Science.gov

Sample records for actual experimental conditions

  1. Experimental study on the regenerator under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Nam, Kwanwoo; Jeong, Sangkwon

    2002-05-01

    An experimental apparatus was prepared to investigate thermal and hydrodynamic characteristics of the regenerator under its actual operating conditions. The apparatus included a compressor to pressurize and depressurize regenerator with various operating frequencies. Cold end of the regenerator was maintained around 100 K by means of liquid nitrogen container and heat exchanger. Instantaneous gas temperature and mass flow rate were measured at both ends of the regenerator during the whole pressure cycle. Pulsating pressure and pressure drop across the regenerator were also measured. The operating frequency of the pressure cycle was varied between 3 and 60 Hz, which are typical operating frequencies of Gifford-McMahon, pulse tube, and Stirling cryocoolers. First, friction factor for the wire screen mesh was directly determined from room temperature experiments. When the operating frequency was less than 9 Hz, the oscillating flow friction factor was nearly same as the steady flow friction factor for Reynolds number up to 100. For 60 Hz operations, the ratio of oscillating flow friction factor to steady flow one was increased as hydraulic Reynolds number became high. When the Reynolds number was 100, this ratio was about 1.6. Second, ineffectiveness of the regenerator was obtained when the cold-end was maintained around 100 K and the warm-end at 300 K to simulate the actual operating condition of the regenerator in cryocooler. Effect of the operating frequency on ineffectiveness of regenerator was discussed at low frequency range.

  2. Experimental investigation of panel radiator heat output enhancement for efficient thermal use under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Calisir, Tamer; Baskaya, Senol; Onur Yazar, Hakan; Yucedag, Sinan

    2015-05-01

    In this study the heat output of a panel-convector-convector-panel radiator (PCCP) under controlled laboratory conditions under Turkish household and especially Ankara conditions was investigated experimentally. In this sense, investigations were performed for different heating water mass flow rates, water inlet temperatures and radiator inlet and outlet connection positions, which are most commonly used in Turkey. An experimental setup was built for this purpose in a test room where temperature was controlled and held constant during the experiments. Inlet and outlet water temperatures and mass flow rates were measured and heat output of the radiator was calculated. Infrared thermal camera visualizations of the steel panel radiator front surface were also performed.

  3. Establishing seasonal chronicles of actual evapotranspiration under sloping conditions

    NASA Astrophysics Data System (ADS)

    Zitouna Chebbi, R.; Prévot, L.; Jacob, F.; Voltz, M.

    2012-04-01

    Estimation of daily and seasonal actual evapotranspiration (ETa) is strongly needed for hydrological and agricultural purposes. Although the eddy covariance method is well suited for such estimation of land surface fluxes, this method suffers from limitations when establishing long time series. Missing data are often encountered, resulting from bad meteorological conditions, rejection by quality control tests, power failures… Numerous gap fill techniques have been proposed in the literature but there applicability in sloping conditions is not well known. In order to estimate ETa over long periods (agricultural cycle) on crops cultivated in sloping areas, a pluri-annual experiment was conducted in the Kamech catchment, located in North-eastern Tunisia. This Mediterranean site is characterized by a large heterogeneity in topography, soils and crops. Land surface fluxes were measured using eddy covariance systems. Measurements were collected on the two opposite sides of the Kamech V-shaped catchment, within small fields having slopes steeper than 5%. During three different years, four crops were studied: durum wheat, oat, fava bean and pasture. The topography of the catchment and the wind regime induced upslope and downslope flows over the study fields. In this study, we showed that gap filling of the turbulent fluxes (sensible and latent heat) can be obtained through linear regressions against net radiation. To account for the effect of the topography, linear regressions were calibrated by distinguishing upslope and downslope flows. This significantly improved the quality of the reconstructed data over 30 minute intervals. This gap filling technique also improved the energy balance closure at the daily time scale. As a result, seasonal chronicles of daily ETa throughout the growth cycle of the study crops in the Kamech watershed were established, thus providing useful information about the water use of annual crops in a semi-arid rainfed and hilly area.

  4. Experimental philosophy of actual and counterfactual free will intuitions.

    PubMed

    Feltz, Adam

    2015-11-01

    Five experiments suggested that everyday free will and moral responsibility judgments about some hypothetical thought examples differed from free will and moral responsibility judgments about the actual world. Experiment 1 (N=106) showed that free will intuitions about the actual world measured by the FAD-Plus poorly predicted free will intuitions about a hypothetical person performing a determined action (r=.13). Experiments 2-5 replicated this result and found the relations between actual free will judgments and free will judgments about hypothetical determined or fated actions (rs=.22-.35) were much smaller than the differences between them (ηp(2)=.2-.55). These results put some pressure on theoretical accounts of everyday intuitions about freedom and moral responsibility. PMID:26126174

  5. Self Actualization of Females in an Experimental Orientation Program

    ERIC Educational Resources Information Center

    Vander Wilt, Robert B.; Klocke, Ronald A.

    1971-01-01

    An alternative to the traditional orientation program was developed that forced students to consider their physical and psychological outer limits. Students were confronted in a new and unique way that contributed to the self actualization process of the female portion of the group. (Author/BY)

  6. Life extension of elevated-temperature reactors considering actual operating conditions

    SciTech Connect

    Ziada, H.H.

    1993-01-01

    Many reactors have experienced operating conditions less severe than those specified in the design. Their actual operating conditions may involve fewer or less severe transients, lower operating temperatures, or a combination of these. Thus the actual operating conditions become important considerations in efforts to extend the life of reactor components. If the number of transients experienced is fewer than the number specified in the design, the actual transients must be reconstructed to determine extended life. When operating temperature is below 800 [degrees]F, fatigue damage becomes the controlling factor in life assessment. At operating temperatures above 800 [degrees]F (e.g., breeder reactors), creep damage becomes another controlling factor because residual stresses have a longer time for relaxation, a fact that will reduce creep damage. This study presents an approach to assessing the life of breeder reactor components when the actual transients are fewer in number than those specified in the design. It also discusses the sensitivity of creep-fatigue damage in such factors when actual operating temperatures and the actual severity of transients fall below the design specifications.

  7. Life extension of elevated-temperature reactors considering actual operating conditions

    SciTech Connect

    Ziada, H.H.

    1993-01-01

    Many reactors have experienced operating conditions less severe than those specified in the design. Their actual operating conditions may involve fewer or less severe transients, lower operating temperatures, or a combination of these. Thus the actual operating conditions become important considerations in efforts to extend the life of reactor components. If the number of transients experienced is fewer than the number specified in the design, the actual transients must be reconstructed to determine extended life. When operating temperature is below 800 {degrees}F, fatigue damage becomes the controlling factor in life assessment. At operating temperatures above 800 {degrees}F (e.g., breeder reactors), creep damage becomes another controlling factor because residual stresses have a longer time for relaxation, a fact that will reduce creep damage. This study presents an approach to assessing the life of breeder reactor components when the actual transients are fewer in number than those specified in the design. It also discusses the sensitivity of creep-fatigue damage in such factors when actual operating temperatures and the actual severity of transients fall below the design specifications.

