Science.gov

Sample records for actual evapotranspiration eta

  1. Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS Enhanced Vegetation Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in these districts. We developed a general algorithm for estimating actual evapotranspiration (ETa) based on the ...

  2. Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration

    USGS Publications Warehouse

    Barclay, Shoemaker W.; Sumner, D.M.

    2006-01-01

    Corrections can be used to estimate actual wetland evapotranspiration (AET) from potential evapotranspiration (PET) as a means to define the hydrology of wetland areas. Many alternate parameterizations for correction coefficients for three PET equations are presented, covering a wide range of possible data-availability scenarios. At nine sites in the wetland Everglades of south Florida, USA, the relatively complex PET Penman equation was corrected to daily total AET with smaller standard errors than the PET simple and Priestley-Taylor equations. The simpler equations, however, required less data (and thus less funding for instrumentation), with the possibility of being corrected to AET with slightly larger, comparable, or even smaller standard errors. Air temperature generally corrected PET simple most effectively to wetland AET, while wetland stage and humidity generally corrected PET Priestley-Taylor and Penman most effectively to wetland AET. Stage was identified for PET Priestley-Taylor and Penman as the data type with the most correction ability at sites that are dry part of each year or dry part of some years. Finally, although surface water generally was readily available at each monitoring site, AET was not occurring at potential rates, as conceptually expected under well-watered conditions. Apparently, factors other than water availability, such as atmospheric and stomata resistances to vapor transport, also were limiting the PET rate. ?? 2006, The Society of Wetland Scientists.

  3. Controls over spatial and temporal variations in annual actual evapotranspiration in snow-free California watersheds

    NASA Astrophysics Data System (ADS)

    Clark, Allison Marie

    Actual evapotranspiration (Eta) is one of the largest components of the hydrologic budget and accounts for a majority of water lost from a watershed. It is primarily controlled by soil water availability, which is largely controlled by rainfall, and atmospheric demand (potential evapotranspiration). Consequently, Eta is sensitive to changes in meteorologic conditions. Understanding the relationship between Et a and controlling meteorologic variables across time and space is important for future predictions of Eta under a changing climate, especially in California where demand for surface and groundwater is high. A regression modeling approach was used to (1) determine the relative control of rainfall, rainfall intensity, and potential evapotranspiration (Etp) over annual and long-term mean annual Eta across watersheds in western California, and (2) quantify the sensitivity of watershed annual Eta to changes in these variables. Annual Eta data for 20 snow-free California watersheds was derived using the water balance method for hydrologic years 1982-2011. Independent variables examined in this study were annual rainfall, rainfall intensity, and potential evapotranspiration. These quantities were obtained or calculated from daily PRISM rainfall and temperature datasets. Results indicated that rainfall was the dominant control over variations in mean annual Eta across the study region (Adj. R2 0.935) and was the primary control over interannual variations in Et a for 15 out of 17 study watersheds. Rainfall intensity was a significant but weaker predictor of mean annual Eta (adj. R2 0.833) and was a significant predictor of annual variations in Eta for 12 out of 17 watersheds. A weak relationship between Etp and Eta was observed across the study region (adj. R2 = 0.660) and the relationship was found to be negative. Etp was a significant, though weak, predictor of annual Eta for 8 out of 17 watersheds. The amount of variance in annual Eta explained by rainfall

  4. Establishing seasonal chronicles of actual evapotranspiration under sloping conditions

    NASA Astrophysics Data System (ADS)

    Zitouna Chebbi, R.; Prévot, L.; Jacob, F.; Voltz, M.

    2012-04-01

    Estimation of daily and seasonal actual evapotranspiration (ETa) is strongly needed for hydrological and agricultural purposes. Although the eddy covariance method is well suited for such estimation of land surface fluxes, this method suffers from limitations when establishing long time series. Missing data are often encountered, resulting from bad meteorological conditions, rejection by quality control tests, power failures… Numerous gap fill techniques have been proposed in the literature but there applicability in sloping conditions is not well known. In order to estimate ETa over long periods (agricultural cycle) on crops cultivated in sloping areas, a pluri-annual experiment was conducted in the Kamech catchment, located in North-eastern Tunisia. This Mediterranean site is characterized by a large heterogeneity in topography, soils and crops. Land surface fluxes were measured using eddy covariance systems. Measurements were collected on the two opposite sides of the Kamech V-shaped catchment, within small fields having slopes steeper than 5%. During three different years, four crops were studied: durum wheat, oat, fava bean and pasture. The topography of the catchment and the wind regime induced upslope and downslope flows over the study fields. In this study, we showed that gap filling of the turbulent fluxes (sensible and latent heat) can be obtained through linear regressions against net radiation. To account for the effect of the topography, linear regressions were calibrated by distinguishing upslope and downslope flows. This significantly improved the quality of the reconstructed data over 30 minute intervals. This gap filling technique also improved the energy balance closure at the daily time scale. As a result, seasonal chronicles of daily ETa throughout the growth cycle of the study crops in the Kamech watershed were established, thus providing useful information about the water use of annual crops in a semi-arid rainfed and hilly area.

  5. A drought index based on actual evapotranspiration from the Bouchet hypothesis

    NASA Astrophysics Data System (ADS)

    Kim, Daeha; Rhee, Jinyoung

    2016-10-01

    Global drought assessment has mainly depended on precipitation-based drought indices that may also take into account potential evapotranspiration (ETp). In this study, we combined the actual evapotranspiration (ETa) estimated from the Bouchet hypothesis and the structure of the Standardized Precipitation-Evapotranspiration Index to develop a fully ET-based drought index, the Standardized Evapotranspiration Deficit Index (SEDI). We found that SEDI, without using precipitation data, produces results that are consistent with the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Index (SPI) for drought identification in the South-Central United States. We also found a competitive performance of SEDI through comparisons between the Vegetation Health Index with SEDI, PDSI, and SPI. We suggest the high applicability of the SEDI based on the Bouchet hypothesis as an independent drought index for regions with strong land-atmosphere coupling or as an alternative drought index to fully precipitation-dependent indices for assessing agricultural droughts.

  6. Using lysimeters to test the Penman Monteith actual evapotranspiration.

    NASA Astrophysics Data System (ADS)

    Ben Asher, Jiftah; Volinski, Roman; Zilberman, Arkadi; Bar Yosef, Beni; Silber, Avner

    2015-04-01

    Differences in actual transpiration (ETa) of banana plants were quantified in a lysimeter experiment. ETA was computed using instantaneous data from two weighing lysimeters and compared to PM (Penman-Monteith) model for ETa. Two critical problems were faced in this test. A) Estimating canopy and aerodynamic resistances ("rc" and "ra" respectively ) and B) converting the lysimeter changes in water volume ( LYv cm3 ) to ETa length units ( cm ). The two unknowns " rc" and "ra" were obtained from continuous measurements of the differences between canopy and air temperature (Tc - Ta). This difference was established by means of the infrared thermometry which was followed by numerical and analytical calculation of ETa using the modification suggested by R. Jackson to the PM model. The conversion of lysimeter volumetric units (LYv) to ETa length units was derived from the slope of cumulative LYv/ETa. This relationship was significantly linear (r2=0.97and 0.98.). Its slope was interpreted as "evaporating leaf area" which accounted for 1.8E4 cm2 in lysimeter 1 and 2.3E4 cm2.in lysimeter 2 . The comparison between LYv and PM model was acceptable even under very low ETa. The average of two lysimeters was 1.1mm/day (1.4 mm/day , LYv 1 and 0.8 LYv 2) while ETa calculated on the basis of PM model was 1.2 mm/day. It was concluded that although lysimeters are most accurate systems to measure ETa one of its disadvantages ( beside the high cost) is the volumetric output that in many cases should be supported by a one dimensional energy balance system. The PM model was found to be a reliable complementary tool to convert lysimeters volumetric output into conventional length units of ETa.

  7. A spatial downscaling procedure of MODIS derived actual evapotranspiration using Landsat images at central Greece

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, M.; Adaktylou, N.; Loukas, A.; Michalopoulou, H.; Mylopoulos, N.; Toulios, L.

    2013-08-01

    In this study, the Surface Energy Balance Algorithm for Land (SEBAL) was used to derive daily actual evapotranspiration (ETa) distributions from Landsat and MODIS images separately. The study area is the Lake Karla basin in Thessaly, Central Greece. Meteorological data from the archive of Center for Research and Technology, Thessaly (CERETETH) have also been used. The methodology was developed using satellite and ground data for the period of summer 2007. Landsat and MODIS imagery were combined in order to have data with high temporal and spatial resolution (downscaling). The downscaling technique applied is the output downscaling with regression between images. This technique disaggregates imagery by applying linear regression between two MODIS products to the previous or subsequent Landsat product. After the calculation of a first order linear regression between two MODIS-derived ETa maps the next step is the regression to the ETa map derived from the prior Landsat image to predict the disaggregated subsequent Landsat ETa map. The results are satisfactory, giving the general trend of ETa derived from the original SEBAL procedure.

  8. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2015-05-01

    This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and evapotranspiration calculated with the full-form Penman-Monteith equation (ETPM) for the Rollesbroich site in the Eifel (western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in the literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (< 8%) on a monthly basis between both methods are found in summer. ETa was close to ETPM, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter and EC were mainly related to differences in grass height caused by harvest and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for the high-precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data differ significantly from precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16 % higher precipitation amount than the tipping bucket. After a correction of the tipping bucket measurements by the method of Richter (1995) this amount was reduced to 3%. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket, in part related to the detection of rime and dew, which contribute 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total

  9. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H.

    2014-12-01

    This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and potential crop evapotranspiration according to FAO (ETc-FAO) for the Rollesbroich site in the Eifel (Western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (<8%) on monthly basis between both methods are found in summer. ETa was close to ETc-FAO, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter, ETc-FAO, and EC were mainly related to differences in grass height caused by harvesting management and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for high precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data show significant differences compared to the precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16% higher precipitation amount than the tipping bucket. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket in part related to the detection of rime and dew, which contributes 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total difference. Larger differences are also recorded for snow and sleet situations. During snowfall, the

  10. Merging raster meteorological data with low resolution satellite images for improved estimation of actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Cherif, Ines; Alexandridis, Thomas; Chambel Leitao, Pedro; Jauch, Eduardo; Stavridou, Domna; Iordanidis, Charalampos; Silleos, Nikolaos; Misopolinos, Nikolaos; Neves, Ramiro; Safara Araujo, Antonio

    2013-04-01

    Actual evapotranspiration (ETa) can be estimated using Energy Balance models and remotely sensed data. In particular, satellite images acquired in visible, near and thermal infrared parts of the spectrum have been used with the Surface Energy Balance Algorithm for Land (SEBAL) to estimate actual evapotranspiration. This algorithm is solving the Energy Balance Equation using data from a meteorological station present in the vicinity, and assumes the meteorological conditions homogeneous over the study area. Most often, data from a representative weather station are used. This assumption may lead to substantial errors in areas with high spatial variability in weather parameters. In this paper, the ITA-MyWater algorithms (Integrated Thermodynamic Algorithms for MyWater project), an adaptation of SEBAL was merged together with spatially distributed meteorological data to increase the accuracy of ETa estimations at regional scale using MODIS satellite images. The major changes introduced to migrate from point to raster are that (i) air temperature and relative humidity maps are used for the estimation of the Energy Balance terms, including instantaneous net radiation and soil heat flux and (ii) the variability of wind speed is taken into account to generate maps of the aerodynamic resistance, sensible heat flux and difference between soil and air temperature at the boundary conditions (at dry and wet pixels). The approach was applied in the river basin of Tamega in Portugal, where actual evapotranspiration was estimated for several MODIS 8-day periods from spring to winter of the same year. The raster meteorological maps were produced by the MM5 weather forecast model. Daily reference evapotranspiration was calculated with MOHID LAND model. Using a temporal integration technique and the daily reference evapotranspiration maps, the cumulative evapotranspiration over the MODIS 8-day period was estimated and compared to the global evapotranspiration MODIS product (MOD16A2

  11. Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach

    USGS Publications Warehouse

    Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.

    2013-01-01

    Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0

  12. Spatiotemporal variations of actual evapotranspiration over the Lake Selin Co Basin (Tibetan Plateau) during 2003-2012

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Wang, Lei

    2016-04-01

    Actual evapotranspiration (ETa) over the Tibetan Plateau (TP) is an important component of the water cycle, and greatly influences the water budgets of the TP lake basins. Quantitative estimation of ETa within lake basins is fundamental to physically understanding ETa changes, and thus will improve the understanding of the hydrological processes and energy balance throughout the lake basins. In this study, the spatiotemporal dynamic changes of ETa within the Lake Selin Co Basin (the TP's largest lake basin) during 2003-2012 are examined at the basin scale. This was carried out using the previously calibrated and validated Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) for the land area, the Penman-Monteith method for the water area when unfrozen, and a simple sublimation estimation approach for the water area when frozen. The relationship between ETa changes and controlling factors is also discussed. Results indicate that the simulated land ETa from the WEB-DHM reasonably agrees with the estimated ETa values from the nonlinear complementary relationship model using appropriately calibrated parameter values at a point scale. Land ETa displayed an insignificant increase of 7.03 mm/y, and largely depends on precipitation. For the water area, the combined effects of reduced wind speed and net radiation offset the effect of rising temperature and vapor pressure deficit, and contributed to an insignificant decrease in evaporation of 4.17 mm/y. Sensitivity analysis shows that vapor pressure deficit and wind speed are the most sensitive variables to the changes of evaporation from the water area.

  13. Soil water availability as controlling factor for actual evapotranspiration in urban soil-vegetation-systems

    NASA Astrophysics Data System (ADS)

    Thomsen, Simon; Reisdorff, Christoph; Gröngröft, Alexander; Jensen, Kai; Eschenbach, Annette

    2015-04-01

    The City of Hamburg is characterized by a large number of greens, parks and roadside trees: 600.000 trees cover about 14% of the city area, and moreover, 245.000 roadside trees can be found here. Urban vegetation is generally known to positively contribute to the urban micro-climate via cooling by evapotranspiration (ET). The water for ET is predominantly stored in the urban soils. Hence, the actual evapotranspiration (ETa) is - beside atmospheric drivers - determined by soil water availability at the soil surface and in the rooting zones of the respective vegetation. The overall aim of this study is to characterize soil water availability as a regulative factor for ETa in urban soil-vegetation systems. The specific questions addressed are: i) What is the spatio-temporal variation in soil water availability at the study sites? ii) Which soil depths are predominantly used for water uptake by the vegetation forms investigated? and iii) Which are the threshold values of soil water tension and soil water content (Θ), respectively, that limit ETa under dry conditions on both grass-dominated and tree-dominated sites? Three study areas were established in the urban region of Hamburg, Germany. We selected areas featuring both single tree stands and grass-dominated sites, both representing typical vegetation forms in Hamburg. The areas are characterized by relatively dry soil conditions. However, they differ in regard to soil water availability. At each area we selected one site dominated by Common Oak (Quercus ruber L.) with ages from 40 to 120 years, and paired each oak tree site with a neighboring grass-dominated site. All field measurements were performed during the years 2013 and 2014. At each site, we continuously measured soil water tension and Θ up to 160 cm depth, and xylem sap flux of each of three oak trees per site in a 15 min-resolution. Furthermore, we measured soil hydraulic properties as pF-curve, saturated and unsaturated conductivity at all sites

  14. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational simplified surface energy balance model

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Russell L, Scott; Verdin, James P.

    2014-01-01

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. We have developed a first-ever basin-wide actual evapotranspiration (ETa) map of the CRB at the Landsat scale for water use assessment at the field level. We used the operational Simplified Surface Energy Balance (SSEBop) model for estimating ETa using 328 cloud-free Landsat images acquired during 2010. Our results show that cropland had the highest ETa among all land cover classes except for water. Validation using eddy covariance measured ETa showed that the SSEBop model nicely captured the variability in annual ETa with an overall R2 of 0.78 and a mean bias error of about 10%. Comparison with water balance-based ETa showed good agreement (R2 = 0.85) at the sub-basin level. Though there was good correlation (R2 = 0.79) between Moderate Resolution Imaging Spectroradiometer (MODIS)-based ETa (1 km spatial resolution) and Landsat-based ETa (30 m spatial resolution), the spatial distribution of MODIS-based ETa was not suitable for water use assessment at the field level. In contrast, Landsat-based ETa has good potential to be used at the field level for water management. With further validation using multiple years and sites, our methodology can be applied for regular production of ETa maps of larger areas such as the conterminous United States.

  15. On the downscaling of actual evapotranspiration maps based on combination of MODIS and landsat-based actual evapotranspiration estimates

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Verdin, James P.

    2014-01-01

     Downscaling is one of the important ways of utilizing the combined benefits of the high temporal resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) images and fine spatial resolution of Landsat images. We have evaluated the output regression with intercept method and developed the Linear with Zero Intercept (LinZI) method for downscaling MODIS-based monthly actual evapotranspiration (AET) maps to the Landsat-scale monthly AET maps for the Colorado River Basin for 2010. We used the 8-day MODIS land surface temperature product (MOD11A2) and 328 cloud-free Landsat images for computing AET maps and downscaling. The regression with intercept method does have limitations in downscaling if the slope and intercept are computed over a large area. A good agreement was obtained between downscaled monthly AET using the LinZI method and the eddy covariance measurements from seven flux sites within the Colorado River Basin. The mean bias ranged from −16 mm (underestimation) to 22 mm (overestimation) per month, and the coefficient of determination varied from 0.52 to 0.88. Some discrepancies between measured and downscaled monthly AET at two flux sites were found to be due to the prevailing flux footprint. A reasonable comparison was also obtained between downscaled monthly AET using LinZI method and the gridded FLUXNET dataset. The downscaled monthly AET nicely captured the temporal variation in sampled land cover classes. The proposed LinZI method can be used at finer temporal resolution (such as 8 days) with further evaluation. The proposed downscaling method will be very useful in advancing the application of remotely sensed images in water resources planning and management.

  16. Introducing a framework to improve estimation of actual evapotranspiration using MODIS images with SEBAL algorithm

    NASA Astrophysics Data System (ADS)

    Mianabadi, Ameneh; Alizadeh, Amin; Sanaeinejad, Hossein; Ghahraman, Bijan; Davary, Kamran; Coenders-Gerrits, Miriam

    2015-04-01

    To have an accurate estimation of actual evapotranspiration, it is a good idea to use every-day images of MODIS. But under clouded condition, it is difficult to have appropriate images and also it is time-consuming to interpret all those images. Therefore, in this paper, we tried to choose the appropriate images to improve estimation of actual evapotranspiration. For this purpose, we introduced a framework to choose appropriate dates to produce best estimation of actual evapotranspiration. On the other hand, finding the location of dry (hot pixel) and wet (cold pixel) endpoints of evapotranspiration spectrum is so important. We dealt with this problem by employing the statistical procedure for automated selection of cold and hot pixels. We also visually reviewed the location of hot and cold pixels using land cover image to ensure that the most appropriate pixels had been selected. To integrate evapotranspiration over time, the linear and spline interpolation techniques were applied. Also, based on the precipitation rates during 5 days before the date of image and the mean seasonal amount of evapotranspiration, we found a logarithmic equation to produce the best estimation of evapotranspiration during the given time. Results showed that the logarithmic equation could produce more accurate estimation of evapotranspiration rather than linear interpolation.

  17. Bowen ratio measurements above various vegetation covers and its comparison with actual evapotranspiration estimated by SoilClim model

    NASA Astrophysics Data System (ADS)

    Hlavinka, P.; Trnka, M.; Fischer, M.; Kucera, J.; Mozny, M.; Zalud, Z.

    2010-09-01

    The principle of Bowen ratio is one of the available techniques for measurements of actual evapotranspiration (ETa) as one of essential water balance fractions. The main aims of submitted study were: (i) to compare the water balance of selected crops, (ii) to compare outputs of SoilClim model with observed parameters (including ETa on Bowen ratio basis). The measurements were conducted at two experimental stations in the Czech Republic (Polkovice 49°23´ (N), 17°17´ (E), 205 m a.s.l.; Domanínek 49°32´ (N), 16°15´ (E), 544 m a.s.l.) during the years 2009 and 2010. Together with Bowen ratio the global solar radiation, radiation balance, soil heat flux, volumetric soil moisture and temperature within selected depths, precipitation and wind speed were measured. The measurements were conducted simultaneously above various covers within the same soil conditions: spring barley vs. winter wheat, spring barley vs. winter rape; grass vs. poplars; harvested field after tillage vs. harvested field after cereals without any tillage. The observed parameters from different covers were compared with SoilClim estimates. SoilClim model is modular software for water balance and soil temperature modelling and finally could be used for soil Hydric and Thermic regimes (according to USDA classification) identification. The core of SoilClim is based on modified FAO Penman-Monteith methodology. Submitted study proved the applicability of SoilClim model for ETa, soil moisture within two defined layers and soil temperature (in 0.5 m depth) estimates for various crops, covers, selected soil types and climatic conditions. Acknowledgement: We gratefully acknowledge the support of the Grant Agency of the Czech Republic (no. 521/09/P479) and the project NAZV QI91C054. The study was also supported by Research plan No. MSM6215648905 "Biological and technological aspects of sustainability of controlled ecosystems and their adaptability to climate change".

  18. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in more humid environments. We measured ET (ETEC) using Eddy Covariance (EC) towers a...

  19. Testing two temporal upscaling schemes for the estimation of the time variability of the actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.

    2015-10-01

    Temporal availability of grapes actual evapotranspiration is an emerging issue since vineyards farms are more and more converted from rainfed to irrigated agricultural systems. The manuscript aims to verify the accuracy of the actual evapotranspiration retrieval coupling a single source energy balance approach and two different temporal upscaling schemes. The first scheme tests the temporal upscaling of the main input variables, namely the NDVI, albedo and LST; the second scheme tests the temporal upscaling of the energy balance output, the actual evapotranspiration. The temporal upscaling schemes were implemented on: i) airborne remote sensing data acquired monthly during a whole irrigation season over a Sicilian vineyard; ii) low resolution MODIS products released daily or weekly; iii) meteorological data acquired by standard gauge stations. Daily MODIS LST products (MOD11A1) were disaggregated using the DisTrad model, 8-days black and white sky albedo products (MCD43A) allowed modeling the total albedo, and 8-days NDVI products (MOD13Q1) were modeled using the Fisher approach. Results were validated both in time and space. The temporal validation was carried out using the actual evapotranspiration measured in situ using data collected by a flux tower through the eddy covariance technique. The spatial validation involved airborne images acquired at different times from June to September 2008. Results aim to test whether the upscaling of the energy balance input or output data performed better.

  20. Microclimate and actual evapotranspiration in a humid coastal-plain environment

    NASA Astrophysics Data System (ADS)

    Dennehy, Kevin F.; McMahon, Peter B.

    1987-09-01

    Continuous hourly measurements of twelve meteorologic variables recorded during 1983 and 1984 were used to examine the microclimate and actual evapotranspiration at a low-level radioactive-waste burial site near Barnwell, South Carolina. The study area is in the Atlantic Coastal Plain of southwestern South Carolina. Monthly, daily, and hourly trends in net radiation, incoming and reflected short-wave radiation, incoming and emitted long-wave radiation, soil-heat flux, dry- and wet-bulb temperatures, soil temperatures, wind direction and speed, and precipitation were used to characterize the microclimate. Average daily air temperatures ranged from -9 to 32° Celsius during the period of study. Net radiation varied from about -27 to 251 watts m -2 and was dominated by incoming short-wave radiation throughout the year. The peak net radiation during a summer day generally occurred 2-3h before the peak vapor pressure deficit. In the winter, these peaks occurred at about the same time of day. Monthly precipitation varied from 15 to 241 mm. The Bowen ratio method was used to estimate hourly evapotranspiration, which was summed to also give daily and monthly evapotranspiration. Actual evapotranspiration varied from 0.0 to 0.7 mm h -1, 0.8-5 mm d -1, and 20-140 mm month -1 during 1983 and 1984. The maximum rate of evapotranspiration generally occurred at the same time of day as maximum net radiation, suggesting net radiation was the main driving force for evapotranspiration. Precipitation exceeded evapotranspiration during 14 months of the 2yr study period. Late fall, winter, and early spring contained the majority of these months. The maximum excess precipitation was 115 mm in February 1983.

  1. Microclimate and actual evapotranspiration in a humid coastal-plain environment

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1987-01-01

    Continuous hourly measurements of twelve meteorologic variables recorded during 1983 and 1984 were used to examine the microclimate and actual evapotranspiration at a low-level radioactive-waste burial site near Barnwell, South Carolina. The study area is in the Atlantic Coastal Plain of southwestern South Carolina. Monthly, daily, and hourly trends in net radiation, incoming and reflected short-wave radiation, incoming and emitted long-wave radiation, soil-heat flux, dry- and wet-bulb temperatures, soil temperatures, wind direction and speed, and precipitation were used to characterize the microclimate. Average daily air temperatures ranged from -9 to 32?? Celsius during the period of study. Net radiation varied from about -27 to 251 watts m-2 and was dominated by incoming short-wave radiation throughout the year. The peak net radiation during a summer day generally occurred 2-3h before the peak vapor pressure deficit. In the winter, these peaks occurred at about the same time of day. Monthly precipitation varied from 15 to 241 mm. The Bowen ratio method was used to estimate hourly evapotranspiration, which was summed to also give daily and monthly evapotranspiration. Actual evapotranspiration varied from 0.0 to 0.7 mm h-1, 0.8-5 mm d-1, and 20-140 mm month-1 during 1983 and 1984. The maximum rate of evapotranspiration generally occurred at the same time of day as maximum net radiation, suggesting net radiation was the main driving force for evapotranspiration. Precipitation exceeded evapotranspiration during 14 months of the 2yr study period. Late fall, winter, and early spring contained the majority of these months. The maximum excess precipitation was 115 mm in February 1983. ?? 1987.

  2. Modelling bulk surface resistance from MODIS time series data to estimate actual regional evapotranspiration

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Minacapilli, Mario; Provenzano, Giuseppe

    2015-04-01

    Estimation of actual evapotraspiration by means of Penman-Monteith (P-M) equation requires the knowledge of the so-called 'bulk surface resistance', rc,act, representing the vapour flow resistance through the transpiring crop and evaporating soil surface. The accurate parameterization of rc,act still represents an unexploited topic, especially in the case of heterogeneous land surface. In agro-hydrological applications, the P-M equation commonly used to evaluate reference evapotranspiration (ET0) of a well-watered 'standardized crop' (grass or alfalfa), generally assumes for the bulk surface resistance a value of 70 s m-1. Moreover, specific crop coefficients have to be used to estimate maximum and/or actual evapotranspiration based on ET0. In this paper, a simple procedure for the indirect estimation of rc,act as function of a vegetation index computed from remote acquisition of Land Surface Temperature (LST), is proposed. An application was carried out in an irrigation district located near Castelvetrano, in South-West of Sicily, mainly cultivated with olive groves, in which actual evapotranspiration fluxes were measured during two years (2010-2011) by an Eddy Covariance flux tower (EC). Evapotranspiration measurements allowed evaluating rc,actbased on the numerical inversion of the P-M equation. In the same study area, a large time series of MODIS LST data, characterized by a spatial resolution of 1x1 km and a time step of 8-days, was also acquired for the period from 2000 to 2014. A simple Vegetation Index Temperatures (VTI), with values ranging from 0 to 1, was computed using normalized LST values. Evapotranspiration fluxes measured in 2010 were used to calibrate the relationship between rc,act and VTI, whereas data from 2011 were used for its validation. The preliminary results evidenced that, for the considered crop, an almost constant value of rc,act, corresponding to about 250 s m-1, can be considered typical of periods in which the crop is well

  3. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    USGS Publications Warehouse

    Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  4. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    PubMed Central

    Senay, Gabriel B.; Budde, Michael; Verdin, James P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  5. Feedback Loop of Data Infilling Using Model Result of Actual Evapotranspiration from Satellites and Hydrological Model

    NASA Astrophysics Data System (ADS)

    Murdi Hartanto, Isnaeni; Alexandridis, Thomas K.; van Andel, Schalk Jan; Solomatine, Dimitri

    2014-05-01

    Using satellite data in a hydrological model has long been occurring in modelling of hydrological processes, as a source of low cost regular data. The methods range from using satellite products as direct input, model validation, and data assimilation. However, the satellite data frequently face the missing value problem, whether due to the cloud cover or the limited temporal coverage. The problem could seriously affect its usefulness in hydrological model, especially if the model uses it as direct input, so data infilling becomes one of the important parts in the whole modelling exercise. In this research, actual evapotranspiration product from satellite is directly used as input into a spatially distributed hydrological model, and validated by comparing the catchment's end discharge with measured data. The instantaneous actual evapotranspiration is estimated from MODIS satellite images using a variation of the energy balance model for land (SEBAL). The eight-day cumulative actual evapotranspiration is then obtained by a temporal integration that uses the reference evapotranspiration calculated from meteorological data [1]. However, the above method cannot fill in a cell if the cell is constantly having no-data value during the eight-day periods. The hydrological model requires full set of data without no-data cells, hence, the no-data cells in the satellite's evapotranspiration map need to be filled in. In order to fills the no-data cells, an output of hydrological model is used. The hydrological model is firstly run with reference evapotranspiration as input to calculate discharge and actual evapotranspiration. The no-data cells in the eight-day cumulative map from the satellite are then filled in with the output of the first run of hydrological model. The final data is then used as input in a hydrological model to calculate discharge, thus creating a loop. The method is applied in the case study of Rijnland, the Netherlands where in the winter, cloud cover is

  6. [Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the Hun-Taizi River Basin, Northeast China].

    PubMed

    Feng, Xue; Cai, Yan-Cong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Yuan, Feng-Hui

    2014-10-01

    Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis. The results showed that the empirical parameter value of 0.75 of AA model was suitable for the Hun-Taizi River Basin with an error of 11.4%. In the Hun-Taizi River Basin, the average annual actual evapotranspiration was 347.4 mm, which had a slightly upward trend with a rate of 1.58 mm · (10 a(-1)), but did not change significantly. It also indicated that the annual actual evapotranspiration presented a single-peaked pattern and its peak value occurred in July; the evapotranspiration in summer was higher than in spring and autumn, and it was the smallest in winter. The annual average evapotranspiration showed a decreasing trend from the northwest to the southeast in the Hun-Taizi River Basin from 1970 to 2006 with minor differences. Net radiation was largely responsible for the change of actual evapotranspiration in the Hun-Taizi River Basin. PMID:25796880

  7. SEBAL-based Daily Actual Evapotranspiration Forecasting using Wavelets Decomposition Analysis and Multivariate Relevance Vector Machines

    NASA Astrophysics Data System (ADS)

    Torres, A. F.

    2011-12-01

    Agricultural lands are sources of food and energy for population around the globe. These lands are vulnerable to the impacts of climate change including variations in rainfall regimes, weather patterns, and decreased availability of water for irrigation. In addition, it is not unusual that irrigated agriculture is forced to divert less water in order to make it available for other uses, e.g. human consumption and others. As part of implementation of better policies for water control and management, irrigation companies and water user associations have been implemented water conveyance and distribution monitoring systems along with soil moisture sensors networks in the last decades. These systems allow them to manage and distribute water among the users based on their requirements and water availability while collecting information about actual soil moisture conditions in representative crop fields. In spite of this, requested water deliveries by farmers/water users is based typically on total water share, traditions and past experience on irrigation, which in most cases do not correspond to the actual crop evapotranspiration, already affected by climate change. Therefore it is necessary to provide actual information about the crop water requirements to water users/managers, so they can better quantify the required vs. available water for the irrigation events along the irrigation season. To estimate the actual evapotranspiration in a spatial extent the Sensitivity Analysis of the Surface Energy Balance Algorithm for Land (SEBAL) algorithm has demonstrated its effectiveness using satellite or airborne data. Nonetheless the estimation is restricted to the day when the geospatial information was obtained. Without information of precise future daily water crop demand there is a continuous challenge for the implementation of better water distribution and management policies in the irrigation system. The purpose of this study is to investigate the plausibility of using

  8. Impact of potential and (scintillometer-based) actual evapotranspiration estimates on the performance of a lumped rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Samain, B.; Pauwels, V. R. N.

    2013-11-01

    Evapotranspiration (ET) plays a key role in hydrological impact studies and operational flood forecasting models as ET represents a loss of water from a catchment. Although ET is a major component of the catchment water balance, the evapotranspiration input for rainfall-runoff models is often simplified in contrast to the detailed estimates of catchment averaged precipitation. In this study, an existing conceptual rainfall-runoff model calibrated for and operational in the Bellebeek catchment in Belgium firstly has been validated and its sensitivity to different available potential ET input has been studied. It has been shown that when applying a calibrated rainfall-runoff model, the model input should be consistent with the input used for the calibration process, not only on the volume of ET, but also on the seasonal pattern. Secondly, estimates of the actual evapotranspiration based on measurements of a large aperture scintillometer (LAS) have been used as model forcing in the rainfall-runoff model. From this analysis, it has been shown that the actual evapotranspiration is a crucial factor in simulating the catchment water balance and the resulting stream flow. Regarding the actual evapotranspiration estimates from the LAS, it has been concluded that they can be considered realistic in summer months. In the months where stable conditions prevail (autumn, winter and (early) spring), an underestimation of the actual evapotranspiration is made, which has an important impact on the catchment's water balance.

  9. Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece

    PubMed Central

    Tsouni, Alexia; Kontoes, Charalabos; Koutsoyiannis, Demetris; Elias, Panagiotis; Mamassis, Nikos

    2008-01-01

    Remote sensing can assist in improving the estimation of the geographical distribution of evapotranspiration, and consequently water demand in large cultivated areas for irrigation purposes and sustainable water resources management. In the direction of these objectives, the daily actual evapotranspiration was calculated in this study during the summer season of 2001 over the Thessaly plain in Greece, a wide irrigated area of great agricultural importance. Three different methods were adapted and applied: the remote-sensing methods by Granger (2000) and Carlson and Buffum (1989) that use satellite data in conjunction with ground meteorological measurements and an adapted FAO (Food and Agriculture Organisation) Penman-Monteith method (Allen at al. 1998), which was selected to be the reference method. The satellite data were used in conjunction with ground data collected on the three closest meteorological stations. All three methods, exploit visible channels 1 and 2 and infrared channels 4 and 5 of NOAA-AVHRR (National Oceanic and Atmospheric Administration - Advanced Very High Resolution Radiometer) sensor images to calculate albedo and NDVI (Normalised Difference Vegetation Index), as well as surface temperatures. The FAO Penman-Monteith and the Granger method have used exclusively NOAA-15 satellite images to obtain mean surface temperatures. For the Carlson-Buffum method a combination of NOAA-14 and NOAA-15 satellite images was used, since the average rate of surface temperature rise during the morning was required. The resulting estimations show that both the Carlson-Buffum and Granger methods follow in general the variations of the reference FAO Penman-Monteith method. Both methods have potential for estimating the spatial distribution of evapotranspiration, whereby the degree of the relative agreement with the reference FAO Penman-Monteith method depends on the crop growth stage. In particular, the Carlson-Buffum method performed better during the first half

  10. Technical Note: Development of an automated lysimeter for the calculation of peat soil actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Proulx-McInnis, S.; St-Hilaire, A.; Rousseau, A. N.; Jutras, S.; Carrer, G.; Levrel, G.

    2011-05-01

    A limited number of publications in the literature deal with the measurement of actual evapotranspiration (AET) from a peat soil. AET is an important parameter in the description of water pathways of an ecosystem. In peatlands, where the water table is near the surface and the vegetation is composed of nonvascular plants without stomatal resistance, the AET measurement represents a challenge. This paper discusses the development of an automated lysimeter installed between 12 and 27 July 2010, at a 11-ha bog site, Pont-Rouge (42 km west of Quebec City, Canada). This system was made of an isolated block of peat, maintained at the same water level as the surrounding water table by a system of submersible pressure transmitters and pumps. The change in water level in millimetres in the isolated block of peat was used to calculate the water lost through evapotranspiration (ET) while accounting the precipitation. The rates of AET were calculated for each day of the study period. Temperature fluctuated between 17.2 and 23.3 °C and total rainfall was 43.76 mm. AET rates from 0.6 to 6.9 mm day-1 were recorded, with a ΣAET/ΣP ratio of 1.38. The estimated potential ET (PET) resulting from Thornthwaite's semi-empirical formula suggested values between 2.8 and 3.9 mm day-1. The average AET/PET ratio was 1.13. According to the literature, the results obtained are plausible. This system, relatively inexpensive and simple to install, may eventually be used to calculate AET on peaty soils in the years to come.

  11. Influence of Micrometeorological factors for Actual Evapotranspiration in the Coastal Urban Area

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Kang, D. H.; Yu, H.; Kwon, B. H.

    2015-12-01

    Actual evapotranspiration(AET) in the coastal urban area was estimated and correlations between AET and meteorological factors were analyzed. The study was conducted in Suyeong-Gu lay at the east longitude 129°05'40″ ~ 129°08'08″ and north latitude 35°07'59 ″~35 °11'01″ from December 2001 to November 2011. Four equations on land use were used to estimate AET. Land use types were classified by impermeable, forest, water and grass. AET was estimated by weighting of land use. AET increased from January to the middle of July and decreased from the middle of July to December. Correlation analysis was conducted between AET and micrometeorological factors. Correlation coefficient of AET and dew point temperature was 0.63 and temperature, air pressure, duration of sunshine, net radiation were above 0.5. Regression analysis was conducted between AET and micrometeorological factors. AET variation is divided by existence of precipitation. The regression functions of AET as air temperature were increased lineary at precipitation and exponential at non-precipitation. The regression functions of AET as dew point temperature were increased lineary at precipitation and exponential at non-precipitation. The regression function of AET as net radiation was increased exponential at precipitation and lineary at non-precipitation. The regression function of AET as air pressure was decreased lineary at precipitation and exponential at non-precipitation. The regression function of AET as precipitation was increased logarithmically.

  12. Assessing daily actual evapotranspiration through energy balance: an experiment to evaluate the selfpreservation hypothesis with acquisition time

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.; Rallo, G.

    2013-10-01

    An operational use of the actual evapotranspiration estimates requires the integration from instantaneous to daily values. This can commonly be achieved under the hypothesis of daytime self-preservation of the evaporative fraction. In this study, it has been evaluated the effect of this assumption on the assessment of daily evapotranspiration from proximity sensing images acquired at hourly intervals over a homogeneous olive groove. Results have been validated by comparison with observations made by a micrometeorological (EC-flux tower) and an eco-physiological (sap flux) sensor. SEBAL model has been applied to thermal and multispectral images acquired during a clear day on August 2009 trough a FLIR A320G thermal camera and a Tetracam MCA II multispectral camera, installed on a tethered helium balloon. Thermal and multispectral images were characterized by very high spatial resolution. This experiment aims to analyze two effects: 1) the consistency of the self-preservation hypothesis for daily estimates of the actual evapotranspiration from hourly assessments at different times of the day; 2) the effects of the spatial resolution on the performances of the energy balance model. To evaluate the effects of the spatial resolution, semi-hourly observations made by a flux tower and sap-flow measures were compared to the evapotranspiration estimates performed using downscaled images at resolutions close to canopy sizes (2, 5 and 10 m). Results show that the best estimates are obtained with a spatial resolution comparable to the average size of the canopy with images taken approximately at 10 UTC.

  13. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales

    USGS Publications Warehouse

    Stephenson, N.L.

    1998-01-01

    Correlative approaches to understanding the climatic controls of vegetation distribution have exhibited at least two important weaknesses: they have been conceptually divorced across spatial scales, and their climatic parameters have not necessarily represented aspects of climate of broad physiological importance to plants. Using examples from the literature and from the Sierra Nevada of California, I argue that two water balance parameters-actual evapotranspiration (AET) and deficit (D)-are biologically meaningful, are well correlated with the distribution of vegetation types, and exhibit these qualities over several orders of magnitude of spatial scale (continental to local). I reach four additional conclusions. (1) Some pairs of climatic parameters presently in use are functionally similar to AET and D; however, AET and D may be easier to interpret biologically. (2) Several well-known climatic parameters are biologically less meaningful or less important than AET and D, and consequently are poorer correlates of the distribution of vegetation types. Of particular interest, AET is a much better correlate of the distributions of coniferous and deciduous forests than minimum temperature. (3) The effects of evaporative demand and water availability on a site's water balance are intrinsically different. For example, the 'dry' experienced by plants on sunward slopes (high evaporative demand) is not comparable to the 'dry' experienced by plants on soils with low water-holding capacities (low water availability), and these differences are reflected in vegetation patterns. (4) Many traditional topographic moisture scalars-those that additively combine measures related to evaporative demand and water availability are not necessarily meaningful for describing site conditions as sensed by plants; the same holds for measured soil moisture. However, using AET and D in place of moisture scalars and measured soil moisture can solve these problems.

  14. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Wang, D.; Tirado-Corbalá, R.; Zhang, H.; Ayars, J. E.

    2015-01-01

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ETEC) using eddy covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET0) and tall (ETr) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley-Taylor ET (ETPT) and ETEC. Reference ET from the ASCE approaches exceeded ETEC during the mid-period (when vegetation coefficients suggest ETEC should exceed reference ET). At the windier tower site, cumulative ETr exceeded ETEC by 854 mm over the course of the mid-period (267 days). At the less windy site, mid-period ETr still exceeded ETEC, but the difference was smaller (443 mm). At both sites, ETPT approximated mid-period ETEC more closely than the ASCE equations ((ETPT-ETEC) < 170 mm). Analysis of applied water and precipitation, soil moisture, leaf stomatal resistance, and canopy cover suggest that the lower observed ETEC was not the result of water stress or reduced vegetation cover. Use of a custom-calibrated bulk canopy resistance improved the reference ET estimate and reduced seasonal ET discrepancy relative to ETPT and ETEC in the less windy field and had mixed performance in the windier field. These divergences suggest that modifications to reference ET equations may be warranted in some tropical regions.

  15. Spatio-temporal Characteristics of Actual Evapotranspiration Trends in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.; Funk, C. C.; Michaelsen, J.

    2010-12-01

    Actual evapotranspiration (AET) is an important moisture flux linking the Earth’s surface to the atmospheric hydrologic cycle. Global warming is expected to intensify this cycle, leading to moisture deficits over the sub-tropics, which will influence climate at higher latitudes. The spatio-temporal characterization of tropical AET is critical to understanding regional and global climate. To date, many studies on the temporal characteristics of AET across sub-Saharan Africa have employed vegetation-based indices derived from satellite imagery. Although these studies implicitly reflect trends in AET, they quantify the magnitude of change. In this study, we used the latest developments in remote sensing and land-surface modeling to characterize the magnitude and timing of AET in sub-Saharan Africa. We considered several models were evaluated from 1981-2000 using monthly discharge and precipitation from ten sub-basins representative of hydrology in sub-Saharan Africa. Discharge data was provided by the Global Runoff Data Centre, while precipitation data was comprised of ECMWF, NCAR, NOAA/GDAS, and CMAP reanalysis fields synthesized in the Global Land Data Assimilation System (GLDAS). The AET models included the Community Land Model, Variable Infiltration Capacity (VIC) model, Noah, and two hybrids that we developed driven by a dynamic vegetation component defined in Fisher et al. 2008. The dynamic canopy components in our hybrid models were driven by the LTDR AVHRR daily corrected reflectance data over the evaluation period. The evaluation revealed that VIC was superior to the other models in capturing the magnitude and variability of runoff in the sub-basins. A trend analysis was then performed on VIC AET from 1979-2009 using standard parametric and non-parametric techniques. Linear and median trend analysis was performed on seasonal and annual AET totals to measure the magnitude of change. The analysis revealed several alarming patterns, including large and

  16. Evaluation of a Modified SEBAL Algorithm to Estimate Actual Evapotranspiration in Cotton Ecosystems of Central Asia using Microwave and Optical Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher

    2015-04-01

    Being recognized as an essential component of both the water and the energy cycle, actual evapotranspiration (ETa) plays in important role in order to describe the complex interactions within the climate system of the Earth. Here, remote sensing is a powerful tool to estimate regional ETa to support the regional water management. For instance, the water withdrawal of the agricultural sector in OECD countries is on average about 44 %, but in the states of Central Asia it achieves more than 90 %. This fact is identified as one of the main reasons for the increasing water scarcity in this region. An accuracy assessment of the methods used for determining ETa is necessary concerning an appropriate use of the model results to support agriculture and irrigation management. Within Central Asia the Khorezm region in Uzbekistan is a case study region for the problems of irrigated agriculture. For Khorezm the seasonal ETa based on MODIS data was calculated for the years 2009 - 2011 using a partly modified surface energy balance algorithm for land (SEBAL). SEBAL was implemented based on MODIS time series to calculate the energy balance components like net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G). Whilst SEBAL is using an empirical equation for the estimation of G, a more physically based method was introduced in this study. This method uses microwave soil moisture products (ASAR and ASCAT-SSM) as an additional model input. The input parameters and the model results of all energy balance components (Rn, H, LE, and G) were intensively validated by field measurements with an eddy covariance system and soil sensors. The model shows very good performance for Rn with average model efficiency (NSE) of 0.68 and small relative errors (rRMSE) of about 10%. For turbulent heat fluxes good results can be achieved with NSE of 0.31 for H and 0.55 for LE, the rRMSE are about 21% (H) and 18% (LE). Soil heat flux estimation could be improved using the

  17. Actual evapotranspiration estimation by means of airborne and satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Ciraolo, Giuseppe; D'Urso, Guido; Minacapilli, Mario

    2006-09-01

    During the last the two decades, the scientific community developed detailed mathematical models for simulating land surface energy fluxes and crop evapotranspiration rates by means of a energy balance approach. These models can be applied in large areas and with a spatial distributed approach using surface brightness temperature and some ancillary data retrieved from satellite/airborne remote sensed imagery. In this paper a district scale application in combination with multispectral (LandaSat 7 TM data) and hyperspectral airborne MIVIS data has been carried out to test the potentialities of two different energy balance models to estimate evapotranspiration fluxes from a set of typical Mediterranean crops (wine, olive, citrus). The impact of different spatial and radiometric resolutions of MIVIS (3m x 3m) and LandSat (60m x 60m) on models-derived fluxes has been investigated to understand the roles and the main conceptual differences between the two models which respectively use a "single-layer" (SEBAL) and a "two-layer" (TS) schematisation.

  18. Potential of remote sensing derived soil moisture for the estimation of actual evapotranspiration in cotton ecosystems of Middle Asia

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher; Dech, Stefan

    2013-04-01

    Actual evapotranspiration (ETact) is an essential component of the water balance and its determination for larger areas is difficult on regional scale. Here, remote sensing provides a powerful tool to estimate regional actual evapotranspiration to support regional water management. Particularly, in irrigation agriculture of Middle Asia decision makers have to handle limited water availability and to improve the efficiency of their regional water management systems. The growing interest in quantifying regional actual ET for water resource and irrigation management led to the development of numerous methods to estimate ET from remote sensing data. The study is primarily concerned with the irrigation farming of cotton ecosystems in Middle Asia, in particular with the situation within Khorezm Oblast in Uzbekistan. Regional problems of Khorezm Oblast are e.g. high groundwater levels, soil salinity, and non-sustainable use of land and water. The water for irrigation is taken from the Amu Darya River and then canalled to the agricultural fields. The available water in Khorezm depends on the water demand in the upstream regions. Because of this variation and the historical annual shortage of available irrigation water a sustainable use of water is highly important for the regional water management in Khorezm. Cotton is the major crop in Khorezm region. About 46% of the agricultural area was covered with cotton in 2010 and 2011, among the other main crops winter wheat (30%) and rice (5%). The objective of this study was to investigate the potential of satellite derived surface soil moisture for the optimization of the estimated ETact. Actual evapotranspiration in this study is indirectly derived by solving the surface energy balance equation using the surface energy balance algorithm for land (SEBAL). Due to its high temporal resolution MODIS (1km) data is used to provide the input information to solve the equation. The results were compared with measurements of an eddy

  19. Actual daily evapotranspiration estimated from MERIS and AATSR data over the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Liu, R.; Wen, J.; Wang, X.; Wang, L.; Tian, H.; Zhang, T. T.; Shi, X. K.; Zhang, J. H.; Lv, Sh. N.

    2010-01-01

    The Chinese Loess Plateau is located in the north of China and has a significant impact on the climate and ecosystem evolvement over the East Asian continent. Estimates of evapotranspiration (ET) at a regional scale are in crucial need for climate studies, weather forecasts, hydrological surveys, ecological monitoring and water resource management. In this research, the ET of the Chinese Loess Plateau was estimated by using an energy balance approach and data collected during the LOess Plateau land-atmosphere interaction pilot EXperiments 2005 (LOPEX05). With the combined data of the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR) and some other variables such as air temperature, crop height and wind speed, the instantaneous net radiation, sensible heat flux and soil heat flux were calculated; the instantaneous latent heat flux was derived as the residual term of energy balance, and then converted to daily ET value by sunshine duration. The calculated daily ET from the model showed a good match with the measurements of the eddy covariance systems deployed in LOPEX05. The minimum relative error of this approach is 9.0%, the cause of the bias was also explored and discussed.

  20. Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Katerji, Nader; Rana, Gianfranco; Ferrara, Rossana Monica

    2016-05-01

    The study compares two formulas for calculating the daily evapotranspiration ET0 for a reference crop. The first formula was proposed by Allen et al. (AL), while the second one was proposed by Katerji and Perrier with the addition of the carbon dioxide (CO2) effect on evapotranspiration (KP). The study analyses the impact of the calculation by the two formulas on the irrigation requirement (IR). Both formulas are based on the Penman-Monteith equation but adopt different approaches for parameterising the canopy resistance r c . In the AL formula, r c is assumed constant and not sensitive to climate change, whereas in the KP formula, r c is first parameterised as a function of climatic variables, then ET0 is corrected for the air CO2 concentration. The two formulas were compared in two periods. The first period involves data from two sites in the Mediterranean region within a measured climate change period (1981-2006) when all the input climatic variables were measured. The second period (2070-2100) involves data from a future climate change period at one site when the input climatic variables were forecasted for two future climate scenarios (A2 and B2). The annual cumulated values of ET0 calculated by the AL formula are systematically lower than those determined by the KP formula. The differences between the ET0 estimation with the AL and KP formulas have a strong impact on the determination of the IR for the reference crop. In fact, for the two periods, the annual values of IR when ET0 is calculated by the AL formula are systematically lower than those calculated by the KP formula. For the actual measured climate change period, this reduction varied from 26 to 28 %, while for the future climate change period, it varied based on the scenario from 16 % (A2) to 20 % (B2).

  1. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G. M.; Cheema, M. J. M.; Immerzeel, W. W.; Miltenburg, I. J.; Pelgrum, H.

    2012-11-01

    The surface energy fluxes and related evapotranspiration processes across the Indus Basin were estimated for the hydrological year 2007 using satellite measurements. The new ETLook remote sensing model (version 1) infers information on actual Evaporation (E) and actual Transpiration (T) from combined optical and passive microwave sensors, which can observe the land-surface even under persistent overcast conditions. A two-layer Penman-Monteith equation was applied for quantifying soil and canopy evaporation. The novelty of the paper is the computation of E and T across a vast area (116.2 million ha) by using public domain microwave data that can be applied under all weather conditions, and for which no advanced input data are required. The average net radiation for the basin was estimated as being 112 Wm-2. The basin average sensible, latent and soil heat fluxes were estimated to be 80, 32, and 0 Wm-2, respectively. The average evapotranspiration (ET) and evaporative fraction were 1.2 mm d-1 and 0.28, respectively. The basin wide ET was 496 ± 16.8 km3 yr-1. Monte Carlo analysis have indicated 3.4% error at 95% confidence interval for a dominant land use class. Results compared well with previously conducted soil moisture, lysimeter and Bowen ratio measurements at field scale (R2 = 0.70; RMSE = 0.45 mm d-1; RE = -11.5% for annual ET). ET results were also compared against earlier remote sensing and modeling studies for various regions and provinces in Pakistan (R2 = 0.76; RMSE = 0.29 mmd-1; RE = 6.5% for annual ET). The water balance for all irrigated areas together as one total system in Pakistan and India (26.02 million ha) show a total ET value that is congruent with the ET value from the ETLook surface energy balance computations. An unpublished validation of the same ETLook model for 23 jurisdictional areas covering the entire Australian continent showed satisfactory results given the quality of the watershed data and the diverging physiographic and climatic

  2. Integration of Remote Sensing derived Actual Evapotranspiration with Meteorological Data for Real Time Demand Forecasting in Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Ullah, M. K.; Hafeez, M. M.; Chemin, Y.; Faux, R.; Sixsmith, J.

    2010-12-01

    Irrigated agriculture is major consumer of fresh water, but a large part of the water devour for irrigation is wasted due to poor management of irrigation systems. Improving water management in irrigated areas require the analysis of real time water demand in order to determine the possibilities in which it may be modified and rationalised. Real time water demand information in irrigated areas is a key for planning about sustainable use of irrigation water. These activities are needed not only to improve water productivity, but also to increase the sustainability of irrigated agriculture by saving irrigation water. Demand forecasting entail the complete understanding of spatial and expected temporal variability of metrological parameters and evapotranspiration (ET). ET is the overriding aspect for irrigation demand forecasting at farm to catchment scale. Many models have been used to measure the ET rate, either empirical or functional. The major disadvantage of this approach is that most methods generate only point values, resulting in estimates that are not representative of large areas. These methods are based on crop factors under ideal conditions and cannot therefore represent actual crop ET. Satellite remote sensing is a powerful mean to estimate ET over various spatial and temporal scales. For improved irrigation system management and operation, a holistic approach of integrating remote sensing derived ET from SAM-ET (spatial algorithm for mapping ET) algorithm, for Australian agro-ecosystem, with forecasted meteorological data and field application loss functions for major crops were used to forecast actual water demand in Coleambally Irrigation Area (CIA), New South Wales, Australia. It covers approximately 79,000 ha of intensive irrigation and comprise of number of secondary and tertiary canals. In order to capture the spatial variability, CIA has been divided into 22 nodes based on direction of flow and connectivity. All hydrological data of inflow (i

  3. Validation of an improved energy balance model to estimate actual evapotranspiration in irrigated cotton ecosystems of Central Asia

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher; Falk, Ulrike; Bauer-Marschallinger, Bernhard

    2014-05-01

    The understanding of the hydrological and the energy cycles are essential in order to describe the complex interactions within the climate system of the earth. Being recognized as an essential component of both the water and the energy cycle, reliable estimation of actual evapotranspiration and its spatial distribution is one outstanding challenge in this context. For instance, in irrigation systems of arid regions, artificial locations of evapotranspiration have been created. An in-depth process understanding is of paramount importance, as irrigated agriculture consumes about 70 % of the available freshwater resources worldwide, with a significant but unsatisfyingly quantified impact on the water cycle, especially on regional scale. Moreover, an exact quantification of ET inside these artificial ecosystems enables assessments of crop water consumptions and hence about water use efficiency (WUE). The withdrawal of water for agricultural use in the countries of Central Asia is more than 90%. Khorezm region in Uzbekistan is a case study region for the problems of irrigated agriculture in CA. For Khorezm the seasonal actual ET was calculated for the years 2003 - 2010 using the partly modified surface energy balance algorithm for land (SEBAL). SEBAL was implemented based on MODIS time series to calculate the energy balance components like net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G). Whilst SEBAL is using an empirical equation for estimating G, a more physically based method was introduced in this study. This method uses microwave soil moisture products (ASAR-SSM and ASCAT-SSM) as additional input information. The modelled energy balance components were intensively validated by field measurements with an eddy covariance system and soil sensors. For turbulent heat fluxes the RMSE is about 40 W/m² for H and 80 W/m² for LE with a coefficient of determination (r²) of 0.64 for H and 0.52 for LE. Soil heat flux estimation could be

  4. Understanding the relationship between actual and potential evapotranspirations from long- term water balance analysis and flux observation

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, H.; Sun, F.

    2007-12-01

    potential evaporations are plotted against the time (year) during the same period. This means that complementary idea cannot provide universally correct predictions on the trend of actual evaporation only from the potential one. In this research, we examine the coupled water-energy balance based on Budyko hypothesis and proposed a conceptual model for predicting the inter-annual variability of annual water balance, and the change trends of water balances due to climate changes. The wet environment evaporation was defined as the boundary condition in the Bouchet hypothesis and introduced into complementary relationship (CR), which combined the actual evaporation with potential evaporation in an equation. However, the CR was derived in a closed system where no horizontal energy advection existed. The effect of the horizontal advection on the CR in a real open system was also analyzed in this study. Using the long-term water balance analysis in the 108 study catchments and flux observation at 7 sites in Asia monsoon region, the regional and seasonal variability of the complementary relationship was examined. Key Words: climate change, evapotranspiration, water balance, flux observation, Budyko hypothesis, Bouchet hypothesis

  5. A critical analysis of three remote sensing-based actual evapotranspiration assessment methods over sparse crops agricultural areas

    NASA Astrophysics Data System (ADS)

    Cammalleri, Carmelo; Ciraolo, Giuseppe; La Loggia, Goffredo; Minacapilli, Mario

    2010-10-01

    During last two decades the increasing availability of remotely sensed acquisitions in the thermal infrared part of the spectrum has encouraged hydrologist community to develop models and methodologies based on these kind of data. The aim of this paper is to compare three methods developed to assess the actual evapotranspiration spatial distribution by means of remote sensing data. The comparison was focused on the differences between the "single" (SEBAL) and "two" source (TSEB) surface energy balance approaches and the S-SEBI semi-empirical method. The first assumes a semiempirical internal calibration for the sensible heat flux assessment; the second uses a physically based approach in order to assess separately the soil and vegetation fluxes. Finally, the last one is based on the correlation between albedo and surface temperature for evaporative fraction estimations. The models were applied using 7 high resolution images, collected by an airborne platform between June and October 2008, approximately every 3 weeks. The acquired data include multi-spectral images (red, green and near infrared) and thermal infrared images for surface temperature estimation. The study area, located in the south-west cost of Sicily, Italy), is characterised by the presence of typical Mediterranean cultivations: olive, vineyard and citrus. Due to irrigation supplies and rainfall events, the water availability for the crops varies in time and this allowed to perform the comparison in a wide range of the modelled variables. Additionally, the availability of high spatial resolution images allowed the testing of the models performances at field scale despite the high vegetation fragmentation of the study area. The comparison of models performance highlights a good agreements of model estimations, analyzed by means of MAD (Mean Absolute Differences) and MAPD (Mean Absolute Percent Differences) indices, especially in terms of study area averaged fluxes. The analysis in correspondence of

  6. Comparative analysis and validation of remotely sensed estimation of actual evapotranspiration in cotton ecosystems of Middle Asia

    NASA Astrophysics Data System (ADS)

    Knoefel, P.; Falk, U.; Conrad, C.; Dech, S.

    2012-04-01

    Detailed knowledge of land surface fluxes, especially latent and sensible components, is important for monitoring the climate and land surface, and for agriculture applications such as irrigation scheduling and water management. Accurate estimation of evapotranspiration (ET) plays an important role in quantification of the water balance at the watershed, basin, and regional scale for better planning and managing water resources. The growing interest in quantifying regional actual ET for water resource and irrigation management led to the development of numerous methods to estimate ET from remote sensing data. The objective of this study was to compare the performance of the established surface energy balance algorithm for land (SEBAL) approach for estimating the energy balance using input data with different temporal and spatial resolution (Landsat/MODIS). Input data to the model are basically surface reflectance, land use classification and meteorological data of the years 2009 and 2010. The study is primarily concerned with the irrigation farming of cotton ecosystems in Middle Asia, in particular with the situation within Khorezm Oblast in Uzbekistan. Regional problems of Khorezm Oblast are e.g. high groundwater levels, soil salinity, and non sustainable use of land and water. Cotton is the major crop in Khorezm region. About 46% of the agricultural area was covered with cotton in 2009 and 2010, among the other main crops winter wheat (30%) and rice (5%). Due to the low level of precipitation (<100 mm p.a.) irrigation is the only available water source for the crops. The water for irrigation is taken from the Amu Darya River and then canalled to the agricultural fields. The available water in Khorezm depends on the water demand in the upstream regions. Because of this variation and the historical annual shortage of available irrigation water a sustainable use of water is highly important for the regional water management in Khorezm. Input parameters and

  7. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration

    USGS Publications Warehouse

    Sumner, D.M.; Jacobs, J.M.

    2005-01-01

    Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

  8. Fully-automated estimation of actual to potential evapotranspiration in the Everglades using Landsat and air temperature data as inputs to the Vegetation Index-Temperature Trapezoid method

    NASA Astrophysics Data System (ADS)

    Yagci, A. L.; Jones, J. W.

