only canopy surface temperature, canopy structure, and meteorology as inputs. HRMET can be used in both open and closed canopy conditions. We validate HRMET over two commercial cornfields in the Yahara River Watershed (south-central Wisconsin, USA) and investigate the spatially variable ET response to severe drought conditions during the 2012 growing season. Results show that the magnitude of within-field ET variability is much larger when the drought is more severe. We then introduce a new metric, Relative ET (ETR), which normalizes ET on a field scale and allows for direct comparison across measurement dates, despite differences in meteorological conditions and crop growth stage. Using a novel paired-image technique, we use persistent patterns of ETR identify portions of the field that are most susceptible to drought, and portions that are consistently productive across measurement dates. These results have implications for precision agriculture and irrigation efficiency in addition to water management and yield forecasting, as identification of persistent patterns in crop productivity during low-stress periods allows farmers to direct resources to the most sensitive areas early in droughts.

  13. MODIS-derived Potential Evapotranspiration Estimates for Operational Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Kim, J.; Hogue, T.

    2005-12-01

    The current SACramento Soil Moisture Accounting Model (SAC-SMA), used by the National Weather Service, is the primarily model for hydrologic forecasting across the United States. Potential evapotranspiration (PET), one of the required inputs, remains rather simplistic. The model traditionally uses a regional pan evaporation estimate due to the difficulty in acquiring more sophisticated measurements. This study explores an alternative methodology using only remote sensing information to capture the monthly mean distribution of potential evapotranspiration (PET) for the SAC-SMA model. We apply a simple scheme proposed by Jiang and Islam (2005) to estimate the net radiation and estimate PET within the context of the Priestley-Taylor equation using data gathered from the MODIS Terra platform. PET estimates from the MODIS data are compared with those derived from Oklahoma Mesonet ground-based measurements and traditional pan evaporation estimates. Preliminary results will be presented for the Illinois River basin at Watts (OK) identified as part of the National Weather Service's Distributed Modeling Intercomparison Project (DMIP). The resultant streamflow simulations will illustrate the sensitivity of the SAC-SMA model to potential evaporation inputs from different sources and the possibility of the application of a stand-alone PET method for un-gauged basins.

  14. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    PubMed Central

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-01-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12–23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51–98 vs. 7–8 mm yr−1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373

  15. Evapotranspiration and turbulent transport in an irrigated desert orchard

    NASA Astrophysics Data System (ADS)

    Stoughton, Thomas E.; Miller, David R.; Huddleston, Ellis W.; Ross, James B.

    2002-10-01

    Micrometeorological measurements were recorded in an irrigated pecan orchard for 2 weeks in the summer of 1996 near Las Cruces, NM. A vertical array of five sonic anemometers recorded three-dimensional wind and temperature data within and above the orchard. The measured energy budget closure error was only 3.2% of net radiation, indicating freedom from local edge advection. The effects of regional (oasis) advection and unsteady winds on evapotranspiration (ET) were considered by comparing the observed latent heat flux values to estimates of ET using the Penman-Monteith and Advection-Aridity approaches. Penman-Monteith underestimated observed ET values by 82%. The Advection-Aridity modifications of potential evapotranspiration (PET) underestimated ET by 11%. Profiles of turbulence statistics demonstrated vertical heterogeneity of turbulence within the canopy. Directly above the canopy, momentum flux profiles showed little divergence. However, at a level of two times the tree heights, sensible heat flux profiles did show divergence, confirming the presence of "oasis" advection resulting from warm, dry air moving above the internal boundary layer. Upward convection from the hot soil surface between the trees diluted the oasis condition to the point where a weak upward sensible heat flux was observed during the midday periods when the soil was not shaded. Convection ratios, and exuberance ratios, generated from quadrant analyses of the heat and momentum flux events, showed that turbulent motions moved freely up and down within this canopy with little attenuation due to the open spaces between the trees.

  16. Projected Changes in Evapotranspiration Rates over Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Costa, Alexandre; Guimarães, Sullyandro; Vasconcelos, Francisco, Jr.; Sales, Domingo; da Silva, Emerson

    2015-04-01

    Climate simulations were performed using a regional model (Regional Atmospheric Modeling System, RAMS 6.0) driven by data from one of the CMIP5 models (Hadley Centre Global Environmental Model, version 2 - Earth System, HadGEM2-ES) over two CORDEX domains (South America and Central America) for the heavy-emission scenario (RCP8.5). Potential evapotranspiraion data from the RCM and from the CMIP5 global models were analyzed over Northeast Brazil, a semiarid region with a short rainy season (usually February to May in its northern portion due to the seasonal shift of the Intertropical Convergence Zone) and over which droughts are frequent. Significant changes in the potential evapotranspiration were found, with most models showing a increasing trend along the 21st century, which are expected to alter the surface water budget, increasing the current water deficit (precipitation is currently much smaller than potential evapotranspiration). Based on the projections from the majority of the models, we expect important impacts over local agriculture and water resources over Northeast Brazil.

  17. Remote Sensing of Evapotranspiration and Carbon Uptake at Harvard Forest

    NASA Technical Reports Server (NTRS)

    Min, Qilong; Lin, Bing

    2005-01-01

    A land surface vegetation index, defined as the difference of microwave land surface emissivity at 19 and 37 GHz, was calculated for a heavily forested area in north central Massachusetts. The microwave emissivity difference vegetation index (EDVI) was estimated from satellite SSM/I measurements at the defined wavelengths and used to estimate land surface turbulent fluxes. Narrowband visible and infrared measurements and broadband solar radiation observations were used in the EDVI retrievals and turbulent flux estimations. The EDVI values represent physical properties of crown vegetation such as vegetation water content of crown canopies. The collocated land surface turbulent and radiative fluxes were empirically linked together by the EDVI values. The EDVI values are statistically sensitive to evapotranspiration fractions (EF) with a correlation coefficient (R) greater than 0.79 under all-sky conditions. For clear skies, EDVI estimates exhibit a stronger relationship with EF than normalized difference vegetation index (NDVI). Furthermore, the products of EDVI and input energy (solar and photosynthetically-active radiation) are statistically significantly correlated to evapotranspiration (R=0.95) and CO2 uptake flux (R=0.74), respectively.

  18. Evapotranspiration from areas of native vegetation in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Woodham, W.M.; Lopez, M.A.

    1993-01-01

    A study was made to examine the suitability of three different micrometeorological methods for estimating evapotranspiration from selected areas of native vegetation in west-central Florida and to estimate annual evapotranspiration from those areas. Evapotranspiration was estimated using the energy- balance Bowen ratio and eddy correlation methods. Potential evapotranspiration was computed using the Penman equation. The energy-balance Bowen ratio method was used to estimate diurnal evapotrans- piration at unforested sites and yielded reasonable results; however, measurements indicated that the magnitudes of air temperature and vapor-pressure gradients above the forested sites were too small to obtain reliable evapotranspiration measurements with the energy balance Bowen ratio system. Analysis of the surface energy-balance indicated that sensible and latent heat fluxes computed using standard eddy correlation computation methods did not adequately account for available energy. Eddy correlation data were combined with the equation for the surface energy balance to yield two additional estimates of evapotranspiration. Daily potential evapotranspiration and evapotranspira- tion estimated using the energy-balance Bowen ratio method were not correlated at a unforested, dry prairie site, but they were correlated at a marsh site. Estimates of annual evapotranspiration for sites within the four vegetation types, which were based on energy-balance Bowen ratio and eddy correlation measurements, were 1,010 millimeters for dry prairie sites, 990 millimeters for marsh sites, 1,060 millimeters for pine flatwood sites, and 970 millimeters for a cypress swamp site.

  19. Shift of annual water balance in the Budyko space for a catchment with groundwater dependent evapotranspiration

    NASA Astrophysics Data System (ADS)

    Wang, X.-S.; Zhou, Y.

    2015-11-01

    Empirical equations have been formulated for the general relationship between the evapotranspiration ratio (F) and the aridity index (φ) in the Budyko framework. Though it is normally applied for mean annual behaviors, the Budyko hypothesis has been directly adopted to analyze the interannual change in water balance. However, there are reported cases where the annual evapotranspiration ratio is larger than 1.0 (F > 1). This study reveals the effects of groundwater dependent evapotranspiration in triggering such abnormal shift of annual water balance in the Budyko space. A widely used monthly hydrological model, the ABCD model, is modified to incorporate the groundwater dependent evapotranspiration in the zone with shallow water table and delayed groundwater recharge in the zone with deep water table. This model is applied in the Hailiutu River catchment in China. Results show that the variations in the annual evapotranspiration ratio with aridity index do not satisfy the traditional Budyko hypothesis. The shift of the annual water balance in the Budyko space depends on the proportion of shallow water table area, intensity of groundwater dependent evapotranspiration, and the normal Budyko-type trend of F in the deep groundwater zone. Excess evapotranspiration (F > 1) could occur in extreme dry years, which is enhanced by groundwater-dependent evapotranspiration. Use of groundwater for irrigation may increase the frequency of occurrence of the F > 1 cases.

  20. Cotton Evapotranspiration and Yield Variations With Canopy Temperature and Irrigation Deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton evapotranspiration and yield vary greatly with irrigation deficit, but indirectly due to cotton's indeterminant phenology. Canopy temperature can be related to yield through the crop water stress index (CWSI); and evapotranspiration can be modeled if the relationship between stress level and ...

  1. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    NASA Technical Reports Server (NTRS)

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  2. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  3. Evapotranspiration using a satellite-based surface energy balance with standardized ground control

    NASA Astrophysics Data System (ADS)

    Trezza, Ricardo

    This study evaluated the potential of using the S&barbelow;urface E&barbelow;nergy Ḇalance A&barbelow;lgorithm for Ḻand (SEBAL) as a means for estimating evapotranspiration (ET) for local and regional scales in Southern Idaho. The original SEBAL model was refined during this study to provide better estimation of ET in agricultural areas and to make more reliable estimates of ET from other surfaces as well, including mountainous terrain. The modified version of SEBAL used in this study, termed as SEBALID (ID stands for Idaho) includes standardization of the two SEBAL "anchor" pixels, the use of a water balance model to track top soil moisture, adaptation of components of SEBAL for better prediction of the surface energy balance in mountains and sloping terrain, and use of the ratio between actual ET and alfalfa reference evapotranspiration (ET r) as a means for obtaining the temporal integration of instantaneous ET to daily and seasonal values. Validation of the SEBALID model at a local scale was performed by comparing lysimeter ET measurements from the USDA-ARS facility at Kimberly, Idaho, with ET predictions by SEBAL using Landsat 5 TM imagery. Comparison of measured and predicted ET values was challenging due to the resolution of the Landsat thermal band (120m x 120m) and the relatively small size of the lysimeter fields. In the cases where thermal information was adequate, SEBALID predictions were close to the measured values of ET in the lysimeters. Application of SEBALID at a regional scale was performed using Landsat 7 ETM+ and Landsat 5 TM imagery for the Eastern Snake Plain Aquifer (ESPA) region in Idaho during 2000. The results indicated that SEBALID performed well for predicting daily and seasonal ET for agricultural areas. Some unreasonable results were obtained for desert and basalt areas, due to uncertainties of the prediction of surface parameters. In mountains, even though validation of results was not possible, the values of ET obtained

  4. Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn

    NASA Astrophysics Data System (ADS)

    Padilla, F. L. M.; González-Dugo, M. P.; Gavilán, P.; Domínguez, J.

    2011-04-01

    Vegetation indices (VIs) have been traditionally used for quantitative monitoring of vegetation. Remotely sensed radiometric measurements of visible and infrared solar energy, which is reflected or emitted by plant canopies, can be used to obtain rapid, non-destructive estimates of certain canopy attributes and parameters. One parameter of special interest for water management applications, is the crop coefficient employed by the FAO-56 model to derive actual crop evapotranspiration (ET). The aim of this study was to evaluate a methodology that combines the basal crop coefficient derived from VIs with a daily soil water balance in the root zone to estimate daily evapotranspiration rates for corn and wheat crops at field scale. The ability of the model to trace water stress in these crops was also assessed. Vegetation indices were first retrieved from field hand-held radiometer measurements and then from Landsat 5 and 7 satellite images. The results of the model were validated using two independent measurement systems for ET and regular soil moisture monitoring, in order to evaluate the behavior of the soil and atmosphere components of the model. ET estimates were compared with latent heat flux measured by an eddy covariance system and with weighing lysimeter measurements. Average overestimates of daily ET of 8 and 11% were obtained for corn and wheat, respectively, with good agreement between the estimated and measured root-zone water deficit for both crops when field radiometry was employed. When the satellite sensor data replaced the field radiometry data the overestimation figures slightly changed to 9 and 6% for the same two crops. The model was also used to monitor the water stress during the 2009 growing season, detecting several periods of water stress in both crops. Some of these stresses occurred during stages like grain filling, when the water stress is know to have a negative effect on yield. This fact could explain the lower yield reached compared to

  5. Monitoring drought occurrences using MODIS evapotranspiration data: Direct impacts on agricultural productivity in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruhoff, Anderson

    2014-05-01

    Evapotranspiration (ET), including water loss from plant transpiration and land evaporation, is of vital importance for understanding hydrological processes and climate dynamics and remote sensing is considered as the most important tool for estimate ET over large areas. The Moderate Resolution Imaging Spectroradiometer (MODIS) offers an interesting opportunity to evaluate ET with spatial resolution of 1 km. The MODIS global evapotranspiration algorithm (MOD16) considers both surface energy fluxes and climatic constraints on ET (water or temperature stress) to predict plant transpiration and soil evaporation based on Penman-Monteith equation. The algorithm is driven by remotely sensed and reanalysis meteorological data. In this study, MOD16 algorithm was applied to Southern Brazil to evaluate drought occurrences and its impacts over the agricultural production. Drought is a chronic potential natural disaster characterized by an extended period of time in which less water is available than expected, typically classified as meteorological, agricultural, hydrological and socioeconomic. With human-induced climate change, increases in the frequency, duration and severity of droughts are expected, leading to negative impacts in several sectors, such as agriculture, energy, transportation, urban water supply, among others. The current drought indicators are primarily based on precipitation, however only a few indicators incorporate ET and soil moisture components. ET and soil moisture play an important role in the assessment of drought severity as sensitive indicators of land drought status. To evaluate the drought occurrences in Southern Brazil from 2000 to 2012, we used the Evaporative Stress Index (ESI). The ESI, defined as 1 (one) minus the ratio of actual ET to potential ET, is one of the most important indices denoting ET and soil moisture responses to surface dryness with effects over natural ecosystems and agricultural areas. Results showed that ESI captured major

  6. Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn

    NASA Astrophysics Data System (ADS)

    Padilla, F. L. M.; González-Dugo, M. P.; Gavilán, P.; Domínguez, J.

    2010-10-01

    Vegetation indices (VIs) have been traditionally used for quantitative monitoring of vegetation. Remotely sensed radiometric measurements of visible and infrared solar energy, which is reflected or emitted by plant canopies, can be used to obtain rapid, non-destructive estimates of certain canopy attributes and parameters. One parameter of special interest for water management applications, is the crop coefficient employed by the FAO-56 model to derive actual crop evapotranspiration (ET). The aim of this study was to evaluate a methodology that combines the basal crop coefficient derived from VIs with a daily soil water balance in the root zone to estimate daily evapotranspiration rates for corn and wheat crops at field scale. The ability of the model to trace water stress in these crops was also assessed. Vegetation indices were first retrieved from field hand-held radiometer measurements and then from Landsat 5 and 7 satellite images. The results of the model were validated using two independent measurement systems for ET and regular soil moisture monitoring, in order to evaluate the behavior of the soil and atmosphere components of the model. ET estimates were compared with latent heat flux measured by an eddy covariance system and with weighing lysimeter measurements. Average overestimates of daily ET of 8 and 11% were obtained for corn and wheat, respectively, with good agreement between the estimated and measured root-zone water deficit for both crops when field radiometry was employed. Satellite remote-sensing inputs overestimated ET by 4 to 9%, showing a non-significant lost of accuracy when the satellite sensor data replaced the field radiometry data. The model was also used to monitor the water stress during the 2009 growing season, detecting several periods of water stress in both crops. Some of these stresses occurred during stages like grain filling, when the water stress is know to have a negative effect on yield. This fact could explain the lower

  7. Evapotranspiration from successional vegetation in a deforested area of the Lake Wales Ridge, Florida

    USGS Publications Warehouse

    Sumner, D.M.

    1996-01-01

    The suitability of three evapotranspiration models (Penman-Monteith, Penman, and a modified Priestley-Taylor) was evaluated at a site ofsuccessional vegetation in a deforested area of theLake Wales Ridge, Florida. Eddy correlation mea surements of evapotranspiration made during 22approximately 1-day periods at a temporal resolu tion of 20 minutes from September 1993 to August 1994 were used to calibrate the evapotranspiration models. Three variants of the eddy correlation method that ascribe measurement error to three different sources were considered in the analysis. The Penman-Monteith and modified Priestley- Taylor models were successful in approximating measured 20-minute values of evapotranspiration (r2  0.918). The most suc cessful approaches were the modified Priestley-Taylor model (r2 = 0.972) and a nontraditional and simplified form of the Penman-Monteith model (r2 = 0.967). The Penman approach was unsuccessful as a predictor of evapotranspiration. The evapotranspiration models were used to estimate evapotranspiration between measure ments. When evapotranspiration values measured with a Bowen ratio variant of the eddy correlation method were used for model calibration, estimated daily evapotranspiration rates varied sea sonally ranging from 0.2 millimeters per day (0.008 inch per day) in late December 1993 to5 millimeter per day (0.2 inch per day) in mid-July 1994. Annual evapotranspiration (September 15, 1993, to September 15, 1994) was estimated to be about 680 millimeters (27 inches).Evapotranspiration models calibrated to the stan dard eddy correlation method and to an energy- balance residual variant provided estimates ofannual evapotranspiration that were about 10 per cent lower and higher, respectively. These dataindicate that of the 1,320 millimeters (52 inches)of precipitation during the 1-year period, about 570 to 700 millimeters (22 to 28 inches) recharged the surficial aquifer. Evapotranspiration at this study site probably defines the lower

  8. Modified method of aerodynamic resistance calculation and its application to potential evapotranspiration estimation

    NASA Astrophysics Data System (ADS)

    Rodný, Marek; Nolz, Reinhard; Novák, Viliam; Hlaváčiková, Hana; Loiskandl, Willibald; Himmelbauer, Margarita

    2016-04-01

    The aim of this study was to present and validate an alternative evapotranspiration calculation procedure that includes specific expression for the aerodynamic resistance. Calculated daily potential evapotranspiration totals were compared to the results of FAO56 procedure application and to the results of measurements taken with a precision weighing lysimeter permanently grown with irrigated, short grass. For the examination period from March 17 through October 31, 2011, it was found that daily potential evapotranspiration estimates obtained by both calculation procedures fitted well to the lysimeter measurements. Potential evapotranspiration daily totals calculated with the use of the proposed aerodynamic resistance calculation procedure gave better results for days with higher evapotranspiration, compared to the FAO56 method. The most important is that the approach based on the proposed alternative aerodynamic resistance could be effectively used even for a wide variety of crops, because it is not limited to any particular crop.

  9. Reflections on Science Education. 1976 AETS Yearbook.

    ERIC Educational Resources Information Center

    Capie, William, Ed.; Fox, Fred W., Ed.

    This publication, the third in a yearly series, follows the intent of previous editions in which rapid changes in the field of science teacher education were assessed. Accordingly, 14 contributed articles appearing in this volume are grouped under the following headings: (1) The Mission of Science Education, (2) The People of Science Teaching, and…

  10. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  11. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  12. Humanistic Education and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  13. Children's Rights and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1982-01-01

    Educators need to seriously reflect upon the concept of children's rights. Though the idea of children's rights has been debated numerous times, the idea remains vague and shapeless; however, Maslow's theory of self-actualization can provide the children's rights idea with a needed theoretical framework. (Author)

  14. Culture Studies and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1983-01-01

    True citizenship education is impossible unless students develop the habit of intelligently evaluating cultures. Abraham Maslow's theory of self-actualization, a theory of innate human needs and of human motivation, is a nonethnocentric tool which can be used by teachers and students to help them understand other cultures. (SR)

  15. Group Counseling for Self-Actualization.

    ERIC Educational Resources Information Center

    Streich, William H.; Keeler, Douglas J.

    Self-concept, creativity, growth orientation, an integrated value system, and receptiveness to new experiences are considered to be crucial variables to the self-actualization process. A regular, year-long group counseling program was conducted with 85 randomly selected gifted secondary students in the Farmington, Connecticut Public Schools. A…

  16. Racial Discrimination in Occupations: Perceived and Actual.

    ERIC Educational Resources Information Center

    Turner, Castellano B.; Turner, Barbara F.

    The relationship between the actual representation of Blacks in certain occupations and individual perceptions of the occupational opportunity structure were examined. A scale which rated the degree of perceived discrimination against Blacks in 21 occupations was administered to 75 black male, 70 black female, 1,429 white male and 1,457 white…

  17. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  18. The effect of different evapotranspiration methods on portraying soil water dynamics and ET partitioning in a semi-arid environment in Northwest China

    NASA Astrophysics Data System (ADS)

    Yu, Lianyu; Zeng, Yijian; Su, Zhongbo; Cai, Huanjie; Zheng, Zhen

    2016-03-01

    Different methods for assessing evapotranspiration (ET) can significantly affect the performance of land surface models in portraying soil water dynamics and ET partitioning. An accurate understanding of the impact a method has is crucial to determining the effectiveness of an irrigation scheme. Two ET methods are discussed: one is based on reference crop evapotranspiration (ET0) theory, uses leaf area index (LAI) for partitioning into soil evaporation and transpiration, and is denoted as the ETind method; the other is a one-step calculation of actual soil evaporation and potential transpiration by incorporating canopy minimum resistance and actual soil resistance into the Penman-Monteith model, and is denoted as the ETdir method. In this study, a soil water model, considering the coupled transfer of water, vapor, and heat in the soil, was used to investigate how different ET methods could affect the calculation of the soil water dynamics and ET partitioning in a crop field. Results indicate that for two different ET methods this model varied concerning the simulation of soil water content and crop evapotranspiration components, but the simulation of soil temperature agreed well with lysimeter observations, considering aerodynamic and surface resistance terms improved the ETdir method regarding simulating soil evaporation, especially after irrigation. Furthermore, the results of different crop growth scenarios indicate that the uncertainty in LAI played an important role in estimating the relative transpiration and evaporation fraction. The impact of maximum rooting depth and root growth rate on calculating ET components might increase in drying soil. The influence of maximum rooting depth was larger late in the growing season, while the influence of root growth rate dominated early in the growing season.

  19. Evaluation of the Event Driven Phenology Model Coupled to the VegET Evapotranspiration Model Using Spatially Explicit Comparisons with Independent Reference Data

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.; Roy, D. P.; Senay, G. B.