  8. Experimental study using infrared thermography on the convective heat transfer of a TGV brake disc in the actual environment

    NASA Astrophysics Data System (ADS)

    Siroux, Monica; Harmand, Souad; Desmet, Bernard

    2002-07-01

    We present an experimental identification of the local and mean Nusselt number from a rotating TGV brake disk model in the actual environment and exposed to an air flow parallel to the disk surface. This method is based on the use of a heated thermally thick disk combined with the technique of temperature measurement by infrared thermography. The local and mean convective heat transfer coefficient from the disk surface is identified by solving the steady state heat equation by a finite difference method using the experimental temperature distribution as boundary conditions. The experimental setup is constituted of a model disk with all the representative parts of the actual TGV brake system. The disk and its actual environment are inside a wind tunnel test section, so that the rotational disk speed and the air flow velocity can be varied. Tests were carried out for rotational speeds w between 325 and 2000 rpm (rotational Reynolds number Re between 88,500 and 545,000), and for an air flow velocity U ranging between 0 and 12 m(DOT)s-1 (air flow Reynolds number Re0 between 0 and 153,000).

  9. Experimental study using infrared thermography on the convective heat transfer of a TGV brake disc in the actual environment

    NASA Astrophysics Data System (ADS)

    Siroux, Monica; Harmand, Souad; Desmet, Bernard

    2001-03-01

    Local and mean convective heat transfer from a rotating TGV brake disc model in the actual environment and submitted to an air flow parallel to the disc surface is studied experimentally in this paper. The experimental technique is based on the use of a heated thermally thick disc combined with the technique of temperature measurement by infrared thermography. The local convective heat transfer coefficient from the disc surface is identified by solving the steady state heat equation by finite difference method using the experimental temperature distribution as boundary conditions. These tests were carried out for rotational speed (omega) between 325 and 2000 rpm (rotational Reynolds number Re between 88500 and 545000) so as to obtain laminar and turbulent flow on the disc, and for air flow velocity U ranging between 0 and 12 m s-1 (air flow Reynolds number Re0 between 0 and 153000).

  10. Do CS-US Pairings Actually Matter? A Within-Subject Comparison of Instructed Fear Conditioning with and without Actual CS-US Pairings

    PubMed Central

    Raes, An K.; De Houwer, Jan; De Schryver, Maarten; Brass, Marcel; Kalisch, Raffael

    2014-01-01

    Previous research showed that instructions about CS-US pairings can lead to fear of the CS even when the pairings are never presented. In the present study, we examined whether the experience of CS-US pairings adds to the effect of instructions by comparing instructed conditioning with and without actual CS-US pairings in a within-subject design. Thirty-two participants saw three fractals as CSs (CS+1, CS+2, CS−) and received electric shocks as USs. Before the start of a so-called training phase, participants were instructed that both CS+1 and CS+2 would be followed by the US, but only CS+1 was actually paired with the US. The absence of the US after CS+2 was explained in such a way that participants would not doubt the instructions about the CS+2-US relation. After the training phase, a test phase was carried out. In this phase, participants expected the US after both CS+s but none of the CS+s was actually paired with the US. During test, self-reported fear was initially higher for CS+1 than for CS+2, which indicates that the experience of actual CS-US pairings adds to instructions about these pairings. On the other hand, the CS+s elicited similar skin conductance responses and US expectancies. Theoretical and clinical implications are discussed. PMID:24465447

  11. Emissions from heavy-duty vehicles under actual on-road driving conditions

    NASA Astrophysics Data System (ADS)

    Durbin, Thomas D.; Johnson, Kent; Miller, J. Wayne; Maldonado, Hector; Chernich, Don

    Emission measurements of five 1996-2005 heavy-duty diesel vehicles (HDDVs), representing three engine certification levels, were made using a Mobile Emissions Laboratory under actual on-road driving conditions on surface streets and highways. The results show that emissions depend on the emission component, the age/certification of vehicle/engine, as well as driving condition. For NO x emissions, there was a trend of decreasing emissions in going from older to newer model years and certification standards. Some vehicles showed a tendency toward higher NO x emissions per mile for the higher speed events (⩾55 mph) as compared to the 40 mph cruise and the other surface street driving, while others did not show large differences between different types of driving. For particulate matter (PM), the three oldest trucks had the highest emissions for surface street driving, while the two newest trucks had the highest PM emissions for highway driving. For total hydrocarbons (THC) emissions, some vehicles showed a tendency for higher emissions for the surface street segments compared to the steady-state segments, while others showed a tendency for higher emissions for the 40 mph cruise segments compared to the highway cruise segments. CO emissions under steady-state driving conditions were relatively low (1-3 g mile -1).

  12. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    NASA Astrophysics Data System (ADS)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-02-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10-11 ~ 10-9 molL-1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  13. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    PubMed Central

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-01-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10−11 ~ 10−9 molL−1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima. PMID:26868138

  14. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima.

    PubMed

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-01-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the (137)Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of (137)Cs (10(-11) ~ 10(-9 )molL(-1) of (137)Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed "weathered biotite" (WB) in this study, from Fukushima sorbed (137)Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of (137)Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed (137)Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima. PMID:26868138

  15. AI-related BMD variation in actual practice conditions: A prospective cohort study.

    PubMed

    Rodríguez-Sanz, María; Prieto-Alhambra, Daniel; Servitja, Sonia; Garcia-Giralt, Natalia; Garrigos, Laia; Rodriguez-Morera, Jaime; Albanell, Joan; Martínez-García, Maria; González, Iria; Diez-Perez, Adolfo; Tusquets, Ignasi; Nogués, Xavier

    2016-04-01

    The aim of the study was to evaluate the progression of bone mineral density (BMD) during 3 years of aromatase inhibitors (AI) therapy in actual practice conditions. This prospective, clinical cohort study of Barcelona-Aromatase induced Bone Loss in Early breast cancer (B-ABLE) assessed BMD changes during 3 years of AI treatment in women with breast cancer. Patients with osteoporosis (T score < -2.5 or T score ≤ -2.0) and a major risk factor and/or prevalent fragility fractures were treated with oral bisphosphonates (BPs). Of 685 women recruited, 179 (26.1%) received BP treatment. By the third year of AI therapy, this group exhibited increased BMD in the lumbar spine (LS; 2.59%) and femoral neck (FN; 2.50%), although the increase was significant only within the first year (LS: 1.99% and FN: 2.04%). Despite BP therapy, however, approximately 15% of these patients lost more than 3% of their baseline bone mass. At 3 years, patients without BP experienced BMD decreases in the LS (-3.10%) and FN (-2.79%). In this group, BMD changes occurred during the first (LS: -1.33% and FN: -1.25%), second (LS: -1.19% and FN: -0.82%), and third (LS: -0.57% and FN: -0.65%) years of AI treatment. Increased BMD (>3%) was observed in just 7.6% and 10.8% of these patients at the LS and FN, respectively. Our data confirm a clinically relevant bone loss associated with AI therapy amongst nonusers of preventative BPs. We further report on the importance of BMD monitoring as well as calcium and 25-hydroxy vitamin D supplementation in these patients. PMID:26911377

  16. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in more humid environments. We measured ET (ETEC) using Eddy Covariance (EC) towers a...

  17. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 2

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.

  18. Rheological investigation of body cream and body lotion in actual application conditions

    NASA Astrophysics Data System (ADS)

    Kwak, Min-Sun; Ahn, Hye-Jin; Song, Ki-Won

    2015-08-01

    The objective of the present study is to systematically evaluate and compare the rheological behaviors of body cream and body lotion in actual usage situations. Using a strain-controlled rheometer, the steady shear flow properties of commercially available body cream and body lotion were measured over a wide range of shear rates, and the linear viscoelastic properties of these two materials in small amplitude oscillatory shear flow fields were measured over a broad range of angular frequencies. The temperature dependency of the linear viscoelastic behaviors was additionally investigated over a temperature range most relevant to usual human life. The main findings obtained from this study are summarized as follows: (1) Body cream and body lotion exhibit a finite magnitude of yield stress. This feature is directly related to the primary (initial) skin feel that consumers usually experience during actual usage. (2) Body cream and body lotion exhibit a pronounced shear-thinning behavior. This feature is closely connected with the spreadability when cosmetics are applied onto the human skin. (3) The linear viscoelastic behaviors of body cream and body lotion are dominated by an elastic nature. These solid-like properties become a criterion to assess the selfstorage stability of cosmetic products. (4) A modified form of the Cox-Merz rule provides a good ability to predict the relationship between steady shear flow and dynamic viscoelastic properties for body cream and body lotion. (5) The storage modulus and loss modulus of body cream show a qualitatively similar tendency to gradually decrease with an increase in temperature. In the case of body lotion, with an increase in temperature, the storage modulus is progressively decreased while the loss modulus is slightly increased and then decreased. This information gives us a criterion to judge how the characteristics of cosmetic products are changed by the usual human environments.