    2014-12-01

    While the greater Everglades contains a vast wetland, evapotranspiration (ET) is a major source of water "loss" from the system. Like other ecosystems, the Everglades is vulnerable to drought. Everglades restoration science and resource management requires information on the spatial and temporal distribution of ET. We developed a fully-automated ET model using the Vegetation Index-Temperature Trapezoid concept. The model was tested and evaluated against in-situ ET observations collected at the Shark River Slough Mangrove Forest eddy-covariance tower in Everglades National Park (Sitename / FLUXNET ID: Florida Everglades Shark River Slough Mangrove Forest / US-Skr). It uses Landsat Surface Reflectance Climate Data from Landsat 5, and Landsat 5 thermal and air temperature data from the Daily Gridded Surface Dataset to output the ratio of actual evapotranspiration (AET) and potential evapotranspiration (PET). When multiplied with a PET estimate, this output can be used to estimate ET at high spatial resolution. Furthermore, it can be used to downscale coarse resolution ET and PET products. Two example outputs covering the agricultural lands north of the major Everglades wetlands extracted from two different dates are shown below along with a National Land Cover Database image from 2011. The irrigated and non-irrigated farms are easily distinguishable from the background (i.e., natural land covers). Open water retained the highest AET/PET ratio. Wetlands had a higher AET/PET ratio than farmlands. The main challenge in this study area is prolonged cloudiness during the growing season.

  9. Testing an Energy Balance Model for Estimating Actual Evapotranspiration Using Remotely Sensed Data. [Hannover, West Germany barley and wheat fields

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Camillo, P. J.

    1985-01-01

    An energy-balance model is used to estimate daily evapotranspiration for 3 days for a barley field and a wheat field near Hannover, Federal Republic of Germany. The model was calibrated using once-daily estimates of surface temperatures, which may be remotely sensed. The evaporation estimates were within the 95% error bounds of independent eddy correlation estimates for the daytime periods for all three days for both sites, but the energy-balance estimates are generally higher; it is unclear which estimate is biassed. Soil moisture in the top 2 cm of soil, which may be remotely sensed, may be used to improve these evaporation estimates under partial ground cover. Sensitivity studies indicate the amount of ground data required is not excessive.

  10. Partitioning evapotranspiration fluxes using atmometer

    NASA Astrophysics Data System (ADS)

    Orsag, Matej; Fischer, Milan; Trnka, Miroslav; Kucera, Jiri; Zalud, Zdenek

    2013-04-01

    This effort is aimed to derive a simple tool for separating soil evaporation and transpiration from evapotranspiration, measured by Bowen ration energy balance method (BREB) in short rotation coppice (SRC). The main idea is to utilize daily data of actual evapotranspiration (ETa) measured above bare soil (spring 2010 - first year following harvest), reference evapotranspiration (ETo) measured by atmometer ETgage and precipitation data, in order to create an algorithm for estimation evaporation from bare soil. This approach is based on the following assumption: evaporation of wetted bare soil same as the ETo from atmometer is assumed to be identical in days with rain. In first and further days with no rain (and e.g. high evaporative demand) the easily evaporable soil water depletes and ETa so as crop coefficient of bare soil (Kcb) decreases in a way similar to decreasing power function. The algorithm represents a parameterized function of daily cumulated ETo (ETc) measured by atmometer in days elapsed from last rain event (Kcb = a*ETc^b). After each rain event the accumulation of ETo starts again till next rain event (e. g. only days with no rain are cumulated). The function provides decreasing Kcb for each day without rain. The bare soil evaporation can be estimated when the atmometer-recorded value is multiplied by Kcb for particular day without rain. In days with rain Kcb is assumed to be back at 1. This method was successfully tested for estimating evaporation from bare soil under closed canopy of poplar-based SRC. When subtracting the estimated soil evaporation from total ETa flux, measured above the canopy using BREB method, it is possible to obtain transpiration flux of the canopy. There is also possibility to test this approach on the contrary - subtracting transpiration derived from sap-flow measurement from total ETa flux is possible to get soil evaporation as well. Acknowledgements: The present experiment is made within the frame of project Inter

  11. Determination of actual crop evapotranspiration (ETc) and dual crop coefficients (Kc) for cotton, wheat and maize in Fergana Valley: integration of the FAO-56 approach and BUDGET

    NASA Astrophysics Data System (ADS)

    Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina

    2014-05-01

    Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.

  12. A coupled remote sensing and the Surface Energy Balance based algorithms to estimate actual evapotranspiration over the western and southern regions of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mahmoud, Shereif H.; Alazba, A. A.

    2016-07-01

    In countries with absolute water scarcity such as the Kingdom of Saudi Arabia (KSA), large-scale actual evapotranspiration estimation is of great concern in water use practices. Herein, spatial and temporal distribution of actual evapotranspiration (AET) in the western and southern regions of KSA during 1992-2014 was estimated using the SEBAL model with field observations. Zonal statistics for each land use-cover type were also identified, in order to understand their effects on water consumption. In addition, daily and seasonal water consumption for major crops was computed. Results revealed a gradual increase in monthly AET values from January to April and subsequent decline from May to December. The maximum monthly AET values were observed for irrigated cropland in southwestern, central, and southeastern regions of Asir Province, central and southwestern regions of Al-Baha Province, central and the plains region of Jazan Province, southern portion of Makkah Province, and limited areas in the northern regions of Madinah Province. The annual AET ranged from 418.8 to 3442.3 mm yr-1. The normal distribution of mean annual AET values ranged from 717 to 1020 mm yr-1. Forty-two percent of the study area had an annual AET that ranged from 717 to 1020 mm yr-1. The second highest range of frequencies was concentrated around 1020-1322 mm yr-1, representing the majority of agricultural land. The consumptive water use of the different land cover types in study area indicated that irrigated cropland which occupied 14.6% of the study area had AET rates much higher than other land uses. Water bodies are the next highest, with forest and shrubland and sparse vegetation slightly lower, and very low AET rates from bare soil. Daily and seasonal water consumption of major cropping systems varied spatially depending on cropping practices and climatic conditions.

  13. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration under complex terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N. B.

    2010-07-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial scales. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at varying temporal and spatial scales under complex terrain. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can fully account for the dynamic impacts of complex terrain and changing land cover in concert with some varying kinetic parameters (i.e., roughness and zero-plane displacement) over time. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  14. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N.-B.

    2011-01-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement). Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  15. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  16. Estimation of Evapotranspiration of Almond orchards using Remote Sensing based SEBAL model in Central Valley, California

    NASA Astrophysics Data System (ADS)

    Roy, S.; Ustin, S.; Kefauver, S. C.

    2009-12-01

    Evapotranspiration is one of the main components of the hydrologic cycle and its impact to hydrology, agriculture,forestry and environmental studies is very crucial. SEBAL (Surface Energy Balance Algorithm for Land) is an image-processing model comprised of twenty-five computational sub-models that computes actual evapotranspiration (ETa) and other energy exchanges as a component of energy balance which is used to derive the surface radiation balance equation for the net surface radiation flux (Rn) on a pixel-by-pixel basis. For this study, SEBAL method is applied to Level 1B dataset of visible, near-infrared and thermal infrared radiation channels of MASTER instrument on-board NASA-DC 8 flight. This paper uses the SEBAL method to (1) investigate the spatial distribution property of land surface temperature (Ls), NDVI, and ETa over the San Joaquin valley. (2) Estimate actual evapotranspiration of almond class on pixel-by-pixel basis in the Central valley, California. (3) Comparison of actual Evapotranspiration obtained from SEBAL model with reference evapotranspiration (Eto) using Penman Monteiths method based on the procedures and available data from California Irrigation Management Information System (CIMIS) stations. The results of the regression between extracted land surface temperature, NDVI and, evapotranspiration show negative (-) correlation. On the other hand Ls possessed a slightly stronger negative correlation with the ETa than with NDVI for Almond class. The correlation coefficient of actual ETa estimates from remote sensing with Reference ETo from Penmann Monteith are 0.8571. ETa estimated for almond crop from SEBAL were found to be almost same with the CIMIS_Penman Monteith method with bias of 0.77 mm and mean percentage difference is 0.10%. These results indicate that combination of MASTER data with surface meteorological data could provide an efficient tool for the estimation of regional actual ET used for water resources and irrigation scheduling

  17. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Muys, B.; Feyen, J.; Veroustraete, F.; Minnaert, M.; Meiresonne, L.; de Schrijver, A.

    2005-05-01

    This paper focuses on the quantification of the green - vegetation related - water flux of a forest stand in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The approach tested for calculating the water consumption by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU) components - transpiration, soil and interception evaporation - between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000-August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L.), but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.). A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time-series. With an average annual rainfall of 819 mm, the results show that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively). Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  18. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Muys, B.; Feyen, J.; Veroustraete, F.; Minnaert, M.; Meiresonne, L.; de Schrijver, A.

    2005-09-01

    This paper focuses on the quantification of the green - vegetation related - water flux of forest stands in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The tested approach for calculating the water use by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU) components - transpiration, soil and interception evaporation - between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000-August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L.), but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.). A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time series. With an average annual rainfall of 819 mm, the results reveal that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively). Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  19. Mapping Seasonal Evapotranspiration and Root Zone Soil Moisture using a Hybrid Modeling Approach over Vineyards

    NASA Astrophysics Data System (ADS)

    Geli, H. M. E.

    2015-12-01

    Estimates of actual crop evapotranspiration (ETa) at field scale over the growing season are required for improving agricultural water management, particularly in water limited and drought prone regions. Remote sensing data from multiple platforms such as airborne and Landsat-based sensors can be used to provide these estimates. Combining these data with surface energy balance models can provide ETa estimates at sub- field scale as well as information on vegetation stress and soil moisture conditions. However, the temporal resolution of airborne and Landsat data does not allow for a continuous ETa monitoring over the course of the growing season. This study presents the application of a hybrid ETa modeling approach developed for monitoring daily ETa and root zone available water at high spatial resolutions. The hybrid ETa modeling approach couples a thermal-based energy balance model with a water balance-based scheme using data assimilation. The two source energy balance (TSEB) model is used to estimate instantaneous ETa which can be extrapolated to daily ETa using a water balance model modified to use the reflectance-based basal crop coefficient for interpolating ETa in between airborne and/or Landsat overpass dates. Moreover, since it is a water balance model, the soil moisture profile is also estimated. The hybrid ETa approach is applied over vineyard fields in central California. High resolution airborne and Landsat imagery were used to drive the hybrid model. These images were collected during periods that represented different vine phonological stages in 2013 growing season. Estimates of daily ETa and surface energy balance fluxes will be compared with ground-based eddy covariance tower measurements. Estimates of soil moisture at multiple depths will be compared with measurements.

  20. Assessing the impact of end-member selection on the accuracy of satellite-based spatial variability models for actual evapotranspiration estimation

    NASA Astrophysics Data System (ADS)

    Long, Di; Singh, Vijay P.

    2013-05-01

    This study examines the impact of end-member (i.e., hot and cold extremes) selection on the performance and mechanisms of error propagation in satellite-based spatial variability models for estimating actual evapotranspiration, using the triangle, surface energy balance algorithm for land (SEBAL), and mapping evapotranspiration with high resolution and internalized calibration (METRIC) models. These models were applied to the soil moisture-atmosphere coupling experiment site in central Iowa on two Landsat Thematic Mapper/Enhanced Thematic Mapper Plus acquisition dates in 2002. Evaporative fraction (EF, defined as the ratio of latent heat flux to availability energy) estimates from the three models at field and watershed scales were examined using varying end-members. Results show that the end-members fundamentally determine the magnitudes of EF retrievals at both field and watershed scales. The hot and cold extremes exercise a similar impact on the discrepancy between the EF estimates and the ground-based measurements, i.e., given a hot (cold) extreme, the EF estimates tend to increase with increasing temperature of cold (hot) extreme, and decrease with decreasing temperature of cold (hot) extreme. The coefficient of determination between the EF estimates and the ground-based measurements depends principally on the capability of remotely sensed surface temperature (Ts) to capture EF (i.e., depending on the correlation between Ts and EF measurements), being slightly influenced by the end-members. Varying the end-members does not substantially affect the standard deviation and skewness of the EF frequency distributions from the same model at the watershed scale. However, different models generate markedly different EF frequency distributions due to differing model physics, especially the limiting edges of EF defined in the remotely sensed vegetation fraction (fc) and Ts space. In general, the end-members cannot be properly determined because (1) they do not

  1. Estimation of total available water in the soil layer by integrating actual evapotranspiration data in a remote sensing-driven soil water balance

    NASA Astrophysics Data System (ADS)

    Campos, Isidro; González-Piqueras, Jose; Carrara, Arnaud; Villodre, Julio; Calera, Alfonso

    2016-03-01

    The total available water (τ) by plants that could be stored in its root soil layer is a key parameter when applying soil water balance models. Since the transpiration rate of a vegetation stand could be the best proxy about the soil water content into the root soil layer, we propose a methodology for estimating τ by using as basic inputs the evapotranspiration rate of the stand and time series of multispectral imagery. This methodology is based on the inverted formulation of the soil water balance model. The inversion of the model was addressed by using an iterative approach, which optimizes the τ parameter to minimize the difference between measured and modeled ET. This methodology was tested for a Mediterranean holm oak savanna (dehesa) for which eddy covariance measurements of actual ET were available. The optimization procedure was performed by using a continuous dataset (in 2004) of daily ET measurements and 16 sets of 8 daily ET measurements, resulting in τ values of 325 and 305 mm, respectively. The use of these τ values in the RSWB model for the validation period (2005-2008) allowed us to estimate dehesa ET with a RMSE = 0.48 mm/day. The model satisfactorily reproduces the water stress process. The sensitivity of τ estimates was evaluated regarding two of the more uncertain parameters in the RSWB model. These parameters are the average fraction of τ that can be depleted from the root zone without producing moisture stress (pτ) and the soil evaporation component. The results of this analysis indicated relatively little influence from the evaporation component and the need for adequate knowledge about pτ for estimating τ.

  2. Evaluation of the relation between evapotranspiration and normalized difference vegetation index for downscaling the simplified surface energy balance model

    USGS Publications Warehouse

    Haynes, Jonathan V.; Senay, Gabriel B.

    2012-01-01

    The Simplified Surface Energy Balance (SSEB) model uses satellite imagery to estimate actual evapotranspiration (ETa) at 1-kilometer resolution. SSEB ETa is useful for estimating irrigation water use; however, resolution limitations restrict its use to regional scale applications. The U.S. Geological Survey investigated the downscaling potential of SSEB ETa from 1 kilometer to 250 meters by correlating ETa with the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer instrument (MODIS). Correlations were studied in three arid to semiarid irrigated landscapes of the Western United States (Escalante Valley near Enterprise, Utah; Palo Verde Valley near Blythe, California; and part of the Columbia Plateau near Quincy, Washington) during several periods from 2002 to 2008. Irrigation season ETa-NDVI correlations were lower than expected, ranging from R2 of 0.20 to 0.61 because of an eastward 2-3 kilometer shift in ETa data. The shift is due to a similar shift identified in the land-surface temperature (LST) data from the MODIS Terra satellite, which is used in the SSEB model. Further study is needed to delineate the Terra LST shift, its effect on SSEB ETa, and the relation between ETa and NDVI.

  3. Vegetation index methods for estimating evapotranspiration by remote sensing

    USGS Publications Warehouse

    Glenn, Edward P.; Nagler, Pamela L.; Huete, Alfredo R.

    2010-01-01

    Evapotranspiration (ET) is the largest term after precipitation in terrestrial water budgets. Accurate estimates of ET are needed for numerous agricultural and natural resource management tasks and to project changes in hydrological cycles due to potential climate change. We explore recent methods that combine vegetation indices (VI) from satellites with ground measurements of actual ET (ETa) and meteorological data to project ETa over a wide range of biome types and scales of measurement, from local to global estimates. The majority of these use time-series imagery from the Moderate Resolution Imaging Spectrometer on the Terra satellite to project ET over seasons and years. The review explores the theoretical basis for the methods, the types of ancillary data needed, and their accuracy and limitations. Coefficients of determination between modeled ETa and measured ETa are in the range of 0.45–0.95, and root mean square errors are in the range of 10–30% of mean ETa values across biomes, similar to methods that use thermal infrared bands to estimate ETa and within the range of accuracy of the ground measurements by which they are calibrated or validated. The advent of frequent-return satellites such as Terra and planed replacement platforms, and the increasing number of moisture and carbon flux tower sites over the globe, have made these methods feasible. Examples of operational algorithms for ET in agricultural and natural ecosystems are presented. The goal of the review is to enable potential end-users from different disciplines to adapt these methods to new applications that require spatially-distributed ET estimates.

  4. Comment on 'Shang S. 2012. Calculating actual crop evapotranspiration under soil water stress conditions with appropriate numerical methods and time step. Hydrological Processes 26: 3338-3343. DOI: 10.1002/hyp.8405'

    NASA Technical Reports Server (NTRS)

    Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James

    2014-01-01

    A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.

  5. Eta Aquarids

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A meteor shower that takes place in late April and May. The radiant lies in the constellation Aquarius. The Eta Aquarids occur when the Earth intersects the descending node of the meteor stream from Halley's Comet; the Orionids in October are produced by the Earth's passage through the ascending node. Because Halley's orbit is retrograde, Eta Aquarid meteoroids impact the Earth at a high relative...

  6. Drought trends indicated by evapotranspiration deficit over the contiguous United States during 1896-2013

    NASA Astrophysics Data System (ADS)

    Kim, Daeha; Rhee, Jinyoung

    2016-04-01

    Evapotranspiration (ET) has received a great attention in drought assessment as it is closely related to atmospheric water demand. The hypothetical potential ET (ETp) has been predominantly used, nonetheless it does not actually exist in the hydrologic cycle. In this work, we used a complementary method for ET estimation to obtain wet-environment ET (ETw) and actual ET (ETa) from routinely observed climatic data. By combining ET deficits (ETw minus ETa) and the structure of the Standardized Precipitation-Evapotranspiration Index (SPEI), we proposed a novel ET-based drought index, the Standardized Evapotranspiration Deficit Index (SEDI). We carried out historical drought identification for the contiguous United States using temperature datasets of the PRISM Climate Group. SEDI presented spatial distributions of drought areas similar to the Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI) for major drought events. It indicates that SEDI can be used for validating other drought indices. Using the non-parametric Mann-Kendall test, we found a significant decreasing trend of SEDI (increasing drought risk) similar to PDSI and SPI in the western United States. This study suggests a potential of ET-based indices for drought quantification even with no involvement of precipitation data.

  7. Actual evapotranspiration estimation in a Mediterranean mountain region by means of Landsat-5 TM and TERRA/AQUA MODIS imagery and Sap Flow measurements in Pinus sylvestris forest stands.

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Pons, X.; Llorens, P.

    2009-04-01

    Evapotranspiration monitoring has important implications on global and regional climate modelling, as well as in the knowledge of the hydrological cycle and in the assessment of environmental stress that affects forest and agricultural ecosystems. An increase of evapotranspiration while precipitation remains constant, or is reduced, could decrease water availability for natural and agricultural systems and human needs. Consequently, water balance methods, as the evapotranspiration modelling, have been widely used to estimate crop and forest water needs, as well as the global change effects. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute evapotranspiration at regional scales in a feasible way. Currently, the 38% of Catalonia (NE of the Iberian Peninsula) is covered by forests, and one of the most important forest species is Scots Pine (Pinus sylvestris) which represents the 18.4% of the area occupied by forests. The aim of this work is to model actual evapotranspiration in Pinus sylvestris forest stands, in a Mediterranean mountain region, using remote sensing data, and compare it with stand-scale sap flow measurements measured in the Vallcebre research area (42° 12' N, 1° 49' E), in the Eastern Pyrenees. To perform this study a set of 30 cloud-free TERRA-MODIS images and 10 Landsat-5 TM images of path 198 and rows 31 and 32 from June 2003 to January 2005 have been selected to perform evapotranspiration modelling in Pinus sylvestris forest stands. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected two different types of products which contain the remote sensing data we have used to model daily evapotranspiration, daily LST product and daily calibrated reflectances product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital

  8. Automated calculation of the evapotranspiration and crop coefficients for a large number of peatland sites using diurnal groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Maurer, Eike; Bechtold, Michel; Dettmann, Ullrich; Tiemeyer, Bärbel

    2014-05-01

    values were determined from precipitation events and the related water level increase. Parameter values in this routine were systematically varied to obtain the lowest standard error of Sy. Errors were obtained by bootstrapping. The resulting Sy-values correspond well to peatland type and soil properties. After rule-based filtering of the time series, in a third step, the actual evapotranspiration ETa is calculated by the original White-method and a modification by Hays (2003). Daily values of ETa and ET0 are used to derive crop coefficients, which are then aggregated to monthly and annual Kc-values. Applying the method to a large number of sites resulted in plausible crop coefficients which compare well to previously published values of peatland evapotranspiration, as far as information on similar vegetation is available.

  9. Actual evapotranspiration estimation in a Mediterranean mountain region by means of Landsat-5 TM and TERRA/AQUA MODIS imagery and Sap Flow measurements in Pinus sylvestris forest stands.

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Pons, X.; Llorens, P.

    2009-04-01

    Evapotranspiration monitoring has important implications on global and regional climate modelling, as well as in the knowledge of the hydrological cycle and in the assessment of environmental stress that affects forest and agricultural ecosystems. An increase of evapotranspiration while precipitation remains constant, or is reduced, could decrease water availability for natural and agricultural systems and human needs. Consequently, water balance methods, as the evapotranspiration modelling, have been widely used to estimate crop and forest water needs, as well as the global change effects. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute evapotranspiration at regional scales in a feasible way. Currently, the 38% of Catalonia (NE of the Iberian Peninsula) is covered by forests, and one of the most important forest species is Scots Pine (Pinus sylvestris) which represents the 18.4% of the area occupied by forests. The aim of this work is to model actual evapotranspiration in Pinus sylvestris forest stands, in a Mediterranean mountain region, using remote sensing data, and compare it with stand-scale sap flow measurements measured in the Vallcebre research area (42° 12' N, 1° 49' E), in the Eastern Pyrenees. To perform this study a set of 30 cloud-free TERRA-MODIS images and 10 Landsat-5 TM images of path 198 and rows 31 and 32 from June 2003 to January 2005 have been selected to perform evapotranspiration modelling in Pinus sylvestris forest stands. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected two different types of products which contain the remote sensing data we have used to model daily evapotranspiration, daily LST product and daily calibrated reflectances product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital

  10. eta and eta' Mesons from Lattice QCD

    SciTech Connect

    Christ, N.H.; Izubuchi, T.; Dawson, C.; Jung, C.; Liu, Q.; Mawhinney, R.D.; Sachrajda, C.T.; Soni, A.; Zhou, R.

    2010-12-08

    The large mass of the ninth pseudoscalar meson, the {eta}{prime}, is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2+1-flavor, lattice QCD calculation of the {eta} and {eta}{prime} masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of {theta} = -14.1(2.8){sup o}. Extrapolation to the physical light quark mass gives, with statistical errors only, m{sub {eta}} = 573(6) MeV and m{sub {eta}} = 947(142) MeV, consistent with the experimental values of 548 and 958 MeV.

  11. Search for invisible decays of eta and eta' in J/psi --> phi eta and phi eta'.

    PubMed

    Ablikim, M; Bai, J Z; Ban, Y; Bian, J G; Cai, X; Chen, H F; Chen, H S; Chen, H X; Chen, J C; Chen, Jin; Chen, Y B; Chi, S P; Chu, Y P; Cui, X Z; Dai, Y S; Diao, L Y; Deng, Z Y; Dong, Q F; Du, S X; Fang, J; Fang, S S; Fu, C D; Gao, C S; Gao, Y N; Gu, S D; Gu, Y T; Guo, Y N; Guo, Y Q; Guo, Z J; Harris, F A; He, K L; He, M; Heng, Y K; Hu, H M; Hu, T; Huang, G S; Huang, X T; Ji, X B; Jiang, X S; Jiang, X Y; Jiao, J B; Jin, D P; Jin, S; Jin, Yi; Lai, Y F; Li, G; Li, H B; Li, H H; Li, J; Li, R Y; Li, S M; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y L; Liang, Y F; Liao, H B; Liu, B J; Liu, C X; Liu, F; Liu, Fang; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, Q; Liu, R G; Liu, Z A; Lou, Y C; Lu, F; Lu, G R; Lu, J G; Luo, C L; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, X B; Mao, Z P; Mo, X H; Nie, J; Olsen, S L; Peng, H P; Ping, R G; Qi, N D; Qin, H; Qiu, J F; Ren, Z Y; Rong, G; Shan, L Y; Shang, L; Shen, C P; Shen, D L; Shen, X Y; Sheng, H Y; Sun, H S; Sun, J F; Sun, S S; Sun, Y Z; Sun, Z J; Tan, Z Q; Tang, X; Tong, G L; Varner, G S; Wang, D Y; Wang, L; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W F; Wang, Y F; Wang, Z; Wang, Z Y; Wang, Zhe; Wang, Zheng; Wei, C L; Wei, D H; Wu, N; Xia, X M; Xie, X X; Xu, G F; Xu, X P; Xu, Y; Yan, M L; Yang, H X; Yang, Y X; Ye, M H; Ye, Y X; Yi, Z Y; Yu, G W; Yuan, C Z; Yuan, J M; Yuan, Y; Zang, S L; Zeng, Y; Zeng, Yu; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H Q; Zhang, H Y; Zhang, J W; Zhang, J Y; Zhang, S H; Zhang, X M; Zhang, X Y; Zhang, Yiyun; Zhang, Z P; Zhao, D X; Zhao, J W; Zhao, M G; Zhao, P P; Zhao, W R; Zhao, Z G; Zheng, H Q; Zheng, J P; Zheng, Z P; Zhou, L; Zhou, N F; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhu, Yingchun; Zhu, Z A; Zhuang, B A; Zhuang, X A; Zou, B S

    2006-11-17

    Using a data sample of 58 x 10(6) J/psi decays collected with the Beijing Spectrometer II detector at the Beijing Electron Positron Collider, searches for invisible decays of eta and eta' in J/psi to phi eta and phi eta' are performed. The phi signals, which are reconstructed in K+K- final states, are used to tag the eta and eta' decays. No signals are found for the invisible decays of either eta or eta', and upper limits at the 90% confidence level are determined to be 1.65 x 10(-3) for the ratio B(eta-->invisible)/B(eta --> gamma gamma) and 6.69 x 10(-2) for B(eta' --> invisible)/B(eta' --> gammagamma). These are the first searches for eta and eta' decays into invisible final states. PMID:17155676

  12. Eta-nucleon interaction and nuclear production of eta mesons

    SciTech Connect

    Liu, L.C.

    1993-08-01

    Eta-nucleon interaction and eta-nucleus dynamics are discussed. The possibility of using {eta} to probe unnatural-parity nuclear states and to study spin-isospin correlations between two nucleons are demonstrated.

  13. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    USGS Publications Warehouse

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  14. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    NASA Astrophysics Data System (ADS)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  15. Quantifying the impact of changes in crop area on evapotranspiration regimes in the US corn and soybean belts through phenological modeling and data assimilation

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2010-12-01

    In recent years, fluctuations in food, feed, and fuel prices have led to shifts in the area of cropland dedicated to maize and soybean cultivation in the Northern Great Plains. We report here on a modeling experiment that compares three different simulated scenarios for actual evapotranspiration (ETa) from maize-soybean dominated areas in North Dakota, South Dakota, Nebraska, Iowa, and Minnesota during the 2000-2009 growing seasons. Scenario 1 relies on MODIS-derived crop maps to provide a baseline of subpixel crop proportions; Scenario 2 increases the proportion of maize by to 100 percent; Scenario 3 substitutes grassland for half the maize. We use a simple soil water balance model of ETa linked to an empirically derived crop specific phenology model also capable of producing seasonal trajectories of canopy attributes. This coupled model has been successfully deployed using flux tower records from multiple locations in the central US. Forcing the coupled model using data from NLDAS, we derive seasonal trajectories of daily NDVI and ETa as well as phenological transition points for maize, soybean, and grassland for each scenario. Seasonal differences in ETa among the three scenarios underscore the importance of how land use modulates land surface phenologies and, in turn, water and energy balances.

  16. The. eta. -baryon octet

    SciTech Connect

    Tuan, S.F. )

    1992-11-01

    The recent tantalizing experimental support for an {eta}-baryon {ital J}{sup {ital P}}=1/2{sup {minus}} unmixed octet challenges conventional model wisdom. The establishment of the {Xi}(1868) member of the {eta} octet will give strong affirmation that the negative-parity baryon mass spectrum could be mixing-free.

  17. Search for B Meson Decays to eta' eta' K

    SciTech Connect

    Aubert, B.

    2006-05-05

    The authors describe searches for decays of B mesons to the charmless final states {eta}'{eta}'K. The data consist of 228 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation, collected with the BABAR detector at the Stanford Linear Accelerator Center. The 90% confidence level upper limits for the branching fractions are {Beta}(B{sup 0} {yields} {eta}'{eta}'K{sup 0}) < 31 x 10{sup -6} and {Beta}(B{sup +} {yields} {eta}'{eta}'K{sup +}) < 25 x 10{sup -6}.

  18. EVAPOTRANSPIRATION RATES AND CROP COEFFICIENTS FOR LOWBUSH BLUEBERRY (Vaccinium angustifolium)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lowbush blueberry (Vaccinium angustifolium) yield is strongly influenced by water availability; however, growers need more specific irrigation recommendations in order to optimize water use efficiency. Weighing lysimeters were used to determine actual evapotranspiration (ET) rates of lowbush bluebe...

  19. MOLECULES IN {eta} CARINAE

    SciTech Connect

    Loinard, Laurent; Menten, Karl M.; Guesten, Rolf; Zapata, Luis A.; Rodriguez, Luis F.

    2012-04-10

    We report the detection toward {eta} Carinae of six new molecules, CO, CN, HCO{sup +}, HCN, HNC, and N{sub 2}H{sup +}, and of two of their less abundant isotopic counterparts, {sup 13}CO and H{sup 13}CN. The line profiles are moderately broad ({approx}100 km s{sup -1}), indicating that the emission originates in the dense, possibly clumpy, central arcsecond of the Homunculus Nebula. Contrary to previous claims, CO and HCO{sup +} do not appear to be underabundant in {eta} Carinae. On the other hand, molecules containing nitrogen or the {sup 13}C isotope of carbon are overabundant by about one order of magnitude. This demonstrates that, together with the dust responsible for the dimming of {eta} Carinae following the Great Eruption, the molecules detected here must have formed in situ out of CNO-processed stellar material.

  20. Search for B decays into {eta}{sup '}p, {eta}{sup '}K*, {eta}{sup '}{phi}, {eta}{sup '}{omega} and {eta}{sup '}{eta}{sup (')}

    SciTech Connect

    Schuemann, J.; Wang, C. H.; Abe, K.; Gershon, T.; Hazumi, M.; Itoh, R.; Iwasaki, Y.; Katayama, N.; Kichimi, H.; Krokovny, P.; Limosani, A.; Nakao, M.; Nakazawa, H.; Nishida, S.; Ozaki, H.; Sakai, Y.; Suzuki, S. Y.; Takasaki, F.; Tamai, K.; Tanaka, M.

    2007-05-01

    We report on a search for the exclusive two-body charmless hadronic B meson decays B{yields}{eta}{sup '}{rho}, B{yields}{eta}{sup '}K*, B{sup 0}{yields}{eta}{sup '}{phi}, B{sup 0}{yields}{eta}{sup '}{omega}, and B{sup 0}{yields}{eta}{sup '}{eta}{sup (')}. The results are obtained from a data sample containing 535x10{sup 6} BB pairs that were collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider. We find no significant signals and report upper limits in the range (0.5-6.5)x10{sup -6} for all of the above decays.

  1. A new assimilation method with physical mechanism to estimate evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ye, Wen; Xu, Xinyi

    2016-04-01

    The accurate estimation of regional evapotranspiration has been a research hotspot in the field of hydrology and water resources both in domestic and abroad. A new assimilation method with physical mechanism was proposed to estimate evapotranspiration, which was easier to apply. Based on the evapotranspiration (ET) calculating method with soil moisture recurrence relations in the Distributed Time Variant Gain Model (DTVGM) and Ensemble Kalman Filter (EnKF), it constructed an assimilation system for recursive calculation of evapotranspiration in combination with "observation value" by the retrieval data of evapotranspiration through the Two-Layer Remote Sensing Model. By updating the filter in the model with assimilated evapotranspiration, synchronization correction to the model estimation was achieved and more accurate time continuous series values of evapotranspiration were obtained. Through the verification of observations in Xiaotangshan Observatory and hydrological stations in the basin, the correlation coefficient of remote sensing inversion evapotranspiration and actual evapotranspiration reaches as high as 0.97, and the NS efficiency coefficient of DTVGM model was 0.80. By using the typical daily evapotranspiration from Remote Sensing and the data from DTVGM Model, we assimilated the hydrological simulation processes with DTVGM Model in Shahe Basin in Beijing to obtain continuous evapotranspiration time series. The results showed that the average relative error between the remote sensing values and DTVGM simulations is about 12.3%, and for the value between remote sensing retrieval data and assimilation values is 4.5%, which proved that the assimilation results of Ensemble Kalman Filter (EnKF) were closer to the "real" data, and was better than the evapotranspiration simulated by DTVGM without any improvement. Keyword Evapotranspiration assimilation Ensemble Kalman Filter Distributed hydrological model Two-Layer Remote Sensing Model

  2. Evaluating the SSEBop approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid Texas High Plains

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Gowda, P. H.; Bohms, S.; Howell, T. A.; Friedrichs, M.; Marek, T. H.; Verdin, J. P.

    2014-01-01

    The operational Simplified Surface Energy Balance (SSEBop) approach was applied on 14 Landsat 5 thermal infrared images for mapping daily actual evapotranspiration (ETa) fluxes during the spring and summer seasons (March-October) in 2006 and 2007. Data from four large lysimeters, managed by the USDA-ARS Conservation and Production Research Laboratory were used for evaluating the SSEBop estimated ETa. Lysimeter fields are arranged in a 2 × 2 block pattern with two fields each managed under irrigated and dryland cropping systems. The modeled and observed daily ETa values were grouped as "irrigated" and "dryland" at four different aggregation periods (1-day, 2-day, 3 day and "seasonal") for evaluation. There was a strong linear relationship between observed and modeled ETa with R2 values ranging from 0.87 to 0.97. The root mean square error (RMSE), as percent of their respective mean values, were reduced progressively with 28, 24, 16 and 12% at 1-day, 2-day, 3-day, and seasonal aggregation periods, respectively. With a further correction of the underestimation bias (-11%), the seasonal RMSE reduced from 12 to 6%. The random error contribution to the total error was reduced from 86 to 20% while the bias' contribution increased from 14 to 80% when aggregated from daily to seasonal scale, respectively. This study shows the reliable performance of the SSEBop approach on the Landsat data stream with a transferable approach for use with the recently launched LDCM (Landsat Data Continuity Mission) Thermal InfraRed Sensor (TIRS) data. Thus, SSEBop can produce quick, reliable and useful ET estimations at various time scales with higher seasonal accuracy for use in regional water management decisions.

  3. Searches for Charmless Decays B0 --> eta omega, B0 --> eta K0, B+ --> eta rho+, and B+ --> eta' pi+

    SciTech Connect

    Aubert, B

    2004-08-13

    The authors report results for measurements of the decay branching fractions of B{sup 0} to the charmless final states {eta}{omega} and {eta}K{sup 0}, and of B{sup +} to {eta}{rho}{sup +} and {eta}'{pi}{sup +}. None of these decays have been observed definitively. Measurements of the related decays B{sup +} --> {eta}K{sup +}, B{sup +} --> {eta}{pi}{sup +}, and B --> {eta}'K were published recently. Charmless decays with kaons are usually expected to be dominated by b --> s loop (''penguin'') transitions, while b --> u tree transitions are typically larger for the decays with pions and {rho} mesons. However the B --> {eta}K decays are especially interesting since they are suppressed relative to the abundant B --> {eta}'K decays due to destructive interference between two penguin amplitudes. The CKM-suppressed b --> u amplitudes may interfere significantly with penguin amplitudes, possibly leading to large direct CP violation in B{sup +} --> {eta}{rho}{sup +} and B{sup +} --> {eta}'{pi}{sup +}; numerical estimates are available in a few cases. The authors search for such direct CP violation by measuring the charge asymmetry A{sub ch} {equivalent_to} ({Gamma}{sup -} - {Gamma}{sup +})/({Gamma}{sup -} + {Gamma}{sup +}) in the rates {Gamma}{sup {+-}} = {Gamma}(B{sup {+-}} --> f{sup {+-}}), for each observed charged final state f{sup {+-}}. Charmless B decays are becoming useful to test the accuracy of theoretical predictions. Phenomenological fits to the branching fractions and charge asymmetries can be used to understand the importance of tree and penguin contributions and may provide sensitivity to the CKM angle {gamma}.

  4. {eta} and {eta}{sup '} Mesons from Lattice QCD

    SciTech Connect

    Christ, N. H.; Liu, Q.; Mawhinney, R. D.; Dawson, C.; Izubuchi, T.; Jung, C.; Soni, A.; Sachrajda, C. T.; Zhou, R.

    2010-12-10

    The large mass of the ninth pseudoscalar meson, the {eta}{sup '}, is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2+1-flavor, lattice QCD calculation of the {eta} and {eta}{sup '} masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of {theta}=-14.1(2.8) deg. Extrapolation to the physical light quark mass gives, with statistical errors only, m{sub {eta}}=573(6) MeV and m{sub {eta}{sup '}}=947(142) MeV, consistent with the experimental values of 548 and 958 MeV.

  5. Timescales of Land Surface Evapotranspiration Response

    NASA Technical Reports Server (NTRS)

    Scott, Russell; Entekhabi, Dara; Koster, Randal; Suarez, Max

    1997-01-01

    Soil and vegetation exert strong control over the evapotranspiration rate, which couples the land surface water and energy balances. A method is presented to quantify the timescale of this surface control using daily general circulation model (GCM) simulation values of evapotranspiration and precipitation. By equating the time history of evaporation efficiency (ratio of actual to potential evapotranspiration) to the convolution of precipitation and a unit kernel (temporal weighting function), response functions are generated that can be used to characterize the timescales of evapotranspiration response for the land surface model (LSM) component of GCMS. The technique is applied to the output of two multiyear simulations of a GCM, one using a Surface-Vegetation-Atmosphere-Transfer (SVAT) scheme and the other a Bucket LSM. The derived response functions show that the Bucket LSM's response is significantly slower than that of the SVAT across the globe. The analysis also shows how the timescales of interception reservoir evaporation, bare soil evaporation, and vegetation transpiration differ within the SVAT LSM.

  6. Branching Fraction Limits for B0 Decays to eta' eta, eta' pi0 and eta pi0

    SciTech Connect

    Aubert, B.

    2006-03-10

    We describe searches for decays to two-body charmless final states {eta}'{eta}, {eta}'{pi}{sup 0} and {eta}{pi}{sup 0} of B{sup 0} mesons produced in e{sup +}e{sup -} annihilation. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 232 million produced B{bar B} pairs. The results for branching fractions are, in units of 10{sup -6} (upper limits at 90% C.L.): {Beta}(B{sup 0} {yields} {eta}'{eta}) = 0.2{sub -0.5}{sup +0.7} {+-} 0.4 (< 1.7), {Beta}(B{sup 0} {yields} {eta}{pi}{sup 0}) = 0.6{sub -0.4}{sup +0.5} {+-} 0.1 (< 1.3), and {Beta}(B{sup 0} {yields} {eta}'{pi}{sup 0}) = 0.8{sub -0.6}{sup +0.8} {+-} 0.1 (< 2.1). The first error quoted is statistical and the second systematic.

  7. B-meson decays to eta' rho, eta' f0, and eta' K*

    SciTech Connect

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2010-08-25

    We present measurements of B-meson decays to the final states {eta}{prime} {rho}, {eta}{prime} f{sub 0}, and {eta}{prime} K*, where K* stands for a vector, scalar, or tensor strange meson. We observe a significant signal or evidence for {eta}{prime} {rho}{sup +} and all the {eta}{prime}K* channels. We also measure, where applicable, the charge asymmetries, finding results consistent with no direct CP violation in all cases. The measurements are performed on a data sample consisting of 467 x 10{sup 6} B{bar B} pairs, collected with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory. Our results favor the theoretical predictions from perturbative QCD and QCD Factorization and we observe an enhancement of the tensor K*{sub 2} (1430) with respect to the vector K*(892) component.

  8. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  9. Evapotranspiration and soil heterogeneity

    SciTech Connect

    Luxmoore, R J; Sharma, M L

    1982-01-01

    In a previous computer simulation study of a grassland catchment in Oklahoma, evapotranspiration was predicted to increase up to 25% for soils with finer textures than the silt loam reference soil. Results are further analyzed to illustrate plant water responses to scaled soil physical characteristics from the simulations with the Terrestrial Ecosystem Hydrology Model. Finer soils were shown to have higher soil water capacities over wider ranges of soil matric pressures than the reference soil which increased the water supply to vegetation. The water potential and stomatal conductance of foliage were generally higher on soils with higher soil water capacities. The analysis suggests that areal variation in soil hydraulic characteristics may significantly influence areal evapotranspiration.

  10. Global investigation of vegetation impact on mean annual catchment evapotranspiration

    NASA Astrophysics Data System (ADS)

    Peel, Murray C.; McMahon, Thomas A.; Finlayson, Brian L.

    2010-05-01

    Historically, relationships between catchment vegetation type, evapotranspiration and runoff have been assessed primarily through paired catchment studies. The literature contains results from over 200 of these studies from around the world but two factors limit the applicability of the results to the wider domain. Firstly, catchment areas are generally small (<10 km2). Secondly, the range of climate types is narrow, with temperate (Köppen C) and cold (Köppen D) climate types in the majority. Here we present results from a global assessment of the impact of vegetation type on mean annual catchment evapotranspiration for a large, spatially and climatically diverse dataset of 699 catchments. This assessment is based on analysis of areal precipitation, temperature, runoff, and land cover information from each catchment, which differs from the paired catchment methodology where streamflow responses to a controlled land cover change are assessed. When catchments are grouped by vegetation type, any evidence of differing vegetation impact on actual evapotranspiration will be observed through differences in mean annual actual evapotranspiration, defined as precipitation minus runoff. Stratifying catchments by climate type was observed to be important when assessing the vegetation impact on evapotranspiration. Tropical and temperate forested catchments had significantly higher median evapotranspiration (~170mm and ~130mm, respectively) than non-forested catchments. Cold forested catchments unexpectedly had significantly lower median evapotranspiration (~90mm) than non-forested catchments. No significant difference in median evapotranspiration was found between temperate evergreen and deciduous forested catchments, though sample sizes were small. Temperate evergreen needleleaf forested catchments had significantly higher median evapotranspiration than evergreen broadleaf forested catchments, though again sample sizes were small. The significant difference in median

  11. The seismology of eta Bootes

    NASA Technical Reports Server (NTRS)

    Demarque, Pierre; Guenther, D. B.

    1995-01-01

    Some p-mode frequencies and other observations were used to determine the mass, the age and the helium abundance of eta Bootes. It is shown how, by direct application, the p-mode frequencies and stellar seismological tools help in constraining the physical parameters of eta Boo. The existence of mode bumping is confirmed and it is discussed how it may be used to refine the estimate of the eta Boo's age. The effect of the OPAL equation of state on the p-mode frequencies is described.

  12. Gluon content of the {eta} and {eta}{sup '} mesons and the {eta}{gamma} , {eta}{sup '}{gamma} electromagnetic transition form factors

    SciTech Connect

    Agaev, S.S.; Stefanis, N.G.

    2004-09-01

    We compute power-suppressed corrections to the {eta}{gamma} and {eta}{sup '}{gamma} transition form factors Q{sup 2}F{sub {eta}}{sub ({eta}}{sub {sup '}}{sub {gamma}}(Q{sup 2}) arising from the end point regions x{yields}0,1 by employing the infrared-renormalon approach. The contribution to the form factors from the quark and gluon content of the {eta},{eta}{sup '} mesons is taken into account using for the {eta}-{eta}{sup '} mixing the SU{sub f}(3) singlet {eta}{sub 1} and octet {eta}{sub 8} basis. The theoretical predictions obtained this way are compared with the corresponding CLEO data and restrictions on the input parameters (Gegenbauer coefficients) B{sub 2}{sup q}({eta}{sub 1}), B{sub 2}{sup g}({eta}{sub 1}), and B{sub 2}{sup q}({eta}{sub 8}) in the distribution amplitudes for the {eta}{sub 1},{eta}{sub 8} states with one nonasymptotic term are deduced. Comparison is made with the results from QCD perturbation theory.

  13. Riparian evapotranspiration in Nebraska

    USGS Publications Warehouse

    Hall, Brent M.; Rus, David L.

    2013-01-01

    With increasing demands being placed on the water resources of Nebraska, characterizing evapotranspiration (ET) from riparian vegetation has gained importance to water users and managers. This report summarizes and compares the results from several studies of the ET from cottonwood-dominated riparian forests, riparian grasslands, and common reed, Phragmites australis, in Nebraska. Reported results show that the highest seasonal ET amounts were associated with Phragmites australis, followed by riparian forests, with riparian grasslands experiencing the lowest total ET of the studied vegetation communities.

  14. Modeling Evapotranspiration in Subtropical Climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration loss is estimated at about 80% of annual precipitation in south Florida. Accurate prediction of evapotranspiration is important during and beyond the implementation of the Comprehensive Everglades Restoration Project(CERP). In the USDA’s Everglades Agro-Hydrology Model (EAHM) the...

  15. B meson decays to charmless meson pairs containing eta or eta'

    SciTech Connect

    Aubert, : B.

    2009-12-14

    The authors present updated measurements of the branching fractions for B{sup 0} meson decays to {eta}K{sup 0}, {eta}{eta}, {eta}{phi}, {eta}{omega}, {eta}{prime}K{sup 0}, {eta}{prime}{eta}{prime}, {eta}{prime}, {phi}, and {eta}{prime}{omega} and branching fractions and CP-violating charge asymmetries for B{sup +} decays to {eta}{pi}{sup +}, {eta}K{sup +}, {eta}{prime}{pi}{sup +}, and {eta}{prime} K{sup +}. The data represent the full dataset of 467 x 10{sup 6} B{bar B} pairs collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory. Besides large signals for the four charged B decays modes and for B{sup 0} {yields} {eta}{prime}K{sup 0}, they find evidence for three B{sup 0} decays modes at greater than 3.0{sigma} significance. They find {Beta}(B{sup 0} {yields} {eta}K{sup 0}) = (1.15{sub -0.38}{sup +0.43} {+-} 0.09) x 10{sup -6}, {Beta}(B{sup 0} {yields} {eta}{omega}) = (0.94{sub -0.30}{sup +0.35} {+-} 0.09) x 10{sup -6}, and {Beta}(B{sup 0} {yields} {eta}{prime}{omega}) = (1.01{sub -0.38}{sup +0.46} {+-} 0.09) x 10{sup -6}, where the first (second) uncertainty is statistical (systematic). For the B{sup +} {yields} {eta}K{sup +} decay mode, they measure the charge asymmetry {Alpha}{sub ch} (B{sup +} {yields} {eta}K{sup +}) = -0.36 {+-} 0.11 {+-} 0.03.

  16. All Pillars Point to Eta

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Eta Carinae Starforming RegionSimulated Infrared View of Comet Tempel 1 (artist's concept)

    These false-color image taken by NASA's Spitzer Space Telescope shows the 'South Pillar' region of the star-forming region called the Carina Nebula. Like cracking open a watermelon and finding its seeds, the infrared telescope 'busted open' this murky cloud to reveal star embryos (yellow or white) tucked inside finger-like pillars of thick dust (pink). Hot gases are green and foreground stars are blue. Not all of the newfound star embryos can be easily spotted.

    Though the nebula's most famous and massive star, Eta Carinae, is too bright to be observed by infrared telescopes, the downward-streaming rays hint at its presence above the picture frame. Ultraviolet radiation and stellar winds from Eta Carinae and its siblings have shredded the cloud to pieces, leaving a mess of tendrils and pillars. This shredding process triggered the birth of the new stars uncovered by Spitzer.

    The inset visible-light picture (figure 2) of the Carina Nebula shows quite a different view. Dust pillars are fewer and appear dark because the dust is soaking up visible light. Spitzer's infrared detectors cut through this dust, allowing it to see the heat from warm, embedded star embryos, as well as deeper, more buried pillars. The visible-light picture is from the National Optical Astronomy Observatory.

    Eta Carina is a behemoth of a star, with more than 100 times the mass of our Sun. It is so massive that it can barely hold itself together. Over the years, it has brightened and faded as material has shot away from its surface. Some astronomers think Eta Carinae might die in a supernova blast within our lifetime.

    Eta Carina's home, the Carina Nebula, is located in the southern portion of our Milky Way galaxy, 10,000 light-years from Earth. This colossal cloud of gas and dust

  17. Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for Common reed, Cottonwood and Peach-leaf willow in the Platte River Basin, Nebraska-USA

    NASA Astrophysics Data System (ADS)

    Irmak, S.; Kabenge, I.; Rudnick, D.; Knezevic, S.; Woodward, D.; Moravek, M.

    2013-02-01

    SummaryApplication of two-step approach of evapotranspiration (ET) crop coefficients (Kc) to "approximate" a very complex process of actual evapotranspiration (ETa) for field crops has been practiced by water management community. However, the use of Kc, and in particular the concept of growing degree days (GDD) to estimate Kc, have not been sufficiently studied for estimation of evaporative losses from riparian vegetation. Our study is one of the first to develop evapotranspiration crop coefficient (KcET) curves for mixed riparian vegetation and transpiration (TRP) crop coefficients (KcTRP) for individual riparian species as a function GDD through extensive field campaigns conducted in 2009 and 2010 in the Platte River Basin in central Nebraska, USA. KcTRP values for individual riparian vegetation species [Common reed (Phragmites australis), Cottonwood (Populus deltoids) and Peach-leaf willow (Salix amygdaloides)] were quantified from the TRP rates obtained using scaled-up canopy resistance from measured leaf-level stomatal resistance and reference evapotranspiration. The KcET and KcTRP curves were developed for alfalfa-reference (KcrET and KcrTRP) surface. The seasonal average mixed riparian plant community KcrET was 0.89 in 2009 and 1.27 in 2010. In 2009, the seasonal average KcrTRP values for Common reed, Cottonwood and Peach-leaf willow were 0.57, 0.51 and 0.62, respectively. In 2010, the seasonal average KcrTRP were 0.69, 0.62 and 0.83 for the same species, respectively. In general, TRP crop coefficients had less interannual variability than the KcrET. Response of the vegetation to flooding in 2010 played an important role on the interannual variability of KcrET values. We demonstrated good performance and reliability of developed GDD-based KcrTRP curves by using the curves developed for 2009 to predict TRP rates of individual species in 2010. Using the KcrTRP curves developed during the 2009 season, we were able to predict the TRP rates for Common reed

  18. Rare semileptonic B{sub s} decays to {eta} and {eta}' mesons in QCD

    SciTech Connect

    Azizi, K.; Khosravi, R.; Falahati, F.

    2010-12-01

    We analyze the rare semileptonic B{sub s}{yields}({eta},{eta}{sup '})l{sup +}l{sup -}, (l=e,{mu},{tau}), and B{sub s}{yields}({eta},{eta}{sup '}){nu}{nu} transitions probing the ss content of the {eta} and {eta}{sup '} mesons via three-point QCD sum rules. We calculate responsible form factors for these transitions in full theory. Using the obtained form factors, we also estimate the related branching fractions and longitudinal lepton polarization asymmetries. Our results are in a good consistency with the predictions of the other existing nonperturbative approaches.

  19. Drought assessment by evapotranspiration mapping in Twente

    NASA Astrophysics Data System (ADS)

    Eden, U.; Timmermans, J.; van der Velde, R.; Su, Z.

    2012-04-01

    Drought is a reoccurring worldwide problem with impacts ranging from food production to infrastructure. Droughts are different from other natural hazards (floods, hurricanes, and earthquakes) because the effects can only be witnessed slowly and with a time delay. Effects of droughts are diverse, like famine and migration of people. Droughts are caused by natural causes but also by interaction between the natural events and water demand. Not only typical dry regions, like the Horn of Africa, are affected, but even semi-humid environments, like Europe. Temperature rise and precipitation deficit in the summers of 2003 and 2006 caused substantial crop losses in the agricultural sector in the Netherlands. In addition increased river water temperatures and low water levels caused cooling problems for power plants. Heat waves and prolonged absence of precipitation is expected to increase due to climate change. Therefore assessing and monitoring drought in the Netherlands is thus very important. Various drought indices are available to assess the severity, duration and spatial extend of the drought. Some of the commonly indices used are Standardized precipitation index (SPI) and the Palmer Drought Severity Index (PDSI). However each of these indices do not take into account the actual state of the land surface in respect to the dryness. By analysing drought through actual evapotranspiration (ET) estimations from remote sensing this can be circumvented. The severity of the droughts was quantified by ET-mapping from 2003-2010. The assessment was based on the spatial and temporal distribution of ET using the Evapotranspiration Deficit Index (ETDI) drought index. Surface energy fluxes, like ET, were estimated using WACMOS methodology. The input data consisted of remote sensing products like land surface temperature, LAI, and albedo from MODIS; and meteorological data like air-temperature, humidity and wind speed from the European Centre for Medium weather forecast (ECMWF

  20. Annual evapotranspiration retrieved from satellite vegetation indices for the eastern Mediterranean at 250 m spatial resolution

    NASA Astrophysics Data System (ADS)

    Helman, D.; Givati, A.; Lensky, I. M.

    2015-11-01

    We present a model to retrieve actual evapotranspiration (ET) from satellites' vegetation indices (Parameterization of Vegetation Indices for ET estimation model, or PaVI-E) for the eastern Mediterranean (EM) at a spatial resolution of 250 m. The model is based on the empirical relationship between satellites' vegetation indices (normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from MODIS) and total annual ET (ETAnnual) estimated at 16 FLUXNET sites, representing a wide range of plant functional types and ETAnnual. Empirical relationships were first examined separately for (a) annual vegetation systems (i.e. croplands and grasslands) and (b) systems with combined annual and perennial vegetation (i.e. woodlands, forests, savannah and shrublands). Vegetation indices explained most of the variance in ETAnnual in those systems (71 % for annuals, and 88 % for combined annual and perennial systems), while adding land surface temperature data in a multiple-variable regression and a modified version of the Temperature and Greenness model did not result in better correlations (p > 0.1). After establishing empirical relationships, PaVI-E was used to retrieve ETAnnual for the EM from 2000 to 2014. Models' estimates were highly correlated (R = 0.92, p < 0.01) with ETAnnual calculated from water catchment balances along rainfall gradient of the EM. They were also comparable to the coarser-resolution ET products of the Land Surface Analysis Satellite Applications Facility (LSA-SAF MSG ETa, 3.1 km) and MODIS (MOD16, 1 km) at 148 EM basins with R of 0.75 and 0.77 and relative biases of 5.2 and -5.2 %, respectively (p < 0.001 for both). In the absence of high-resolution (< 1 km) ET models for the EM the proposed model is expected to contribute to the hydrological study of this region, assisting in water resource management, which is one of the most valuable resources of this region.

  1. Measurement of branching fractions and charge asymmetries in B+ decays to eta pi+, eta K+, eta rho+, and eta' pi+, and search for B0 decays to eta K0 and eta omega.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges-Pous, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morg An, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Kelly, M P; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Del Re, D; Hadavand, H K; Hill, E J; Macfarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Derrington, I M; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Graziani, G; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Mohapatra, A K; Muller, D R; O'grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Thompson, J M; Va'vra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Jackson, P D; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-09-23

    We present measurements of branching fractions and charge asymmetries for six B-meson decay modes with an eta or eta(') meson in the final state. The data sample corresponds to 232 x 10(6) BB pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) B Factory at SLAC. We measure the branching fractions (in units of 10(-6)): B(B+ -->eta pi(+))=5.1+/-0.6+/-0.3, B(B+ etaK+)=3.3+/-0.6+/-0.3, B(B0-->etaK0)=1.5+/-0.7+/-0.1 (<2.5 at 90% C.L.), B(B+-->eta rho(+))=8.4+/-1.9+/-1.1, B(B0-->eta omiga)=1.0+/-0.5+/-0.2 (<1.9 at 90% C.L.), and B(B+-->eta(')pi(+))=4.0+/-0.8+/-0.4, where the first uncertainty is statistical and second systematic. For the charged modes we also determine the charge asymmetries, all found to be compatible with zero.

  2. Evapotranspiration (ET) covers.

    PubMed

    Rock, Steve; Myers, Bill; Fiedler, Linda

    2012-01-01

    Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information

  3. Recent results on eta and eta-prime photoproduction on the proton

    SciTech Connect

    Barry Ritchie

    2004-06-01

    The experimental situation on eta and eta' photoproduction on the proton is reviewed, emphasizing progress made since 2001. New preliminary results for eta' photoproduction on the proton from Jefferson Lab are presented. Experimental results are compared with several theoretical approaches, with an emphasis on consequences for understanding baryon spectroscopy.

  4. Evapotranspiration studies for protective barriers: Experimental plans

    SciTech Connect

    Link, S.O.; Waugh, W.J.

    1989-11-01

    This document describes a general theory and experimental plans for predicting evapotranspiration in support of the Protective Barrier Program. Evapotranspiration is the combined loss of water from plants and soil surfaces to the atmosphere. 45 refs., 1 fig., 4 tabs.

  5. Potential Evapotranspiration on Tutuila, American Samoa

    USGS Publications Warehouse

    Izuka, Scott K.; Giambelluca, Thomas W.; Nullet, Michael A.

    2005-01-01

    Data from nine widely distributed climate stations were used to assess the distribution of potential evapotranspiration on the tropical South Pacific island of Tutuila, American Samoa. Seasonal patterns of climate data in this study differed in detail from available long-term data because the monitoring period of each station in this study was only 1 to 5 years, but overall climate conditions during the monitoring period (1999-2004) are representative of normal conditions. Potential evapotranspiration shows a diurnal pattern. On average, potential evapotranspiration in the daytime, when net radiation is the dominant controlling factor, constitutes 90 percent or more of the total daily potential evapotranspiration at each station. Positive heat advection from the ocean contributes to potential evapotranspiration at at least one station, and possibly other stations, in this study. Seasonal variation of potential evapotranspiration is linked to seasonal daylight duration. Spatial variation of potential evapotranspiration, however, is linked primarily to orographic cloud cover. Potential evapotranspiration on Tutuila is lowest in the interior of the island, where rainfall is higher, cloud cover is more frequent, and net radiation is lower than along the coasts. Potential evapotranspiration is highest along the southern and eastern coasts of the island, where rainfall is lower and cloud cover less frequent. The gradient from areas of high to low potential evapotranspiration is steepest in November and December, when island-wide potential evapotranspiration is highest, and less steep in June and July, when island-wide potential evapotranspiration is lowest. Comparison of potential evapotranspiration to rainfall indicates that evapotranspiration processes on Tutuila have the potential to remove from 23 to 61 percent of the water brought by rainfall. In lower-rainfall coastal locations, potential evapotranspiration can be 50 percent or more of rainfall, whereas in higher

  6. Experimental test accelerator (ETA) II

    SciTech Connect

    Fessenden, T.J.; Atchison, W.L.; Birx, D.L.

    1981-03-06

    The Experimental Test Accelerator (ETA) is designed to produce a 10 kAmp electron beam at an energy of 4.5 MeV in 40 nsec pulses at an average rate of 2 pps. The accelerator also operates in bursts of 5 pulses spaced by as little as one millisec at an average rate of 5 pps. The machine is currently operating near 80% of its design values and has accumulated over 2.5 million pulses - mostly at a rate of one pps. The plasma cathode electron source, the remainder of the accelerator, and the operating characteristics of the machine are discussed.

  7. Dominant controls of diel discharge fluctuations: viscosity changes vs. evapotranspiration

    NASA Astrophysics Data System (ADS)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2016-04-01

    Diel fluctuations in stream discharge are a long known but rarely investigated phenomena that is known to be driven by various processes, such as precipitation, evapotranspiration, freeze-thawing cycles and sometimes viscosity fluctuations. Improving our understanding of how these processes control diel discharge fluctuations is actually key to solving other questions related to diel cycles of biogeochemicals as well as the temporal variability of fundamental hydrological functions in a catchment. In the forested Weierbach catchment (0.47 km2) in Luxembourg we showed that seasonal changes in the relative importance of viscosity fluctuations of inflowing water to the creek and evapotranspiration are the key controls of diel discharge fluctuations. In the dormant season, we observed daily discharge maxima in the afternoon, albeit temperatures remained persistently above zero and no snow cover was present, which excludes freeze-thawing cycles as the driving factor. However, we showed that diel water temperature fluctuations in the subsurface and therefore viscosity fluctuations in the upper layer of the riparian zone can be an explanation for the daily discharge maxima in the afternoon. In the transition period between dormant and growing season, the counteracting viscosity and evapotranspiration processes cancel each other out resulting in no diel discharge fluctuations. Subsequently, during the growing season, the higher relative importance of evapotranspiration is guiding the diel discharge pattern; nevertheless, the viscosity effect might still be invisibly present. We believe this finding to be of relevance for better understanding hydrological functions in catchments and for analyzing daily fluctuations of biogeochemicals in stream water.

  8. Eta Carinae: an Astrophysical Laboratory

    NASA Astrophysics Data System (ADS)

    Nielsen, Krister E.; Gull, Theodore R.