    2011-12-01

    Vegetation growing cycles have a profound influence on regional evapotranspiration regimes. The recently developed Event Driven Phenology Model (EDPM) is an empirical crop-specific phenology model with data assimilation capabilities. Deployed in prognostic mode, the EDPM uses weather forcing data to produce daily estimates of phenology coefficients; and in diagnostic mode a one-dimensional Kalman filter is used to adjust EDPM estimates with satellite normalized difference vegetation index (NDVI) retrievals. In this study the EDPM is coupled to the VegET model that uses the Penman-Monteith equation to calculate reference ET and a water balance model for water stress coefficients to derive daily actual evapotranspiration. The coupled models were run for the croplands of the U.S. Northern Great Plains for three annual growing seasons to derive 8-day total actual evapotranspiration (ETa) estimates at 0.05° spatial resolution. The models were driven by North American Land Data Assimilation System (NLDAS) weather forcing and parameterized using annual MODIS cropland cover maps. Regional validation of the modeled NDVI and ETa were undertaken by comparison with MODIS NDVI and MODIS ETa products respectively. The modeled NDVI had a median coefficient of determination (r2) of 0.83 and a root mean square error (RMSE) of 0.15 within study area. With the EDPM deployed in both prognostic and diagnostic modes, the modeled ETa had r2 of 0.75 and RMSE of about 25% of season average ETa per observation period. With small computational effort these results yield comparable accuracy to those from computationally complex models of ETa which require more parameterization. The performance of the coupling scheme demonstrates that the modeling approach is a promising avenue for regional application studies.

  20. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  1. Diurnal evapotranspiration estimates in the Walnut River Watershed.

    SciTech Connect

    Song, J.

    1998-10-05

    Evapotranspiration is an essential component of the surface hydrological balance, but obtaining accurate estimates of the water vapor flux over large terrestrial areas can be difficult because of the substantial temporal and spatial variability in surface moisture conditions that can occur. This variability is often very large in the Great Plains and other portions of the Mississippi River Basin. Nevertheless, variations in soil moisture content, groundwater levels, and runoff in streams and rivers cannot be fully assessed without some knowledge of evapotranspiration rates. Here, observations made at the Walnut River Watershed (WRW), which is near Wichita, Kansas, and has an area of approximately 5000 km{sup 2}, are used to improve and test a modeling system that estimates long-term evapotranspiration with use of satellite remote sensing data with limited surface measurements. The techniques may be applied to much larger areas. As is shown in Fig. 1, the WRW is located in the Red River Basin and is enclosed by the southern Great Plains Clouds and Radiation Testbed (CART) of the US Department of Energy's Atmospheric Radiation Measurement (ARM) program. The functional relationships involving the satellite data, surface parameters, and associated subgrid-scale fluxes are modeled in this study by the parameterization of subgrid-scale surface (PASS) fluxes scheme (Gao, 1995; Gao et al., 1998), which is used in a modified and improved form (PASS2). The advantage of this modeling system is that it can make effective use of satellite remote sensing data and can be run for large areas for which flux data do not exist and surface meteorological data are available from only a limited number of ground stations. In this study, the normalized difference vegetation index (NDVI) or simple ratio (SR) and surface brightness temperature at each pixel for the WRW were derived from advanced very high resolution radiometers data collected by a ground station at Argonne National

  2. Using the TIMS to estimate evapotranspiration from a forest

    NASA Technical Reports Server (NTRS)

    Teskey, Robert

    1991-01-01

    The main goals were: (1) to characterize the evapotranspiration (Et) of two forested watersheds using direct measurement techniques, and (2) to evaluate if remotely sensed surface temperatures could be used to estimate Et from the same watersheds. Two independent approaches for estimating the Et from watersheds were used. The first was derived using the Penman-Monteith Equation. This model requires the direct measurement of the microclimate of the site as well as biological measurements, i.e., stomatal conductance to water vapor and the leaf area of the stand. The primary limitation of this approach is that the measurement of stomatal conductance is time consuming, and in large trees, access to the foliage is difficult so the sample must be limited to the small number of trees. In the study, the sample was limited to the trees which could be measured from a single tower in each stand.

  3. Understanding land surface evapotranspiration with satellite multispectral measurements

    NASA Technical Reports Server (NTRS)

    Menenti, M.

    1993-01-01

    Quantitative use of remote multispectral measurements to study and map land surface evapotranspiration has been a challenging issue for the past 20 years. Past work is reviewed against process physics. A simple two-layer combination-type model is used which is applicable to both vegetation and bare soil. The theoretic analysis is done to show which land surface properties are implicitly defined by such evaporation models and to assess whether they are measurable as a matter of principle. Conceptual implications of the spatial correlation of land surface properties, as observed by means of remote multispectral measurements, are illustrated with results of work done in arid zones. A normalization of spatial variability of land surface evaporation is proposed by defining a location-dependent potential evaporation and surface temperature range. Examples of the application of remote based estimates of evaporation to hydrological modeling studies in Egypt and Argentina are presented.

  4. Potential evapotranspiration and the likelihood of future drought

    NASA Technical Reports Server (NTRS)

    Rind, D.; Hansen, J.; Goldberg, R.; Rosenzweig, C.; Ruedy, R.

    1990-01-01

    The possibility that the greenhouse warming predicted by the GISS general-circulation model and other GCMs could lead to severe droughts is investigated by means of numerical simulations, with a focus on the role of potential evapotranspiration E(P). The relationships between precipitation (P), E(P), soil moisture, and vegetation changes in GCMs are discussed; the empirically derived Palmer drought-intensity index and a new supply-demand index (SDDI) based on changes in P - E(P) are described; and simulation results for the period 1960-2060 are presented in extensive tables, graphs, and computer-generated color maps. Simulations with both drought indices predict increasing drought frequency for the U.S., with effects already apparent in the 1990s and a 50-percent frequency of severe droughts by the 2050s. Analyses of arid periods during the Mesozoic and Cenozoic are shown to support the use of the SDDI in GCM drought prediction.

  5. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration

    NASA Astrophysics Data System (ADS)

    Douville, H.; Ribes, A.; Decharme, B.; Alkama, R.; Sheffield, J.

    2013-01-01

    Global warming is expected to intensify the global hydrological cycle, with an increase of both evapotranspiration (EVT) and precipitation. Yet, the magnitude and spatial distribution of this global and annual mean response remains highly uncertain. Better constraining land EVT in twenty-first-century climate scenarios is critical for predicting changes in surface climate, including heatwaves and droughts, evaluating impacts on ecosystems and water resources, and designing adaptation policies. Continental scale EVT changes may already be underway, but have never been attributed to anthropogenic emissions of greenhouse gases and sulphate aerosols. Here we provide global gridded estimates of annual EVT and demonstrate that the latitudinal and decadal differentiation of recent EVT variations cannot be understood without invoking the anthropogenic radiative forcings. In the mid-latitudes, the emerging picture of enhanced EVT confirms the end of the dimming decades and highlights the possible threat posed by increasing drought frequency to managing water resources and achieving food security in a changing climate.

  6. Comparison of two simple tools (TSEB and FAO-56) to retrieve evapotranspiration of irrigated agriculture in semi-arid areas.

    NASA Astrophysics Data System (ADS)

    Diarra, Alhousseine; Jarlan, Lionel; Er-Raki, Salah; Le Page, Michel; Khabba, Said; Boulet, Gilles

    2016-04-01

    Probe sensors (Delta-T). The obtained results showed a linear relationship between both parameters with a correlation coefficient of 0.86 for low values LAI (<1.5 m² / m²). Finally, both approaches are used to evaluate their potentiality to predict a water stress index based on the ratio between actual and potential evapotranspiration. Although the FAO-56 is better suitable to detect high water stresses, the TSEB model is able to detect moderate stresses without a need to prescribe water inputs. This in-depth comparison of two simple tools to monitor evapotranspiration leads us to the conclusion that the TSEB model can reasonably be used to map evapotranspiration on large scale. This constitutes our work in progress based on MODIS products in the objective of monitoring plant water use at the catchment scale.

  7. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  8. Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.

    2012-12-01

    Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.

  9. Measurement of evapotranspiration in a winter wheat field

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Liu, Changming; Shen, Yanjun; Kondoh, A.; Tang, Changyuan; Tanaka, T.; Shimada, J.

    2002-10-01

    Daily evapotranspiration from a winter wheat field on the North China Plain measured by large-scale weighing lysimeter was linearly related to that measured by the Bowen ratio energy balance (BREB) technique. Soil evaporation averaged about 23·6% of evapotranspiration from the post-winter dormancy revival stage to the grain ripening stage in 1999. On clear days during winter dormancy, about half of the net radiation flux Rn was used to warm soil. During the revival stage, conductive heat flux G also used most of the incoming Rn, but the ratio of latent heat flux E to Rn increased. During the stem-extension stage, E was about 50% of Rn; thereafter, E/R

  10. Response of mean annual evapotranspiration to vegetation changes at catchment scale

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Dawes, W. R.; Walker, G. R.

    2001-03-01

    It is now well established that forested catchments have higher evapotranspiration than grassed catchments. Thus land use management and rehabilitation strategies will have an impact on catchment water balance and hence water yield and groundwater recharge. The key controls on evapotranspiration are rainfall interception, net radiation, advection, turbulent transport, leaf area, and plant-available water capacity. The relative importance of these factors depends on climate, soil, and vegetation conditions. Results from over 250 catchments worldwide show that for a given forest cover, there is a good relationship between long-term average evapotranspiration and rainfall. From these observations and on the basis of previous theoretical work a simple two-parameter model was developed that relates mean annual evapotranspiration to rainfall, potential evapotranspiration, and plant-available water capacity. The mean absolute error between modeled and measured evapotranspiration was 42 mm or 6.0%; the least squares line through the origin had as lope of 1.00 and a correlation coefficient of 0.96. The model showed potential for a variety of applications including water yield modeling and recharge estimation. The model is a practical tool that can be readily used for assessing the long-term average effect of vegetation changes on catchment evapotranspiration and is scientifically justifiable.

  11. Future potential evapotranspiration changes and contribution analysis in Zhejiang Province, East China

    NASA Astrophysics Data System (ADS)

    Xu, Yue-Ping; Pan, Suli; Fu, Guangtao; Tian, Ye; Zhang, Xujie

    2014-03-01

    Potential evapotranspiration is an important component of hydrological modeling. In this study, the objective is to project potential evapotranspiration in the future period 2011-2040 and understand their changes in Zhejiang Province, East China. The sensitivity of potential evapotranspiration to five climatic variables (solar radiation, daily minimum and maximum air temperature, relative humidity, and wind speed) is analyzed based on observation data from 1955-2008 using a global sensitivity analysis method, Sobol's method. The changes in potential evapotranspiration during the future period are generated using one regional climate model, Providing Regional Climates for Impacts Studies, with two global climate models, ECHAM5 and Hadley Centre Coupled Model version 3, and their causes are analyzed based on sensitivity analysis results. Global sensitivity analysis results reveal substantial spatial-temporal variations in the sensitivity of potential evapotranspiration to climatic variables and unignorable interactions among climatic variables. Rather similar spatial change patterns of annual mean potential evapotranspiration (PET) are generated for both general circulation models; however, seasonal or monthly changes are very different due to different spatial-temporal changes in climatic variables. Different contributory sources to potential evapotranspiration changes are identified at different months and stations; the PET changes in 2011-2040 are mainly due to three climatic variables including solar radiation, relative humidity, and daily minimum temperature.

  12. The Actual Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The actual Apollo 13 lunar landing mission prime crew from left to right are: Commander, James A. Lovell Jr., Command Module pilot, John L. Swigert Jr.and Lunar Module pilot, Fred W. Haise Jr. The original Command Module pilot for this mission was Thomas 'Ken' Mattingly Jr. but due to exposure to German measles he was replaced by his backup, Command Module pilot, John L. 'Jack' Swigert Jr.

  13. Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Hafeez, Mohsin; Rabbani, Umair; Ishikawa, Hirohiko; Ma, Yaoming

    2012-11-01

    The idea of ground-based evapotranspiration (ET) is of the most interesting for land-atmosphere interactions, such as water-saving irrigation, the performance of irrigation systems, crop water deficit, drought mitigation strategies and accurate initialization of climate prediction models especially in arid and semiarid catchments where water shortage is a critical problem. The recent year's drought in Australia and concerns about climate change has prominent the need to manage water resources more sustainably especially in the Murrumbidgee catchment which utilizes bulk water for food security and production. This paper discusses the application of a Surface Energy Balance System (SEBS) model based on Landsat-5 TM data and field observations has been used and tested for deriving ET over Coleambally Irrigation Area (CIA), located in the southwest of NSW, Australia. 16 Landsat-5 TM scenes were selected covering the time period of 2009, 2010 and 2011 for estimating the actual ET in CIA. To do the validation the used methodology, the ground-measured ET was compared to the Landsat-5 TM retrieved actual ET results for CIA. The derived ET value over CIA is much closer to the field measurement. From the remote sensing results and observations, the root mean square error (RMSE) is 0.74 and the mean APD is 7.5%. The derived satellite remote sensing values belong to reasonable range.

  14. A scaling approach to Budyko's framework and the complementary relationship of evapotranspiration in humid environments: case study of the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Carmona, A. M.; Poveda, G.; Sivapalan, M.; Vallejo-Bernal, S. M.; Bustamante, E.

    2016-02-01

    This paper studies a 3-D state space representation of Budyko's framework designed to capture the mutual interdependence among long-term mean actual evapotranspiration (E), potential evapotranspiration (Ep) and precipitation (P). For this purpose we use three dimensionless and dependent quantities: Ψ = E ⁄ P, Φ = Ep ⁄ P and Ω = E ⁄ Ep. This 3-D space and its 2-D projections provide an interesting setting to test the physical soundness of Budyko's hypothesis. We demonstrate analytically that Budyko-type equations are unable to capture the physical limit of the relation between Ω and Φ in humid environments, owing to the unfeasibility of Ep ⁄ P = 0 when E ⁄ Ep → 1. Using data from 146 sub-catchments in the Amazon River basin we overcome this inconsistency by proposing a physically consistent power law: Ψ = kΦe, with k = 0.66, and e = 0.83 (R2 = 0.93). This power law is compared with two other Budyko-type equations. Taking into account the goodness of fits and the ability to comply with the physical limits of the 3-D space, our results show that the power law is better suited to model the coupled water and energy balances within the Amazon River basin. Moreover, k is found to be related to the partitioning of energy via evapotranspiration in terms of Ω. This suggests that our power law implicitly incorporates the complementary relationship of evapotranspiration into the Budyko curve, which is a consequence of the dependent nature of the studied variables within our 3-D space. This scaling approach is also consistent with the asymmetrical nature of the complementary relationship of evapotranspiration. Looking for a physical explanation for the parameters k and e, the inter-annual variability of individual catchments is studied. Evidence of space-time symmetry in Amazonia emerges, since both between-catchment and between-year variability follow the same Budyko curves. Finally, signs of co-evolution of catchments are explored by

  15. A scaling approach to Budyko's framework and the complementary relationship of evapotranspiration in humid environments: case study of the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Carmona, A. M.; Poveda, G.; Sivapalan, M.; Vallejo-Bernal, S. M.; Bustamante, E.

    2015-10-01

    This paper studies a 3-D generalization of Budyko's framework designed to capture the mutual interdependence among long-term mean actual evapotranspiration (E), potential evapotranspiration (Ep) and precipitation (P). For this purpose we use three dimensionless and dependent quantities: Ψ = E/P, Φ = Ep/P and Ω = E/Ep. This 3-D space and its 2-D projections provide an interesting setting to test the physical soundness of Budyko's hypothesis. We demonstrate analytically that Budyko-type equations are unable to capture the physical limit of the relation between Ω and Φ in humid environments, owing to the unfeasibility of Ep/P → 0 at E/Ep = 1. Using data from 146 sub-catchments in the Amazon River basin we overcome this inconsistency by proposing a physically consistent power law: Ψ = k Φe, with k = 0.66, and e = 0.83 (R2 = 0.93). This power law is compared with two other Budyko-type equations. Taking into account the goodness of fits and the ability to comply with the physical limits of the 3-D space, our results show that the power law is better suited to model the coupled water and energy balances within the Amazon River basin. Moreover, k is found to be related to the partitioning of energy via evapotranspiration in terms of Ω. This suggests that our power law implicitly incorporates the complementary relationship of evapotranspiration into the Budyko curve, which is a consequence of the dependent nature of the studied variables within our 3-D space. This scaling approach is also consistent with the asymmetrical nature of the complementary relationship of evapotranspiration. Looking for a physical explanation for the parameters k and e, the inter-annual variability of individual catchments is studied. Evidence of space-time symmetry in Amazonia emerges, since both between-catchment and between-year variability follow the same Budyko curves. Finally, signs of co-evolution of catchments are explored by linking spatial patterns of the power law parameters

  16. Thin laser beam wandering and intensity fluctuations method for evapotranspiration measurement

    NASA Astrophysics Data System (ADS)

    Poisson, Antonin; Fernandez, Angel; Perez, Dario G.; Barille, Regis; Dupont, Jean-Charles

    2016-06-01

    We compare in this study two simple optical setups to measure the atmospheric turbulence characterized by the refractive index structure parameter Cn2. The corresponding heat flux values sensed by the laser beam propagation are calculated leading to the plant evapotranspiration. The results are discussed and compared to measurements obtained with a well-known and calibrated eddy-covariant instrument. A fine analysis gives a good insight of the accuracy of the optical devices proposed here to measure the crop evapotranspiration. Additional evapotranspiration values calculated with meteorological sensor data and the use of different models are also compared in parallel.

  17. Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data

    USGS Publications Warehouse

    Sanford, Ward E.; Selnick, David L.

    2013-01-01

    Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water-balance method was combined with a climate and land-cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971-2000 across the U.S. to obtain long-term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land-cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land-cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land-cover data can also improve those predictions. Using the climate and land-cover data at an 800-m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land-cover data are plentiful.

  18. Increasing accuracy of daily evapotranspiration through synergistic use of MSG and MERIS/AATSR

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; van der Tol, Christiaan; Su, Zhongbo

    2010-05-01

    Daily Evapotranspiration estimates are important in many applications. Evapotranspiration plays a significant role in the water, energy and carbon cycles. Through these cycles evapotranspiration is important for monitoring droughts, managing agricultural irrigation, and weather forecast modeling. Drought levels and irrigation needs can be calculated from evapotranspiration because evapotranspiration estimates give a direct indication on the health and growth rate of crops. The evaporation of the soil and open water bodies and transpiration from plants combine as a lower forcing boundary parameter to the atmosphere affecting local and regional weather patterns. Evapotranspiration can be estimated using different techniques: ground measurements, hydrological modeling, and remote sensing algorithms. The first two techniques are not suitable for large scale estimation of evapotranspiration. Ground measurements are only valid within a small footprint area; and hydrological modelling requires intensive knowledge of a too large amount of processes. The advantage of remote sensing algorithms is that they are capable of estimating the evapotranspiration over large scales with a limited amount of parameters. In remote sensing a trade off exists between temporal and spatial resolution. Geostationary satellites have high temporal resolution but have a low spatial resolution, where near-Polar Orbiting satellites have high spatial resolution but have low temporal resolution. For example the SEVIRI sensor on the Meteosat Second Generation (MSG) satellite acquires images every 15 minutes with a resolution of 3km, where the AATSR/MERIS combination of the ENVISAT satellite has a revisit time of several days with a 1km resolution. Combining the advantages of geostationary satellites and polar-orbiting satellites will greatly improve the accuracy of the daily evapotranspiration estimates. Estimating daily evapotranspiration from near-polar orbiting satellites requires a method to

  19. A Simple method for reference crop evapotranspiration under non-advective conditions suitable for remote sensing applications

    NASA Astrophysics Data System (ADS)

    de Bruin, Henk A. R.; Trigo, Isabel F.; Bosveld, Fred C.; Fokke Meirink, Jan

    2015-04-01

    A method is presented to estimate daily reference crop evapotranspiration (ETo) under non-advective conditions from Meteosat Second Generation (MSG) imagery. For this purpose observations of Cabauw in the Netherlands have been analyzed. Due to the climatic conditions and the local water management at this site water stress is very rare, which makes this dataset ideal to assess ETo without advection. The findings of older studies are combined to arrive at a simple formula for ETo, requiring daily global radiation and air temperature as input only. The formula is validated against independent eddy-covariance measurements of actual evapotranspiration. The bias is 3 W m-2 and the root mean square error (RMSE) 7.6 W m-2. The applied Slob-de Bruin estimate of net radiation is tested separately, yielding a bias of 1.4 W m-2 and a RMSE of 9.6 W m-2. In a next step the measured global radiation has been replaced with MSG estimates. For ETo this resulted in a bias of 1.6 W m-2 and a RMSE of 11.7 W m-2. Based on arguments used by Schmidt (1915) a reasonably sound physical justification for the proposed ETo formula is presented. This justifies application of the results outside Cabauw. However, this applies to conditions where advection can be ignored. It is pointed out that in semi-arid regions local advection cannot be ignored. Finally, the ambiguousness of the formal definition of ETo given in the FAO Irrigation and Drainage Paper No. 56 is discussed.

  20. Annual evapotranspiration retrieved from satellite vegetation indices for the eastern Mediterranean at 250 m spatial resolution

    NASA Astrophysics Data System (ADS)

    Helman, D.; Givati, A.; Lensky, I. M.

    2015-11-01

    We present a model to retrieve actual evapotranspiration (ET) from satellites' vegetation indices (Parameterization of Vegetation Indices for ET estimation model, or PaVI-E) for the eastern Mediterranean (EM) at a spatial resolution of 250 m. The model is based on the empirical relationship between satellites' vegetation indices (normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from MODIS) and total annual ET (ETAnnual) estimated at 16 FLUXNET sites, representing a wide range of plant functional types and ETAnnual. Empirical relationships were first examined separately for (a) annual vegetation systems (i.e. croplands and grasslands) and (b) systems with combined annual and perennial vegetation (i.e. woodlands, forests, savannah and shrublands). Vegetation indices explained most of the variance in ETAnnual in those systems (71 % for annuals, and 88 % for combined annual and perennial systems), while adding land surface temperature data in a multiple-variable regression and a modified version of the Temperature and Greenness model did not result in better correlations (p > 0.1). After establishing empirical relationships, PaVI-E was used to retrieve ETAnnual for the EM from 2000 to 2014. Models' estimates were highly correlated (R = 0.92, p < 0.01) with ETAnnual calculated from water catchment balances along rainfall gradient of the EM. They were also comparable to the coarser-resolution ET products of the Land Surface Analysis Satellite Applications Facility (LSA-SAF MSG ETa, 3.1 km) and MODIS (MOD16, 1 km) at 148 EM basins with R of 0.75 and 0.77 and relative biases of 5.2 and -5.2 %, respectively (p < 0.001 for both). In the absence of high-resolution (< 1 km) ET models for the EM the proposed model is expected to contribute to the hydrological study of this region, assisting in water resource management, which is one of the most valuable resources of this region.

  1. Replacing climatological potential evapotranspiration estimates with dynamic satellite-based observations in operational hydrologic prediction models

    NASA Astrophysics Data System (ADS)

    Franz, K. J.; Bowman, A. L.; Hogue, T. S.; Kim, J.; Spies, R.