  19. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning: Summary report

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.

  20. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 3

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.

  1. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Wang, D.; Tirado-Corbalá, R.; Zhang, H.; Ayars, J. E.

    2015-01-01

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ETEC) using eddy covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET0) and tall (ETr) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley-Taylor ET (ETPT) and ETEC. Reference ET from the ASCE approaches exceeded ETEC during the mid-period (when vegetation coefficients suggest ETEC should exceed reference ET). At the windier tower site, cumulative ETr exceeded ETEC by 854 mm over the course of the mid-period (267 days). At the less windy site, mid-period ETr still exceeded ETEC, but the difference was smaller (443 mm). At both sites, ETPT approximated mid-period ETEC more closely than the ASCE equations ((ETPT-ETEC) < 170 mm). Analysis of applied water and precipitation, soil moisture, leaf stomatal resistance, and canopy cover suggest that the lower observed ETEC was not the result of water stress or reduced vegetation cover. Use of a custom-calibrated bulk canopy resistance improved the reference ET estimate and reduced seasonal ET discrepancy relative to ETPT and ETEC in the less windy field and had mixed performance in the windier field. These divergences suggest that modifications to reference ET equations may be warranted in some tropical regions.

  2. Experimental evaluation of actual delivered dose using mega-voltage cone-beam CT and direct point dose measurement

    SciTech Connect

    Matsubara, Kana; Kohno, Ryosuke; Nishioka, Shie; Shibuya, Toshiyuki; Ariji, Takaki; Akimoto, Tetsuo; Saitoh, Hidetoshi

    2013-07-01

    Radiation therapy in patients is planned by using computed tomography (CT) images acquired before start of the treatment course. Here, tumor shrinkage or weight loss or both, which are common during the treatment course for patients with head-and-neck (H and N) cancer, causes unexpected differences from the plan, as well as dose uncertainty with the daily positional error of patients. For accurate clinical evaluation, it is essential to identify these anatomical changes and daily positional errors, as well as consequent dosimetric changes. To evaluate the actual delivered dose, the authors proposed direct dose measurement and dose calculation with mega-voltage cone-beam CT (MVCBCT). The purpose of the present study was to experimentally evaluate dose calculation by MVCBCT. Furthermore, actual delivered dose was evaluated directly with accurate phantom setup. Because MVCBCT has CT-number variation, even when the analyzed object has a uniform density, a specific and simple CT-number correction method was developed and applied for the H and N site of a RANDO phantom. Dose distributions were calculated with the corrected MVCBCT images of a cylindrical polymethyl methacrylate phantom. Treatment processes from planning to beam delivery were performed for the H and N site of the RANDO phantom. The image-guided radiation therapy procedure was utilized for the phantom setup to improve measurement reliability. The calculated dose in the RANDO phantom was compared to the measured dose obtained by metal-oxide-semiconductor field-effect transistor detectors. In the polymethyl methacrylate phantom, the calculated and measured doses agreed within about +3%. In the RANDO phantom, the dose difference was less than +5%. The calculated dose based on simulation-CT agreed with the measured dose within±3%, even in the region with a high dose gradient. The actual delivered dose was successfully determined by dose calculation with MVCBCT, and the point dose measurement with the image

  3. Exposure to alcohol commercials in movie theaters affects actual alcohol consumption in young adult high weekly drinkers: an experimental study.

    PubMed

    Koordeman, Renske; Anschutz, Doeschka J; Engels, Rutger C M E

    2011-01-01

    The present pilot study examined the effects of alcohol commercials shown in movie theaters on the alcohol consumption of young adults who see these commercials. A two (alcohol commercials vs. nonalcohol commercials) by two (high weekly alcohol consumption vs. low weekly alcohol consumption) between-participant design was used, in which 184 young adults (age: 16-28 years) were exposed to a movie that was preceded by either alcohol commercials or nonalcohol commercials. Participants' actual alcohol consumption while watching the movie ("Watchmen") was examined. An analysis of variance (ANOVA) was conducted to examine the effects of the commercial condition on alcohol consumption. An interaction effect was found between commercial condition and weekly alcohol consumption (p < .001). Alcohol consumption among high weekly alcohol drinkers was higher in the alcohol commercial condition than in the nonalcohol commercial condition, whereas no differences were found in alcohol consumption between commercial conditions among low weekly alcohol drinkers. No gender differences were found in the association between exposure to alcohol commercials, weekly drinking, and alcohol use. Thus, exposure to alcohol commercials prior to a movie in a movie theater can directly influence alcohol consumption among high weekly alcohol consumers. PMID:21477057

  4. Counterbalancing for Serial Order Carryover Effects in Experimental Condition Orders

    ERIC Educational Resources Information Center

    Brooks, Joseph L.

    2012-01-01

    Reactions of neural, psychological, and social systems are rarely, if ever, independent of previous inputs and states. The potential for serial order carryover effects from one condition to the next in a sequence of experimental trials makes counterbalancing of condition order an essential part of experimental design. Here, a method is proposed…

  5. Experimental study of choking flow of water at supercritical conditions

    NASA Astrophysics Data System (ADS)

    Muftuoglu, Altan

    Future nuclear reactors will operate at a coolant pressure close to 25 MPa and at outlet temperatures ranging from 500°C to 625°C. As a result, the outlet flow enthalpy in future Supercritical Water-Cooled Reactors (SCWR) will be much higher than those of actual ones which can increase overall nuclear plant efficiencies up to 48%. However, under such flow conditions, the thermal-hydraulic behavior of supercritical water is not fully known, e.g., pressure drop, forced convection and heat transfer deterioration, critical and blowdown flow rate, etc. Up to now, only a very limited number of studies have been performed under supercritical conditions. Moreover, these studies are conducted at conditions that are not representative of future SCWRs. In addition, existing choked flow data have been collected from experiments at atmospheric discharge pressure conditions and in most cases by using working fluids different than water which constrain researchers to analyze the data correctly. In particular, the knowledge of critical (choked) discharge of supercritical fluids is mandatory to perform nuclear reactor safety analyses and to design key mechanical components (e.g., control and safety relief valves, etc.). Hence, an experimental supercritical water facility has been built at Ecole Polytechnique de Montreal which allows researchers to perform choking flow experiments under supercritical conditions. The facility can also be used to carry out heat transfer and pressure drop experiments under supercritical conditions. In this thesis, we present the results obtained at this facility using a test section that contains a 1 mm inside diameter, 3.17 mm long orifice plate with sharp edges. Thus, 545 choking flow of water data points are obtained under supercritical conditions for flow pressures ranging from 22.1 MPa to 32.1 MPa, flow temperatures ranging from 50°C to 502°C and for discharge pressures from 0.1 MPa to 3.6 MPa. Obtained data are compared with the data given in

  6. Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system.