    2009-05-01

    Eta Carinae provides a unique example to investigate a massive star in a late evolutionary phase and how CNO-processed material is ejected and mixed with the interstellar medium. The absorbing gas surrounding Eta Carinae (η Car) shows similar characteristics to the intervening gas in spectra of gamma ray burst progenitors. Consequently, the η Car spectrum may provide clues about the nature of other extreme objects such as hypernovae and supernova impostors. In the 1840s, η Car underwent a massive ejection, which was repeated to a lesser extent in the 1890s. Today we see the Homunculus, a bipolar expanding neutral shell, and the Little Homunculus, an interior, spectroscopically time-variable, ionized structure. The η Car system is ideal as a laboratory for absorption and emission line spectroscopy. In the line-of-sight towards η Car, multiple narrow absorption lines are observed from environments with densities around 107 cm- 3 and temperatures ranging from 60 to 7000 K. Thousands of neutral/singly ionized metal lines are identified, in addition to molecular lines in species such as H2, CH, OH and NH. The input from the laboratory spectroscopy community has furthered the analysis of η Car. Future observations of η Car in the infrared through radio wavelength region will enable new detections of atomic and molecular transitions, most notably of hydrides and nitrides. We will demonstrate how experimentally derived atomic data have improved our spectral analysis, and illuminate where future work is needed.

  9. Pseudoscalar glueball and {eta}-{eta}{sup '} mixing

    SciTech Connect

    Mathieu, Vincent; Vento, Vicente

    2010-02-01

    We have performed a dynamical analysis of the mixing in the pseudoscalar channel with the goal of understanding the existence and behavior of the pseudoscalar glueball. Our philosophy has not been to predict precise values of the glueball mass but to exploit an adequate effective theory to the point of breaking and to analyze which kind of mechanisms restore compatibility with data. Our study has led to analytical solutions which allow a clear understanding of the phenomena. The outcome of our calculation leads to a large mass glueball M{sub {Theta}>}2000 MeV, to a large glue content of the {eta}{sup '}, and to mixing angles in agreement with previous numerical studies.

  10. Evapotranspiration analysis based on topography algorithm in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Ning, Jicai; Gao, Zhiqiang; Shi, Runhe; Gao, Wei

    2013-09-01

    A remote sensing regional evapotranspiration (ET) model was built on the basis of topography correction (slope, aspect and elevation), herein. A variety of satellite data which have visible, near-infrared and thermal infrared remote sensing data can be used by this improved model. Combined with conventional ground meteorological information, it can estimate regional distribution of ET under different climate and terrain conditions, expanding the scope of application. Taking into account the terrain factors, we modified the algorithm of SEBAL model. Results showed that, the modified inversion method of evapotranspiration can better reflect actual evapotranspiration condition. Evapotranspiration changes were consistent with land use types. This research indicates that application of medium or high resolution satellite data to calculate regional ET under undulating landform should consider the impact of terrain. It improves the accuracy of ET estimates and has important reference value for the work of the regional water balance and regional agricultural climate research.

  11. Phenomenology of some rare and forbidden. eta. -decays

    SciTech Connect

    Herczeg, P.

    1990-01-01

    We discuss the contribution from possible new physics to the decays {eta} {yields} {mu}{sup +}{mu}{sup {minus}}, {eta} {yields} e{sup +}e{sup {minus}}, {eta} {yields} {mu}e and {eta} {pi}{mu}e, and assess the sensitivities required for experimental studies of these decays to extend our knowledge about the new interactions. 61 refs.

  12. Eta Carinae and Its Ejecta, the Homunculus

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.

    2014-01-01

    Eta Carinae (Eta Car), its interacting winds and historical ejecta provide an unique astrophysical laboratory that permits addressing a multitude of questions ranging from stellar evolution, colliding winds, chemical enrichment, nebular excitation to the formation of molecules and dust. Every 5.54 years, Eta Car changes from high excitation to several-months-long low excitation caused by modulation of the massive interacting winds due to a very eccentric binary orbit. The surrounding Homunculus (Figure 1) and Little Homunculus, thrown out in the 1840s Great Eruption and the 1890s Lesser Eruption, respond to the changing flux, providing clues to many physical phenomena of great interest to astrophysicists.

  13. Charmonium decays to {gamma}{pi}{sup 0}, {gamma}{eta}, and {gamma}{eta}{sup '}

    SciTech Connect

    Pedlar, T. K.; Xavier, J.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Klein, T.; Poling, R.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.; Tomaradze, A.; Libby, J.; Martin, L.; Powell, A.; Thomas, C.; Wilkinson, G.; Mendez, H.; Ge, J. Y.

    2009-06-01

    Using data acquired with the CLEO-c detector at the CESR e{sup +}e{sup -} collider, we measure branching fractions for J/{psi}, {psi}(2S), and {psi}(3770) decays to {gamma}{pi}{sup 0}, {gamma}{eta}, and {gamma}{eta}{sup '}. Defining R{sub n}{identical_to}B[{psi}(nS){yields}{gamma}{eta}]/B[{psi}(nS){yields}{gamma}{eta}{sup '}], we obtain R{sub 1}=(21.1{+-}0.9)% and, unexpectedly, an order of magnitude smaller limit, R{sub 2}<1.8% at 90% C.L. We also use J/{psi}{yields}{gamma}{eta}{sup '} events to determine branching fractions of improved precision for the five most copious {eta}{sup '} decay modes.

  14. Minute Temperature Fluctuations Detected in Eta Bootis

    NASA Astrophysics Data System (ADS)

    1994-11-01

    , even in the very brightest stars. Faced with this problem, the Danish/ESO group came up with an entirely new method. It relies on the fact that the oscillations are sound waves which deposit energy in the various stellar layers and therefore intermittently heat the star very slightly. For example, each mode changes the temperature on the surface of the Sun by about 0.005 degrees during the oscillation. But how to measure such small temperature changes? It turns out that this is possible by recording the strengths of the spectral lines, specifically, the absorption lines due to hydrogen. Their strengths change slightly with the changes in temperature (see Appendix). Although this is still a very small effect, it should be easier to measure than the velocity shifts. Yes, Eta Bootis does! To test their method, the astronomers used the ESO 3.5-metre New Technology Telescope (NTT) with the ESO Multi-Mode Instrument (EMMI) to observe a bright star for a few hours. This was too short to detect actual oscillations, but it did show that the technique works: it was in principle possible to measure the temperature accurately enough. The target for the real observations was the 2.68-magnitude, naked-eye star Eta Bootis (Greek letter "eta"). It has the common name of Muphrid and is located just north of the celestial equator in Bootes, one of the oldest constellation names still in use (it was mentioned already in the Odyssey). This particular star is somewhat more evolved and bigger than the Sun and, according to stellar theory, should have stronger oscillations than the Sun, hence increasing the chance that they could be detected. The observations were performed with the 2.5-metre Nordic Optical Telescope (NOT) during six, mostly clear nights in April 1994. A careful data analysis has now shown that the temperature of Eta Bootis is indeed changing periodically, around a mean value of about 6000 K. It seems to be oscillating in at least ten different modes simultaneously, with

  15. Study of {eta}' Decays in the VES Experiment

    SciTech Connect

    Nikolaenko, V.; Gavrilov, Yu.; Gouz, Yu.; Dzheliadin, R.; Fenyuk, A.; Ivashin, A.; Kachaev, I.; Kabachenko, V.; Karyukhin, A.; Khokhlov, Yu.; Konopliannikov, A.; Konstantinov, V.; Matveev, V.; Ostankov, A.; Polyakov, B.; Ryabchikov, D.; Solodkov, A. A.; Solodkov, A. V.; Solovianov, O.; Starchenko, E.

    2005-10-26

    Measurements of Dalitz plot parameters for {eta}' {yields} {eta}{pi}+{pi}- decay are presented. The data sample of {approx}15000 events originates from charge-exchange reaction {pi}-p {yields} {eta}'N* at beam momentum of 28 GeV/c. Comparison with results from diffractive-like reaction, {pi}-A {yields} {eta}'{pi}-A* and with theoretical expectations is given. Also a limit of Br({eta}' {yields} ({pi}+{pi}-{pi}0)) is estimated.

  16. Measurement of charmless B decays to {eta}K* and {eta}{rho}

    SciTech Connect

    Wang, C. H.; Schuemann, J.; Abe, K.; Adachi, I.; Gershon, T.; Haba, J.; Hazumi, M.; Itoh, R.; Iwasaki, Y.; Katayama, N.; Kichimi, H.; Nakao, M.; Nishida, S.; Ozaki, H.; Sakai, Y.; Suzuki, S. Y.; Tamai, K.; Tanaka, M.; Tsuboyama, T.; Tsukamoto, T.

    2007-05-01

    We report measurements of branching fractions and CP asymmetries for B{yields}{eta}K* and B{yields}{eta}{rho} decays. These results are obtained from a 414 fb{sup -1} data sample collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider. We measure the following branching fractions: B(B{sup 0}{yields}{eta}K*{sup 0})=(15.2{+-}1.2{+-}1.0)x10{sup -6} and B(B{sup +}{yields}{eta}K*{sup +})=(19.3{sub -1.9}{sup +2.0}{+-}1.5)x10{sup -6}, where the first error is statistical and the second systematic. We also find a 2.7{sigma} excess in the B{sup +}{yields}{eta}{rho}{sup +} mode and measure B(B{sup +}{yields}{eta}{rho}{sup +})=(4.1{sub -1.3}{sup +1.4}{+-}0.4)x10{sup -6}<6.5x10{sup -6} at 90% confidence level. For B{sup 0}{yields}{eta}{rho}{sup 0} decays, we determine the upper limit B(B{sup 0}{yields}{eta}{rho}{sup 0})<1.9x10{sup -6} at 90% confidence level. The partial rate asymmetries are A{sub CP}({eta}K*{sup 0})=0.17{+-}0.08{+-}0.01, A{sub CP}({eta}K*{sup +})=0.03{+-}0.10{+-}0.01, and A{sub CP}({eta}{rho}{sup +})=-0.04{sub -0.32}{sup +0.34}{+-}0.01.

  17. Eta Carinae: An Astrophysical Laboratory

    NASA Technical Reports Server (NTRS)

    Gull, T.

    2008-01-01

    In the 1840s, Eta Carinae, a massive binary near the end of its hydrogen burning cycle, ejected at least ten solar masses of material rich in nitrogen at the expense of carbon and oxygen. The resultant chemistry has led to a most peculiar mix of metals, molecules and dust. We identify thousands of nebular absorption lines of ions including Fe, Ni, V, Sr, Sc and molecules including H2, CH, OH, but no CO. Today we see a wind-enshrouded massive binary in the center of an expanding neutral hourglass and skirt. A similar ionized internal structure is associated with a lesser ejection of the 1890s. Both systems respond to the 5.54-year modulation of X-ray and ultraviolet radiation as the less massive, hotter companion plunges through the extended wind of the more massive, cooler primary. Observations and models are being brought together to understand the properties of the wind-enshrouded central binary. In turn we are learning much atomic spectroscopy, what molecules form in oxygen-and carbon-deprived environments and potentially about a dust that is quite different from the interstellar dust. As the next periastron occurs in January 2009, a number of observing teams are preparing to test these models with new observations.

  18. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    NASA Astrophysics Data System (ADS)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-08-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia's cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop

  19. Evaluation of Pan Coefficients for Estimating Reference Evapotranspiration in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, H.

    2006-12-01

    Evapotranspiration is an important process of water transfer in the hydrosphere and atmosphere, which plays an active role in the hydrological cycle. Evaporation pan (Epan) data are often used to estimate reference evapotranspiration (ETref) for use in water resource planning. Generally, ETref is estimated as the product of the Epan data and a pan coefficient (Kpan). However, reliable estimation of ETref using Epan depends on the accurate determination of pan coefficients Kpan. Many different methods for estimating ETref have been developed, among which the Penman-Monteith method is demonstrated to be especially excellent by the Food and Agriculture Organization (FAO). In this study, the Penman-Monteith reference evapotranspiration, pan evaporation, and pan coefficient are calculated, compared and regionally mapped at nine meteorological stations during 1990-2004 in Southern Taiwan. The results show the reference evapotranspiration and pan evaporation have similar regional distribution patterns in the southern Taiwan both with the highest values being in the lower region and the lowest values being in the upper region. In addition, the pan coefficient, Kpan, varies both regionally and seasonally. Smallest Kpan values are found in the upper reach of the southern Taiwan, meaning that the relative difference between the reference evapotranspiration and pan evaporation is the biggest in the region, the largest Kpan values are obtained in the western area of southern Taiwan. This distribution pattern provides valuable information for regional hydrological studies since it is one of the most important factors determining regional actual evapotranspiration.

  20. Potential evapotranspiration and continental drying

    NASA Astrophysics Data System (ADS)

    Milly, P. C. D.; Dunne, K. A.

    2016-10-01

    By various measures (drought area and intensity, climatic aridity index, and climatic water deficits), some observational analyses have suggested that much of the Earth’s land has been drying during recent decades, but such drying seems inconsistent with observations of dryland greening and decreasing pan evaporation. `Offline’ analyses of climate-model outputs from anthropogenic climate change (ACC) experiments portend continuation of putative drying through the twenty-first century, despite an expected increase in global land precipitation. A ubiquitous increase in estimates of potential evapotranspiration (PET), driven by atmospheric warming, underlies the drying trends, but may be a methodological artefact. Here we show that the PET estimator commonly used (the Penman-Monteith PET for either an open-water surface or a reference crop) severely overpredicts the changes in non-water-stressed evapotranspiration computed in the climate models themselves in ACC experiments. This overprediction is partially due to neglect of stomatal conductance reductions commonly induced by increasing atmospheric CO2 concentrations in climate models. Our findings imply that historical and future tendencies towards continental drying, as characterized by offline-computed runoff, as well as other PET-dependent metrics, may be considerably weaker and less extensive than previously thought.

  1. Wavelet-based Evapotranspiration Forecasts

    NASA Astrophysics Data System (ADS)

    Bachour, R.; Maslova, I.; Ticlavilca, A. M.; McKee, M.; Walker, W.

    2012-12-01

    Providing a reliable short-term forecast of evapotranspiration (ET) could be a valuable element for improving the efficiency of irrigation water delivery systems. In the last decade, wavelet transform has become a useful technique for analyzing the frequency domain of hydrological time series. This study shows how wavelet transform can be used to access statistical properties of evapotranspiration. The objective of the research reported here is to use wavelet-based techniques to forecast ET up to 16 days ahead, which corresponds to the LANDSAT 7 overpass cycle. The properties of the ET time series, both physical and statistical, are examined in the time and frequency domains. We use the information about the energy decomposition in the wavelet domain to extract meaningful components that are used as inputs for ET forecasting models. Seasonal autoregressive integrated moving average (SARIMA) and multivariate relevance vector machine (MVRVM) models are coupled with the wavelet-based multiresolution analysis (MRA) results and used to generate short-term ET forecasts. Accuracy of the models is estimated and model robustness is evaluated using the bootstrap approach.

  2. Influence of potential evapotranspiration on the water balance of sugarcane fields in Maui, Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The year-long warm temperatures and other climatic characteristics of the Pacific Ocean Islands have made Hawaii an optimum place for growing sugarcane; however, irrigation is essential to satisfy the large water demand of sugarcane. Under the Hawaiian tropical weather, actual evapotranspiration (A...

  3. A comparison of operational remote sensing-based models for estimating crop evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integration of remotely sensed data into models of actual evapotranspiration has allowed for the estimation of water consumption across agricultural regions. Two modeling approaches have been successfully applied. The first approach computes a surface energy balance using the radiometric surface...

  4. Chiral corrections to the anomalous 2. gamma. decays of. pi. sup 0 ,. eta. and. eta. prime

    SciTech Connect

    Issler, D.

    1990-11-01

    To any order in chiral perturbation theory, the anomalous Wess-Zumino term is shown to generate only chirally invariant counterterms. Explicit examples of 0(p{sub 6}) terms generated by one-loop graphs are given, some of which are relevant to the two-photon decays of {pi}{sup o}, {eta} and {eta}{prime}.

  5. Eta Squared and Partial Eta Squared as Measures of Effect Size in Educational Research

    ERIC Educational Resources Information Center

    Richardson, John T. E.

    2011-01-01

    Eta squared measures the proportion of the total variance in a dependent variable that is associated with the membership of different groups defined by an independent variable. Partial eta squared is a similar measure in which the effects of other independent variables and interactions are partialled out. The development of these measures is…

  6. Effect of {eta}-{eta}{sup '} mixing on D{yields}PV decays

    SciTech Connect

    Bhattacharya, Bhubanjyoti; Rosner, Jonathan L.

    2010-08-01

    Charmed meson decays to a light pseudoscalar (P) and light vector (V) meson are analyzed taking account of {eta}-{eta}{sup '} mixing. A frequently-used octet-singlet mixing angle of 19.5 degree sign is compared with a value of 11.7 degree sign favored by a recent analysis of D{yields}PP decays.

  7. Variation of Evapotranspiration as Function of Surface Type

    NASA Astrophysics Data System (ADS)

    Ringgaard, R.; Herbst, M.; Friborg, T.; Soegaard, H.

    2009-12-01

    Evapotranspiration is tightly coupled with vegetation type and coverage. Many studies examining the partitioning of evapotranspiration into soil evaporation and plant transpiration have found that transpiration may account for up to 90% of total evapotranspiration depending on leaf area index and stomatal conductance. This is especially true in temperate humid climates, where conditions favor development of high-LAI vegetation and a large soil moisture pool from which the plants can draw water during most of the growing season. This makes explicit treatment of surface type/evapotranspiration relationships an important part of large-scale water balance and hydrological studies. The present study is part of the catchment-scale hydrological observatory “HOBE” situated on the west coast of Denmark. The main goals of the observatory is to better the scientific understating of large scale hydrological processes and to examine in detail the issue of scaling plot measurements to catchment scale. To estimate actual evapotranspiration, eddy-covariance systems have been installed on the most important surface types in the catchment - at an agricultural site (68% of the total area), over a spruce plantation (16%) and over wet grassland (7%). This presentation will introduce the first full-year time series of evapotranspiration from the three sites, with special emphasis on the difference in evaporative response through the seasons from the different surface types. The catchment covers about 2500km2 extending inland ca. 65 km. The landscape is very flat throughout the catchment, rising to only about 80 meters furthest inland. The geology is dominated by loose glacial and melt water deposits, with soils being comprised mostly of coarse sand. The climate can be characterized as maritime with winter temperatures around 1°C and summer temperatures around 16°C. Mean annual precipitation is around 800 mm. The weather is dominated by the prevailing westerlies from the Atlantic

  8. Eta Carinae: Orientation of The Orbital Plane

    NASA Technical Reports Server (NTRS)

    Gull, T. R.; Nielsen, K. E.; Ivarsson, S.; Corcoran, M. F.; Verner, E.; Hillier, J. D.

    2006-01-01

    Evidence continues to build that Eta Carinae is a massive binary system with a hidden hot companion in a highly elliptical orbit. We present imaging and spectroscopic evidence that provide clues to the orientation of the orbital plane. The circumstellar ejecta, known as the Homunculus and Little Homunculus, are hourglass-shaped structures, one encapsulated within the other, tilted at about 45 degrees from the sky plane. A disk region lies between the bipolar lobes. Based upon their velocities and proper motions, Weigelt blobs B, C and D, very bright emission clumps 0.1 to 0.3" Northwest from Eta Carinae, lie in the disk. UV flux from the hot companion, Eta Car B, photoexcites the Weigelt blobs. Other clumps form a complete chain around the star, but are not significantly photoexcited. The strontium filament, a 'neutral' emission structure, lies in the same general direction as the Weigelt blobs and exhibits peculiar properties indicative that much mid-UV, but no hydrogen-ionizing radiation impinges on this structure. It is shielded by singly-ionized iron. P Cygni absorptions in Fe I I lines, seen directly in line of sight from Eta Carinae, are absent in the stellar light scattered by the Weigelt blobs. Rather than a strong absorption extending to -600 km/s, a low velocity absorption feature extends from -40 to -150 km/s. No absorbing Fe II exists between Eta Carinae and Weigelt D, but the outer reaches of the wind are intercepted in line of sight from Weigelt D to the observer. This indicates that the UV radiation is constrained by the dominating wind of Eta Car A to a small cavity carved out by the weaker wind of Eta Car B. Since the high excitation nebular lines are seen in the Weigelt blobs at most phases, the cavity, and hence the major axis of the highly elliptical orbit, must lie in the general direction of the Weigelt blobs. The evidence is compelling that the orbital major axis of Eta Carinae is projected at -45 degrees position angle on the sky. Moreover

  9. Recharge and Evapotranspiration Assessment In Kalahari

    NASA Astrophysics Data System (ADS)

    Lubczynski, M.; Obakeng, O.

    2006-12-01

    Sustainability of groundwater resources in Kalahri is constrained not only by recharge to the aquifers but also by discharge from them. Natural groundwater discharge takes place in 3 different ways, as aquifer groundwater outflow, direct tree root water uptake called groundwater transpiration (Tg) and as upward vapor-liquid water movement called groundwater evaporation (Eg), the latter two called groundwater evapotranspiration (ETg). The evaluation of ETg and recharge was the main goal of this study. Due to generally large depth of groundwater table in Kalahari, >60 m, Eg was assumed as negligible component of groundwater balances while in contrast Tg has been considered significant already since 90-ties. This was because of fragments of tree roots of Boscia albitrunca and Acacia erioloba found in borehole cores at depth of >60 m. Some of those roots reach groundwater, which allow them to remain green throughout dry seasons. This study was carried out using hydrological monitoring consisting of 10 multi-sensor towers and 17 groundwater monitoring points. Soil moisture movement was investigated by profile monitoring. The deepest profile was down to 76 m depth. The soil moisture results revealed complicated pattern characterized by a combination of diffuse and preferential flow. The actual evapotranspiration was estimated by the Bowen-ratio and temperature-profile methods which provided overestimated results as compared with rainfall so the recharge could not be deduced directly. Therefore recharge was derived indirectly, through 1D lumped parameter model that used rainfall and PET as input and heads as calibration reference. That model indicated recharge 0-50 mm/yr. For understanding tree impact upon groundwater recharge, tree sap velocity was monitored for 2 years using the Granier method on 41 trees of 9 species in 8 plots of 30x30m. The estimated plot transpirations showed large spatio-temporal variability, 3-71 mm/yr and occasionally exceeded recharge. In order

  10. Endothelin ETA receptor antagonism in cardiovascular disease.

    PubMed

    Nasser, Suzanne A; El-Mas, Mahmoud M

    2014-08-15

    Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.

  11. The electroproduction of etas and kaons

    SciTech Connect

    O.K. Baker

    2001-12-01

    Experimental results for the electromagnetic production of eta and K mesons are compared with QCD-inspired models. The eta mesons from the decay of S_11 resonance were used to study the momentum transfer dependence of the relevant helicity amplitude and cross section in the reaction ^1H(e,e'p)eta. The ^1H(e,e'K+)Lambda reaction was studied as a function of squared four-momentum transfer, Q^2, and of the virtual photon polarization parameter, epsilon. Both of these experiments were performed at Jefferson Lab during the early years of operation. The new precision data serve to constrain model calculations and provide new insights into the physical processes.

  12. Model Error Estimation for the CPTEC Eta Model

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; daSilva, Arlindo

    1999-01-01

    Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.

  13. Observation of B^+\\to\\eta\\rho^+ and Search for B^0 Decays to\\eta^\\prime\\eta, \\eta\\pi^0, \\eta^\\prime\\pi^0, and \\omega\\pi^0

    SciTech Connect

    Aubert, Bernard; Bona, Marcella; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, Antimo; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, Marco; Brown, D.N.; Button-Shafer, Janice; Cahn, Robert N.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /INFN, Pisa /Princeton U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-04-22

    The authors present measurements of branching fractions for five B-meson decays to two-body charmless final states. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 459 million B{bar B} pairs. The results for branching fractions are, in units of 10{sup -6} (upper limits at 90% C.L.): {Beta}(B{sup +} {yields} {eta}{rho}{sup +}) = 9.9 {+-} 1.2 {+-} 0.8, {Beta}(B{sup 0} {yields} {eta}{prime}{eta}) = 0.5 {+-} 0.4 {+-} 0.1 (< 1.2), {Beta}(B{sup 0} {yields} {eta}{pi}{sup 0}) = 0.9 {+-} 0.4 {+-} 0.1 (< 1.5), {Beta}(B{sup 0} {yields} {eta}{prime}{pi}{sup 0}) = 0.9 {+-} 0.4 {+-} 0.1 (< 1.5), and {Beta}(B{sup 0}{sup 0} {yields} {omega}{pi}{sup 0}) = {eta}{rho}{sup +} mode, they measure the charge asymmetry {Alpha}{sub ch} (B{sup +} {yields} {eta}{rho}{sup +}) = 0.13 {+-} 0.11 {+-} 0.02.

  14. 31 CFR 208.5 - Availability of the ETA SM.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Availability of the ETA SM. 208.5... DISBURSEMENTS § 208.5 Availability of the ETA SM. An individual who receives a Federal benefit, wage, salary, or retirement payment shall be eligible to open an ETA SM at any Federally-insured financial institution...

  15. 31 CFR 208.5 - Availability of the ETA SM.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false Availability of the ETA SM. 208.5... DISBURSEMENTS § 208.5 Availability of the ETA SM. An individual who receives a Federal benefit, wage, salary, or retirement payment shall be eligible to open an ETA SM at any Federally-insured financial institution...

  16. 31 CFR 208.5 - Availability of the ETA SM.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Availability of the ETA SM. 208.5... DISBURSEMENTS § 208.5 Availability of the ETA SM. An individual who receives a Federal benefit, wage, salary, or retirement payment shall be eligible to open an ETA SM at any Federally-insured financial institution...

  17. 31 CFR 208.5 - Availability of the ETA SM.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Availability of the ETA SM. 208.5... DISBURSEMENTS § 208.5 Availability of the ETA SM. An individual who receives a Federal benefit, wage, salary, or retirement payment shall be eligible to open an ETA SM at any Federally-insured financial institution...

  18. Evapotranspiration estimation in heterogeneous urban vegetation

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Nouri, H.; Beecham, S.; Anderson, S.; Sutton, P.; Chavoshi, S.

    2015-12-01

    Finding a valid approach to measure the water requirements of mixed urban vegetation is a challenge. Evapotranspiration (ET) is the main component of a plant's water requirement. A better understanding of the ET of urban vegetation is essential for sustainable urbanisation. Increased implementation of green infrastructure will be informed by this work. Despite promising technologies and sophisticated facilities, ET estimation of urban vegetation remains insufficiently characterized. We reviewed the common field, laboratory and modelling techniques for ET estimation, mostly agriculture and forestry applications. We opted for 3 approaches of ET estimation: 1) an observational-based method using adjustment factors applied to reference ET, 2) a field-based method of Soil Water Balance (SWB) and 3) a Remote Sensing (RS)-based method. These approaches were applied to an experimental site to evaluate the most suitable ET estimation approach for an urban parkland. To determine in-situ ET, 2 lysimeters and 4 Neutron Moisture Meter probes were installed. Based on SWB principles, all input water (irrigation, precipitation and upward groundwater movements) and output water (ET, drainage, soil moisture and runoff) were measured monthly for 14 months. The observation based approach and the ground-based approach (SWB) were compared. Our predictions were compared to the actual irrigation rates (data provided by the City Council). Results suggest the observational-based method is the most appropriate urban ET estimation. We examined the capability of RS to estimate ET for urban vegetation. Image processing of 5 WorldView2 satellite images enabled modelling of the relationship between urban vegetation and vegetation indices derived from high resolution images. Our results indicate that an ETobservational-based -NDVI modelling approach is a reliable method of ET estimation for mixed urban vegetation. It also has the advantage of not depending on extensive field data collection.

  19. First insights into disassembled "evapotranspiration"

    NASA Astrophysics Data System (ADS)

    Chormański, Jarosław; Kleniewska, Małgorzata; Berezowski, Tomasz; Szporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatyłowicz, Jan; Batelaan, Okke

    2015-04-01

    In this work we present an initial data analysis obtained from a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them fromthe total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its component transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project

  20. Remote Sensing of Snow and Evapotranspiration

    NASA Technical Reports Server (NTRS)

    Schmugge, T. (Editor)

    1985-01-01

    The use of snowmelt runoff models from both the U.S. and Japan for simulating discharge on basins in both countries is discussed as well as research in snowpack properties and evapotranspiration using remotely sensed data.

  1. Mapping evapotranspiration in the Texas Panhandle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the Texas High Plains accounts for approximately 92% of groundwater withdrawals. Because groundwater levels are declining in the region, efficient agricultural water use is imperative for sustainability and regional economic viability. Accurate regional evapotranspiration (ET) maps ...

  2. Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Sheng; Zhou, Yangxiao

    2016-09-01

    The Budyko framework represents the general relationship between the evapotranspiration ratio (F) and the aridity index (φ) for the mean annual steady-state water balance at the catchment scale. It is interesting to investigate whether this standard F - φ space can also be applied to capture the shift of annual water balance in catchments with varying dryness. Previous studies have made significant progress in incorporating the storage effect into the Budyko framework for the non-steady conditions, whereas the role of groundwater-dependent evapotranspiration was not investigated. This study investigates how groundwater-dependent evapotranspiration causes the shift of the annual water balance in the standard Budyko space. A widely used monthly hydrological model, the ABCD model, is modified to incorporate groundwater-dependent evapotranspiration into the zone with a shallow water table and delayed groundwater recharge into the zone with a deep water table. This model is applied in six catchments in the Erdos Plateau, China, to estimate the actual annual evapotranspiration. Results show that the variations in the annual F value with the aridity index do not satisfy the standard Budyko formulas. The shift of the annual water balance in the standard Budyko space is a combination of the Budyko-type response in the deep groundwater zone and the quasi-energy limited condition in the shallow groundwater zone. Excess evapotranspiration (F > 1) could occur in dry years, which is contributed by the significant supply of groundwater for evapotranspiration. Use of groundwater for irrigation can increase the frequency of the F > 1 cases.

  3. Study of B Meson Decays with Excited eta and eta-prime Mesons

    SciTech Connect

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Button-Shafer, J.; /Energy Sci. Network /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /Frascati /Genoa U. /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /Pisa U. /Prairie View A-M /Princeton U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2008-04-18

    Using 383 million B{bar B} pairs from the BABAR data sample, they report results for branching fractions of six charged B-meson decay modes, where a charged kaon recoils against a charmless resonance decaying to K{bar K}* or {eta}{pi}{pi} final states with mass in the range (1.2-1.8) GeV/c{sup 2}. They observe a significant enhancement at the low K{bar K}* invariant mass which is interpreted as B{sup +} {yields} {eta}(1475)K{sup +}, find evidence for the decay B{sup +} {yields} {eta}(1295)K{sup +}, and place upper limits on the decays B{sup +} {yields} {eta}(1405)K{sup +}, B{sup +} {yields} f{sub 1}(1285)K{sup +}, B{sup +} {yields} f{sub 1}(1420)K{sup +}, and B{sup +} {yields} {phi}(1680)K{sup +}.

  4. Evapotranspiration from the Lower Walker River Basin, West-Central Nevada, Water Years 2005-07

    USGS Publications Warehouse

    Allander, Kip K.; Smith, J. LaRue; Johnson, Michael J.

    2009-01-01

    evapotranspiration station in a saltcedar grove, measurements indicated a possible decrease in evapotranspiration of about 50 percent due to defoliation of the saltcedar by the saltcedar leaf beetle. Total evapotranspiration from the evapotranspiration units identified in the Lower Walker River basin was about 231,000 acre-feet per year (acre-ft/yr). Of this amount, about 45,000 acre-ft/yr originated from direct precipitation, resulting in net evapotranspiration of about 186,000 acre-ft/yr. More than 80 percent of net evapotranspiration in the Lower Walker River basin was through evaporation from Walker Lake. Total evaporation from Walker Lake was about 161,000 acre-ft/yr and net evaporation was about 149,000 acre-ft/yr. Some previous estimates of evaporation from Walker Lake based on water-budget analysis actually represent total evaporation minus ground-water inflow to the lake. Historical evaporation rates determined on the basis of water budget analysis were less than the evaporation rate measured directly during this study. The difference could represent ground-water inflow to Walker Lake of 16,000 to 26,000 acre-ft/yr or could indicate that ground-water inflow to Walker Lake is decreasing over time as the lake perimeter recedes.

  5. A SEA CHANGE IN ETA CARINAE

    SciTech Connect

    Mehner, Andrea; Davidson, Kris; Humphreys, Roberta M.; Martin, John C.; Ishibashi, Kazunori; Ferland, Gary J.; Walborn, Nolan R.

    2010-07-01

    Major stellar-wind emission features in the spectrum of {eta} Car have recently decreased by factors of order 2 relative to the continuum. This is unprecedented in the modern observational record. The simplest, but unproven, explanation is a rapid decrease in the wind density.

  6. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    SciTech Connect

    Christina B. Behr-Andres

    2001-10-01

    The objective of the Environmental Technologies Acceptance (ETA) Program at the Energy & Environmental Research Center (EERC) is to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As a result of contract changes approved by National Energy Technology Laboratory (NETL) representatives to incorporate activities previously conducted under another NETL agreement, there are now an additional task and an expansion of activities within the stated scope of work of the ETA program. As shown in Table 1, this cooperative agreement, funded by NETL (No. DE-FC26-00NT40840), consists of four tasks: Technology Selection, Technology Development, Technology Verification, and System Engineering. As currently conceived, ETA will address the needs of as many technologies as appropriate under its current 3-year term. There are currently four technical subtasks: Long-Term Stewardship Initiative at the Mound Plant Site; Photocatalysis of Mercury-Contaminated Water; Subcritical Water Treatment of PCB and Metal-Contaminated Paint Waste; and Vegetative Covers for Low-Level Waste Repositories. This report covers activities during the second six months of the three-year ETA program.

  7. A preliminary analysis of {eta}'{yields}{eta}{pi}{pi} in chiral theories

    SciTech Connect

    Escribano, R.

    2010-08-05

    Preliminary results for the Dalitz plot distribution of {eta}'{yields}{eta}{pi}{pi} decays in the frameworks of Large-N{sub c} Chiral Perturbation Theory and Resonance Chiral Theory are given. We hope our results to be of some relevance for the present and forthcoming analysis of these decays at GAMS, CLEO, VES, KLOE-2, Crystal Ball, Crystal Barrel, WASA, and BES-III.

  8. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  9. Formation and characterization of the oxygen-rich hafnium dioxygen complexes: OHf(eta2-O2)(eta2-O3), Hf(eta2-O2)3, and Hf(eta2-O2)4.

    PubMed

    Gong, Yu; Zhou, Mingfei

    2007-09-20

    Hafnium atom oxidation by dioxygen molecules has been investigated using matrix isolation infrared absorption spectroscopy. The ground-state hafnium atom inserts into dioxygen to form primarily the previously characterized HfO(2) molecule in solid argon. Annealing allows the dioxygen molecules to diffuse and react with HfO(2) to form OHf(eta(2)-O(2))(eta(2)-O(3)), which is characterized as a side-on bonded oxo-superoxo hafnium ozonide complex. Under visible light (532 nm) irradiation, the OHf(eta(2)-O(2))(eta(2)-O(3)) complex either photochemically rearranges to a more stable Hf(eta(2)-O(2))(3) isomer, a side-on bonded di-superoxo hafnium peroxide complex, or reacts with dioxygen to form an unprecedented homoleptic tetra-superoxo hafnium complex: Hf(eta(2)-O(2))(4). The Hf(eta(2)-O(2))(4) complex is determined to possess a D(2d) geometry with a tetrahedral arrangement of four side-on bonded O(2) ligands around the hafnium atom, which thus presents an 8-fold coordination. These oxygen-rich complexes are photoreversible; that is, formation of Hf(eta(2)-O(2))(3) and Hf(eta(2)-O(2))(4) is accompanied by demise of OHf(eta(2)-O(2))(eta(2)-O(3)) under visible (532 nm) light irradiation and vice versa with UV (266 nm) light irradiation.

  10. Some Comments on the Decays of eta (550)

    DOE R&D Accomplishments Database

    Veltman, M.; Yellin, J.

    1966-07-01

    Various decay modes of the {eta}(500) are discussed. The relations, through SU{sub 3} and the Gell-Mann, Sharp, Wagner model, between the {eta}-decay modes and the modes {eta} {yields} {pi}{pi}{gamma), {pi}{sup 0} {yields} {gamma}{gamma} are investigated taking into account {eta}-{eta}{sup *} mixing. The present experimental values for the neutral branching ratios plus the shape of the {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} Dalitz plot are shown to require a 25% {vert_bar}{Delta}{rvec I}{vert_bar} = 3 contribution to the {eta} {yields} 3{pi} amplitude. The connection between a possible charge asymmetry in {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} and the branching ratio {Gamma}{sub {eta} {yields} {pi}{sup 0}e{sup +}e{sup {minus}}}/{Gamma}{sub {eta}}{sup all} is investigated in the framework of a model proposed earlier by several authors. It is shown that there is no conflict between the existing data and this model. The Dalitz plot distribution of {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} is discussed under various assumptions about the properties of the interaction responsible for the decay. (auth)

  11. etas_solve: A robust program to estimate the ETAS parameters

    NASA Astrophysics Data System (ADS)

    Yagi, Y.; Kasahara, A.

    2015-12-01

    The epidemic-type aftershock sequence (ETAS) model introduced by Ogata (1988) has been widely used to quantitatively describe seismicity (e.g. Ogata, 1992; Llenos et al., 2009). However, only a few programs for estimation of the ETAS parameters are publicly available, and it is difficult to automatically apply some of them to observed data due to initial value dependence (e.g. Ogata, 2006). A robust ETAS estimation program is required to meet the recent enhancement of earthquake catalogs. In this study, we developed a new program, etas_solve, that is based on Newton's method and calculates exact gradient and Hessian by using the automatic differentiation technique (Griewank, 1989). The program also supports auxiliary window in time and magnitude (Wang et al., 2010).To demonstrate robustness of the developed program, we tested the dependence of estimated parameters on the choice of initial value by running the program from 1,024 randomly chosen initial values, and then compared the results with that of SAPP (Ogata 2006). We used aftershock data of 26th July 2003 earthquake of M6.2 at the northern Miyagi japan, which is shipped with SAPP, as a testing data. We found that estimation values with etas_solve were independent of the initial value for the testing data, while that with SAPP were varied with the initial value. Although there was initial value dependence in the SAPP's results, the estimated values by SAPP with small (≤10-5) gradient coincided with the solution by etas_solve. etas_solve took longer computation time per iteration than SAPP due to the exact Hessian calculation, but total execution time was comparable to that of SAPP since less number of iterations for convergence was required. In addition, etas_solve was faster than SAPP on multicore machines (around 8-fold speed up with a 16 core machine) since etas_solve is parallelized by OpenMP.etas_solve is written in Fortran and distributed under GNU General Public License at https

  12. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role

    PubMed Central

    Ruairuen, Watcharee

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  13. Improved seasonal drought forecasts using reference evapotranspiration anomalies

    NASA Astrophysics Data System (ADS)

    McEvoy, Daniel J.; Huntington, Justin L.; Mejia, John F.; Hobbins, Michael T.

    2016-01-01

    A novel contiguous United States (CONUS) wide evaluation of reference evapotranspiration (ET0; a formulation of evaporative demand) anomalies is performed using the Climate Forecast System version 2 (CFSv2) reforecast data for 1982-2009. This evaluation was motivated by recent research showing ET0 anomalies can accurately represent drought through exploitation of the complementary relationship between actual evapotranspiration and ET0. Moderate forecast skill of ET0 was found up to leads of 5 months and was consistently better than precipitation skill over most of CONUS. Forecasts of ET0 during drought events revealed high categorical skill for notable warm-season droughts of 1988 and 1999 in the central and northeast CONUS, with precipitation skill being much lower or absent. Increased ET0 skill was found in several climate regions when CFSv2 forecasts were initialized during moderate-to-strong El Niño-Southern Oscillation events. Our findings suggest that ET0 anomaly forecasts can improve and complement existing seasonal drought forecasts.

  14. Physics and Outlook for Rare, All-neutral Eta Decays

    SciTech Connect

    Mack, David J.

    2014-06-01

    The $\\eta$ meson provides a laboratory to study isospin violation and search for new flavor-conserving sources of C and CP violation with a sensitivity approaching $10^{-6}$ of the isospin-conserving strong amplitude. Some of the most interesting rare $\\eta$ decays are the neutral modes, yet the effective loss of photons from the relatively common decay $\\eta \\rightarrow 3\\pi^0 \\rightarrow 6\\gamma$ (33$\\%$) has largely limited the sensitivity for decays producing 3-5$\\gamma$'s. Particularly important relevant branches include the highly suppressed $\\eta \\rightarrow \\pi^0 2\\gamma \\rightarrow 4\\gamma$, which provides a rare window on testing models of $O(p^6)$ contributions in ChPTh, and $\\eta \\rightarrow 3\\gamma$ and $\\eta \\rightarrow 2\\pi^0 \\gamma \\rightarrow 5\\gamma$ which provide direct constraints on C violation in flavor-conserving processes. The substitution of lead tungstate in the forward calorimeter of the GluEx setup in Jefferson Lab's new Hall D would allow dramatically improved measurements. The main niche of this facility, which we call the JLab Eta Factory (JEF), would be $\\eta$ decay neutral modes. However, this could likely be expanded to rare $\\eta'(958)$ decays for low energy QCD studies as well as $\\eta$ decays involving muons for new physics searches.

  15. Eta-mesic nuclei: Past, present, future

    DOE PAGES

    Haider, Q.; Liu, Lon -Chang

    2015-09-23

    Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η–nucleon interaction leading to the formation of an η–mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η–mesic nucleus 25Mgηmore » and other promising experimental results, future direction in searching for more η–mesic nuclei is suggested.« less

  16. Eta-mesic nuclei: Past, present, future

    SciTech Connect

    Haider, Q.; Liu, Lon -Chang

    2015-09-23

    Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η–nucleon interaction leading to the formation of an η–mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η–mesic nucleus 25Mgη and other promising experimental results, future direction in searching for more η–mesic nuclei is suggested.

  17. Concerning the relationship between evapotranspiration and soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1987-01-01

    The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.

  18. Eta Carinae and Other Luminous Blue Variables

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2006-01-01

    Luminous Blue Variables (LBVs) are believed to be evolved, extremely massive stars close to the Eddington Limit and hence prone to bouts of large-scale, unstable mass loss. I discuss current understanding of the evolutionary state of these objects, the role duplicity may play and known physical characteristics of these stars using the X-ray luminous LBVs Eta Carinae and HD 5980 as test cases.

  19. GHRS Observations of LISM towards eta UMa

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.

    1998-01-01

    The star eta UMa (l=101(deg) , b=+65(deg) , d=31 pc) samples local interstellar matter (LISM) in a high latitude region. The Sun is ``above'' most of the mass of the Local Fluff cloud complex, yielding low total interstellar column densities towards eta UMa. Thus cloud properties can be determined with minimal confusion caused by velocity component blending in this sightline. The physical properties of the cloud surrounding the solar system become the boundary conditions of the solar system. A key property of the surrounding cloud is the proton density, since the Alfven velocity regulates the formation of a bow shock around the heliosphere, and since charge exchange between interstellar p(+) and H(deg) yields a pile-up of H(deg) at the heliopause. As a result, the interstellar electron density in the surrounding cloud is an important parameter in understanding the configuration of the outer heliosphere regions. We present GHRS Echelle A and Echelle B data on C({deg) *}, C(deg) , Mg(deg) and Mg(+) . These data allow us to compare electron densities as estimated from the ratios N(C({deg) *})/N(C(deg) ) versus N(Mg(deg) )/N(Mg(+) ) for a relatively simple sightline. These electron densities are also compared to electron densities determined from optical Ca(+) observations towards eta UMa by Frisch and Welty (in preparation).

  20. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration's Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ???100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world

  1. Evapotranspiration Retrieval through Optical/Thermal Satellite Imagery and Ground Measurements in the Green River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Pradhan, N.; Hendrickx, J. M.; Ogden, F. L.; Wollf, S. W.

    2010-12-01

    Remote sensing methods are increasingly employed in combination with modeling for evapotranspiration estimation because they can provide multi-temporal, spatially-distributed estimates of key variables based on spatially distributed measurements. The approach for estimating evapotranspiration with remotely sensed data couples thermal and optical remote sensing with energy balance models such as: SEBAL, Surface Energy Balance Algorithms for Land, and METRICtm, Mapping Evapotranspiration at high Resolution using Internalized Calibration. The objective of this study is to investigate how ground measurements and satellite imagery at different scales can be combined to retrieve actual evapotranspiration over large watersheds. Scales of ground measurements are: (1) point scale that is typical for regular meteorological measurements such as air temperature, relative humidity, solar radiation, and wind speed; (2) footprint scale that varies from about 5,000 m2 for eddy-covariance measurements of sensible and latent heat fluxes to about 5,000,000 m2 for scintillometer sensible heat flux measurements when optical/thermal Landsat and MODIS satellites pass over around 10 am. In our analysis, we focused on evapotranspiration or consumptive use associated with irrigated agriculture in the Green River Basin in Wyoming that is the main headwater tributary of the entire Colorado River Basin. Ground-based meteorological stations, eddy-covariance and large-aperture scintillometers were set up in Pinedale, Green River basin, Wyoming to conduct the research. METRIC is used to retrieve evapotranspiration estimates from Landsat5 (30-120 m resolution) and MODIS (250-1000 m resolution) imagery.

  2. Study of B meson decays with excited eta and eta' mesons.

    PubMed

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Tico, J Garra; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H

    2008-08-29

    Using 383 x 10(6) BBover pairs from the BABAR data sample, we report results for branching fractions of six charged B-meson decay modes, where a charged kaon recoils against a charmless resonance decaying to KKover* or etapipi final states with mass in the range (1.2-1.8) GeV/c2. We observe a significant enhancement at the low KKover* invariant mass which is interpreted as B+-->eta(1475)K+, find evidence for the decay B+-->eta(1295)K+, and place upper limits on the decays B+-->eta(1405)K+, B+-->f1(1285)K+, B+-->f1(1420)K+, and B+-->phi(1680)K+. PMID:18851601

  3. Interaction of eta mesons with nuclei.

    PubMed

    Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K

    2013-06-01

    Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status

  4. Measurement of the gamma gamma* --> eta and gamma gamma* --> eta' transition form factors

    SciTech Connect

    del Amo Sanchez et al, P.

    2011-02-07

    We study the reactions e{sup +}e{sup -} {yields} e{sup +}e{sup -} {eta}{sup (/)} in the single-tag mode and measure the {gamma}{gamma}* {yields} {eta}{sup (/)} transition form factors in the momentum transfer range from 4 to 40 GeV{sup 2}. The analysis is based on 469 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.

  5. Form and Actuality

    NASA Astrophysics Data System (ADS)

    Bitbol, Michel

    A basic choice underlies physics. It consists of banishing actual situations from theoretical descriptions, in order to reach a universal formal construct. Actualities are then thought of as mere local appearances of a transcendent reality supposedly described by the formal construct. Despite its impressive success, this method has left major loopholes in the foundations of science. In this paper, I document two of these loopholes. One is the problem of time asymmetry in statistical thermodynamics, and the other is the measurement problem of quantum mechanics. Then, adopting a broader philosophical standpoint, I try to turn the whole picture upside down. Here, full priority is given to actuality (construed as a mode of the immanent reality self-reflectively being itself) over formal constructs. The characteristic aporias of this variety of "Copernican revolution" are discussed.

  6. Evapotranspiration in Subtropical Climate: Measurements and predictions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) loss is estimated at about 80-85% of annual precipitation in South Florida. Accurate prediction of ET is an important part of the implementation of the Comprehensive Everglades Restoration Plan (CERP). In the USDA's Everglades Agro-Hydrology Model (EAHM), the daily soil root...

  7. Long-term lysimeter data on evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long term crop evapotranspiration (ET) data measured using large weighing lysimeters have only been gathered in a few places in the world, yet are of great importance for ground truthing of many models of plant water use, mesoscale climate, remote sensing estimation of ET, climate change and climate...

  8. Estimation of actual evapotranspiration using measured and calculated values of bulk surface resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently the United Nations-Food and Agriculture Organization (FAO) recommends using the Penman-Monteith method for estimating ET over all other meteorological methods. The principal limitation of using the generalized form of the Penman-Monteith equation is in obtaining accurate values for the bu...

  9. Evaluation of Water Stress Coefficient Methods to Estimate Actual Corn Evapotranspiration in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract for Kullberg Hydrology Days: Abstract. Increased competition for water resources is placing pressure on the agricultural sector to remain profitable while reducing water use. Remote sensing techniques have been developed to monitor crop water stress and produce information for evapotranspi...

  10. Vegetation impact on mean annual evapotranspiration at a global catchment scale

    NASA Astrophysics Data System (ADS)

    Peel, Murray C.; McMahon, Thomas A.; Finlayson, Brian L.

    2010-09-01

    Research into the role of catchment vegetation within the hydrologic cycle has a long history in the hydrologic literature. Relationships between vegetation type and catchment evapotranspiration and runoff were primarily assessed through paired catchment studies during the 20th century. Results from over 200 paired catchment studies from around the world have been reported in the literature. Two constraints on utilizing the results from paired catchment studies in the wider domain have been that the catchment areas studied are generally (1) small (<10 km2) and (2) from a narrow range of climate types. The majority of reported paired catchment studies are located in the USA (˜47%) and Australia (˜27%) and experience mainly temperate (Köppen C) and cold (Köppen D) climate types. In this paper we assess the impact of vegetation type on mean annual evapotranspiration through a large, spatially, and climatically diverse data set of 699 catchments from around the world. These catchments are a subset of 861 unregulated catchments considered for the analysis. Spatially averaged precipitation and temperature data, in conjunction with runoff and land cover information, are analyzed to draw broad conclusions about the vegetation impact on mean annual evapotranspiration. In this analysis any vegetation impact signal is assessed through differences in long-term catchment average actual evapotranspiration, defined as precipitation minus runoff, between catchments grouped by vegetation type. This methodology differs from paired catchment studies where vegetation impact is assessed through streamflow responses to a controlled, within catchment, land cover change. The importance of taking the climate type experienced by the catchments into account when assessing the vegetation impact on evapotranspiration is demonstrated. Tropical and temperate forested catchments are found to have statistically significant higher median evapotranspiration, by about 170 mm and 130 mm

  11. A rational function approach for estimating land surface evapotranspiration based on the complementary hypothesis

    NASA Astrophysics Data System (ADS)

    Han, S.; Hu, H.; Tian, F.

    2007-12-01

    Evapotranspiration, which occurs in the boundary layer between the land surface and the bottom atmospheric layer, plays an important role in both water balance and energy balance. Models based on the Penman hypothesis (1948) and the Budyko hypothesis (1974) estimate actual evapotranspiration from a land surface process prospective, while models based on the complementary hypothesis (Bouchet, 1963) do this from the atmospheric perspective. Penman-based models require detailed data on soil moisture or stomatal resistance (Crago and Crowley, 2006); Budyko models, e.g. Fu's equation (1981), estimate the mean annual evapotranspiration only; while models based on the complementary hypothesis, including advection aridity model (AA for short) (Brutsaert and Stricker, 1979) and the Granger model (1989, 1991, 1996) estimate actual evapotranspiration at various time scales using climate data only. The AA and Granger models use different definitions for wet environment evaporation and potential evaporation and their comparative study are conducted by several researchers (Xu and Singh, 2005; Liu et al., 2006; Crago and Crowley, 2006). In this paper we explore the uniformity of the two complementary models by dimensional analysis. A new index (the proportion of the radiation term in Penman equation, termed the air humidity index) is proposed as a measure of the wetness of the evaporating surface via the wetness of over-passing air, and a general functional form for actual evaporation is developed in which the evaporation ratio is expressed as a function of the air humidity index. The similarity and differences between the AA and Granger models are interpreted via this rational function approach, and a new power function method is proposed. The theoretical analysis is confirmed by observational data under various climate conditions.

  12. Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Fulton, Christopher E.

    2011-01-01

    This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual

  13. A LIGHTHOUSE EFFECT IN ETA CARINAE

    SciTech Connect

    Madura, Thomas I.; Groh, Jose H.

    2012-02-20

    We present a new model for the behavior of scattered time-dependent, asymmetric near-UV emission from the nearby ejecta of {eta} Car. Using a three-dimensional (3D) hydrodynamical simulation of {eta} Car's binary colliding winds, we show that the 3D binary orientation derived by Madura et al. in 2012 is capable of explaining the asymmetric near-UV variability observed in the Hubble Space Telescope Advanced Camera for Surveys/High Resolution Camera F220W images of Smith et al.. Models assuming a binary orientation with i Almost-Equal-To 130 Degree-Sign -145 Degree-Sign , {omega} Almost-Equal-To 230 Degree-Sign -315 Degree-Sign , P.A.{sub z} Almost-Equal-To 302 Degree-Sign -327 Degree-Sign are consistent with the observed F220W near-UV images. We find that the hot binary companion does not significantly contribute to the near-UV excess observed in the F220W images. Rather, we suggest that a bore-hole effect and the reduction of Fe II optical depths inside the wind-wind collision cavity carved in the extended photosphere of the primary star lead to the time-dependent directional illumination of circumbinary material as the companion moves about in its highly elliptical orbit.

  14. eta Carinae: physical information from photometry

    NASA Astrophysics Data System (ADS)

    van Genderen, A. M.; de Groot, M.; Sterken, C.

    2001-06-01

    The very first physical information one can get from optical photometry is that eta Car is variable. Figure 1 shows the light curve from 1600 to 2000. Most reseachers agree with the main interpretations of the various features as shown by the light curve. The eruptive phases are called S Dor- (SD-) eruptions as opposed to the S Dor- (SD-) phases, which are responsible for the oscillating light variations (due to slow pulsations) with a time-scale of years (van Genderen 2001). The rising trend after 1935 is called the 'secular rise' and is mainly due to a decrease of circumstellar extinction, i.e. a decrease of self-extinction by the expanding Homunculus. A model for the trend of the decrease fits the time interval 1935-2000 satisfactorily (van Genderen et al. 1994, and see dotted curve in Figure 1 presented here). The optical (and near-IR) photometry of eta Car is hampered by the fact that only integrated photometry of the whole bipolar nebula is possible. However, we have luck: the nebula is mainly a reflection nebula. Thus, in analogy with a Chinese lantern: if the flame flickers, the integrated light flickers as well. Therefore, it is still possible to extract from the integrated photometry, important physical characteristics of the variable star, although heavily veiled by dust and gas. The effect of smearing out by reflections in the homunculus is presumably small, see discussion in van Genderen et al. (1999).

  15. Hubble Space Telescope imaging of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hester, J. J.; Westphal, James A.; Light, Robert M.; Currie, Douglas G.; Groth, Edward J.

    1991-01-01

    New high spatial resolution observations of the material around Eta Carinae, obtained with the Hubble Space Telescope Wide Field/Planetary Camera, are presented. The star Eta Carinae is one of the most massive and luminous stars in the Galaxy, and has been episodically expelling significant quantities of gas over the last few centuries. The morphology of the bright central nebulosity (the homunculus) indicates that it is a thin shell with very well defined edges, and is clumpy on 0.2 arcsec (about 10 to the 16th cm) scales. An extension to the northeast of the star (NN/NS using Walborn's 1976 nomenclature) appears to be a stellar jet and its associated bow shock. The bow shock is notable for an intriguing series of parallel linear features across its face. The S ridge and the W arc appear to be part of a 'cap' of emission located to the SW and behind the star. Together, the NE jet and the SW cap suggest that the symmetry axis for the system runs NE-SW rather than SE-NW, as previously supposed. Overall, the data indicate that the material around the star may represent an oblate shell with polar blowouts, rather than a bipolar flow.

  16. Branching Fraction and P-violation Charge Asymmetry Measurements for B-meson Decays to eta K+-, eta pi+-, eta'K, eta' pi+-, omega K, and omega pi+-

    SciTech Connect

    Aubert, B.

    2007-06-28

    The authors present measurements of the branching fractions for B{sup 0} meson decays to {eta}{prime}K{sup 0} and {omega}K{sup 0}, and of the branching fractions and CP-violation charge asymmetries for B{sup +} meson decays to {eta}{pi}{sup +}, {eta}K{sup +}, {eta}{prime}{pi}{sup +}, {eta}{prime}K{sup +}, {omega}{pi}{sup +}, and {omega}K{sup +}. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 383 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation. The measurements agree with previous results; they find no evidence for direct CP violation.

  17. Simple analytical model of evapotranspiration in the presence of roots.

    PubMed

    Cejas, Cesare M; Hough, L A; Castaing, Jean-Christophe; Frétigny, Christian; Dreyfus, Rémi

    2014-10-01

    Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer. Water is pumped by the roots, channeled to the leaf surface, and released into the surrounding air by a process called transpiration. Prediction of the evapotranspiration of water over time in the presence of roots helps keep track of the amount of water that remains in the soil. Using a controlled visual setup of a two-dimensional model soil consisting of monodisperse glass beads, we perform experiments on actual roots grown under different relative humidity conditions. We record the total water mass loss in the medium and the position of the evaporating front that forms within the medium. We then develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation fluxes and includes empirical assumptions on the quantity of open stomata in the leaves, where water transpiration occurs. Comparison between the model and experimental results shows excellent prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of roots. The model also provides a way to predict the lifetime of a plant. PMID:25375532

  18. Simple analytical model of evapotranspiration in the presence of roots

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare M.; Hough, L. A.; Castaing, Jean-Christophe; Frétigny, Christian; Dreyfus, Rémi

    2014-10-01

    Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer. Water is pumped by the roots, channeled to the leaf surface, and released into the surrounding air by a process called transpiration. Prediction of the evapotranspiration of water over time in the presence of roots helps keep track of the amount of water that remains in the soil. Using a controlled visual setup of a two-dimensional model soil consisting of monodisperse glass beads, we perform experiments on actual roots grown under different relative humidity conditions. We record the total water mass loss in the medium and the position of the evaporating front that forms within the medium. We then develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation fluxes and includes empirical assumptions on the quantity of open stomata in the leaves, where water transpiration occurs. Comparison between the model and experimental results shows excellent prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of roots. The model also provides a way to predict the lifetime of a plant.

  19. Reference Crop Evapotranspiration obtained from the geostationary satellite MSG (METEOSAT).

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Trigo, I. F.; Lorite, I. J.; Cruz-Blanco, M.; Gavilán, P.

    2012-04-01

    Among others, the scope of the Land Surface Analysis Satellite Applications Facility (LSA SAF) is to increase benefit from the EUMETSAT geostationary Satellites MSG data related to land, land-atmosphere interactions and biophysical applications. This is achieved by developing techniques, products and algorithms that will allow an effective use of MSG data, if needed, combined with data from numerical weather prediction models (e.g., ECMWF). Although directly designed to improve the observation of meteorological systems, the spectral characteristics, time resolution and area coverage offered by MSG allow for their use in a broad spectrum of other applications, for instance in agro- and hydrometeorology. This study concerns a method to determine how much water is needed for irrigation. Note that this is complementary to the actual evapotranspiration LSA SAF product. The objective of this study is to present a novel semi-empirical method to determine the Reference Crop Evapotranspiration (ET0) from the down-welling shortwave radiation and air temperature obtained through LSF SAF. ET0 is defined in the FAO Irrigation and Drainage report 56 (FAO56) and it is used to determine water requirements of agricultural crops in irrigated regions. It is evaluated with a special version of the Penman-Monteith equation (PM_FAO56) using data of a weather station installed over non-stressed grass. Such stations are expensive and very labor consuming. We developed our method for semi-arid regions where appropriate weather stations needed for FAO56 ET0 are missing. This concerns huge areas in the world. High-quality FAO-grass station near Cordoba, Spain were used, where, besides all input for PM-FAO56, independent lysimeter data are collected. In addition, it will be shown that significant errors in ET0 can occur if meteorological gathered over dry terrain will be used as input of PM-FAO56. For this purpose data sets obtained in different semi-arid regions will be analyzed.

  20. Chiral corrections to the anomalous 2{gamma} decays of {pi}{sup 0}, {eta} and {eta}{prime}

    SciTech Connect

    Issler, D.

    1990-11-01

    To any order in chiral perturbation theory, the anomalous Wess-Zumino term is shown to generate only chirally invariant counterterms. Explicit examples of 0(p{sub 6}) terms generated by one-loop graphs are given, some of which are relevant to the two-photon decays of {pi}{sup o}, {eta} and {eta}{prime}.

  1. Measurement of Branching Fractions in Radiative BDecays to eta K gamma and Search for B Decays to eta' K gamma

    SciTech Connect

    Aubert, B.

    2006-03-31

    The authors present measurements of the B {yields} {eta}K{gamma} branching fractions and upper limits for the B {yields} {eta}'K{gamma} branching fractions. For B{sup +} {yields} {eta}K{sup +}{gamma} they also measure the time-integrated charge asymmetry. The data sample, collected with the BABAR detector at the Stanford Linear Accelerator Center, represents 232 x 10{sup 6} produced B{bar B} pairs. The results for branching fractions and upper limits at 90% C.L. in units of 10{sup -6} are: {Beta}(B{sup 0} {yields} {eta}K{sup 0}{gamma}) = 11.3{sub -2.6}{sup +2.8} {+-} 0.6, {Beta}(B{sup +} {yields} {eta}K{sup +}{gamma}) = 10.0 {+-} 1.3 {+-} 0.5, {Beta}(B{sup 0} {yields} {eta}'K{sup 0}{gamma}) < 6.6, {Beta}(B{sup +} {yields} {eta}'K{sup +}{gamma}) < 4.2. The charge asymmetry in the decay B{sup +} {yields} {eta}K{sup +}{gamma} is {Alpha}{sub ch} = -0.09 {+-} 0.12 {+-} 0.01. The first errors are statistical and the second systematic.