    2011-12-01

    In the face of a changing climate, growing populations, and increased human habitation in hydrologically risky locations, both short- and long-range planners increasingly require robust and reliable streamflow forecast information. Current operational forecasting utilizes watershed-scale, conceptual models driven by ground-based (commonly point-scale) observations of precipitation and temperature and climatological potential evapotranspiration (PET) estimates. The PET values are derived from historic pan evaporation observations and remain static from year-to-year. The need for regional dynamic PET values is vital for improved operational forecasting. With the advent of satellite remote sensing and the adoption of a more flexible operational forecast system by the National Weather Service, incorporation of advanced data products is now more feasible than in years past. In this study, we will test a previously developed satellite-derived PET product (UCLA MODIS-PET) in the National Weather Service forecast models and compare the model results to current methods. The UCLA MODIS-PET method is based on the Priestley-Taylor formulation, is driven with MODIS satellite products, and produces a daily, 250m PET estimate. The focus area is eight headwater basins in the upper Midwest U.S. There is a need to develop improved forecasting methods for this region that are able to account for climatic and landscape changes more readily and effectively than current methods. This region is highly flood prone yet sensitive to prolonged dry periods in late summer and early fall, and is characterized by a highly managed landscape, which has drastically altered the natural hydrologic cycle. Our goal is to improve model simulations, and thereby, the initial conditions prior to the start of a forecast through the use of PET values that better reflect actual watershed conditions. The forecast models are being tested in both distributed and lumped mode.

  2. Mapping Seasonal Evapotranspiration and Root Zone Soil Moisture using a Hybrid Modeling Approach over Vineyards

    NASA Astrophysics Data System (ADS)

    Geli, H. M. E.

    2015-12-01

    Estimates of actual crop evapotranspiration (ETa) at field scale over the growing season are required for improving agricultural water management, particularly in water limited and drought prone regions. Remote sensing data from multiple platforms such as airborne and Landsat-based sensors can be used to provide these estimates. Combining these data with surface energy balance models can provide ETa estimates at sub- field scale as well as information on vegetation stress and soil moisture conditions. However, the temporal resolution of airborne and Landsat data does not allow for a continuous ETa monitoring over the course of the growing season. This study presents the application of a hybrid ETa modeling approach developed for monitoring daily ETa and root zone available water at high spatial resolutions. The hybrid ETa modeling approach couples a thermal-based energy balance model with a water balance-based scheme using data assimilation. The two source energy balance (TSEB) model is used to estimate instantaneous ETa which can be extrapolated to daily ETa using a water balance model modified to use the reflectance-based basal crop coefficient for interpolating ETa in between airborne and/or Landsat overpass dates. Moreover, since it is a water balance model, the soil moisture profile is also estimated. The hybrid ETa approach is applied over vineyard fields in central California. High resolution airborne and Landsat imagery were used to drive the hybrid model. These images were collected during periods that represented different vine phonological stages in 2013 growing season. Estimates of daily ETa and surface energy balance fluxes will be compared with ground-based eddy covariance tower measurements. Estimates of soil moisture at multiple depths will be compared with measurements.

  3. A simple iterative method for estimating evapotranspiration with integrated surface/subsurface flow models

    NASA Astrophysics Data System (ADS)

    Hwang, H.-T.; Park, Y.-J.; Frey, S. K.; Berg, S. J.; Sudicky, E. A.

    2015-12-01

    This work presents an iterative, water balance based approach to estimate actual evapotranspiration (ET) with integrated surface/subsurface flow models. Traditionally, groundwater level fluctuation methods have been widely accepted and used for estimating ET and net groundwater recharge; however, in watersheds where interactions between surface and subsurface flow regimes are highly dynamic, the traditional method may be overly simplistic. Here, an innovative methodology is derived and demonstrated for using the water balance equation in conjunction with a fully-integrated surface and subsurface hydrologic model (HydroGeoSphere) in order to estimate ET at watershed and sub-watershed scales. The method invokes a simple and robust iterative numerical solution. For the proof of concept demonstrations, the method is used to estimate ET for a simple synthetic watershed and then for a real, highly-characterized 7000 km2 watershed in Southern Ontario, Canada (Grand River Watershed). The results for the Grand River Watershed show that with three to five iterations, the solution converges to a result where there is less than 1% relative error in stream flow calibration at 16 stream gauging stations. The spatially-averaged ET estimated using the iterative method shows a high level of agreement (R2 = 0.99) with that from a benchmark case simulated with an ET model embedded directly in HydroGeoSphere. The new approach presented here is applicable to any watershed that is suited for integrated surface water/groundwater flow modelling and where spatially-averaged ET estimates are useful for calibrating modelled stream discharge.

  4. An investigation of spectral change as influenced by irrigation and evapotranspiration volume estimation in western Nebraska

    USGS Publications Warehouse

    Seevers, P.M.; Sadowski, F.C.; Lauer, D.T.

    1990-01-01

    Retrospective satellite image data were evaluated for their ability to demonstrate the influence of center-pivot irrigation development in western Nebraska on spectral change and climate-related factors for the region. Periodic images of an albedo index and a normalized difference vegetation index (NDVI) were generated from calibrated Landsat multispectral scanner (MSS) data and used to monitor spectral changes associated with irrigation development from 1972 through 1986. The albedo index was not useful for monitoring irrigation development. For the NDVI, it was found that proportions of counties in irrigated agriculture, as discriminated by a threshold, were more highly correlated with reported ground estimates of irrigated agriculture than were county mean greenness values. A similar result was achieved when using coarse resolution Advanced Very High Resolution Radiometer (AVHRR) image data for estimating irrigated agriculture. The NDVI images were used to evaluate a procedure for making areal estimates of actual evapotranspiration (ET) volumes. Estimates of ET volumes for test counties, using reported ground acreages and corresponding standard crop coefficients, were correlated with the estimates of ET volume using crop coefficients scaled to NDVI values and pixel counts of crop areas. These county estimates were made under the assumption that soil water availability was unlimited. For nonirrigated vegetation, this may result in over-estimation of ET volumes. Ground information regarding crop types and acreages are required to derive the NDVI scaling factor. Potential ET, estimated with the Jensen-Haise model, is common to both methods. These results, achieved with both MSS and AVHRR data, show promise for providing climatologically important land surface information for regional and global climate models. ?? 1990 Kluwer Academic Publishers.

  5. Effects of the Temporal Variability of Evapotranspiration on Hydrologic Simulation in Central Florida

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2007-01-01

    The transient response of a hydrologic system can be of concern to water-resource managers, because it is often extreme relatively short-lived events, such as floods or droughts, that profoundly influence the management of the resource. The water available to a hydrologic system for stream flow and aquifer recharge is determined by the difference of precipitation and evapotranspiration (ET). As such, temporal variations in precipitation and ET determine the degree of influence each has on the transient response of the hydrologic system. Meteorological, ET, and hydrologic data collected from 1993 to 2003 and spanning 1- to 3 2/3 -year periods were used to develop a hydrologic model for each of five sites in central Florida. The sensitivities of simulated water levels and flows to simple approximations of ET were quantified and the adequacy of each ET approximation was assessed. ET was approximated by computing potential ET, using the Hargreaves and Priestley-Taylor equations, and applying vegetation coefficients to adjust the potential ET values to actual ET. The Hargreaves and Priestley-Taylor ET approximations were used in the calibrated hydrologic models while leaving all other model characteristics and parameter values unchanged. Two primary factors that influence how the temporal variability of ET affects hydrologic simulation in central Florida were identified: (1) stochastic character of precipitation and ET and (2) the ability of the local hydrologic system to attenuate variability in input stresses. Differences in the stochastic character of precipitation and ET, both the central location and spread of the data, result in substantial influence of precipitation on the quantity and timing of water available to the hydrologic system and a relatively small influence of ET. The temporal variability of ET was considerably less than that of precipitation at each site over a wide range of time scales (from daily to annual). However, when precipitation and ET are of

  6. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  7. Investigating effects of different evapotranspiration (ET) schemes on soil water dynamics and ET partitioning: a large lysimeter case of summer maize in a semi-arid environment northwest of China

    NASA Astrophysics Data System (ADS)

    Yu, L.; Zeng, Y.; Su, Z.; Cai, H.; Zheng, Z.

    2015-09-01

    Different evapotranspiration (ET) schemes can affect significantly the performance of land surface models in capturing the soil water dynamics and ET partitioning over various land cover and climates, the accurate understanding of which is crucial to determine the effective irrigation. In this study, a land model considering the coupled transfer of water, vapor and heat in the soil, with two alternative ET schemes, was used to investigate how the coupled mechanism can affect the soil water dynamics in a crop field and how the ET partitioning was influenced. There are two different evapotranspiration (ET) schemes, one is based on reference crop evapotranspiration (ET0) and use LAI to partition into soil evaporation and transpiration, denoted as the ETind scheme; the other is one-step calculation of actual soil evaporation and potential transpiration by incorporating canopy minimum resistance and actual soil resistance into Penman-Monteith model, denoted as the ETdir scheme. Results indicated that the coupled model with the two different ET schemes differed in simulating soil water content and crop evapotranspiration components while agreed well for the simulation of soil temperature. Considering the aerodynamic and surface resistance terms made the ETdir scheme better in simulating soil evaporation especially after irrigations. Furthermore, the results of different crop growth scenarios indicated that the uncertainty in LAI played an important role in estimating the relative transpiration and evaporation fraction. The soil drying seemed to intensify the disturbance of maximum rooting depth and root growth rate in calculating ET components. The former was more important at the late growing season while the latter dominated at the early growing season.

  8. Estimating evapotranspiration under warmer climates: Insights from a semiarid riparian system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents an approach to quantify evapotranspiration under changing climates, using field observations, theoretical evaporation models and meteorological predictions from global climate models. We analyzed evaporation and meteorological data from three riparian sites located in a semiarid ...

  9. Analytical solutions of travel time to a pumping well with variable evapotranspiration.

    PubMed

    Chen, Tian-Fei; Wang, Xu-Sheng; Wan, Li; Li, Hailong

    2014-01-01

    Analytical solutions of groundwater travel time to a pumping well in an unconfined aquifer have been developed in previous studies, however, the change in evapotranspiration was not considered. Here, we develop a mathematical model of unconfined flow toward a discharge well with redistribution of groundwater evapotranspiration for travel time analysis. Dependency of groundwater evapotranspiration on the depth to water table is described using a linear formula with an extinction depth. Analytical solutions of groundwater level and travel time are obtained. For a typical hypothetical example, these solutions perfectly agree with the numerical simulation results based on MODFLOW and MODPATH. As indicated in a dimensionless framework, a lumped parameter which is proportional to the pumping rate controls the distributions of groundwater evapotranspiration rate and the travel time along the radial direction. PMID:23710800

  10. Groundwater Evapotranspiration in Arid Riparian Zone along the Downstream of the Yerqiang River

    NASA Astrophysics Data System (ADS)

    Cong, Zhentao; Dang, Qian; Pan, Baoxiang; Duan, Meng

    2013-04-01

    The Yerqiang river is a headstream of the Tarim river located in Northeast China. In some years, this river flows into the Tarim river in summer; and in other years, it can not reach to the mainstream. Therefore, the downstream of the Yerqiang river, where the precipitation is lower than 50mm, is hyper arid and the ecosystem is very fragile and depends on the groundwater. Groundwater evapotranspiration constitutes a major component of the water balance in arid riparian zone. Most of groundwater evapotranspiration studies depend on numerical models but it is not easy to discuss the controling factors of groundwater evapotranspiration in riparian zone. A site has been set up to observe weather, groundwater table and vegetation in this downstream. Then a two-dimension conceptal framework was applied to understand the groundwater evapotranspiration in this area.

  11. Evapotranspiration mapping using METRIC for a region with highly advective conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the Texas High Plains accounts for approximately 92% of groundwater withdrawals. Because, groundwater levels are declining in the region, efficient agricultural water use is imperative for sustainability and regional economic viability. Accurate regional evapotranspiration (ET) maps w...

  12. Measuring evapotranspiration: comparison of eddy covariance, scintillometers and enclosed chambers

    NASA Astrophysics Data System (ADS)

    Yee, Mei Sun; Beringer, Jason; Pauwels, Valentijn R. N.; Daly, Edoardo; Walker, Jeffrey P.; Rüdiger, Christoph

    2014-05-01

    Evapotranspiration (ET) is the combination of evaporation from the soil surface and transpiration from plants. It is an important component of the hydrological cycle, particularly in arid and semi-arid areas where most of the precipitation is returned to the atmosphere via ET. It also drives the land-surface energy balance, largely affecting soil temperature and the heat exchange between the land and atmosphere. Therefore, the ability to quantify ET is important for accurate climate and weather predictions, as well as improving the management of water resources. Various methods for measuring ET are available, including gas chambers, lysimeters, Bowen-ratio energy balance stations, eddy-covariance systems, scintillometers, and space-borne sensors. These methods differ in spatial scales (from leaf to basin scale), time scales (seconds to days), principles (water-balance, mass-transfer, eddy-correlation, energy balance) and have their own strengths and limitations. For instance, point scale measurements, such as those obtained using lysimeters, assume that the sample is representative of a larger area, whereas measurements at a basin scale assume that the spatial average of all the other components in the water or energy balance equations can be measured accurately. The purpose of this study is to compare different techniques to measure ET across their respective scales and to identify causes of discrepancies between measurements. The final aim is to identify a technique or a combination of techniques to be used for verification of remote sensing evapotranspiration products. The study area is located in the Yanco Study Area (34.561°S, 35.170°S, 145.826°E, 146.439°E), situated within the western plains of the Murrumbidgee River catchment, in New South Wales, Australia. This area has been extensively monitored and a series of field experiments have been performed in the past to contribute to the pre- and post-launch algorithm development of earth observing

  13. Growing Season Evapotranspiration with Satellite Remote Sensing Procedure

    NASA Astrophysics Data System (ADS)

    Irmak, A.; Ratcliffe, I.; Ranade, P.; Kamble, B.; Mutiibwa, D.; Akasheh, O. Z.; Hydrologic Information System Team

    2010-12-01

    Water is the most important constraint facing agriculture in the most of the Central High Plains of the U.S.A.. Local, state and federal water management regulatory agencies need good quality water use estimates by different land surfaces to assess short and long-term water management, planning, and allocations on a watershed scale. Evapotranspiration (ET) can be defined as the loss of water from the ground, lake or pond, and vegetative surfaces to the atmosphere through vaporization of liquid water. The ability is required to accurately estimate the magnitude of this flux will, therefore, go a long way towards being able to compute the water balance and plan the water resources and regimes.. Furthermore, quantification of this flux on a watershed or a regional scale is much more difficult. In this study we applied the Mapping Evapotranspiration at High Resolution with internal calibration (METRIC) to obtain ET maps for Central and Western parts of Nebraska. Landsat 5 and Landsat 7 images were processed for the 2005 and 2007 growing seasons to obtain instantaneous and daily ET. Monthly and Seasonal ET data are rarely presented in previous studies and are often required for quantifying water consumption. In order to produce monthly and seasonal ET maps, individual daily ET maps generated from METRIC were interpolated between dates on a daily basis using a cubic-spline model. Cloud artifacts were removed and filled back in using interpolated ET data and a daily background evaporation adjustment based on the FAO-56 Ke evaporation model. The maps generated by the METRICtm allowed us to follow the seasonal trend in evaporative faction and ET for major land use classes. If calibrated properly, the model could be a viable tool to estimate water use in managed and native ecosystems in sub-humid climates at a large scale. The METRICtm approach presented in this paper illustrated how an ‘off-the-shelf’ model can be applied operationally over a significant time period and

  14. Disassembling "evapotranspiration" in-situ with a complex measurement tool

    NASA Astrophysics Data System (ADS)

    Chormanski, Jaroslaw; Kleniewska, Malgorzata; Berezowski, Tomasz; Sporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatylowicz, Jan; Batelaan, Okke

    2014-05-01

    In this work we present a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them from the total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its components transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project will be the estimation of energy and

  15. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed

    USGS Publications Warehouse

    Scott, R.L.; Cable, W.L.; Huxman, T. E.; Nagler, P.L.; Hernandez, M.; Goodrich, D.C.

    2008-01-01

    Riparian evapotranspiration (ET) is a major component of the surface and subsurface water balance for many semiarid watersheds. Measurement or model-based estimates of ET are often made on a local scale, but spatially distributed estimates are needed to determine ET over catchments. In this paper, we document the ET that was quantified over 3 years using eddy covariance for three riparian ecosystems along the Upper San Pedro River of southeastern Arizona, USA, and we use a water balance equation to determine annual groundwater use. Riparian evapotranspiration and groundwater use for the watershed were then determined by using a calibrated, empirical model that uses 16-day, 250-1000 m remote-sensing products for the years of 2001-2005. The inputs for the model were derived entirely from the NASA MODIS sensor and consisted of the Enhanced Vegetation Index and land surface temperature. The scaling model was validated using subsets of the entire dataset (omitting different sites or years) and its capable performance for well-watered sites (MAD=0.32 mm day-1, R2=0.93) gave us confidence in using it to determine ET over the watershed. Three years of eddy covariance data for the riparian sites reveal that ET and groundwater use increased as woody plant density increased. Groundwater use was less variable at the woodland site, which had the greatest density of phreatophytes. Annual riparian groundwater use within the watershed was nearly constant over the study period despite an on-going drought. For the San Pedro alone, the amounts determined in this paper are within the range of most recently reported values that were derived using an entirely different approach. However, because of our larger estimates for groundwater use for the main tributary of the San Pedro, the watershed totals were higher. The approach presented here can provide riparian ET and groundwater use amounts that reflect real natural variability in phreatophyte withdrawals and improve the accuracy of a

  16. EVASPA (EVapotranspiration Assessment from SPAce) tool: overview and first assessments

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Olioso, Albert; Mira, Maria; Reyes-Castillo, Sergio; Boulet, Gilles; Marloie, Olivier; Garrigues, Sébastien; Courault, Dominique; Weiss, Marie

    2013-04-01

    Evapotranspiration (ET) is a fundamental variable of the hydrological cycle which plays a major role on surface water and energy balances. ET estimation is required for irrigation management, water resources planning and environmental studies. At the local scale ET can be accurately determined from detailed ground observations (eddy covariance towers, lysimeters) but at regional scale, numerous time-consuming and expensive installations would be required. Remote sensing provides spatially distributed cost-effective information for ET maps production at regional scale. EVASPA (EVapotranspiration Assessment from SPAce) tool has been developed to produce ET maps at relevant spatial and time scales for hydrological or agronomical purposes. The tool includes several ET estimation methods (S-SEBI method, the triangle approach and aerodynamic equations) and various equations for estimating the required input information (albedo, net radiation, ground heat flux...). Highlighted features of this tool are: (i) the possibility of integrating data from various remote sensing sensors, (ii) to be easily adapted to new sensors, (iii) to provide an estimation of uncertainties (thanks to the combination of the various ET estimates) and (iv) to produce continuous daily ET maps even for days without available remote sensing images (by means of interpolation techniques). To test the tool, ET maps have been produced for the Crau-Camargue pilot site in south-eastern France. This site is a flat region characterized by highly contrasted wet and dry areas, with a high diversity of surfaces: irrigated meadows, dry grasslands (steppic area), saltmarsh scrubs, paddy fields, orchards, etc. Daily ET maps at kilometric spatial resolution are produced from MODIS data (Moderate Resolution Imaging Spectroradiometer, platforms Terra and Aqua) and high resolution ET maps with a hectometric resolution from ETM+ (Enhanced Thematic Mapper Plus, Landsat 7 platform) when images of the study area are

  17. Rainfall and evapotranspiration data for southwest Medina County, Texas, August 2006-December 2009

    USGS Publications Warehouse

    Slattery, Richard N.; Asquith, William H.; Ockerman, Darwin J.

    2011-01-01

    During August 2006-December 2009, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Fort Worth District, collected rainfall and evapotranspiration data to help characterize the hydrology of the Nueces River Basin, Texas. The USGS installed and operated a station to collect continuous (30-minute interval) rainfall and evapotranspiration data in southwest Medina County approximately 14 miles southwest of D'Hanis, Texas, and 23 miles northwest of Pearsall, Texas. Rainfall data were collected by using an 8-inch tipping bucket raingage. Meteorological and surface-energy flux data used to calculate evapotranspiration were collected by using an extended Open Path Eddy Covariance system from Campbell Scientific, Inc. Data recorded by the system were used to calculate evapotranspiration by using the eddy covariance and Bowen ratio closure methods and to analyze the surface energy budget closure. During August 2006-December 2009 (excluding days of missing record), measured rainfall totaled 86.85 inches. In 2007, 2008, and 2009, annual rainfall totaled 40.98, 12.35, and 27.15 inches, respectively. The largest monthly rainfall total, 12.30 inches, occurred in July 2007. During August 2006-December 2009, evapotranspiration calculated by using the eddy covariance method totaled 69.91 inches. Annual evapotranspiration calculated by using the eddy covariance method totaled 34.62 inches in 2007, 15.24 inches in 2008, and 15.57 inches in 2009. During August 2006-December 2009, evapotranspiration calculated by using the Bowen ratio closure method (the more refined of the two datasets) totaled 68.33 inches. Annual evapotranspiration calculated by using the Bowen ratio closure method totaled 32.49, 15.54, and 15.80 inches in 2007, 2008, and 2009, respectively (excluding days of missing record).

  18. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California; with a section on estimating evapotranspiration using the energy-budget eddy-correlation technique

    USGS Publications Warehouse

    Czarnecki, John B.; Stannard, David I.

    1997-01-01

    Franklin Lake playa is one of the principal discharge areas of the ground-water-flow system associated with Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository. By using the energy-budget eddy-correlation technique, measurements made between June 1983 and April 1984 to estimate evapotranspiration were found to range from 0.1 centimeter per day during winter months to about 0.3 centimeter per day during summer months; the annual average was 0.16 centimeter per day. These estimates were compared with evapotranspiration estimates calculated from six other methods.

  19. Evapotranspiration rates at selected sites in the Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Lenfest, L.W.

    1987-01-01

    Twelve sites were chosen for a study of evapotranspiration in the Powder River basin based on variations in topography and plant communities, geographic location, and the availability of groundwater data at the sites. Evapotranspiration rates were estimated from groundwater, meteorological, and vegetation data using the Blaney-Criddle method. Five of the sites were equipped with digital recorders that provided continuous groundwater level data at the sites for the 1978 growing season. Evapotranspiration was estimated monthly during the growing season and ranged from 0 to 3.7 inches per month. Total evapotranspiration rates for the growing season ranged from 8.3 to 14.9 inches. Discharge per mile of stream reach was estimated for three of the sites and ranged from 0.03 to 0.31 cubic foot per second. The well records for the remaining seven sites consisted of monthly, or less frequent, water-level measurements. Evapotranspiration rates estimated for those months for which water-level data were available ranged from 0 to 3.8 inches per month. Only one of these sites had monthly water-level measurements for the entire growing season; a total of 9.7 inches of evapotranspiration was estimated for the growing season at this site. (USGS)

  20. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  1. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  2. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  3. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  4. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  5. The role of evapotranspiration in the groundwater hydrochemistry of an arid coastal wetland (Península Valdés, Argentina).