    PubMed

    Dai, Xiaohu; Luo, Fan; Yi, Jing; He, Qunbiao; Dong, Bin

    2014-02-01

    Polyacrylamide (PAM) used in sludge dewatering widely exists in high-solid anaerobic digestion. Degradation of polyacrylamide accompanied with accumulation of its toxic monomer is important to disposition of biogas residues. The potential of anaerobic digestion activity in microbial utilization of PAM was investigated in this study. The results indicated that the utilization rate of PAM (as nitrogen source) was influenced by accumulation of ammonia, while cumulative removal of amide group was accorded with zeroth order reaction in actual dewatered system. The adjoining amide group can combined into ether group after biodegradation. PAM can be broken down in different position of its carbon chain backbone. In actual sludge system, the hydrolytic PAM was liable to combined tyrosine-rich protein to form colloid complex, and then consumed as carbon source to form monomer when easily degradable organics were exhausted. The accumulation of acrylamide was leveled off ultimately, accompanied with the yield of methane. PMID:24345566

  7. Double-blind photo lineups using actual eyewitnesses: an experimental test of a sequential versus simultaneous lineup procedure.

    PubMed

    Wells, Gary L; Steblay, Nancy K; Dysart, Jennifer E

    2015-02-01

    Eyewitnesses (494) to actual crimes in 4 police jurisdictions were randomly assigned to view simultaneous or sequential photo lineups using laptop computers and double-blind administration. The sequential procedure used in the field experiment mimicked how it is conducted in actual practice (e.g., using a continuation rule, witness does not know how many photos are to be viewed, witnesses resolve any multiple identifications), which is not how most lab experiments have tested the sequential lineup. No significant differences emerged in rates of identifying lineup suspects (25% overall) but the sequential procedure produced a significantly lower rate (11%) of identifying known-innocent lineup fillers than did the simultaneous procedure (18%). The simultaneous/sequential pattern did not significantly interact with estimator variables and no lineup-position effects were observed for either the simultaneous or sequential procedures. Rates of nonidentification were not significantly different for simultaneous and sequential but nonidentifiers from the sequential procedure were more likely to use the "not sure" response option than were nonidentifiers from the simultaneous procedure. Among witnesses who made an identification, 36% (41% of simultaneous and 32% of sequential) identified a known-innocent filler rather than a suspect, indicating that eyewitness performance overall was very poor. The results suggest that the sequential procedure that is used in the field reduces the identification of known-innocent fillers, but the differences are relatively small. PMID:24933175

  8. [The Red Cross System for War Relief during the Second World War and Actual Conditions of Its Efforts in Burma].

    PubMed

    Kawahara, Yukari

    2015-12-01

    This paper aims to show the system for relief provided by the Japanese Red Cross relief units during the Second World War, as well as the actual activities of sixteen of its relief units dispatched to Burma. The Red Cross wartime relief efforts involved using personnel and funding prepared beforehand to provide aid to those injured in war, regardless of their status as ally or enemy. Thus they were able to receive support from the army in order to ensure safety and provide supplies. Nurses dispatched to Burma took care of many patients who suffered from malnutrition and physical injuries amidst the outbreak of infectious diseases typical of tropical areas, without sufficient replacement members. Base hospitals not meant for the front lines also came under attack, and the nurses' lives were thus in mortal danger. Of the 374 original members, 29 died or went missing in action. PMID:27089733

  9. Micromorphology of neurohypophysis of rats under experimental conditions

    NASA Technical Reports Server (NTRS)

    Meitner, E. R.; Proksova, E.

    1979-01-01

    The changes of the quantity of neurosecretory substance in neurohypophysis of rats under various experimental conditions are investigated. Comparing to the norm the quantity of neurosecretion after a long stay in the dark was larger. In animals subjected to immobilization stress the picture of neurohypophysis remained unchanged. It changed only in correlation with the administered water. Results indicate that the immobilization stress, in contradistinction to dolorose stress, has no substantial influence upon the quantity of neurosecretion in neurohypophysis.

  10. Experimental evaluation of automotive air-conditioning using HFC-134a and HC-134a

    NASA Astrophysics Data System (ADS)

    Nasution, Henry; Zainudin, Muhammad Amir; Aziz, Azhar Abdul; Latiff, Zulkarnain Abdul; Perang, Mohd Rozi Mohd; Rahman, Abd Halim Abdul

    2012-06-01

    An experimental study to evaluate the energy consumption of an automotive air conditioning is presented. In this study, these refrigerants will be tested using the experimental rig which simulated the actual cars as a cabin complete with a cooling system component of the actual car that is as the blower, evaporator, condenser, radiators, electric motor, which acts as a vehicle engine, and then the electric motor will operate the compressor using a belt and pulley system, as well as to the alternator will recharge the battery. The compressor working with the fluids HFC-134a and HC-134a and has been tested varying the speed in the range 1000, 1500, 2000 and 2500 rpm. The measurements taken during the one hour experimental periods at 2-minutes interval times for temperature setpoint of 20°C with internal heat loads 0, 500, 700 and 1000 W. The final results of this study show an overall better energy consumption of the HFC-134a compared with the HC-134a.

  11. Condition-dependent movement and dispersal in experimental metacommunities.

    PubMed

    Fronhofer, Emanuel A; Klecka, Jan; Melián, Carlos J; Altermatt, Florian

    2015-09-01

    Dispersal and the underlying movement behaviour are processes of pivotal importance for understanding and predicting metapopulation and metacommunity dynamics. Generally, dispersal decisions are condition-dependent and rely on information in the broad sense, like the presence of conspecifics. However, studies on metacommunities that include interspecific interactions generally disregard condition-dependence. Therefore, it remains unclear whether and how dispersal in metacommunities is condition-dependent and whether rules derived from single-species contexts can be scaled up to (meta)communities. Using experimental protist metacommunities, we show how dispersal and movement depend on and are adjusted by the strength of interspecific interactions. We found that the predicting movement and dispersal in metacommunities requires knowledge on behavioural responses to intra- and interspecific interaction strengths. Consequently, metacommunity dynamics inferred directly from single-species metapopulations without taking interspecific interactions into account are likely flawed. Our work identifies the significance of condition-dependence for understanding metacommunity dynamics, stability and the coexistence and distribution of species. PMID:26206470

  12. Experimental simulations of oxidizing conditions and organic decomposition on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Mancinelli, Rocco L.; Mckay, Christopher P.

    1988-01-01

    One important scientific objective of a Mars Rover Sample Return mission would be to look for traces of living and extinct life on Mars. An instrument to search for organic carbon may be the simplest instrument that could screen samples which are interesting from a biological point of view. An experimental program is described which would help to understand the nature of the oxidizing soil on Mars and the mechanism responsible for organic degradation on the Martian surface. This is approached by lab simulations of the actual conditions that occur on Mars, particularly the oxidant production by atmospheric photochemistry, and the combined effects of UV light and oxidants in decomposing organic compounds. The results will be used to formulate models of the photochemistry of the atmospheric, the atmosphere-soil interaction, and the diffusion of reactive compounds into the soils. This information will provide insights and constraints on the design of a sampling strategy to search for organic compounds on Mars.

  13. Experimental and numerical analysis of rider motion in weave conditions

    NASA Astrophysics Data System (ADS)

    Doria, A.; Formentini, M.; Tognazzo, M.