  2. Differential cross sections for the reactions {gamma}p{yields}p{eta} and {gamma}p{yields}p{eta}{sup '}

    SciTech Connect

    Williams, M.; Krahn, Z.; Applegate, D.; Bellis, M.; Meyer, C. A.; Dey, B.; Dickson, R.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Careccia, S. L.; Dodge, G. E.; Guler, N.; Klein, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.

    2009-10-15

    High-statistics differential cross sections for the reactions {gamma}p{yields}p{eta} and {gamma}p{yields}p{eta}{sup '} have been measured using the CEBAF large acceptance spectrometer (CLAS) at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The {eta}{sup '} results are the most precise to date and provide the largest energy and angular coverage. The {eta} measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the {eta}{sup '} measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

  3. Predicting interannual variability in evapotranspiration rates

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-11-01

    The amount of evapotranspiration (ET), the sum of all the water that evaporates from the surface or is drawn up through plants and vented as vapor, is a strong controlling factor for the amount of water left over for other purposes, such as groundwater recharge or surface runoff. Understanding how ET rates vary from year to year is challenging, because the change is inherently controlled by small-scale variations in vegetation type and density, soil properties, and meteorological conditions. Yet there has been some success understanding variations in ET at the watershed scale. Analyzing daily measurements of evapotranspiration for 547 watersheds across the United States from 1983 to 2006, Cheng et al. identified a strong linear relationship between two slightly different ratios: the ratio between the watershed's potential evapotranspiration (PET) and precipitation and that between observed ET and precipitation. This is surprising because many previous studies suggested a nonlinear relationship between the two ratios by following the Budyko framework, a dominant approach in water cycle modeling that relates ET rates to the amount of energy and water in the system.

  4. Detection of a Hot Binary Companion of eta Carinae

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Massa, D.; Hillier, D. J.

    2006-01-01

    A hot companion of eta Carinae has been detected using high resolution spectra (905 - 1 180 Angsroms) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Observations were obtained at two epochs of the 2024-day orbit: 2003 June during ingress to the 2003.5 X-ray eclipse and 2004 April several months after egress. These data show that essentially all the far-UV flux from eta Car shortward of Lyman alpha disappeared at least two days before the start of the X-ray eclipse (2003 June 29), implying that the hot companion, eta Car By was also eclipsed by the dense wind or extended atmosphere of eta Car A. Analysis of the far-UV spectrum shows that eta Car B is a luminous hot star. N II 1084-1086 emission disappears at the same time as the far-UV continuum, indicating that this feature originates from eta Car B itself or in close proximity to it. The strong N II emission also raises the possibility that the companion star is nitrogen rich. The observed FUV flux levels and spectral features, combined with the timing of their disappearance, are consistent with eta Carinae being a massive binary system.

  5. Detection of a Hot Binary Companion of eta Carinae

    NASA Technical Reports Server (NTRS)

    Sonnebom, G.; Iping, R. C.; Gull, T. R.; Massa, D. L.; Hillier, D. J.

    2006-01-01

    A hot companion of eta Carinae has been detected using high resolution spectra (905 - 1180 A) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Observations were obtained at two epochs of the 2024-day orbit: 2003 June during ingress to the 2003.5 X-ray eclipse and 2004 April several months after egress. These data show that essentially all the far-UV flux from eta Car shortward of Lyman alpha disappeared at least two days before the start of the X-ray eclipse (2003 June 29), implying that the hot companion, eta Car B, was also eclipsed by the dense wind or extended atmosphere of eta Car A. Analysis of the far-UV spectrum shows that eta Car B is a luminous hot star. N II 1084-1086 emission disappears at the same time as the far-UV continuum, indicating that this feature originates from eta Car B itself or in close proximity to it. The strong N II emission also raises the possibility that the companion star is nitrogen rich. The observed FUV flux levels and spectral features, combined with the timing of their disappearance, is consistent with eta Carinae being a massive binary system

  6. Structure and mechanism of human DNA polymerase [eta

    SciTech Connect

    Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji; Ramón-Maiques, Santiago; Gregory, Mark; Lee, Jae Young; Masutani, Chikahide; Lehmann, Alan R.; Hanaoka, Fumio; Yang, Wei

    2010-11-03

    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.

  7. The Rapid Brightening of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Martin, John C.; Davidson, Kris; Mehner, Andrea; Humphreys, Roberta M.

    2016-01-01

    Eta Carinae is one of the most dynamic and well-observed massive stars. Its bipolar Homunculus Nebula and other observations imply it has a strong latitude dependent stellar wind. The significant brightening of the star itself over the last two decades has been commonly explained as an evolution of the latitude structure of the wind , change in mass-loss rate, and/or clearing of circumstellar material in our direct line sight. Hubble Space Telescope images (with a much higher spatial resolution than ground-based images) document an increase in contrast between the brightness of the star and the Homunculus reflection nebula. We present measurements of the nebula's brightness, sampling the changing brightness of the star viewed from angles differing from our own direct line of sight. We also present ultraviolet photometry of the star synthesized from recent HST/STIS observations.

  8. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, Alex M.

    1989-01-01

    From July 1982 through June 1984, a study was made of the evapotranspiration and microclimate at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily awnless brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy budget with the Bowen ratio, (2) an aerodynamic profile, and (3) a soil-based water budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data and then summed by days and months. Yearly estimates (for March through November) by these methods were in close agreement: 648 and 626 millimeters, respectively. Daily estimates reach a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of total precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soilmoisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) at the Sheffield site were virtually identical to long-term averages from nearby National Weather Service

  9. Investigating Landsat-derived forest evapotranspiration in the Amazon

    NASA Astrophysics Data System (ADS)

    Khand, K. B.; Numata, I.; Kjaersgaard, J.; Cochrane, M. A.

    2015-12-01

    Nearly half of annual rainfall in the Amazon rainforest region is returned to the atmosphere through evapotranspiration (ET). However, this land-atmosphere water vapor feedback in Amazonia has been continuously disturbed by anthropogenic influence and climate change such as severe drought events. While forest ET dynamics in the Amazon have been studied from both point estimates (or in-situ measurements) and regional land-surface models as well as coarse-spatial satellite data, finer spatial data is required to address the spatial variability of forest ET associated with both forest disturbances and extreme climate events. We use Landsat-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model to generate high-resolution (30 m) ET products and investigate its potential to characterize local and regional ET behavior by comparison to ET calculated from flux tower data. METRIC estimates actual ET as residual of the surface energy balance and is applied to capture the spatial variability of forest ET. The flux tower data were collected at two sites with different forest types: Para with wet equatorial forest and Rondônia with seasonally dry tropical forest. Our study was conducted on the dry season of the years 2003 and 2005 for Para, and 2000 through 2002 for Rondônia as a function of data availability of both cloud-free Landsat images and meteorological data for METRIC processing. Daily gridded actual ET estimates from METRIC during the dry season were obtained using a cubic spline interpolation of ETrF (fraction of reference ET) values between the satellite image dates and multiplying by daily reference ET. Across the all study years, differences between the daily ET estimates for the selected image dates from METRIC and the flux towers were less than 1.2 mm/day, while on monthly basis, these averaged daily ET differences were much lower (< 0.5 mm). At Para, the correlation (R2) between the daily ET rates from METRIC and the

  10. Estimation of the parameters of ETAS models by Simulated Annealing.

    PubMed

    Lombardi, Anna Maria

    2015-02-12

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context.

  11. Estimation of the parameters of ETAS models by Simulated Annealing

    PubMed Central

    Lombardi, Anna Maria

    2015-01-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context. PMID:25673036

  12. Rainfall as proxy for evapotranspiration predictions

    NASA Astrophysics Data System (ADS)

    Collischonn, Bruno; Collischonn, Walter

    2016-10-01

    In this work, we evaluated the relationship between evapotranspiration and precipitation, based on the data recently made available by the Brazilian Meteorological Institute. ETP tend to be lower in rainy periods and vice-versa. This relationship was assessed both in physical and statistical ways, identifying the contribution of each explaining variable of ETP. We derived regression equations between monthly rainfall and ETP, which can be useful in studies where ETP time series are not available, such as reservoir design, irrigation management and flow forecast.

  13. A new DSSAT-CSM evapotranspiration module: ASCE standardized reference evapotranspiration with dual crop coefficient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the DSSAT-CSM series of crop models have been used for decades, new focus has been put on improving evapotranspiration (ET) simulation in crop models. A new ET module was added to the model code to calculate potential ET, which combines the ASCE Standardized Reference ET (both grass and alf...

  14. Eta Meson Production in Proton-Proton and Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    Total cross sections for eta meson production in proton - proton collisions are calculated. The eta meson is mainly produced via decay of the excited nucleon resonance at 1535 MeV. A scalar quantum field theory is used to calculate cross sections, which also include resonance decay. Comparison between theory and experiment is problematic near threshold when resonance decay is not included. When the decay is included, the comparison between theory and experiment is much better.

  15. Data-driven regionalization of river discharges and emergent land cover-evapotranspiration relationships across Sweden

    NASA Astrophysics Data System (ADS)

    Velde, Ype; Lyon, Steve W.; Destouni, Georgia

    2013-03-01

    in river discharge and river water quality, due to climate change and other drivers such as land cover change, pose both societal and ecosystem threats. Analyses of measured terrestrial river fluxes are key for identifying the drivers and quantifying the magnitudes of such riverine changes. In this paper, we develop and apply a data-driven regionalization approach using the dense network of discharge measurements in Sweden. The developed regionalization approach facilitates detailed mapping of discharges (Q) and change trends in Q across Sweden. Combining these with estimates of precipitation (P) and change trends in P, we estimated actual evapotranspiration (AET) and change trends in AET via catchment-scale water balance constraints. We identified characteristic land cover-evapotranspiration relationships by plotting water use efficiency (AET/P) against energy use efficiency (AET/potential ET) for areas with unique land cover across Sweden. Our results show that wetlands have clearly lower water and energy use efficiencies compared to open waters, forests, and agriculture, and that agriculture has water and energy use efficiencies closest to those of open waters. We further compared the data-driven regionalization estimates of different water balance components with estimates of regional climate models (RCMs). The RCMs do not describe well the observed change trends in Sweden. In particular, for evapotranspiration, the observed change trends are not reproduced by any of the investigated 24 RCMs.

  16. Study of evapotranspiration and evaporation beneath the canopy in a buckwheat field

    NASA Astrophysics Data System (ADS)

    Yan, Haofang; Zhang, Chuan; Oue, Hiroki; Wang, Guoqing; He, Bin

    2015-11-01

    The determination of evaporation and transpiration separately is very important in improving water use efficiency and developing exact irrigation scheduling. Hourly crop evapotranspiration ( ET c) and soil evaporation ( E g) beneath the buckwheat canopy were measured using Bowen ratio energy balance method and micro-lysimeters, respectively. The total ET c and E g in the whole growth season of buckwheat were 187.4 and 72.1 mm, respectively. Crop coefficient of buckwheat plant was simulated by days after sowing (DAS) and leaf area index (LAI), the average values for four growth stages were 0.58, 0.59, 1.10, and 0.74; and soil evaporation coefficient (the ratio of soil evaporation to reference evapotranspiration) was modeled by soil water content at 5-cm depth by dividing the LAI into two stages. The relationship between the ratio of soil evaporation to actual evapotranspiration ( E g/ ET c) and LAI was decided. It was found that E g/ ET c decreased from 1 to 0.3 with the increase in LAI.

  17. The Role of Evapotranspiration on Soil Moisture Depletion in a Small Alaskan Subarctic Farm

    NASA Astrophysics Data System (ADS)

    Ruairuen, W.; Fochesatto, G. J.; Sparrow, E. B.; Schnabel, W.; Zhang, M.

    2013-12-01

    At high latitudes the period for agriculture production is very short (110 frost-free days) and strongly depends on the availability of soil water content for vegetables to grow. In this context the evapotranspiration (ET) cycle is key variable underpinning mass and energy balance modulating therefore moisture gradients and soil dryness. Evapotranspiration (ET) from field-grown crops water stress is virtually unknown in the subarctic region. Understanding ET cycles in high latitude agricultural ecosystem is essential in terms of water management and sustainability and projection of agricultural activity. To investigate the ET cycle in farming soils a field experiment was conducted in the summer of 2012 and 2013 at the University of Alaska Fairbanks Agricultural and Forestry Experiment Station combining micrometeorological and hydrological measurements. In this case experimental plots of lettuce (Lactuca sativa) plants were grown. The experiment evaluated several components of the ET cycle such as actual evapotranspiration, reference evaporation, pan evaporation as well as soil water content and temperature profiles to link them to the vegetable growing functions. We investigated the relationship of soil moisture content and crop water use across the growing season as a function of the ET cycle. Soil water depletion was compared to daily estimates of water loss by ET during dry and wet periods. We also investigated the dependence of ET on the atmospheric boundary layer flow patterns set by the synoptic large scale weather patterns.

  18. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    NASA Astrophysics Data System (ADS)

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, P.; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Nouvellon, Y.; Scholes, R.; Kutsch, W.

    2012-02-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  19. Adequacy of selected evapotranspiration approximations for hydrologic simulation

    USGS Publications Warehouse

    Sumner, D.M.

    2006-01-01

    Evapotranspiration (ET) approximations, usually based on computed potential ET (PET) and diverse PET-to-ET conceptualizations, are routinely used in hydrologic analyses. This study presents an approach to incorporate measured (actual) ET data, increasingly available using micrometeorological methods, to define the adequacy of ET approximations for hydrologic simulation. The approach is demonstrated at a site where eddy correlation-measured ET values were available. A baseline hydrologic model incorporating measured ET values was used to evaluate the sensitivity of simulated water levels, subsurface recharge, and surface runoff to error in four ET approximations. An annually invariant pattern of mean monthly vegetation coefficients was shown to be most effective, despite the substantial year-to-year variation in measured vegetation coefficients. The temporal variability of available water (precipitation minus ET) at the humid, subtropical site was largely controlled by the relatively high temporal variability of precipitation, benefiting the effectiveness of coarse ET approximations, a result that is likely to prevail at other humid sites.

  20. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    USGS Publications Warehouse

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.

    2012-01-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  1. Remote sensing of evapotranspiration using automated calibration: Development and testing in the state of Florida

    NASA Astrophysics Data System (ADS)

    Evans, Aaron H.

    Thermal remote sensing is a powerful tool for measuring the spatial variability of evapotranspiration due to the cooling effect of vaporization. The residual method is a popular technique which calculates evapotranspiration by subtracting sensible heat from available energy. Estimating sensible heat requires aerodynamic surface temperature which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for this problem by calibrating the relationship between sensible heat and retrieved surface temperature. Disadvantage of these calibrations are 1) user must manually identify extremely dry and wet pixels in image 2) each calibration is only applicable over limited spatial extent. Producing larger maps is operationally limited due to time required to manually calibrate multiple spatial extents over multiple days. This dissertation develops techniques which automatically detect dry and wet pixels. LANDSAT imagery is used because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet pixels are developed. Snapshots of retrieved evaporative fraction and actual evapotranspiration are compared to eddy covariance measurements for five study areas in Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available energy, roughness length and wind speed is tested. A technique for temporally interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and tested. The automated algorithm is successful at detecting wet and dry pixels (if they exist). Including wet pixels in calibration and assuming constant atmospheric conductance significantly improved results for all but Big Cypress and Gainesville. Evaporative fraction is not very sensitive to instantaneous available energy but it is sensitive to temperature when wet pixels are included because temperature is required for estimating wet pixel

  2. Estimating seasonal evapotranspiration from temporal satellite images

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.

  3. Dynamic Modeling of an Evapotranspiration Cap

    SciTech Connect

    Jacob J. Jacobson; Steven Piet; Rafael Soto; Gerald Sehlke; Harold Heydt; John Visser

    2005-10-01

    The U.S. Department of Energy is scheduled to design and install hundreds of landfill caps/barriers over the next several decades and these caps will have a design life expectancy of up to 1,000 years. Other landfill caps with 30 year design lifetimes are reaching the end of their original design life; the changes to these caps need to be understood to provide a basis for lifetime extension. Defining the attributes that make a successful cap (one that isolates the waste from the environment) is crucial to these efforts. Because cap systems such as landfill caps are dynamic in nature, it is impossible to understand, monitor, and update lifetime predictions without understanding the dynamics of cap degradation, which is most often due to multiple interdependent factors rather than isolated independent events. In an attempt to understand the dynamics of cap degradation, a computer model using system dynamics is being developed to capture the complex behavior of an evapotranspiration cap. The specific objectives of this project are to capture the dynamic, nonlinear feedback loop structures underlying an evapotranspiration cap and, through computer simulation, gain a better understanding of long-term behavior, influencing factors, and, ultimately, long-term cap performance.

  4. National Weather Service Forecast Reference Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Osborne, H. D.; Palmer, C. K.; Krone-Davis, P.; Melton, F. S.; Hobbins, M.

    2013-12-01

    The National Weather Service (NWS), Weather Forecasting Offices (WFOs) are producing daily reference evapotranspiration (ETrc) forecasts or FRET across the Western Region and in other selected locations since 2009, using the Penman - Monteith Reference Evapotranspiration equation for a short canopy (12 cm grasses), adopted by the Environmental Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI, 2004). The sensitivity of these daily calculations to fluctuations in temperatures, humidity, winds, and sky cover allows forecasters with knowledge of local terrain and weather patterns to better forecast in the ETrc inputs. The daily FRET product then evolved into a suite of products, including a weekly ETrc forecast for better water planning and a tabular point forecast for easy ingest into local water management-models. The ETrc forecast product suite allows water managers, the agricultural community, and the public to make more informed water-use decisions. These products permit operational planning, especially with the impending drought across much of the West. For example, the California Department of Water Resources not only ingests the FRET into their soil moisture models, but uses the FRET calculations when determining the reservoir releases in the Sacramento and American Rivers. We will also focus on the expansion of FRET verification, which compares the daily FRET to the observations of ETo from the California Irrigation Management Information System (CIMIS) across California's Central Valley for the 2012 water year.

  5. Satellite-based monitoring of cotton evapotranspiration

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  6. Landfill Gas Effects on Evapotranspirative Landfill Covers

    NASA Astrophysics Data System (ADS)

    Plummer, M. A.; Mattson, E.; Ankeny, M.; Kelsey, J.

    2005-05-01

    The performance of an evapotranspirative landfill cover can be adversely affected by transport of landfill gases to the plant root zone. Healthy plant communities are critical to the success and effectiveness of these vegetated landfill covers. Poor vegetative cover can result in reduced transpiration, increased percolation, and increased erosion regardless of the thickness of the cover. Visual inspections of landfill covers indicate that vegetation-free areas are not uncommon at municipal waste landfills. Data from soil profiles beneath these areas suggest that anaerobic conditions in the plant-rooting zone are controlling plant distribution. On the same landfill, aerobic conditions exist at similar depths beneath well-vegetated areas. The movement of methane and carbon dioxide, generated by degradation of organic wastes, into the overlying soil cover displaces oxygen in the root zone. Monitoring data from landfills in semi-arid areas indicate that barometric pumping can result in hours of anaerobic conditions in the root zone. Microbial consumption of oxygen in the root zone reduces the amount of oxygen available for plant root respiration but consumption of oxygen and methane also produce water as a reaction byproduct. This biogenic water production can be on the order of centimeters of water per year which, while increasing water availability, also has a negative feedback on transport of landfill gases through the cover. Accounting for these processes can improve evapotranspirative landfill cover design at other sites.

  7. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, A.M.

    1987-01-01

    From July 1982 through June 1984, a study was made of the microclimate and evapotranspiration at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy-budget with the Bowen ratio, (2) an aerodynamic-profile, and (3) a soil-based water-budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data, then summed by days and months. Yearly estimates for March through November, by these methods, were quite close--648 and 626 millimeters, respectively. Daily estimates range up to a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soil-moisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) were virtually identical to long-term averages from nearby National Weather Service stations. Solar radiation averaged 65

  8. Evaluation of different methods to estimate daily reference evapotranspiration in ungauged basins in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Fontoura, Jessica; Allasia, Daniel; Herbstrith Froemming, Gabriel; Freitas Ferreira, Pedro; Tassi, Rutineia

    2016-04-01

    Evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance. Due to the higher information requirements of the Penman-Monteith method and the existing data uncertainty, simplified empirical methods for calculating potential and actual evapotranspiration are widely used in hydrological models. This is especially important in Brazil, where the monitoring of meteorological data is precarious. In this study were compared different methods for estimating evapotranspiration for Rio Grande do Sul, the Southernmost State of Brazil, aiming to suggest alternatives to the recommended method (Penman-Monteith-FAO 56) for estimate daily reference evapotranspiration (ETo) when meteorological data is missing or not available. The input dataset included daily and hourly-observed data from conventional and automatic weather stations respectively maintained by the National Weather Institute of Brazil (INMET) from the period of 1 January 2007 to 31 January 2010. Dataset included maximum temperature (Tmax, °C), minimum temperature (Tmin, °C), mean relative humidity (%), wind speed at 2 m height (u2, m s-1), daily solar radiation (Rs, MJ m- 2) and atmospheric pressure (kPa) that were grouped at daily time-step. Was tested the Food and Agriculture Organization of the United Nations (FAO) Penman-Monteith method (PM) at its full form, against PM assuming missing several variables not normally available in Brazil in order to calculate daily reference ETo. Missing variables were estimated as suggested in FAO56 publication or from climatological means. Furthermore, PM was also compared against the following simplified empirical methods: Hargreaves-Samani, Priestley-Taylor, Mccloud, McGuiness-Bordne, Romanenko, Radiation-Temperature, Tanner-Pelton. The statistical analysis indicates that even if just Tmin and Tmax are available, it is better to use PM estimating missing variables from syntetic data than

  9. Basin scale estimates of evapotranspiration using GRACE and other observations

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Famiglietti, J. S.; Chen, J.; Seneviratne, S. I.; Viterbo, P.; Holl, S.; Wilson, C. R.

    2004-10-01

    Evapotranspiration is integral to studies of the Earth system, yet it is difficult to measure on regional scales. One estimation technique is a terrestrial water budget, i.e., total precipitation minus the sum of evapotranspiration and net runoff equals the change in water storage. Gravity Recovery and Climate Experiment (GRACE) satellite gravity observations are now enabling closure of this equation by providing the terrestrial water storage change. Equations are presented here for estimating evapotranspiration using observation based information, taking into account the unique nature of GRACE observations. GRACE water storage changes are first substantiated by comparing with results from a land surface model and a combined atmospheric-terrestrial water budget approach. Evapotranspiration is then estimated for 14 time periods over the Mississippi River basin and compared with output from three modeling systems. The GRACE estimates generally lay in the middle of the models and may provide skill in evaluating modeled evapotranspiration.

  10. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  11. A Model for Estimating Evapotranspiration on a Watershed Scale

    NASA Astrophysics Data System (ADS)

    Tuttle, S. E.; Salvucci, G.

    2010-12-01

    Large-scale understanding of evapotranspiration (ET) is important for climate modeling and water resources management. However, ET is related to a large number of physical and biological processes that vary across a wide range of spatial scales, thus complicating our ability to predict actual ET at the watershed scale. A statistical methodology based on the stationarity of soil water storage was created to evaluate ET models on a watershed scale. The method uses widely available streamflow (Q), precipitation (P) and meteorological data, which are assumed to be representative of the conditions within a given watershed. The method is tested at Ameriflux sites. For each site, we identify the nearest downstream USGS stream gage, which in turn defines a watershed (~50-5,000 km2) to which the method is applied. Free parameters in the ET model allow for variation in how the ET depends on factors such as plant physiology, air temperature, and the water content of the watershed (V). The water balance is then integrated over a period of time for each combination of free parameters to obtain a predicted time series of watershed-scale water storage and ET. Empirically, there is a large amount of information in P and Q about ET dynamics, but it is obscured by the changes in moisture storage over time (dV/dt). However, this storage tendency term can be filtered out using conditional averaging and employing the concept of statistical stationarity of moisture storage (Salvucci, 2001). This yields an approximation of the model error based on the degree to which the time series of simulated storage is stationary. The approximated error that results from the stationarity measure can be used to determine the combination of free parameters in the ET model that best approximates the true basin wide ET. Preliminary results indicate that simpler estimates using Priestley-Taylor potential evapotranspiration coupled with an exponential decay term dependent on moisture storage may be

  12. Improving Evapotranspiration Estimates Using Multi-Platform Remote Sensing

    NASA Astrophysics Data System (ADS)

    Knipper, Kyle; Hogue, Terri; Franz, Kristie; Scott, Russell

    2016-04-01

    Understanding the linkages between energy and water cycles through evapotranspiration (ET) is uniquely challenging given its dependence on a range of climatological parameters and surface/atmospheric heterogeneity. A number of methods have been developed to estimate ET either from primarily remote-sensing observations, in-situ measurements, or a combination of the two. However, the scale of many of these methods may be too large to provide needed information about the spatial and temporal variability of ET that can occur over regions with acute or chronic land cover change and precipitation driven fluxes. The current study aims to improve the spatial and temporal variability of ET utilizing only satellite-based observations by incorporating a potential evapotranspiration (PET) methodology with satellite-based down-scaled soil moisture estimates in southern Arizona, USA. Initially, soil moisture estimates from AMSR2 and SMOS are downscaled to 1km through a triangular relationship between MODIS land surface temperature (MYD11A1), vegetation indices (MOD13Q1/MYD13Q1), and brightness temperature. Downscaled soil moisture values are then used to scale PET to actual ET (AET) at a daily, 1km resolution. Derived AET estimates are compared to observed flux tower estimates, the North American Land Data Assimilation System (NLDAS) model output (i.e. Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model, Mosiac Model, and Noah Model simulations), the Operational Simplified Surface Energy Balance Model (SSEBop), and a calibrated empirical ET model created specifically for the region. Preliminary results indicate a strong increase in correlation when incorporating the downscaling technique to original AMSR2 and SMOS soil moisture values, with the added benefit of being able to decipher small scale heterogeneity in soil moisture (riparian versus desert grassland). AET results show strong correlations with relatively low error and bias when compared to flux tower

  13. Image of the Eta Carinae Nebula Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This image is an x-ray view of Eta Carinae Nebula showing bright stars taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The Eta Carinae Nebula is a large and complex cloud of gas, crisscrossed with dark lanes of dust, some 6,500 light years from Earth. Buried deep in this cloud are many bright young stars and a very peculiar variable star. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  14. Mapping Evapotranspiration in Hawai';i

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Shuai, X.; Barnes, M.; Longman, R. J.; Miura, T.; Chen, Q.; Alliss, R. J.; Frazier, A. G.

    2013-12-01

    The hydrological cycle in Hawai';i determines the timing and amount of water flows that affect aquatic and near-shore marine ecosystems, and provides water for domestic and industrial uses. Rainfall and fog interception are the principal water sources, while evaporation and transpiration reduce the amount available for streamflow and groundwater recharge. Evapotranspiration (ET) is controlled by climate, vegetation, soil, and water availability, and hence is highly variable in space and time. Understanding of the magnitude and variability of ET is essential for protecting Hawai';i's ecosystems and planning for water resource development and utilization. In this study, ET was estimated at high spatial resolution (250 m), for each hour of the mean diurnal cycle of each month, using the Penman-Monteith approach. Soil evaporation, wet canopy evaporation, and transpiration were estimated separately and summed to get ET. Solar and net radiation were estimated using cloudiness and surface characteristics from satellite remote sensing, clear-sky radiation simulations, and ground-based observations. Other spatial data sets developed or acquired for use in estimating ET included air temperature, relative humidity, wind speed, soil moisture, fractional canopy wetness, fractional vegetation cover, vegetation height, leaf area index, land cover type, and maximum stomatal conductance. More than 12,000 digital maps were produced of climate and hydrological variables in including evapotranspiration and its components. Results show that across the State of Hawai';i mean annual solar radiation varies from 130 to 296 W m-2. Low solar radiation is found along cloudy windward slopes below the trade-wind inversion level and in terrain-shaded valleys, while the highest values occur at the high mountain summits of Mauna Kea and Mauna Loa. ET has a complex spatial pattern reflecting variations in net radiation, moisture availability, and vegetation characteristics. With a few exceptions

  15. Estimating evapotranspiration in natural and constructed wetlands

    USGS Publications Warehouse

    Lott, R. Brandon; Hunt, Randall J.

    2001-01-01

    Difficulties in accurately calculating evapotranspiration (ET) in wetlands can lead to inaccurate water balances—information important for many compensatory mitigation projects. Simple meteorological methods or off-site ET data often are used to estimate ET, but these approaches do not include potentially important site-specific factors such as plant community, root-zone water levels, and soil properties. The objective of this study was to compare a commonly used meterological estimate of potential evapotranspiration (PET) with direct measurements of ET (lysimeters and water-table fluctuations) and small-scale root-zone geochemistry in a natural and constructed wetland system. Unlike what has been commonly noted, the results of the study demonstrated that the commonly used Penman combination method of estimating PET underestimated the ET that was measured directly in the natural wetland over most of the growing season. This result is likely due to surface heterogeneity and related roughness efffects not included in the simple PET estimate. The meterological method more closely approximated season-long measured ET rates in the constructed wetland but may overestimate the ET rate late in the growing season. ET rates also were temporally variable in wetlands over a range of time scales because they can be influenced by the relation of the water table to the root zone and the timing of plant senescence. Small-scale geochemical sampling of the shallow root zone was able to provide an independent evaluation of ET rates, supporting the identification of higher ET rates in the natural wetlands and differences in temporal ET rates due to the timing of senescence. These discrepancies illustrate potential problems with extrapolating off-site estimates of ET or single measurements of ET from a site over space or time.

  16. Daily lsa-saf evapotranspiration product

    NASA Astrophysics Data System (ADS)

    Arboleda Rodallega, Alirio; Ghilain, Nicolas; Meulenberghs, Francoise

    2010-05-01

    In the framework of the EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA-SAF), some models have been implemented in view to characterize continental surfaces by using information obtained from MSG and EPS satellites. In this context a method has been developed in order to monitor the flux of water (Evapotranspiration) between the land surface and the atmosphere. The method is based on a physical approach in which radiative data derived from Meteosat Second Generation (MSG) satellites together with land-cover information are used to constrain a physical model of energy exchange between the soil-vegetation system and the atmosphere. The implemented algorithm provides instantaneous ET estimates over four regions defined in the MSG FOV (the defined regions cover Europe, Africa and the west of south America), with MSG spatial resolution (3km at sub satellite point) and a temporal time step of 30 minutes. The scope of the method is limited to evaporation from terrestrial surfaces rather than from lakes or oceans. The instantaneous product has been validated over different vegetation cover and climatic conditions, providing evidence that the algorithm is able to reproduce ET estimates with accuracy equivalent to the accuracy of ET obtained from observations. In 2009 the instantaneous ET product has been declared pre-operational by EUMETSAT, allowing the product to be disseminated to a larger community of users (http://landsaf.meteo.pt). In some areas like agriculture, hydrology, water management, ecology and climate studies the main concern is not instantaneous but accumulated values over days, months or longer periods. To encompass the need for these community of users, a daily ET product in which daily evapotranspiration is obtained as temporal integration of instantaneous values has been developed. In this contribution we will present the methodology used to obtain instantaneous ET estimates and the procedure applied to derive daily

  17. Indications for the decays D/sub s//sup +-/. -->. eta. pi. /sup +-/ and D/sub s//sup +-/. -->. eta'. pi. /sup +-/

    SciTech Connect

    Wormser, G.

    1987-11-01

    A search for D/sub s//sup +-/ decays into eta ..pi../sup +-/ and eta' ..pi../sup +-/ has been performed by the MarkII collaboration at the PEP e/sup +/e/sup -/ storage ring. Eta particles are reconstructed by their ..gamma gamma.. decay mode. The eta fragmentation has been measured and found to be in good agreement with the Lund model prediction. Eta' production has been measured for the first time in e/sup +/e/sup -/ high energy annihilation. Good indications are found for both decay modes D/sub s//sup +-/ ..-->.. eta ..pi../sup +-/ and D/sub s//sup +-/ ..-->.. eta' ..pi../sup +-/.

  18. Searching for Radial Velocity Variations in eta Carinae

    NASA Technical Reports Server (NTRS)

    Iping, R. C.; Sonneborn, G.; Gull, T. R.; Ivarsson, S.; Nielsen, K.

    2006-01-01

    A hot companion of eta Carinae has been detected using high resolution spectra (905 - 1180 A) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite (see poster by Sonneborn et al.). Analysis of the far-UV spectrum shows that eta Car B is a luminous hot star. The N II 1084-86 emission feature indicates that the star may be nitrogen rich. The FUV continuum and the S IV 1073 P-Cygni wind line suggest that the effective temperature of eta Car B is at least 25,000 K. FUV spectra of eta Carinae were obtained with the FUSE satellite at 9 epochs between 2000 February and 2005 July. The data consists of 12 observations taken with the LWRS aperture (30x30 arcsec), three with the HIRS aperture (1.25x20 arcsec), and one MRDS aperture (4x20 arcsec). In this paper we discuss the analysis of these spectra to search for radial velocity variations associated with the 5.54-year binary orbit of Eta Car AB.

  19. Is the Ejecta of ETA Carinae Overabundant or Overexcited

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Davidson, Kris; Johansson, Sveneric; Damineli, Augusto; Ishibashi, Kaxunori; Corcoran, Michael; Hartman, Henrick; Viera, Gladys; Nielsen, Krister

    2003-01-01

    The ejecta of Eta Carinae, revealed by HST/STIS, are in a large range of physical conditions. As Eta Carinae undergoes a 5.52 period, changes occur in nebular emission and nebular absorption. "Warm" neutral regions, partially ionized regions, and fully ionized regions undergo significant changes. Over 2000 emission lines, most of Fe-like elements, have been indentified in the Weigelt blobs B and D. Over 500 emission lines have been indentified in the Strontium Filament. An ionized Little Homunculus is nestled within the neutral-shelled Homunculus. In line of sight, over 500 nebular absorption lines have been identified with up to twenty velocity components. STIS is following changes in many nebular emission and absorption lines as Eta Carinae approaches the minimum, predicted to be in June/July 2003, during the General Assembly. Coordinated observations with HST, CHANDRA, RXTE, FUSE, UVES/VLT, Gemini and other observatories are following this minimum.

  20. Excited Ejecta in Light of Sight from Eta Car

    NASA Technical Reports Server (NTRS)

    Vieira, G.; Gull, T. R.; Danks, A.

    2003-01-01

    In the NUV spectrum of Eta Car, we have resolved many narrow absorption lines of neutral and singly-ionized elements with the Space Telescope Imaging Spectrograph. We report for the first time the detection of interstellar vanadium in absorption, and many highly-excited absorption lines of Fe, Cr, Ti, Ni, Co, Mn, and Mg. These elements, normally tied up in dust grains in the ISM, are located within wall of the Homunculus within 20,000 A.U. of Eta Car. Stellar radiation and stellar wind are interacting with the wall. Dust is likely being modified and/or destroyed. Previous Homunculus studies have demonstrated that nitrogen is overabundant and that carbon and oxygen emission lines are weak, or non-existent. Are the large column densities of these heavy elements due to abundance effects, excitation mechanisms, or modified grains? We may gain insight as Eta Car goes through its spectroscopic minimum in the summer of 2003.

  1. Evapotranspiration studies for protective barriers: FY 1988 status report

    SciTech Connect

    Link, S.O.; Thiede, M.E.; Evans, R.D.; Downs, J.L.; Waugh, W.J.

    1990-05-01

    In FY 1988, evapotranspiration studies in support of the Protective Barrier Development Program focused on developing instruments to measure evapotranspiration and on conducting natural analog studies. This report describes a has exchange chamber being developed that will control internal temperature and relative humidity to simulate outdoor conditions. This device will measure evapotranspiration rates unambiguously from any surface and measure carbon dioxide exchange rates, which will provide information on plant growth processes. The report also describes ecophysiological experiments that were conducted to determine water and carbon dynamics of shrubs. 5 refs., 24 figs.

  2. 76 FR 12760 - Comment Request for Information Collection for Report ETA 902, Disaster Unemployment Assistance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ..., Disaster Unemployment Assistance Activities (OMB Control No. 1205- 0051): Extension Without Change AGENCY... ETA 902, Disaster Unemployment Assistance Activities under the Robert T. Stafford Disaster Relief and.... Background The ETA 902 Report, Disaster Unemployment Assistance (DUA) Activities, is a monthly...

  3. Start of Eta Car's X-ray Minimum

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.; Liburd, Jamar; Hamaguchi, Kenji; Gull, Theodore; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; Owocki, Stan

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using quicklook data from the XRay Telescope on Swift shows that the flux on July 30, 2014 was 4.9 plus or minus 2.0×10(exp-12) ergs s(exp-1)cm(exp-2). This flux is nearly equal to the X-ray minimum flux seen by RXTE in 2009, 2003.5, and 1998, and indicates that Eta Car has reached its X-ray minimum, as expected based on the 2024-day period derived from previous 2-10 keV observations with RXTE.

  4. Potential Evapotranspiration Trends over South America

    NASA Astrophysics Data System (ADS)

    Maske, B. B.; Goncalves, L.

    2013-05-01

    Evapotranspiration (ET) is a key variable for energy and mass flux estimation from the land surface, and consequent water balance over regional to global scales. It also affects the atmosphere dynamics from weather to climate scales due to its link between the hydrological and energy cycles. Many studies investigating global ET trends have found a consistently positive signal in the period between 1982-1997 followed by a decline until 2008, which proved consistent with the acceleration of the hydrological cycle, caused by the global increase of temperature and radiative forcing. The large El nino in 1998, for instance, resulted in a negative trend of ET due in part to the limitation of soil moisture availability. However some researchers emphasize the importance of treating ET trends regionally and thus already found two distinct scenarios with inclusion of the regional dimension of evapotranspiration drivers for global studies: one where ET decreases following decreasing in pan evaporation in regions with ample supply of water and, the other scenario with a positive trend in observed ET following decreasing in pan evaporation, with indication of the latter being induced only by the tendency of precipitation. Studies about ET trend in the western United States, using data from the hydrologic model Variable Infiltration Capacity (VIC), also found significant seasonal variations associated with changes of temperature, snow accumulation and melting. Moreover, Canada researchers indicate strong correlation between ET variations and temperature, although temperature alone can not be related to changes of ET, since it not considers the heat flux in soil and cycles of freezing and melting of snow. Considering the importance of understanding variations of ET regionally, this study aims to analyze ET trends over South America. The data used are potential evapotranspiration estimated by the Penman-Monteith method, computed using data from meteorological stations for the

  5. Observation of the radiative decay J/psi. -->. gamma. eta. pi pi

    SciTech Connect

    Newman-Holmes, C.

    1982-09-01

    The radiative decay J/psi ..-->.. ..gamma.. eta ..pi pi.. has been observed in data taken with the Crystal Ball detector at the SPEAR e/sup +/e/sup -/ storage ring. In addition to the well-known eta', the eta ..pi pi.. mass spectrum shows a broad enhancement centered at approx. 1700 MeV. There is no explicit evidence for the l(1440) in the eta ..pi pi.. mass spectrum.

  6. Progress in operational estimation of regional evapotranspiration using satellite imagery

    NASA Astrophysics Data System (ADS)

    Tasumi, Masahiro

    This dissertation presents a developed remote sensing model named SEBAL-ID, which estimates evapotranspiration (ET) from satellite images. The operationally usable remote sensing model was developed for Idaho and western United States conditions by refining the SEBAL (Surface Energy Balance Algorithm for Land) algorithm developed by Bastiaanssen in 1995. The original algorithm has been successfully applied in the world especially in developing countries. In the SEBAL Algorithm, ET from land surfaces is estimated by solving the land surface energy balance for each pixel of a satellite image. The instantaneous (satellite image time) ET is estimated as a residual of the energy balance at the land surface, and the estimated instantaneous value is extrapolated to 24-hour and seasonal ET, which are the final products of SEBAL. The refinements in SEBAL-ID include the application to mountainous regions, an increase in the reliability of estimates by adopting an internal calibration procedure using public weather data, and modifying empirical equations. The proposed model was applied in southern Idaho, and agreed well with lysimeter measured ET data. This dissertation presents results of many analyses with SEBAL-ID, which are valuable not only to SEBAL-ID users but also to SEBAL users around the world. The analyses cover the following topics: surface albedo estimation, estimated LAI by satellite image analyses, effect of atmospheric correction in surface temperature estimation, effect of elevation on surface temperature, ground heat flux estimation method and accuracy, impact of surface roughness for momentum transport, the sensible heat estimation method, windspeed and surface temperature relation, use of a soil water balance model in SEBAL-ID and the behavior of the ETr fraction. The developed model, SEBAL-ID, has already been applied for actual water resources management in Idaho State by the state agency Idaho Department of Water Resources.

  7. Evapotranspiration parameterizations at a grass site in Florida, USA

    USGS Publications Warehouse

    Rizou, M.; Sumner, David M.; Nnadi, F.

    2007-01-01

    In spite of the fact that grasslands account for about 40% of the ice-free global terrestrial land cover, their contribution to the surface exchanges of energy and water in local and regional scale is so far uncertain. In this study, the sensitivity of evapotranspiration (ET) and other energy fluxes to wetness variables, namely the volumetric Soil Water Content (SWC) and Antecedent Precipitation Index (API), over a non-irrigated grass site in Central Florida, USA (28.049 N, 81.400 W) were investigated. Eddy correlation and soil water content measurements were taken by USGS (U.S. Geological Survey) at the grass study site, within 100 m of a SFWMD (South Florida Water Management District) weather station. The soil is composed of fine sands and it is mainly covered by Paspalum notatum (bahia grass). Variable soil wetness conditions with API bounds of about 2 to 160 mm and water table levels of 0.03 to 1.22 m below ground surface, respectively, were observed throughout the year 2004. The Bowen ratio exhibited an average of 1 and values larger than 2 during few dry days. The daytime average ET was classified into two stages, first stage (energy-limited) and second stage (water- limited) based on the water availability. The critical values of API and SWC were found to be about 56 mm and 0.17 respectively, with the second one being approximately 33% of the SWC at saturation. The ET values estimated by the simple Priestley-Taylor (PT) method were compared to the actual values. The PT coefficient varied from a low bound of approximately 0.4 to a peak of 1.21. Simple relationships for the PT empirical factor were employed in terms of SWC and API to improve the accuracy of the second stage observations. The results of the ET parameterizations closely match eddy-covariance flux values on daily and longer time steps.

  8. Divergence of reference evapotranspiration observations with windy tropical conditions

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Wang, D.; Tirado-Corbalá, R.; Zhang, H.; Ayars, J. E.

    2014-06-01

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ETEC) using Eddy Covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET0) and tall (ETr) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley-Taylor ET (ETPT) and ETEC. Reference ET from the ASCE approaches exceeded ETEC during the mid-period (when vegetation coefficients suggest ETEC should exceed reference ET). At the windier tower site, cumulative ETr exceeded ETEC by 854 mm over the course of the mid-period (267 days). At the less windy site, mid-period ETr still exceeded ETEC, but the difference was smaller (443 mm). At both sites, ETPT approximated mid-period ETEC more closely than the ASCE equations ((ETPT-ETEC) < 170 mm). Analysis of applied water and precipitation, soil moisture, leaf stomatal resistance, and canopy cover suggest that the lower observed ETEC was not the result of water stress or reduced vegetation cover. Use of a custom calibrated bulk canopy resistance improved the reference ET estimate and reduced seasonal ET discrepancy relative to ETPT and ETEC for the less windy field and had mixed performance at the windier field. These divergences suggest that modifications to reference ET equations may be warranted in some tropical regions.

  9. Geospatial approach for estimating land surface evapotranspiration

    NASA Astrophysics Data System (ADS)

    Singh, Ramesh K.

    Reliably and accurately quantifying evapotranspiration (ET) in a spatial and temporal domain is important in water management at the local, regional, and global scales. With advances in image processing and hardware computational ability, energy balance models which utilize remote sensing images are being increasingly utilized for quantifying ET and used as inputs in hydrologic modeling. The objectives of this research were to evaluate and improve some of the energy balance models for estimating land surface ET, and develop a framework for estimating seasonal ET from temporal satellite images. Surface Energy Balance Algorithm for Land (SEBAL) model was used to estimate energy fluxes for south-central Nebraska using Landsat images. Results were compared with Bowen Ratio Energy Balance System (BREBS) field measurements. SEBAL estimated ET images were also used for computing crop coefficients (K c) for maize, soybean, sorghum, and alfalfa under irrigated and dryland conditions. Performances of four remote sensing based models for estimating soil heat flux (G) were analyzed. A new model was developed for remotely estimating G. The Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model was also used for estimating energy fluxes using Landsat images. The METRIC model was modified by incorporating the Priestley-Taylor (PT) approach. The SEBAL model estimated net radiation (Rn) with a root mean square error (RMSE) of 65 W m-2 (r2 = 0.76). Calibrating G locally reduced RMSE from 80 W m-2 to 20 W m-2. The SEBAL model yielded sensible heat flux (H) with RMSE of 108 W m -2 (r2=0.23), and ET with an RMSE of 1.04 mm day -1(r2 = 0.73). Validation of Kc regression for irrigated maize resulted in RMSE of 0.21 (r2=0.74). The METRIC model estimated Rn, G, and H with RMSE values of 45 W m -2 (r2=0.85), 19 W m-2 (r2=0.85), and 113 W m-2 (r2=0.50), respectively. The modified METRIC model reduced the RMSE of H from 113 W m-2 to 91 W m -2 and that for

  10. The hysteretic evapotranspiration - vapor pressure deficit relation

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Manzoni, S.; Katul, G. G.; Porporato, A. M.; Yang, D.

    2013-12-01

    Diurnal hysteresis between evapotranspiration (ET) and vapor pressure deficit (VPD) was reported in many ecosystems but justification for its onset and magnitude remain incomplete with biotic and abiotic factors invoked as possible explanations. To place these explanations within a mathematical framework, ';rate-dependent' hysteresis originating from a phase angle difference between periodic input and output time series is first considered. Lysimeter evaporation (E) measurements from wet bare soils and model calculations using the Penman equation demonstrate that the E-VPD hysteresis emerges without any biotic effects due to a phase angle difference (or time lag) between net radiation the main driver of E, and VPD. Modulations originating from biotic effects on the ET-VPD hysteresis were then considered. The phase angle difference representation earlier employed was mathematically transformed into a storage problem and applied to the soil-plant system. The transformed system shows that soil moisture storage within the root zone can produce an ET-VPD hysteresis prototypical of those generated by phase-angle differences. To explore the interplay between all the lags in the soil-plant-atmosphere system and phase angle differences among forcing and response variables, a detailed soil-plant-atmosphere continuum (SPAC) model was developed and applied to a grassland ecosystem. The results of the SPAC model suggest that the hysteresis magnitude depends on the radiation-VPD lag. The soil moisture dry-down simulations also suggest that modeled root water potential and leaf water potential are both better indicators of the hysteresis magnitude than soil moisture, suggesting that plant water status is the main factor regulating the hysteretic relation between ET and VPD. Hence, the genesis and magnitude of the ET-VPD hysteresis are controlled directly by both biotic factors and abiotic factors such as time lag between radiation and VPD originating from boundary layer processes

  11. Spatially distributed evapotranspiration and recharge estimation for sand regions of Hungary in the context of climate change

    NASA Astrophysics Data System (ADS)

    Csáki, Péter; Kalicz, Péter; Gribovszki, Zoltán

    2016-04-01

    Water balance of sand regions of Hungary was analysed using remote-sensing based evapotranspiration (ET) maps (1*1 km spatial resolution) by CREMAP model over the 2000-2008 period. The mean annual (2000-2008) net groundwater recharge (R) estimated as the difference in mean annual precipitation (P) and ET, taking advantage that for sand regions the surface runoff is commonly negligible. For the examined nine-year period (2000-2008) the ET and R were about 90 percent and 10 percent of the P. The mean annual ET and R were analysed in the context of land cover types. A Budyko-model was used in spatially-distributed mode for the climate change impact analysis. The parameters of the Budyko-model (α) was calculated for pixels without surplus water. For the extra-water affected pixels a linear model with β-parameters (actual evapotranspiration / pan-evapotranspiration) was used. These parameter maps can be used for evaluating future ET and R in spatially-distributed mode (1*1 km resolution). By using the two parameter maps (α and β) and data of regional climate models (mean annual temperature and precipitation) evapotranspiration and net groundwater recharge projections have been done for three future periods (2011-2040, 2041-2070, 2071-2100). The expected ET and R changes have been determined relative to a reference period (1981-2010). According to the projections, by the end of the 21th century, ET may increase while in case of R a heavy decrease can be detected for the sand regions of Hungary. This research has been supported by Agroclimate.2 VKSZ_12-1-2013-0034 project. Keywords: evapotranspiration, net groundwater recharge, climate change, Budyko-model

  12. Simulation of crop evapotranspiration and crop coefficient in weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  13. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  14. 77 FR 48174 - Comment Request for Information Collection for the ETA 203, Characteristics of the Insured...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Employment and Training Administration Comment Request for Information Collection for the ETA 203.... Gibbons. SUPPLEMENTARY INFORMATION: I. Background The ETA 203, Characteristics of the Insured Unemployed...-0009. Affected Public: State Workforce Agencies. Form(s): ETA 203. Total Annual Respondents: 53....

  15. 75 FR 3927 - Proposed Information Collection Request for the ETA 218, Benefit Rights and Experience Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Information Collection Request for the ETA 218, Benefit Rights and Experience Report; Comment Request on... unemployment compensation programs. The data in the ETA 218, Benefit Rights and Experience Report, includes... extension for the collection of the ETA 218, Benefit Rights and Experience report. Comments are...

  16. Search for eta '(958)-nucleus Bound States by (p,d) Reaction at GSI and FAIR

    NASA Astrophysics Data System (ADS)

    Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K.-T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.

    The mass of the {\\eta}' meson is theoretically expected to be reduced at finite density, which indicates the existence of {\\eta}'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {\\eta}' production threshold. The overview of the experimental situation is given and the current status is discussed.

  17. 31 CFR Appendix B to Part 208 - Model Disclosure for Use After ETA SM Becomes Available

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Model Disclosure for Use After ETA SM... FEDERAL AGENCY DISBURSEMENTS Pt. 208, App. B Appendix B to Part 208—Model Disclosure for Use After ETA SM... through a basic, low-cost account called an ETA SM. If you receive a Federal benefit, wage, salary,...

  18. Water Footprint of a Super-intensive Olive Grove Under Mediterranean Climate using Ground-based Evapotranspiration Measurements and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Nogueira, A. M.; Paço, T. A.; Silvestre, J. C.; Gonzalez, L. F.; Santos, F. L.; Pereira, L. S.

    2012-04-01

    measurements were used to calculate water footprint instead of the common procedure (using evapotranspiration estimates), this might have also introduced some differences. The potential of using remote sensing techniques for the assessment of water footprint of crops has been discussed in recent literature. It can provide estimates of actual evapotranspiration, of precipitation, of surface runoff and of irrigation needs when associated with modelling. In this study we further compare the water footprint estimates using in situ evapotranspiration measurements and water footprint estimates using remote sensing techniques. A comparison with the irrigation records for this particular olive orchard will be used to validate the approaches.

  19. Comparison of Crop Evapotranspiration Estimates from Reference Evapotranspiration Equations and a Variational Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Bateni, S. M.; Michalik, T.; Multsch, S.; Breuer, L.

    2015-12-01

    Crop evapotranspiration (ETc) is a key component of water resources management in irrigation of farmlands as it determines the crop water consumption. Numerous methods have been used to estimate ETc for scheduling irrigation and evaluating the soil water balance. However, there is a significant difference in ETc estimates from various models, which leads to a large uncertainty in the soil water balance, crop water consumption, and irrigation scheduling. In this study, several commonly-used ETc equations (Turc, Priestley-Taylor, Hargreaves-Samani, Penman-Monteith) are compared with the variational data assimilation approach (VDA) of Bateni et al. (2013). The ETc equations initially estimate the reference evapotranspiration (ETo), which is the evapotranspiration from a healthy and actively-transpiring grass field with ample water in the soil. Thereafter, ETc is calculated by multiplying ETo by the crop coefficient (Kc), which accounts for the crop type and soil water stress. To properly apply the Kc to non-standard conditions, a daily water balance estimation for the root zone is required, which is done by two soil water budget models (Cropwat, Hydrus-1D) that compute incoming and outgoing water flows in the soil profile. In contrast to these methods that estimate ETc in two steps, the VDA approach directly predicts ETc by assimilating sequences of land surface temperature into the heat diffusion equation and thus it is expected to provide more accurate ETc estimates. All approaches are applied over three cropland sites namely, Bondville, Fermi, and Mead in the summer of 2006 and 2007. These sites are part of the AmeriFlux network and provide a wide variety of hydrological conditions. The results show that the variational data assimilation approach performs better compared to other equations.

  20. Estimating Evapotranspiration with Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, C. D.; Kumar, S. V.; Mocko, D. M.; Tian, Y.

    2011-01-01

    Advancements in both land surface models (LSM) and land surface data assimilation, especially over the last decade, have substantially advanced the ability of land data assimilation systems (LDAS) to estimate evapotranspiration (ET). This article provides a historical perspective on international LSM intercomparison efforts and the development of LDAS systems, both of which have improved LSM ET skill. In addition, an assessment of ET estimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 (NLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.

  1. NASA GLDAS Evapotranspiration Data and Climatology

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko Kato; Teng, William L.; Vollmer, Bruce; Rodell, Matthew

    2012-01-01

    Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.

  2. Evaluating reference evapotranspiration in mountain areas

    NASA Astrophysics Data System (ADS)

    Calanca, P.; Philipona, R.; Bretscher, D.; Rohrer, M.; Sanabria, J.; Trebejo, I.; Alarcón Velazco, C.; Smith, P.

    2010-09-01

    The so-called reference evapotranspiration (ETo) is one of the key variables for the assessment of crop water requirements and irrigation needs. Standard methods are available for computing ETo as well as for the pre-processing of the meteorological data. Many of them have been developed and tested with respect to stations situated at low altitudes. In the context of climate change and its impacts on agriculture there is, however, an increasing necessity for applying these methods to mountain areas. These have been identified as among the most vulnerable environments and have for this reason become the focus of several research programmes such as e.g. the Climate Change Adaptation Programme in Peru (PACC), initiated by the Swiss Agency for Development and Cooperation (SDC) in 2008, and the EU funded project ACQWA. In this contribution we discuss practical aspects related to the evaluation of ETo in mountain areas. As the availability of weather data is generally more limited than in low altitude regions, we examine approaches for the generation of input data with examples from the Swiss Alps and the Peruvian Andes. In particular we consider the estimation of net radiation (NR), as this is the main driver of the heat exchange at the earth surface and controls the evaporative demand of the atmosphere. Empirical approaches for computing NR are examined in the light of data from the Alpine Surface Radiation Budget (ASRB) network and discussed in relation to the implications for ETo.

  3. Subdaily evapotranspiration rate calculation from streamflow summer diel signal

    NASA Astrophysics Data System (ADS)

    Gribovszki, Z.; Kalicz, P.; Szilágyi, J.

    2009-04-01

    Diel signal of hydrological variables (e.g., shallow groundwater level or streamflow rate) are rarely investigated in the hydrologic literature although these short-term fluctuations may incorporate useful information for the characterization of hydro-ecological systems. Riparian vegetation (especially forest) typically has a great influence on groundwater level and groundwater-sustained baseflow, therefore calculation of the correct evapotranspiration rates is very important for natural protection tasks and water resources management. Recently a new technique was developed by us to calculate daily or even subdaily evapotranspiration rates from groundwater-level measurements, and that method now is modified to estimate evapotranspiration rates from the baseflow diel signal only. The method was successfully tested with hydro-meteorological data from the Hidegvíz Valley experimental catchment in the Sopron Hills at the western border of Hungary. The evapotranspiration rates calculated from the groundwater signal only, are typically (a magnitude) higher than those obtained with an already existing method. With the application of our new technique exploiting the baseflow diel signal of the stream, evapotranspiration rates, very similar to those gained from groundwater level readings and the Penman-Monteith equation, can be obtained. Keywords: baseflow diel signal, evapotranspiration, riparian zone

  4. Eta Sigma Gamma: Preparing Leaders Today for Tomorrow's Challenges

    ERIC Educational Resources Information Center

    Brown, Kelli McCormack

    2007-01-01

    There is no one definition for a leader or for leadership, but most people can identify a leader and can provide qualities of a good leader or good leadership. The founders of Eta Gamma Gamma--William Bock, Warren Schaller, and Robert Synovitz--all displayed a critical characteristic of leadership by having and acting on a vision. Leadership has…

  5. Targeting Inaccurate Atomic Data in the Eta Car Ejecta Absorption

    NASA Technical Reports Server (NTRS)

    Nielsen, K. E.; Kober, G. Vieira; Gull, T. R.; Blackwell-Whitehead, R.; Nilsson, H.

    2006-01-01

    The input from the laboratory spectroscopist community has on many occasions helped the analysis of the eta Car spectrum. Our analysis has targeted spectra where improved wavelengths and oscillator strengths are needed. We will demonstrate how experimentally derived atomic data have improved our spectral analysis, and illuminate where more work still is needed.

  6. Spectra of Eta Carina from Objective Prism Photographic Plates

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.; Barker, T.

    2008-05-01

    Brightness and spectral variations of Eta Carina occur over a 5.5 year cycle. Emission lines were observed to fade in 1948, 1962, 1981, 1987, and 1992 (Damineli 1996, ApJ, 460, L49), and 1997 (Eta Carinae at the Millennium, ASP Conf. Ser. 179, ed. J.A. Morse, R.M. Humphreys, and A. Damineli). Gaps in the observation of spectra occur in 1970 and 1975 when two other such occurrences of the 5.5 year cycle were expected. Objective prism photographic plates of Eta Carina were found in the Astronomical Photographic Data Archive located at Pisgah Astronomical Research Institute. The plates belong to the University of Michigan survey (Houk 1978, Michigan Catalogue of Two-dimensional Spectral Types for the HD Stars). One plate, IN emulsion + RG1 filter, was taken on 1968 July 4 UT. The other plate, IIaO emulsion, was taken on 1972 March 12 UT. These plates were taken between the 5.5 year cyclic events of 1970 and 1975 and therefore represent the usual emission line spectra. The spectrum of Eta Car was extracted from each of the objective prism plates and will be presented.

  7. Detection of the Compressed Primary Stellar Wind in eta Carinae

    NASA Technical Reports Server (NTRS)

    Teodoro, Mairan Macedo; Madura, Thomas I.; Gull, Theodore R.; Corcoran, Michael F.; Hamaguchi, K.

    2014-01-01

    A series of three HST/STIS spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from eta Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.

  8. Insights into the pi- p --> eta n reaction mechanism

    SciTech Connect

    Durand, Johan; Julia Diaz, Bruno; Lee, Tsung-Shung; Sato, Toru

    2009-01-01

    A dynamical coupled-channels formalism is used to investigate the $\\eta-$meson production mechanism on the proton induced by pions, in the total center-of-mass energy region from threshold up to 2 GeV. We show how and why studying exclusively total cross section data might turn out to be misleading in pinning down the reaction mechanism.

  9. EMISSIONS PROCESSING FOR THE ETA/ CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of the...

  10. The Eight-meter-wavelength Transient Array (ETA)

    NASA Astrophysics Data System (ADS)

    Simonetti, J. H.; Ellingson, S. W.; Patterson, C. D.; Taylor, W.; Venugopal, V.; Cutchin, S.; Boor, Z.

    2005-12-01

    The Eight-meter-wavelength Transient Array (ETA) is a radio telescope utilizing a low-cost backend, which implements flexible, reconfigurable computing techniques. It is designed to continuously monitor nearly the entire northern sky at 29-47MHz in a search for low-frequency radio transients (short pulses) from high-energy astrophysical phenomena. This antenna array, which is currently under construction, is located in a relatively radio-quiet area in the Blue Ridge Mountains southwest of Asheville, NC, at the Pisgah Astronomical Research Institute (PARI). The array consists of 12 dual-polarization dipole antennas. The core of the array is 10 antenna stations arranged in a 16-m diameter circle with one antenna station at the center. In addition, one antenna station is situated about 50m to the north of the core and another is about 50m to the east of the core. A 26-m dish on the PARI site (about 1km from the ETA core) will be used for follow-up, added aperture, longer baselines, and additional radio frequency interference (RFI) mitigation. Preliminary observations with one test antenna station have detected the expected Galactic emission in this frequency range; ETA will be Galactic-noise limited. The ETA backend will utilize off-the-shelf components and a cluster of Field Programmable Gate Arrays (FPGAs) for detecting pulses of various lengths, dispersion measures, and directions (synthesized delay beams), while incorporating various RFI countermeasures. Potential sources of radio transients that might be observed by ETA include gamma-ray bursts (prompt emission), supernovae (prompt emission), coalescing compact-object binaries (e.g., neutron star -- neutron star, neutron star -- black hole), and exploding primordial black holes. This array should detect giant pulses from the Crab Pulsar, and possibly other pulsars. ETA is a collaboration of the Electrical and Computer Engineering Department and Physics Department at Virginia Tech, and PARI. ETA work at Virginia

  11. Potential Evapotranspiration as a Source of Uncertainty and Bias in Hydrologic Impact Analyses

    NASA Astrophysics Data System (ADS)

    Milly, P. C. D.