    PubMed

    Alvarez, María Del Pilar; Carol, Eleonora; Dapeña, Cristina

    2015-02-15

    Coastal wetlands are complex hydrogeological systems, in which saline groundwater usually occurs. Salinity can be attributed to many origins, such as dissolution of minerals in the sediments, marine contribution and evapotranspiration, among others. The aim of this paper is to evaluate the processes that condition the hydrochemistry of an arid marsh, Playa Fracasso, located in Patagonia, Argentina. A study of the dynamics and geochemistry of the groundwater was carried out in each hydrogeomorphological unit, using major ion and isotope ((18)O and (2)H) data, soil profiles descriptions and measurements, and recording of water tables in relation to the tidal flow. Water balances and analytical models based on isotope data were used to quantify the evaporation processes and to define the role of evaporation in the chemical composition of water. The results obtained show that the groundwater salinity of the marsh comes mainly from the tidal inflow, to which the halite and gypsum dissolution is added. These mineral facies are the result of the total evaporation of the marine water flooding that occurs mostly at the spring high tides. The isotope relationships in the fan and bajada samples show the occurrence of evaporation processes. Such processes, however, are not mainly responsible for the saline content of groundwater, which is actually generated by the dissolution of the typical evaporite facies of the arid environment sediments. It is concluded that the evapotranspiration processes condition groundwater quality. This is not only due to the saline enrichment caused by the evapotranspiration of shallow water, but also because such processes are the main drivers of the formation of soluble salts, which are then incorporated into the water by groundwater or tidal flow. PMID:25460963

  6. Estimating turf pesticide volatilization from simple evapotranspiration models.

    PubMed

    Walden, Rebecca R; Haith, Douglas A

    2003-01-01

    A previously developed model by Haith et al. (2002) related pesticide volatilization from turf to evapotranspiration (ET) by scaling factors determined from vapor pressures and heats of vaporization. Although the model provided volatilization estimates that compared well with field measurements, it relied on the Penman ET equation, requiring hourly temperature, wind speed, and solar radiation data, none of which are routinely available at field sites. The current study determined that the volatilization model works equally well with a simpler ET equation requiring only daily temperatures. Three daily temperature-based ET models were evaluated as vehicles for estimating pesticide volatilization from turf: Hamon, Hargreaves-Samani, and a modified Priestley-Taylor. When compared with field volatilization measurements for eight pesticides, volatilization estimates produced from the Hargreaves-Samani model most closely approximated both the field observations and the previous estimates based on the more data-intensive Penman model. Mean estimated volatilization exceeded mean observations by 15% and the coefficient of variation (R2) between estimates and observations was 0.65. The comparable values based on Penman ET were 17% and 0.63, respectively. PMID:12809316

  7. An application of thermal inertia in regional evapotranspiration retrieval

    NASA Astrophysics Data System (ADS)

    Mi, S.

    2015-12-01

    Accurate estimates of the spatial distribution of evapotranspiration (ET) are of crucial importance in disciplines of hydrology, meteorology and agriculture, especially in arid and semi-arid areas where water scarcity is becoming a major constraint on economic welfare and sustainable development. Space feature models are widely used in estimating ET nowadays. The locations of dry line and wet line are important to the retrieving results, especially for the dry lines, which are more difficult to determine than wet lines since dry lines do not exist in wet period. In this paper, simplified thermal inertia values of sandy soil samples and full vegetation covered samples measured in laboratory are used in the middle reaches of Heihe River to determine the locations of dry line in wet periods and dry periods. Six Aster images form 1st June to 12th September of Year 2012 are used in the study. The results shows that the ET results from our approach shows a high agreement (R > 0.85) with the observed ET in Heihe and the method can be used in Heihe area to estimate regional ET.

  8. Changes in Evapotranspiration in China During the Last Forty Years

    NASA Astrophysics Data System (ADS)

    Yin, Y.

    2011-12-01

    Potential evapotranspiration (ETo) is important to hydrological cycling and the global energy balance. Based on a modified FAO56-Penman-Monteith model, ETo was simulated for 603 meteorological stations across China in the period 1971-2008. Spatial distribution and temporal change of ETo were characterized, and the determining factors in ETo were revealed by sensitivity analysis. Results show obvious regional differences in annual average ETo and its determining factor. In general, annual average ETo decreased in the period 1971-2008, but increased since the 1990s. Wind speed and sunshine duration were determining factors in the annual ETo trend, with smaller contributions from relative humidity and temperature. Declining wind speed was the determining factor in decreasing annual ETo in northern temperate regions and the Tibetan Plateau. The spatial extent of wind speed influence contracted to northwest China in summer, and expanded to the whole country in autumn. Decreasing sunshine duration was the determining factor in decreasing annual ETo in subtropical and tropical regions, especially in summer, with a larger spatial influence mainly to the southeast of the farming-pastoral region. ETo change has distinct impacts on earth surface ecosystems and environment depending on different determining factors.

  9. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    SciTech Connect

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; Wei, Yaxing; Thornton, Peter E.; Hoffman, Forrest M.; Fu, Wenting; Fisher, Joshua B.; Dickinson, Robert E.; Shem, Willis; Piao, Shilong; Wang, Kaicun; Schwalm, Christopher R.; Tian, Hanqin; Mu, Mingquan; Arain, Altaf; Ciais, Philippe; Cook, Robert; Dai, Yongjiu; Hayes, Daniel; Huang, Maoyi; Huang, Suo; Huntzinger, Deborah N.; Ito, Akihiko; Jain, Atul; King, Anthony W.; Lei, Huimin; Lu, Chaoqun; Michalak, Anna M.; Parazoo, Nicholas; Peng, Changhui; Peng, Shushi; Poulter, Benjamin; Schaefer, Kevin; Jafarov, Elchin; Wang, Weile; Zeng, Ning; Zeng, Zhenzhong; Zhao, Fang; Zhu, Qiuan; Zhu, Zaichun

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

  10. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    DOE PAGESBeta

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; Wei, Yaxing; Thornton, Peter E.; Hoffman, Forrest M.; Fu, Wenting; Fisher, Joshua B.; Dickinson, Robert E.; Shem, Willis; et al

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified globalmore » ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.« less

  11. Evapotranspiration from Urban Green Spaces in the Northeast United States

    NASA Astrophysics Data System (ADS)

    DiGiovanni, K. A.; Montalto, F. A.; Gaffin, S.

    2012-12-01

    The measurement and estimation of urban evapotranspiration (ET) has historically received limited consideration from researchers in the hydrologic and climatologic communities yet are arguably vital to both. In the studies presented, ET rates from four different urban green spaces have been measured using weighing lysimeter setups for periods ranging from one to three years. The experimental sites predominantly include in-situ engineered urban green spaces or green infrastructure installations throughout the boroughs of New York City, specifically a green roof, irrigated bioretention area, un-irrigated bioretention area, and a wooded area in one of the last remaining sections of old growth urban forest in NYC. Comparison of ET rates between these urban green spaces at a daily time-step show statistically significant differences between the rates at each site at the 0.05 significance level. Examination of the factors impacting ET rates across sites (including net radiation, wind speed, relative humidity, air temperature and media volumetric water content) was also performed for a total of eight (8) sites including the four at which ET was directly measured using weighing lysimeters. Findings suggest that statistically significant differences in micro-climate conditions do exist across the city and that these are partially responsible for differences in rates of ET. Soil moisture (irrigated vs. un-irrigated bioretention areas) conditions and vegetation types (green roof vs. bioretention area) also play a role.

  12. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion.

    PubMed

    Goulden, Michael L; Bales, Roger C

    2014-09-30

    Climate change has the potential to reduce surface-water supply by expanding the activity, density, or coverage of upland vegetation, although the likelihood and severity of this effect are poorly known. We quantified the extent to which vegetation and evapotranspiration (ET) are presently cold-limited in California's upper Kings River basin and used a space-for-time substitution to calculate the sensitivity of riverflow to vegetation expansion. We found that runoff is highly sensitive to vegetation migration; warming projected for 2100 could increase average basin-wide ET by 28% and decrease riverflow by 26%. Kings River basin ET currently peaks at midelevation and declines at higher elevation, creating a cold-limited zone above 2,400 m that is disproportionately important for runoff generation. Climate projections for 2085-2100 indicate as much as 4.1 °C warming in California's Sierra Nevada, which would expand high rates of ET 700-m upslope if vegetation maintains its current correlation with temperature. Moreover, we observed that the relationship between basin-wide ET and temperature is similar across the entire western slope of California's Sierra Nevada, implying that the risk of increasing montane ET with warming is widespread. PMID:25197084

  13. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion

    PubMed Central

    Goulden, Michael L.; Bales, Roger C.

    2014-01-01

    Climate change has the potential to reduce surface-water supply by expanding the activity, density, or coverage of upland vegetation, although the likelihood and severity of this effect are poorly known. We quantified the extent to which vegetation and evapotranspiration (ET) are presently cold-limited in California’s upper Kings River basin and used a space-for-time substitution to calculate the sensitivity of riverflow to vegetation expansion. We found that runoff is highly sensitive to vegetation migration; warming projected for 2100 could increase average basin-wide ET by 28% and decrease riverflow by 26%. Kings River basin ET currently peaks at midelevation and declines at higher elevation, creating a cold-limited zone above 2,400 m that is disproportionately important for runoff generation. Climate projections for 2085–2100 indicate as much as 4.1 °C warming in California’s Sierra Nevada, which would expand high rates of ET 700-m upslope if vegetation maintains its current correlation with temperature. Moreover, we observed that the relationship between basin-wide ET and temperature is similar across the entire western slope of California’s Sierra Nevada, implying that the risk of increasing montane ET with warming is widespread. PMID:25197084

  14. Spatiotemporal Variations of Reference Crop Evapotranspiration in Northern Xinjiang, China

    PubMed Central

    Lv, Xin; Lin, Hai-rong

    2014-01-01

    To set up a reasonable crop irrigation system in the context of global climate change in Northern Xinjiang, China, reference crop evapotranspiration (ET0) was analyzed by means of spatiotemporal variations. The ET0 values from 1962 to 2010 were calculated by Penman-Monteith formula, based on meteorological data of 22 meteorological observation stations in the study area. The spatiotemporal variations of ET0 were analyzed by Mann-Kendall test, Morlet wavelet analysis, and ArcGIS spatial analysis. The results showed that regional average ET0 had a decreasing trend and there was an abrupt change around 1983. The trend of regional average ET0 had a primary period about 28 years, in which there were five alternating stages (high-low-high-low-high). From the standpoint of spatial scale, ET0 gradually increased from the northeast and southwest toward the middle; the southeast and west had slightly greater variation, with significant regional differences. From April to October, the ET0 distribution significantly influenced the distribution characteristic of annual ET0. Among them sunshine hours and wind speed were two of principal climate factors affecting ET0. PMID:25254259

  15. Online Remote-Sensing Tool for Calculating Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sammis, T. W.

    2010-12-01

    Remote sensing evapotranspiration (ET) models are important for forest, phreatophyte, rangeland, and agricultural water and pest management. However, most remote sensing ET models are not available in an Internet-based operational mode. Manually downloading satellite and weather data and processing this data is complicated and time-consuming, requiring as much as 2-6 hrs per satellite scene. If the ET algorithm is going to be used by the scientific community or management agencies and farmers, it is imperative that the computer processing be automated and user-friendly; the user should be able to input the dates and locations of interest and have the model output the ET results (map and ACSII data file). The objective of our research was to test the hypothesis that remote sensing algorithms that calculate daily ET based on energy balance could be automated. An Internet-based ET model using MODIS, local weather station, and forecast data was developed. The automated calculated daily ET was compared to measured eddy-covariance ET under both stressed and non-stressed conditions.

  16. Models for hydrologic design of evapotranspiration landfill covers.

    PubMed

    Hauser, Victor L; Gimon, Dianna M; Bonta, James V; Howell, Terry A; Malone, Robert W; Williams, Jimmy R

    2005-09-15

    The technology used in landfill covers is changing, and an alternative cover called the evapotranspiration (ET) landfill cover is coming into use. Important design requirements are prescribed by Federal rules and regulations for conventional landfill covers but not for ET landfill covers. There is no accepted hydrologic model for ET landfill cover design. This paper describes ET cover requirements and design issues, and assesses the accuracy of the EPIC and HELP hydrologic models when used for hydrologic design of ET covers. We tested the models against high-quality field measurements available from lysimeters maintained by the Agricultural Research Service of the U.S. Department of Agriculture at Coshocton, Ohio, and Bushland, Texas. The HELP model produced substantial errors in estimating hydrologic variables. The EPIC model estimated ET and deep percolation with errors less than 7% and 5%, respectively, and accurately matched extreme events with an error of less than 2% of precipitation. The EPIC model is suitable for use in hydrologic design of ET landfill covers. PMID:16201652

  17. Case study of a full-scale evapotranspiration cover

    USGS Publications Warehouse

    McGuire, P.E.; Andraski, B.J.; Archibald, R.E.

    2009-01-01

    The design, construction, and performance analyses of a 6.1 ha evapotranspiration (ET) landfill cover at the semiarid U.S. Army Fort Carson site, near Colorado Springs, Colo. are presented. Initial water-balance model simulations, using literature reported soil hydraulic data, aided selection of borrow-source soil type(s) that resulted in predictions of negligible annual drainage (???1 mm/year). Final construction design was based on refined water-balance simulations using laboratory determined soil hydraulic values from borrow area natural soil horizons that were described with USDA soil classification methods. Cover design components included a 122 cm thick clay loam (USDA), compaction ???80% of the standard Proctor maximum dry density (dry bulk density ???1.3 Mg/m3), erosion control measures, top soil amended with biosolids, and seeding with native grasses. Favorable hydrologic performance for a 5 year period was documented by lysimeter-measured and Richards'-based calculations of annual drainage that were all <0.4 mm/year. Water potential data suggest that ET removed water that infiltrated the cover and contributed to a persistent driving force for upward flow and removal of water from below the base of the cover. ?? 2009 ASCE.

  18. Isotope-based evapotranspiration partition in semi-arid environments

    NASA Astrophysics Data System (ADS)

    Wang, Lixin; Parkes, Stephen; McCabe, Matthew; Azcurra, Cecilia; Wang, Jin; Graham, Peter

    2013-04-01

    Evapotranspiration (ET) partitioning is important for quantifying the water budget and understanding vegetation control on water cycles in various ecosystems. With the development of spectroscopy-based techniques for in-situ isotope measurements, the use of stable isotope based ET partition is rising rapidly. The sub-daily scale ET partition, however, is still rarely seen in the literature. In this study, we conducted an intensive field campaign measuring ET partition using laser-based isotope and chamber techniques in a pasture system between May and June 2012 in eastern Australia. Six soil collars were used, three of which had natural vegetation and the other three were bare soil collars where vegetation was artificially removed. The vegetated and bare soil collars were used to determine the isotopic composition of ET and evaporation, respectively. The isotopic composition of the transpiration flux was determined using a Licor leaf chamber for grasses inside the vegetated collars. The diurnal patterns in dET, dE and dT are observed. In the morning, they are depleted and became more enriched and level off during mid-day. Overall the total ET flux is dominated by evaporation, though transpiration contributions are relatively higher between 10am and 12pm. D-excess is a conservative tracer of ET components and may not be useful in ET partition. This study demonstrated the use of chamber-based measurements for direct partitioning of ET at sub-daily scale and showed a rarely observed diurnal pattern of ET partition.

  19. Reference evapotranspiration changes in China: natural processes or human influences?

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Xu, Chong-Yu; Chen, Xiaohong

    2011-03-01

    In this study, we systematically analyze the changing properties of reference evapotranspiration (ETref) across China using Penman-Monteith (P-M) method, exploring the major sensitive meteorological variables for ETref, and investigating influences of human activities, mainly urbanization in this study, on ETref changes in both space and time. We obtain some important conclusions: (1) decreasing annual and seasonal ETref is observed in the east, south and northwest China. However, a long strip lying between these regions is identified to be characterized by increasing ETref; (2) in the regions east to 100°E, the net total solar radiation is the main cause behind the decreasing ETref. In northwest China, however, relative humidity is recognized as the most sensitive variable for the ETref; (3) in the east and south China, urbanization greatly influences the ETref by directly decreasing net solar radiation. The increased air pollution and aerosols in the highly urbanized regions are the main driving factors causing decreasing net radiation; and (4) this study reveals accelerating hydrological cycle from south to north China. Besides, increasing ETref in the source regions of large rivers in China may pose new challenges for the basin-scale water resource management. The results of this study highlight the integrated effects of climate changes and human activities on ETref changes in different regions of China, which will be of great scientific and practical merits in in-depth understanding of hydrological cycle alterations under the changing environment in China.

  20. Mapping Evapotranspiration over Agricultural Land in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Huntington, J. L.; Guzman, A.; Johnson, L.; Morton, C.; Nemani, R. R.; Post, K. M.; Rosevelt, C.; Shupe, J. W.; Spellenberg, R.; Vitale, A.

    2015-12-01

    Recent advances in satellite mapping of evapotranspiration (ET) have made it possible to largely automate the process of mapping ET over large areas at the field-scale. This development coincides with recent drought events across the western U.S. which have intensified interest in mapping of ET and consumptive use to address a range of water management challenges, including resolving disputes over water rights, improving irrigation management, and developing sustainable management plans for groundwater resources. We present a case study for California that leverages two automated ET mapping capabilities to estimate ET at the field scale over agricultural areas in the California Central Valley. We utilized the NASA Earth Exchange and applied a python-based implementation of the METRIC surface energy balance model and the Satellite Irrigation Management Support (SIMS) system, which uses a surface reflectance-based approach, to map ET over agricultural areas in the Central Valley. We present estimates from 2014 from both approaches and results from a comparison of the estimates. Though theoretically and computationally quite different from each other, initial results from both approaches show good agreement overall on seasonal ET totals for 2014. We also present results from comparisons against ET measurements collected on commercial farms in the Central Valley and discuss implications for accuracy of the two different approaches. The objective of this analysis is to provide data that can inform planning for the development of sustainable groundwater management plans, and assist water managers and growers in evaluating irrigation demand during drought events.

  1. [Quantitative estimation of evapotranspiration from Tahe forest ecosystem, Northeast China].

    PubMed

    Qu, Di; Fan, Wen-Yi; Yang, Jin-Ming; Wang, Xu-Peng

    2014-06-01

    Evapotranspiration (ET) is an important parameter of agriculture, meteorology and hydrology research, and also an important part of the global hydrological cycle. This paper applied the improved DHSVM distributed hydrological model to estimate daily ET of Tahe area in 2007 using leaf area index and other surface data extracted TM remote sensing data, and slope, aspect and other topographic indices obtained by using the digital elevation model. The relationship between daily ET and daily watershed outlet flow was built by the BP neural network, and a water balance equation was established for the studied watershed, together to test the accuracy of the estimation. The results showed that the model could be applied in the study area. The annual total ET of Tahe watershed was 234.01 mm. ET had a significant seasonal variation. The ET had the highest value in summer and the average daily ET value was 1.56 mm. The average daily ET in autumn and spring were 0.30, 0.29 mm, respectively, and winter had the lowest ET value. Land cover type had a great effect on ET value, and the broadleaf forest had a higher ET ability than the mixed forest, followed by the needle leaf forest. PMID:25223020

  2. Sensitivity of evapotranspiration to climatic change in different climates

    NASA Astrophysics Data System (ADS)

    Tabari, Hossein; Hosseinzadeh Talaee, P.

    2014-04-01

    This paper presents a study of the sensibility of evapotranspiration (ET) to climatic change in four types of climates (i.e., humid, cold semi-arid, warm semi-arid and arid). The use of a reference crop ET (ETo) permits the standardization of ET estimates across varying conditions. So, ETo was estimated with the FAO-56 Penman-Monteith equation using data from eight Iranian sites over a 41-year period (1965-2005). The sensitivity analyses were carried out for air temperature, wind speed and sunshine hours within a possible range of ± 20% (i.e., - 5%, - 10%, - 20%, + 5%, + 10%, + 20%) from the normal long-term climatic variables. The sensitivity of ETo to the same climatic variables revealed significant differences among climates. From the comparison of the sensitivity of ETo to climatic change in different climates, it can be inferred that the sensitivity of ETo to wind speed and air temperature decreased from arid to humid climate, whereas its sensitivity to sunshine hours increased from arid to humid environment. Furthermore, the greatest change in ETo (about ± 9%) was found in arid climate in response to ± 20 change in wind speed.

  3. Time trend and change point of reference evapotranspiration over Iran

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Talaee, P.; Shifteh Some'e, B.; Sobhan Ardakani, S.

    2014-05-01

    Identifying changes in reference evapotranspiration (ETo) can help in future planning of crop water requirements and water resources for high water-use efficiency. This study analyzes the ETo trends on a seasonal and annual timescale by applying various statistical tools to data from 41 Iranian weather stations during the period between 1966 and 2005. The Mann-Kendall test after removal of significant serial correlation was used to determine the statistical significance of the trends, and the change point in the ETo time series was determined using the cumulative sum technique. The results showed that (1) the significant increasing trends of annual ETo were observed at seven stations which are located in different parts of Iran, (2) the stations located at the southeast, northeast, and northwest corners of Iran experienced the highest positive change of annual ETo, and (3) the changes in seasonal ETo were most pronounced in the winter season, both in terms of trend magnitude and the number of stations with significant trends.

  4. Performance of the LDCM Thermal Infrared Sensor for Evapotranspiration Measurement

    NASA Astrophysics Data System (ADS)

    Irons, J. R.; Reuter, D. C.; Thome, K. J.; Smith, R. L.; Montanaro, M.

    2012-12-01

    Evapotranspiration (ET) rate measurements are being made at the scale of individual farm fields with data from the Landsat satellites. A new instrument, the Thermal Infrared Sensor (TIRS), has been built and tested for launch aboard the next Landsat satellite, the Landsat Data Continuity Mission (LDCM), scheduled for launch on February 11, 2013. TIRS performance requirements were specified to ensure that the LDCM will provide the thermal infrared data necessary to continue measuring field scale ET rates. The presentation will compare the prelaunch performance of TIRS to specifications and to requirements for ET rate measurements. The comparisons will be made in terms of noise equivalent change in radiance and temperature, cross-track uniformity of spectral and radiometric response, spatial resolution and sharpness, and other specified characteristics. Performance was measured while TIRS was operated in a thermal vacuum chamber to simulate the space environment and while illuminated by a calibrated source of thermal infrared radiation. Results indicate that TIRS will perform better than earlier Landsat sensors with respect to radiometric requirements for accurately measuring ET rates.

  5. Spatiotemporal distribution of reference evapotranspiration in the Republic of Moldova

    NASA Astrophysics Data System (ADS)

    Piticar, Adrian; Mihăilă, Dumitru; Lazurca, Liliana Gina; Bistricean, Petruţ-Ionel; Puţuntică, Anatolie; Briciu, Andrei-Emil

    2016-05-01

    The main objectives of this study are to investigate the spatial distribution and changes in reference evapotranspiration ( ET 0) in the Republic of Moldova. Monthly data of maximum and minimum air temperature, sunshine duration, relative humidity, and wind speed recorded at 14 weather stations over a period of 52 years (1961-2012) were used. ET 0 was computed based on the FAO Penman-Monteith formula. Annual and growing seasons of winter wheat and maize time series were analyzed for the 1981-2012 period as well as for the 1961-1980. The trends and their statistical significance in ET 0 series were detected using Mann-Kendall test and T test, while the magnitude of the trends was estimated using Sen's slope and linear regression. For the 1981-2012 period, the results indicated that annual ET 0 had a positive trend in more than 90 % of the time series according to both parametric and nonparametric methods. The magnitude of positive trends in annual ET 0 series ranged between 13.80 and 72.07 mm/decade. In the growing seasons of winter wheat and maize, the results are similar to those found in the annual series. Significant decreasing trends dominated over the 1961-1980 period.

  6. Evapotranspiration from lowland native shrubland ecosystems in Nevada

    NASA Astrophysics Data System (ADS)

    Arnone, J. A.; Jasoni, R. L.; Larsen, J. D.; Fenstermaker, L. F.; Wohlfahrt, G.