    2012-08-01

    Motorcycle dynamics is characterised by the presence of modes of vibration that may become unstable and lead to dangerous conditions. In particular, the weave mode shows large yaw and roll oscillations of the rear frame and out of phase oscillations of the front frame about the steer axis. The presence of the rider influences the modes of vibration, since the mass, stiffness and damping of limbs modify the dynamic properties of the system; moreover, at low frequency the rider can control oscillations. There are few experimental results dealing with the response of the rider in the presence of large oscillations of the motorcycle. This lack is due to the difficulty of carrying out measurements on the road and of reproducing the phenomena in the laboratory. This paper deals with a research programme aimed at measuring the oscillations of the rider's body on a running motorcycle in the presence of weave. First, testing equipment is presented. It includes a special measurement device that is able to measure the relative motion between the rider and the motorcycle. Then the road tests carried out at increasing speeds (from 160 to 210 km/h) are described and discussed. Best-fitting methods are used for identifying the main features of measured vibrations in terms of natural frequencies, damping ratios and modal shapes. The last section deals with the comparison between measured and simulated response of the motorcycle-rider system in weave conditions; good agreement was found.

  14. Experimental study of infrared filaments under different initial conditions

    NASA Astrophysics Data System (ADS)

    Mirell, Daniel Joseph

    field that gives birth to multiphoton and avalanche ionization), (b) conical emission/supercontinuum generation, and (c) emitted THz radiation. The aim of all of this research is to gain a better understanding of filamentation so that we may learn how to control them for the applications of: (a) laser-induced lightning, (b) laser-induced breakdown spectroscopy, (c) LIDAR, (d) medical imaging and many more. In this dissertation we will focus on an experimental study of filamentation in air produced by 780 nm radiation, pulsewidths of 200 fs, and energies pulse of 9 mJ/pulse. We have used an aerodynamic window + vacuum system to study the difference between focusing filament forming pulses down initially in vacuum conditions to that where it is allowed to focus in atmosphere. Described herein is a new way to use an off-the-shelf, inexpensive and robust 1064 nm mirror to observe the beam profile and its evolution in the filament as well as the filaments spectral properties. In addition, experiments to test for the plasma have been conducted. The results of these experiments indicate filament sizes of 200mum, in contrast to the commonly reported value of 100pm. Filaments of this size exist over a length of approximately a meter which is 8 times longer than the associated Rayleigh range for such a spot size with a clear enhancement in filament persistence with the use of the aerodynamic window. In addition the appearance of newly generated "bluer" frequencies that is present under atmospheric focusing is ail but eliminated through an initial focusing of the beam in vacuum conditions. Plasma densities of 1016 e -/cm3 were measured using plasma interferometry.

  15. Experimental verification of boundary conditions for numerical simulation of airflow in a benchmark ventilation channel

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Niedoba, Pavel; Seda, Libor; Jedelsky, Jan; Jicha, Miroslav

    2016-03-01

    Correct definition of boundary conditions is crucial for the appropriate simulation of a flow. It is a common practice that simulation of sufficiently long upstream entrance section is performed instead of experimental investigation of the actual conditions at the boundary of the examined area, in the case that the measurement is either impossible or extremely demanding. We focused on the case of a benchmark channel with ventilation outlet, which models a regular automotive ventilation system. At first, measurements of air velocity and turbulence intensity were performed at the boundary of the examined area, i.e. in the rectangular channel 272.5 mm upstream the ventilation outlet. Then, the experimentally acquired results were compared with results obtained by numerical simulation of further upstream entrance section defined according to generally approved theoretical suggestions. The comparison showed that despite the simple geometry and general agreement of average axial velocity, certain difference was found in the shape of the velocity profile. The difference was attributed to the simplifications of the numerical model and the isotropic turbulence assumption of the used turbulence model. The appropriate recommendations were stated for the future work.

  16. Experimental investigation of single carbon compounds under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Seewald, Jeffrey S.; Zolotov, Mikhail Yu.; McCollom, Thomas

    2006-01-01

    The speciation of carbon in subseafloor hydrothermal systems has direct implications for the maintenance of life in present-day vent ecosystems and possibly the origin of life on early Earth. Carbon monoxide is of particular interest because it represents a key reactant during the abiotic synthesis of reduced carbon compounds via Fischer-Tropsch-type processes. Laboratory experiments were conducted to constrain reactions that regulate the speciation of aqueous single carbon species under hydrothermal conditions and determine kinetic parameters for the oxidation of CO according to the water water-gas shift reaction (CO 2 + H 2 = CO + H 2O). Aqueous fluids containing added CO 2, CO, HCOOH, NaHCO 3, NaHCOO, and H 2 were heated at 150, 200, and 300 °C and 350 bar in flexible-cell hydrothermal apparatus, and the abundances of carbon compounds was monitored as a function of time. Variations in fluid chemistry suggest that the reduction of CO 2 to CH 3OH under aqueous conditions occurs via a stepwise process that involves the formation of HCOOH, CO, and possibly CH 2O, as reaction intermediaries. Kinetic barriers that inhibit the reduction of CH 3OH to CH 4 allow the accumulation of reaction intermediaries in solution at high concentrations regulated by metastable thermodynamic equilibrium. Reaction of CO 2 to CO involves a two-step process in which CO 2 initially undergoes a reduction step to HCOOH which subsequently dehydrates to form CO. Both reactions proceed readily in either direction. A preexponential factor of 1.35 × 10 6 s -1 and an activation energy of 102 kJ/mol were retrieved from the experimental results for the oxidation of CO to CO 2. Reaction rates amongst single carbon compounds during the experiments suggest that ΣCO 2 (CO 2 + HCO 3- + CO 32-), CO, ΣHCOOH (HCOOH + HCOO -), and CH 3OH may reach states of redox-dependent metastable thermodynamic equilibrium in subseafloor and other hydrothermal systems. The abundance of CO under equilibrium conditions

  17. Formation of hydrocarbons under upper mantle conditions: experimental view

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Anton; Kutcherov, Vladimir G.

    2010-05-01

    Main postulates of the theory of abiogenic abyssal origin of petroleum have been developed in the last 50 years in Russia and Ukraine. According to this theory, hydrocarbon compounds were generated in the mantle and migrated through the deep faults into the Earth's crust. There they formed oil and gas deposits in any kinds of rocks and in any kind of their structural positions. Until recently the main obstacle to accept the theory was the lack of reliable and reproducible experimental data confirming the possibility of the synthesis of complex hydrocarbon systems under the mantle conditions. The results received in the last decade by different groups of researchers from Russia, U.S.A. and China have confirmed the possibility of generation of hydrocarbons from inorganic materials, highly distributed in the Earth's mantle, under thermobaric conditions of 70-250 km: 2 - 5 GPa and 1000-1500 K. Experiments made in the CONAC chamber at pressures of 3-5 GPa and temperatures of 1000-1500 K by Kutcherov et al. [1, 2] have demonstrated that the mixtures of hydrocarbons with composition similar to natural hydrocarbon systems have been received as a result of chemical reactions between CaCO3, FeO and H2O. Methane formation from the same compounds was registered after heating up to 600-1500 K at pressures of 4-11 GPa in diamond anvil cells [4, 5, 6]. Influence of oxidation state of carbon donor and cooling rate of the fluid synthesized at high pressure were studied using different types of high pressure equipments. It was shown that composition of the final hydrocarbon mixture depends on these parameters. Experimental investigations of transformation of methane and ethane at 2-5 GPa and 1000-1500 K [3] confirmed thermodynamic stability of heavy hydrocarbons in the upper mantle and showed the possibility of hydrocarbon chain growth even at oxidative environment. For development of the theory of abiogenic abyssal origin of petroleum it is necessary to arrange a set of new

  18. Experimental Constraints on He, Ne, Ar Behavior at Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Kelley, S. P.; Parman, S. W.; Cooper, R. F.