    2015-12-01

    The diversity of commonly used potential evapotranspiration (PET) models contributes uncertainty in the estimation of hydrologic response to anthropogenic climate change. The temperature sensitivity of six commonly used PET equations (Hamon, Oudin, Penman-Monteith, Priestley-Taylor, Samani-Hargreaves, and Thornthwaite) is readily shown to vary by almost an order of magnitude, with energy-unconstrained (i.e., temperature-based) methods showing the largest sensitivity. The change in annual multimodel (Coupled Model Intercomparison Project, Phase 5) PET under Representative Concentration Pathway 8.5 from 1981-2000 to 2081-2100 is typically 10-20% (20-40%) in the low (high) latitudes according to the physics-based Penman-Monteith (ASCE Standardized Reference Evapotranspiration) equation, but 20-40% (20-80%) according to the empirical, temperature-based Hamon equation. Radiation-based Priestley-Taylor changes are smaller than both of these, while empirical, temperature-based Thornthwaite changes are larger than both. These differences in PET change translate to large differences in change of water availability; when combined with a form of the Budyko water-balance relation, the PET methods predict a wide range of runoff changes. Furthermore, all PET methods result in bias that indicates drier conditions globally than those computed by the climate models themselves, and all PET methods overestimate the changes in actual evapotranspiration in non-water-stressed seasons/regions relative to the changes in the climate models. We conclude that use of PET methods that are inappropriate for climate-change applications is a source not only of uncertainty, but also of more drying than suggested by climate models, in hydrologic impact analyses. In view of the bias, it is advised that a no-PET-change analysis be used to define a wet upper bound on potential hydrologic impacts.

  12. Evapotranspiration of tropical peat swamp forests.

    PubMed

    Hirano, Takashi; Kusin, Kitso; Limin, Suwido; Osaki, Mitsuru

    2015-05-01

    In Southeast Asia, peatland is widely distributed and has accumulated a massive amount of soil carbon, coexisting with peat swamp forest (PSF). The peatland, however, has been rapidly degraded by deforestation, fires, and drainage for the last two decades. Such disturbances change hydrological conditions, typically groundwater level (GWL), and accelerate oxidative peat decomposition. Evapotranspiration (ET) is a major determinant of GWL, whereas information on the ET of PSF is limited. Therefore, we measured ET using the eddy covariance technique for 4-6 years between 2002 and 2009, including El Niño and La Niña events, at three sites in Central Kalimantan, Indonesia. The sites were different in disturbance degree: a PSF with little drainage (UF), a heavily drained PSF (DF), and a drained burnt ex-PSF (DB); GWL was significantly lowered at DF, especially in the dry season. The ET showed a clear seasonal variation with a peak in the mid-dry season and a large decrease in the late dry season, mainly following seasonal variation in net radiation (Rn ). The Rn drastically decreased with dense smoke from peat fires in the late dry season. Annual ET forced to close energy balance for 4 years was 1636 ± 53, 1553 ± 117, and 1374 ± 75 mm yr(-1) (mean ± 1 standard deviation), respectively, at UF, DF, and DB. The undrained PSF (UF) had high and rather stable annual ET, independently of El Niño and La Niña events, in comparison with other tropical rainforests. The minimum monthly-mean GWL explained 80% of interannual variation in ET for the forest sites (UF and DF); the positive relationship between ET and GWL indicates that drainage by a canal decreased ET at DF through lowering GWL. In addition, ET was decreased by 16% at DB in comparison with UF chiefly because of vegetation loss through fires.

  13. Sources of variability of evapotranspiration in California

    USGS Publications Warehouse

    Hidalgo, H.G.; Cayan, D.R.; Dettinger, M.D.

    2005-01-01

    The variability (1990-2002) of potential evapotranspiration estimates (ETo) and related meteorological variables from a set of stations from the California Irrigation Management System (CIMIS) is studied. Data from the National Climatic Data Center (NCDC) and from the Department of Energy from 1950 to 2001 were used to validate the results. The objective is to determine the characteristics of climatological ETo and to identify factors controlling its variability (including associated atmospheric circulations). Daily ETo anomalies are strongly correlated with net radiation (Rn) anomalies, relative humidity (RH), and cloud cover, and less with average daily temperature (Tavg). The highest intraseasonal variability of ETo daily anomalies occurs during the spring, mainly caused by anomalies below the high ETo seasonal values during cloudy days. A characteristic circulation pattern is associated with anomalies of ETo and its driving meteorological inputs, Rn, RH, and Tavg, at daily to seasonal time scales. This circulation pattern is dominated by 700-hPa geopotential height (Z700) anomalies over a region off the west coast of North America, approximately between 32?? and 44?? latitude, referred to as the California Pressure Anomaly (CPA). High cloudiness and lower than normal ETo are associated with the lowheight (pressure) phase of the CPA pattern. Higher than normal ETo anomalies are associated with clear skies maintained through anomalously high Z700 anomalies offshore of the North American coast. Spring CPA, cloudiness, maximum temperature (Tmax), pan evaporation (Epan), and ETo conditions have not trended significantly or consistently during the second half of the twentieth century in California. Because it is not known how cloud cover and humidity will respond to climate change, the response of ETo in California to increased greenhouse-gas concentrations is essentially unknown; however, to retain the levels of ETo in the current climate, a decline of Rn by about 6

  14. Evapotranspiration of tropical peat swamp forests.

    PubMed

    Hirano, Takashi; Kusin, Kitso; Limin, Suwido; Osaki, Mitsuru

    2015-05-01

    In Southeast Asia, peatland is widely distributed and has accumulated a massive amount of soil carbon, coexisting with peat swamp forest (PSF). The peatland, however, has been rapidly degraded by deforestation, fires, and drainage for the last two decades. Such disturbances change hydrological conditions, typically groundwater level (GWL), and accelerate oxidative peat decomposition. Evapotranspiration (ET) is a major determinant of GWL, whereas information on the ET of PSF is limited. Therefore, we measured ET using the eddy covariance technique for 4-6 years between 2002 and 2009, including El Niño and La Niña events, at three sites in Central Kalimantan, Indonesia. The sites were different in disturbance degree: a PSF with little drainage (UF), a heavily drained PSF (DF), and a drained burnt ex-PSF (DB); GWL was significantly lowered at DF, especially in the dry season. The ET showed a clear seasonal variation with a peak in the mid-dry season and a large decrease in the late dry season, mainly following seasonal variation in net radiation (Rn ). The Rn drastically decreased with dense smoke from peat fires in the late dry season. Annual ET forced to close energy balance for 4 years was 1636 ± 53, 1553 ± 117, and 1374 ± 75 mm yr(-1) (mean ± 1 standard deviation), respectively, at UF, DF, and DB. The undrained PSF (UF) had high and rather stable annual ET, independently of El Niño and La Niña events, in comparison with other tropical rainforests. The minimum monthly-mean GWL explained 80% of interannual variation in ET for the forest sites (UF and DF); the positive relationship between ET and GWL indicates that drainage by a canal decreased ET at DF through lowering GWL. In addition, ET was decreased by 16% at DB in comparison with UF chiefly because of vegetation loss through fires. PMID:24912043

  15. Okubo-Zweig-Iizuka-rule violation and B{yields}{eta}{sup (')}K branching ratios

    SciTech Connect

    Hsu, J.-F.; Charng, Y.-Y.; Li, Hsiang-nan

    2008-07-01

    We show that the few-percent Okubo-Zweig-Iizuka-rule violating effects in the quark-flavor basis for the {eta}-{eta}{sup '} mixing can enhance the chiral scale associated with the {eta}{sub q} meson a few times. This enhancement is sufficient for accommodating the dramatically different data of the B{yields}{eta}{sup '}K and B{yields}{eta}K branching ratios. We comment on other proposals for resolving this problem, including flavor-singlet contributions, axial U(1) anomaly, and nonperturbative charming penguins. Discrimination of the above proposals by means of the B{yields}{eta}{sup (')}l{nu} and B{sub s}{yields}{eta}{sup (')}ll data is suggested.

  16. Does dinitrogen hydrogenation follow different mechanisms for [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) and {[PhP(CH2SiMe2NSiMe2CH2)PPh]Zr}2(mu2,eta2,eta2-N2) complexes? A computational study.

    PubMed

    Bobadova-Parvanova, Petia; Wang, Qingfang; Quinonero-Santiago, David; Morokuma, Keiji; Musaev, Djamaladdin G

    2006-09-01

    The mechanisms of dinitrogen hydrogenation by two different complexes--[(eta(5)-C(5)Me(4)H)(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)), synthesized by Chirik and co-workers [Nature 2004, 427, 527], and {[P(2)N(2)]Zr}(2)(mu(2),eta(2),eta(2)-N(2)), where P(2)N(2) = PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh, synthesized by Fryzuk and co-workers [Science 1997, 275, 1445]--are compared with density functional theory calculations. The former complex is experimentally known to be capable of adding more than one H(2) molecule to the side-on coordinated N(2) molecule, while the latter does not add more than one H(2). We have shown that the observed difference in the reactivity of these dizirconium complexes is caused by the fact that the former ligand environment is more rigid than the latter. As a result, the addition of the first H(2) molecule leads to two different products: a non-H-bridged intermediate for the Chirik-type complex and a H-bridged intermediate for the Fryzuk-type complex. The non-H-bridged intermediate requires a smaller energy barrier for the second H(2) addition than the H-bridged intermediate. We have also examined the effect of different numbers of methyl substituents in [(eta(5)-C(5)Me(n)H(5)(-)(n))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) for n = 0, 4, and 5 (n = 5 is hypothetical) and [(eta(5)-C(5)H(2)-1,2,4-Me(3))(eta(5)-C(5)Me(5))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) and have shown that all complexes of this type would follow a similar H(2) addition mechanism. We have also performed an extensive analysis on the factors (side-on coordination of N(2) to two Zr centers, availability of the frontier orbitals with appropriate symmetry, and inflexibility of the catalyst ligand environment) that are required for successful hydrogenation of the coordinated dinitrogen.

  17. Comparing SEBAL and METRIC: Evapotranspiration Models Applied to Paramount Farms Almond Orchards

    NASA Astrophysics Data System (ADS)

    Furey, B. J.; Kefauver, S. C.

    2011-12-01

    Two evapotranspiration models were applied to almond and pistachio orchards in California. The SEBAL model, developed by W.G.M. Bastiaanssen, was programmed in MatLab for direct comparison to the METRIC model, developed by R.G. Allen and the IDWR. Remote sensing data from the NASA SARP 2011 Airborne Research Program was used in the application of these models. An evaluation of the models showed that they both followed the same pattern in evapotranspiration (ET) rates for different types of ground cover. The models exhibited a slightly different range of values and appeared to be related (non-linearly). The models both underestimated the actual ET at the CIMIS weather station. However, SEBAL overestimated the ET of the almond orchards by 0.16 mm/hr when applying its crop coefficient to the reference ET. This is compared to METRIC, which underestimated the ET of the almond orchards by only 0.10 mm/hr. Other types of ground cover were similarly compared. Temporal variability in ET rates between the morning and afternoon were also observed.

  18. Statistical Analysis of Meteorological Data to Assess Evapotranspiration and Infiltration at the Rifle Site, CO, USA

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Long, P. E.; Tokunaga, T. K.; Christensen, J. N.

    2015-12-01

    Net infiltration to the vadose zone, especially in arid or semi-arid climates, is an important control on microbial activity and solute and green house gas fluxes. To assess net infiltration, we performed a statistical analysis of meteorological data as the basis for hydrological and climatic investigations and predictions for the Rifle site, Colorado, USA, located within a floodplain in a mountainous region along the Colorado River, with a semi-arid climate. We carried out a statistical analysis of meteorological 30-year time series data (1985-2015), including: (1) precipitation data, taking into account the evaluation of the snowmelt, (2) evaluation of the evapotranspiration (reference and actual), (3) estimation of the multi-time-scalar Standardized Precipitation-Evapotranspiration Index (SPEI), (4) evaluation of the net infiltration rate, and (5) corroborative analysis of calculated net infiltration rate and groundwater recharge from radioisotopic measurements from samples collected in 2013. We determined that annual net infiltration percentage of precipitation varies from 4.7% to ~18%, with a mean of ~10%, and concluded that calculations of net infiltration based on long-term meteorological data are comparable with those from strontium isotopic investigations. The evaluation of the SPEI showed the intermittent pattern of droughts and wet periods over the past 30 years, with a detectable decreasein the duration of droughts with time. Local measurements within the floodplain indicate a recharge gradient with increased recharge closer to the Colorado River.

  19. Using Satellite-based Evapotranspiration Estimation to Characterize Agricultural Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Myint, S. W.; Hendrickx, J. M. H.

    2014-12-01

    The satellite-based evapotranspiration (ET) model permits estimation of water consumption across space and time in a systematic way. Developing tools to monitor water availability and water use is critical to meet future water shortage challenges in the American West. This study applied METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) to 2001 Landsat imagery to estimate ET of various crop types in Phoenix. The total annual ET estimates are correlated well with the actual water use at the irrigation district level (r=0.99). We further incorporated a crop type map to estimate annual ET for the major crop types in the region, and to examine variability in crop water use among different irrigation districts. Our results show that alfalfa and double crops consume more water than other crop types with mean annual ET estimations of 1300 to 1580 mm/year, and that cotton uses more water (1162 mm/year) than corn (838 mm/year) and sorghum (829 mm/year) as expected. Crop water use varies from one irrigation district to another due to differences in soil quality, water quality, and farming practices. Results from our study suggest that the ET maps derived from METRIC can be used to quantify the spatial distribution of ET and to characterize agricultural water use by crop types at different spatial scales.

  20. Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains

    PubMed Central

    Gowda, Prasanna H.; Chávez, José L.; Howell, Terry A.; Marek, Thomas H.; New, Leon L.

    2008-01-01

    Agriculture on the Texas High Plains (THP) uses approximately 89% of groundwater withdrawals from the Ogallala Aquifer. Consequently, groundwater levels are declining faster than the recharge rate. Therefore, efficient agricultural water use is essential for economic viability and sustainability of the THP. Accurate regional evapotranspiration (ET) maps would provide valuable information on actual crop water use. In this study, METRIC (Mapping Evapotranspiration at High Resolution using Internalized Calibration), a remote sensing based ET algorithm, was evaluated for mapping ET in the THP. Two Landsat 5 Thematic Mapper images acquired on 27 June (DOY 178) and 29 July (DOY 210) 2005 were used for this purpose. The performance of the ET model was evaluated by comparing the predicted daily ET with values derived from soil moisture budget at four commercial agricultural fields. Daily ET estimates resulted with a prediction error of 12.7±8.1% (mean bias error ± root mean square error) on DOY 178 and -4.7±9.4% on DOY 210 when compared with ET derived from measured soil moisture through the soil water balance. These results are good considering the prevailing advective conditions in the THP. METRIC have the potential to be used for mapping regional ET in the THP region. However, more evaluation is needed under different agroclimatological conditions.

  1. Assessment of actual transpiration rate in olive tree field combining sap-flow, leaf area index and scintillometer measurements

    NASA Astrophysics Data System (ADS)

    Agnese, C.; Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G.; Rallo, G.; de Bruin, H. A. R.

    2009-09-01

    Models to estimate the actual evapotranspiration (ET) in sparse vegetation area can be fundamental for agricultural water managements, especially when water availability is a limiting factor. Models validation must be carried out by considering in situ measurements referred to the field scale, which is the relevant scale of the modelled variables. Moreover, a particular relevance assumes to consider separately the components of plant transpiration (T) and soil evaporation (E), because only the first is actually related to the crop stress conditions. Objective of the paper was to assess a procedure aimed to estimate olive trees actual transpiration by combining sap flow measurements with the scintillometer technique at field scale. The study area, located in Western Sicily (Italy), is mainly cultivated with olive crop and is characterized by typical Mediterranean semi-arid climate. Measurements of sap flow and crop actual evapotranspiration rate were carried out during 2008 irrigation season. Crop transpiration fluxes, measured on some plants by means of sap flow sensors, were upscaled considering the leaf area index (LAI). The comparison between evapotranspiration values, derived by displaced-beam small-aperture scintillometer (DBSAS-SLS20, Scintec AG), with the transpiration fluxes obtained by the sap flow sensors, also allowed to evaluate the contribute of soil evaporation in an area characterized by low vegetation coverage.

  2. Spatial and temporal variation in evapotranspiration using Raman lidar

    NASA Astrophysics Data System (ADS)

    Eichinger, W. E.; Cooper, D. I.; Hipps, L. E.; Kustas, W. P.; Neale, C. M. U.; Prueger, J. H.

    2006-02-01

    The Los Alamos Raman lidar has been used to make high resolution (25 m) estimates of the evapotranspiration rate over adjacent corn and soybean canopies. The lidar makes three-dimensional measurements of the water vapor content of the atmosphere directly above the canopy that are inverted using Monin-Obukhov similarity theory. This may be used to examine the relationship between evapotranspiration and surface moisture/soil type. Lidar estimates of evapotranspiration reveal a high degree of spatial variability over corn and soybean fields that may be associated with small elevation changes in the area. The spatial structure of the variability is characterized using a structure function and correlation function approach. The power law relationship found by other investigators for soil moisture is not clear in the data for evapotranspiration, nor is the data a straight line over the measured lags. The magnitude of the structure function and the slope changes with time of day, with a probable connection to the amount of evapotranspiration and the spatial variability of the water vapor source. The data used was taken during the soil moisture-atmosphere coupling experiment (SMACEX) conducted in the Walnut Creek Watershed near Ames, Iowa in June and July 2002.

  3. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central element in a metaphysical…

  4. El Observatorio Gemini - Status actual

    NASA Astrophysics Data System (ADS)

    Levato, H.

    Se hace una breve descripción de la situación actual del Observatorio Gemini y de las últimas decisiones del Board para incrementar la eficiencia operativa. Se hace también una breve referencia al uso argentino del observatorio.

  5. Revisit the radiative decays of J/{psi} and {psi}{sup '}{yields}{gamma}{eta}{sub c}({gamma}{eta}{sub c}{sup '})

    SciTech Connect

    Li Gang; Zhao Qiang

    2011-10-01

    With the new measurements of J/{psi} and {psi}{sup '}{yields}{gamma}{eta}{sub c}({gamma}{eta}{sub c}{sup '}) from the CLEO and BES-III collaboration, we reinvestigate the intermediate meson loop (IML) contributions to these radiative decays in association with the quark model M1 transitions in an effective Lagrangian approach. It shows that the ''unquenched'' effects due to the intermediate hadron loops can be better quantified by the new data for J/{psi}{yields}{gamma}{eta}{sub c}. Although the IML contributions are relatively small in J/{psi}{yields}{gamma}{eta}{sub c}, they play a crucial role in {psi}{sup '}{yields}{gamma}{eta}{sub c}({gamma}{eta}{sub c}{sup '}). A prediction for the IML contributions to {psi}(3770){yields}{gamma}{eta}{sub c}({gamma}{eta}{sub c}{sup '}) is made. Such unquenched effects allow us to reach a coherent description of those three radiative transitions, and gain some insights into the underlying dynamics.

  6. NOAA Introduces its First-Generation Reference Evapotranspiration Product

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.

    2013-12-01

    NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally

  7. Estimation of Evapotranspiration as a function of Photosynthetic Active Radiation

    NASA Astrophysics Data System (ADS)

    Wesley, E.; Migliaccio, K.; Judge, J.

    2012-12-01

    The purpose of this research project is to more accurately measure the water balance and energy movements to properly allocate water resources at the Snapper Creek Site in Miami-Dade County, FL, by quantifying and estimating evapotranspiration (ET). ET is generally estimated using weather based equations, this project focused on estimating ET as a function of Photosynthetic Active Radiation (PAR). The project objectives were first to compose a function of PAR and calculated coefficients that can accurately estimate daily ET values with the least amount of variables used in its estimation equation, and second, to compare the newly identified ET estimation PAR function to TURC estimations, in comparison to our actual Eddy Covariance (EC) ET data and determine the differences in ET values. PAR, volumetric water content (VWC), and temperature (T) data were quality checked and used in developing singular and multiple variable regression models fit with SigmaPlot software. Fifteen different ET estimation equations were evaluated against EC ET and TURC estimated ET using R2 and slope factors. The selected equation that best estimated EC ET was cross validated using a 5 month data set; its daily and monthly ET values and sums were compared against the commonly used TURC equation. Using a multiple variable regression model, an equation with three variables (i.e., VWC, T, and PAR) was identified that best fit EC ET daily data. However, a regression was also found that used only PAR and provided ET predictions of similar accuracy. The PAR based regression model predicted daily EC ET more accurately than the traditional TURC method. Using only PAR to estimate ET reduces the input variables as compared to using the TURC model which requires T and solar radiation. Thus, not only is the PAR approach more accurate but also more cost effective. The PAR-based ET estimation equation derived in this study may be over fit considering only 5 months of data were used to produce the PAR

  8. Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity

    PubMed Central

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917

  9. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    PubMed

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  10. Isolation of Omnipotent Suppressors in an [Eta(+)] Yeast Strain

    PubMed Central

    All-Robyn, J. A.; Kelley-Geraghty, D.; Griffin, E.; Brown, N.; Liebman, S. W.

    1990-01-01

    Omnipotent suppressors decrease translational fidelity and cause misreading of nonsense codons. In the presence of the non-Mendelian factor [eta(+)], some alleles of previously isolated omnipotent suppressors are lethal. Thus the current search was conducted in an [eta(+)] strain in an effort to identify new suppressor loci. A new omnipotent suppressor, SUP39, and alleles of sup35, sup45, SUP44 and SUP46 were identified. Efficiencies of the dominant suppressors were dramatically reduced in strains that were cured of non-Mendelian factors by growth on guanidine hydrochloride. Wild-type alleles of SUP44 and SUP46 were cloned and these clones were used to facilitate the genetic analyses. SUP44 was shown to be on chromosome VII linked to cyh2, and SUP46 was clearly identified as distinct from the linked sup45. PMID:2311916

  11. Turbidity of a binary fluid mixture: Determining eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1994-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to the critical point. By covering the range of reduced temperatures t is equivalent to (T-T(sub c))/T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Interpreting the turbidity correctly is important if future NASA flight experiments use turbidity as an indirect measurement of relative temperature in shuttle experiments on critical phenomena in fluids.

  12. Turbidity of a Binary Fluid Mixture: Determining Eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  13. Regional evaluation of evapotranspiration in the Everglades

    USGS Publications Warehouse

    German, E.R.

    2000-01-01

    Nine sites in the Florida Everglades were selected and instrumented for collection of data necessary for evapotranspiration-determination using the Bowen-ratio energy-budget method. The sites were selected to represent the sawgrass or cattail marshes, wet prairie, and open-water areas that constitute most of the natural Everglades system. At each site, measurements necessary for evapotranspiration (ET) calculation and modeling were automatically made and stored on-site at 15- or 30-minute intervals. Data collected included air temperature and humidity at two heights, wind speed and direction, incoming solar radiation, net solar radiation, water level and temperature, soil moisture content, soil temperature, soil heat flux, and rainfall. Data summarized in this report were collected from January 1996 through December 1997, and the development of site-specific and regional models of ET for this period is described. Latent heat flux is the energy flux density equivalent of the ET rate. Modified Priestley-Taylor models of latent heat flux as a function of selected independent variables were developed at each site. These models were used to fill in periods of missing latent heat flux measurement, and to develop regional models of the entire Everglades region. The regional models may be used to estimate ET in wet prairie, sawgrass or cattail marsh, and open-water portions of the natural Everglades system. The models are not applicable to forested areas or to the brackish areas adjacent to Florida Bay. Two types of regional models were developed. One type of model uses measurements of available energy at a site, together with incoming solar energy and water depth, to estimate hourly ET. This available-energy model requires site data for net radiation, water heat storage, and soil heat flux, as well as data for incoming solar radiation and water depth. The other type of model requires only incoming solar energy, air temperature, and water depth data to provide estimates of

  14. Direct measurement of evapotranspiration from a forest using a superconducting gravimeter

    NASA Astrophysics Data System (ADS)

    Van Camp, Michel; Viron, Olivier; Pajot-Métivier, Gwendoline; Casenave, Fabien; Watlet, Arnaud; Dassargues, Alain; Vanclooster, Marnik

    2016-10-01

    Evapotranspiration (ET) controls the flux between the land surface and the atmosphere. Assessing the ET ecosystems remains a key challenge in hydrology. We have found that the ET water mass loss can be directly inferred from continuous gravity measurements: as water evaporates and transpires from terrestrial ecosystems, the mass distribution of water decreases, changing the gravity field. Using continuous superconducting gravity measurements, we were able to identify daily gravity changes at the level of, or smaller than, 10-9 nm s-2 (or 10-10 g) per day. This corresponds to 1.7 mm of water over an area of 50 ha. The strength of this method is its ability to enable a direct, traceable and continuous monitoring of actual ET for years at the mesoscale with a high accuracy.

  15. DETECTION OF THE COMPRESSED PRIMARY STELLAR WIND IN {eta} CARINAE

    SciTech Connect

    Teodoro, M.; Madura, T. I.; Gull, T. R.; Corcoran, M. F.; Hamaguchi, K.

    2013-08-10

    A series of three Hubble Space Telescope/Space Telescope Imaging Spectrograph spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from {eta} Carinae. We identify these arcs with the shell-like structures, seen in the three-dimensional hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.

  16. The {eta}{sub 6} at LEP and TRISTAN

    SciTech Connect

    Kang, K.; Knowles, I.G.; White, A.R.

    1993-01-20

    The {eta}{sub 6} is a {open_quotes}heavy axion{close_quotes} remnant of dynamical electroweak symmetry breaking by a color sextet quark condensate. Electroweak scale color instanton interactions allow it to be both very massive and yet be responsible for Strong CP conservation in the color triplet quark sector. It may have been seen at LEP via its two-photon decay mode and at TRISTAN via its hadronic decay modes.

  17. Chandra X-Ray Observatory Image of Eta Carinae

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Chandra X-Ray Observatory image of the mysterious superstar Eta Carinae reveals a surprising hot irner core, creating more questions than answers for astronomers. The image shows three distinct structures: An outer, horseshoe shaped ring about 2 light-years in diameter, a hot inner core about 3 light-months in diameter, and a hot central source less than a light-month in diameter which may contain the superstar. In 1 month, light travels a distance of approximately 489 billion miles (about 788 billion kilometers). All three structures are thought to represent shock waves produced by matter rushing away from the superstar at supersonic speeds. The temperature of the shock-heated gas ranges from 60 million degrees Kelvin in the central regions to 7 million degrees Kelvin on the outer structure. Eta Carinae is one of the most enigmatic and intriguing objects in our galaxy. Between 1837 and 1856, it increased dramatically in brightness to become the most prominent star in the sky except for Sirius, even through it is 7,500 light-years away, more than 80 times the distance to Sirius. This 'Great Eruption,' as it is called, had an energy comparable to a supernova, yet did not destroy the star, which faded to become a dim star, invisible to the naked eye. Since 1940, Eta Carinae has begun to brighten again, becoming visible to the naked eye. Photo credit: NASA/CXC/SAO

  18. High Velocity Absorption during Eta Car B's Periastron Passage

    NASA Technical Reports Server (NTRS)

    Nielsen, Krister E.; Groh, J. H.; Hillier, J.; Gull, Theodore R.; Owocki, S. P.; Okazaki, A. T.; Damineli, A.; Teodoro, M.; Weigelt, G.; Hartman, H.

    2010-01-01

    Eta Car is one of the most luminous massive stars in the Galaxy, with repeated eruptions with a 5.5 year periodicity. These events are caused by the periastron passage of a massive companion in an eccentric orbit. We report the VLT/CRIRES detection of a strong high-velocity, (<1900 km/s) , broad absorption wing in He I at 10833 A during the 2009.0 periastron passage. Previous observations during the 2003.5 event have shown evidence of such high-velocity absorption in the He I 10833 transition, allowing us to conclude that the high-velocity gas is crossing the line-of-sight toward Eta Car over a time period of approximately 2 months. Our analysis of HST/STlS archival data with observations of high velocity absorption in the ultraviolet Si IV and C IV resonance lines, confirm the presence of a high-velocity material during the spectroscopic low state. The observations provide direct detection of high-velocity material flowing from the wind-wind collision zone around the binary system, and we discuss the implications of the presence of high-velocity gas in Eta Car during periastron

  19. Drought impacts and resilience on crops via evapotranspiration estimations

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Asadollahi Dolatabad, Saeid

    2015-04-01

    Currently, the global needs for food and water is at a critical level. It has been estimated that 12.5 % of the global population suffers from malnutrition and 768 million people still do not have access to clean drinking water. This need is increasing because of population growth but also by climate change. Changes in precipitation patterns will result either in flooding or droughts. Consequently availability, usability and affordability of water is becoming challenge and efficient use of water and water management is becoming more important, particularly during severe drought events. Drought monitoring for agricultural purposes is very hard. While meteorological drought can accurately be monitored using precipitation only, estimating agricultural drought is more difficult. This is because agricultural drought is dependent on the meteorological drought, the impacts on the vegetation, and the resilience of the crops. As such not only precipitation estimates are required but also evapotranspiration at plant/plot scale. Evapotranspiration (ET) describes the amount of water evaporated from soil and vegetation. As 65% of precipitation is lost by ET, drought severity is highly linked with this variable. In drought research, the precise quantification of ET and its spatio-temporal variability is therefore essential. In this view, remote sensing based models to estimate ET, such as SEBAL and SEBS, are of high value. However the resolution of current evapotranspiration products are not good enough for monitoring the impact of the droughts on the specific crops. This limitation originates because plot scales are in general smaller than the resolution of the available satellite ET products. As such remote sensing estimates of evapotranspiration are always a combination of different land surface types and cannot be used for plant health and drought resilience studies. The goal of this research is therefore to enable adequate resolutions of daily evapotranspiration estimates

  20. Assessing reference evapotranspiration in a subhumid climate in NE Austria

    NASA Astrophysics Data System (ADS)

    Nolz, Reinhard; Eitzinger, Josef; Cepuder, Peter

    2015-04-01

    Computing reference evapotranspiration and multiplying it with a specific crop coefficient as recommended by the Food and Agriculture Organization of the United Nations (FAO) is the most widely accepted approach to estimate plant water requirements. The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on local environmental conditions. Consequently, it seems advisable to evaluate the model under local environmental conditions. Evapotranspiration was determined at a subhumid site in Austria (48°12'N, 16°34'E; 157 m asl) using a large weighing lysimeter operated at (limited) reference conditions and compared with calculations according to ASCE-EWRI. The lysimeter had an inner diameter of 1.9 m and a hemispherical bottom with a maximum depth of 2.5 m. Seepage water was measured at a free draining outlet using a tipping bucket. Lysimeter mass changes were sensed by a weighing facility with an accuracy of ±0.1 mm. Both rainfall and evapotranspiration were determined directly from lysimeter data using a simple water balance equation. Meteorological data for the ASCE-EWRI model were obtained from a weather station of the Central Institute for Meteorology and Geodynamics, Austria (ZAMG). The study period was from 2005 to 2010, analyses were based upon daily time steps. Daily calculated reference evapotranspiration was generally overestimated at small values, whereas it was rather underestimated when evapotranspiration was large, which is supported also by other studies. In the given case, advection of sensible heat proved

  1. Evapotranspiration estimation in pastures at the municipality of Campo Grande, Brazil, using SEBAL and remote sensing data

    NASA Astrophysics Data System (ADS)

    Andrade, R. G.; Leivas, J. F.; Alvarez, I. A.; Vicente, L. E.; Nogueira, S. F.; Hott, M. C.; Takemura, C. M.; Gomes, D.

    2011-12-01

    The knowledge of the total water loss by evapotranspiration is essential for plant growth and development assessments. Studies show that the success of the Brazilian livestock is directly linked to the fact that bovine cattle is reared in pastures, which enables low cost beef production. However, many factors influence the productive capacity of pastures and, consequently, beef production. Among these, there are variations in precipitation, causing periods of water deficit even during rainy seasons, which makes evapotranspiration a major factor in the diagnosis of climatic and environmental conditions of pasture areas. Remote sensing information has been used by several models and algorithms for obtaining parameters of the Earth's surface. The Surface Energy Balance Algorithms for Land (SEBAL) is an algorithm for evapotranspiration estimation for large areas. It is processed by means of computational steps, which predict a full assessment of the solar radiation and energy on the Earth's surface. For that it uses data of sensors that collect wavelengths in the visible, reflective infrared and thermal bands. This study aimed at estimating actual daily evapotranspiration (ETdaily) in pasture areas at Embrapa Beef Cattle's Experimental Farm, located in the municipality of Campo Grande, Brazil, by means of the SEBAL algorithm and Landsat 5-TM images. For the scenes of May 9, June 28, July 7 and October 2, 2009, the ETdaily varied from 0.50 to 3.50 mm/day with an average of 1.85 mm/day for pasture areas. The application of the SEBAL algorithm proved itself adequate in extensive areas, and it is possible to use it for monitoring pasture conditions, thus contributing to making decisions that favor beef cattle production with environmental sustainability.

  2. Evapotranspiration estimation in pastures at the municipality of Campo Grande, Brazil, using SEBAL and remote sensing data

    NASA Astrophysics Data System (ADS)

    Andrade, R. G.; Leivas, J. F.; Hott, M. C.; Alvarez, I. A.; Vicente, L. E.; Nogueira, S. F.; Takemura, C. M.

    2011-12-01

    The knowledge of the total water loss by evapotranspiration is essential for plant growth and development assessments. Studies show that the success of the Brazilian livestock is directly linked to the fact that bovine cattle is reared in pastures, which enables low cost beef production. However, many factors influence the productive capacity of pastures and, consequently, beef production. Among these, there are variations in precipitation, causing periods of water deficit even during rainy seasons, which makes evapotranspiration a major factor in the diagnosis of climatic and environmental conditions of pasture areas. Remote sensing information has been used by several models and algorithms for obtaining parameters of the Earth's surface. The Surface Energy Balance Algorithms for Land (SEBAL) is an algorithm for evapotranspiration estimation for large areas. It is processed by means of computational steps, which predict a full assessment of the solar radiation and energy on the Earth's surface. For that it uses data of sensors that collect wavelengths in the visible, reflective infrared and thermal bands. This study aimed at estimating actual daily evapotranspiration (ETdaily) in pasture areas at Embrapa Beef Cattle's Experimental Farm, located in the municipality of Campo Grande, Brazil, by means of the SEBAL algorithm and Landsat 5-TM images. For the scenes of May 9, June 28, July 7 and October 2, 2009, the ETdaily varied from 0.50 to 3.50 mm d-1 with an average of 1.85 mm d-1 for pasture areas. The application of the SEBAL algorithm proved itself adequate in extensive areas, and it is possible to use it for monitoring pasture conditions, thus contributing to making decisions that favor beef cattle production with environmental sustainability.

  3. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    NASA Astrophysics Data System (ADS)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  4. Operational evapotranspiration based on Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  5. A calibration-free evapotranspiration mapping technique

    NASA Astrophysics Data System (ADS)

    Szilagyi, J.

    2010-12-01

    With the availability of Moderate Resolution Imaging Spectroradiometer (MODIS) data the spatial distribution of the resulting daytime land surface temperature (Ts) can be tracked at a resolution of about 1-km. A simple, self-calibrating linear transformation of the Ts values into evapotranspiration (ET) rates is possible if the following criteria are met: a) the vertical gradient of the air temperature near the surface is directly proportional to Ts; b) net energy available for sensible and latent heat transfer at the surface is quasi-constant in space; c) heat conduction into the soil is negligible, and; d) land-surface properties do not change drastically over space. The validity of a) has been proved by such models as SEBAL and METRIC. Requirement b) is fulfilled over a flat or rolling terrain provided the probability distribution of the surface albedo values of the MODIS cells has a narrow spread, which is the case for the two study areas (Hungary and Nebraska) with a characteristic vegetation-period mean of about 16% and a standard deviation of 1.4%. Heat conduction into the soil can be considered negligible for periods longer than a day, thus the 8-day composited Ts values employed in the present study comply with this requirement. Finally, for periods longer than a day, the assumption of near-neutral atmospheric conditions is justified which entails that spatial variations in surface properties have a significantly dampened effect on the flux-transfer coefficient (i.e., aerodynamic resistance) value which therefore can be considered as quasi-constant in space. The linear transformation of the Ts values into ET rates in this study has been performed on a monthly basis. The transformation requires specifying two anchor points in the Ts - ET plane with the help of standard atmospheric variables, such as air temperature and humidity, as well as incident global radiation, or in lieu of it, sunshine duration. From March to November ET has been mapped for Hungary

  6. Estimation of evapotranspiration using satellite TOA radiances

    NASA Astrophysics Data System (ADS)

    Peng, J.; Loew, A.

    2013-12-01

    ET (Evapotranspiration) is an important variable in the water and energy balance on the Earth's surface. Accurate estimation of the temporal and spatial pattern of ET is of great significance for hydrological, agricultural and meteorological studies. A simplified single-source energy balance parameterization scheme, known as the LST/NDVI (Land Surface Temperature/Normalized Difference Vegetation Index) feature space method, has been applied successfully to estimate clear sky ET in many studies. Based on the LST/NDVI feature space method, a new method is proposed in this study to estimate ET directly using the TOA (Top of Atmosphere) radiances without performing atmospheric correction and associated complex processes. Firstly, the feasibility and uncertainties in estimating NDTI (Normalized Difference Temperature Index, a key parameter in EF (evaporative fraction) estimation) from TOA radiances are investigated. Through a physical understanding of the Planck radiation law and radiative transfer equation, together with a detailed sensitivity analysis of NDTI on surface and atmosphere variability, it is found that the NDTI can be estimated from TOA radiances with an accuracy of 90% if the spatial variabilities of atmospheric parameters (water vapor, effective atmospheric temperature) and surface emissivity are below 10%, 4 K, and 0.05, respectively. Then the applicability and robustness of the MODIS TOA radiances based EF estimation scheme are investigated using FLUXNET (a global network of eddy covariance stations) observations. From direct comparison with measured EF at different FLUXNET sites, the estimated EF from TOA radiances perform mostly well across a wide variety of climate and biome types. The accuracy level is also comparable with published results in the literature. Furthermore, the FLUXNET measurements are used to examine the assumption of EF self preservation, and the conditions under which it can hold. It is found that the instantaneous EF can

  7. Sub-canopy evapotranspiration from floating vegetation and open water in a swamp forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among previous studies, there are large discrepancies in the difference between evapotranspiration from wetland vegetation and evaporation from open water. In this study, we investigate evapotranspiration differences between water and vegetation in a scenario that has otherwise not been extensively ...

  8. Heterogeneous terrain: a challenge to derive evapotranspiration with remote sensing and scintillometry

    NASA Astrophysics Data System (ADS)

    Thiem, Christina; Sun, Liya; Müller, Benjamin; Bernhardt, Matthias; Schulz, Karsten

    2014-05-01

    Despite the importance of evapotranspiration for Meteorology, Hydrology and Agronomy, obtaining area-averaged evapotranspiration estimates is cost as well as maintenance intensive: usually area-averaged evapotranspiration estimates are obtained by distributed sensor networks or remotely sensed with a scintillometer. A low cost alternative for evapotranspiration estimates are satellite images, as many of them are freely available. This approach has been proven to be worthwhile above homogeneous terrain, and typically evapotranspiration data obtained with scintillometry are applied for validation. We will extend this approach to heterogeneous terrain: evapotranspiration estimates from ASTER 2013 images will be compared to scintillometer derived evapotranspiration estimates. The goodness of the correlation will be presented as well as an uncertainty estimation for both the ASTER derived and the scintillometer derived evapotranspiration.

  9. 2{eta} or not 2{eta}? Insights into the Cu CVD process using a Cu(I) precursor

    SciTech Connect

    Kumar, R.; Maverick, A.W.; Fronczek, F.R.; Kim, A.J.; Butler, L.G.

    1993-12-31

    One of the first successful Cu(I) CVD precursors is (hfac)Cu{sup I}(COD), and this species continues to served as a model system. In the CVD process, a significant step is dissociation of the COD ligand. The energetics of this process have been estimated previously. However, it now appears that, in the solid state, (hfac)Cu{sup I}(COD) undergoes an exchange process that allows additional insight into the potential energy surface governing the Cu-COD interaction. The solid-state structure of (hfac)Cu{sup I}(COD) has been difficult to establish, but a combination of variable temperature X-ray and solid-state {sup 13}C NMR studies leads to the following picture. Cu{sup I} is three-coordinate, bound to the hfac ligand and bound preferentially to one olefin of the COD ligand. There is a small energy barrier associated with motion of the Cu into position for {eta}{sup 2}-binding to the other olefin; the COD and hfac ligands remain approximately stationary. Thus, there are two sites for Cu, now labeled {eta}{sup 2} and {eta}{sup 2}. This new interpretation of the solid-state structure differs from that of our 300 K data set and a previous report. In addition, the exchange process is intimately connected with the Cu-COD dissociation step in the CVD process.

  10. Evapotranspiration from areas of native vegetation in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Woodham, W.M.; Lopez, Miguel Angel

    1996-01-01

    The micrometeorological methods of energy-balance Bowen ratio and eddy correlation probably are suitable for determining evapotranspiration from unforested sites, but the aerodynamic effects of tall tree canopies need to be considered when the methods are used for forested sites. Potential evapotranspiration methods might not yield reliable estimates of evapotranspiration for all areas of native vegetation. Estimates of annual evapotranspiration ranged from 970 millimeters for a cypress swamp site to 1,060 millimeters for a pine flatwood site.

  11. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    SciTech Connect

    Healy, R.W.; deVries, M.P.; Sturrock, A.M. Jr.

    1989-01-01

    Theory, methods, and results of a 2-yr study of microclimate and evapotranspiration of vegetated trench caps, conducted at the disposal site near Sheffield, Illinois, are presented in the report. Three methods were used to estimate evapotranspiration: energy-budget, aerodynamic-profile, and water-budget. Daily evapotranspiration ranged from 0 to 6 mm. The yearly average for the three methods of 657 mm was equivalent to 70% of precipitation and 75% of potential evapotranspiration.

  12. Rare decay {eta}{r_arrow}{pi}{pi}{gamma}{gamma} in chiral perturbation theory

    SciTech Connect

    Knoechlein, G.; Scherer, S.; Drechsel, D.

    1996-04-01

    We investigate the rare radiative {eta} decay modes {eta}{r_arrow}{pi}{sup +}{pi}{sup {minus}}{gamma}{gamma} and {eta}{r_arrow}{pi}{sup 0}{pi}{sup 0}{gamma}{gamma} within the framework of chiral perturbation theory at {ital O}({ital p}{sup 4}). We present photon spectra and partial decay rates for both processes as well as a Dalitz contour plot for the charged decay. {copyright} {ital 1996 The American Physical Society.}

  13. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  14. Bushland Evapotranspiration and Agricultural Remote Sensing EXperiment 2007 (BEAREX07)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Texas High Plains, every millimeter of irrigation water saved greatly affects profit margins. If available, high-resolution daily evapotranspiration (ET) maps would help producers plan their irrigation schedule effectively. The ET maps derived from satellite sensors with daily coverage such a...

  15. Daily time series evapotranspiration maps for Oklahoma and Texas panhandle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...

  16. Divergence of reference evapotranspiration estimates under advective tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standardized reference evapotranspiration (ET) and crop specific coefficients are frequently used to assess crop water use in irrigated agriculture. However, equations for calculating reference ET have not been well validated in more humid environments where optimal crop yields can depend on supplem...

  17. Ecosystem evapotranspiration: Challenges in measurements, estimates, and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) processes at the leaf-to-landscape scales in multiple land uses have important controls and feedbacks for the local, regional and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and cro...

  18. [Evapotranspiration of winter wheat field in North China Plain].

    PubMed

    Guo, Jiaxuan; Li, Yuzhong; Yan, Chang-Rong; Zhao, Quansheng; Mei, Xurong

    2006-12-01

    By using eddy covariance and remote sensing techniques, the relationships between winter wheat soil moisture content and farmland evapotranspiration or canopy temperature were analyzed at field scale under various environmental conditions in the North China Plain. The results showed that when the soil moisture content was below 65% of field capacity, the evaporative fraction under full canopy was low and stable during the middle part of clear days. Under clear sky condition, there was a good non-linear correlation between latent heat flux and crop canopy temperature with diurnal and seasonal patterns. The temperature difference between crop canopy and air as well as the relative evapotranspiration had a close link to the relative moisture content of 0 - 100 cm soil layer. Based on the in situ measurements of daily evapotranspiration amount (ET(d)), daily net radiation flux (Rn(d), mm), average canopy temperature (T(e), degrees C) from 13 : 30 to 14: 00, and daily maximum air temperature (T(a max), degrees C) during the field experiment, the parameters of simplified estimation model for daily evapotranspiration were established.

  19. Partitioning evapotranspiration into evaporation and transpiration in a corn field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is a main component of the hydrology cycle. It consists of soil water evaporation (E) and plant transpiration (T). Accurate partitioning of ET into E and T is challenging. We measured soil water E using heat pulse sensors and a micro-Bowen ratio system, T using stem flow gaug...

  20. Experimental verification of a recursive method to calculate evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, a recursive combination method (RCM) to calculate potential and crop evapotranspiration (ET) was given by Lascano and Van Bavel (Agron. J. 2007, 99:585–590). The RCM differs from the Penman-Monteith (PM) method, the main difference being that the assumptions made regarding the temperature ...

  1. Crop coefficient development and application to an evapotranspiration network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop coefficients derived from properly designed, operated, and maintained lysimeters provide the most accurate values throughout the growing season and are critical in the computation of hourly and daily,regionally based, crop evapotranspiration (ET) values. Multi-stage crop coefficients can be der...

  2. Evapotranspiration measurement and modeling in Mid-South irrigated rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly 75% of US rice is grown in the humid mid-South. Rice requires more water to produce than other crops (corn, soybean, and cotton). The identification of rice evapotranspiration and irrigation demand is paramount to understand regional water use and water allocation. Drill-seeded, commercial si...

  3. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    NASA Astrophysics Data System (ADS)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  4. Remote sensing estimation of evapotranspiration for SWAT Model Calibration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrological models are used to assess many water resource problems from water quantity to water quality issues. The accurate assessment of the water budget, primarily the influence of precipitation and evapotranspiration (ET), is a critical first-step evaluation, which is often overlooked in hydro...

  5. Seasonal energy and evapotranspiration partitioning in a desert vineyard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The challenge of partitioning energy and evapotranspiration (ET) components was addressed over a season (bud break till harvest) in a wine grape vineyard located in an extreme arid region. A below canopy energy balance approach was applied to continuously estimate evaporation from the soil (E) while...

  6. The adaptive CCCG({eta}) method for efficient solution of time dependent partial differential equations

    SciTech Connect

    Campos, F.F.; Birkett, N.R.C.

    1996-12-31

    The Controlled Cholesky factorisation has been shown to be a robust preconditioner for the Conjugate Gradient method. In this scheme the amount of fill-in is defined in terms of a parameter {eta}, the number of extra elements allowed per column. It is demonstrated how an optimum value of {eta} can be automatically determined when solving time dependent p.d.e.`s using an implicit time step method. A comparison between CCCG({eta}) and the standard ICCG solving parabolic problems on general grids shows CCCG({eta}) to be an efficient general purpose solver.

  7. 77 FR 70833 - Comment Request for Information Collection on the ETA 9048, Worker Profiling and Reemployment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ... information technology, e.g., permitting electronic submissions of responses. III. Current Actions Type of... Outcomes, Extension Without Revisions AGENCY: Employment and Training Administration (ETA), Labor....

  8. Measurements of the mass and width of the eta(c) meson and of an eta(c)(2S) candidate.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Barlow, N R; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Shen, B C; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Schwanke, U; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Biasini, M; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Pioppi, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Strother, P; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, R J; Forti, A C; Hart, P A; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Milek, M; Patel, P M; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Hast, C; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-04-01

    The mass m(eta(c)) and total width Gamma(eta(c))(tot) of the eta(c) meson have been measured in two-photon interactions at the SLAC e(+)e(-) asymmetric B Factory with the BABAR detector. With a sample of approximately 2500 reconstructed eta(c)-->K(0)(S)K+/-pi(-/+) decays in 88 fb(-1) of data, the results are m(eta(c))=2982.5+/-1.1(stat)+/-0.9(syst) MeV/c(2) and Gamma(eta(c))(tot)=34.3+/-2.3(stat)+/-0.9(syst) MeV/c(2). Using the same decay mode, a second resonance with 112+/-24 events is observed with a mass of 3630.8+/-3.4(stat)+/-1.0(syst) MeV/c(2) and width of 17.0+/-8.3(stat)+/-2.5(syst) MeV/c(2). This observation is consistent with expectations for the eta(c)(2S) state.

  9. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  10. Search for {psi}(2S){yields}{gamma}{eta}{sub c}(2S) via fully reconstructed {eta}{sub c}(2S) decays

    SciTech Connect

    Cronin-Hennessy, D.; Gao, K. Y.; Gong, D. T.; Hietala, J.; Kubota, Y.; Klein, T.; Poling, R.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.; Tomaradze, A.; Libby, J.; Martin, L.; Powell, A.; Thomas, C.; Wilkinson, G.; Mendez, H.; Ge, J. Y.

    2010-03-01

    We report a search for the decay {psi}(2S){yields}{gamma}{eta}{sub c}(2S) in a sample of 25.9x10{sup 6} {psi}(2S) events collected with the CLEO-c detector. No signals are observed in any of the 11 exclusive {eta}{sub c}(2S) decay modes studied, or in their sum. Product branching fraction upper limits are determined as a function of {Gamma}[{eta}{sub c}(2S)] for the 11 individual modes.

  11. Eta Carinae, the Integral Nebula and the Homunculus Observations

    NASA Astrophysics Data System (ADS)

    Gull, Theodore

    2000-07-01

    In the past two years, observations of Eta Carina have revealed much new and very exciting information. Augusto Damineli noted a 5.5 year period in the visible and near infrared spectroscopy. Michael Corcoran and Bish Ishibashi noticed modulation of the x-ray fluxes with various periodicities around 90 days before and after the xray and radio minimum in December 1997. Observations, done in March 1998 under proposal 7302 {Davidson et al} from 1640A to 10400A using STIS in GXXXM mode and the 50x0.1 arcsecond slit, revealed much new information in the immediate regions of Eta Carina. The slit orientation was slightly off the major axis of the Homunculus, but passed through Weigelt components B and D. Bish Ishibashi and Ted Gull have reduced the data and provided it to various team members. Torgil Zethson has identified well over 90 percent of the emission lines in the March 1998 spectrum and finds most to be FeII emission lines. Based upon the past ground-based history of Eta Carina, we expected that FeIII and other high ionization states would return within the year. STIS GTO observations {Ted Gull, PI program 8036} characterized a bright internal emission nebula by turning the slit 90 degrees for visit 1 and studying the changes in spectrum as the FeIII lines appear by using visit 2 with the identical slit orientation from March 19, 1998. Data from the four visits of STIS to Eta Carinae between December 1997 and February 1999 demonstrate that the star has brightened by a factor of two during that interval and that the immediate nebulosity has tripled in surface brightness. Moreover a small circular nebular shell, seen in multiple [Fe II] lines has disappeared and the opacity in the 2000 to 3000A region obscuring the star has lifted considerable as the Fe II is converting to Fe III. Given the strong changes in the spectrum, we have chosen to use the six orbits in two visits. Visit 1 will be a precise repeat of the March 1998 and February 1999 observations, adjusted

  12. Nebular Hydrogen Absorption in the Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Ishibashi, K.; Davidson, K.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    Space Telescope Imaging Spectrograph (STIS) observations of Eta Carinae and immediate ejecta reveal narrow Balmer absorption lines in addition to the nebular-scattered broad P-Cygni absorptions. The narrow absorption correlates with apparent disk structure that separates the two Homunculus lobes. We trace these features about half way up the Northern lobe until the scattered stellar Balmer line doppler-shifts redward beyond the nebular absorption feature. Three-dimensional data cubes, made by mapping the Homunculus at Balmer alpha and Balmer beta with the 52 x 0.1 arcsecond aperture and about 5000 spectral resolving power, demonstrate that the absorption feature changes slowly in velocity with nebular position. We have monitored the stellar Balmer alpha line profile of the central source over the past four years. The equivalent width of the nebular absorption feature changes considerably between observations. The changes do not correlate with measured brightness of Eta Carinae. Likely clumps of neutral hydrogen with a scale size comparable to the stellar disk diameter are passing through the intervening light path on the timescales less than several months. The excitation mechanism involves Lyman alpha radiation (possibly the Lyman series plus Lyman continuum) and collisions leading to populating the 2S metastable state. Before the electron can jump to the ground state by two photon emission (lifetime about 1/8 second), a stellar Balmer photon is absorbed and the electron shifts to an NP level. We see the absorption feature in higher Balmer lines, and but not in Paschen lines. Indeed we see narrow nebular Paschen emission lines. At present, we do not completely understand the details of the absorption. Better understanding should lead to improved insight of the unique conditions around Eta Carinae that leads to these absorptions.

  13. UV nebular absorption in Eta Car and Weigelt D

    NASA Astrophysics Data System (ADS)

    Nielsen, K. E.; Vieira, G. L.; Gull, T. R.; Lindler, D. J.; Eta Car HST Treasury Team

    2003-12-01

    The high angular and high spectral resolution of the HST/STIS MAMA echelle mode, provide an unique means to distinguish the physical structures surrounding Eta Car. Observations are parts of the HST treasury program (K. Davidson P.I.) for monitoring variations over Eta Car's spectroscopic minimum. Nebular emission is present above and below the stellar spectrum which is about 0.03'' wide. We have extracted the nebular part of the central source spectrum and compared it with the spectrum of Weigelt D, located approximately 0.2'' Northwest of the central source. The spectra show significant similarities and our conclusions are two-fold. First, the radiation from the Wiegelt blobs give an unwanted contribution to the spectrum of the central source, which emphasizes the importance of using an extracted spectrum in a spectral analysis. Second, the Weigelt blobs have so far been assumed to produce a pure emission line spectrum. However, this comparison shows the presence of similar absorption structures previously observed in the spectrum of the central star (Gull et al., 2003, submitted ApJL). Two velocity structures at approximately -50 and -500 km/s, respectively, have been observed in the Weigelt D spectrum. We present identifications of the absorption structures to supplement the emission line work performed by T. Zethson (2000, PhD Thesis) and provide additional information regarding the geometry of the inner parts of the Eta Car nebula. The -50 km/s velocity component is similar to the absorption structure at -146 km/s observed in the spectrum of the central object. If these velocity systems are related, this implies that the absorption component is located close to the central parts of the nebular system.

  14. THE LONG-LIVED DISKS IN THE {eta} CHAMAELEONTIS CLUSTER

    SciTech Connect

    Sicilia-Aguilar, Aurora; Bouwman, Jeroen; Juhasz, Attila; Henning, Thomas; Roccatagliata, Veronica; Lawson, Warrick A.; Acke, Bram; Decin, Leen; Feigelson, Eric D.; Tielens, A. G. G. M.; Meeus, Gwendolyn

    2009-08-20

    We present Infrared Spectrograph spectra and revised Multiband Imaging Photometer photometry for the 18 members of the {eta} Chamaeleontis cluster. Aged 8 Myr, the {eta} Cha cluster is one of the few nearby regions within the 5-10 Myr age range, during which the disk fraction decreases dramatically and giant planet formation must come to an end. For the 15 low-mass members, we measure a disk fraction {approx}50%, high for their 8 Myr age, and four of the eight disks lack near-IR excesses, consistent with the empirical definition of 'transition' disks. Most of the disks are comparable to geometrically flat disks. The comparison with regions of different ages suggests that at least some of the 'transition' disks may represent the normal type of disk around low-mass stars. Therefore, their flattened structure and inner holes may be related to other factors (initial masses of the disk and the star, environment, binarity), rather than to pure time evolution. We analyze the silicate dust in the disk atmosphere, finding moderate crystalline fractions ({approx}10%-30%) and typical grain sizes {approx}1-3 {mu}m, without any characteristic trend in the composition. These results are common to other regions of different ages, suggesting that the initial grain processing occurs very early in the disk lifetime (<1 Myr). Large grain sizes in the disk atmosphere cannot be used as a proxy for age, but are likely related to higher disk turbulence. The dust mineralogy varies between the 8-12 {mu}m and the 20-30 {mu}m features, suggesting high temperature dust processing and little radial mixing. Finally, the analysis of IR and optical data on the B9 star {eta} Cha reveals that it is probably surrounded by a young debris disk with a large inner hole, instead of being a classical Be star.

  15. Implementation of an Eta Belt Domain on Parallel Systems

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules; Rancic, Miodrag; Norris, Peter; Geiger, Jim

    2001-01-01

    We extend the Eta weather model from a regional domain into a belt domain that does not require meridional boundary conditions. We describe how the extension is achieved and the parallel implementation of the code on the Cray T3E and the SGI Origin 2000. We validate the forecast results on the two platforms and examine how the removal of the meridional boundary conditions affects these forecasts. In addition, using several domains of different sizes and resolutions, we present the scaling performance of the code on both systems.

  16. Eta Carinae in the Context of the Most Massive Stars

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Damineli, Augusto

    2009-01-01

    Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future

  17. Eta Carinae and the Homunculus: A Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    The Luminous Blue Variable, Eta Carinae, and its ejecta, thrown out since the 1840s, are proving to be a very challenging system to explain. The > 100 solar mass central source (which is likely a binary system) is very complex with P-Cygni lines throughout the spectrum. Superimposed upon the stellar spectrum are many thousands of narrow absorption lines. Indeed we have found twenty different velocities between -140km/s and -580km/s with many lower levels well elevated above the ground states of numerous ions.

  18. Changes in reference evapotranspiration over an agricultural region in the Qinghai-Tibetan plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Cungui; Shen, Yanjun; Liu, Fenggui; Meng, Lei

    2016-01-01

    Reference evapotranspiration (ET0), as an estimate of the evaporative demand of the atmosphere, has been receiving extensive attention in researches on hydrological cycle. Sensitivity of ET0 to major climatic variables has significant applications in climatology, hydrology, and agrometeorology and is also important to improve our understanding of the connections between climatic conditions and ET0 variability. In this study, we used the Penman-Monteith equation to calculate ET0 and adopted a nondimensional sensitivity coefficient formula to analyze sensitivities of ET0 to four climatic variables based on daily meteorological data from eight meteorological sites in the Huangshui River basin and surrounding areas during 1961-2010. The results indicated that (1) strong correlations with R 2 up to 0.76 exist between observed E pan and calculated annual ET0; (2) ET0 had a decreasing trend in the Huangshui River basin (HRB) during 1961-2010; (3) Spatially, distribution of ET0 was largely correlated with altitude, for instance, the average annual ET0 was larger in low-altitude areas than in high-altitude areas; (4) ET0 was more sensitive to actual vapor pressure in high-altitude areas while it was more sensitive to temperature in low-altitude areas; and (5) ET0 showed a decreasing trend and was consistent with the decreases in net radiation and wind speed at seasonal and annual time scales in HRB during 1961-2010. Sensitivity analysis of ET0 to major climatic variables revealed that temperature was primarily responsible for changes in ET0 in the growing season while actual vapor pressure was the dominating factor causing changes in ET0 in the nongrowing season. However, annual averaged ET0 was more sensitive to actual vapor pressure ( R 2 = 0.63), indicating that actual vapor pressure was possibly the primary climatic variable that causes changes in annual ET0.

  19. [Effects of marshland reclamation on evapotranspiration in the Sanjiang Plain].

    PubMed

    Jia, Zhi-jun; Zhang, Wen; Huang, Yao; Zhao, Xiao-song; Song, Chang-chun

    2010-04-01

    Extensive reclamation of marshland into cropland has had tremendous effects on the ecological environment in the Sanjiang Plain. Observations over marshland, rice paddy and soybean field were made with eddy covariance measuring systems from May to October in 2005, 2006 and 2007. The objective of this study was to identify the effects of the conversion of marshland to cropland on evapotranspiration in the Sanjiang Plain. The results showed that the diurnal variation curves of latent heat flux were single peaked in marshland, rice paddy and soybean field. The daily maximum latent heat flux increased by 14%-130% in rice paddy in the three measuring years, however, in soybean field, it increased by 3%-77% in 2006 but decreased by 25%-40% in 2005 and 2007 by comparison with that in marshland. This difference was due to the change of leaf area index when marshland was reclaimed into cropland. Seasonal change of latent heat flux was identical for the three land use types. Daily averaged latent heat flux of rice paddy, from May to October, showed 38%-53% increase compared with that of marshland, which resulted from the increase in net radiation and leaf area index. When marshland was reclaimed into soybean field, the variation of daily averaged latent heat flux depended primarily on precipitation. Precipitation was the main factor that controlled evapotranspiration over soybean field which was usually in condition of soil water deficit. Drought caused 11%-17% decrease of daily averaged latent heat flux over soybean field in 2005 and 2007, while sufficient precipitation caused 22% increase in 2006, comparing to marshland. Similarly, during the growing season from June to September, total evapotranspiration of rice paddy increased by 24%-51% compared with that of marshland, and the total evapotranspiration of soybean field decreased by 19%-23% in 2005 and 2007 and increased by 19% in 2006. It is concluded that the evapotranspiration changes significantly when the marshland

  20. RIP-ET: A riparian evapotranspiration package for MODFLOW-2005

    USGS Publications Warehouse

    Maddock, Thomas; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori

    2012-01-01

    A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting

  1. Scalar-meson nonet dominance predictions for eta' decays and the quark content of the 0/sup + +/ states

    SciTech Connect

    Intemann, G.W.; Greenhut, G.K.