    2009-04-01

    Development of new ground water resources in rural lands surrounding urban areas of the arid western United States has been identified as a key to maintaining the economic viability of this region. The extent and rate at which ground water can be sustainably extracted, while avoiding or minimizing environmental impacts, depends to a large degree on how much of the existing resource escapes back to the atmosphere via the process of evapotranspiration (ET). The primary objective of this study was to quantify ET from six lowland basin sites in eastern Nevada and relate ET rates measured at multiple temporal scales to variability in environmental driving forces as well as remotely sensed vegetation structure. It was found that the day-to-day variability in ET was best explained by net radiation and the amount of precipitation of the preceding day. Air temperature, the vapour pressure deficit of air, root-zone soil water content and the remotely-sensed Normalised Difference Vegetation Index (NDVI) were less successful in explaining variability on the daily time scale. On an annual time scale, differences between the six study sites were best explained (r2 = 0.94) by the amount of precipitation - wetter sites featuring higher ET rates. On average ET exceeded precipitation by 84 %, the difference being due to groundwater use. The NDVI explained 65 % of the variability between sites.

  7. The actual status of Astronomy in Moldova

    NASA Astrophysics Data System (ADS)

    Gaina, A.

    The astronomical research in the Republic of Moldova after Nicolae Donitch (Donici)(1874-1956(?)) were renewed in 1957, when a satellites observations station was open in Chisinau. Fotometric observations and rotations of first Soviet artificial satellites were investigated under a program SPIN put in action by the Academy of Sciences of former Socialist Countries. The works were conducted by Assoc. prof. Dr. V. Grigorevskij, which conducted also research in variable stars. Later, at the beginning of 60-th, an astronomical Observatory at the Chisinau State University named after Lenin (actually: the State University of Moldova), placed in Lozovo-Ciuciuleni villages was open, which were coordinated by Odessa State University (Prof. V.P. Tsesevich) and the Astrosovet of the USSR. Two main groups worked in this area: first conducted by V. Grigorevskij (till 1971) and second conducted by L.I. Shakun (till 1988), both graduated from Odessa State University. Besides this research areas another astronomical observations were made: Comets observations, astroclimate and atmospheric optics in collaboration with the Institute of the Atmospheric optics of the Siberian branch of the USSR (V. Chernobai, I. Nacu, C. Usov and A.F. Poiata). Comets observations were also made since 1988 by D. I. Gorodetskij which came to Chisinau from Alma-Ata and collaborated with Ukrainean astronomers conducted by K.I. Churyumov. Another part of space research was made at the State University of Tiraspol since the beggining of 70-th by a group of teaching staff of the Tiraspol State Pedagogical University: M.D. Polanuer, V.S. Sholokhov. No a collaboration between Moldovan astronomers and Transdniestrian ones actually exist due to War in Transdniestria in 1992. An important area of research concerned the Radiophysics of the Ionosphere, which was conducted in Beltsy at the Beltsy State Pedagogical Institute by a group of teaching staff of the University since the beginning of 70-th: N. D. Filip, E

  8. What Galvanic Vestibular Stimulation Actually Activates

    PubMed Central

    Curthoys, Ian S.; MacDougall, Hamish Gavin

    2012-01-01

    In a recent paper in Frontiers Cohen et al. (2012) asked “What does galvanic vestibular stimulation actually activate?” and concluded that galvanic vestibular stimulation (GVS) causes predominantly otolithic behavioral responses. In this Perspective paper we show that such a conclusion does not follow from the evidence. The evidence from neurophysiology is very clear: galvanic stimulation activates primary otolithic neurons as well as primary semicircular canal neurons (Kim and Curthoys, 2004). Irregular neurons are activated at lower currents. The answer to what behavior is activated depends on what is measured and how it is measured, including not just technical details, such as the frame rate of video, but the exact experimental context in which the measurement took place (visual fixation vs total darkness). Both canal and otolith dependent responses are activated by GVS. PMID:22833733

  9. MODIS Solar Diffuser: Modelled and Actual Performance

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.

  10. Crop biomass and evapotranspiration estimation using SPOT and Formosat-2 Data

    NASA Astrophysics Data System (ADS)

    Veloso, Amanda; Demarez, Valérie; Ceschia, Eric; Claverie, Martin

    2013-04-01

    The use of crop models allows simulating plant development, growth and yield under different environmental and management conditions. When combined with high spatial and temporal resolution remote sensing data, these models provide new perspectives for crop monitoring at regional scale. We propose here an approach to estimate time courses of dry aboveground biomass, yield and evapotranspiration (ETR) for summer (maize, sunflower) and winter crops (wheat) by assimilating Green Area Index (GAI) data, obtained from satellite observations, into a simple crop model. Only high spatial resolution and gap-free satellite time series can provide enough information for efficient crop monitoring applications. The potential of remote sensing data is often limited by cloud cover and/or gaps in observation. Data from different sensor systems need then to be combined. For this work, we employed a unique set of Formosat-2 and SPOT images (164 images) and in-situ measurements, acquired from 2006 to 2010 in southwest France. Among the several land surface biophysical variables accessible from satellite observations, the GAI is the one that has a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Many methods have been developed to relate GAI to optical remote sensing signal. Here, seasonal dynamics of remotely sensed GAI were estimated by applying a method based on the inversion of a radiative transfer model using artificial neural networks. The modelling approach is based on the Simple Algorithm for Yield and Evapotranspiration estimate (SAFYE) model, which couples the FAO-56 model with an agro-meteorological model, based on Monteith's light-use efficiency theory. The SAFYE model is a daily time step crop model that simulates time series of GAI, dry aboveground biomass, grain yield and ETR. Crop and soil model parameters were determined using both in-situ measurements and values found in the literature. Phenological parameters were calibrated by the

  11. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational Simplified Surface Energy Balance Model.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. L...

  12. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  13. Estimation of land surface evapotranspiration with A satellite remote sensing procedure

    USGS Publications Warehouse

    Irmak, A.; Ratcliffe, I.; Ranade, P.; Hubbard, K.G.; Singh, R.K.; Kamble, B.; Kjaersgaard, J.

    2011-01-01

    There are various methods available for estimating magnitude and trends of evapotranspiration. Bowen ratio energy balance system and eddy correlation techniques offer powerful alternatives for measuring land surface evapotranspiration. In spite of the elegance, high accuracy, and theoretical attractions of these techniques for measuring evapotranspiration, their practical use over large areas can be limited due to the number of sites needed and the related expense. Application of evapotranspiration mapping from satellite measurements can overcome the limitations. The objective of this study was to utilize the METRIC??? (Mapping Evapotranspiration at High Resolution using Internalized Calibration) model in Great Plains environmental settings to understand water use in managed ecosystems on a regional scale. We investigated spatiotemporal distribution of a fraction of reference evapotranspiration (ETrF) using eight Landsat 5 images during the 2005 and 2006 growing season for path 29, row 32. The ETrF maps generated by METRIC??? allowed us to follow the magnitude and trend in ETrF for major land-use classes during the growing season. The ETrF was lower early in the growing season for agricultural crops and gradually increased as the normalized difference vegetation index of crops increased, thus presenting more surface area over which water could transpire toward the midseason. Comparison of predictions with Bowen ratio energy balance system measurements at Clay Center, NE, showed that METRIC??? performed well at the field scale for predicting evapotranspiration from a cornfield. If calibrated properly, the model could be a viable tool to estimate water use in managed ecosystems in subhumid climates at a large scale. ?? 2011 Copyright by the Center for Great Plains Studies, University of Nebraska-Lincoln.

  14. Unravelling spatio-temporal evapotranspiration patterns in topographically complex landscapes

    NASA Astrophysics Data System (ADS)

    Metzen, Daniel; Sheridan, Gary; Nyman, Petter; Lane, Patrick

    2016-04-01

    Vegetation co-evolves with soils and topography under a given long-term climatic forcing. Previous studies demonstrated a strong eco-hydrologic feedback between topography, vegetation and energy and water fluxes. Slope orientation (aspect and gradient) alter the magnitude of incoming solar radiation resulting in larger evaporative losses and less water availability on equator-facing slopes. Furthermore, non-local water inputs from upslope areas potentially contribute to available water at downslope positions. The combined effect of slope orientation and drainage position creates complex spatial patterns in biological productivity and pedogenesis, which in turn alter the local hydrology. In complex upland landscapes, topographic alteration of incoming radiation can cause substantial aridity index (ratio of potential evapotranspiration to precipitation) variations over small spatial extents. Most of the upland forests in south-east Australia are located in an aridity index (AI) range of 1-2, around the energy limited to water limited boundary, where forested systems are expected to be most sensitive to AI changes. In this research we aim to improve the fundamental understanding of spatio-temporal evolution of evapotranspiration (ET) patterns in complex terrain, accounting for local topographic effects on system properties (e.g. soil depth, sapwood area, leaf area) and variation in energy and water exchange processes due to slope orientation and drainage position. Six measurement plots were set-up in a mixed species eucalypt forest on a polar and equatorial-facing hillslope (AI ˜1.3 vs. 1.8) at varying drainage position (ridge, mid-slope, gully), while minimizing variations in other factors, e.g. geology and weather patterns. Sap flow, soil water content, incoming solar radiation and throughfall were continuously monitored at field sites spanning a wide range of soil depth (0.5 - >3m), maximum tree heights (17 - 51m) and LAI (1.2 - 4.6). Site-specific response curves

  15. Evapotranspiration dynamics along elevational and disturbance gradients at Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Detsch, Florian; Otte, Insa; Appelhans, Tim; Nauß, Thomas

    2015-04-01

    Future climate characteristics of the Mt. Kilimanjaro region, Tanzania, will be governed by two superior processes: (i) global climate change and (ii) local land cover transformation. Whilst precipitation amounts remained stable throughout the last climate normals, recent studies revealed distinctly increasing air temperatures in the study region between 1973 and 2013, resulting in a gradual reduction of available moisture. In addition, climate predictions show rising temperatures over East Africa throughout the 21st century. Modifications of the local hydrological cycle resulting from land cover transformation will either favor or counteract the thus induced, increasing dryness. Considering that the local-scale climate is a key parameter for ecosystem processes and biodiversity, quantifying the driving components on the credit (precipitation, through-fall, fog) and debit side of the local-scale water balance is of outstanding (biogeo-)scientific importance. In this context, a multidisciplinary German research unit investigates the interrelationship between climate, land use and biodiversity along the southern slopes of Mt. Kilimanjaro. A total of 65 climate stations have been installed to record rainfall and estimate potential evaporation across different land cover types ranging from savanna (880 m a.s.l.) to the upper mountain Helichrysum sites (4,550 m a.s.l.). The associated data is used for both the area-wide interpolation of meteorological parameters and as input for satellite-based retrievals of rainfall and evapotranspiration (ET). We conducted an extensive field campaign employing a surface-layer scintillometer in order to gain insights into ET dynamics over different land cover types following elevational and disturbance gradients. Scintillometer measurements are available for study sites below (savanna, maize, grassland, coffee plantations) and above the forest belt (natural and disturbed ericaceous forest, Helichrysum), covering a period of 4-7 days

  16. A worldwide analysis of trends in water-balance evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ukkola, A. M.; Prentice, I. C.

    2013-05-01

    Climate change is expected to alter the global hydrological cycle, with inevitable consequences for freshwater availability to people and ecosystems. But the attribution of recent trends in the terrestrial water balance remains disputed. This study attempts to account statistically for both trends and interannual variability in water-balance evapotranspiration (ET), estimated from the annual observed streamflow in 109 river basins during "water years" 1961-1999 and two gridded precipitation datasets. The basins were chosen based on the availability of streamflow time-series data in the Dai et al. (2009) synthesis. They were divided into water-limited "dry" and energy-limited "wet" basins following the Budyko framework. We investigated the potential roles of precipitation, aerosol-corrected solar radiation, land-use change, wind speed, air temperature, and atmospheric CO2. Both trends and variability in ET show strong control by precipitation. There is some additional control of ET trends by vegetation processes, but little evidence for control by other factors. Interannual variability in ET was overwhelmingly dominated by precipitation, which accounted on average for 52-54% of the variation in wet basins (ranging from 0 to 99%) and 84-85% in dry basins (ranging from 13 to 100%). Precipitation accounted for 39-42% of ET trends in wet basins and 69-79% in dry basins. Cropland expansion increased ET in dry basins. Net atmospheric CO2 effects on transpiration, estimated using the Land-surface Processes and eXchanges (LPX) model, did not contribute to observed trends in ET because declining stomatal conductance was counteracted by slightly but significantly increasing foliage cover.

  17. A worldwide analysis of trends in water-balance evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ukkola, A. M.; Prentice, I. C.

    2013-10-01

    Climate change is expected to alter the global hydrological cycle, with inevitable consequences for freshwater availability to people and ecosystems. But the attribution of recent trends in the terrestrial water balance remains disputed. This study attempts to account statistically for both trends and interannual variability in water-balance evapotranspiration (ET), estimated from the annual observed streamflow in 109 river basins during "water years" 1961-1999 and two gridded precipitation data sets. The basins were chosen based on the availability of streamflow time-series data in the Dai et al. (2009) synthesis. They were divided into water-limited "dry" and energy-limited "wet" basins following the Budyko framework. We investigated the potential roles of precipitation, aerosol-corrected solar radiation, land use change, wind speed, air temperature, and atmospheric CO2. Both trends and variability in ET show strong control by precipitation. There is some additional control of ET trends by vegetation processes, but little evidence for control by other factors. Interannual variability in ET was overwhelmingly dominated by precipitation, which accounted on average for 54-55% of the variation in wet basins (ranging from 0 to 100%) and 94-95% in dry basins (ranging from 69 to 100%). Precipitation accounted for 45-46% of ET trends in wet basins and 80-84% in dry basins. Net atmospheric CO2 effects on transpiration, estimated using the Land-surface Processes and eXchanges (LPX) model, did not contribute to observed trends in ET because declining stomatal conductance was counteracted by slightly but significantly increasing foliage cover.

  18. Global Evapotranspiration Estimates using the Land Information System

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Peters-Lidard, C. D.; Rodell, M.

    2005-05-01

    The Global Land Data Assimilation System (GLDAS) is being used extensively by the research community for studies ranging from climate and weather forecast initialization to the improvement of hydrologic decision support systems. The goal of the GLDAS is to ingest satellite- and ground-based observational data products, using advanced land surface modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes (Rodell et al., 2004). The GLDAS software, which has been streamlined and parallelized by the Land Information System (LIS) software infrastructure, drives multiple, offline (not coupled to the atmosphere) land surface models, integrates a huge quantity of observation based data, executes on a global domain at high spatial resolutions (2.5° to 1 km), and is capable of producing results in near-real time. A vegetation-based "tiling" approach is used to simulate sub-grid scale variability, with a 1 km global vegetation dataset as its basis. Soil and elevation parameters are based on high-resolution global datasets. Observation-based precipitation and downward radiation products, as well as output fields from the best available global coupled atmospheric data assimilation systems, are employed to force the models. The international research community is using GLDAS to help assess global land surface conditions as part of the Global Energy and Water Cycle Experiment (GEWEX) Coordinated Enhanced Observing Period (CEOP), and GLDAS has been identified as NASA's land surface contribution to the Joint Center for Satellite Data Assimilation (JCSDA) enabling better use of remote sensing data in operational weather and climate forecasting. The global 1km resolution capability of LIS allows it to take advantage of the latest satellite observations, such as MODIS leaf area index and surface temperature, at their full resolution. In this presentation we will critically evaluate global LIS-based evapotranspiration estimates at

  19. Urban Evapotranspiration and Carbon Dioxide Flux in Miami - Dade, Florida

    NASA Astrophysics Data System (ADS)

    Bernier, T.; Hopper, W.

    2010-12-01

    Atmospheric Carbon Dioxide (CO2) concentrations are leading indicators of secular climate change. With increasing awareness of the consequences of climate change, methods for monitoring this change are becoming more important daily. Of particular interest is the carbon dioxide exchange between natural and urban landscapes and the correlation of atmospheric CO2 concentrations. Monitoring Evapotranspiration (ET) is important for assessments of water availability for growing populations. ET is surprisingly understudied in the hydrologic cycle considering ET removes as much as 80 to over 100% of precipitation back into the atmosphere as water vapor. Lack of understanding in spatial and temporal ET estimates can limit the credibility of hydrologic water budgets designed to promote sustainable water use and resolve water-use conflicts. Eddy covariance (EC) methods are commonly used to estimate ET and CO2 fluxes. The EC platform consist of a (CSAT) 3-D Sonic Anemometer and a Li-Cor Open Path CO2/ H2O Analyzer. Measurements collected at 10 Hz create a very large data sets. A EC flux tower located in the Snapper Creek Well Field as part of a study to estimate ET for the Miami Dade County Water and Sewer project. Data has been collected from December 17, 2009 to August 30, 2010. QA/QC is performed with the EdiRe data processing software according to Ameri-flux protocols. ET estimates along with other data--latent-heat flux, sensible-heat flux, rainfall, air temperature, wind speed and direction, solar irradiance, net radiation, soil-heat flux and relative humidity--can be used to aid in the development of water management policies and regulations. Currently, many financial institutions have adopted an understanding about baseline environmental monitoring. The “Equator Principle” is an example of a voluntary standard for managing social and environmental risk in project financing and has changed the way in which projects are financed.

  20. Estimating plant available water content from remotely sensed evapotranspiration

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Warren, G.; Doody, T.

    2012-04-01

    Plant available water content (PAWC) is an emergent soil property that is a critical variable in hydrological modelling. PAWC determines the active soil water storage and, in water-limited environments, is the main cause of different ecohydrological behaviour between (deep-rooted) perennial vegetation and (shallow-rooted) seasonal vegetation. Conventionally, PAWC is estimated for a combination of soil and vegetation from three variables: maximum rooting depth and the volumetric water content at field capacity and permanent wilting point, respectively. Without elaborate local field observation, large uncertainties in PAWC occur due to the assumptions associated with each of the three variables. We developed an alternative, observation-based method to estimate PAWC from precipitation observations and CSIRO MODIS Reflectance-based Evapotranspiration (CMRSET) estimates. Processing steps include (1) removing residual systematic bias in the CMRSET estimates, (2) making spatially appropriate assumptions about local water inputs and surface runoff losses, (3) using mean seasonal patterns in precipitation and CMRSET to estimate the seasonal pattern in soil water storage changes, (4) from these, calculating the mean seasonal storage range, which can be treated as an estimate of PAWC. We evaluate the resulting PAWC estimates against those determined in field experiments for 180 sites across Australia. We show that the method produces better estimates of PAWC than conventional techniques. In addition, the method provides detailed information with full continental coverage at moderate resolution (250 m) scale. The resulting maps can be used to identify likely groundwater dependent ecosystems and to derive PAWC distributions for each combination of soil and vegetation type.

  1. Monitoring Daily Evapotranspiration in California Vineyards Using Landsat 8

    NASA Astrophysics Data System (ADS)

    Anderson, M. C.; Semmens, K. A.; Kustas, W. P.; Gao, F.; Alfieri, J. G.; McKee, L.; Prueger, J. H.; Hain, C.; Cammalleri, C.

    2014-12-01

    In California's Central Valley, due to competing demands for limited water resources, it is critical to monitor evaporative water loss and crop conditions at both individual field scales and over larger areas in support of water management decisions. This is particularly important for viticulture because grape vines must be maintained under highly controlled conditions in order to maximize production of quality fruit. Thus, regular high resolution temporal monitoring of hundreds of acres is required, a task only efficiently achieved with satellite remote sensing, combining multiple earth observations. In this research, we evaluate the utility of a multi-scale system for monitoring evapotranspiration (ET) and crop water stress applied over two vineyard sites near Lodi, California during the 2013 growing season. The system employs a data fusion methodology (STARFM: Spatial and Temporal Adaptive Reflective Fusion Model) combined with multi-scale ET modeling (ALEXI: Atmosphere Land Exchange Inverse Model) to compute daily 30 m resolution ET. ALEXI ET fluxes (4 km resolution, daily) are integrated with ET fluxes from Landsat 8 thermal data (30 m resolution, ~16 day) and Moderate Resolution Imaging Spectroradiometer (MODIS) data (1 km resolution, daily). The high spatial resolution Landsat retrievals are then fused with high temporal frequency MODIS data using STARFM to produce daily estimates of crop water use that resolve within field variation in ET for individual vineyards. Estimates of daily ET generated in two fields of Pinot Noir vines of different maturity agreed well with ground-based flux measurements collected within each field with relative errors of about 15%. Spatial patterns of cumulative ET correspond to yield estimates and indicate areas of variable crop moisture, condition, and yield within the vineyards that could require additional management strategies due to variation in soil type/texture, nutrient conditions and other environmental factors.

  2. Evapotranspiration along an elevation gradient in California's Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Goulden, M. L.; Anderson, R. G.; Bales, R. C.; Kelly, A. E.; Meadows, M.; Winston, G. C.

    2012-09-01

    We combined observations from four eddy covariance towers with remote sensing to better understand the altitudinal patterns of climate, plant phenology, Gross Ecosystem CO2Uptake, and Evapotranspiration (ET) around the Upper Kings River basin in the southern Sierra Nevada Mountains. Precipitation (P) increased with elevation to ˜500 m, and more gradually at higher elevations, while vegetation graded from savanna at 405 m to evergreen oak and pine forest to mid-montane forest to subalpine forest at 2700 m. CO2uptake and transpiration at 405 m peaked in spring (March to May) and declined in summer; gas exchange at 1160 and 2015 m continued year-round; gas exchange at 2700 m peaked in summer and ceased in winter. A phenological threshold occurred between 2015 and 2700 m, associated with the development of winter dormancy. Annual ET and Gross Primary Production were greatest at 1160 and 2015 m and reduced at 405 m coincident with less P, and at 2700 m coincident with colder temperatures. The large decline in ET above 2015 m raises the possibility that an upslope redistribution of vegetation with climate change could cause a large increase in upper elevation ET. We extrapolated ET to the entire basin using remote sensing. The 2003-11 P for the entire Upper Kings River basin was 984 mm y-1 and the ET was 429 mm y-1, yielding a P-ET of 554 mm y-1, which agrees well with the observed Kings River flow of 563 mm y-1. ET averaged across the entire basin was nearly constant from year to year.

  3. Estimating Evapotranspiration Using an Observation Based Terrestrial Water Budget

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; McWilliams, Eric B.; Famiglietti, James S.; Beaudoing, Hiroko K.; Nigro, Joseph

    2011-01-01

    Evapotranspiration (ET) is difficult to measure at the scales of climate models and climate variability. While satellite retrieval algorithms do exist, their accuracy is limited by the sparseness of in situ observations available for calibration and validation, which themselves may be unrepresentative of 500m and larger scale satellite footprints and grid pixels. Here, we use a combination of satellite and ground-based observations to close the water budgets of seven continental scale river basins (Mackenzie, Fraser, Nelson, Mississippi, Tocantins, Danube, and Ubangi), estimating mean ET as a residual. For any river basin, ET must equal total precipitation minus net runoff minus the change in total terrestrial water storage (TWS), in order for mass to be conserved. We make use of precipitation from two global observation-based products, archived runoff data, and TWS changes from the Gravity Recovery and Climate Experiment satellite mission. We demonstrate that while uncertainty in the water budget-based estimates of monthly ET is often too large for those estimates to be useful, the uncertainty in the mean annual cycle is small enough that it is practical for evaluating other ET products. Here, we evaluate five land surface model simulations, two operational atmospheric analyses, and a recent global reanalysis product based on our results. An important outcome is that the water budget-based ET time series in two tropical river basins, one in Brazil and the other in central Africa, exhibit a weak annual cycle, which may help to resolve debate about the strength of the annual cycle of ET in such regions and how ET is constrained throughout the year. The methods described will be useful for water and energy budget studies, weather and climate model assessments, and satellite-based ET retrieval optimization.