    2010-12-01

    We have experimentally constrained He, Ne and Ar mineral-melt partitioning for olivine, enstatite and spinel under mantle P-T conditions. The experiments were run in a piston cylinder apparatus. Run products were analyzed by UV laser ablation microprobe (UVLAMP). Our data (Ol, Opx, Sp), along with literature data (Cpx), suggest He, Ne and Ar are incompatible during mantle melting. Gem quality crystals of En100, Sp and Fo90 were polished using colloidal silica and loaded along with a MgO rich, synthetic MORB powder into a graphite inner and Pt outer capsule. Within the inner capsule, crystals were faced against graphite, an identical crystal or polished glassy carbon. Equal pressures (40-60 total bars) of He, Ne and Ar were loaded into the outer capsule before it was welded closed. The run conditions were 1450C and 1-2 GPa for 10 hrs (Brown University). Depth profiles of the mineral faces were obtained using a 193 nm excimer laser (Open University). The large crystal area and short wavelength laser allows for measurements with high depth resolution and concentration precision: a 400 um aperture with 150 nm ablation depth can provide a detection limit (3 sigma > blank) of ~500 ppb He, ~1 ppm Ne and ~500 ppb Ar. Three mineral ablation pits were imaged using a white light interferometer at Tufts University and indicate an ablation rate of ~25 nm/pulse. Glass ablation rates are estimated using previous measurements. The melts were generally understaturated with respect to He, Ne and Ar (1-10, 3-200 and 4-1000 PPM, respectively). Concentrations in the minerals were mostly below detection limits. Where detectable, near surface gas concentrations visually correlate with the amount of adhering graphite. This could be due to trapped/adsorbed gas in the graphite or to surface deformation produced by the graphite. The surface with the least adhering graphite and smoothest surface (faced against glassy carbon) shows no observable near surface enrichment of He, Ne or Ar. Given

  19. Actual Condition of Paddy Field Levee Maintenance by Various Farm Households including Large-scale Farming in the Developed Land Renting Area

    NASA Astrophysics Data System (ADS)

    Sakata, Yasuyo

    The survey of interview, resource acquisition, photographic operation, and questionnaire were carried out in the “n” Community in the “y” District in Hakusan City in Ishikawa Prefecture to investigate the actual condition of paddy field levee maintenance in the area where land-renting market was proceeding, large-scale farming was dominant, and the problems of geographically scattered farm-land existed. In the study zone, 1) an agricultural production legal person rent-cultivated some of the paddy fields and maintained the levees, 2) another agricultural production legal person rent-cultivated some of the soy bean fields for crop changeover and land owners maintained the levees. The results indicated that sufficient maintenance was executed on the levees of the paddy fields cultivated by the agricultural production legal person, the soy bean fields for crop changeover, and the paddy fields cultivated by the land owners. Each reason is considered to be the managerial strategy, the economic incentive, the mutual monitoring and cross-regulatory mechanism, etc.

  20. Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): Actual Condition of Coral Reefs Associated with the Guanica and Manati Watersheds in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Barreto, M.; Guild, L. S.; Ortiz, J.; Setegn, S. G.; Ramos-Scharron, C. E.; Armstrong, R.; Santiago, L.

    2015-12-01

    For several decades Puerto Rico's coastal and marine ecosystems (CMEs), particularly coral reefs, have suffered the effects of anthropogenic stresses associated to population growth and varying land use. Here we present an overview of the first year of findings of a NASA-funded project that studies human impacts in two priority watersheds (Manatí and Guánica). The project includes remote sensing analysis and hydrological, ecological and socio-economic modeling to provide a multi-decadal assessment of change of CMEs. The project's main goal is to evaluate the impacts of land use/land cover changes on the quality and extent of CMEs in priority watersheds in the north and south coasts of Puerto Rico. This project will include imagery from Landsat 8 to assess coastal ecosystems extent. Habitat and species distribution maps will be created by incorporating field and remotely-sensed data into an Ecological Niche Factor Analysis. The social component will allow us to study the valuation of specific CMEs attributes from the stakeholder's point of view. Field data was collected through a series of phototransects at the main reefs associated with these two priority watersheds. A preliminary assessment shows a range in coral cover from 0.2-30% depending on the site (Guánica) whereas apparently healthy corals dominate the reef in the north coast (Manatí). Reefs on the southwest coast of PR (Guánica) show an apparent shift from hard corals to a more algae and soft corals dominance after decades of anthropogenic impacts (sedimentation, eutrophication, mechanical damage through poorly supervised recreational activities, etc.). Additionally preliminary results from land cover/land use changes analyses show dynamic historical shoreline changes in beaches located west of the Manatí river mouth and a degradation of water quality in Guánica possibly being one of the main factors affecting the actual condition of its CMEs.

  1. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  2. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under a variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  3. Wall conditioning for ITER: Current experimental and modeling activities

    NASA Astrophysics Data System (ADS)

    Douai, D.; Kogut, D.; Wauters, T.; Brezinsek, S.; Hagelaar, G. J. M.; Hong, S. H.; Lomas, P. J.; Lyssoivan, A.; Nunes, I.; Pitts, R. A.; Rohde, V.; de Vries, P. C.

    2015-08-01

    Wall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET-CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.

  4. Solid-State Photomultipliers Operated In Extreme Experimental Conditions.

    NASA Astrophysics Data System (ADS)

    Johnson, Erik; Augustine, Skip; Stapels, Christopher; Sia, Radia; Christian, James

    2007-10-01

    Nuclear and high-energy physics experiments that are conducted in harsh environments, such as in a liquid nitrogen bath, a high magnetic field of several Tesla, a small physical region of a few centimeters, a high intensity radiation field of hundreds of mrad/hour, require improved sensors that operate in these conditions. Advances in detector technology used in extreme environments can improve the data quality and allow new designs for experiments that operate under these conditions. Solid-State Photomultipliers (SSPM), a device built from an array of photodiodes, is a compact, high-gain photodetector with insensitivity to low temperatures, high radiation fields, and strong magnetic fields. Radiation Monitoring Devices has built SSPMs with CMOS processes, which allows for integrating signal processing and photon collection on one chip, allowing for a detector-on-a-chip design. SSPMs were exposed to 26 rads of dose from beams of 1 GeV/n silicon nuclei and 1 GeV protons, low temperature conditions from 77 K to 4 K, and high magnetic fields around 1 Tesla. The SSPMs were characterized under these extreme conditions.

  5. Experimental characterization of hohlraum conditions by X-ray spectroscopy

    SciTech Connect

    Back, C.A.; Hsieh, E.J.; Kauffman, R.L.

    1996-06-01

    Spectroscopy is a powerful technique used to measure the plasma parameters relevant to Inertial Confinement Fusion (ICF) plasmas. For instance, the onset of spectral signals from multilayer targets have been used to determine ablation rate scalings. Temperature and density measurements in coronal plasmas have enabled the study of laser coupling efficiency as a function of the laser wavelengths. More recently, dopants have been successfully used to determine capsule conditions of ICF targets. However, few spectroscopic studies have been performed to diagnose plasma conditions of the hohlraum itself. Several laboratories have studied enclosed cavities, previously concentrating on measurements of the radiative heat wave, the x-ray conversion efficiency, and temporal evolution of Au x rays. Measurements of electron temperature T{sub e} and electron densities n{sub e} are difficult because many physical processes occur and each diagnostic`s line-of-sight is restricted by the hohlraum wall. However, they are worth pursuing because they can provide critical information on the target energetics and the evolution of plasma parameters important to achieving fusion. Here the authors discuss spectroscopic tracers to diagnose plasma conditions in the hohlraum, using time- and space-resolved measurements. The tracers are typically mid-Z elements which are placed on the hohlraum wall or supended in the hohlraum volume. To demonstrate the breadth of measurements that can be performed, three types of experiments are presented.