    1980-10-01

    Assuming that the amplitude for eta'..-->..eta..pi pi.. is dominated by scalar resonances and that the 0/sup + +/ nonet is composed of conventional p-wave qq-bar states with singlet-octet mixing, we obtain predictions for the decay width and Dalitz slope parameter for the decays eta'..-->..eta..pi pi.. and eta'..--> pi pi pi.. which are in excellent agreement with the latest experimental data. The ..pi pi.. and eta..pi.. mass spectra for eta'..-->..eta..pi pi.. are also determined and fit the experimental data quite well. Similar calculations for these decays using a qq-barqq-bar description of the 0/sup + +/ mesons yield results which disagree with experiment.

  2. Scalar mesons in the decays {eta}' {sup {yields}}3{pi}{sup 0} and {eta}' {sup {yields} {pi}0{pi}+{pi}-}

    SciTech Connect

    Likhoded, A. K. Luchinsky, A. V. Samoylenko, V. D.

    2010-10-15

    The decays {eta} {sup {yields}}3{pi}{sup 0} and {eta} {sup {yields} {pi}0{pi}+{pi}-} are considered within the isobar model. It is shown that, in order to explain the branching ratio and the shape of the Dalitz plot for the decay {eta}' {sup {yields}}3{pi}{sup 0}, it is sufficient to take into account the contributions of the {sigma} and a{sub 0} mesons. The inclusion of the {sigma} meson is necessary for reproducing the shape of the distribution over the Dalitz plot. The branching ratio for the decay {eta}' {sup {yields} {pi}0{pi}+{pi}-} is obtained. The predictions for the distributions over the Dalitz plot for this decay are presented. These predictions depend strongly on model parameters.

  3. Assessment of catchment-scale evapotranspiration via boundary condition switching versus root water uptake modeling

    NASA Astrophysics Data System (ADS)

    Camporese, Matteo; Daly, Edoardo; Paniconi, Claudio

    2014-05-01

    Although being one of the fundamental terms of the hydrologic cycle at all scales, evapotranspiration (ET ) is also one of the most difficult to model, because of its dependency on many climatic and ecological factors. Therefore, practical applications of hydrological models where ET plays a significant role are subjected to large uncertainties. Here we compare two methods to compute actual ET in CATHY (CATchment HYdrology), a process-based coupled model of surface and subsurface flow that solves the three-dimensional Richards equation for partially saturated porous media and a one-dimensional diffusion wave approximation of the de Saint-Venant equation for overland and channel routing. The first method includes a sink term in the Richards equation to account for root water uptake. The potential transpiration is distributed across the root depth as a function of the root distribution and water stress is modeled using the reduction function suggested by Feddes. Accordingly, in well-watered conditions the vegetation transpires at its potential rate, while, when the soil dries below a certain value of soil moisture associated with incipient water stress, transpiration reduces linearly until it reaches zero at the wilting point. The second method uses a switching procedure for the boundary conditions at the soil surface relying on a pressure head, ψmin. As long as the water potential at the soil surface is larger than ψmin, the boundary condition at the surface is a flux (Neumann condition) that equals the potential evapotranspiration rate; when the water potential reaches ψmin, the boundary condition switches from a flux to a constant pressure head (Dirichlet condition), and the evapotranspiration process becomes soil- and/or vegetation-limited. These two ET models are implemented in CATHY and applied to a paired catchment experiment in southwestern Victoria, Australia, where two adjacent catchments with different agricultural uses (grazing and blue gum plantation

  4. Evaluation of Physically and Empirically Based Models for the Estimation of Green Roof Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Digiovanni, K. A.; Montalto, F. A.; Gaffin, S.; Rosenzweig, C.

    2010-12-01

    Green roofs and other urban green spaces can provide a variety of valuable benefits including reduction of the urban heat island effect, reduction of stormwater runoff, carbon sequestration, oxygen generation, air pollution mitigation etc. As many of these benefits are directly linked to the processes of evaporation and transpiration, accurate and representative estimation of urban evapotranspiration (ET) is a necessary tool for predicting and quantifying such benefits. However, many common ET estimation procedures were developed for agricultural applications, and thus carry inherent assumptions that may only be rarely applicable to urban green spaces. Various researchers have identified the estimation of expected urban ET rates as critical, yet poorly studied components of urban green space performance prediction and cite that further evaluation is needed to reconcile differences in predictions from varying ET modeling approaches. A small scale green roof lysimeter setup situated on the green roof of the Ethical Culture Fieldston School in the Bronx, NY has been the focus of ongoing monitoring initiated in June 2009. The experimental setup includes a 0.6 m by 1.2 m Lysimeter replicating the anatomy of the 500 m2 green roof of the building, with a roof membrane, drainage layer, 10 cm media depth, and planted with a variety of Sedum species. Soil moisture sensors and qualitative runoff measurements are also recorded in the Lysimeter, while a weather station situated on the rooftop records climatologic data. Direct quantification of actual evapotranspiration (AET) from the green roof weighing lysimeter was achieved through a mass balance approaches during periods absent of precipitation and drainage. A comparison of AET to estimates of potential evapotranspiration (PET) calculated from empirically and physically based ET models was performed in order to evaluate the applicability of conventional ET equations for the estimation of ET from green roofs. Results have

  5. 76 FR 58540 - Proposed Information Collection Request of the ETA 581, Contribution Operations Report; Extension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Information Collection Request of the ETA 581, Contribution Operations Report; Extension Without Change AGENCY... the impact of collection requirements on respondents can be properly assessed. A copy of the proposed... Contribution Operations report (Form ETA 581) is a comprehensive report of each state's UI tax operations...

  6. USING MM5V3 WITH ETA ANALYSES FOR AIR-QUALITY MODELING AT THE EPA

    EPA Science Inventory

    Efforts have been underway since MM5v3 was released in July 1999 to set up air-quality simulations using Eta analyses as background fields. Our previous simulations used a one-way quadruple-nested set of domains with horizontal grid spacing of 108, 36, 12 and 4 km. With Eta a...

  7. 78 FR 30336 - Comment Request for Information Collection: ETA-5130 Benefit Appeals Report; Extension Without...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... Employment and Training Administration Comment Request for Information Collection: ETA-5130 Benefit Appeals... INFORMATION: I. Background The ETA-5130, Benefit Appeals Report, contains information on the number of unemployment insurance appeals and the resultant decisions classified by program, appeals level, cases...

  8. Observation of eta'c production in gammagamma fusion at CLEO.

    PubMed

    Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Haynes, J; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, Kevin; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Weinstein, A J; Mahapatra, R; Nelson, H N; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Severini, H; Skubic, P

    2004-04-01

    We report on the observation of the eta(')(c)(2(1)S0), the radial excitation of the eta(c)(1(1)S0) ground state of charmonium, in the two-photon fusion reaction gammagamma-->eta(')(c)-->K(0)(S)K+/-pi(-/+) in 13.6 fb(-1) of CLEO II/II.V data and 13.1 fb(-1) of CLEO III data. We obtain M(eta(')(c))=3642.9+/-3.1(stat)+/-1.5(syst) MeV and M(eta(c))=2981.8+/-1.3(stat)+/-1.5(syst) MeV. The corresponding values of hyperfine splittings between 1S0 and 3S1 states are DeltaM(hf)(1S)=115.1+/-2.0 MeV and DeltaM(hf)(2S)=43.1+/-3.4 MeV. Assuming that the eta(c) and eta(')(c) have equal branching fractions to K(S)Kpi, we obtain Gamma(gammagamma)(eta(')(c))=1.3+/-0.6 keV. PMID:15089529

  9. 77 FR 2089 - Proposed Information Collection Request of the ETA 204, Experience Rating Report; Comment Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... Information Collection Request of the ETA 204, Experience Rating Report; Comment Request on Extension Without... different experience rating systems. Used in conjunction with other data, the ETA-204 assists in determining... employment, etc.) on the unemployment experience of various groups of employers. The data also provide...

  10. Cautionary Note on Reporting Eta-Squared Values from Multifactor ANOVA Designs

    ERIC Educational Resources Information Center

    Pierce, Charles A.; Block, Richard A.; Aguinis, Herman

    2004-01-01

    The authors provide a cautionary note on reporting accurate eta-squared values from multifactor analysis of variance (ANOVA) designs. They reinforce the distinction between classical and partial eta-squared as measures of strength of association. They provide examples from articles published in premier psychology journals in which the authors…

  11. 76 FR 27090 - Comment Request for Extension of Information Collection (Without Revisions): Form ETA 9033-A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... Revisions): Form ETA 9033-A, Attestation by Employers Using Alien Crewmembers for Longshore Activities in... collection by Form ETA 9033-A, OMB Control Number 1205-0352, Attestation by Employers Using Alien Crewmembers.... The INA generally prohibits the performance of longshore work by alien crewmembers, however the...

  12. 77 FR 35060 - Employment and Training Administration; Proposed Information Collection Request for the ETA 538...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... addresses section below on or before August 13, 2012. ADDRESSES: Submit written comments to Scott Gibbons... toll-free Federal Information Relay Service at 1-877-889-5627 (TTY/TDD). Email: gibbons.scott@dol.gov.... Gibbons. SUPPLEMENTARY INFORMATION: I. Background The ETA 538 and ETA 539 reports are weekly reports...

  13. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Yinsheng; Guo, Yanhong; Gao, Haifeng; Zhang, Hongbo; Wang, Yefan

    2015-10-01

    Characterizing the water and energy flux in the alpine steppe ecosystem in Tibetan Plateau (TP) is of particular importance for elucidating hydrological cycle mechanisms in high altitude areas. In the present study, two years of actual evapotranspiration (ET) values from a semi-arid alpine steppe region (4947 m above sea level) and their environmental and biophysical controls were investigated using the energy balance Bowen ratio energy balance (BREB) method. Seasonally, ET was much lower in frozen soil period and transition period mainly because of low soil water availability. However, ample soil water supplied by rainfall during the rainy period substantially increased ET. The available energy played an important role in controlling ET in the rainy period. Also, the leaf-level stomata closure and plant leaf development could impact the ET through changing bulk surface conductance (Gs) in rainy period. Similarly, the land-atmosphere energy exchange was dominated by latent heat flux (λE) in July, but was dominated by sensible heat flux (H) in December and May. Annual ET (plus sublimation) were 362.9 mm and 353.4 mm in the first and second observation year, respectively, which were close to the annual precipitation. On annual scale, the low Gs (3.30-3.62 mm s-1), decoupling factor (Ω, 0.25-0.27) and the ratio of ET to equilibrium evapotranspiration (ET/ETeq, 0.34-0.35) corroborated the overall water-limited conditions for the high-altitude alpine steppe. This research provides not only the ground truth data for future hydrological modeling in the data scarce region of TP but also the insights for elucidating how the environmental and biophysical stress factors control the land surface ET in high-altitude region.

  14. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign

    NASA Astrophysics Data System (ADS)

    Anderson, Martha C.; Kustas, William P.; Alfieri, Joseph G.; Gao, Feng; Hain, Christopher; Prueger, John H.; Evett, Steven; Colaizzi, Paul; Howell, Terry; Chávez, José L.

    2012-12-01

    Robust spatial information about environmental water use at field scales and daily to seasonal timesteps will benefit many applications in agriculture and water resource management. This information is particularly critical in arid climates where freshwater resources are limited or expensive, and groundwater supplies are being depleted at unsustainable rates to support irrigated agriculture as well as municipal and industrial uses. Gridded evapotranspiration (ET) information at field scales can be obtained periodically using land-surface temperature-based surface energy balance algorithms applied to moderate resolution satellite data from systems like Landsat, which collects thermal-band imagery every 16 days at a resolution of approximately 100 m. The challenge is in finding methods for interpolating between ET snapshots developed at the time of a clear-sky Landsat overpass to provide complete daily time-series over a growing season. This study examines the efficacy of a simple gap-filling algorithm designed for applications in data-sparse regions, which does not require local ground measurements of weather or rainfall, or estimates of soil texture. The algorithm relies on general conservation of the ratio between actual ET and a reference ET, generated from satellite insolation data and standard meteorological fields from a mesoscale model. The algorithm was tested with ET retrievals from the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance model and associated DisALEXI flux disaggregation technique, which uses Landsat-scale thermal imagery to reduce regional ALEXI maps to a finer spatial resolution. Daily ET at the Landsat scale was compared with lysimeter and eddy covariance flux measurements collected during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment of 2008 (BEAREX08), conducted in an irrigated agricultural area in the Texas Panhandle under highly advective conditions. The simple gap-filling algorithm performed

  15. Use of the Aquacrop model for the simulation of wheat evapotranspiration in north-eastern Tunisia

    NASA Astrophysics Data System (ADS)

    Aloui, A.; Masmoudi, M.; Jacob, F.; Ben Mechlia, N.

    2012-04-01

    Improvement of rainfed cropping systems is based on the use of rainfall water for crop transpiration. This could be achieved by the appropriate partitioning of rainfall between green water and blue water. Under semiarid conditions, the AquaCrop model which has a driving engine based on the direct link between dry matter production and crop evapotranspiration, seems to be a powerful tool to perform this task. For this purposes, an experimental work was conducted on the wheat crop, grown under various farming conditions, to determine how simulation modeling could be used to monitor canopy changes and actual crop evapotranspiration. The study area -CapBon- is located in north eastern Tunisia where rainfall is about 500 mm and ET0 around 1200mm Field monitoring consisted in regular measurements of the leaf area index (LAI), vegetation cover changes (CC) and soil moisture content profiles over the cropping season December 2009-April 2010. The usefulness of using hemispherical and standard images to determine LAI and CC was also investigated for their adoption as a standard methods for the assessment of these important parameter as input data. Results show that good estimates of LAI and CC could be obtained from digital images. Fairly reliable linear relationships were obtained between measurements on samples using a leaf area meter and indirect assessments (r2 = 0.78) Aqua-Crop simulations where also mostly accurate in estimating soil moisture temporal variations and soil water content of well textured soils. However for soils with high clay content, important differences were observed between simulation outputs and direct gravimetric measurements.

  16. Vapor pressure deficit is as important as soil moisture in determining limitations to evapotranspiration during drought

    NASA Astrophysics Data System (ADS)

    Novick, K. A.; Williams, C. A.; Phillips, R.; Oishi, A. C.; Sulman, B. N.; Bohrer, G.; Ficklin, D. L.

    2015-12-01

    The decoupling between potential evapotranspiration (PET) and actual evapotranspiration (AET) is a useful metric to characterize ecosystem hydrologic stress. As hydrologic stress evolves, PET increases following increases in incident radiation and vapor pressure deficit (VPD). AET, on the other hand, remains stationary or decreases due to declines in surface conductance imposed by decreasing soil water and stomatal closure under high VPD. Historically, it has been difficult to quantify the extent to which soil moisture as compared to VPD ultimately limits AET during hydrologic stress. Part of this difficulty relates to the strong correlation between soil moisture and VPD at timescales over which hydrologic stress evolves (weekly to monthly). Further, while it is relatively easy to manipulate soil moisture in experimental settings, manipulating VPD is much more difficult. Recently, the proliferation of eddy covariance flux sites has produced a rich collection of AET observations at fine timescales (i.e. hourly to daily) over which VPD and soil moisture are more decoupled. In this study, we leverage such data to quantify the extent to which soil moisture versus VPD constrains AET in more than 25 Ameriflux sites spanning a wide climate gradient. We found that AET was most significantly limited by soil moisture in dry sites where the annual PET was much higher than precipitation. VPD limitations to AET dominated in wetter sites, but even among the driest sites, they were of similar magnitude to soil moisture limitations. Our results highlight the critical, if at time underappreciated, role of VPD in determining ecohydrological functioning during periods of hydrologic stress. We also leverage these results together with future projections for VPD, soil moisture, and other relevant meteorological drivers to explore the extent to which the coherence between VPD and soil moisture, and their relative importance for limiting AET, may shift under future climate conditions.

  17. The Ejecta of Eta Carinae: Just what is the Mass?

    NASA Astrophysics Data System (ADS)

    Gull, T. R.

    2006-08-01

    Estimates of the Homunculus and the Little Homunculus suggest that at least 12 solar masses were ejected in the two events of the 1840s and the 1890s (Smith et al 2003 AJ 125, 1458). We have begun a systematic analysis of the metal lines seen in the warm Homunculus and hot Little Homunculus in an attempt to characterize the properties of the gas. Analysis of these structures and the Strontium Filament suggest that Ti/Ni (and likewise Ti/Fe) is overabundant. Likely this is due to oxygen and carbon underabundances which prevent metal oxides forming. As a result, much Ti, V, Sr, Sc, Ni and Fe is left in gaseous phase. The dust associated with Eta Carinae is known to have peculiar properties. Given that many metals normally depleted in the ISM are overabundant in the ejecta of Eta Carinae, we are led to suspect that the gas/dust ratio is underestimated. Observational examples of these hundreds of lines will be shown along with model estimates of temperature, density and abundances.

  18. SECULAR CHANGES IN ETA CARINAE'S WIND 1998-2011

    SciTech Connect

    Mehner, Andrea; Davidson, Kris; Humphreys, Roberta M.; Ishibashi, Kazunori; Martin, John C.; Ruiz, Maria Teresa; Walter, Frederick M.

    2012-05-20

    Stellar wind-emission features in the spectrum of eta Carinae have decreased by factors of 1.5-3 relative to the continuum within the last 10 years. We investigate a large data set from several instruments (STIS, GMOS, UVES) obtained between 1998 and 2011 and analyze the progression of spectral changes in direct view of the star, in the reflected polar-on spectra at FOS4, and at the Weigelt knots. We find that the spectral changes occurred gradually on a timescale of about 10 years and that they are dependent on the viewing angle. The line strengths declined most in our direct view of the star. About a decade ago, broad stellar wind-emission features were much stronger in our line-of-sight view of the star than at FOS4. After the 2009 event, the wind-emission line strengths are now very similar at both locations. High-excitation He I and N II absorption lines in direct view of the star strengthened gradually. The terminal velocity of Balmer P Cyg absorption lines now appears to be less latitude dependent, and the absorption strength may have weakened at FOS4. Latitude-dependent alterations in the mass-loss rate and the ionization structure of eta Carinae's wind are likely explanations for the observed spectral changes.

  19. Recurrent X-ray Emission Variations of Eta Carinae and the Binary Hypothesis

    NASA Technical Reports Server (NTRS)

    Ishibashi, K.; Corcoran, M. F.; Davidson, K.; Swank, J. H.; Petre, R.; Drake, S. A.; Damineki, A.; White, S.

    1998-01-01

    Recent studies suggest that, the super-massive star eta Carinae may have a massive stellar companion (Damineli, Conti, and Lopes 1997), although the dense ejecta surrounding the star make this claim hard to test using conventional methods. Settling this question is critical for determining the current evolutionary state and future evolution of the star. We address this problem by an unconventional method: If eta Carinae is a binary, X-ray emission should be produced in shock waves generated by wind-wind collisions in the region between eta Carinae and its companion. Detailed X-ray monitoring of eta Carinae for more that) 2 years shows that the observed emission generally resembles colliding-wind X-ray emission, but with some significant discrepancies. Furthermore, periodic X-ray "flaring" may provide an additional clue to determine the presence of a companion star and for atmospheric pulsation in eta Carinae.

  20. Evidence for {psi}' Decays into {gamma}{pi}{sup 0} and {gamma}{eta}

    SciTech Connect

    Ablikim, M.; An, Z. H.; Bai, J. Z.; Berger, N.; Bian, J. M.; Cai, X.; Cao, G. F.; Cao, X. X.; Chang, J. F.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, Y.; Chen, Y. B.; Chu, Y. P.; Dai, H. L.; Dai, J. P.; Deng, Z. Y.; Dong, L. Y.

    2010-12-31

    The decays {psi}{sup '}{yields}{gamma}{pi}{sup 0}, {gamma}{eta} and {gamma}{eta}{sup '} are studied using data collected with the BESIII detector at the BEPCII e{sup +}e{sup -} collider. The processes {psi}{sup '}{yields}{gamma}{pi}{sup 0} and {psi}{sup '}{yields}{gamma}{eta} are observed for the first time with signal significances of 4.6{sigma} and 4.3{sigma}, respectively. The branching fractions are determined to be B({psi}{sup '}{yields}{gamma}{pi}{sup 0})=(1.58{+-}0.40{+-}0.13)x10{sup -6}, B({psi}{sup '}{yields}{gamma}{eta})=(1.38{+-}0.48{+-}0.09)x10{sup -6}, and B({psi}{sup '}{yields}{gamma}{eta}{sup '})=(126{+-}3{+-}8)x10{sup -6}, where the first errors are statistical and the second ones systematic.

  1. Simple analytical model of evapotranspiration in the presence of roots

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare; Castaing, Jean-Christophe; Hough, Larry; Fretigny, Christian; Dreyfus, Remi; Compass Team

    2015-03-01

    Water is essential for plant growth. The loss of water via evaporation in soil remains to be an important limiting factor for root growth and consists of well-debated mechanisms. The presence of a plant also provides an additional pathway for water transport in the form of transpiration. Prediction of total evapotranspiration flux permits estimation of the remaining quantity of water in the soil. Using a controlled visual 2D model set-up, we perform evaporation experiments with real root systems under different relative humidity conditions. We use the results on mass loss and evaporation front positions to develop a simple model, based on basic principles of evaporation flux, which predicts the position of the evaporating front and the total mass of water that is lost from the evapotranspiration of water out of the granular medium. The model also helps predict the lifetime of the plant - an important application in agriculture.

  2. Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California

    SciTech Connect

    1990-12-01

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab.

  3. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    SciTech Connect

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.

  4. Soil moisture and evapotranspiration predictions using Skylab data

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Moore, D. G.; Horton, M. L.; Russell, M. J.

    1975-01-01

    The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling.

  5. Investigation of near-threshold eta-meson production in the reaction {pi}{sup -}p{yields} {eta}n

    SciTech Connect

    Bayadilov, D. E.; Beloglazov, Yu. A.; Gridnev, A. B.; Kozlenko, N. G.; Kruglov, S. P.; Kulbardis, A. A.; Lopatin, I. V.; Novinskiy, D. V.; Radkov, A. K.; Sumachev, V. V.; Filimonov, E. A.; Shvedchikov, A. V.

    2012-08-15

    Differential and total cross sections for eta-meson production in the reaction {pi}{sup -}p {yields} {eta}n were measured within the experimental program eta-meson physics implemented in the pion channel of the synchrocyclotron of the Petersburg Nuclear Physics Institute (PNPI, Gatchina). These measurements were performed at incident-pion momenta (700, 710, 720, and 730 MeV/c) in the vicinity of the threshold for the process under study by using the neutral-meson spectrometer designed and created at the Meson Physics Laboratory of PNPI. It is shown that, in the immediate vicinity of the threshold (685 MeV/c), the process of eta-meson production proceeds predominantly via S{sub 11}(1535)-resonance formation followed by the decay S{sub 11}(1535) {yields} {eta}n (the respective branching fraction is Br Almost-Equal-To 60%), but that, as the momentum of incident pions increases, the role of the D wave becomes ever more important. A detailed analysis of this effect indicates that it is due to the increasing contribution of the D{sub 13}(1520) resonance. Although the branching fraction of the decay of this resonance through the {eta}n channel is assumed to be very small (BR Almost-Equal-To 0.24%), the effect is enhanced owing to the interference between the D wave and the dominant resonance S{sub 11}(1535).

  6. Climate Change Impact on Evapotranspiration, Heat Stress and Chill Requirements

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Marras, S.; Spano, D.

    2013-12-01

    Carbon dioxide concentration scenarios project an increase in CO2 from 372 ppm to between 500 and 950 ppm by the year 2100, and the potential effect on temperature, humidity, and plant responses to environmental factors are complex and concerning. For 2100, mean daily temperature increase projections range from 1.2oC to 6.8oC depending on greenhouse gas emissions. On the bad side, higher temperatures are often associated with increases in evapotranspiration (ET), heat stress, and pest infestations. On the good side, increased temperature is commonly related to less frost damage, faster growth, and higher production in some cases. One misconception is that global warming will increase evapotranspiration and, hence, agricultural water demand. As the oceans and other water bodies warm, evaporation and humidity are likely to increase globally, but higher humidity tends to reduce plant transpiration and hence ET. Higher CO2 concentrations also tend to reduce ET, and, in the end, the increase in ET due to higher temperature is likely to be offset by a decrease in ET due to higher humidity and CO2. With a decrease in daytime evapotranspiration, the canopy temperature is likely to rise relative to the air temperature, and this implies that heat stress could be worse than predicted by increased air temperature. Daily minimum temperatures are generally increasing about twice as fast as maximum temperatures presumably because of the increasing dew point temperatures as more water vapor is added to the atmosphere. This could present a serious problem to meet the chill requirement for fruit and nut crops. Growing seasons, i.e., from the last spring to the first fall frost, are likely to increase, but the crop growth period is likely to shorten due to higher temperature. Thus, spring frost damage is unlikely to change but there should be fewer damaging fall frost events. In this paper, we will present some ideas on the possible impact of climate change on evapotranspiration and

  7. Harmonizing multiple methods for reconstructing historical potential and reference evapotranspiration

    USGS Publications Warehouse

    Belaineh, Getachew; Sumner, David; Carter, Edward; Clapp, David

    2013-01-01

    Potential evapotranspiration (PET) and reference evapotranspiration (RET) data are usually critical components of hydrologic analysis. Many different equations are available to estimate PET and RET. Most of these equations, such as the Priestley-Taylor and Penman- Monteith methods, rely on detailed meteorological data collected at ground-based weather stations. Few weather stations collect enough data to estimate PET or RET using one of the more complex evapotranspiration equations. Currently, satellite data integrated with ground meteorological data are used with one of these evapotranspiration equations to accurately estimate PET and RET. However, earlier than the last few decades, historical reconstructions of PET and RET needed for many hydrologic analyses are limited by the paucity of satellite data and of some types of ground data. Air temperature stands out as the most generally available meteorological ground data type over the last century. Temperature-based approaches used with readily available historical temperature data offer the potential for long period-of-record PET and RET historical reconstructions. A challenge is the inconsistency between the more accurate, but more data intensive, methods appropriate for more recent periods and the less accurate, but less data intensive, methods appropriate to the more distant past. In this study, multiple methods are harmonized in a seamless reconstruction of historical PET and RET by quantifying and eliminating the biases of the simple Hargreaves-Samani method relative to the more complex and accurate Priestley-Taylor and Penman-Monteith methods. This harmonization process is used to generate long-term, internally consistent, spatiotemporal databases of PET and RET.

  8. Evamapper: A Novel Matlab Toolbox For Evapotranspiration Mapping

    NASA Astrophysics Data System (ADS)

    Atasever, Ü. H.; Kesikoğlu, M. H.; Özkan, C.

    2013-10-01

    Water consumption has been exceeding as the world population increases. Therefore, it is very important to manage water resources with care as it is not an endless resource. The Water loss in regional scale is the key phenomena to accomplish this goal. One of the main components of this phenomenon is evapotraspiration (ET) due to being one of the most important parameter for the management of water resources. Until recent years, evapotranspiration calculations were performed locally, using data obtained from weather stations. But for a successful water management, regional evapotranspiration maps are required. Different approaches are used to compute regional ETs. Among them, the direct measurement methods are not cost-effective and regionalized. For costeffective and regional ET mapping, Surface Energy Balance Algorithm (SEBAL) is the most known and effective technique. In this study, EvaMapper Toolbox which is based on SEBAL approach are developed for regional evapotranspiration mapping in MATLAB. By this toolbox, researchers can apply SEBAL technique which has a very complex structure to their study area easily through entering regional parameter values.

  9. Evapotranspiration studies for protective barriers: FY 1990 status report

    SciTech Connect

    Link, S.O.; Downs, J.L.; Thiede, M.E.; Lettau, D.J.; Twaddell, T.R.; Black, R.A.

    1992-05-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (Westinghouse Hanford) are working together to develop for the US Department of Energy (DOE) protective barriers for the near-surface disposal of hazardous waste at the Hanford Site. The proposed barrier design consists of a layer of fine-textured soil overlying a series of layers grading from sand to basalt riprap. A multiyear research program is being conducted to assess the long-term performance of barrier configurations in restricting plants, animals, and water from contacting buried wastes. The purpose of this report is to review work done up to July 31 in FY 1990 on the evapotranspiration subtask of the water infiltration task. As stated in the test plan, specific objectives of PNL`s evapotranspiration work were to (1) develop and test an environmentally controlled whole-plant gas exchange system, (2) collect evapotranspiration data at the whole-plant level on the small-tube lysimeters, (3) collect transpiration data on the shrubs at McGee Ranch, (4) collect data necessary to parameterize the plant component of the UNSAT-H code.

  10. Evapotranspiration studies for protective barriers: FY 1990 status report

    SciTech Connect

    Link, S.O.; Downs, J.L.; Thiede, M.E.; Lettau, D.J.; Twaddell, T.R. ); Black, R.A. )

    1992-05-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (Westinghouse Hanford) are working together to develop for the US Department of Energy (DOE) protective barriers for the near-surface disposal of hazardous waste at the Hanford Site. The proposed barrier design consists of a layer of fine-textured soil overlying a series of layers grading from sand to basalt riprap. A multiyear research program is being conducted to assess the long-term performance of barrier configurations in restricting plants, animals, and water from contacting buried wastes. The purpose of this report is to review work done up to July 31 in FY 1990 on the evapotranspiration subtask of the water infiltration task. As stated in the test plan, specific objectives of PNL's evapotranspiration work were to (1) develop and test an environmentally controlled whole-plant gas exchange system, (2) collect evapotranspiration data at the whole-plant level on the small-tube lysimeters, (3) collect transpiration data on the shrubs at McGee Ranch, (4) collect data necessary to parameterize the plant component of the UNSAT-H code.

  11. Constraints on Decreases in Eta Carinae's Mass-loss from 3D Hydrodynamic Simulations of Its Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Madura, T. I.; Gull, T. R.; Okazaki, A. T.; Russell, C. M. P.; Owocki, S. P.; Groh, J. H.; Corcoran, M. F.; Hamaguchi, K.; Teodoro, M.

    2013-01-01

    Recent work suggests that the mass-loss rate of the primary star Eta-A in the massive colliding wind binary Eta Carinae dropped by a factor of 2-3 between 1999 and 2010. We present result from large- (+/- 1545 au) and small- (+/- 155 au) domain, 3D smoothed particle hydrodynamics (SPH) simulations of Eta Car's colliding winds for three Eta-A mass-loss rates ( (dot-M(sub Eta-A) = 2.4, 4.8 and 8.5 × 10(exp -4) M(solar)/ yr), investigating the effects on the dynamics of the binary wind-wind collision (WWC). These simulations include orbital motion, optically thin radiative cooling and radiative forces. We find that dot-M Eta-A greatly affects the time-dependent hydrodynamics at all spatial scales investigated. The simulations also show that the post-shock wind of the companion star Eta-B switches from the adiabatic to the radiative-cooling regime during periastron passage (Phi approx.= 0.985-1.02). This switchover starts later and ends earlier the lower the value of dot-M Eta-A and is caused by the encroachment of the wind of Eta-A into the acceleration zone of Eta-B's wind, plus radiative inhibition of Eta-B's wind by Eta-A. The SPH simulations together with 1D radiative transfer models of Eta-A's spectra reveal that a factor of 2 or more drop in dot-M EtaA should lead to substantial changes in numerous multiwavelength observables. Recent observations are not fully consistent with the model predictions, indicating that any drop in dot- M Eta-A was likely by a factor of approx. < 2 and occurred after 2004. We speculate that most of the recent observed changes in Eta Car are due to a small increase in the WWC opening angle that produces significant effects because our line of sight to the system lies close to the dense walls of the WWC zone. A modest decrease in dot-M Eta-A may be responsible, but changes in the wind/stellar parameter of Eta-B, while less likely, cannot yet be fully ruled out. We suggest observations during Eta-Car's next periastron in 2014 to further

  12. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  13. Geostatistical improvements of evapotranspiration spatial information using satellite land surface and weather stations data

    NASA Astrophysics Data System (ADS)

    de Carvalho Alves, Marcelo; de Carvalho, Luiz Gonsaga; Vianello, Rubens Leite; Sediyama, Gilberto C.; de Oliveira, Marcelo Silva; de Sá Junior, Arionaldo

    2013-07-01

    The objective of the present study was to use the simple cokriging methodology to characterize the spatial variability of Penman-Monteith reference evapotranspiration and Thornthwaite potential evapotranspiration methods based on Moderate Resolution Imaging Spetroradiometer (MODIS) global evapotranspiration products and high-resolution surfaces of WordClim temperature and precipitation data. The climatic element data referred to 39 National Institute of Meteorology climatic stations located in Minas Gerais state, Brazil and surrounding states. The use of geostatistics and simple cokriging technique enabled the characterization of the spatial variability of the evapotranspiration providing uncertainty information on the spatial prediction pattern. Evapotranspiration and precipitation surfaces were implemented for the climatic classification in Minas Gerais. Multivariate geostatistical determined improvements of evapotranspiration spatial information. The regions in the south of Minas Gerais derived from the moisture index estimated with the MODIS evapotranspiration (2000-2010), presented divergence of humid conditions when compared to the moisture index derived from the simple kriged and cokriged evapotranspiration (1961-1990), indicating climate change in this region. There was stronger pattern of crossed covariance between evapotranspiration and precipitation rather than temperature, indicating that trends in precipitation could be one of the main external drivers of the evapotranspiration in Minas Gerais state, Brazil.

  14. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 1: Measurement of Evapotranspiration at the Environmental Research Center and Determination of Priestley-taylor Parameter

    NASA Technical Reports Server (NTRS)

    Kotada, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In order to study the distribution of evapotranspiration in the humid region using remote sensing technology, the parameter (alpha) in the Priestley-Taylor model was determined. The daily means of the parameter alpha = 1.14 can be available from summer to autumn and alpha = to approximately 2.0 in winter. The results of the satellite and the airborne sensing done on 21st and 22nd January, 1983, are described. Using the vegetation distribution in the Tsukuba Academic New Town, as well as the radiation temperature obtained by remote sensing and the radiation data observed at the ground surface, the evapotranspiration was calculated for each vegetation type by the Priestley-Taylor method. The daily mean evapotranspiration on 22nd January, 1983, was approximately 0.4 mm/day. The differences in evapotranspiration between the vegetation types were not detectable, because the magnitude of evapotranspiration is very little in winter.

  15. Daily evapotranspiration assessment by means of residual surface energy balance modeling: A critical analysis under a wide range of water availability

    NASA Astrophysics Data System (ADS)

    Cammalleri, C.; Ciraolo, G.; La Loggia, G.; Maltese, A.

    2012-07-01

    SummaryAn operational use of the actual evapotranspiration assessed by remote sensing approaches requires the integration of instantaneous fluxes to daily values. This is commonly achieved under the hypotheses of daytime self-preservation of evaporative fraction and negligible daily ground heat flux. The aim of this study is to evaluate the effect of these assumptions on estimate daily evapotranspiration over a full phenological cycle, including phases characterized by significant changes both in net radiation and vegetation cover. To assess the reliability of these hypotheses, the observations made by a flux tower, installed within a homogeneous field of cereal located in the valley part of the Imera Meridionale basin, were analyzed. Additionally, the widely-known SEBAL (Surface Energy Balance Algorithm for Land) model was applied on the same study area by means of four MODIS (MODerate-resolution Imaging Spectroradiometer) images selected across a three-rainfall events period in March-April 2007 with the aim to analyze the consistency of its estimates in an operational study case under different conditions of water availability. The analysis of in situ data highlights errors on 24-h evapotranspiration characterized by an average value of 20% due to daily soil heat flux neglecting; whereas, the hypothesis of evaporative fraction self-preservation causes an average error equal to -16%. Moreover, the analysis of the observations suggests that a compensation effect of the errors related to each hypothesis occurs in most cases (56%), and this makes suitable the approach for practical daily integration purposes. The application of the SEBAL model at basin scale shows a good capability to detect the increase of the actual 24-h evapotranspiration under the tested hypotheses, also in the case of instantaneous evaporative fraction and daily net radiation not derived form in situ observations.

  16. How do alternative root water uptake models affect the inverse estimation of soil hydraulic parameters and the prediction of evapotranspiration?

    NASA Astrophysics Data System (ADS)

    Gayler, Sebastian; Salima-Sultana, Daisy; Selle, Benny; Ingwersen, Joachim; Wizemann, Hans-Dieter; Högy, Petra; Streck, Thilo

    2016-04-01

    equation combined with the Mualem-van Genuchten approach to parametrize the soil hydraulic functions was coupled to three different root-water uptake modules according to Nimah & Hanks, Feddes, and van Genuchten. Potential evapotranspiration was estimated following Penman-Monteith, whereas leaf area index and rooting depth were predefined model inputs derived from observations. Simulation results were compared to 3-year time-series of time-domain reflectometry measurements of soil moisture in two to five different depths (depending on solum thickness) and eddy-covariance measurements of evapotranspiration. Data of two growing seasons (2010, 2011) were used for the inverse estimation of saturated water content, saturated hydraulic conductivity and the van Genuchten parameters α and n using the universal optimization tool UCODE. Data from the growing season 2012 were used for model validation. The model calibration results showed a similar and acceptable goodness of fit between simulated and observed soil water contents and actual evapotranspiration for all there models. There was no substantial difference in model performance between the alternative root water uptake models during the calibration phase 2010-2011. However, the values of the optimized soil hydraulic parameters substantially differed in some cases, resulting in an increased model uncertainty during the prediction phase 2012, especially during phases of strong drying out of the soil. Albeit single model combinations are superior over the others for single locations with respect to the different observables (soil moisture, evapotranspiration), none of the models outcompeted the others over all years, locations and observables. We conclude that model solutions cannot be considered unique when different process representations are selected and the respective soil hydraulic parameters fitted (equifinality problem).

  17. Effects of Daily Precipitation and Evapotranspiration Patterns on Flow and VOC Transport to Groundwater along a Watershed Flow Path

    USGS Publications Warehouse

    Johnson, R.L.; Thoms, R.B.; Zogorski, J.S.

    2003-01-01

    MTBE and other volatile organic compounds (VOCs) are widely observed in shallow groundwater in the United States, especially in urban areas. Previous studies suggest that the atmosphere and/or nonpoint surficial sources could be responsible for some of those VOCs, especially in areas where there is net recharge to groundwater. However, in semiarid locations where annual potential evapotranspiration can exceed annual precipitation, VOC detections in groundwater can be frequent. VOC transport to groundwater under net discharge conditions has not previously been examined. A numerical model is used here to demonstrate that daily precipitation and evapotranspiration (ET) patterns can have a significant effect on recharge to groundwater, water table elevations, and VOC transport. Ten-year precipitation/ET scenarios from six sites in the United States are examined using both actual daily observed values and "average" pulsed precipitation. MTBE and tetrachloroethylene transport, including gas-phase diffusion, are considered. The effects of the precipitation/ET scenarios on net recharge and groundwater flow are significant and complicated, especially under low-precipitation conditions when pulsed precipitation can significantly underestimate transport to groundwater. In addition to precipitation and evapotranspiration effects, location of VOC entry into the subsurface within the watershed is important for transport in groundwater. This is caused by groundwater hydraulics at the watershed scale as well as variations in ET within the watershed. The model results indicate that it is important to consider both daily precipitation/ET patterns and location within the watershed in order to interpret VOC occurrence in groundwater, especially in low-precipitation settings.

  18. A Measurement of the B ---> Eta/C K Branching Fraction Using the BaBar Detector

    SciTech Connect

    Jackson, Frank; /Manchester U.

    2006-04-26

    The branching fraction is measured for the decay channels B{sup 0} {yields} {eta}{sub c}K{sub S}{sup 0} and B{sup +} {yields} {eta}{sub c}K{sup +} where {eta}{sub c} {yields} K{bar K}{pi}, using the BABAR detector. The {eta}{sub c} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -} and {eta}{sub c} {yields} K{sup +}K{sup -}{pi}{sup 0} decay channels are used, including non-resonant decays and possibly those through intermediate resonances.

  19. Measurement of the branching fraction for $\\tau\\to\\eta K\

    SciTech Connect

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-12

    The authors report on analyses of tau lepton decays {tau}{sup -} {yields} {eta}K{sup -}{nu}{sub {tau}} and {tau}{sup -} {yields} {eta}{pi}{sup -}{nu}{sub {tau}}, with {eta} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0}, using 470 fb{sup -1} of data from the BABAR experiment at PEP-II, collected at center-of-mass energies at and near the {Upsilon}(4S) resonance. They measure the branching fraction for the {tau}{sup -} {yields} {eta}K{sup -}{nu}{sub {tau}} decay mode, {Beta}({tau}{sup -} {yields} {eta}K{sup -}{nu}{sub {tau}}) = (1.42 {+-} 0.11(stat) {+-} 0.07(syst)) x 10{sup -4}, and report a 95% confidence level upper limit for the second-class current process {tau}{sup -} {yields} {eta}{pi}{sup -}{nu}{sub {tau}}, {Beta}({tau}{sup -} {yields} {eta}{pi}{sup -}{nu}{sub {tau}}) < 9.9 x 10{sup -5}.

  20. Space time ETAS models and an improved extension

    NASA Astrophysics Data System (ADS)

    Ogata, Yosihiko; Zhuang, Jiancang

    2006-02-01

    For sensitive detection of anomalous seismicity such as quiescence and activation in a given region, we need a suitable statistical reference model that represents a normal seismic activity in the region. The regional occurrence rate of the earthquakes is modeled as a function of previous activity, the specific form of which is based on empirical laws in time and space such as the modified Omori formula and the Utsu-Seki scaling law of aftershock area against magnitude, respectively. This manuscript summarizes the development of the epidemic type aftershock sequence (ETAS) model and proposes an extended version of the best fitted space-time model that was suggested in Ogata [Ogata, Y., 1998. Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math., 50: 379-402.]. This model indicates significantly better fit to seismicity in various regions in and around Japan.

  1. UNEXPECTED IONIZATION STRUCTURE IN ETA CARINAE'S ''WEIGELT KNOTS''

    SciTech Connect

    Remmen, Grant N.; Davidson, Kris; Mehner, Andrea

    2013-08-10

    The Weigelt knots, dense slow-moving ejecta near {eta} Carinae, are mysterious in structure as well as in origin. Using spatially dithered spectrograms obtained with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS), we have partially resolved the ionization zones of one knot. Contrary to simple models, higher ionization levels occur on the outer side, i.e., farther from the star. They cannot represent a bow shock, and no satisfying explanation is yet available-though we sketch one qualitative possibility. STIS spectrograms provide far more reliable spatial measurements of the Weigelt knots than HST images do, and this technique can also be applied to the knots' proper motion problem. Our spatial measurement accuracy is about 10 mas, corresponding to a projected linear scale of the order of 30 AU, which is appreciably smaller than the size of each Weigelt knot.

  2. The -145 km/S Absorption System of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Vieira, G.; Gull, T. R.; Danks, A.; Johansson, S.

    2002-01-01

    With the STIS E230H mode (R-118,000) , we have identified about twenty absorption components in line of sight from Eta Carinae. Two components, one at -513 km/s and another at -145 W s , are quite different in character from the others, mostly at intermediate velocities. The -145 km/s component is significantly wider in fwhm, is seen in many more species, and the lower level can be above 20,000/cm, well above the 2000/cm noted in the -513 km/s component. In the spectral region from 2400 to 3160A, approximately 500 absorption lines have been identified. In this poster, we will present line identifications and atomic parameters of the measured lines, hopefully providing insight as to what levels are being excited and by what processes.

  3. The -145 km/s Absorption System of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Vieira, G.; Gull, Theodore R.; Danks, A.; Johansson, S.

    2002-01-01

    With the STIS E230H mode (R approx. 118,000), we have identified about twenty absorption components in line of sight from Eta Carinae. Two components, one at -513 km/s and another at -145 km/s, are quite different in character from the others, mostly at intermediate velocities. The -145 km/s component is significantly wider in fwhm, is seen in many more species, and the lower level can be above 20,000/cm, well above the 2000/cm noted in the -513 km/s component. In the spectral region from 2400 to 3160A, approximately 500 absorption lines have been identified. In this poster, we will present line identifications and atomic parameters of the measured lines, hopefully providing insight as to what levels are being excited and by what processes. Observations were accomplished through STScI under proposal 9242. Funding is through the STIS GTO resources.

  4. Recovery from a Giant Eruption: The Case of Eta Car

    NASA Astrophysics Data System (ADS)

    Davidson, Kris; Mehner, Andrea; Martin, John C.; Humphreys, Roberta M.

    2016-01-01

    Giant eruptions or SN Impostors are far more mysterious than "real" supernovae, because they are scarcer and because they have received far less theoretical effort. One rather special problem is the disequilibrium state of the post-eruption object. It may be partially observable by watching the star's gradual recovery; which, in principle, may offer clues to the basic instability mechanisms. So far, the only example that can be observed well enough is eta Carinae. This object's history offers tantalizing clues and counter-clues. For instance: (1) Before 2000, the recovery timescale seemed to be of order 150 years; but (2) around 2000, many attributes began to change much more rapidly; and (3) the 150-year recovery process has been punctuated by about three abrupt changes of state. This strange combination of facts has received almost no theoretical attention.

  5. Understanding the X-ray Flaring from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Moffat, A.F.J.; Corcoran, Michael F.

    2009-01-01

    We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary Eta Carinae seen during the past three orbital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like powerlaw distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds.

  6. Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration

    NASA Astrophysics Data System (ADS)

    Rientjes, T. H. M.; Muthuwatta, L. P.; Bos, M. G.; Booij, M. J.; Bhatti, H. A.

    2013-11-01

    A procedure is tested to complete energy balance based daily ETa series by MODIS data.The HVB model is calibrated on 2 water balance terms; ETa and stream flow (Q).HBV calibration on Q shows poor ETa results for inter-rainfall and recession periods.Multi-variable (MV) vs. single variable calibration showed best HBV performance.Large volume differences in Q and ETa do not essentially effect MV calibration.

  7. Little Homunculus with in the Homunculus of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Ishibashi, Kazunori; Gull, Theodore R.; Davidson, Kris; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The famous HST/WFPC2 images of Eta Carinae provide a two-dimensional projection of the bipolar nebula that is really a three-dimensional structure. Much is hidden in subtle, projected details that a velocity-tuned instrument can pull apart. We have used the HST/STIS with a 52" x 0.1" aperture and with about 5000 spectral resolving power to examine the kinetic information contained within emission/absorption features. By velocity tuning, we can translate this information into spatial structures. The spectroscopic datasets have been transformed to a set of images, spaced at half instrumental line width steps, 15 - 20 km/s , and with a spatial resolution of 0.1 x 0.1 arcsec near Balmer beta and 0.25 x 0.1 arcsec near Balmer alpha. We examined these narrow-band images and individual spectra to characterize the nature of an internal nebula (formerly known as the Integral nebula). The shape of this nebulosity is an bipolar nebula, deeply embedded within the Homunculus, the well-known bipolar nebula surrounding Eta Carinae. The internal nebula is shaped nearly identically to the Homunculus. It is best described as a "little Homunculus within the Homunculus". Indeed, it is reminiscent of the Russian dolls, known as Matryoshka dolls, that successively nest within each larger doll. For that reason, we call this internal nebula the Matryoshka nebula. This was performed as one of the STIS GTO key projects and was funded by the HST project. Observations were done through the STScI.

  8. The Time Evolution of Eta Carinae's Colliding Winds

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Madura, T. I.; Grobe, J. H.; Corcoran, M. F.

    2011-01-01

    We report new HST/STIS observations that map the high-ionization forbidden line emission in the inner arc second of Eta Car, the first that fully image the extended wind-wind interaction region of the massive colliding wind binary. These observations were obtained after the 2009.0 periastron at orbital phases 0.084, 0.163, and 0.323 of the 5.54-year spectroscopic cycle. We analyze the variations in brightness and morphology of the emission, and find that blue-shifted emission (-400 to -200 km/s is symmetric and elongated along the northeast-southwest axis, while the red-shifted emission (+ 100 to +200 km/s) is asymmetric and extends to the north-northwest. Comparison to synthetic images generated from a 3-D dynamical model strengthens the 3-D orbital orientation found by Madura et al. (2011), with an inclination i = 138 deg, argument of periapsis w = 270 deg, and an orbital axis that is aligned at the same P A on the sky as the symmetry axis of the Homunculus, 312 deg. We discuss the potential that these and future mappings have for constraining the stellar parameters of the companion star and the long-term variability of the system. Plain-Language Abstract: With HST, we resolved the interacting winds of the binary, Eta Carinae. With a 3-D model, we find the binary orbit axis is aligned to the Homunculus axis. This suggests a connection between the binary and Homunculus ejection mechanism.

  9. A parabolic function to modify Thornthwaite estimates of potential evapotranspiration for the eastern United States

    USGS Publications Warehouse

    McCabe, G.J., Jr.

    1989-01-01

    Errors of the Thornthwaite model can be analyzed using adjusted pan evaporation as an index of potential evapotranspiration. An examination of ratios of adjusted pan evaporation to Thornthwaite potential evapotranspiration indicates that the ratios are highest in the winter and lowest during summer months. This trend suggests a parabolic pattern. In this study a parabolic function is used to adjust Thornthwaite estimates of potential evapotranspiration. Forty locations east of the Rocky Mountains are analyzed. -from Author

  10. Uncertainty Quantification of Evapotranspiration and Infiltration from Modeling and Historic Time Series at the Savannah River F-Area

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Flach, G. P.

    2012-12-01

    The objectives of this presentation are: (a) to illustrate the application of Monte Carlo and fuzzy-probabilistic approaches for uncertainty quantification (UQ) in predictions of potential evapotranspiration (PET), actual evapotranspiration (ET), and infiltration (I), using uncertain hydrological or meteorological time series data, and (b) to compare the results of these calculations with those from field measurements at the U.S. Department of Energy Savannah River Site (SRS), near Aiken, South Carolina, USA. The UQ calculations include the evaluation of aleatory (parameter uncertainty) and epistemic (model) uncertainties. The effect of aleatory uncertainty is expressed by assigning the probability distributions of input parameters, using historical monthly averaged data from the meteorological station at the SRS. The combined effect of aleatory and epistemic uncertainties on the UQ of PET, ET, and Iis then expressed by aggregating the results of calculations from multiple models using a p-box and fuzzy numbers. The uncertainty in PETis calculated using the Bair-Robertson, Blaney-Criddle, Caprio, Hargreaves-Samani, Hamon, Jensen-Haise, Linacre, Makkink, Priestly-Taylor, Penman, Penman-Monteith, Thornthwaite, and Turc models. Then, ET is calculated from the modified Budyko model, followed by calculations of I from the water balance equation. We show that probabilistic and fuzzy-probabilistic calculations using multiple models generate the PET, ET, and Idistributions, which are well within the range of field measurements. We also show that a selection of a subset of models can be used to constrain the uncertainty quantification of PET, ET, and I.

  11. Comparison of evapotranspiration rates for flatwoods and ridge citrus

    USGS Publications Warehouse

    Jia, X.; Swancar, A.; Jacobs, J.M.; Dukes, M.D.; Morgan, K.

    2007-01-01

    Florida citrus groves are typically grown in two regions of the state: flatwoods and ridge. The southern flatwoods citrus area has poorly drained fine textured sands with low organic matter in the shallow root zone. Ridge citrus is located in the northern ridge citrus zone and has fine to coarse textured sands with low water-holding capacity. Two commercial citrus groves, selected from each region, were studied from 15 July 2004 to 14 July 2005. The flatwoods citrus (FC) grove had a grass cover and used drainage ditches to remove excess water from the root zone. The ridge citrus (RC) grove had a bare soil surface with weeds periodically eliminated by tillage. Citrus crop evapotranspiration (ETc) rates at the two citrus groves were measured by the eddy correlation method, and components in the energy balance were also examined and compared. The study period had higher than average rainfall, and as a result, the two locations had similar annual ETc rates (1069 and 1044 mm for RC and FC, respectively). The ETc rates were 59% (RC) and 47% (FC) of the rainfall amounts during the study period. The annual reference crop evapotranspiration (ETo) rates were 1180 mm for RC and 1419 mm for FC, estimated using the standardized reference evapotranspiration equation. The citrus crop coefficients (Kc, ratio of ETc to ET o) were different between the two locations because of differences in latitude, ground cover, and rainfall amounts. The Kc values ranged from 0.70 between December and March to 1.05 between July and November for RC, and from 0.65 between November and May to 0.85 between June and October for FC. The results are consistent with other Kc values reported from field studies on citrus in both Florida and elsewhere using these and alternate methods.

  12. Spatiotemporal Variability in Potential Evapotranspiration across an Urban Monitoring Network

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; Long, M. R.; Fipps, G.; Swanson, C.; Traore, S.

    2015-12-01

    Evapotranspiration in urban and peri-urban environments is difficult to measure and predict. Barriers to accurate assessment include: the wide range of microclimates caused by urban canyons, heat islands, and park cooling; limited instrument fetch; and the patchwork of native soils, engineered soils, and hardscape. These issues combine to make an accurate assessment of the urban water balance difficult, as evapotranspiration calculations require accurate meteorological data. This study examines nearly three years of data collected by a network of 18 weather stations in Dallas, Texas, designed to measure potential evapotranspiration (ETo) in support of the WaterMyYard conservation program (http://WaterMyYard.org). Variability amongst stations peaked during the summer irrigation months, with a maximum standard deviation of 0.3 mm/hr and 4 mm/d. However, we found a significant degree of information overlap in the network. Most stations had a high correlation (>0.75) with at least one other station in the network, and many had a high correlation with at least 10 others. Correlation strength between station ETo measurements did not necessarily decrease with Euclidean distance, as expected, but was more closely related to differences in station elevation and longitude. Stations that had low correlations with others in the network typically had siting and fetch issues. ETo showed a strong temporal persistence; average station autocorrelation was 0.79 at a 1-hour lag and 0.70 at a 24-hour lag. To supplement the larger-scale network data, we deployed a mobile, vehicle-mounted weather station to quantify deviations present in the atmospheric drivers of evapotranspiration: temperature, humidity, wind, and solar radiation. Data were collected at mid-day during the irrigation season. We found differences in mobile and station ETo predictions up to 0.2 mm/hr, primarily driven by wind speed variations. These results suggest that ETo variation at the neighborhood to municipality

  13. Effect of root distribution on modelling percolation and groundwater evapotranspiration

    NASA Astrophysics Data System (ADS)

    Orellana, F. A.; Daly, E.

    2011-12-01

    In groundwater-dependent ecosystems, vegetation is able to extend its root system deep in the soil to wet zones strongly influenced by the water table. As a result, either part or all transpired water is supplied by groundwater. In many models, roots are assumed to be submerged in groundwater; however, this is not the case for many species. We analised the effect of using different root systems in estimating evapotranspiration and recharge in groundwater-dependent ecosystems. A 2D finite-elements model was developed using the program SEEPW to simulate the interaction between saturated and unsaturated soil in a riparian area. The domain of the model consists in a soil layer 8 meters deep and 100 meters long, with a constant water table outside of the vegetated area and a variable water table in the opposite side, controlled by the stage level of a river. Five root distributions were simulated: homogeneous in the saturated zone, homogeneous in the unsaturated zone, concentrated in the top layer of the soil, concentrated in the capillary fringe and a dimorphic distribution. The water-table level in the vegetated zone is always close to three meter depth; therefore, the direct evaporation from groundwater is neglected. Preliminary results show a significant impact of differing root distributions on the modelled water-table levels. The daily pattern of transpiration produces daily fluctuations in the water-table level, whose amplitude is higher when the total transpiration is uptaken from groundwater, and is considerably smaller when the root system is only in the unsaturated zone. These differences are also reflected in the net recharge and groundwater evapotranspiration. When transpiration comes directly from groundwater, most of the infiltrated water reaches the water table. However, when roots are distributed in the unsaturated zone, they are able to intercep part of the infiltration, with a decrease in percolation. Likewise, groundwater evapotranspiration reduces

  14. ETA receptor blockade potentiates the bronchoconstrictor response to ET-1 in the guinea pig airway.

    PubMed

    Polakowski, J S; Opgenorth, T J; Pollock, D M

    1996-08-01

    The effect of ETA receptor blockade on the bronchopulmonary response to endothelin-1 was determined in the airway of the anesthetized, spontaneously breathing guinea pig. Endothelin-1 administered as an aerosol increased lung resistance and decreased dynamic lung compliance. Delivery of the ETA receptor antagonist, FR139317, 5 min prior to giving endothelin-1 greatly potentiated these changes. A lower dose of endothelin-1 that had no effect on resistance or compliance produced large and significant changes when pretreated with FR139317. In contrast, aerosolized FR139317 had no effect on the bronchopulmonary response to intravenously administered endothelin-1. These data suggest a non-contractile function of ETA receptors accessible from the airways that serve to buffer the constrictor effects of non-ETA receptors.

  15. A PERFORMANCE EVALUATION OF THE ETA- CMAQ AIR QUALITY FORECAST SYSTEM FOR THE SUMMER OF 2005

    EPA Science Inventory

    This poster presents an evaluation of the Eta-CMAQ Air Quality Forecast System's experimental domain using O3 observations obtained from EPA's AIRNOW program and a suite of statistical metrics examining both discrete and categorical forecasts.

  16. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    USGS Publications Warehouse

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  17. Seasonal water storage and delayed evapotranspiration across continents: Patterns and drivers

    NASA Astrophysics Data System (ADS)

    Kuppel, Sylvain; Fan, Ying; Jobbagy, Esteban

    2016-04-01

    Storage and delayed evapotranspiration (ET) of precipitation (P) inputs by land ecosystems is critical regulating the timing and stability of plant production and the multiple ecological and economic processes that it supports. The extent to which actual ET (AET) can decouple from P inputs depends on the ecohydrologic system capacity to store water. This decoupling and its associated storage requirement can be particularly relevant at the seasonal scale in regions where, for instance, rainfalls are highly seasonal and/or P and potential ET (PET) are seasonally out of phase. Focusing on the 2003-2010 period, we explore, first, where on Earth this decoupling is likely to occur from a climate perspective by assessing the magnitude and duration of the expected seasonal land water transfers. These climate-based predictions are then compared with independent evidence derived from satellite observations of vegetation activity (MODIS) and water storage (GRACE), together with datasets of terrain attributes. We assess how land surface processes alter the "potential" seasonal hydrologic buffer provided by the local climatic conditions, in terms of volume and residence time. This analysis helps outlining the expected seasonal response of the land water cycle in the frame of likely climate and land use changes.

  18. [An operational remote sensing algorithm of land surface evapotranspiration based on NOAA PAL dataset].

    PubMed

    Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang

    2009-10-01

    Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images.

  19. Direct Measurement of Daily Evapotranspiration From a Deciduous Forest Using a Superconducting Gravimeter

    NASA Astrophysics Data System (ADS)

    Van Camp, M. J.; de Viron, O.; Pajot-Métivier, G.; Cazenave, F.; Watlet, A.; Dassargues, A.; Vanclooster, M.

    2015-12-01

    The conversion of liquid water into water vapor strongly controls the energy transfer between the Earth and the atmosphere, and plays one of the most important roles in the hydrological cycle. This process, called evapotranspiration (ET), deeply constraints the amount of green water in the total global water balance. However, assessing the ET from terrestrial ecosystems remains a key challenge in hydrology. We show that the liquid water mass losses can be directly inferred from continuous gravity measurements: as water evaporates and transpires from terrestrial ecosystems, the mass distribution varies through the system, changing its gravity field. Using continuous superconducting gravity measurements, we were able to identify a daily changes in gravity at the level of, or smaller than 10-10 g per day. This corresponds to 2.0 mm of water over an area of 50 ha.The strength of this method is its ability to ensure a direct, traceable and continuous monitoring of actual ET for years at the mesoscale (~50 ha) with a precision of a few tenths of mm of water. This paves the way for the development of the method in different land-use, land-cover and geological contexts, using superconducting and coming quantum gravimeters.

  20. [An operational remote sensing algorithm of land surface evapotranspiration based on NOAA PAL dataset].

    PubMed

    Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang

    2009-10-01

    Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images. PMID:20077694

  1. Mixture of a seismicity model based on the rate-and-state friction and ETAS model

    NASA Astrophysics Data System (ADS)

    Iwata, T.