  4. 10-year evapotranspiration estimates in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Kume, T.; Tanaka, N.; Komatsu, H.; Yoshifuji, N.; Saitoh, T. M.; Suzuki, M.; Kumagai, T.

    2010-12-01

    This study was undertaken to quantify 10-year evapotranspiration (ET) in a tropical rainforest, Sarawak, Malaysia. To this aim, a simplified big-leaf model was formulated, which can consider transpiration (Et) and rainfall interception (Ei). The model was independently validated using eddy covariance fluxes, rainfall interception based on throughfall and stemflow measurements, and sap flow measurements conducted for more than two years. Consequently, our big-leaf model could successfully reproduce Et and Ei. By using the model and a 10-year meteorological data set, Et, Ei, and ET was estimated in the period between 2000 and 2009. The annual Et , Ei, and ET averaged over 10 years were estimated as 1114, 209, and 1323 mm, respectively, with the small seasonal fluctuations. The derived estimations for 10 years showed conservative year-to-year variations in Et, Ei, and ET (CV = 5-7%) against considerable year-to-year variations in annual rainfall (CV = 11%). Specific rainfall characteristics in this site could be a reason for conservative year-to-year variations in Ei. Small interannual variations in meteorological conditions and no occurrence of unusually severe drought in this study period could be a reason for the small year-to-year variations in Et. As well, we compared ET, Ei at this site with those of other tropical forests. Our forest ET was smaller than global maximum value of ET estimated in other tropical forests because of the smaller Ei, relative to annual rainfall at this site. Based on the derived characteristics of ET, we also discussed possible changes in ET, Et, and Ei in response to changes in rainfall regime at this site.

  5. Surface Energy Balance Methods for Evapotranspiration - Some Enhancements and Applications

    NASA Astrophysics Data System (ADS)

    Gutschick, V. P.; Wang, J.; Sammis, T. W.

    2007-05-01

    Satellite-received radiances and auxiliary ground-based information are routinely used to estimate the evapotranspiration rate (ET, or LE as a latent heat energy flux density) on landscape elements. Many methods compute LE as a residual, computing the terms Rn, G, and H in the full energy-balance equation, S = Rn - G ¬ H - LE, where S is surface (canopy) heat storage (often assumed near zero), Rn is net radiation, G is heat flux into the (soil) surface, and H is the sensible heat flux. Computation of H is prone to errors in obtaining accurate radiometric temperatures, TR, of the surface and in relating TR to the true kinetic temperature of the surface heat source. The Surface Energy BAlance Land (SEBAL) method avoids the offset errors by introducing an assumption of a linear relation of TR to the surface-to-air temperature difference. This assumption, and several others, can introduce distinct errors and operational problems, which will be discussed, along with several improvements under development. The latter include direct regression solutions for LE, correcting for advection of energy and for the lapse rate of the surface (not air) temperature, and the use of auxiliary radiance-based information on vegetation water stress. Also to be discussed are potential applications of enhanced ET methods to estimate hydrologic redistributions (runon, runoff), the consequent spatial patterning of vegetation, and the implications of both for ecological studies (equilibrium canopy development, long-term acclimation of stomatal control) and ecosystem management (estimating forest water stress and its relations to stand density, forest thinning exercises, and hazards of fire and insect outbreaks).

  6. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  7. [Regional evapotranspiration of different land covers based on remote sensing].

    PubMed

    He, Yan-bo; Z, Su; L, Jia; Wang, Shi-li

    2007-02-01

    In this paper, surface energy balance system (SEBS) was extended into a regional daily evapotranspiration (ET) estimation model based on remote sensing data, and the extended SEBS was applied to estimate the regional daily ET of Huanghe-Huaihe-Haihe rivers region in Northern China Plain by using MODIS/TERRA data. An analysis was made on the estimated daily ET characteristics of different land covers in the study area by using the spatial analysis module of ArcGIS. Since there were no field observations of ET on each land cover, the estimated daily ET of different land covers was compared with each other, taking the data on April 17, 2001 as an example. The results showed that the regional daily ET estimated by SEBS was reasonable. Wetland and cultivated land had the highest daily ET value, followed by forest-, bush- and grassland, and waste land. The characteristics of the daily ET over these land covers were accorded with the existing knowledge of ET over this region, and coincident to the results of previous work in this area. It was interesting that the residential area also had a higher ET value, which was explained as the higher ET of the land use types, e. g. , water body, street trees, and grass parcels in the resident areas within the pixel scale. The spatial inhomogeneity of ET among the forest-, bush-, grass- and cultivated land covers were caused by the spatial inhomogeneous soil water content under these land covers, and the spatial inhomogeneity of ET over cultivated land could be a potential indicator of making reasonable and effective irrigation schedule for the farmland. The limitations of using SEBS model in daily ET estimation were discussed, especially the possibility of underestimating the ET over water body and wetland covers due to the unsuitable surface parameterization scheme for these land types in the model. PMID:17450729

  8. Consequences of Predicted or Actual Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  9. The Pattern Across the Continental United States of Evapotranspiration Variability Associated with Water Availability

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.

    2015-01-01

    The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.

  10. Wind speed and temperature trends impacts on reference evapotranspiration in Southern Italy

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lorena; Viola, Francesco; Noto, Leonardo V.

    2016-01-01

    In this study, the impacts of both temperature and wind speed trends on reference evapotranspiration have been assessed using as a case study the Southern Italy, which present a wide variety of combination of such climatic variables trends in terms of direction and magnitude. The existence of statistically significant trends in wind speed and temperature from observational datasets, measured in ten stations over Southern Italy during the period 1968-2004, has been investigated. Time series have been examined using the Mann-Kendall nonparametric statistical test in order to detect possible evidences of wind speed and temperature trends at different temporal resolution and significance level. Once trends have been examined and quantified, the effects of these trends on seasonal reference evapotranspiration have been evaluated using the FAO-56 Penman-Monteith equation. Results quantified the effects of extrapolated temperature and wind speed trends on reference evapotranspiration. Where these climatic drivers are on the same direction, reference evapotranspiration generally increases during the growing season due to a nonlinear overlapping of effects. Whereas wind speed decreases and temperature increases, there is a sort of counterbalancing effect between the two considered climatic forcing in determining future reference evapotranspiration.

  11. Evapotranspiration and canopy resistance at an undeveloped prairie in a humid subtropical climate

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    Reliable estimates of evapotranspiration from areas of wildland vegetation are needed for many types of water-resource investigations. However, little is known about surface fluxes from many areally important vegetation types, and relatively few comparisons have been made to examine how well evapotranspiration models can predict evapotranspiration for soil-, climate-, or vegetation-types that differ from those under which the models have been calibrated. In this investigation at a prairie site in west-central Florida, latent heat flux (??E) computed from the energy balance and alternatively by eddy covariance during a 15-month period differed by 4 percent and 7 percent on hourly and daily time scales, respectively. Annual evapotranspiration computed from the energy balance and by eddy covariance were 978 and 944 mm, respectively. An hourly Penman-Monteith (PM) evapotranspiration model with stomatal control predicated on water-vapor-pressure deficit at canopy level, incoming solar radiation intensity, and soil water deficit was developed and calibrated using surface fluxes from eddy covariance. Model-predicted ??E agreed closely with ??E computed from the energy balance except when moisture from dew or precipitation covered vegetation surfaces. Finally, an hourly PM model developed for an Amazonian pasture predicted ??E for the Florida prairie with unexpected reliability. Additional comparisons of PM-type models that have been developed for differing types of short vegetation could aid in assessing interchangeability of such models.

  12. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation

    PubMed Central

    Verstraeten, Willem W.; Veroustraete, Frank; Feyen, Jan

    2008-01-01

    The proper assessment of evapotranspiration and soil moisture content are fundamental in food security research, land management, pollution detection, nutrient flows, (wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc. This paper takes an extensive, though not exhaustive sample of international scientific literature to discuss different approaches to estimate land surface and ecosystem related evapotranspiration and soil moisture content. This review presents: (i)a summary of the generally accepted cohesion theory of plant water uptake and transport including a shortlist of meteorological and plant factors influencing plant transpiration;(ii)a summary on evapotranspiration assessment at different scales of observation (sap-flow, porometer, lysimeter, field and catchment water balance, Bowen ratio, scintillometer, eddy correlation, Penman-Monteith and related approaches);(iii)a summary on data assimilation schemes conceived to estimate evapotranspiration using optical and thermal remote sensing; and(iv)for soil moisture content, a summary on soil moisture retrieval techniques at different spatial and temporal scales is presented. Concluding remarks on the best available approaches to assess evapotranspiration and soil moisture content with and emphasis on remote sensing data assimilation, are provided.

  13. Comparison of sap flux, moisture flux tower and MODIS enhanced vegetation index methods for estimating riparian evapotranspiration

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Morino, Kiyomi

    2010-01-01

    Riparian evapotranspiration (ET) was measured on a salt cedar (Tamarix spp.) dominated river terrace on the Lower Colorado River from 2007 to 2009 using tissue-heat-balance sap flux sensors at six sites representing very dense, medium dense, and sparse stands of plants. Salt cedar ET varied markedly across sites, and sap flux sensors showed that plants were subject to various degrees of stress, detected as mid-day depression of transpiration and stomatal conductance. Sap flux results were scaled from the leaf level of measurement to the stand level by measuring plant-specific leaf area index and fractional ground cover at each site. Results were compared to Bowen ratio moisture tower data available for three of the sites. Sap flux sensors and flux tower results ranked the sites the same and had similar estimates of ET. A regression equation, relating measured ET of salt cedar and other riparian plants and crops on the Lower Colorado River to the Enhanced Vegetation Index from the MODIS sensor on the Terra satellite and reference crop ET measured at meteorological stations, was able to predict actual ET with an accuracy or uncertainty of about 20%, despite between-site differences for salt cedar. Peak summer salt cedar ET averaged about 6 mm d-1 across sites and methods of measurement.

  14. Evaluation of the relation between evapotranspiration and normalized difference vegetation index for downscaling the simplified surface energy balance model

    USGS Publications Warehouse

    Haynes, Jonathan V.; Senay, Gabriel B.

    2012-01-01

    The Simplified Surface Energy Balance (SSEB) model uses satellite imagery to estimate actual evapotranspiration (ETa) at 1-kilometer resolution. SSEB ETa is useful for estimating irrigation water use; however, resolution limitations restrict its use to regional scale applications. The U.S. Geological Survey investigated the downscaling potential of SSEB ETa from 1 kilometer to 250 meters by correlating ETa with the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer instrument (MODIS). Correlations were studied in three arid to semiarid irrigated landscapes of the Western United States (Escalante Valley near Enterprise, Utah; Palo Verde Valley near Blythe, California; and part of the Columbia Plateau near Quincy, Washington) during several periods from 2002 to 2008. Irrigation season ETa-NDVI correlations were lower than expected, ranging from R2 of 0.20 to 0.61 because of an eastward 2-3 kilometer shift in ETa data. The shift is due to a similar shift identified in the land-surface temperature (LST) data from the MODIS Terra satellite, which is used in the SSEB model. Further study is needed to delineate the Terra LST shift, its effect on SSEB ETa, and the relation between ETa and NDVI.

  15. Similarities and differences of two evapotranspiration models with routinely measured meteorological variables: application to a cropland and grassland in northeast China

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Xu, Di; Wang, Shaoli; Yang, Zhiyong

    2014-08-01

    Local actual evapotranspiration can be estimated with routinely measured meteorological variables using the Penman-Monteith model with surface resistance parameterized via the Katerji and Perrier approach (Agronomie 3(6):513-521, 1983; PM-KP model), or the nonlinear complementary relationship (CR) model proposed by Han et al. (Hydrol Process 26:3973-3981, 2012). A comparative study was carried out to evaluate the consistencies and differences of two models, as well as the performances of them for a cropland and grassland in northeast China. The departure of the actual evapotranspiration from the potential evaporation is described as a function of the ratio of the surface resistance to the aerodynamic resistance in the Penman-Monteith model, but the ratio of the aerodynamic term to the radiation term in the CR models. The two ratios are connected using a semi-empirical linear function by the Katerji and Perrier approach. The nonlinear CR model can be regarded as replacing the linear function by a power function after mathematical processing. On the other hand, the PM-KP model can be also considered as a CR-type model. On the daily basis at a maize cropland and degraded grassland in semiarid Northeast China, the nonlinear CR model with locally calibrated parameters performed better with data occupying all the growth stages, but the performances of the two models are similar during the early-, mid-, and late-season stages, respectively. On the half-hourly basis, the PM-KP model and the nonlinear CR model both performed well. It is deduced that on the daily basis the nonlinear CR model is more suitable for the cropland and grassland, but further comparisons are needed on the hourly basis.

  16. Annual regression-based estimates of evapotranspiration for the contiguous United States based on climate, remote sensing, and stream gage data

    NASA Astrophysics Data System (ADS)

    Reitz, M. D.; Sanford, W. E.; Senay, G. B.; Cazenas, J.

    2015-12-01

    Evapotranspiration (ET) is a key quantity in the hydrologic cycle, accounting for ~70% of precipitation across the contiguous United States (CONUS). However, it is a challenge to estimate, due to difficulty in making direct measurements and gaps in our theoretical understanding. Here we present a new data-driven, ~1km2 resolution map of long-term average actual evapotranspiration rates across the CONUS. The new ET map is a function of the USGS Landsat-derived National Land Cover Database (NLCD), precipitation, temperature, and daily average temperature range (from the PRISM climate dataset), and is calibrated to long-term water balance data from 679 watersheds. It is unique from previously presented ET maps in that (1) it was co-developed with estimates of runoff and recharge; (2) the regression equation was chosen from among many tested, previously published and newly proposed functional forms for its optimal description of long-term water balance ET data; (3) it has values over open-water areas that are derived from separate mass-transfer and humidity equations; and (4) the data include additional precipitation representing amounts converted from 2005 USGS water-use census irrigation data. The regression equation is calibrated using data from 2000-2013, but can also be applied to individual years with their corresponding input datasets. Comparisons among this new map, the more detailed remote-sensing-based estimates of MOD16 and SSEBop, and AmeriFlux ET tower measurements shows encouraging consistency, and indicates that the empirical ET estimate approach presented here produces closer agreement with independent flux tower data for annual average actual ET than other more complex remote sensing approaches.

  17. Monitoring global land surface drought based on a hybrid evapotranspiration model

    NASA Astrophysics Data System (ADS)

    Yao, Yunjun; Liang, Shunlin; Qin, Qiming; Wang, Kaicun; Zhao, Shaohua

    2011-06-01

    The latent heat of evapotranspiration (ET) plays an important role in the assessment of drought severity as one sensitive indicator of land drought status. A simple and accurate method of estimating global ET for the monitoring of global land surface droughts from remote sensing data is essential. The objective of this research is to develop a hybrid ET model by introducing empirical coefficients based on a simple linear two-source land ET model, and to then use this model to calculate the Evaporative Drought Index (EDI) based on the actual estimated ET and the potential ET in order to characterize global surface drought conditions. This is done using the Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) products, AVHRR-NDVI products from the Global Inventory Modeling and Mapping Studies (GIMMS) group, and National Centers for Environmental Prediction Reanalysis-2 (NCEP-2) datasets. We randomly divided 22 flux towers into two groups and performed a series of cross-validations using ground measurements collected from the corresponding flux towers. The validation results from the second group of flux towers using the data from the first group for calibration show that the daily bias varies from -6.72 W/m 2 to 12.95 W/m 2 and the average monthly bias is -1.73 W/m 2. Similarly, the validation results of the first group of flux towers using data from second group for calibration show that the daily bias varies from -12.91 W/m 2 to 10.26 W/m 2 and the average monthly bias is -3.59 W/m 2. To evaluate the reliability of the hybrid ET model on a global scale, we compared the estimated ET from the GEWEX, AVHRR-GIMMS-NDVI, and NECP-2 datasets with the latent heat flux from the Global Soil Wetness Project-2 (GSWP-2) datasets. We found both of them to be in good agreement, which further supports the validity of our model's global ET estimation. Significantly, the patterns of monthly EDI anomalies have a good spatial and temporal correlation with

  18. Deriving Daily Time Series Evapotranspiration, Evaporation and Transpiration Maps With Landsat Data

    NASA Astrophysics Data System (ADS)

    Paul, G.; Gowda, P. H.; Marek, T.; Xiao, X.; Basara, J. B.

    2014-12-01

    Mapping high resolution evapotranspiration (ET) over large region at daily time step is complex and computationally intensive. Utility of high resolution daily ET maps are large ranging from crop water management to watershed management. The aim of this work is to generate daily time series (10 years) ET and its components vegetation transpiration (T) and soil water evaporation (E) maps using Landsat 5 satellite data for Southern Great Plains forage-rangeland-winter wheat production system in Oklahoma (OK). Framework for generating these products included the two source energy balance (TSEB) algorithm and other important features were: (a) atmospheric correction algorithm; (b) spatially interpolated weather inputs; (c) functions for varying Priestley-Taylor coefficient; and (d) ET, E and T extrapolating algorithm utilizing reference ET. An extensive network of 140 weather stations managed by Oklahoma Mesonet was utilized to generate spatially interpolated inputs of air temperature, relative humidity, wind speed, solar radiation, pressure, and reference ET. Validation of the ET maps were done against eddy covariance data from two grassland sites at El Reno, OK suggested good performance (Table 1). Figure 1 illustrates a daily ET map for a very small subset of 18thJuly 2006 ET map, where difference in ET among different land uses such as the irrigated cropland, vegetation along drainage, and grassland is very distinct. Results indicated that the proposed ET mapping framework is suitable for deriving high resolution time series daily ET maps at regional scale with Landsat Thematic Mapper data. . Table 1: Daily actual ET performance statistics for two grassland locations at El Reno OK for year 2005 . Management Type Mean (obs) (mm d-1) Mean (est) (mm d-1) MBE (mm d-1) % MBE (%) RMSE (mm d-1) RMSE (%) MAE (mm d-1) MAPD (%) NSE R2 Control 2.2 1.8 -0.43 -19.4 0.87 38.9 0.65 29.5 0.71 0.79 Burnt 2.0 1.8 -0.15 -7.7 0.80 39.8 0.62 30.7 0.73 0.77

  19. Ground water discharge by evapotranspiration in wetlands of an arid intermountain basin

    NASA Astrophysics Data System (ADS)

    Sanderson, John S.; Cooper, David J.

    2008-04-01

    SummaryTo improve basin-scale modeling of ground water discharge by evapotranspiration (ET) in relation to water table depth, daily ET was measured using the Bowen ratio energy balance method during 1999-2005 in five herbaceous plant dominated wetlands in an arid intermountain basin in Colorado, USA. Three wetlands were wet meadows supplied primarily by regional ground water flow and two were playas supplied primarily by local stream flow. In wet meadows, mean daily water table depth (WTD) ranged from 0.00 m (ground surface) to 1.2 m, with low inter-annual variability. In wet meadows, annual actual ET (ET a) was 751-994 mm, and ground water discharge from the shallow aquifer (ET g) was 75-88% of ET a. In playas, mean daily WTD ranged from -0.65 to 1.89 m, with high inter-annual variability. In playas, annual ET a was 352-892 mm, and ET g was 0-77% of ET a. The relationship of annual ET g to WTD was compared to existing ET g-WTD models. For wet meadows, ET g decreased exponentially as WTD increased from 0.13 to 0.95 m ( r2 = 0.83, CV = 5%, p < 0.001). In comparison with our findings, existing models under- and over-estimate ET g by -30% to 47% at WTD of 0.13 m, and they under-estimate ET g by -12% to -42% at WTD of 0.95 m. This study found that as the water table declined from near the soil surface to 0.95 m, ET g decreased only ˜26% versus 39-55% estimated by existing models. The magnitude of ET g decrease was 220 mm, whereas existing models predicted decreases up to 700 mm (218% greater). In playas, there was no clear ET g-WTD relationship. Instead, ET g was strongly dependent on the surface water supply. When sufficient surface water inputs occurred to meet ET demand, ET g was ≈0 mm/yr and independent of WTD. When inputs did not meet ET demand, ET g was positive though highly variable at WTD up to 1.68 m.

  20. Response of the water balance to climate change in the United States over the 20th and 21st centuries: Results from the VEMAP Phase 2 model intercomparisons

    NASA Astrophysics Data System (ADS)

    Gordon, W. S.; Famiglietti, J. S.

    2004-03-01

    Using the VEMAP Phase 2 data set, we tested the hypothesis that changes in climate would result in changes in the water balance as projected by four terrestrial ecosystem models: BIOME-BGC, Century, LPJ, and MC1. We examined trends in runoff and actual evapotranspiration (AET), changes in runoff in relation to changes in precipitation, and differences in runoff ratios as produced by these models for 13 United States watersheds. Observed climate data were used as inputs for simulations covering 1895-1993. From 1994 to 2100, the Canadian Centre for Climate Modeling and Analysis (CGCM1) and the Hadley Centre for Climate Prediction and Research (HADCM2) general circulation models provided climate forcing. Runoff and AET trends were significantly positive in the majority of 13 watersheds examined. Percentage changes in runoff exceeded the underlying changes in precipitation and this amplification increased over time. Calculated runoff ratios showed model variability and differences based on the two GCM scenarios.

  1. Quantifying Evapotranspiration (ET) for Wetlands in South Florida Ranchlands

    NASA Astrophysics Data System (ADS)

    Benitez, A. M.; Merriman, L.; Shukla, S.; Guzha, A. C.

    2010-12-01

    Evapotranspiration (ET) is the largest component of the wetland water budget and its accurate quantification is important for quantifying the effects of rehydrating the wetlands located in ranchlands of south Florida. In this National Science Foundation Research Experience for Undergraduates (NSF-REU) Project, four ET models were evaluated for their accuracy and data requirement for quantifying ET from two isolated wetlands located in a ranch. The ET models were Penman-Monteith (PM), Penman-Combination (PC), Priestley-Taylor (PT), and the modified Turc (MT). Available weather and wetland water level data from these wetlands for the period from July to December 2009 were used to quantify ET using these four models. The effect of data availability on model predictions was evaluated by comparing the ET estimates obtained using daily and monthly water level data. Using surface water level data and a vegetation map for the two wetlands, time series of spatial extent of area under water, wetland vegetation, and pasture were determined in order to accurately estimate ET based on land cover. Predictions from ET models were used in conjunction with the rainfall, storage, and runoff from the wetlands to estimate wetland water balance and quantify the change in groundwater storage (ΔGW). Models were ranked based on their data needs and accuracy in quantifying ET and ΔGW for the two wetlands. Percent differences between the predicted ET from models ranged from 1-13%. Compared to the PM model, the PT was the most accurate model (Nash-Sutcliff E= 0.91) while the PC was the least accurate model (E= 0.70). Depending on the ET model used, the ΔGW estimates varied from 2 to 30%. The difference in ET estimates from daily versus monthly water level data was 15% indicating that daily values are needed to accurately quantify wetland ET using the models evaluated in this study. There exist considerable uncertainties in estimating ET which in turn can introduce errors in quantifying

  2. Evapotranspiration dynamics of biofuel crops with different land use histories

    NASA Astrophysics Data System (ADS)

    Abraha, M. G.; Chen, J.; Chu, H.; Hamilton, S. K.; Zenone, T.; John, R.; Su, Y.; Robertson, G. P.