  6. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study

    PubMed Central

    Albarbar, Alhussein; Mekid, Samir; Starr, Andrew; Pietruszkiewicz, Robert

    2008-01-01

    With increasing demands for wireless sensing nodes for assets control and condition monitoring; needs for alternatives to expensive conventional accelerometers in vibration measurements have been arisen. Micro-Electro Mechanical Systems (MEMS) accelerometer is one of the available options. The performances of three of the MEMS accelerometers from different manufacturers are investigated in this paper and compared to a well calibrated commercial accelerometer used as a reference for MEMS sensors performance evaluation. Tests were performed on a real CNC machine in a typical industrial environmental workshop and the achieved results are presented.

  7. Experimental study on neptunium migration under in situ geochemical conditions

    NASA Astrophysics Data System (ADS)

    Kumata, M.; Vandergraaf, T. T.

    1998-12-01

    Results are reported for migration experiments performed with Np under in situ geochemical conditions over a range of groundwater flow rates in columns of crushed rock in a specially designed facility at the 240-level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. This laboratory is situated in an intrusive granitic rock formation, the Lac du Bonnet batholith. Highly altered granitic rock and groundwater were obtained from a major subhorizontal fracture zone at a depth of 250 m in the URL. The granite was wet-crushed and wet-sieved with groundwater from this fracture zone. The 180-850-μm size fraction was selected and packed in 20-cm long, 2.54-cm in diameter Teflon™-lined stainless steel columns. Approximately 30-ml vols of groundwater containing 3HHO and 237Np were injected into the columns at flow rates of 0.3, 1, and 3 ml/h, followed by elution with groundwater, obtained from the subhorizontal fracture, at the same flow rates, for a period of 95 days. Elution profiles for 3HHO were obtained, but no 237Np was detected in the eluted groundwater. After terminating the migration experiments, the columns were frozen, the column material was removed and cut into twenty 1-cm thick sections and each section was analyzed by gamma spectrometry. Profiles of 237Np were obtained for the three columns. A one-dimensional transport model was fitted to the 3HHO breakthrough curves to obtain flow parameters for this experiment. These flow parameters were in turn applied to the 237Np concentration profiles in the columns to produce sorption and dispersion coefficients for Np. The results show a strong dependence of retardation factors ( Rf) on flow rate. The decrease in the retarded velocity of the neptunium ( Vn) varied over one order of magnitude under the geochemical conditions for these experiments.

  8. Experimental observations of dolomite dissolution in geologic carbon sequestration conditions

    NASA Astrophysics Data System (ADS)

    Luhmann, A. J.; Kong, X.; Tutolo, B. M.; Saar, M. O.; Seyfried, W. E.

    2013-12-01

    One sequestration scenario proposed to reduce CO2 emissions involves injecting CO2 into saline formations or hydrocarbon reservoirs, where dolomite frequently occurs. To better understand fluid-mineral interactions in these sequestration settings, we have conducted a series of single-pass, flow-through experiments on dolomite core samples with CO2-bearing brine. An important component of the experimental design was to maintain the fabric of the rock so as to more accurately simulate fluid flow in natural dolomite-bearing systems. Seven experiments were conducted at 100°C and a pore-fluid pressure of 150 bars with a fluid containing 1 molal NaCl and 0.6 molal dissolved CO2. Flow rates ranged from 0.01 to 1 ml/min. Each experiment was terminated before dissolution breakthrough, but permeability increased by approximately an order of magnitude for all experiments. In general, Ca and Mg concentrations were initially high, but then decreased with reaction progress. We hypothesize that time-dependent changes in fluid chemistry reflect reduction in reactive surface area. Fluid chemistry also indicates preferential removal of Ba, Mn, and Sr with respect to Ca and Mg. In the extreme case, 70% of the Ba was removed from one core, while only 3% of the Ca, Mg, or the entire core mass was removed by dissolution. Ongoing work is focused on identifying elemental distributions throughout the rock to better understand the dissolution process. With fluid chemistry and BET surface area, we model dissolution rate as a function of core length using reactive transport simulations and compare our whole rock, far from equilibrium dissolution rates with analogous data reported in the literature. Finally, X-ray computed tomography images enable reconstructions of dissolution patterns, and they are being used to explore the effect of pore space heterogeneity on flow path development. Geologic carbon sequestration in dolomite will produce significant dissolution at the brine/CO2 interface

  9. [Investigation of the actual conditions of hospital nurses working on three rotating shifts: questionnaire results of shift work schedules, feelings of sleep and fatigue, and depression].

    PubMed

    Matsumoto, M; Kamata, S; Naoe, H; Mutoh, F; Chiba, S

    1996-01-01

    These studies were performed to clarify (1) the actual conditions concerning rotating shift schedules of nurses in Japanese university and college hospitals and to evaluate (2) some aspects of the physical and mental health, and (3) sleep profile of hospital nurses working on counter-clockwise shift rotation. Two questionnaire surveys and the OSA sleep inventory (OSA) were carried out. The subjects in the study (1) were a total of 80 nursing directors in university and college hospitals. The questionnaire covered 4 categories, such as the schedule most frequently adopted and reasons for using the schedule. The questionnaires were returned by 67 directors (83.8%). The subjects in the study (2) were 189 nurses working on three-shift work schedules at Asahikawa Medical College Hospital. The items in the questionnaire covered 7 categories, as follows: 1) feeling of sleep after each shift (8 items); 2) feeling of fatigue after each shift (30 items); 3) physical symptoms; 4) inter-personal problems; 5) all the items on Zung's self-rating depression scale (SDS); 6) all the items on the Horne and Ostberg morningness-eveningness questionnaire; and 7) 24 items on the Maudsley personality inventory. The questionnaires were returned by 156 nurses (82.5%), whose mean age and duration of shift-work employment were 27.2 +/- 5.1 and 5.0 +/- 4.3 years (mean +/- SD), respectively. For 152 nurses (97.4%) of those returning the questionnaire, the working schedule consisted of 2 consecutive night shifts and 2 consecutive evening shifts, following a variable number of day shifts (rapid and counterclockwise shift rotation). The subjects in the study (3) were 8 healthy nurses working on above-mentioned three rotating shifts at the psychiatric ward of Asahikawa Medical College Hospital, whose mean age was 29.4 +/- 5.8 years (mean +/- SD). All the subjects recorded their sleep-logs and underwent OSA everyday for 30 consecutive days. Of the 240 OSA data, 95 data (16 after day shift, 17 after

  10. Experimental results from containment piping bellows subjected to severe accident conditions: Results from bellows tested in corroded conditions. Volume 2

    SciTech Connect

    Lambert, L.D.; Parks, M.B.

    1995-10-01

    Bellows are an integral part of the containment pressure boundary in nuclear power plants. They are used at piping penetrations to allow relative movement between piping and the containment wall, while minimizing the load imposed on the piping and wall. Piping bellows are primarily used in steel containments; however, they have received limited use in some concrete (reinforced and prestressed) containments. In a severe accident they may be subjected to pressure and temperature conditions that exceed the design values, along with a combination of axial and lateral deflections. A test program to determine the leak-tight capacity of containment penetration bellows is being conducted at Sandia National Laboratories under the sponsorship of the US Nuclear Regulatory Commission. Several different bellows geometries, representative of actual containment bellows, have been subjected to extreme deflections along with pressure and temperature loads. The bellows geometries and loading conditions are described along with the testing apparatus and procedures. A total of nineteen bellows have been tested. Thirteen bellows were tested in ``like-new`` condition (results reported in Volume 1), and six were tested in a corroded condition. The tests showed that bellows in ``like-new`` condition are capable of withstanding relatively large deformations, up to, or near, the point of full compression or elongation, before developing leakage, while those in a corroded condition did not perform as well, depending on the amount of corrosion. The corroded bellows test program and results are presented in this report.