    2015-12-01

    Currently the ETAS model [Ogata, 1988, JASA] is considered to be a standard model of seismicity. However, because the ETAS model is a purely statistical one, the physics-based seismicity model derived from the rate-and-state friction (hereafter referred to as Dieterich model) [Dieterich, 1994, JGR] is frequently examined. However, the original version of the Dieterich model has several problems in the application to real earthquake sequences and therefore modifications have been conducted in previous studies. Iwata [2015, Pageoph] is one of such studies and shows that the Dieterich model is significantly improved as a result of the inclusion of the effect of secondary aftershocks (i.e., aftershocks caused by previous aftershocks). However, still the performance of the ETAS model is superior to that of the improved Dieterich model. For further improvement, the mixture of the Dieterich and ETAS models is examined in this study. To achieve the mixture, the seismicity rate is represented as a sum of the ETAS and Dieterich models of which weights are given as k and 1-k, respectively. This mixture model is applied to the aftershock sequences of the 1995 Kobe and 2004 Mid-Niigata sequences which have been analyzed in Iwata [2015]. Additionally, the sequence of the Matsushiro earthquake swarm in central Japan 1965-1970 is also analyzed. The value of k and parameters of the ETAS and Dieterich models are estimated by means of the maximum likelihood method, and the model performances are assessed on the basis of AIC. For the two aftershock sequences, the AIC values of the ETAS model are around 3-9 smaller (i.e., better) than those of the mixture model. On the contrary, for the Matsushiro swarm, the AIC value of the mixture model is 5.8 smaller than that of the ETAS model, indicating that the mixture of the two models results in significant improvement of the seismicity model.

  2. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    SciTech Connect

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  3. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    NASA Astrophysics Data System (ADS)

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr-1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  4. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    PubMed Central

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-01-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12–23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51–98 vs. 7–8 mm yr−1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373

  5. Projected Changes in Evapotranspiration Rates over Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Costa, Alexandre; Guimarães, Sullyandro; Vasconcelos, Francisco, Jr.; Sales, Domingo; da Silva, Emerson

    2015-04-01

    Climate simulations were performed using a regional model (Regional Atmospheric Modeling System, RAMS 6.0) driven by data from one of the CMIP5 models (Hadley Centre Global Environmental Model, version 2 - Earth System, HadGEM2-ES) over two CORDEX domains (South America and Central America) for the heavy-emission scenario (RCP8.5). Potential evapotranspiraion data from the RCM and from the CMIP5 global models were analyzed over Northeast Brazil, a semiarid region with a short rainy season (usually February to May in its northern portion due to the seasonal shift of the Intertropical Convergence Zone) and over which droughts are frequent. Significant changes in the potential evapotranspiration were found, with most models showing a increasing trend along the 21st century, which are expected to alter the surface water budget, increasing the current water deficit (precipitation is currently much smaller than potential evapotranspiration). Based on the projections from the majority of the models, we expect important impacts over local agriculture and water resources over Northeast Brazil.

  6. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

    PubMed

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-15

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  7. Evapotranspiration of applied water, Central Valley, California, 1957-78

    USGS Publications Warehouse

    Williamson, Alex K.

    1982-01-01

    In the Central Valley, Calif., where 57% of the 20,000 square miles of land is irrigated, ground-water recharge from agricultural lands is an important input to digital simulation models of ground-water flow. Several methods of calculating recharge were explored for the Central Valley Aquifer Project and a simplified water budget was designed where net recharge (recharge minus pumpage) equals net surface water diverted minus evapotranspiration of applied water (ETAW). This equation eliminates the need to determine pumpage from the water-table aquifer, assuming that the time lag for infiltration is not longer than the time intervals of interest for modeling. This study evaluates only the evapotranspiration of applied water. Future reports will describe the other components of the water budget. ETAW was calculated by summing the products of ETAW coefficients and respective crop areas for each 7 1/2-minute quadrangle area in the valley, for each of three land-use surveys between 1957 and 1978. In 1975 total ETAW was 15.2 million acre-feet, a 43% increase since 1959. The largest increases were in the south, especially Kern County, which had a sixfold increase, which was caused by the import of surface water in the California Aqueduct. (USGS)

  8. Mapping Subfield-Scale Evapotranspiration to Assess Agricultural Drought Sensitivity

    NASA Astrophysics Data System (ADS)

    Zipper, S. C.; Loheide, S. P., III

    2014-12-01

    Assessing crop response to drought on the subfield-scale is critical for efficient agricultural water management and yield forecasting. Evapotranspiration provides a direct physical link between the soil, crop canopy, and the atmosphere, and is hence highly sensitive to changes in water availability. Here, we introduce a new surface energy balance model (High Resolution Mapping of Evapotranspiration; HRMET) that can map ET at very high resolution (meter-scale) requiring only canopy surface temperature, canopy structure, and meteorology as inputs. HRMET can be used in both open and closed canopy conditions. We validate HRMET over two commercial cornfields in the Yahara River Watershed (south-central Wisconsin, USA) and investigate the spatially variable ET response to severe drought conditions during the 2012 growing season. Results show that the magnitude of within-field ET variability is much larger when the drought is more severe. We then introduce a new metric, Relative ET (ETR), which normalizes ET on a field scale and allows for direct comparison across measurement dates, despite differences in meteorological conditions and crop growth stage. Using a novel paired-image technique, we use persistent patterns of ETR identify portions of the field that are most susceptible to drought, and portions that are consistently productive across measurement dates. These results have implications for precision agriculture and irrigation efficiency in addition to water management and yield forecasting, as identification of persistent patterns in crop productivity during low-stress periods allows farmers to direct resources to the most sensitive areas early in droughts.

  9. Variability of Precipitation and Evapotranspiration across an Andean Paramo

    NASA Astrophysics Data System (ADS)

    Jaimes, J. C.; Riveros-Iregui, D.; Avery, W. A.; Gaviria, S.; Peña-Quemba, C.; Herran, G.

    2012-12-01

    Paramos are alpine grasslands that occur mostly in the Andes Mountains of South America. Typically soils in the paramo have a volcanic origin, which leads to high permeability and high water yield and makes the paramo a reliable drinking water supply for many highland cities. Because hydrological measurements in these humid systems are rare, current understanding of the hydrologic behavior of paramos relies on modeling studies with little validation against ground observations. We present measurements of evapotranspiration (ET) and precipitation (P) across Chingaza Paramo, near Bogotá, Colombia. This paramo supplies water for ~80% of Bogotá's population (a total of 8 million people). Meteorological variables such us air temperature, relative humidity, wind speed, precipitation, and solar radiation were monitored using five weather stations located at various elevations from 3000m to 3600m. Our results show that ET varies from 500 to 700 mm y-1 as a function of elevation, whereas precipitation commonly exceeds ET, ranging between 1500 and 1800 mm y-1. These spatial differences between P and ET make water yield highly variable across this mountainous environment. Our results demonstrate that while paramos play an important role in the hydrologic cycle of tropical environments, understanding their hydrologic behavior requires characterization and monitoring of the pronounced spatial gradients of precipitation and evapotranspiration.

  10. Monitoring Tamarisk Defoliation and Scaling Evapotranspiration Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Dennison, P. E.; Hultine, K. R.; Nagler, P. L.; Miura, T.; Glenn, E. P.; Ehleringer, J. R.

    2008-12-01

    Non-native tamarisk (Tamarix spp.) has invaded riparian ecosystems throughout the Western United States. Another non-native species, the saltcedar leaf beetle (Diorhabda elongata), has been released in an attempt to control tamarisk infestations. Most efforts directed towards monitoring tamarisk defoliation by Diorhabda have focused on changes in leaf area or sap flux, but these measurements only give a local view of defoliation impacts. We are assessing the ability of remote sensing data for monitoring tamarisk defoliation and measuring resulting changes in evapotranspiration over space and time. Tamarisk defoliation by Diorhabda has taken place during the past two summers along the Colorado River and its tributaries near Moab, Utah. We are using 15 meter spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 250 meter spatial resolution Moderate Resolution Imaging Spectrometer (MODIS) data to monitor tamarisk defoliation. An ASTER normalized difference vegetation index (NDVI) time series has revealed large drops in index values associated with loss of leaf area due to defoliation. MODIS data have superior temporal monitoring abilities, but at the sacrifice of much lower spatial resolution. A MODIS enhanced vegetation index time series has revealed that for pixels where the percentage of riparian cover is moderate or high, defoliation is detectable even at 250 meter spatial resolution. We are comparing MODIS vegetation index time series to site measurements of leaf area and sap flux. We are also using an evapotranspiration model to scale potential water savings resulting from the biocontrol of tamarisk.

  11. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

    PubMed

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-01-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373

  12. Remote Sensing of Evapotranspiration and Carbon Uptake at Harvard Forest

    NASA Technical Reports Server (NTRS)

    Min, Qilong; Lin, Bing

    2005-01-01

    A land surface vegetation index, defined as the difference of microwave land surface emissivity at 19 and 37 GHz, was calculated for a heavily forested area in north central Massachusetts. The microwave emissivity difference vegetation index (EDVI) was estimated from satellite SSM/I measurements at the defined wavelengths and used to estimate land surface turbulent fluxes. Narrowband visible and infrared measurements and broadband solar radiation observations were used in the EDVI retrievals and turbulent flux estimations. The EDVI values represent physical properties of crown vegetation such as vegetation water content of crown canopies. The collocated land surface turbulent and radiative fluxes were empirically linked together by the EDVI values. The EDVI values are statistically sensitive to evapotranspiration fractions (EF) with a correlation coefficient (R) greater than 0.79 under all-sky conditions. For clear skies, EDVI estimates exhibit a stronger relationship with EF than normalized difference vegetation index (NDVI). Furthermore, the products of EDVI and input energy (solar and photosynthetically-active radiation) are statistically significantly correlated to evapotranspiration (R=0.95) and CO2 uptake flux (R=0.74), respectively.

  13. Eta Carinae and the Homunculus: an Astrophysical Laboratory

    NASA Astrophysics Data System (ADS)

    Gull, Theodore R.; Hartman, H.; Bautista, M. A.

    2012-05-01

    Today Eta Carinae, from the 1840s Great Eruption, is surrounded by a 20", neutral, dusty bipolar shell with intervening skirt, containing 12-40 solar masses of N-rich, C- and O-poor ejecta. The ionized Little Homunculus, ejected in the 1890s, expands within. At the core are a massive extended interacting wind structure and the bright Weigelt blobs, that change between a low-ionization (<7.8 eV) to a high-ionization state (>40 eV) driven by the 5.5-year massive binary. Thousands of narrow emission and absorption lines originate from a variety of regions: 1) the Weigelt blobs and the extended wind structures; 2) the Strontium Filament, a unique photoioionized metal nebula dominated by TiII, VII, SrII, ScII, CaII, MnII, CrII and FeI, but no HI; 3) the ionized Little Homunculus; and 4) the Homunculus seen in nearly a thousand atomic absorption lines in high and low states, but a thousand H2 absorptions only seen in the high state. Ionized iron-peak elements co-exist with CH, OH, NH and H2. This system is an excellent laboratory for the study of many iron-peak species from neutral to doubly-ionized states. The variations of incident radiation allow us to study atomic processes and derive atomic data not available from terrestrial laboratories, making Eta Carinae an astrophysical laboratory in its true sense. Moreover, the Homunculus, as inventoried by Herschel spectral scans, is dominated by N-bearing molecules. While C and O are depleted nearly 100-fold, due to CNO-nuclear reactions coupled with high conduction in the massive stellar cores, dust and molecules have still formed. How? Is the Homunculus dust metallic in character? Silicates and alumina? Could the formed dust also contribute to the C,O-depletions? Through multiple studies we are gaining clues on the robustness of molecular and dust formations.

  14. Precision Measurement of {eta} --> {gamma} {gamma} Decay Width via the Primakoff Effect

    SciTech Connect

    Gan, Liping Gin

    2013-08-01

    A precision measurement of the {eta} --> {gamma} {gamma} decay width via the Primakoff effect is underway in Hall D at Jefferson Lab. The decay width will be extracted from measured differential cross sections at forward angles on two light targets, liquid hydrogen and 4He, using a 11.5 GeV tagged photon beam. Results of this experiment will not only potentially resolve a long standing discrepancy between the Primakoff and the collider measurements, but will also reduce the experimental uncertainty by a factor of two on the average value of previous experimental results listed by the Particle Data Group(PDG). It will directly improve all other eta partial decay widths which rely on the accuracy of the eta radiative decay width. The projected 3% precision on the {Gamma}({eta} --> {gamma} {gamma} ) measurement will have a significant impact on the experimental determination of the fundamental parameters in QCD, such as the ratio of light quark masses (m{sub u},m{sub d},m{sub s}) and the {eta} - {eta}' mixing angle. It will be a sensitive probe for understanding QCD symmetries and the origin and the dynamics of QCD symmetry breaking.

  15. New ruthenium carboxylate complexes having a 1-5-. eta. sup 5 -cyclooctadienyl ligand

    SciTech Connect

    Osakada, Kohtaro; Grohmann, A.; Yamamoto, Akio )

    1990-07-01

    Reaction of 3-butenoic acid with Ru(cod)(cot) (cod) = 1-2-{eta}{sup 2}:5-6-{eta}{sup 2}-cyclooctadiene; cot = 1-6-{eta}{sup 6}-cyclooctatriene in the presence of PMe{sub 3} gives a new ruthenium(II) complex formulated as Ru(1-5-{eta}{sup 5}-C{sub 8}H{sub 11}){eta}{sup 1}(O),{eta}{sup 2}(C,C{prime}-OCOCH{sub 2}CH{double bond}CH{sub 2})(PMe{sub 3}) (1). X-ray crystallography revealed its structure as having a piano-stool coordination around the ruthenium center. Crystals of 1 are tetragonal, space group P4{sub 3}2{sub 1}2, with a = 12.559 (3) {angstrom}, c = 20.455 (4) {angstrom}, and Z = 8. {sup 1}H and {sup 13}C({sup 1}H) NMR spectra of 1 agree well for the structure with the allyl entity of the carboxylate {pi}-bonded through the C{double bond}C double bond to ruthenium.

  16. Pol eta is required for DNA replication during nucleotide deprivation by hydroxyurea.

    PubMed

    de Feraudy, S; Limoli, C L; Giedzinski, E; Karentz, D; Marti, T M; Feeney, L; Cleaver, J E

    2007-08-23

    Hydroxyurea reduces DNA replication by nucleotide deprivation, whereas UV damage generates DNA photoproducts that directly block replication fork progression. We show that the low fidelity class Y polymerase Pol eta is recruited to proliferating cell nuclear antigen at replication forks both by hydroxyurea and UV light. Under nucleotide deprivation, Pol eta allows cells to accumulate at the G1/S boundary by facilitating slow S-phase progression and promotes apoptosis. Normal cells consequently enter apoptosis at a faster rate than Pol eta-deficient cells. Coincident with hydroxyurea-induced S-phase delay, Pol eta-deficient cells undergo more replication fork breakage and accumulate more foci of the Mre11/Rad50/Nbs1 complex and phosphorylated histone H2AX. We conclude that under conditions of nucleotide deprivation, Pol eta is required for S-phase progression but is proapoptotic. However, as Pol eta is reported to require higher nucleotide concentrations than class B replicative polymerases, its recruitment by hydroxyurea requires it to function under suboptimal conditions. Our results suggest that hydroxyurea-induced apoptosis occurs at the G1/S boundary and that initiation of the S-phase requires greater nucleotide concentrations than does S-phase progression. PMID:17369853

  17. Structural basis for the suppression of skin cancers by DNA polymerase [eta

    SciTech Connect

    Silverstein, Timothy D.; Johnson, Robert E.; Jain, Rinku; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2010-09-13

    DNA polymerase {eta} (Pol{eta}) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Pol{eta} (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Pol{eta} (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Pol{eta} to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln55, Arg73 and Met74. Together, these features define the basis for Pol{eta}'s action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.

  18. Measurement of the gamma gamma* to eta_c transition form factor

    SciTech Connect

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; Hawkes, C.M.; /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2010-04-28

    The authors study the reaction e{sup +}e{sup -} {yields} e{sup +}e{sup -} {eta}{sub c}, {eta}{sub c} {yields} K{sub S}K{sup {+-}}{pi}{sup {-+}} and obtain {eta}{sub c} mass and width values 2982.2 {+-} 0.4 {+-} 1.6 MeV/c{sup 2} and 31.7 {+-} 1.2 {+-} 0.8 MeV, respectively. They find {Lambda}({eta}{sub c} {yields} {gamma}{gamma}){Beta}({eta}{sub c} {yields} K{bar K}{pi}) = 0.374 {+-} 0.009 {+-} 0.031 keV, and measure the {gamma}{gamma}* {yields} {eta}{sub c} transition form factor in the momentum transfer range from 2 to 50 GeV{sup 2}. The analysis is based on 469 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.

  19. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    NASA Technical Reports Server (NTRS)

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  20. Evapotranspiration from areas of native vegetation in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Woodham, W.M.; Lopez, M.A.

    1993-01-01

    A study was made to examine the suitability of three different micrometeorological methods for estimating evapotranspiration from selected areas of native vegetation in west-central Florida and to estimate annual evapotranspiration from those areas. Evapotranspiration was estimated using the energy- balance Bowen ratio and eddy correlation methods. Potential evapotranspiration was computed using the Penman equation. The energy-balance Bowen ratio method was used to estimate diurnal evapotrans- piration at unforested sites and yielded reasonable results; however, measurements indicated that the magnitudes of air temperature and vapor-pressure gradients above the forested sites were too small to obtain reliable evapotranspiration measurements with the energy balance Bowen ratio system. Analysis of the surface energy-balance indicated that sensible and latent heat fluxes computed using standard eddy correlation computation methods did not adequately account for available energy. Eddy correlation data were combined with the equation for the surface energy balance to yield two additional estimates of evapotranspiration. Daily potential evapotranspiration and evapotranspira- tion estimated using the energy-balance Bowen ratio method were not correlated at a unforested, dry prairie site, but they were correlated at a marsh site. Estimates of annual evapotranspiration for sites within the four vegetation types, which were based on energy-balance Bowen ratio and eddy correlation measurements, were 1,010 millimeters for dry prairie sites, 990 millimeters for marsh sites, 1,060 millimeters for pine flatwood sites, and 970 millimeters for a cypress swamp site.

  1. Evaluation of different interpolation schemes for precipitation and reference evapotranspiration and the impact on simulated large-scale water balance in Slovenia

    NASA Astrophysics Data System (ADS)

    He, Qianwen; Molkenthin, Frank; Wendland, Frank; Herrmann, Frank

    2016-04-01

    Precipitation and reference evapotranspiration (ET0) are two main climate input components for hydrological models, which are often recorded or calculated based on measuring stations. Interpolation schemes are implemented to regionalize data from measuring stations for distributed hydrological models. This study had been conducted for 5 months, with the aim of: (1) evaluating three interpolation schemes for precipitation and reference evapotranspiration (ET0); (2) assessing the impact of the interpolation schemes on actual evapotranspiration and total runoff simulated by a distributed large-scale water balance model - mGROWA. The study case was the Republic of Slovenia, including a high variability in topography and climatic conditions, with daily meteorological data measured in 20 stations for a period of 44 years. ET0 were computed by both FAO Penman-Monteith equation and Hargreaves equation. The former equation is recommended as the standard equation, while the ET0 calculated by the latter one for Slovenia had a certain deviation (+150 mm/a) from it. Ordinary Kriging, Regression Kriging and Linear Regression were selected to regionalize precipitation and ET0. Reliability of the three interpolation schemes had been assessed based on the residual obtained from cross-validation. Monthly regionalized precipitation and ET0 were subsequently used as climate input for mGROWA model simulation. Evaluation of the interpolation schemes showed that the application of Regression Kriging and Linear Regression led to an acceptable interpolation result for reference evapotranspiration, especially in case the FAO Penman-Monteith equation was used. On the other hand, Regression Kriging also provided a more convincing interpolated result for precipitation. Meanwhile, mGROWA simulation results were affected by climate input data sets generated by applying difference interpolation schemes. Therefore, it is essential to select an appropriate interpolation scheme, in order to generate

  2. Characterization of thymus-derived lymphocytes expressing Ti alpha-beta CD3 gamma delta epsilon zeta-zeta, Ti alpha-beta CD3 gamma delta epsilon eta-eta or Ti alpha-beta CD3 gamma delta epsilon zeta-zeta/zeta- eta antigen receptor isoforms: analysis by gene transfection

    PubMed Central

    1990-01-01

    To characterize the function of the CD3 eta subunit of the T cell receptor (TCR), we have used cDNAs encoding CD3 zeta, CD3 eta, or both to reconstitute a variant of a cytochrome c-specific, I-Ek-restricted murine T cell hybridoma, termed MA5.8, which lacks CD3 zeta and CD3 eta proteins. We provide direct evidence that assembly and surface expression of TCRs can be mediated by either of these subunits separately or together. However, the level of TCR expression on zeta transfectants is up to one order of magnitude greater than that on eta transfectants, implying that CD3 eta is weakly associated with the pentameric Ti alpha-beta CD3 gamma delta epsilon complex and/or inefficient at salvaging the incomplete TCR from lysosomal degradation. As a component of the TCR, the CD3 eta subunit preferentially forms a heterodimer with CD3 zeta, but is also able to form a CD3 eta-eta homodimer. Crosslinking of Ti alpha-beta CD3 gamma delta epsilon zeta- zeta, Ti alpha-beta CD3 gamma delta epsilon eta-eta, or Ti alpha-beta CD3 gamma delta epsilon zeta-zeta/zeta-eta TCR isotypes with anti-CD3 epsilon monoclonal antibody or a cytochrome c peptide epitope on I-Ek antigen-presenting cells mediates signal transduction resulting in reversible cell-cycle arrest of transfected clones. Given the potential for diversity of signals generated by these functional TCR isotypes and the expression of the CD3 eta gene product in the thymus, CD3 eta is likely to play a role in selection and/or activation of thymocytes during development. PMID:2145389

  3. Evapotranspiration from successional vegetation in a deforested area of the Lake Wales Ridge, Florida

    USGS Publications Warehouse

    Sumner, D.M.

    1996-01-01

    The suitability of three evapotranspiration models (Penman-Monteith, Penman, and a modified Priestley-Taylor) was evaluated at a site ofsuccessional vegetation in a deforested area of theLake Wales Ridge, Florida. Eddy correlation mea surements of evapotranspiration made during 22approximately 1-day periods at a temporal resolu tion of 20 minutes from September 1993 to August 1994 were used to calibrate the evapotranspiration models. Three variants of the eddy correlation method that ascribe measurement error to three different sources were considered in the analysis. The Penman-Monteith and modified Priestley- Taylor models were successful in approximating measured 20-minute values of evapotranspiration (r2  0.918). The most suc cessful approaches were the modified Priestley-Taylor model (r2 = 0.972) and a nontraditional and simplified form of the Penman-Monteith model (r2 = 0.967). The Penman approach was unsuccessful as a predictor of evapotranspiration. The evapotranspiration models were used to estimate evapotranspiration between measure ments. When evapotranspiration values measured with a Bowen ratio variant of the eddy correlation method were used for model calibration, estimated daily evapotranspiration rates varied sea sonally ranging from 0.2 millimeters per day (0.008 inch per day) in late December 1993 to5 millimeter per day (0.2 inch per day) in mid-July 1994. Annual evapotranspiration (September 15, 1993, to September 15, 1994) was estimated to be about 680 millimeters (27 inches).Evapotranspiration models calibrated to the stan dard eddy correlation method and to an energy- balance residual variant provided estimates ofannual evapotranspiration that were about 10 per cent lower and higher, respectively. These dataindicate that of the 1,320 millimeters (52 inches)of precipitation during the 1-year period, about 570 to 700 millimeters (22 to 28 inches) recharged the surficial aquifer. Evapotranspiration at this study site probably defines the lower

  4. The Three-dimensional Structure of the Eta Carinae Homunculus

    NASA Technical Reports Server (NTRS)

    Steffen, W.; Teodoro, M.; Madura, T.I.; Groh, J.H.; Gull, T.R.; Mehner, A.; Corcoran, M.F.; Damineli, A.; Hamaguchi, K.

    2014-01-01

    We investigate, using the modeling code SHAPE, the three-dimensional structure of the bipolar Homunculus nebula surrounding Eta Carinae as mapped by new ESO VLT/X-Shooter observations of the H2 (lambda) = 2.12125 micrometers emission line. Our results reveal for the first time important deviations from the axisymmetric bipolar morphology: 1) circumpolar trenches in each lobe positioned point-symmetrically from the center and 2) offplanar protrusions in the equatorial region from each lobe at longitudinal (approximately 55 degrees) and latitudinal (10 degrees to 20 degrees) distances from the projected apastron direction of the binary orbit. The angular distance between the protrusions (approximately 110 degrees) is similar to the angular extent of each polar trench (approximately 130 degrees) and nearly equal to the opening angle of the wind-wind collision cavity (approximately 110 degrees). As in previous studies, we confirm a hole near the centre of each polar lobe and no detectable near-IR H2 emission from the thin optical skirt seen prominently in visible imagery. We conclude that the interaction between the outflows and/or radiation from the central binary stars and their orientation in space has had, and possibly still has, a strong influence on the Homunculus. This implies that prevailing theoretical models of the Homunculus are incomplete as most assume a single star origin that produces an axisymmetric nebula.We discuss how the newly found features might be related to the Homunculus ejection, the central binary and the interacting stellar winds.

  5. Eta Carinae: At the Crossroads of becoming a Supernova

    NASA Technical Reports Server (NTRS)

    Gull, Theodore

    2007-01-01

    Since the 1840's, when Eta Carinae's visual magnitude rivaled Sirius, the brightest star in the night sky, astronomers have wondered what major event took place. Today with the Hubble Space Telescope Imaging Spectrograph, with CHANDRA X-ray spectroscopy and the Very Large Telescope spectrographs and interferometers, we have learned that over 12 solar masses of material was ejected at 500 to 700 km/s into interstellar space. This ejecta is quite different from the normal interstellar medium. It is rich in nitrogen, poor in oxygen and carbon. The dust properties are quite peculiar and many metals such as vanadium, strontium, cadmium are seen in both absorption against the central source, plus a number of molecules. The chemical and dust formation is likely dominated by nitrogen as we see H_2, CH, CH+, OH, NH, HCl and NH-3, but no CO. Other metals and molecules are being searched out in the FUSE, HST/STIS, VLT/UVES and VLT/CRIRES spectra. I will describe what we know about the massive binary stellar system, how it changes every 5.54 year in UV and X-ray output and how the massive ejecta responds in this astrophysical laboratory.

  6. CRITICAL DIFFERENCES AND CLUES IN ETA CAR'S 2009 EVENT ,

    SciTech Connect

    Mehner, Andrea; Davidson, Kris; Humphreys, Roberta M.; Martin, John C.; Ishibashi, Kazunori; Ferland, Gary J.

    2011-10-20

    We monitored Eta Carinae with the Hubble Space Telescope WFPC2 and Gemini GMOS throughout the 2009 spectroscopic event, which was expected to differ from its predecessor in 2003. Here we report major observed differences between events and their implications. Some of these results were quite unexpected. (1) The UV brightness minimum was much deeper in 2009. This suggests that physical conditions in the early stages of an event depend on different parameters than the 'normal' inter-event wind. Extra mass ejection from the primary star is one possible cause. (2) The expected He II {lambda}4687 brightness maximum was followed several weeks later by another. We explain why this fact and the timing of the {lambda}4687 maxima strongly support a 'shock breakup' hypothesis for X-ray and {lambda}4687 behavior as proposed 5-10 years ago. (3) We observed a polar view of the star via light reflected by dust in the Homunculus nebula. Surprisingly, at that location, the variations of emission-line brightness and Doppler velocities closely resembled a direct view of the star, which should not have been true for any phenomena related to the orbit. This result casts very serious doubt on all the proposed velocity interpretations that depend on the secondary star's orbital motion. (4) Latitude-dependent variations of H I, He I, and Fe II features reveal aspects of wind behavior during the event. In addition, we discuss implications of the observations for several crucial unsolved problems.

  7. The -145 km/s Absorption System of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Vieira, G. L.; Gull, T. R.; Danks, A. C.; Johansson, S.

    2002-12-01

    With the STIS E230H mode (R 118,000), we have identified about twenty absorption components in line of sight from Eta Carinae. Two components, one at -513 km/s and another at -145 km/s, are quite different in character from the others, mostly at intermediate velocities (See adjacent posters by T. Gull and A. Danks). The -145 km/s component is significantly wider in fwhm, is seen in many more species, and the lower level can be above 20,000 cm-1, well above the 2000 cm-1 noted in the -513 km/s component. In the spectral region from 2400 to 3160A, approximately 500 absorption lines have been identified. In this poster, we will present line identifications and atomic parameters of the measured lines, hopefully providing insight as to what levels are being excited and by what processes. Observations were accomplished through STScI under proposal 9242 (Danks, P.I.). Funding is through the STIS GTO resources.

  8. Retrospective forecast of ETAS model with daily parameters estimate

    NASA Astrophysics Data System (ADS)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  9. Monitoring drought occurrences using MODIS evapotranspiration data: Direct impacts on agricultural productivity in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruhoff, Anderson

    2014-05-01

    Evapotranspiration (ET), including water loss from plant transpiration and land evaporation, is of vital importance for understanding hydrological processes and climate dynamics and remote sensing is considered as the most important tool for estimate ET over large areas. The Moderate Resolution Imaging Spectroradiometer (MODIS) offers an interesting opportunity to evaluate ET with spatial resolution of 1 km. The MODIS global evapotranspiration algorithm (MOD16) considers both surface energy fluxes and climatic constraints on ET (water or temperature stress) to predict plant transpiration and soil evaporation based on Penman-Monteith equation. The algorithm is driven by remotely sensed and reanalysis meteorological data. In this study, MOD16 algorithm was applied to Southern Brazil to evaluate drought occurrences and its impacts over the agricultural production. Drought is a chronic potential natural disaster characterized by an extended period of time in which less water is available than expected, typically classified as meteorological, agricultural, hydrological and socioeconomic. With human-induced climate change, increases in the frequency, duration and severity of droughts are expected, leading to negative impacts in several sectors, such as agriculture, energy, transportation, urban water supply, among others. The current drought indicators are primarily based on precipitation, however only a few indicators incorporate ET and soil moisture components. ET and soil moisture play an important role in the assessment of drought severity as sensitive indicators of land drought status. To evaluate the drought occurrences in Southern Brazil from 2000 to 2012, we used the Evaporative Stress Index (ESI). The ESI, defined as 1 (one) minus the ratio of actual ET to potential ET, is one of the most important indices denoting ET and soil moisture responses to surface dryness with effects over natural ecosystems and agricultural areas. Results showed that ESI captured major

  10. Uncertainties in Measuring and Modeling Evapotranspiration in Open Savanna Ecosystems in West-Africa

    NASA Astrophysics Data System (ADS)

    Falk, Ulrike; Hendrickx, Jan M. H.; Conrad, Christopher; Vlek, Paul

    2010-05-01

    In recent years, several methods have been developed to estimate the spatial distribution of actual evapotranspiration (ET) by the means of remote sensing (RS). One frequently used approach is to calculate ET from latent heat fluxes modeled as residuum of the surface energy balance. For this purpose, ground heat fluxes and sensible heat fluxes are subtracted from the energy available on the land surface. One of these methods is the Surface Energy Balance Algorithm for Land (SEBAL), which has been applied to many ecosystems and different sensors. ET mapping from remotely sensed satellite images is critical for water management since the estimation of spatial and temporal ET distributions over large areas is impossible using only ground measurements. A major difficulty for the calibration and validation of operational ET RS algorithms is the validation against ground measurements of ET at a scale similar to the spatial resolution of the remote sensing image. The spatial length scale of remote sensing images covers a range from 30 m (Landsat) to 1000 m (MODIS). Direct methods to measure the latent heat flux (W/m2) -i.e. the evapotranspiration rate (mm/day) multiplied by the latent heat for vaporization- such as eddy covariance (EC) only provide measurements at a scale that may be considerably smaller than the estimate obtained from a remote sensing method. The Large Aperture Scintillometer (LAS) flux footprint area is larger (here about 1 km²) and its spatial extent better constraint than that of EC systems. Nevertheless, it is only an indirect method for estimation of ET. A detailed footprint analysis and its changes during the day is therefore necessary as well as uncertainties introduced by the different temporal scales. Overflight missions for mapping land surface properties were carried out to bridge the gap between the different spatial scales. The objective of this contribution is to present our experiences with time series of ET mapping using ground

  11. Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn

    NASA Astrophysics Data System (ADS)

    Padilla, F. L. M.; González-Dugo, M. P.; Gavilán, P.; Domínguez, J.

    2010-10-01

    Vegetation indices (VIs) have been traditionally used for quantitative monitoring of vegetation. Remotely sensed radiometric measurements of visible and infrared solar energy, which is reflected or emitted by plant canopies, can be used to obtain rapid, non-destructive estimates of certain canopy attributes and parameters. One parameter of special interest for water management applications, is the crop coefficient employed by the FAO-56 model to derive actual crop evapotranspiration (ET). The aim of this study was to evaluate a methodology that combines the basal crop coefficient derived from VIs with a daily soil water balance in the root zone to estimate daily evapotranspiration rates for corn and wheat crops at field scale. The ability of the model to trace water stress in these crops was also assessed. Vegetation indices were first retrieved from field hand-held radiometer measurements and then from Landsat 5 and 7 satellite images. The results of the model were validated using two independent measurement systems for ET and regular soil moisture monitoring, in order to evaluate the behavior of the soil and atmosphere components of the model. ET estimates were compared with latent heat flux measured by an eddy covariance system and with weighing lysimeter measurements. Average overestimates of daily ET of 8 and 11% were obtained for corn and wheat, respectively, with good agreement between the estimated and measured root-zone water deficit for both crops when field radiometry was employed. Satellite remote-sensing inputs overestimated ET by 4 to 9%, showing a non-significant lost of accuracy when the satellite sensor data replaced the field radiometry data. The model was also used to monitor the water stress during the 2009 growing season, detecting several periods of water stress in both crops. Some of these stresses occurred during stages like grain filling, when the water stress is know to have a negative effect on yield. This fact could explain the lower

  12. Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn

    NASA Astrophysics Data System (ADS)

    Padilla, F. L. M.; González-Dugo, M. P.; Gavilán, P.; Domínguez, J.

    2011-04-01

    Vegetation indices (VIs) have been traditionally used for quantitative monitoring of vegetation. Remotely sensed radiometric measurements of visible and infrared solar energy, which is reflected or emitted by plant canopies, can be used to obtain rapid, non-destructive estimates of certain canopy attributes and parameters. One parameter of special interest for water management applications, is the crop coefficient employed by the FAO-56 model to derive actual crop evapotranspiration (ET). The aim of this study was to evaluate a methodology that combines the basal crop coefficient derived from VIs with a daily soil water balance in the root zone to estimate daily evapotranspiration rates for corn and wheat crops at field scale. The ability of the model to trace water stress in these crops was also assessed. Vegetation indices were first retrieved from field hand-held radiometer measurements and then from Landsat 5 and 7 satellite images. The results of the model were validated using two independent measurement systems for ET and regular soil moisture monitoring, in order to evaluate the behavior of the soil and atmosphere components of the model. ET estimates were compared with latent heat flux measured by an eddy covariance system and with weighing lysimeter measurements. Average overestimates of daily ET of 8 and 11% were obtained for corn and wheat, respectively, with good agreement between the estimated and measured root-zone water deficit for both crops when field radiometry was employed. When the satellite sensor data replaced the field radiometry data the overestimation figures slightly changed to 9 and 6% for the same two crops. The model was also used to monitor the water stress during the 2009 growing season, detecting several periods of water stress in both crops. Some of these stresses occurred during stages like grain filling, when the water stress is know to have a negative effect on yield. This fact could explain the lower yield reached compared to

  13. Diurnal evapotranspiration estimates in the Walnut River Watershed.

    SciTech Connect

    Song, J.

    1998-10-05

    Evapotranspiration is an essential component of the surface hydrological balance, but obtaining accurate estimates of the water vapor flux over large terrestrial areas can be difficult because of the substantial temporal and spatial variability in surface moisture conditions that can occur. This variability is often very large in the Great Plains and other portions of the Mississippi River Basin. Nevertheless, variations in soil moisture content, groundwater levels, and runoff in streams and rivers cannot be fully assessed without some knowledge of evapotranspiration rates. Here, observations made at the Walnut River Watershed (WRW), which is near Wichita, Kansas, and has an area of approximately 5000 km{sup 2}, are used to improve and test a modeling system that estimates long-term evapotranspiration with use of satellite remote sensing data with limited surface measurements. The techniques may be applied to much larger areas. As is shown in Fig. 1, the WRW is located in the Red River Basin and is enclosed by the southern Great Plains Clouds and Radiation Testbed (CART) of the US Department of Energy's Atmospheric Radiation Measurement (ARM) program. The functional relationships involving the satellite data, surface parameters, and associated subgrid-scale fluxes are modeled in this study by the parameterization of subgrid-scale surface (PASS) fluxes scheme (Gao, 1995; Gao et al., 1998), which is used in a modified and improved form (PASS2). The advantage of this modeling system is that it can make effective use of satellite remote sensing data and can be run for large areas for which flux data do not exist and surface meteorological data are available from only a limited number of ground stations. In this study, the normalized difference vegetation index (NDVI) or simple ratio (SR) and surface brightness temperature at each pixel for the WRW were derived from advanced very high resolution radiometers data collected by a ground station at Argonne National

  14. Gas phase fragmentation of eta2 coordinated aldehydes in [VO2(eta2-OCHR)]-: aldehyde structure dictates the nature of the products.

    PubMed

    Waters, Tom; Khairallah, George N; O'Hair, Richard A J

    2009-09-28

    The gas phase fragmentation reactions of eta2 coordinated aldehydes in [VO2(eta2-OCHR)]-, which have previously been shown to play a role in the catalytic oxidation of alcohols to aldehydes, were examined using a combination of isotope labelling experiments and collision induced dissociation in a quadrupole ion trap mass spectrometer. The experimental data were interpreted with the aid of density functional theory calculations (DFT). The types of fragmentation reactions observed depend on the nature of the R group. When R = H, the dominant fragmentation channel involves formation of [VO2H2]-via loss of CO. Minor losses of H2 and CH2O are also observed. When R = Me, loss of H2 is observed to give rise to an ion at m/z 125 corresponding to the formula [V, O3, C2, H2]-. DFT calculations on the [VO2(eta2-OCHR)]- and their CID reaction products have identified minimum energy structures for all reactants and products involved. DFT calculations also provided insights into key intermediates on the potential energy surface associated with these fragmentation reactions, including: [(H2)VO2(CO)]- in the case of R = H; and [HVO2(eta1-OCHCH2)]- in the case of R = Me. The results presented provide insights into potential side reactions occurring during catalysis of alcohols over vanadium oxides, for instance, the over-oxidation of methanol to carbon monoxide. PMID:19727457

  15. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  16. Distinct ETA Receptor Binding Mode of Macitentan As Determined by Site Directed Mutagenesis

    PubMed Central

    Gatfield, John; Mueller Grandjean, Celia; Bur, Daniel; Bolli, Martin H.; Nayler, Oliver

    2014-01-01

    The competitive endothelin receptor antagonists (ERA) bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min) occupancy half-lives at the ETA receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ETA receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ETA receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ETA receptor-antagonist interaction modes, we performed functional studies using ETA receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ETA receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that – in contrast to bosentan and ambrisentan - macitentan-ETA receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and insurmountable antagonism. PMID

  17. Effect of Enzyme-Treated Asparagus Extract (ETAS) on Psychological Stress in Healthy Individuals.

    PubMed

    Takanari, Jun; Nakahigashi, Jun; Sato, Atsuya; Waki, Hideaki; Miyazaki, Shogo; Uebaba, Kazuo; Hisajima, Tatsuya

    2016-01-01

    The aim of this study was to examine the effectiveness of Enzyme-Treated Asparagus Extract (ETAS) on improving stress response. A randomized, double-blind, placebo-controlled cross-over trial was undertaken in healthy volunteers. ETAS (150 mg/d) or a placebo was consumed for 28 d, with a washout period. Psychological parameters were examined using a self-report scale questionnaire and psychological stress was applied using the Uchida-Kraepelin (U-K) test. During the stress load, autonomic nervous function was analyzed. After the stress load, a profile of mood states (POMS) psychological rating was performed, and serum cortisol, plasma catecholamine, salivary secretory immunoglobulin A (sIgA), and salivary cortisol were analyzed. ETAS intake improved the self-reported rating for the items "Feel tired," "Hard to get up," and "Feel heavy" in the psychological questionnaire; ameliorated the self-reported rating for the items "Depression-Dejection" and "Fatigue" in the POMS questionnaire; and increased salivary sIgA levels after the U-K test. In contrast, serum and salivary cortisol levels, and plasma catecholamine did not change. During the U-K test, ETAS significantly upregulated the sympathetic nerve activity. Furthermore, ETAS intake significantly increased the number of answers and the number of correct answers in the U-K test, suggesting that it might improve office work performance with swiftness and accuracy under stressful conditions. In conclusion, ETAS supplementation reduced feelings of dysphoria and fatigue, ameliorated quality of sleep, and enhanced stress-load performance as well as promoted stress response by increasing salivary sIgA levels. These data suggest ETAS intake may exert beneficial effects, resulting from well-controlled stress management, in healthy individuals. PMID:27465727

  18. Estimating Spatially Variable Parameters of the Epidemic Type Aftershock Sequence (ETAS) in California

    NASA Astrophysics Data System (ADS)

    Nandan, Shyam; Ouillon, Guy; Sornette, Didier; Wiemer, Stefan

    2016-04-01

    The ETAS model is widely employed to model the spatio-temporal distribution of earthquakes, generally using spatially invariant parameters, which is most likely a gross simplification considering the extremely heterogeneous structure of the Earth's crust. We propose an efficient method for the estimation of spatially varying parameters, using an expectation maximization (EM) algorithm and spatial Voronoi tessellations. We assume that each Voronoi cell is characterized by a set of eight constant ETAS parameters. For a given number of randomly distributed cells, Vi=1 to N, we jointly invert the ETAS parameters within each cell using an EM algorithm. This process is progressively repeated several times for a given N (which controls the complexity), which is itself increased incrementally. We use the Bayesian Information Criterion (BIC) to rank all the inverted models given their likelihood and complexity and select the top 1% models to compute the average model at any location. Using a synthetic catalog, we also check that the proposed method correctly inverts the known parameters. We apply the proposed method to earthquakes (M>=3) included in the ANSS catalog that occurred within the time period 1981-2016 in the spatial polygon defined by RELM/CSEP around California. The results indicate significant spatial variation of the ETAS parameters. Using these spatially variable estimates of ETAS parameters, we are better equipped to answer some important questions: (1) What is the seismic hazard (both long- and short-term) in a given region? (2) What kind of earthquakes dominate triggering? (3) are there regions where earthquakes are most likely preceded by foreshocks? Last but not the least, a possible correlation of the spatially varying ETAS parameters with spatially variable geophysical properties can lead to an improved understanding of the physics of earthquake triggering beside providing physical meaning to the parameters of the purely statistical ETAS model.

  19. Latitude-Dependent Effects in the Stellar Wind of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Smith, Nathan; Davidson, Kris; Gull, Theodore R.; Ishibashi, Kazunori; Hillier, D. John

    2002-01-01

    The Homunculus reflection nebula around eta Carinae provides the rare opportunity to observe the spectrum of a star from more than one direction. In the case of eta Car, the nebula's geometry is known well enough to infer how wind profiles vary with latitude. We present STIS spectra of several positions in the Homunculus, showing directly that eta Car has an aspherical and axisymmetric stellar wind. P Cygni absorption in Balmer lines depends on latitude, with relatively high velocities and strong absorption near the polar axis. Stronger absorption at high latitudes is surprising, and it suggests higher mass flux toward the poles, perhaps resulting from equatorial gravity darkening on a rotating star. Reflected profiles of He I lines are more puzzling, and offer clues to eta Car's wind geometry and ionization structure. During eta Car's high-excitation state in March 2000, the wind had a fast, dense polar wind, with higher ionization at low latitudes. Older STIS data obtained since 1998 reveal that this global stellar-wind geometry changes during eta Car's 5.5 year cycle, and may suggest that this star s spectroscopic events are shell ejections. Whether or not a companion star triggers these outbursts remains ambiguous. The most dramatic changes in the wind occur at low latitudes, while the dense polar wind remains relatively undisturbed during an event. The apparent stability of the polar wind also supports the inferred bipolar geometry. The wind geometry and its variability have critical implications for understanding the 5.5 year cycle and long-term variability, but do not provide a clear alternative to the binary hypothesis for generating eta Car s X-rays.

  20. Gluon and charm content of the {eta}{sup {prime}} meson and instantons

    SciTech Connect

    Shuryak, E.V. |; Zhitnitsky, A.R. |

    1998-02-01

    Motivated by recent CLEO measurements of the B{r_arrow}{eta}{sup {prime}}K decay, we evaluate the gluon and charm content of the {eta}{sup {prime}} meson using the interacting instanton liquid model of the QCD vacuum. Our main result is {l_angle}0{vert_bar}g{sup 3}f{sup abc}G{sub {mu}{nu}}{sup a}{tilde G}{sub {nu}{alpha}}{sup b}G{sub {alpha}{mu}}{sup c}{vert_bar}{eta}{sup {prime}}{r_angle}={minus}(2.3{endash}3.3) GeV{sup 2}{times}{l_angle}0{vert_bar}g{sup 2}G{sub {mu}{nu}}{sup a}{tilde G}{sub {mu}{nu}}{sup a}{vert_bar}{eta}{sup {prime}}{r_angle}. It is very large due to the strong field of small-size instantons. We show that it provides quantitative explanations of the CLEO data on the B{r_arrow}{eta}{sup {prime}}K decay rate (as well as the inclusive process B{r_arrow}{eta}{sup {prime}}+X), via a virtual Cabibbo-unsuppressed decay into a {bar c}c pair which then becomes {eta}{sup {prime}}. If so, a significant charm component may be present in other hadrons also: We briefly discuss the contribution of the charmed quark to the {ital polarized} deep-inelastic scattering on a proton. {copyright} {ital 1998} {ital The American Physical Society}

  1. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration

    NASA Astrophysics Data System (ADS)

    Douville, H.; Ribes, A.; Decharme, B.; Alkama, R.; Sheffield, J.

    2013-01-01

    Global warming is expected to intensify the global hydrological cycle, with an increase of both evapotranspiration (EVT) and precipitation. Yet, the magnitude and spatial distribution of this global and annual mean response remains highly uncertain. Better constraining land EVT in twenty-first-century climate scenarios is critical for predicting changes in surface climate, including heatwaves and droughts, evaluating impacts on ecosystems and water resources, and designing adaptation policies. Continental scale EVT changes may already be underway, but have never been attributed to anthropogenic emissions of greenhouse gases and sulphate aerosols. Here we provide global gridded estimates of annual EVT and demonstrate that the latitudinal and decadal differentiation of recent EVT variations cannot be understood without invoking the anthropogenic radiative forcings. In the mid-latitudes, the emerging picture of enhanced EVT confirms the end of the dimming decades and highlights the possible threat posed by increasing drought frequency to managing water resources and achieving food security in a changing climate.

  2. Potential evapotranspiration and the likelihood of future drought

    NASA Technical Reports Server (NTRS)

    Rind, D.; Hansen, J.; Goldberg, R.; Rosenzweig, C.; Ruedy, R.

    1990-01-01

    The possibility that the greenhouse warming predicted by the GISS general-circulation model and other GCMs could lead to severe droughts is investigated by means of numerical simulations, with a focus on the role of potential evapotranspiration E(P). The relationships between precipitation (P), E(P), soil moisture, and vegetation changes in GCMs are discussed; the empirically derived Palmer drought-intensity index and a new supply-demand index (SDDI) based on changes in P - E(P) are described; and simulation results for the period 1960-2060 are presented in extensive tables, graphs, and computer-generated color maps. Simulations with both drought indices predict increasing drought frequency for the U.S., with effects already apparent in the 1990s and a 50-percent frequency of severe droughts by the 2050s. Analyses of arid periods during the Mesozoic and Cenozoic are shown to support the use of the SDDI in GCM drought prediction.

  3. Using the TIMS to estimate evapotranspiration from a forest

    NASA Technical Reports Server (NTRS)

    Teskey, Robert

    1991-01-01

    The main goals were: (1) to characterize the evapotranspiration (Et) of two forested watersheds using direct measurement techniques, and (2) to evaluate if remotely sensed surface temperatures could be used to estimate Et from the same watersheds. Two independent approaches for estimating the Et from watersheds were used. The first was derived using the Penman-Monteith Equation. This model requires the direct measurement of the microclimate of the site as well as biological measurements, i.e., stomatal conductance to water vapor and the leaf area of the stand. The primary limitation of this approach is that the measurement of stomatal conductance is time consuming, and in large trees, access to the foliage is difficult so the sample must be limited to the small number of trees. In the study, the sample was limited to the trees which could be measured from a single tower in each stand.

  4. Protein kinase C{eta} activates NF-{kappa}B in response to camptothecin-induced DNA damage

    SciTech Connect

    Raveh-Amit, Hadas; Hai, Naama; Rotem-Dai, Noa; Shahaf, Galit; Gopas, Jacob; Livneh, Etta

    2011-08-26

    Highlights: {yields} Protein kinase C-eta (PKC{eta}) is an upstream regulator of the NF-{kappa}B signaling pathway. {yields} PKC{eta} activates NF-{kappa}B in non-stressed conditions and in response to DNA damage. {yields} PKC{eta} regulates NF-{kappa}B by activating I{kappa}B kinase (IKK) and inducing I{kappa}B degradation. -- Abstract: The nuclear factor {kappa}B (NF-{kappa}B) family of transcription factors participates in the regulation of genes involved in innate- and adaptive-immune responses, cell death and inflammation. The involvement of the Protein kinase C (PKC) family in the regulation of NF-{kappa}B in inflammation and immune-related signaling has been extensively studied. However, not much is known on the role of PKC in NF-{kappa}B regulation in response to DNA damage. Here we demonstrate for the first time that PKC-eta (PKC{eta}) regulates NF-{kappa}B upstream signaling by activating the I{kappa}B kinase (IKK) and the degradation of I{kappa}B. Furthermore, PKC{eta} enhances the nuclear translocation and transactivation of NF-{kappa}B under non-stressed conditions and in response to the anticancer drug camptothecin. We and others have previously shown that PKC{eta} confers protection against DNA damage-induced apoptosis. Our present study suggests that PKC{eta} is involved in NF-{kappa}B signaling leading to drug resistance.

  5. Arid site water balance: evapotranspiration modeling and measurements

    SciTech Connect

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    In order to evaluate the magnitude of radionuclide transport at an aird site, a field and modeling study was conducted to measure and predict water movement under vegetated and bare soil conditions. Significant quantities of water were found to move below the roo of a shallow-rooted grass-covered area during wet years at the Hanford site. The unsaturated water flow model, UNSAT-1D, was resonably successful in simulating the transient behavior of the water balance at this site. The effects of layered soils on water balance were demonstrated using the model. Models used to evaluate water balance in arid regions should not rely on annual averages and assume that all precipitation is removed by evapotranspiration. The potential for drainage at arid sites exists under conditions where shallow rooted plants grow on coarse textured soils. This condition was observed at our study site at Hanford. Neutron probe data collected on a cheatgrass community at the Hanford site during a wet year indicated that over 5 cm of water drained below the 3.5-m depth. The unsaturated water flow model, UNSAT-1D, predicted water drainage of about 5 cm (single layer, 10 months) and 3.5 cm (two layers, 12 months) for the same time period. Additional field measurements of hydraulic conductivity will likely improve the drainage estimate made by UNSAT-1D. Additional information describing cheatgrass growth and water use at the grass site could improve model predictions of sink terms and subsequent calculations of water storage within the rooting zone. In arid areas where the major part of the annual precipitation occurs during months with low average potential evapotranspiration and where soils are vegetated but are coarse textured and well drained, significant drainage can occur. 31 references, 18 figures, 1 table.

  6. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  7. Measurement of evapotranspiration in a winter wheat field

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Liu, Changming; Shen, Yanjun; Kondoh, A.; Tang, Changyuan; Tanaka, T.; Shimada, J.

    2002-10-01

    Daily evapotranspiration from a winter wheat field on the North China Plain measured by large-scale weighing lysimeter was linearly related to that measured by the Bowen ratio energy balance (BREB) technique. Soil evaporation averaged about 23·6% of evapotranspiration from the post-winter dormancy revival stage to the grain ripening stage in 1999. On clear days during winter dormancy, about half of the net radiation flux Rn was used to warm soil. During the revival stage, conductive heat flux G also used most of the incoming Rn, but the ratio of latent heat flux E to Rn increased. During the stem-extension stage, E was about 50% of Rn; thereafter, E/R

  8. The effect of different evapotranspiration methods on portraying soil water dynamics and ET partitioning in a semi-arid environment in Northwest China

    NASA Astrophysics Data System (ADS)

    Yu, Lianyu; Zeng, Yijian; Su, Zhongbo; Cai, Huanjie; Zheng, Zhen

    2016-03-01

    Different methods for assessing evapotranspiration (ET) can significantly affect the performance of land surface models in portraying soil water dynamics and ET partitioning. An accurate understanding of the impact a method has is crucial to determining the effectiveness of an irrigation scheme. Two ET methods are discussed: one is based on reference crop evapotranspiration (ET0) theory, uses leaf area index (LAI) for partitioning into soil evaporation and transpiration, and is denoted as the ETind method; the other is a one-step calculation of actual soil evaporation and potential transpiration by incorporating canopy minimum resistance and actual soil resistance into the Penman-Monteith model, and is denoted as the ETdir method. In this study, a soil water model, considering the coupled transfer of water, vapor, and heat in the soil, was used to investigate how different ET methods could affect the calculation of the soil water dynamics and ET partitioning in a crop field. Results indicate that for two different ET methods this model varied concerning the simulation of soil water content and crop evapotranspiration components, but the simulation of soil temperature agreed well with lysimeter observations, considering aerodynamic and surface resistance terms improved the ETdir method regarding simulating soil evaporation, especially after irrigation. Furthermore, the results of different crop growth scenarios indicate that the uncertainty in LAI played an important role in estimating the relative transpiration and evaporation fraction. The impact of maximum rooting depth and root growth rate on calculating ET components might increase in drying soil. The influence of maximum rooting depth was larger late in the growing season, while the influence of root growth rate dominated early in the growing season.

  9. The Strontium Filament within the Homunculus of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Hartman, H.; Zethson, T.; Johansson, S.; Ishibashi, K.; Davidson, K.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    During a series of HST/STIS observations of Eta Carinae and associated ejecta, we noticed a peculiar emission filament located a few arcseconds north of the central source. While bright in nebular standards, it is submerged in a sea of scattered starlight until moderately high dispersion, long-slit spectroscopy with the STIS (R- 8000) brings the emission lines out. The initial spectrum, centered on 6768A with the STIS G750M grating, led to identification of twenty lines from singly-Ionized species including [Sr II], [Fe II], [Ti II], [Ni II], [Mn II], and [Co II] (Zethson, etal., 2001, AJ 122,322). No Balmer emission is detected from this filament and the Fe II 2507,9 lines, known to be pumped by Lyman alpha radiation in other regions near the central source, are not detected. Followup observations have led to detection of hundreds more emission lines from iron group elements in neutral and singly-ionized states. Thus far all are excited by less than 10 eV. This peculiar nebular emission is thought to be due to very intense stellar radiation, stripped of uv flux shortward of Lyman alpha, bathing a neutral structure. We are systematically identifying the many lines (over 90% identified) and measuring line intensities that will then be modeled to determine excitation mechanisms, temperature and density. Two [Sr II] and two Sr II lines have now been measured. Bautista, etal. (in preparation) have modeled the strontium flux ratios and find that large radiation fluxes and/or high strontium abundances may account for the detected emission. These observations were supported by STIS GTO funding and GO funding through the STScI

  10. Eta Carinae and the Homunculus: An Astrophysical Laboratory

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.

    2006-01-01

    High spatial resolution spectroscopy with HST/STIS between 1998.0 and 2004.2 has provided much exciting information about the central binary system and the physics of its N-rich, C,O-poor ejecta. Stellar He I profiles, noticeably blue-shifted relative to P Cygni H and Fe II line profiles, originate from the ionized wind region between two massive companions. Changes in profiles of He I singlet and triplet lines provide clues to the excitation mechanisms involved as the hot, UV companion moves in its highly eccentric orbit. For 90% of the 5.54-year period, the spectra of nearby Weigelt blobs and the Little Homunculus include highly excited emission lines of Ar, Ne, and Fe. During the few month-long spectroscopic minimum, these systems are deprived of Lyman continuum. Recombination, plus cooling, occurs. In the skirt region between the bipolar Homunculus, a neutral emission region, devoid of hydrogen emission, glows in Ti II, Fe I, Sr II, Sc II, etc. We find the ejecta to have Ti/Ni abundances nearly 100 times solar, not due to nuclear processing, but due to lack of oxygen. Many metals normally tied up in interstellar dust remain in gaseous phase. Much information is being obtained on the physical processes in these warm N-rich gases, whose excitation varies with time in a predictable pattern. Indeed recent GRB high dispersion spectra include signatures of circumGRB warm gases. This indicates that the early, primordial massive stars have warm massive ejecta reminiscent to that around Eta Carinae.

  11. Critical Differences and Clues in Eta Car's 2009 Event

    NASA Astrophysics Data System (ADS)

    Mehner, Andrea; Davidson, Kris; Martin, John C.; Humphreys, Roberta M.; Ishibashi, Kazunori; Ferland, Gary J.

    2011-10-01

    We monitored Eta Carinae with the Hubble Space Telescope WFPC2 and Gemini GMOS throughout the 2009 spectroscopic event, which was expected to differ from its predecessor in 2003. Here we report major observed differences between events and their implications. Some of these results were quite unexpected. (1) The UV brightness minimum was much deeper in 2009. This suggests that physical conditions in the early stages of an event depend on different parameters than the "normal" inter-event wind. Extra mass ejection from the primary star is one possible cause. (2) The expected He II λ4687 brightness maximum was followed several weeks later by another. We explain why this fact and the timing of the λ4687 maxima strongly support a "shock breakup" hypothesis for X-ray and λ4687 behavior as proposed 5-10 years ago. (3) We observed a polar view of the star via light reflected by dust in the Homunculus nebula. Surprisingly, at that location, the variations of emission-line brightness and Doppler velocities closely resembled a direct view of the star, which should not have been true for any phenomena related to the orbit. This result casts very serious doubt on all the proposed velocity interpretations that depend on the secondary star's orbital motion. (4) Latitude-dependent variations of H I, He I, and Fe II features reveal aspects of wind behavior during the event. In addition, we discuss implications of the observations for several crucial unsolved problems. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership. Based on observations made with the NASA/ESA Hubble Space Telescope. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  12. Self-Actualization, Liberalism, and Humanistic Education.

    ERIC Educational Resources Information Center

    Porter, Charles Mack

    1979-01-01

    The relationship between personality factors and political orientation has long been of interest to psychologists. This study tests the hypothesis that there is no significant relationship between self-actualization and liberalism-conservatism. The hypothesis is supported. (Author)

  13. Estimating the spatial distribution of evapotranspiration using the water balance model WAVE and fine spatial resolution airborne remote sensing images from the DAIS-sensor: Experimental set-up

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Veroustraete, F.; Feyen, J.

    2003-04-01

    Actual evapotranspiration (ET) of agricultural land and forestland surfaces play an important role in the redistribution of water on the Earth's surface. Any change in evapotranspiration, either through change in vegetation or climate change, directly effects the available water resources. For quantifying these effects physical models need to be constructed. Most hydrological models have to deal with a lack of good spatial resolution, despite their good temporal information. Remote sensing techniques on the contrary determine the spatial pattern of landscape features and hence are very useful on large scales. The main objective of this research is the combination of the spatial pattern of remote sensing (using visible and thermal infrared spectrum) with the temporal pattern of the water balance model WAVE (Vanclooster et al., 1994 and 1996). To realise this, the following objectives are formulated: (i) relate soil and vegetation surface temperatures to actual evapotranspiration of forest and crops simulated with the water balance model WAVE using remote sensing derived parameters. Three methods will be used and mutually compared. Both airborne and satellite imagery will be implemented; (1) compare the spatial pattern of evapotranspiration, as a result of the three methods, with the energy balance model SEBAL (Bastiaanssen et al., 1998) and finally; (2) subject the up-scaled WAVE and SEBAL models to an uncertainty analysis using the GLUE-approach (Generalised Likelihood Uncertainty Estimate) (Beven en Binley, 1992). To study the behaviour of the model beyond the field-scale (micro-scale), a meso-scale study was conducted at the test-site of DURAS (50°50'38"N, 5°08'50"W, Sint-Truiden). Airborne imagery from the DAIS/ROSIS sensor are available. For the determination of the spatial pattern of actual evapotranspiration the next two methods are considered: (1) relations between surface temperature, surface albedo and vegetation indices are linked with field

  14. Recent decline in the global land evapotranspiration trend due to limited moisture supply.

    PubMed

    Jung, Martin; Reichstein, Markus; Ciais, Philippe; Seneviratne, Sonia I; Sheffield, Justin; Goulden, Michael L; Bonan, Gordon; Cescatti, Alessandro; Chen, Jiquan; de Jeu, Richard; Dolman, A Johannes; Eugster, Werner; Gerten, Dieter; Gianelle, Damiano; Gobron, Nadine; Heinke, Jens; Kimball, John; Law, Beverly E; Montagnani, Leonardo; Mu, Qiaozhen; Mueller, Brigitte; Oleson, Keith; Papale, Dario; Richardson, Andrew D; Roupsard, Olivier; Running, Steve; Tomelleri, Enrico; Viovy, Nicolas; Weber, Ulrich; Williams, Christopher; Wood, Eric; Zaehle, Sönke; Zhang, Ke

    2010-10-21

    More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land−a key diagnostic criterion of the effects of climate change and variability−remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.