    2013-12-01

    Land use is increasingly being converted for biofuel crop production, both globally and nationally. Previous studies have focused on the dynamics and changes in carbon fluxes following land conversion, but few have studied water fluxes. We employ eddy covariance methods to examine the long-term dynamics (2009-2012) of evapotranspiration (ET) in response to land use conversion and management practices in cellulosic and grain biofuel crops in the Midwest US. Four of the converted fields had been managed under the USDA Conservation Reserve Program (CRP) for 22 years and three had been in conventional agriculture (AGR) soybean/corn rotation prior to conversion. In 2009, all sites were planted to no-till soybean except one CRP grassland that was left undisturbed as a reference site, and in 2010 three of the former CRP sites and the three former AGR sites were planted to corn, switchgrass and prairie. Daily ET responded to seasonal changes in weather variables, soil water content, canopy structure and management practices. During the initial land conversion period following herbicide application, a larger dip in ET was observed at the CRP sites than at the AGR sites because the CRP sites had a larger aboveground biomass that stopped contributing to ET after herbicide application. ET of the AGR fields (482 mm yr-1) was much greater than that of the CRP fields (399 mm yr-1) in the first two years after conversion. This was attributed to the mulch effect of preexisting grass thatch and the aboveground biomass that was killed by herbicide application on the CRP fields. However, as the crop residue and killed aboveground biomass were depleted through decomposition in the following two years, the ET of the CRP fields (467 mm yr-1) became slightly higher than that of the AGR fields (456 mm yr-1). ET at the reference grassland was significantly greater than at both the converted CRP and AGR fields in all four years. This study showed how the response of ET to land use conversion

  3. Performance of Evapotranspirative Covers Under Enhanced Precipitation: Preliminary Data

    SciTech Connect

    David C. Anderson, Lloyd T. Desotell, David B. Hudson, Gregory J. Shott, Vefa Yucel

    2007-02-01

    Since January 2001, drainage lysimeter studies have been conducted at Yucca Flat, on the Nevada Test Site, in support of an evapotranspirative cover design. Yucca Flat has an arid climate with average precipitation of 16.5 cm annually. The facility consists of six drainage lysimeters 3 m in diameter, 2.4 m deep, and backfilled with a single layer of native soil. The bottom of each lysimeter is sealed and equipped with a small drain that enables direct measurement of saturated drainage. Each lysimeter has eight time-domain reflectometer probes to measure moisture content-depth profiles paired with eight heat-dissipation probes to measure soil-water potential depth profiles. Sensors are connected to dataloggers which are remotely accessed via a phone line. The six lysimeters have three different surface treatments: two are bare-soil; two were revegetated with native species (primarily shadscale, winterfat, ephedra, and Indian rice grass); and two were allowed to revegetate naturally with such species as Russian thistle, halogeton, tumblemustard and cheatgrass. Beginning in October 2003, one half of the paired cover treatments (one bare soil, one invader species, and one native species) were irrigated with an amount of water equal to two times the natural precipitation to achieve a three times natural precipitation treatment. From October 2003 through December 2005, all lysimeters received 52.8 cm precipitation, and the four irrigated lysimeters received an extra 105.6 cm of irrigation. No drainage has occurred from any of the nonirrigated lysimeters, but moisture has accumulated at the bottom of the bare-soil lysimeter and the native-plant lysimeter. All irrigated lysimeters had some drainage. The irrigated baresoil lysimeter had 48.3 cm of drainage or 26.4 percent of the combined precipitation and applied irrigation for the entire monitoring record. The irrigated invader species lysimeter had 5.8 cm of drainage, about 3.2 percent of the combined precipitation and

  4. Operational assessment of evapotranspiration from geostationary satellite data.

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, F.; Ghilain, N.; Arboleda, A.

    2012-04-01

    EUMETSAT (http://www.eumetsat.int) has set up a network of decentralized meteorological satellite data processing centres named 'Satellite Application Facilities' (SAFs). These centres develop and achieve data products derived from European meteorological satellites. The 'Land-Surface-Analysis' SAF (LSA-SAF, http://landsaf.meteo.pt/), develops algorithms for the operational monitoring of land surface related variables. RMI participates to the LSA-SAF by developing an evapotranspiration (ET) product, ET being one of the most important water balance component [1]. As ET cannot be observed directly by remote sensing, it is assessed indirectly through modelling. The proposed model is based on a set of parameterizations of the SVAT scheme developed at ECMWF and it is adapted to be forced by real-time data derived from Meteosat Second Generation (MSG) satellites data. The SEVIRI instrument, on-board MSG, is designed to provide a wide area coverage and is able to monitor quick changing surface variables affected by cloudiness and diurnal cycle. It has a 3 km spatial resolution at sub-satellite point and a high observation repetition rate (15 min). The ET algorithm produces in near real time ET estimates at SEVIRI spatial resolution each 30 minutes. Results are generated since mid 2009 over four regions (Europe, North and South Africa and the Eastern part of South America) defined inside the MSG field of view. A daily product, available since end 2010, is also obtained through integration of the instantaneous estimates. Validation already carried out attests the robustness of the proposed algorithm, notably over Europe. Nevertheless, research will be pursued during coming years, looking for additional validation sites and evolving towards an improved combination of remote sensed observations and models. In this contribution we first present the LSA-SAF framework and we summarize how ET is deduced from MSG-SEVIRI data. In a second step, we compare LSA-SAF ET to ET products

  5. Interannual variability of terrestrial evapotranspiration in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Jang, K.; Kang, S.; Hong, S. Y.

    2014-12-01

    Terrestrial evapotranspiration (ET) is a major component for the land surface water cycle and the energy interaction between land surface and atmosphere, and for the improvement of understandings such as the terrestrial water management as well as vegetation growth. Satellite remote sensing provides a promising opportunity to quantify the magnitude and variability of ET at the regional scale. This study investigated the interannual variability of ET in Northeast Asian regions containing Korea Peninsula, China, Mongolia, and Japan. The regional daily ET was estimated using various satellite remote sensing data from 2003 to 2010. Satellite-based daily ET calculations showed generally favorable agreement (RMSE < 1.06 mm day-1) with eight flux tower measurements. Annual ET showed large range in study domain from 466 in 2006 to 498 mm yr-1 in 2008. The mean annual ET for study period was 481.1±224.6 mm yr-1 over the Northeast Asia. ET rates were generally higher at the cropland in China, while it was lower at the grassland in Mongolia. In general, large variability of annual ET was detected in central and northern China and eastern parts of Mongolia and Russia, which are dominated by Grassland, Savanna and Shrubland classifications as well as complex terrain. The range of coefficient of variation (CV) on annual ET was from 15 to 30% at those regions. The spatial pattern of CV was similar to the ratio of ET to TRMM precipitation (ET2PRCP) for the arid and semi-arid regions represented to grassland in this domain. CV on ET was generally high when the ET2PRCP was within the range from 0.7 to 1.5. It indicates that precipitation may affect to variation of annual ET at for the arid and semi-arid regions. The results generated by this study indicated that the satellite remote sensing provides the potentials to estimate and monitor ET at the regional scale, and offers a good chance to improve our knowledge on the land surface water balance.

  6. How does canopy wetness shape evapotranspiration in a mountain cloud forest

    NASA Astrophysics Data System (ADS)

    Chu, H.-S.; Chang, S.-C.; Lin, Y.-Z.; Hsia, Y.-J.

    2010-07-01

    Interception plays an important role in the hydrological characteristics of cloud forest ecosystems due to frequent wetness of the canopy. The dynamics of this canopy interception processes are ecologically important for partitioning between interception evaporation and transpiration. Long term meteorological observations at the Chi-Lan Mountain site (24°35’N, 121°25’E) indicated that fog weather accounts for one third of the time on a year around and mainly prevails in the late afternoon and evening. However, it is still not clear how long the interception water could last on canopy surface under such diurnal foggy patterns and how this wetness further shapes the partition between interception evaporation and transpiration. In order to explore the evapotranspiration patterns under wet canopy conditions, three-month intensive experiment was conducted at the CLM site from 2009/4/28 to 7/21. Eddy covariance method was applied to measure the net water vapor exchange between ecosystem and atmosphere. An open/closed-path eddy covariance system, including a sonic anemometer (Campbell CSAT3), an open path infrared gas analyzer (Licor LI7500) and a closed path infrared gas analyzer (Licor LI7000), was mounted at 1.8-fold of canopy height. The S-type sap flow sensors (Ecomatik SF-L) were mounted at 1.3 m height of trunk on five representative Chamaecyparis obtusa var. formosana trees as an index of transpiration rate. Three leaf wetness sensors (Campbell LW237) and two infrared surface thermometers (Apogee IRTS-P) were added to monitor the wetness and surface temperature of canopy. The result showed that canopy wetness played a crucial role in partitioning the interception evaporation and transpiration at this forest stand. Evapotranspiration either under wet or dry canopy conditions was mainly driven by the evapotranspiration demand, as indicated by the potential evapotranspiration. However, evapotranspiration was lower for dry canopy condition. While total

  7. A calibration procedure for load cells to improve accuracy of mini-lysimeters in monitoring evapotranspiration

    NASA Astrophysics Data System (ADS)

    Misra, R. K.; Padhi, J.; Payero, J. O.

    2011-08-01

    SummaryWe used twelve load cells (20 kg capacity) in a mini-lysimeter system to measure evapotranspiration simultaneously from twelve plants growing in separate pots in a glasshouse. A data logger combined with a multiplexer was used to connect all load cells with the full-bridge excitation mode to acquire load-cell signal. Each load cell was calibrated using fixed load within the range of 0-0.8 times the full load capacity of load cells. Performance of all load cells was assessed on the basis of signal settling time, excitation compensation, hysteresis and temperature. Final calibration of load cells included statistical consideration of these effects to allow prediction of lysimeter weights and evapotranspiration over short-time intervals for improved accuracy and sustained performance. Analysis of the costs for the mini-lysimeter system indicates that evapotranspiration can be measured economically at a reasonable accuracy and sufficient resolution with robust method of load-cell calibration.

  8. EBBR Observation and fluctuation of evapotranspiration in a Cambodian evergreen forest

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Tanaka, K.; Nobuhiro, T.; Kabeya, N.; Tamai, K.; Chann, S.; Keth, N.

    2006-12-01

    In the Mekong River basin, the increase in farming associated with a rapidly growing population has lead to a dramatic reduction in forest area. The incidence of illegal logging and wood collection is also increasing throughout the entire Asian Monsoon area, including Cambodia. According to Cambodian government statistics, the proportion of forested area in Cambodia has declined from 74% in the 1970s to 58% in 1993. Despite this reduction, the area covered by forests in Cambodia remains high compared to that in adjacent countries. We measured several meteorological elements associated with evapotranspiration, runoff, and precipitation in the broadleaf forest watersheds in Kampong Thom Province of central Cambodia. The topography of the watershed studied was relatively gentle. Meteorological factors were observed with a 60-m-high meteorological observation tower to determine the amount of evapotranspiration. The Energy Balance Bowen Ratio (EBBR) system was used to calculate the energy budget above the forest canopy for estimating evapotranspiration. Moreover, an automatic rain gauge was placed at the top of the observation tower and an interception plot was established for calculating the rainfall interception ratio by forest coverage near the tower. The main vegetation species at the research site were Vatica odorata and Myristica iners. The mean tree height in the upper crown layer at the research site was 27 m, and the maximum tree height was 45 m. Meteorological data for estimation of evapotranspiration were collected from October 2003 to September 2004. The SPAC model, used for analyzing characteristics of evapotranspiration variation, is a multilayer model considering factors such as Reynolds stress, temperature and H2O exchanges of leaves and ground surface, radiation transfer within the canopy, atmospheric diffusion within and above the canopy, energy balance for leaves and ground surface, interception of rainfall, and water budget for leaves. Several

  9. Evapotranspiration from nonuniform surfaces - A first approach for short-term numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1988-01-01

    Observations of surface heterogeneity of soil moisture from scales of meters to hundreds of kilometers are discussed, and a relationship between grid element size and soil moisture variability is presented. An evapotranspiration model is presented which accounts for the variability of soil moisture, standing surface water, and vegetation internal and stomatal resistance to moisture flow from the soil. The mean values and standard deviations of these parameters are required as input to the model. Tests of this model against field observations are reported, and extensive sensitivity tests are presented which explore the importance of including subgrid-scale variability in an evapotranspiration model.

  10. Evapotranspiration from rapidly growing young saltcedar in the Gila River Valley of Arizona

    USGS Publications Warehouse

    Leppanen, O.E.

    1981-01-01

    Estimates of evapotranspiration by young saltcedar, based on energy budget measurements, were made for an unfilled portion of the San Carlos Reservoir in east-central Arizona. Foty-eight days of record were obtained before the site was inundated. The young saltcedar, which had grown from seed earlier in the season , had an average daily evapotranspiration of 5.8 millimeters of water during the period August 17, 1971, to October 3, 1971. Daily values ranged from 9.2 millimeters to a low of 0.23 millimeters which occurred during a stormy day. (USGS)

  11. Estimating evapotranspiration in different rain-fed peatlands from groundwater level changes

    NASA Astrophysics Data System (ADS)

    Dettmann, Ullrich; Maurer, Eike; Bechtold, Michel; Brümmer, Christian; Tiemeyer, Bärbel

    2014-05-01

    Biogeochemical processes in peatlands are strongly controlled by the hydrological conditions of these environments. One of the key parameters controlling the water balance is the evapotranspiration, which can be calculated e.g. by the FAO crop reference evapotranspiration or the Penman-Monteith equation as a function of atmospheric conditions and plant specific parameters. These parameters are well investigated for agricultural crops and forests but poorly for most peatland vegetation types. Direct measurement of the evapotranspiration is possible with weighing lysimeters or the eddy-covariance technique, but expensive and time consuming. In many peatlands and riparian areas groundwater table changes are characterized by diurnal fluctuations (daytime decline, night-time recovery) caused by the evapotranspiration and groundwater recharge. White introduced 1932 a method to calculate the evapotranspiration from these diurnal fluctuations. In contrast to traditional evapotranspiration models only a small number of variables need to be measured (groundwater level changes, possibly precipitation) or calculated (specific yield). Over the last decades, several studies and modifications of the White method have been published. Several authors showed the applicability of the method for riparian areas and fens, but this relies on the assumption of a constant recharge over the whole day. As there is no groundwater inflow at rain-fed peatlands, recovery during night-time can only result from redistribution in the soil profile or from lateral flow processes within the peatland. Thus, approaches to calculate evapotranspiration from diurnal groundwater fluctuations used to date need to be adapted. Based on 50 hydrographs measured in 6 rain-fed peatlands in Germany characterized by different soil properties, land use and vegetation, we systematically analyzed diurnal patterns of the groundwater levels. These patterns were spatially and temporally very variable. At some sites, the

  12. Using eddy covariance and flux partitioning to assess basal, soil, and stress coefficients for crop evapotranspiration models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, indepe...

  13. Modeling The effect of elevated CO2 and climate change on reference evapotranspiration in the semi-arid Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in evapotranspiration demand due to global warming will have profound impact on irrigation water demand and agricultural productivity. In this study, effects of possible future anthropogenic climate change on reference evapotranspiration (ETo) was evaluated. The Penman-Monteith equation was ...

  14. Estimating seasonal crop ET using calendar and heat unit based crop coefficients in the Texas High Plains Evapotranspiration Network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Texas High Plains Evapotranspiration (TXHPET) network utilizes a heat unit-based approach (growing degree day concept) in the timing of various crop growth stages along with crop coefficients for computation of crop water use with the newly standardized ASCE/EWRI reference evapotranspiration (E...

  15. Modeling soybean canopy resistance from micrometeorological and plant variables for estimating evapotranspiration using one-step Penman-Monteith approach

    NASA Astrophysics Data System (ADS)

    Irmak, Suat; Mutiibwa, Denis; Payero, Jose; Marek, Thomas; Porter, Dana

    2013-12-01

    Canopy resistance (rc) is one of the most important variables in evapotranspiration, agronomy, hydrology and climate change studies that link vegetation response to changing environmental and climatic variables. This study investigates the concept of generalized nonlinear/linear modeling approach of rc from micrometeorological and plant variables for soybean [Glycine max (L.) Merr.] canopy at different climatic zones in Nebraska, USA (Clay Center, Geneva, Holdrege and North Platte). Eight models estimating rc as a function of different combination of micrometeorological and plant variables are presented. The models integrated the linear and non-linear effects of regulating variables (net radiation, Rn; relative humidity, RH; wind speed, U3; air temperature, Ta; vapor pressure deficit, VPD; leaf area index, LAI; aerodynamic resistance, ra; and solar zenith angle, Za) to predict hourly rc. The most complex rc model has all regulating variables and the simplest model has only Rn, Ta and RH. The rc models were developed at Clay Center in the growing season of 2007 and applied to other independent sites and years. The predicted rc for the growing seasons at four locations were then used to estimate actual crop evapotranspiration (ETc) as a one-step process using the Penman-Monteith model and compared to the measured data at all locations. The models were able to account for 66-93% of the variability in measured hourly ETc across locations. Models without LAI generally underperformed and underestimated due to overestimation of rc, especially during full canopy cover stage. Using vapor pressure deficit or relative humidity in the models had similar effect on estimating rc. The root squared error (RSE) between measured and estimated ETc was about 0.07 mm h-1 for most of the models at Clay Center, Geneva and Holdrege. At North Platte, RSE was above 0.10 mm h-1. The results at different sites and different growing seasons demonstrate the robustness and consistency of the

  16. Evaluation of a coupled event-driven phenology and evapotranspiration model for croplands in the United States northern Great Plains

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.; Roy, D. P.; Adusei, B.; Hansen, M.; Senay, G.; Mocko, D. M.

    2013-06-01

    A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme consists of the VegET, a model to estimate ET from meteorological and water balance data, and an Event Driven Phenology Model (EDPM), an empirical crop specific model trained on multiple years of flux tower data transformed into six types of environmental forcings that are called "events" to emphasize their temporally discrete character, which has advantages for modeling multiple contingent influences. The EDPM in prognostic mode supplies seasonal trajectories of normalized difference vegetation index (NDVI); whereas in diagnostic mode, it can adjust the NDVI prediction with assimilated remotely sensed observations. The scheme was deployed within the croplands of the Northern Great Plains. The evaluation used 2007-2009 land surface forcing data from the North American Land Data Assimilation System and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the NDVI produced by the EDPM with NDVI data derived from the MODIS nadir bidirectional reflectance distribution function adjusted reflectance product. The EDPM performance in prognostic mode yielded a coefficient of determination (r2) of 0.8 ± 0.15and the root mean square error (RMSE) of 0.1 ± 0.035 across the entire study area. Retrospective correction of canopy attributes using assimilated MODIS NDVI values improved EDPM NDVI estimates, bringing the errors down to the average level of 0.1. The ET estimates produced by the coupled scheme were compared with the MODIS evapotranspiration product and with ET from NASA's Mosaic land surface model. The expected r2 = 0.7 ± 0.15 and RMSE = 11.2 ± 4 mm per 8 days achieved in earlier point-based validations were met in this study by the coupling scheme functioning in both prognostic and retrospective modes. Coupled model performance was diminished at the

  17. Evapotranspiration from a cypress and pine forest subjected to natural fires, Volusia County, Florida, 1998-99

    USGS Publications Warehouse

    Sumner, D.M.

    2001-01-01

    Daily values of evapotranspiration from a watershed in Volusia County, Florida, were estimated for a 2-year period (January 1998 through December 1999) by using an energy-budget variant of the eddy correlation method and a Priestley-Taylor model. The watershed consisted primarily of pine flatwood uplands interspersed within cypress wetlands. A drought-induced fire in spring 1998 burned about 40 percent of the watershed, most of which was subsequently logged. The model reproduced the 449 measured values of evapotranspiration reasonably well (r2=0.90) over a wide range of seasonal and surface-cover conditions. Annual evapotranspiration from the watershed was estimated to be 916 millimeters (36 inches) for 1998 and 1,070 millimeters (42 inches) for 1999. Evapotranspiration declined from near potential rates in the wet conditions of January 1998 to less than 50 percent of potential evapotranspiration after the fire and at the peak of the drought in June 1998. After the drought ended in early July 1998 and water levels returned to near land-surface, evapotranspiration increased sharply; however, the evapotranspiration rate was only about 60 percent of the potential rate in the burned areas, compared to about 90 percent of the potential rate in the unburned areas. This discrepancy can be explained as a result of fire damage to vegetation. Beginning in spring 1999, evapotranspiration from burned areas increased sharply relative to unburned areas, sometimes exceeding unburned evapotranspiration by almost 100 percent. Possible explanations for the dramatic increase in evapotranspiration from burned areas could include phenological changes associated with maturation or seasonality of plants that emerged after the fire or successional changes in composition of plant community within burned areas. Variations in daily evapotranspiration are primarily the result of variations in surface cover, net radiation, photosynthetically active radiation, air temperature, and water

  18. Evapotranspiration process as the result of land surface - atmosphere interaction.

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Sepulcre Canto, Guadalupe

    2010-05-01

    Since a few years, EUMETSAT (http://www.eumetsat.int) is developing a network of decentralized meteorological satellite data processing centers called ‘Satellite Application Facilities' (SAFs). These centers have both operational and research objectives in view to develop robust products and services. The ‘Land-Surface-Analysis' SAF (LSA-SAF, http://landsaf.meteo.pt/), develops algorithms for the estimation of operational land products using meteorological satellites. The SEVIRI instrument, on-board Meteosat Second Generation (MSG) satellites, is design to provide wide area coverage and is able to monitor quick changing surface variables affected by cloudiness and diurnal cycle. It has a 3 km spatial resolution at sub-satellite point and a high observation repetition rate (15 min). RMI participates to the LSA-SAF to develop the evapotranspiration (ET) product. ET is the combined response of soil and vegetation to environmental conditions provided by the atmosphere and soil. ET cannot be observed directly and is assessed indirectly through modeling. Different approaches exist to compute ET, from simple empirical relationships to semi-empirical and more complex models. Soil-Vegetation-Atmosphere Transfer (SVAT) schemes are conceived to mimic as best as possible the interaction between atmosphere and land surface. The proposed model is based on the SVAT scheme developed at ECMWF and is adapted to accept real-time data from meteorological satellites. In this contribution we test the capability of the algorithm to reproduce locally observed fluxes at ground measurement stations in Europe and Africa. Emphasis is put on highlighting the interaction between atmosphere and land surface. Local observations of the atmospheric variables (radiation fluxes, air temperature and humidity, wind speed, precipitation) are first compared to the input data (from LSA-SAF and ECMWF) used in the model. Resulting ET and related water and energy fluxes are then compared to observations

  19. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing availability of multi-scale remotely sensed data and global weather datasets is allowing the estimation of evapotranspiration (ET) at multiple scales. We present a simple but robust method that uses remotely sensed thermal data and model-assimilated weather fields to produce ET for th...

  20. Intercomparison of Evapotranspiration Over the Savannah Volta Basin in West Africa Using Remote Sensing Data

    PubMed Central

    Opoku-Duah, S.; Donoghue, D.N.M.; Burt, T. P.