  15. An Improved Statistical Solution for Global Seismicity by the HIST-ETAS Approach

    NASA Astrophysics Data System (ADS)

    Chu, A.; Ogata, Y.; Katsura, K.

    2010-12-01

    For long-term global seismic model fitting, recent work by Chu et al. (2010) applied the spatial-temporal ETAS model (Ogata 1998) and analyzed global data partitioned into tectonic zones based on geophysical characteristics (Bird 2003), and it has shown tremendous improvements of model fitting compared with one overall global model. While the ordinary ETAS model assumes constant parameter values across the complete region analyzed, the hierarchical space-time ETAS model (HIST-ETAS, Ogata 2004) is a newly introduced approach by proposing regional distinctions of the parameters for more accurate seismic prediction. As the HIST-ETAS model has been fit to regional data of Japan (Ogata 2010), our work applies the model to describe global seismicity. Employing the Akaike's Bayesian Information Criterion (ABIC) as an assessment method, we compare the MLE results with zone divisions considered to results obtained by an overall global model. Location dependent parameters of the model and Gutenberg-Richter b-values are optimized, and seismological interpretations are discussed.

  16. Branching Fractions and CP-Violating Asymmetries in Radiative B Decays to eta K gamma

    SciTech Connect

    Aubert, B.

    2008-05-14

    The authors present measurements of the CP-violation parameters S and C for the radiative decay B{sup 0} {yields} {eta}K{sub S}{sup 0}{gamma}; for B {yields} {eta}K{gamma} they also measure the branching fractions and for B{sup +} {yields} {eta}K{sup +}{gamma} the time-integrated charge asymmetry {Alpha}{sub ch}. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 465 x 10{sup 6} B{bar B} pairs produced in e{sup +}e{sup -} annihilation. The results are S = -0.18{sub -0.46}{sup +0.49} {+-} 0.12, C = -0.32{sub -0.39}{sup +0.40} {+-} 0.07, {Beta}(B{sup 0} {yields} {eta}K{sup 0}{gamma}) = (7.1{sub -2.0}{sup +2.1} {+-} 0.4) x 10{sup -6}, {Beta}(B{sup +} {yields} {eta}K{sup +}{gamma}) = (7.7 {+-} 1.0 {+-} 0.4) x 10{sup -6}, and {Alpha}{sub ch} = (-9.0{sub -9.8}{sup +10.4} {+-} 1.4) x 10{sup -2}. The first error quoted is statistical and the second systematic.

  17. Endothelin ETA receptor antagonist reverses naloxone-precipitated opioid withdrawal in mice.

    PubMed

    Bhalla, Shaifali; Pais, Gwendolyn; Tapia, Melissa; Gulati, Anil

    2015-11-01

    Long-term use of opioids for pain management results in rapid development of tolerance and dependence leading to severe withdrawal symptoms. We have previously demonstrated that endothelin-A (ETA) receptor antagonists potentiate opioid analgesia and eliminate analgesic tolerance. This study was designed to investigate the involvement of central ET mechanisms in opioid withdrawal. The effect of intracerebroventricular administration of ETA receptor antagonist BQ123 on morphine and oxycodone withdrawal was determined in male Swiss Webster mice. Opioid tolerance was induced and withdrawal was precipitated by the opioid antagonist naloxone. Expression of ETA and ETB receptors, nerve growth factor (NGF), and vascular endothelial growth factor was determined in the brain using Western blotting. BQ123 pretreatment reversed hypothermia and weight loss during withdrawal. BQ123 also reduced wet shakes, rearing behavior, and jumping behavior. No changes in expression of vascular endothelial growth factor, ETA receptors, and ETB receptors were observed during withdrawal. NGF expression was unaffected in morphine withdrawal but significantly decreased during oxycodone withdrawal. A decrease in NGF expression in oxycodone- but not in morphine-treated mice could be due to mechanistic differences in oxycodone and morphine. It is concluded that ETA receptor antagonists attenuate opioid-induced withdrawal symptoms.

  18. Eta photoproduction in a combined analysis of pion- and photon-induced reactions

    SciTech Connect

    Ronchen, D.; Doring, M.; Haberzettl, H.; Haidenbauer, J.; MeiBner, U. -G.; Nakayama, K.

    2015-06-25

    The $\\eta N$ final state is isospin-selective and thus provides access to the spectrum of excited nucleons without being affected by excited $\\Delta$ states. To this end, the world database on eta photoproduction off the proton up to a center-of-mass energy of $E\\sim 2.3$ GeV is analyzed, including data on differential cross sections, and single and double polarization observables. The resonance spectrum and its properties are determined in a combined analysis of eta and pion photoproduction off the proton together with the reactions $\\pi N\\to \\pi N$, $\\eta N$, $K\\Lambda$ and $K\\Sigma$. For the analysis, the so-called J\\"ulich coupled-channel framework is used, incorporating unitarity, analyticity, and effective three-body channels. Parameters tied to photoproduction and hadronic interactions are varied simultaneously. Furthermore, the influence of recent MAMI $T$ and $F$ asymmetry data on the eta photoproduction amplitude is discussed in detail.

  19. The DARHT Scattering Wire Spectrometer: Operation and Checkout on ETA II

    SciTech Connect

    Fessenden, T J

    2005-03-09

    The DARHT Scattering wire energy spectrometer has been realized and checked out on ETA II. The ETA II beam energy is generally around 5.3 MeV. This value varies from pulse-to-pulse by around 0.5% and from month-to-month by as much as 6%. The energy acceptance of the spectrometer is {+-} 5% and the time response is less than 10 ns. The instrument was calibrated to enable absolute measurements of the ETA II beam energy accurate to {+-}3%. The beam energy in MeV is related to the bending magnetic field B{sub kG} according to E{sub MeV} = 0.511[{radical}(1+347.2B{sub kG}{sup 2}) -1]. The major difficulty encountered was in the development of detectors for the scattered electrons passing through the instrument. Fortunately one detector was fabricated that worked satisfactorily which enabled us to complete the tests on ETA II. The ETA II experiments and initial FXR experiments suggest that spurious X-ray signals will not prove troublesome. No results are yet available in the x-ray environment of DARHT.

  20. Effects of endothelin ETA receptor antagonism on granulocyte and lymphocyte accumulation in LPS-induced inflammation.

    PubMed

    Sampaio, André L F; Rae, Giles A; Henriques, Maria das Graças M O

    2004-07-01

    Endothelin peptides play active roles in different aspects of inflammation. This study investigates the contribution of endogenous endothelins to lipopolysaccharide (LPS) pulmonary inflammation by assessing the influence of ET(A) receptor antagonism on leukocyte accumulation, granulocyte adhesion molecule expression, and chemokine/cytokine modulation. Local pretreatment with BQ-123 or A-127722 (150 pmol), two selective and chemically unrelated endothelin ET(A) receptor antagonists, inhibits neutrophil and eosinophil accumulation in LPS-induced pleurisy at 24 h but not neutrophil migration at 4 h. The effect of endothelin antagonism on neutrophil accumulation at 24 h was concomitant with inhibition of eosinophil and CD4 and CD8 T lymphocyte influx. It is surprising that the ET(A) receptor blockade did not inhibit the accumulation of gammadelta T lymphocytes, cells that are important for granulocyte recruitment in this model. Blockade of ET(A) receptors did not influence the expression of adhesion molecules (CD11b, CD49d) on granulocytes but abrogated the increase in tumor necrosis factor alpha levels 4 h after LPS stimulation and also markedly inhibited increases in levels of interleukin-6 and keratinocyte-derived chemokine/CXC chemokine ligand 1 but not eotaxin/chemokine ligand 11. Thus, acting via ET(A) receptors, endogenous endothelins play an important role in early cytokine/chemokine production and on granulocyte and lymphocyte mobilization in LPS-induced pleurisy.

  1. DNA damage targets PKC{eta} to the nuclear membrane via its C1b domain

    SciTech Connect

    Tamarkin, Ana; Zurgil, Udi; Braiman, Alex; Hai, Naama; Krasnitsky, Ella; Maissel, Adva; Ben-Ari, Assaf; Yankelovich, Liat; Livneh, Etta

    2011-06-10

    Translocation to cellular membranes is one of the hallmarks of PKC activation, occurring as a result of the generation of lipid secondary messengers in target membrane compartments. The activation-induced translocation of PKCs and binding to membranes is largely directed by their regulatory domains. We have previously reported that PKC{eta}, a member of the novel subfamily and an epithelial specific isoform, is localized at the cytoplasm and ER/Golgi and is translocated to the plasma membrane and the nuclear envelope upon short-term activation by PMA. Here we show that PKC{eta} is shuttling between the cytoplasm and the nucleus and that upon etoposide induced DNA damage is tethered at the nuclear envelope. Although PKC{eta} expression and its phosphorylation on the hydrophobic motif (Ser675) are increased by etoposide, this phosphorylation is not required for its accumulation at the nuclear envelope. Moreover, we demonstrate that the C1b domain is sufficient for translocation to the nuclear envelope. We further show that, similar to full-length PKC{eta}, the C1b domain could also confer protection against etoposide-induced cell death. Our studies demonstrate translocation of PKC{eta} to the nuclear envelope, and suggest that its spatial regulation could be important for its cellular functions including effects on cell death.

  2. Evidence for the eta(b)(1S) meson in radiative Upsilon(2S) decay.

    PubMed

    Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Battaglia, M; Brown, D N; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Randle-Conde, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Nogowski, R; Schubert, K R; Schwierz, R; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Bernlochner, F U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Le Diberder, F; Lepeltier, V; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Paramesvaran, S; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Alwyn, K E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Henderson, S W; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Godang, R; Kroeger, R; Summers, D J; Zhao, H W; Simard, M; Taras, P; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Del Amo Sanchez, P; Ben-Haim, E; Briand, H; Chauveau, J; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Esteve, L; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Miyashita, T S; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Puccio, E M T; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Prepost, R; Vuosalo, C O; Wu, S L

    2009-10-16

    We have performed a search for the eta_{b}(1S) meson in the radiative decay of the Upsilon(2S) resonance using a sample of 91.6x10(6) Upsilon(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at Egamma=609.3(-4.5)(+4.6)(stat)+/-1.9(syst) MeV, corresponding to an eta(b)(1S) mass of 9394.2(-4.9)(+4.8)(stat)+/-2.0(syst) MeV/c2. The branching fraction for the decay Upsilon(2S)-->gamma(eta)b(1S) is determined to be [3.9+/-1.1(stat)-0.9+1.1(syst)]x10(-4). We find the ratio of branching fractions B[Upsilon(2S)-->gamma(eta)b(1S)]/B[Upsilon(3S)-->gamma(eta)b(1S)]=0.82+/-0.24(stat)(-0.19)(+0.20)(syst).

  3. Eta Car: The Good, the Bad and the Ugly of Nebular and Stellar Confusion

    NASA Technical Reports Server (NTRS)

    Gull, T.R.; Sonneborn, G.; Jensen, A.G.; Nielsen, K.E.; Vieira Kover, G.; Hillier, D.J.

    2008-01-01

    Observations in the far-UV provide a unique opportunity to investigate the very massive star Eta Car and its hot binary companion, Eta Car B. Eta Car was observed with FUSE over a large portion of the 5.54 year spectroscopic period before and after the 2003.5 minimum. The observed spectrum is defined by strong stellar wind signatures, primarily from Eta Car A, complicated by the strong absorptions of the ejecta surrounding Eta Car plus interstellar absorption. The Homunculus and Little Homunculus are massive bipolar ejecta historically associable with LBV outbursts in the 1840s and the 1890s and are linked to absorptions at -513 and -146 km/s, respectively. The FUSE spectra are confused by the extended nebulosity and thermal drifting of the FUSE co-pointed instruments. Interpretation is further complicated by two B-stars sufficiently close to h Car to be included most of the time in the large FUSE aperture. Followup observations partially succeeded in obtaining spectra of at least one of these B-stars through the smaller apertures, allowing potential separation of the B-star contributions and h Car. A complete analysis of all available spectra is currently underway. Our ultimate goals are to directly detect the hot secondary star if possible with FUSE and to identify the absorption contributions to the overall spectrum especially of the stellar members and the massive ejecta.

  4. Evidence for the eta(b)(1S) meson in radiative Upsilon(2S) decay.

    PubMed

    Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Battaglia, M; Brown, D N; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Randle-Conde, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Nogowski, R; Schubert, K R; Schwierz, R; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Bernlochner, F U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Le Diberder, F; Lepeltier, V; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Paramesvaran, S; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Alwyn, K E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Henderson, S W; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Godang, R; Kroeger, R; Summers, D J; Zhao, H W; Simard, M; Taras, P; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Del Amo Sanchez, P; Ben-Haim, E; Briand, H; Chauveau, J; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Esteve, L; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Miyashita, T S; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Puccio, E M T; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Prepost, R; Vuosalo, C O; Wu, S L

    2009-10-16

    We have performed a search for the eta_{b}(1S) meson in the radiative decay of the Upsilon(2S) resonance using a sample of 91.6x10(6) Upsilon(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at Egamma=609.3(-4.5)(+4.6)(stat)+/-1.9(syst) MeV, corresponding to an eta(b)(1S) mass of 9394.2(-4.9)(+4.8)(stat)+/-2.0(syst) MeV/c2. The branching fraction for the decay Upsilon(2S)-->gamma(eta)b(1S) is determined to be [3.9+/-1.1(stat)-0.9+1.1(syst)]x10(-4). We find the ratio of branching fractions B[Upsilon(2S)-->gamma(eta)b(1S)]/B[Upsilon(3S)-->gamma(eta)b(1S)]=0.82+/-0.24(stat)(-0.19)(+0.20)(syst). PMID:19905689

  5. Eta photoproduction in a combined analysis of pion- and photon-induced reactions

    DOE PAGES

    Ronchen, D.; Doring, M.; Haberzettl, H.; Haidenbauer, J.; MeiBner, U. -G.; Nakayama, K.

    2015-06-25

    Themore » $$\\eta N$$ final state is isospin-selective and thus provides access to the spectrum of excited nucleons without being affected by excited $$\\Delta$$ states. To this end, the world database on eta photoproduction off the proton up to a center-of-mass energy of $$E\\sim 2.3$$ GeV is analyzed, including data on differential cross sections, and single and double polarization observables. resonance spectrum and its properties are determined in a combined analysis of eta and pion photoproduction off the proton together with the reactions $$\\pi N\\to \\pi N$$, $$\\eta N$$, $$K\\Lambda$$ and $$K\\Sigma$$. For the analysis, the so-called J\\"ulich coupled-channel framework is used, incorporating unitarity, analyticity, and effective three-body channels. Parameters tied to photoproduction and hadronic interactions are varied simultaneously. Furthermore, the influence of recent MAMI $T$ and $F$ asymmetry data on the eta photoproduction amplitude is discussed in detail.« less

  6. Evidence for B{yields}K{eta}'{gamma} decays at Belle

    SciTech Connect

    Wedd, R.; Barberio, E.; Limosani, A.; Sevior, M. E.; Taylor, G. N.; Urquijo, P.; Adachi, I.; Dalseno, J.; Itoh, R.; Katayama, N.; Krokovny, P.; Nakao, M.; Nishida, S.; Ozaki, H.; Sakai, Y.; Schuemann, J.; Sumisawa, K.; Trabelsi, K.; Uehara, S.; Uno, S.

    2010-06-01

    We present the results of a search for the radiative decay B{yields}K{eta}{sup '{gamma}} and find evidence for B{sup +{yields}}K{sup +{eta}'{gamma}} decays at the 3.3 standard deviation level with a partial branching fraction of (3.6{+-}1.2{+-}0.4)x10{sup -6}, where the first error is statistical and the second systematic. This measurement is restricted to the region of combined K{eta}{sup '} invariant mass less than 3.4 GeV/c{sup 2}. A 90% confidence level upper limit of 6.4x10{sup -6} is obtained for the partial branching fraction of the decay B{sup 0{yields}}K{sup 0{eta}'{gamma}} in the same K{eta}{sup '} invariant mass region. These results are obtained from a 605 fb{sup -1} data sample containing 657x10{sup 6}BB pairs collected at the {Upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider.

  7. Comparison of two simple tools (TSEB and FAO-56) to retrieve evapotranspiration of irrigated agriculture in semi-arid areas.

    NASA Astrophysics Data System (ADS)

    Diarra, Alhousseine; Jarlan, Lionel; Er-Raki, Salah; Le Page, Michel; Khabba, Said; Boulet, Gilles

    2016-04-01

    Probe sensors (Delta-T). The obtained results showed a linear relationship between both parameters with a correlation coefficient of 0.86 for low values LAI (<1.5 m² / m²). Finally, both approaches are used to evaluate their potentiality to predict a water stress index based on the ratio between actual and potential evapotranspiration. Although the FAO-56 is better suitable to detect high water stresses, the TSEB model is able to detect moderate stresses without a need to prescribe water inputs. This in-depth comparison of two simple tools to monitor evapotranspiration leads us to the conclusion that the TSEB model can reasonably be used to map evapotranspiration on large scale. This constitutes our work in progress based on MODIS products in the objective of monitoring plant water use at the catchment scale.

  8. Study of {pi}{sup -}p{yields}{pi}{sup -{eta}p} and {pi}{sup -}p{yields}{pi}{sup -{eta}{eta}}p at {radical}(s) = 18.9 GeV with the COMPASS experiment

    SciTech Connect

    Uman, I.; Schlueter, T.

    2010-08-05

    The COMPASS experiment at CERN studies diffractively produced states in the light quark sector with unprecedented statistics. The observation of f{sub 0}(1500)/f{sub 2}'(1525) decaying to {eta}{eta} in 2008 data with incoming negative pion beam at 190 GeV/c poses the question whether it is produced centrally or formed by the decay of a heavier diffractively produced {pi}{sub 1}(1800)/{pi}{sub 2}(1880). To decide, a dedicated amplitude analysis which includes different production mechanisms is formulated and compared with one which was used to fit centrally produced resonances including f{sub 0}(1500) by the WA102 experiment. Unbinned mass-dependent log-likelihood fitting methods may serve to solve the ambiguities which are present in binned, mass-independent partial wave analyses.

  9. Thin laser beam wandering and intensity fluctuations method for evapotranspiration measurement

    NASA Astrophysics Data System (ADS)

    Poisson, Antonin; Fernandez, Angel; Perez, Dario G.; Barille, Regis; Dupont, Jean-Charles

    2016-06-01

    We compare in this study two simple optical setups to measure the atmospheric turbulence characterized by the refractive index structure parameter Cn2. The corresponding heat flux values sensed by the laser beam propagation are calculated leading to the plant evapotranspiration. The results are discussed and compared to measurements obtained with a well-known and calibrated eddy-covariant instrument. A fine analysis gives a good insight of the accuracy of the optical devices proposed here to measure the crop evapotranspiration. Additional evapotranspiration values calculated with meteorological sensor data and the use of different models are also compared in parallel.

  10. A scaling approach to Budyko's framework and the complementary relationship of evapotranspiration in humid environments: case study of the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Carmona, A. M.; Poveda, G.; Sivapalan, M.; Vallejo-Bernal, S. M.; Bustamante, E.

    2016-02-01

    This paper studies a 3-D state space representation of Budyko's framework designed to capture the mutual interdependence among long-term mean actual evapotranspiration (E), potential evapotranspiration (Ep) and precipitation (P). For this purpose we use three dimensionless and dependent quantities: Ψ = E ⁄ P, Φ = Ep ⁄ P and Ω = E ⁄ Ep. This 3-D space and its 2-D projections provide an interesting setting to test the physical soundness of Budyko's hypothesis. We demonstrate analytically that Budyko-type equations are unable to capture the physical limit of the relation between Ω and Φ in humid environments, owing to the unfeasibility of Ep ⁄ P = 0 when E ⁄ Ep → 1. Using data from 146 sub-catchments in the Amazon River basin we overcome this inconsistency by proposing a physically consistent power law: Ψ = kΦe, with k = 0.66, and e = 0.83 (R2 = 0.93). This power law is compared with two other Budyko-type equations. Taking into account the goodness of fits and the ability to comply with the physical limits of the 3-D space, our results show that the power law is better suited to model the coupled water and energy balances within the Amazon River basin. Moreover, k is found to be related to the partitioning of energy via evapotranspiration in terms of Ω. This suggests that our power law implicitly incorporates the complementary relationship of evapotranspiration into the Budyko curve, which is a consequence of the dependent nature of the studied variables within our 3-D space. This scaling approach is also consistent with the asymmetrical nature of the complementary relationship of evapotranspiration. Looking for a physical explanation for the parameters k and e, the inter-annual variability of individual catchments is studied. Evidence of space-time symmetry in Amazonia emerges, since both between-catchment and between-year variability follow the same Budyko curves. Finally, signs of co-evolution of catchments are explored by

  11. Study of {eta}{pi}{sup +}{pi}{sup -} system produced on the VES setup

    SciTech Connect

    Ryabchikov, D.; Bugg, D

    1998-05-29

    The results of the Partial Wave Analysis of the reaction {pi}{sup -}p{yields}{eta}{pi}{sup +}{pi}{sup -}n are presented. The low-t sample is dominated by states, having OPE quantum numbers: 1{sup --},3{sup --},...,2{sup ++},4{sup ++},... . The most intensive wave is J{sup PC}=1{sup --}{rho}(770){eta}. The waves 3{sup --}{rho}(770){eta} and a{sub 2}(1320){pi} show the decay of {rho}{sub 3}(1690) meson, accompanied by further higher-mass resonances. The AX, f{sub 2}(1565), is observed decaying to [a{sub 2}(1320){pi}]{sub L=1}. In high-t sample the peak near 1.28 GeV consists of J{sup PC}=1{sup ++} and 0{sup -+} waves, while the peak near 1.40 GeV is completely 0{sup -+}.

  12. Eta photoproduction in a combined analysis of pion- and photon-induced reactions

    NASA Astrophysics Data System (ADS)

    Rönchen, D.; Döring, M.; Haberzettl, H.; Haidenbauer, J.; Meißner, U.-G.; Nakayama, K.

    2015-06-01

    The ηN final state is isospin-selective and thus provides access to the spectrum of excited nucleons without being affected by excited Δ states. To this end, the world database on eta photoproduction off the proton up to a center-of-mass energy of E ˜ 2.3 GeV is analyzed, including data on differential cross sections, and single- and double-polarization observables. The resonance spectrum and its properties are determined in a combined analysis of eta and pion photoproduction off the proton together with the reactions πN → πN, ηN, KΛ and KΣ. For the analysis, the so-called Jülich coupled-channel framework is used, incorporating unitarity, analyticity, and effective three-body channels. Parameters tied to photoproduction and hadronic interactions are varied simultaneously. The influence of recent MAMI T and F asymmetry data on the eta photoproduction amplitude is discussed in detail.

  13. Measuring evapotranspiration: comparison of eddy covariance, scintillometers and enclosed chambers

    NASA Astrophysics Data System (ADS)

    Yee, Mei Sun; Beringer, Jason; Pauwels, Valentijn R. N.; Daly, Edoardo; Walker, Jeffrey P.; Rüdiger, Christoph

    2014-05-01

    Evapotranspiration (ET) is the combination of evaporation from the soil surface and transpiration from plants. It is an important component of the hydrological cycle, particularly in arid and semi-arid areas where most of the precipitation is returned to the atmosphere via ET. It also drives the land-surface energy balance, largely affecting soil temperature and the heat exchange between the land and atmosphere. Therefore, the ability to quantify ET is important for accurate climate and weather predictions, as well as improving the management of water resources. Various methods for measuring ET are available, including gas chambers, lysimeters, Bowen-ratio energy balance stations, eddy-covariance systems, scintillometers, and space-borne sensors. These methods differ in spatial scales (from leaf to basin scale), time scales (seconds to days), principles (water-balance, mass-transfer, eddy-correlation, energy balance) and have their own strengths and limitations. For instance, point scale measurements, such as those obtained using lysimeters, assume that the sample is representative of a larger area, whereas measurements at a basin scale assume that the spatial average of all the other components in the water or energy balance equations can be measured accurately. The purpose of this study is to compare different techniques to measure ET across their respective scales and to identify causes of discrepancies between measurements. The final aim is to identify a technique or a combination of techniques to be used for verification of remote sensing evapotranspiration products. The study area is located in the Yanco Study Area (34.561°S, 35.170°S, 145.826°E, 146.439°E), situated within the western plains of the Murrumbidgee River catchment, in New South Wales, Australia. This area has been extensively monitored and a series of field experiments have been performed in the past to contribute to the pre- and post-launch algorithm development of earth observing

  14. Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data

    USGS Publications Warehouse

    Sanford, Ward E.; Selnick, David L.

    2013-01-01

    Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water-balance method was combined with a climate and land-cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971-2000 across the U.S. to obtain long-term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land-cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land-cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land-cover data can also improve those predictions. Using the climate and land-cover data at an 800-m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land-cover data are plentiful.

  15. Multiscale study on the spatial heterogeneity of remotely-sensed evapotranspiration in the typical Oasis of Tarim Basin

    NASA Astrophysics Data System (ADS)

    Liu, Chuansheng; Zhang, Wanchang

    2010-11-01

    Time series of regional evapotranspiration (ET) of the typical oasis in the Tarim Basin were investigated and calculated by integrating remotely sensed surface parameters into the improved Surface Energy Balance Algorithm for Land (SEBAL) model. The distributed average and maximum daily actual ET was calculated based on the instantaneous ET, corresponding to oasis vegetation types for investigating the relationships between spatial difference of actual ET and land cover types in arid environment. Different land cover types and surface water conditions in the Keriya Oasis can be distinguished obviously in NDVI-LST feature space and characterized by the Temperature Vegetation Dryness Index (TVDI). Lacunarity index was employed to determine heterogeneity and spatial patterns of ET landscape in the Keriya Oasis by using RS and GIS techniques. Spatially distributed scale-dependent regularities of land cover types across a range of patch sizes were revealed by changes of lacunarity curves. It is explicitly suggested that lacunarity index is quite effective to quantify the scale-dependent ET spatial heterogeneity and useful to figure out the water use pattern of oasis-desert landscape.

  16. Combining land surface models and remote sensing data to estimate evapotranspiration for drought monitoring in Europe

    NASA Astrophysics Data System (ADS)

    Cammalleri, C.; Sepulcre-Cantó, G.; Vogt, J.

    2014-10-01

    The main hydrologic feedback from the land-surface to the atmosphere is the evapotranspiration, ET, which embraces the response of both the soil and vegetated surface to the atmospheric forcing (e.g., precipitation and temperature), as well as influences locally atmospheric humidity, cloud formation and precipitation, the main driver for drought. Actual ET is regulated by several factors, including biological quantities (e.g., rooting depth, leaf area, fraction of absorbed photosynthetically active radiation) and soil water status. The ET temporal dynamic is strongly affected by rainfall deficits, and in turn it represents a robust proxy of the effects of water shortage on plants. These characteristics make ET a promising quantity for monitoring environmental drought, defined as a shortage of water availability that reduces the ecosystem productivity. In the last few decades, the capability to accurately model ET over large areas in a spatial-distributed fashion has increased notably. Most of the improvements in this field are related to the increasing availability of remote sensing data, and the achievements in modelling of ET-related quantities. Several land-surface models exploit the richness of newly available datasets, including the Community Land Model (CLM) and the Meteosat Second Generation (MSG) ET outputs. Here, the potentiality of ET maps obtained by combining land-surface models and remote sensing data through these two schemes is explored, with a special focus on the reliability of ET (and derived standardized variables) as drought indicator. Tests were performed over Europe at moderate spatial resolution (3-5 km), with the final goal to improve the estimation of soil water status as a contribution to the European Drought Observatory (EDO, http://edo.jrc.ec.europa.eu).

  17. An investigation of spectral change as influenced by irrigation and evapotranspiration volume estimation in western Nebraska

    USGS Publications Warehouse

    Seevers, P.M.; Sadowski, F.C.; Lauer, D.T.

    1990-01-01

    Retrospective satellite image data were evaluated for their ability to demonstrate the influence of center-pivot irrigation development in western Nebraska on spectral change and climate-related factors for the region. Periodic images of an albedo index and a normalized difference vegetation index (NDVI) were generated from calibrated Landsat multispectral scanner (MSS) data and used to monitor spectral changes associated with irrigation development from 1972 through 1986. The albedo index was not useful for monitoring irrigation development. For the NDVI, it was found that proportions of counties in irrigated agriculture, as discriminated by a threshold, were more highly correlated with reported ground estimates of irrigated agriculture than were county mean greenness values. A similar result was achieved when using coarse resolution Advanced Very High Resolution Radiometer (AVHRR) image data for estimating irrigated agriculture. The NDVI images were used to evaluate a procedure for making areal estimates of actual evapotranspiration (ET) volumes. Estimates of ET volumes for test counties, using reported ground acreages and corresponding standard crop coefficients, were correlated with the estimates of ET volume using crop coefficients scaled to NDVI values and pixel counts of crop areas. These county estimates were made under the assumption that soil water availability was unlimited. For nonirrigated vegetation, this may result in over-estimation of ET volumes. Ground information regarding crop types and acreages are required to derive the NDVI scaling factor. Potential ET, estimated with the Jensen-Haise model, is common to both methods. These results, achieved with both MSS and AVHRR data, show promise for providing climatologically important land surface information for regional and global climate models. ?? 1990 Kluwer Academic Publishers.

  18. Characterization of three non-peptide endothelin receptor ligands using human cloned ETA and ETB receptors.

    PubMed Central

    Buchan, K. W.; Alldus, C.; Christodoulou, C.; Clark, K. L.; Dykes, C. W.; Sumner, M. J.; Wallace, D. M.; White, D. G.; Watts, I. S.

    1994-01-01

    1. A number of putative endothelin (ET) receptor ligands were synthesized with a view to assessing their relative affinity for human recombinant ET receptors. 2. Human (h) and endothelin ETA and ETB receptor open reading frames were cloned by reverse transcription-polymerase chain reaction into the mammalian expression vector pcDNA1 and stable cell lines were created by transfection of Chinese hamster ovary cells. 3. Scatchard analyses of saturation isotherms for the specific binding of [125I]-endothelin-1 ([125I]-ET-1) to membranes, prepared from Chinese hamster ovary cells transfected with hETA or hETB receptors, yielded values for equilibrium dissociation constants (Kd) of 20.5 +/- 1.8 pM and 25.5 +/- 5.5 pM, respectively. Hill coefficients did not differ significantly from unity, suggesting binding to homogeneous, non-interacting receptor populations. 4. Pharmacological characterization of the transfected hETA and hETB receptors was undertaken by measuring the relative abilities of ETA and ETB receptor-selective peptide ligands to inhibit binding of [125I]ET-1. For interaction with hETA receptors, the relative order of potency was ET-1 > ET-3 = FR139317 = BQ123 >[Ala1,3,11,15]-ET-1 = sarafotoxin S6c (S6c). In contrast, the relative order of potency, at hETB receptors, was ET-1 = ET-3 = [Ala1,3,11,15]-ET-1 = S6c >> FR139317 = BQ123. 5. The novel non-peptide ligands, Ro 46-2005, SB 209670 and BMS 182874, were found to inhibit [125I]-ET-1 binding to human recombinant ETA and ETB receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7952888

  19. Distinct ETA receptor binding mode of macitentan as determined by site directed mutagenesis.

    PubMed

    Gatfield, John; Mueller Grandjean, Celia; Bur, Daniel; Bolli, Martin H; Nayler, Oliver

    2014-01-01

    The competitive endothelin receptor antagonists (ERA) bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min) occupancy half-lives at the ET(A) receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ET(A) receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ET(A) receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ET(A) receptor-antagonist interaction modes, we performed functional studies using ET(A) receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ET(A) receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that--in contrast to bosentan and ambrisentan--macitentan-ET(A) receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and insurmountable

  20. NUV Spectroscopic Studies of Eta Car's Weigelt D across the 2003.5 Minimum

    NASA Technical Reports Server (NTRS)

    Ivarsson, S.; Nielsen, K. E.; Gull, T. R.; Hillier, J. D.

    2006-01-01

    HST/STIS high dispersion, high spatial resolution spectra in the near UV (2424-2705A) were recorded of Weigelt D, located 0.25" from Eta Carinae, before, during and after the star's 2003.5 minimum. Most nebular emission, including Lyman-alpha pumped Fe II and [Fe III] lines show phase dependent variations with disappearance at the minimum and reappearance a few months later. Circumstellar absorptions increase at minimum, especially in the Fe II resonance lines originating not only from ground levels but also meta stable levels well above the ground levels. These ionization/excitation effects can be explained by a sudden change in UV flux reaching the blobs, likely due to a line-of-sight obscuration of the hotter companion star, Eta Car B, recently discovered by Iping et al. (poster, this meeting). The scattered starlight seen towards Weigelt D display noticeable different line profiles than the direct starlight from Eta Carinae. P-Cygni absorption profiles in Fe II stellar lines observed directly towards Eta Carinae, show terminal velocities up to -550 km/s. However, scattered starlight of Weigelt D display significant lower velocities ranging from -40 to -150 km/s.We interpret this result to be indicative that no absorbing Fe II wind structure exists between the Central source and Weigelt D. The lower velocity absorption appears to be connected to the outer Fe II wind structure of Eta Car A extending beyond Weigelt D intersecting the observer's line of sight. This result is consistent with the highly extended wind of Eta Car A.

  1. Molecules and Dust in the Humunculus: Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, T.

    2007-01-01

    In the 18401s, Eta Carinae ejected massive amounts of nitrogen-rich, carbon- and oxygen-poor material which we see as the hourglass-shaped Homunculus. With the Hubble Space Telescope Imaging Spectrograph, we detected multiple shells in line of sight, the most massive and intriguing being at -513 km/s. Numerous lines of Fe I, Fe II, Ni II, Cr II, Sc II, Sr II, Ti II, V II, etc are identified as well as nearly a thousand H2 lines. The metals have energy level populations consistent with 760K and excited by photons < 8.5eV. We have now identified CH, CH+, OH, and NH at the same velocity, but at 60K, suggesting stratification in the outer ejecta. Analysis of the interior, photoionized emission hourglass structure, known as the Little Homunculus, indicates He, N overabundances and C, 0 underabundances (approximately 1/80 solar). A skirt of neutral and partially ionized gas lies between the lobes of the hourglasses. A portion is seen as the Strontium Filament, a metal- ionized, neutral hydrogen structure. Relative abundances of TiNi are 1/80 solar, CrNi are 1/20 solar. This complex of ejecta appears to have been ejected by a massive star(s) at the end of the hydrogen-burning phase when convection led to overproduction of nitrogen at the expense of carbon and oxygen. Given the underabundances of carbon and oxygen, the chemistry of this system is quite different to the normal ISM, leading to a nitrogen- dominated chemistry. What little C and 0 that is formed is immediately taken up by SiO and Al0 molecules leading to a very different gas/dust ratio than the normal ISM. Dust in this ejecta is abundance, but known to be very grey in character. Observations with HST/STIS and VLT/UVES will be presented along with simple physical models and CLOUD modeling. Insight by the participants will be solicited.

  2. A data fusion approach for monitoring remotely sensed seasonal evapotranspiration

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Quackenbush, L. J.

    2013-12-01

    Landsat is widely applied for monitoring remotely sensed evapotranspiration (ET) because of the four-decade archive of satellite images that records visible, near-, mid- and thermal-infrared information of the Earth surface at moderate spatial resolution (30 to 100 m). However, the 16-day gap between subsequent Landsat images limits its ability to quantify seasonal ET-particularly in cloud-prone areas. Hence, we developed an ET fusion model that integrates the coarser, more frequently available moderate resolution imaging spectroradiometer (MODIS) images with Landsat images using simple linear regression models. Inputs for the Landsat-MODIS fusion model include MODIS land surface temperature and normalized difference vegetation index (NDVI) data, Landsat-based evaporative fraction maps generated using the mapping evapotranspiration at high resolution with internalized calibration (METRIC) model, and land cover information. The Landsat-MODIS ET fusion model generates ET maps with MODIS temporal and Landsat spatial resolution. Eight Landsat and 31 MODIS images from 2008 were utilized to derive watershed-scale annual ET for the Fish River Watershed in AL using the Landsat-MODIS ET fusion model. Mean annual ET for the watershed was estimated within 4% of annual ET estimates from a water balance method. Results showed that the mean annual ET estimates were improved by 25% and 11%, when compared to those from a non-fusion Landsat-only approach and MOD 16 ET products, respectively, with annual ET reference data coming from a water balance method. In addition, pixel level evaluation using measured ET data from a United States Geological Survey (USGS) station in FL showed significant improvement in daily and seasonal ET estimates, when results were compared to those from the non-fusion Landsat-only approach. Mean absolute error for seasonal ET was improved by 7% (11% to 4%), while daily ET estimates were improved by 38% (0.77 to 0.48 mm/day) 124% (0.33 to 0.74) and 32% (0

  3. Disassembling "evapotranspiration" in-situ with a complex measurement tool

    NASA Astrophysics Data System (ADS)

    Chormanski, Jaroslaw; Kleniewska, Malgorzata; Berezowski, Tomasz; Sporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatylowicz, Jan; Batelaan, Okke

    2014-05-01

    In this work we present a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them from the total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its components transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project will be the estimation of energy and

  4. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed

    USGS Publications Warehouse

    Scott, R.L.; Cable, W.L.; Huxman, T. E.; Nagler, P.L.; Hernandez, M.; Goodrich, D.C.

    2008-01-01

    Riparian evapotranspiration (ET) is a major component of the surface and subsurface water balance for many semiarid watersheds. Measurement or model-based estimates of ET are often made on a local scale, but spatially distributed estimates are needed to determine ET over catchments. In this paper, we document the ET that was quantified over 3 years using eddy covariance for three riparian ecosystems along the Upper San Pedro River of southeastern Arizona, USA, and we use a water balance equation to determine annual groundwater use. Riparian evapotranspiration and groundwater use for the watershed were then determined by using a calibrated, empirical model that uses 16-day, 250-1000 m remote-sensing products for the years of 2001-2005. The inputs for the model were derived entirely from the NASA MODIS sensor and consisted of the Enhanced Vegetation Index and land surface temperature. The scaling model was validated using subsets of the entire dataset (omitting different sites or years) and its capable performance for well-watered sites (MAD=0.32 mm day-1, R2=0.93) gave us confidence in using it to determine ET over the watershed. Three years of eddy covariance data for the riparian sites reveal that ET and groundwater use increased as woody plant density increased. Groundwater use was less variable at the woodland site, which had the greatest density of phreatophytes. Annual riparian groundwater use within the watershed was nearly constant over the study period despite an on-going drought. For the San Pedro alone, the amounts determined in this paper are within the range of most recently reported values that were derived using an entirely different approach. However, because of our larger estimates for groundwater use for the main tributary of the San Pedro, the watershed totals were higher. The approach presented here can provide riparian ET and groundwater use amounts that reflect real natural variability in phreatophyte withdrawals and improve the accuracy of a

  5. Enantiocontrolled synthesis of highly functionalized tropanes via [5 + 2] cycloaddition to eta(3)-pyridinylmolybdenum pi-complexes.

    PubMed

    Malinakova, H C; Liebeskind, L S

    2000-11-30

    [reaction: see text] A chiral, nonracemic eta(3)-pyridinyl scaffold participates in [5 + 2] cycloaddition with electron-deficient alkenes, an allene, and an alkyne to give eta(3)-allylmolybdenum bicyclic adducts. The adducts can be demetalated, providing a convergent route to highly functionalized tropanes. High enantiocontrol can be achieved throughout the cycloaddition and demetalation sequence.

  6. New [Mo(eta3-allyl)(CO)2L3]+ complexes with monodentate or tridentate nitrogen-donor ligands.

    PubMed

    Pérez, Julio; Morales, Dolores; Nieto, Sonia; Riera, Lucía; Riera, Víctor; Miguel, Daniel

    2005-03-01

    Cationic complexes [Mo(eta(3)-allyl)(CO)2L3]+ (L3 = either nitrogen-donor tridentate ligand or three monodentate ligands) were prepared in high yield and under mild conditions using as precursors either the triflato complex [Mo(eta(3)-allyl)(OTf)(CO)2(NCMe)2] or the combination of the chloro complex [Mo(eta(3)-allyl)Cl(CO)2(NCMe)2] and the salt NaBAr'(4)(Ar'= 3,5-bis(trifluoromethyl)phenyl). The tridentate ligands employed were 2,2':6',2'-terpyridine (terpy) and cis,cis-1,3,5-cyclohexanetriamine (CHTA), whereas the monodentate ligands imidazole (im) and 3,5-dimethylpyrazole (dmpz) were chosen. In order to stabilize the labile intermediates, an excess of acetonitrile was used in most of the syntheses. However, the pyrazole complex was prepared through a nitrile-free route to avoid reactions at the coordinated nitrile. The solid state structures of [Mo(eta(3)-methallyl)(CO)2(terpy)]OTf (2), [Mo(eta(3)-methallyl)(CO)2(CHTA)]BAr'4 (3), [Mo(eta(3)-methallyl)(CO)2(NCMe)3]BAr'4 (4), [Mo(eta(3)-allyl)(CO)2(im)3]OTf (5) and [Mo(eta(3)-allyl)(CO)2(dmpz)3]BAr'4 (6) were determined by means of single-crystal X-ray diffraction. PMID:15726140

  7. Mapping the latitude dependence of the primary stellar wind of eta Carinae using the spectrum reflected on the Homunculus nebula

    NASA Astrophysics Data System (ADS)

    Odessey, Rachel

    2016-01-01

    The binary star Eta Carinae underwent a massive eruption in the 1840s, resulting in a huge nebula of ejected material, called the Homunculus. Despite preventing us from the direct view from the central source, the Homunculus acts like a mirror, allowing us to see the spectrum of the central binary system from different stellar latitudes. Therefore, by mapping the spectrum along the nebula we are actually probing the dependence of the spectrum with stellar latitude. Our project focuses on the P Cyg absorption component of H lines mostly in the optical and near-infrared wavelengths. in order to investigate the structure of the primary stellar wind. A full spectral mapping of the entire nebula was constructed by combining multiple dithered long slit observations using the ESO/X-Shooter high-resolution spectrograph. Such mapping allowed us to assemble a data cube containing the spectrum of each position along the nebula. Preliminary analysis confirms that the primary wind indeed has a deeper absorption component at high stellar latitudes (polar region). Also, contrary to our expectations, our analysis indicates that the polar region does not seem entirely radially symmetric in terms of density, which invites further investigation into the source of these discrepancies.

  8. Mapping and Modeling the Extended Winds of the Massive Interacting Binary, Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Ted

    2010-01-01

    The combination HST/STIS high spatial and moderate spectral resolutions have revealed the massive interacting wind structure of Eta Carinae by forbidden lines of singly and doubly ionized elements. Throughout the 5.54-year period, lines of Fe++, Ne++, Ar++, S++ and N+ reveal the interacting wind structures, near critical electron densities of 10(exp 5) to 3 x 10(exp 7)cu cm, photoionized by the hot secondary, Eta Car B, Lines of Fe+ and Ni+ trace the denser (>10(exp 7)cu cm. less-ionized (< 8 eV) primary wind of Eta Car A as it wraps around the interacting binary stars. For 5 years of the 5.54 year period, the FUV radiation from Eta Car B escapes the orbital region, ionizing the boundaries of the expanding wind structures. But for three to six months, Eta Car B plunges into the primary wind approaching to within 1 to 2 AU, leading to cutoff of FUV and X-ray fluxes. The interacting wind structure, resolved out to 0.8", drops io ionization and then rebuilds as Eta Car B emerges from the primary wind envelope. Solid Particle Hydrodynamical(SPH) models have been developed extending out to 2000 AU and adapted to include FUV radiation effects of the winds. In turn, synthetic spectroimages of selected forbidden lines have been constructed and compared to the spectroimages recorded by the HST/STIS throughout 1998.0 to 2004.3, extending across the 1998 and 2003.5 minima. By this method, we show that the orbital axis of the binary system must bc within 15 degrees of the Homunculus axis of symmetry and that periastron occurs with Eta Car B passing on the far side of Eta Car B. This result ties the current binary orbit with the bipolar ejection with intervening skirt and leads to implications that the binary system influenced the mass ejection of the l840s and the lesser ejection of the 1890s.

  9. Search for bound states of the eta-meson in light nuclei

    NASA Technical Reports Server (NTRS)

    Chrien, R. E.; Bart, S.; Pile, P.; Sutter, R.; Tsoupas, N.; Funsten, H. O.; Finn, J. M.; Lyndon, C.; Punjabi, V.; Perdrisat, C. F.

    1988-01-01

    A search for nuclear-bound states of the eta meson was carried out. Targets of lithium, carbon, oxygen, and aluminum were placed in a pion(+) beam at 800 MeV/c. A predicted eta bound state in O-15* (E sub x approx. = 540 MeV) with a width of approx. 9 MeV was not observed. A bound state of a size 1/3 of the predicted cross section would have been seen in this experiment at a confidence level of 3sigma (P is greater than 0.9987).

  10. Preliminary results for the helicity asymmetry E for eta photoproduction on the proton

    SciTech Connect

    B. T. Morrison, M. Dugger, B. G. Ritchie, CLAS Collaboration

    2012-04-01

    Polarization observables are an important tool for clarifying the nucleon resonance spectrum. No previous measurements for double polarization asymmetries have been published for eta photoproduction. Double polarization measurements have been made at Jefferson Lab using a polarized photon beam and protons in a polarized frozen spin target (FROST). Data were taken during the first running period of FROST using the CLAS detector with photon energies from 0.33 to 2.35 GeV. Preliminary results for the E polarization observable for eta meson photoproduction from the proton at threshold and above, along with comparisons to several theoretical predictions are presented.

  11. Estimating evapotranspiration under warmer climates: Insights from a semiarid riparian system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents an approach to quantify evapotranspiration under changing climates, using field observations, theoretical evaporation models and meteorological predictions from global climate models. We analyzed evaporation and meteorological data from three riparian sites located in a semiarid ...

  12. Evapotranspiration mapping using METRIC for a region with highly advective conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the Texas High Plains accounts for approximately 92% of groundwater withdrawals. Because, groundwater levels are declining in the region, efficient agricultural water use is imperative for sustainability and regional economic viability. Accurate regional evapotranspiration (ET) maps w...

  13. Effects of the Temporal Variability of Evapotranspiration on Hydrologic Simulation in Central Florida

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2007-01-01

    The transient response of a hydrologic system can be of concern to water-resource managers, because it is often extreme relatively short-lived events, such as floods or droughts, that profoundly influence the management of the resource. The water available to a hydrologic system for stream flow and aquifer recharge is determined by the difference of precipitation and evapotranspiration (ET). As such, temporal variations in precipitation and ET determine the degree of influence each has on the transient response of the hydrologic system. Meteorological, ET, and hydrologic data collected from 1993 to 2003 and spanning 1- to 3 2/3 -year periods were used to develop a hydrologic model for each of five sites in central Florida. The sensitivities of simulated water levels and flows to simple approximations of ET were quantified and the adequacy of each ET approximation was assessed. ET was approximated by computing potential ET, using the Hargreaves and Priestley-Taylor equations, and applying vegetation coefficients to adjust the potential ET values to actual ET. The Hargreaves and Priestley-Taylor ET approximations were used in the calibrated hydrologic models while leaving all other model characteristics and parameter values unchanged. Two primary factors that influence how the temporal variability of ET affects hydrologic simulation in central Florida were identified: (1) stochastic character of precipitation and ET and (2) the ability of the local hydrologic system to attenuate variability in input stresses. Differences in the stochastic character of precipitation and ET, both the central location and spread of the data, result in substantial influence of precipitation on the quantity and timing of water available to the hydrologic system and a relatively small influence of ET. The temporal variability of ET was considerably less than that of precipitation at each site over a wide range of time scales (from daily to annual). However, when precipitation and ET are of

  14. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  15. Measurement of the B -> Omega l Nu and B -> Eta l Nu Branching Fractions Using Neutrino Reconstruction

    SciTech Connect

    Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, Vincent; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, Antimo; Pappagallo, M.; Eigen, G.; Stugu, Bjarne; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U., Comp. Sci. Dept. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-09-09

    The authors present a study of the charmless semileptonic B-meson decays B{sup +} {yields} {omega}{ell}{sup +}{nu} and B{sup +} {yields} {eta}{ell}{sup +}{nu}. The analysis is based on 383 million B{bar B} pairs recorded at the {Upsilon}(4S) resonance with the BABAR detector. The {omega} mesons are reconstructed in the channel {omega} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} and the {eta} mesons in the channels {eta} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} and {eta} {yields} {gamma}{gamma}. They measure the branching fractions {Beta}(B{sup +} {yields} {omega}{ell}{sup +}{nu}) = (1.14 {+-} 0.16{sub stat} {+-} 0.08{sub syst}) x 10{sup -4} and {Beta}(B{sup +} {yields} {eta}{ell}{sup +}{nu}) = (0.31 {+-} 0.06{sub stat} {+-} 0.08{sub syst}) x 10{sup -4}.

  16. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California; with a section on estimating evapotranspiration using the energy-budget eddy-correlation technique

    USGS Publications Warehouse

    Czarnecki, John B.; Stannard, David I.

    1997-01-01

    Franklin Lake playa is one of the principal discharge areas of the ground-water-flow system associated with Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository. By using the energy-budget eddy-correlation technique, measurements made between June 1983 and April 1984 to estimate evapotranspiration were found to range from 0.1 centimeter per day during winter months to about 0.3 centimeter per day during summer months; the annual average was 0.16 centimeter per day. These estimates were compared with evapotranspiration estimates calculated from six other methods.

  17. Rainfall and evapotranspiration data for southwest Medina County, Texas, August 2006-December 2009

    USGS Publications Warehouse

    Slattery, Richard N.; Asquith, William H.; Ockerman, Darwin J.

    2011-01-01

    During August 2006-December 2009, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Fort Worth District, collected rainfall and evapotranspiration data to help characterize the hydrology of the Nueces River Basin, Texas. The USGS installed and operated a station to collect continuous (30-minute interval) rainfall and evapotranspiration data in southwest Medina County approximately 14 miles southwest of D'Hanis, Texas, and 23 miles northwest of Pearsall, Texas. Rainfall data were collected by using an 8-inch tipping bucket raingage. Meteorological and surface-energy flux data used to calculate evapotranspiration were collected by using an extended Open Path Eddy Covariance system from Campbell Scientific, Inc. Data recorded by the system were used to calculate evapotranspiration by using the eddy covariance and Bowen ratio closure methods and to analyze the surface energy budget closure. During August 2006-December 2009 (excluding days of missing record), measured rainfall totaled 86.85 inches. In 2007, 2008, and 2009, annual rainfall totaled 40.98, 12.35, and 27.15 inches, respectively. The largest monthly rainfall total, 12.30 inches, occurred in July 2007. During August 2006-December 2009, evapotranspiration calculated by using the eddy covariance method totaled 69.91 inches. Annual evapotranspiration calculated by using the eddy covariance method totaled 34.62 inches in 2007, 15.24 inches in 2008, and 15.57 inches in 2009. During August 2006-December 2009, evapotranspiration calculated by using the Bowen ratio closure method (the more refined of the two datasets) totaled 68.33 inches. Annual evapotranspiration calculated by using the Bowen ratio closure method totaled 32.49, 15.54, and 15.80 inches in 2007, 2008, and 2009, respectively (excluding days of missing record).

  18. Measurements of B to {pi, eta, eta'} l nu Branching Fractions andDetermination of |Vub| with Semileptonically Tagged B Mesons

    SciTech Connect

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, R.N.; Jacobsen, R.G.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U., EKP /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /Frascati /Frascati /Rome U. /Frascati /Frascati /Rome U. /Frascati /Frascati /Rome U. /Frascati /Frascati /Rome U. /Frascati /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-06-02

    The authors report measurements of branching fractions for the decays B {yields} P{ell}{nu}{sub {ell}}, where P are the pseudoscalar charmless mesons {pi}{sup -}, {pi}{sup 0}, {eta} and {eta}{prime}, based on 348 fb{sup -1} of data collected with the BABAR detector, using B{sup 0} and B{sup +} mesons found in the recoil of a second B meson decaying as B {yields} D{sup (*)}{ell}{nu}{sub {ell}}. Assuming isospin symmetry, they combine pionic branching fractions to obtain {Beta}(B{sup 0} {yields} {pi}{sup -} {ell}{sup +} {nu}{sub {ell}}) = (1.54 {+-} 0.17{sub (stat)} {+-} 0.09{sub (syst)}) x 10{sup -4}; they find 3.2{sigma} evidence of the decay B{sup +} {yields} {eta}{ell}{sup +}{nu}{sub {ell}} and measure its branching fraction to be (0.64 {+-} 0.20{sub (stat)} {+-} 0.3{sub (syst)}) x 10{sup -4}, and determine {Beta}(B{sup +} {yields} {eta}{prime}{ell}{sup +}{nu}{sub {ell}}) < 0.47 x 10{sup -4} to 90% confidence level. Using partial branching fractions for the pionic decays in ranges of the momentum transfer and a recent form factor calculation, they obtain the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |V{sub ub}| = (4.0 {+-} 0.5{sub (stat)} {+-} 0.2{sub (syst){sub -0.5}{sup +0.7}(theory)}) x 10{sup -3}.

  19. Spatiotemporal distribution of reference evapotranspiration in the Republic of Moldova

    NASA Astrophysics Data System (ADS)

    Piticar, Adrian; Mihăilă, Dumitru; Lazurca, Liliana Gina; Bistricean, Petruţ-Ionel; Puţuntică, Anatolie; Briciu, Andrei-Emil

    2016-05-01

    The main objectives of this study are to investigate the spatial distribution and changes in reference evapotranspiration ( ET 0) in the Republic of Moldova. Monthly data of maximum and minimum air temperature, sunshine duration, relative humidity, and wind speed recorded at 14 weather stations over a period of 52 years (1961-2012) were used. ET 0 was computed based on the FAO Penman-Monteith formula. Annual and growing seasons of winter wheat and maize time series were analyzed for the 1981-2012 period as well as for the 1961-1980. The trends and their statistical significance in ET 0 series were detected using Mann-Kendall test and T test, while the magnitude of the trends was estimated using Sen's slope and linear regression. For the 1981-2012 period, the results indicated that annual ET 0 had a positive trend in more than 90 % of the time series according to both parametric and nonparametric methods. The magnitude of positive trends in annual ET 0 series ranged between 13.80 and 72.07 mm/decade. In the growing seasons of winter wheat and maize, the results are similar to those found in the annual series. Significant decreasing trends dominated over the 1961-1980 period.

  20. Constraints on surface evapotranspiration: implications for modeling and observations

    NASA Astrophysics Data System (ADS)

    Gentine, P.

    2015-12-01

    The continental hydrological cycle and especially evapotranspiration are constrained by additional factors such as the energy availability and the carbon cycle. As a results trying to understand and predict the surface hydrologic cycle in isolation might be highly unreliable. We present two examples were constraints induced by 1) radiation control through cloud albedo feedback and 2) carbon control on the surface water use efficiency are essential to correctly predict the seasonal hydrologic cycle. In the first example we show that correctly modeling diurnal and seasonal convection and the associated cloud-albedo feedback (through land-atmosphere and convection-large-scale circulation feedbacks) is essential to correctly model the surface hydrologic cycle in the Amazon, and to correct biases observed in all general circulation models. This calls for improved modeling of convection to correctly predict the tropical continental hydrologic cycle.In the second example we show that typical drought index based only on energy want water availability misses vegetation physiological and carbon feedback and cannot correctly represent the seasonal cycle of soil moisture stress. The typical Palmer Drought Stress Index is shown to be incapable of rejecting water stress in the future. This calls for new drought assessment metrics that may include vegetation and carbon feedback.

  1. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    NASA Astrophysics Data System (ADS)

    Mao, J.; Fu, W.; Shi, X.; Ricciuto, D. M.; Fisher, J. B.; Dickinson, R. E.; Wei, Y.; Shem, W.; Piao, S.; Wang, K.; Schwalm, C. R.; Tian, H.; Mu, M.; Arain, M. A.; Ciais, P.; Cook, R. B.; Dai, Y. J.; Hayes, D. J.; Hoffman, F. M.; Huang, M.; Huang, S.; Huntzinger, D. N.; Ito, A.; Jain, A. K.; King, A. W.; Lei, H.; Lu, C.; Michalak, A. M.; Parazoo, N.; Peng, C.; Peng, S.; Poulter, B.; Schaefer, K. M.; Jafarov, E. E.; Thornton, P. E.; Wang, W.; Zeng, N.; Zeng, Z.; Zhao, F.; Zhu, Q.; Zhu, Z.

    2015-12-01

    We examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded decreased trends in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

  2. Spatiotemporal Variations of Reference Crop Evapotranspiration in Northern Xinjiang, China

    PubMed Central

    Lv, Xin; Lin, Hai-rong

    2014-01-01

    To set up a reasonable crop irrigation system in the context of global climate change in Northern Xinjiang, China, reference crop evapotranspiration (ET0) was analyzed by means of spatiotemporal variations. The ET0 values from 1962 to 2010 were calculated by Penman-Monteith formula, based on meteorological data of 22 meteorological observation stations in the study area. The spatiotemporal variations of ET0 were analyzed by Mann-Kendall test, Morlet wavelet analysis, and ArcGIS spatial analysis. The results showed that regional average ET0 had a decreasing trend and there was an abrupt change around 1983. The trend of regional average ET0 had a primary period about 28 years, in which there were five alternating stages (high-low-high-low-high). From the standpoint of spatial scale, ET0 gradually increased from the northeast and southwest toward the middle; the southeast and west had slightly greater variation, with significant regional differences. From April to October, the ET0 distribution significantly influenced the distribution characteristic of annual ET0. Among them sunshine hours and wind speed were two of principal climate factors affecting ET0. PMID:25254259

  3. Mapping Evapotranspiration over Agricultural Land in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Huntington, J. L.; Guzman, A.; Johnson, L.; Morton, C.; Nemani, R. R.; Post, K. M.; Rosevelt, C.; Shupe, J. W.; Spellenberg, R.; Vitale, A.

    2015-12-01

    Recent advances in satellite mapping of evapotranspiration (ET) have made it possible to largely automate the process of mapping ET over large areas at the field-scale. This development coincides with recent drought events across the western U.S. which have intensified interest in mapping of ET and consumptive use to address a range of water management challenges, including resolving disputes over water rights, improving irrigation management, and developing sustainable management plans for groundwater resources. We present a case study for California that leverages two automated ET mapping capabilities to estimate ET at the field scale over agricultural areas in the California Central Valley. We utilized the NASA Earth Exchange and applied a python-based implementation of the METRIC surface energy balance model and the Satellite Irrigation Management Support (SIMS) system, which uses a surface reflectance-based approach, to map ET over agricultural areas in the Central Valley. We present estimates from 2014 from both approaches and results from a comparison of the estimates. Though theoretically and computationally quite different from each other, initial results from both approaches show good agreement overall on seasonal ET totals for 2014. We also present results from comparisons against ET measurements collected on commercial farms in the Central Valley and discuss implications for accuracy of the two different approaches. The objective of this analysis is to provide data that can inform planning for the development of sustainable groundwater management plans, and assist water managers and growers in evaluating irrigation demand during drought events.

  4. Hydrologic Influences on Riparian Evapotranspiration During Snowmelt Runoff

    NASA Astrophysics Data System (ADS)

    Thibault, J. R.; Cleverly, J. R.; Dahm, C.

    2006-12-01

    Evapotranspiration (ET) in riparian ecosystems is influenced by many factors. Here, we investigate hydrological effects, including surface water (flooding), groundwater depth, and moisture conditions (Palmer Hydrological Drought Severity Index, PHDI). Peak historical snowmelt runoff periods (May, June) are compared over several years encompassing drought and moist conditions at three sites along the Rio Grande corridor of central New Mexico, USA. The sites are composed of 1) invasive saltcedar and saltgrass, 2) dense monotypic saltcedar, and 3) invasive Russian olive and native willow. With sufficient runoff, flooding occurs at the two latter sites. Our results indicate that flooding, groundwater depth, and the PHDI significantly increase ET rates at the young, rapidly growing Russian olive and willow site, but do not affect ET at the older, established saltcedar sites. Flooding and elevated groundwater levels that accompany typical or above average snowmelt appear to stimulate growth in young, emerging riparian stands. In years when the PHDI or other drought indices indicate sufficient water resource availability, floods and elevated groundwater levels would not likely result in excessive consumption by invasive vegetation and could be a useful tool in areas targeted for native restoration.

  5. Evapotranspiration from Urban Green Spaces in the Northeast United States

    NASA Astrophysics Data System (ADS)

    DiGiovanni, K. A.; Montalto, F. A.; Gaffin, S.

    2012-12-01

    The measurement and estimation of urban evapotranspiration (ET) has historically received limited consideration from researchers in the hydrologic and climatologic communities yet are arguabl