    2008-01-01

    This paper compares evapotranspiration estimates from two complementary satellite sensors – NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and ESA's ENVISAT Advanced Along-Track Scanning Radiometer (AATSR) over the savannah area of the Volta basin in West Africa. This was achieved through solving for evapotranspiration on the basis of the regional energy balance equation, which was computationally-driven by the Surface Energy Balance Algorithm for Land algorithm (SEBAL). The results showed that both sensors are potentially good sources of evapotranspiration estimates over large heterogeneous landscapes. The MODIS sensor measured daily evapotranspiration reasonably well with a strong spatial correlation (R2=0.71) with Landsat ETM+ but underperformed with deviations up to ∼2.0 mm day-1, when compared with local eddy correlation observations and the Penman-Monteith method mainly because of scale mismatch. The AATSR sensor produced much poorer correlations (R2=0.13) with Landsat ETM+ and conventional ET methods also because of differences in atmospheric correction and sensor calibration over land.

  1. A thermal-based remote sensing modeling system for estimating evapotranspiration from field to global scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. This paper describes a robust but relatively simple thermal-based energy balance model that parameterizes the key soil/s...

  2. Evaluating three evapotranspiration mapping algorithms with lysimetric data in the semi-arid Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground water levels are declining at unsustainable rates in the Texas High Plains. Accurate evapotranspiration (ET) maps would provide valuable information on regional crop water use and hydrology. This study evaluated three remote sensing based algorithms for estimating ET rates for the Texas High ...

  3. Multi-Temporal Remote Sensing Data for Modeling of Dryland Evapotranspiration and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Petrakis, R.; Hartfield, K. A.; Barrera, P.; Van Leeuwen, W. J. D.; Papuga, S. A.; Scott, C. A.

    2014-12-01

    Water security is an increasing concern around the globe. The goal of this research is to better understand the complex relationships which exist between land cover change and water use within a dryland ecosystem. The Santa Cruz watershed in southeastern Arizona is experiencing increasing population growth and reduced water resources, highlighting a direct relationship between land cover change and water use. Using multi-source and multi-scale data sets including multispectral imagery, thermal imagery, and climate variables, we present the following three-step research approach: 1) land cover change, 2) evapotranspiration modeling, and 3) data validation. Assessment of land cover change between 2003 and 2013 was performed using Landsat data and validated via high resolution imagery. Regional evapotranspiration was calculated using the Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model. Validation of the METRIC model was performed using measurements from multiple flux towers within the watershed. With the capability to observe historical changes as well as current events, this approach integrates multiple public data sources representing varying scales to accurately monitor and assess environmental change. Overall, this approach demonstrates how remote sensing capabilities combined with surface measurements can be utilized to ascertain and validate complex ecosystem relationships. Preliminary results suggest that land cover change alters the amount of evapotranspiration within the Santa Cruz watershed. We also show that METRIC performed better in agricultural areas compared to naturally vegetated shrubland areas. Finally, this research will be used as a prototype to evaluate other dryland regions of the Americas.

  4. Evapotranspiration-based Irrigation Scheduling for Container-grown Viburnum odoratissium (L.) Ker Gawl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capacity for evapotranspiration (ET)-based irrigation scheduling to reduce runoff volume and nutrient leaching was tested in Fall 2004 and Spring 2005. Runoff (container leachate plus unintercepted irrigation and precipitation) was collected continuously for 17 weeks during production of sweet ...

  5. An application of METRIC to estimate evapotranspiration of red pepper under four different irrigation levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, the METRIC model was used to estimate evapotranspiration (ET) of red pepper under fully irrigated and water stress conditions, in the semi-humid Bafra Plains located in northern Turkey. Field experiments were conducted under four different irrigation levels for red pepper from rainfed...

  6. Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing of evapotranspiration (ET) has evolved over the last 20 years with the development of more robust energy balance approaches and the availability of timely remotely sensed imagery from satellite sensors. This has allowed the use of remote sensing for near-real time water management in...

  7. Long-term measurements of CO2 flux and evapotranspiration in a Chihuahuan desert grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We measured CO2 and evapotranspiration (ET) fluxes above a Chihuahuan desert grassland from 1996 through 2001. Averaged across six years, this ecosystem was a source (positive flux)of CO2 in every month. Over that period, sustained periods of carbon uptake (negative flux)were rare. Averaged across a...

  8. Mapping evapotranspiration and drought at local to continental scales using thermal remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water lost to the atmosphere through evapotranspiration (ET) has the effect of cooling the Earth’s surface. Land-surface temperature (LST), as mapped using thermal-infrared (TIR) band data, is therefore a valuable remote indicator of both ET and the surface moisture status [1]. In partially vegeta...

  9. Surface Energy Balance System for Estimating Daily Evapotranspiration Rates in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous energy balance (EB) algorithms have been developed to use remote sensing data for mapping evapotranspiration (ET) on a regional basis. Adopting any single or a combination of these models for an operational ET remote sensing program requires thorough evaluation. The Surface Energy Balance S...

  10. Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four upscaling methods for estimating daytime evapotranspiration (ET) from single time-of-day snapshots, as commonly retrieved using remote sensing, were compared. These methods are based on the assumption of self-preservation of the ratio between ET and a given reference variable over the daytime h...

  11. Mapping Daily Evapotranspiration at Field to Global Scales using Geostationary and Polar Orbiting Satellite Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetati...

  12. A data fusion approach for mapping daily evapotranspiration at field scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capability for mapping water consumption over cropped landscapes on a daily and seasonal basis is increasingly relevant given forecasted scenarios of reduced water availability. Prognostic modeling of water losses to the atmosphere, or evapotranspiration (ET), at field or finer scales in agricul...

  13. Sharpening landsat thermal infrared imagery for mapping evapotranspiration at field scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal infrared (TIR) imagery provides estimates of land-surface temperature (LST) that can be used for mapping land surface energy fluxes and evapotranspiration (ET). For the ET mapping at the field scale, TIR data are required at relatively fine pixel resolution similar to the resolution of Land...

  14. Post-processing techniques for reducing errors in weighing lysimeter evapotranspiration (ET) datasets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agriculture, evapotranspiration (ET) is a major consumptive use of irrigation water and precipitation on cropland. Global interest in sustainable management of limited freshwater supplies to meet increased food demand has resulted in increased reporting of ET measurement and modeling methods in t...

  15. A thermal remote sensing modeling system for estimating evapotranspiration over complex landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) from thermal remote sensing is a surface boundary condition that is strongly linked to the partitioning of the available energy between latent (evapotranspiration) and sensible heat flux. Numerous modeling approaches have been developed ranging in level of complexity ...

  16. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2016-06-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  17. Application of Thermal Remote Sensing for Multi-Scale Estimation of Evapotranspiration and Drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status affecting evapotranspiration and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as...

  18. Intercomparison of remote sensing-based evapotranspiration models using SGP and SMEX data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate characterization of evapotranspiration (ET) over a range of spatial and temporal scales is critical for many applications in hydrology, ecohydrology, meteorology, climatology, and agriculture. Over the past several years, there has been a major effort devoted to the development and refineme...

  19. ENERGY BALANCE ESTIMATION OF EVAPOTRANSPIRATION FOR WHEAT GROWN UNDER VARIABLE MANAGEMENT PRACTICES IN CENTRAL ARIZONA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation and monitoring the spatial distribution of evapotranspiration (ET) over irrigated crops is becoming increasingly important for managing crop water requirements under water scarce conditions. The usual approaches for estimating ET, however, do not provide plot-specific data but instead pro...

  20. Estimated ground-water discharge by evapotranspiration, Ash Meadows Area, Nye County, Nevada, 1994

    SciTech Connect

    Nichols, W.D.; Laczniak, R.J.; DeMeo, G.A.; Rapp, T.R.

    1997-05-01

    Ground water discharges from the regional ground-water flow system that underlies the eastern part of the Nevada Test Site through numerous springs and seeps in the Ash Meadows National Wildlife Refuge in southern Nevada. The total spring discharge was estimated to be about 17,000 acre-feet per year by earlier studies. Previous studies estimated that about 10,500 acre-feet of this discharge was lost to evapotranspiration. The present study was undertaken to develop a more rigorous approach to estimating ground-water discharge in the Ash Meadows area. Part of the study involves detailed field investigation of evapotranspiration. Data collection began in early 1994. The results of the first year of study provide a basis for making preliminary estimates of ground-water discharge by evapotranspiration. An estimated 13,100 acre-feet of ground water was evapotranspired from about 6,800 acres of marsh and salt-grass. Additional 3,500 acre-feet may have been transpired from the open water and from about 1,460 acres of other areas of Ash Meadows in which field studies have not yet been made.

  1. Remote sensing of evapotranspiration over crops using combined airborne and ground-based observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing of evapotranspiration (ET) over crops could be valuable for managing scarce water resources, especially for irrigated lands. In the past decade remote sensing techniques have advanced to allow frequent estimation of ET at spatial scales useful for many farms. These techniques include ...

  2. Evapotranspiration: Measured with a lysimeter vs. calculated with a recursive method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, a recursive combination method (RCM) to calculate potential and crop evapotranspiration (ET) was given by Lascano and Van Bavel (Agron. J. 2007, 99:585-590) that differs from the Penman-Monteith (PM) method. The main difference between the two methods is that the assumptions made regarding...

  3. INTERACTIONS BETWEEN EVAPO-TRANSPIRATION AND ECOLOGICAL CHANGES IN JUNIPER WOODLANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    THE EXPANSION OF JUNIPER SPECIES INTO GRASSLAND AND SHRUB-STEPPE COMMUNITIES HAS OCCURRED ACROSS VAST AREAS AND AT A GLOBAL SCALE. IN MANY CASES WE HAVE DEVELOPED A REASONABLE UNDERSTANDING OF THE ECOLOGICAL OR SUCCESSIONAL CHANGES THAT ARE LIKELY WITH THE EXPANSION. IMPACTS ON EVAPO-TRANSPIRATION (...

  4. Application of the Combination Approach for Estimating Evapotranspiration in Puerto Rico

    NASA Technical Reports Server (NTRS)

    Harmsen, Eric; Luvall, Jeffrey; Gonzalez, Jorge

    2005-01-01

    The ability to estimate short-term fluxes of water vapor from the land surface is important for validating latent heat flux estimates from high resolution remote sensing techniques. A new, relatively inexpensive method is presented for estimating t h e ground-based values of the surface latent heat flux or evapotranspiration.

  5. RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.

    PubMed

    Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip

    2012-01-01

    RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. PMID:21385181

  6. A site-level comparison of lysimeter and eddy-covariance flux measurements of evapotranspiration

    NASA Astrophysics Data System (ADS)

    Hirschi, Martin; Michel, Dominik; Lehner, Irene; Seneviratne, Sonia I.

    2015-04-01

    Accurate measurements of evapotranspiration are required for many meteorological, climatological, ecological and hydrological research applications and developments. Here we examine and compare two widely used methods to measure evapotranspiration at the site level: lysimeter-based measurements (EL) and eddy-covariance (EC) flux measurements (EEC). The analyses are based on parallel measurements at the research catchment Rietholzbach in northeastern Switzerland and focuses on the period June 2009 to December 2013. The measurements are compared on the yearly, monthly, daily, and hourly time scales, and with respect to an over 35-year lysimeter evapotranspiration time series. Overall, the two measurement techniques agree well, especially on the annual time scale. They also agree well with an independent catchment water-balance estimate of evapotranspiration. The good agreement of these independent methods emphasizes the representativeness of the lysimeter and EC measurements for the entire catchment despite their comparatively small source areas. The study also discusses different possibilities to close the energy balance of the EC flux measurements. From the comparison of EL and EEC, the closure of the energy balance according to the Bowen ratio is found to be reasonable.

  7. Automated methodology for selecting hot and cold pixel for remote sensing based evapotranspiration mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface energy fluxes, especially the latent heat flux from evapotranspiration (ET), determine exchanges of energy and mass between the hydrosphere, atmosphere, and biosphere. There are numerous remote sensing-based energy balance approaches such as METRIC and SEBAL that use hot and cold pixels from...

  8. Mapping evapotranspiration with high resolution aircraft imagery over vineyards using one and two source modeling schemes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...

  9. Infrared thermometry and stress monitoring of corn, and sensitivity analysis of reference evapotranspiration to sensor accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract for SOCR seminar: The USDA-ARS Water Management Research Unit in Fort Collins, CO is tasked with maintaining high crop yields under limited water. One focus of this project is to quantify evapotranspiration (ET) and water stress. Canopy temperature methods have been used for decades to quan...

  10. Quantifying evapotranspiration from urban green roofs: a comparison of chamber measurements with commonly used predictive methods.

    PubMed

    Marasco, Daniel E; Hunter, Betsy N; Culligan, Patricia J; Gaffin, Stuart R; McGillis, Wade R

    2014-09-01

    Quantifying green roof evapotranspiration (ET) in urban climates is important for assessing environmental benefits, including stormwater runoff attenuation and urban heat island mitigation. In this study, a dynamic chamber method was developed to quantify ET on two extensive green roofs located in New York City, NY. Hourly chamber measurements taken from July 2009 to December 2009 and April 2012 to October 2013 illustrate both diurnal and seasonal variations in ET. Observed monthly total ET depth ranged from 0.22 cm in winter to 15.36 cm in summer. Chamber results were compared to two predictive methods for estimating ET; namely the Penman-based ASCE Standardized Reference Evapotranspiration (ASCE RET) equation, and an energy balance model, both parametrized using on-site environmental conditions. Dynamic chamber ET results were similar to ASCE RET estimates; however, the ASCE RET equation overestimated bottommost ET values during the winter months, and underestimated peak ET values during the summer months. The energy balance method was shown to underestimate ET compared the ASCE RET equation. The work highlights the utility of the chamber method for quantifying green roof evapotranspiration and indicates green roof ET might be better estimated by Penman-based evapotranspiration equations than energy balance methods. PMID:25072298

  11. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The seasonal and interannual variability in surface energy exchange and evapotranspiration (E) of two temperate semi-arid grasslands in southern Arizona, USA were investigated using continuous eddy covariance measurements from 2004 to 2007, including two drought years (2004 and 2005). One of the gra...

  12. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature 1932

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information about the ratio of transpiration (T) to total evapotranspiration (T/ET) is related to critical global change concerns, including shrub encroachment and non-native species invasion. In this study, a new approach was used to partition measurements of ET into daily evaporation (ED) and dai...

  13. Soil water sensing methods-Usefulness for evapotranspiration monitoring and links to remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water sensing methods are widely used to characterize the rhizosphere and below, but only a few are capable of delivering water content data with accuracy for the entire soil profile such that evapotranspiration (ET) can be determined by soil water balance with minimal error. One such is the ne...

  14. Evapotranspiration and crop coefficients for irrigated sunflower in the southern high plains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower (Helianthus annuus L.) is diverse crop grown for oil or confectionary uses in the Southern High Plains often under irrigation. Crop water use (evapotranspiration or ET) was measured in 2009 and 2011 in two 4-ha fields using two precision 9 m**2 weighing lysimeters containing 2.3-m deep mo...

  15. Sensitivity of grass and alfalfa reference evapotranspiration to weather station sensor accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1991 to 2008 from an autom...

  16. Response of evapotranspiration from tallgrass prairie vegetation to CO2 at subambient to elevated concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of CO2 enrichment on leaf transpiration are well-documented, but our understanding of how CO2 interacts with other variables to regulate evapotranspiration is more limited. We installed weighing lysimeters planted to species characteristic of tallgrass prairie into a field chamber used to r...

  17. Significance of uncertainty in evapotranspiration estimates on water balance modeling in SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In water quality models, such as the Soil and Water Assessment Tool (or SWAT), accurate forcing of potential evapotranspiration (PET) is crucial for producing reasonable predictions of water budget components, sediment and other pollutant loads from larger river basins. Methods and data, needed to ...

  18. Two-source model estimates of evapotranspiration using component and composite surface temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two source energy balance model (TSM) can estimate evapotranspiration (ET) of vegetated surfaces, which has important applications in water resources management for irrigated crops. The TSM uses soil (TS) and canopy (TC) surface temperatures to solve the energy budgets of these layers separately...

  19. Evapotranspiration: A measurement system and remote-sensing method for regional estimates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method was developed for making evapotranspiration (ET) estimates based on measured air temperature, remotely sensed surface temperature, and net radiation (Rn). The method was validated from ET measurements made over a pasture near Gainesville using the energy budget--profile Bowen ratio techniqu...

  20. Satellite-assisted monitoring of vegetable crop evapotranspiration in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reflective bands of Landsat-5 Thematic Mapper satellite imagery were used to facilitate the estimation of basal crop evapotranspiration (ETcb), or productive water use, in San Joaquin Valley during 2008. A ground-based digital camera measured green fractional cover (Fc) of 49 commercial fields plan...

  1. Barren area evapotranspiration estimates generated from energy budget measurements in the Gila River valley of Arizona

    USGS Publications Warehouse

    Leppanen, O.E.

    1980-01-01

    Estimates of evapotranspiration for 479 successive days were created by using energy budget measurements. The measurement point was on the 2-kilometer wide flood plain of the Gila River in east-central Arizona, about 18 kilometers above Coolidge Dam. The flood plain had been cleared of all tall vegetation for distances of about 20 kilometers upstream and 5 kilometers downstream from the measurement site. Chaining, raking, and burning had been used to clear the area immediately surrounding the measurement site about 6 months before measurements began. Ground cover was sparse volunteer Bermudagrass and scattered seepwillow for a distance of at least 1 kilometer in all directions from the measurement point . The water table was deep , so most of the evaporated water came from rainfall, but some came from soil moisture deeper than 2 meters. The March to March water loss (evapotranspiration less rain) was about 47 millimeters, evapotranspiration demand was 377 millimeters. Daily rates varied from very small amounts of condensation to almost 5 millimeters of evapotranspiration. (USGS)

  2. Multiyear Riparian Evapotranspiration and Groundwater Use for the Upper San Pedro Basin 1915

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian evapotranspiration (ET) is a major component of the surface and subsurface water balance for many semiarid watersheds. Measurement or model-based estimates of ET are often made on a local scale, but spatially distributed estimates are needed to determine ET over catchments. In this paper,...

  3. Spatial variability insensitivity coefficient of grass and alfalfa reference evapotranspiration in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is a major component of the agricultural water budget and accurate ET estimations are essential for effective irrigation scheduling. Therefore, it is an important aspect of production agriculture and agricultural research. Potential ET of a crop can be calculated by multiply...

  4. Use of Landsat and environmental satellite data in evapotranspiration estimation from a wildland area

    NASA Technical Reports Server (NTRS)

    Khorram, S.; Smith, H. G.

    1979-01-01

    A remote sensing-aided procedure was applied to the watershed-wide estimation of water loss to the atmosphere (evapotranspiration, ET). The approach involved a spatially referenced databank based on both remotely sensed and ground-acquired information. Physical models for both estimation of ET and quantification of input parameters are specified, and results of the investigation are outlined.

  5. Regional scale evaluation of a meteosat second generation solar radiation product for evapotranspiration modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solar radiation plays a key role in the Earth’s energy balance and is used as an essential input data in radiation-based evapotranspiration (ET) models. Accurate gridded solar radiation data at high spatial and temporal resolution are needed to retrieve ET over large domains. In this work we present...

  6. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which i...

  7. Evaluation of the use of remotely sensed evapotranspiration estimates into AnnAGNPS pollution model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utilization of evapotranspiration (ET) estimates, derived from satellite remote sensing, into the Annualized Agricultural Non-Point Source (AnnAGNPS) pollution model was investigated. Modifications within AnnAGNPS were performed to allow the internal calculations of ET based on climate parameter...

  8. Application of remote sensing for multi-scale monitoring of evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating water loss from vegetation and soil or evapotranspiration (ET) at field to regional scales is critical information for many water resource and agricultural management applications as well as weather and climate forecasting and research. Water availability is strongly tied to crop product...

  9. Observed relation between evapotranspiration and soil moisture in the North American monsoon region 1985

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture control on evapotranspiration is poorly understood in ecosystems experiencing seasonal greening. In this study, we utilize a set of multi-year observations at four eddy covariance sites along a latitudinal gradient in vegetation greening to infer the ET-' relation during the North Ame...

  10. Use of remotely sensed evapotranspiration maps for monitoring drought impacts at field to continental scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Evaporative Stress Index (ESI) describes temporal anomalies in evapotranspiration (ET), highlighting areas with anomalously high or low rates of water use across the land surface. ET is retrieved via energy balance using remotely sensed land-surface temperature (LST) time-change signals. LST ...

  11. Recommended documentation of evapotranspiration measurements and associated weather data and a review of requirements for accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More and more evapotranspiration (ET) models, ET crop coefficients, and associated measurements of ET are reported in the literature. These measurements base from a range of measurement systems including lysimeters, eddy covariance, Bowen ratio, water balance (gravimetric, neutron meter, other soil ...

  12. Improved Evapotranspiration Simulation In the CERES-Maize Crop Model Under Limited Irrigation Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increasingly considered alternative to full irrigation practices is limited irrigation, where the crop is intentionally stressed during specific growth stages in an effort to maximize yield per unit water consumed, or evapotranspiration (ET). Recent studies have shown that CERES-Maize crop model...

  13. Potato evapotranspiration and productivity as affected by drip irrigation frequency and soil matric potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drip irrigation has been shown to be an effective method for achieving high potato yields. Soil matric potential (SMP) and irrigation frequencies are two important factors in optimizing potato production and tuber quality. This chapter reviews and discusses a case study of potato evapotranspiration ...

  14. Simulation of winter wheat evapotranspiration in Texas and Henan using three models of differing complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop evapotranspiration (ET) is an important component of simulation models with many practical applications related to the efficient management of crop water supply. The algorithms used by models to simulate ET are of various complexity and robustness, and often have to be modified for particular e...

  15. A multi-sensor approach to retrieving high resolution daily evapotranspiration maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of residual surface energy balance approaches to determine spatially distributed evapotranspiration (ET) over large areas has been considered an effective solution in the last years, especially due to the increasing availability of remotely-observed land-surface temperature (LST) data. Howev...

  16. Evapotranspiration as a criterion to estimate nitrogen requirement of maize under salt stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the hypothesis that by reducing the application of N, based on the decrease in evapotranspiration (ET) expected due to increase in soil salinity, it is possible to reduce N loss without causing N deficiency or further yield loss in salt-stressed maize plants. We tested four levels of salin...

  17. Quantifying variability in field scale evapotranspiration measurements in an irrigated agricultural region under advection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compares the evapotranspiration (ET) measurements from eddy covariance, lysimetry, and water balance using a network of neutron probe sensors and investigates the role of within-field variability in the vegetation density in explaining the differences among the ET estimates from the vario...

  18. Initial response of evapotranspiration from tallgrass prairie vegetation to CO2 at subambient to elevated concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of CO2 enrichment on leaf transpiration are well-documented, but our understanding of how CO2 interacts with other variables to regulate evapotranspiration is more limited. We installed weighing lysimeters planted to species characteristic of tallgrass prairie in a field chamber used to reg...

  19. A multi-sensor methodology for mapping daily evapotranspiration at high resolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of remote sensing-based surface energy balance models to determine spatially distributed evapotranspiration (ET) is considered one of the few viable means for mapping ET from field to regional and ultimately global scales. A key remotely sensed boundary condition used in many of these model...

  20. Lysimetry versus neutron moisture meter for evapotranspiration determination in four soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of evapotranspiration (ET) is vital for the management of our fresh water resources. One method for determining ET is through the measurement of the soil water balance where ET is the residual calculated from the change in soil water storage plus rainfall and irrigation and minus drainag...