  11. Actual Condition Evaluation of Cogeneration System in an Urbanized Hotel, and Study of the Optimal Operation to Minimize the CO2 Emission

    NASA Astrophysics Data System (ADS)

    Katsuta, Masafumi; Kaneko, Akira; Yamamoto, Toru

    Recently, there is an important subject to reduce of the CO2 emission discharged from a building. A cogeneration system (CGS) is one of the effective facilities to reduce of the CO2 emission, but prudent consideration is required in design and operation. Because it is necessary to be matching electric demand and heat demand in order to obtain the high efficiency. In this paper, it is evaluated the power generation efficiency and heat recovery one of CGS in the actual urbanized hotel as measurement result. In addition, the optimal operation analysis is carried out in order to minimize CO2 emission in the present facility.

  12. Experimental measurements of heat transfer from an iced surface during artificial and natural cloud icing conditions

    NASA Technical Reports Server (NTRS)

    Kirby, Mark S.; Hansman, R. John, Jr.

    1988-01-01

    The heat transfer behavior of accreting ice surfaces in natural (flight test) and simulated (wind tunnel) cloud icing conditions were studied. Observations of wet and dry ice growth regimes as measured by ultrasonic pulse echo techniques were made. Observed wet and dry ice growth regimes at the stagnation point of a cylinder were compared with those predicted using a quasi steady state heat balance model. A series of heat transfer coefficients were employed by the model to infer the local heat transfer behavior of the actual ice surfaces. The heat transfer in the stagnation region was generally inferred to be higher in wind tunnel icing tests than in natural flight icing conditions.

  13. Experimental studies of the energetically effective conditions of grinding of solids

    NASA Astrophysics Data System (ADS)

    Zheng, Yu.; Kuznetsova, M. M.; Ved', V. E.; Aleksina, A. A.

    2016-05-01

    The energy effective conditions of milling of solids in a ball mill are experimentally studied. These data support the usefulness of developed techniques to determine the rational parameters of milling and to analyze the energy efficiency of milling equipment.

  14. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    ScienceCinema

    None

    2011-10-06

    How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  15. Indicated and actual mass inventory measurements for an inverted U-tube steam generator

    SciTech Connect

    Loomis, G.G.; Plessinger, M.P.; Boucher, T.J.

    1986-01-01

    Results from an experimental investigation of actual versus indicated secondary liquid level in a steam generator at steaming conditions are presented. The experimental investigation was performed in two different small scale U-tube-in-shell steam generators at typical pressurized water reactor operating conditions (5-7 MPa; saturated) in the Semiscale facility. During steaming conditions, the indicated secondary liquid level was found to vary considerably from the actual ''bottled-up'' liquid level. These difference between indicated and actual liquid level are related to the frictional pressure drop associated with the two-phase steaming condition in the riser. Data from a series of bottle-up experiments (Simultaneously, the primary heat source and secondary feed and steam are terminated) are tabulated and the actual liquid level is correlated to the indicated liquid level.

  16. A New Experimental Method for in Situ Corrosion Monitoring Under Alternate Wet-Dry Conditions

    PubMed Central

    Fu, Xinxin; Dong, Junhua; Han, Enhou; Ke, Wei

    2009-01-01

    A new experimental method was applied in in situ corrosion monitoring of mild steel Q235 under alternate wet-dry conditions. The thickness of the electrolyte film during the wet cycle was monitored by a high-precision balance with a sensibility of 0.1 mg. At the same time, an electrochemical impedance technique was employed to study the effect of film thickness on corrosion rates. Experimental results showed that there was a critical electrolyte film condition for which the corrosion rate reached a maximum during wet-dry cycles. For the substrate, the critical condition could be described by a film thickness of about 17 μm. For the rusted specimen, the critical condition could be described by an electrolyte amount of about 0.038 g, which is equivalent to a film thickness of 38 μm. This monitoring system was very useful for studying atmospheric corrosion of metals covered by corrosion products. PMID:22303180

  17. A new experimental method for in situ corrosion monitoring under alternate wet-dry conditions.

    PubMed

    Fu, Xinxin; Dong, Junhua; Han, Enhou; Ke, Wei

    2009-01-01

    A new experimental method was applied in in situ corrosion monitoring of mild steel Q235 under alternate wet-dry conditions. The thickness of the electrolyte film during the wet cycle was monitored by a high-precision balance with a sensibility of 0.1 mg. At the same time, an electrochemical impedance technique was employed to study the effect of film thickness on corrosion rates. Experimental results showed that there was a critical electrolyte film condition for which the corrosion rate reached a maximum during wet-dry cycles. For the substrate, the critical condition could be described by a film thickness of about 17 μm. For the rusted specimen, the critical condition could be described by an electrolyte amount of about 0.038 g, which is equivalent to a film thickness of 38 μm. This monitoring system was very useful for studying atmospheric corrosion of metals covered by corrosion products. PMID:22303180

  18. Experimental and Theoretical Determination of Heavy Oil Viscosity Under Reservoir Conditions

    SciTech Connect

    Gabitto, Jorge; Barrufet, Maria

    2002-03-11

    The main objective of this research was to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes.

  19. [Effect of phenibut on the behavior of experimental animals under conditions of voluntary chronic alcoholism].

    PubMed

    Tiurenkov, I N; Voronkov, A V; Borodkina, L E

    2005-01-01

    The effect of phenibut on the locomotor and orientation-research activity, as well as on the alcohol and food motivation, was studied on experimental animals under conditions of voluntary chronic alcoholism. Phenibut decreased the manifestations of alcohol-induced behavioral disorders and reduced alcohol motivation. PMID:16047680

  20. QEEG Spectral and Coherence Assessment of Autistic Children in Three Different Experimental Conditions

    ERIC Educational Resources Information Center

    Machado, Calixto; Estévez, Mario; Leisman, Gerry; Melillo, Robert; Rodríguez, Rafael; DeFina, Phillip; Hernández, Adrián; Pérez-Nellar, Jesús; Naranjo, Rolando; Chinchilla, Mauricio; Garófalo, Nicolás; Vargas, José; Beltrán, Carlos

    2015-01-01

    We studied autistics by quantitative EEG spectral and coherence analysis during three experimental conditions: basal, watching a cartoon with audio (V-A), and with muted audio band (VwA). Significant reductions were found for the absolute power spectral density (PSD) in the central region for delta and theta, and in the posterior region for sigma…

  1. Uncertain boundary condition Bayesian identification from experimental data: A case study on a cantilever beam

    NASA Astrophysics Data System (ADS)

    Ritto, T. G.; Sampaio, R.; Aguiar, R. R.

    2016-02-01

    In many mechanical applications (wind turbine tower, substructure joints, etc.), the stiffness of the boundary conditions is uncertain and might decrease with time, due to wear and/or looseness. In this paper, a torsional stiffness parameter is used to model the clamped side of a Timoshenko beam. The goal is to perform the identification with experimental data. To represent the decreasing stiffness of the clamped side, an experimental test rig is constructed, where several rubber layers are added to the clamped side, making it softer. Increasing the number of layers decreases the stiffness, thus representing a loss in the stiffness. The Bayesian approach is applied to update the probabilistic model related to the boundary condition (torsional stiffness parameter). The proposed Bayesian strategy worked well for the problem analyzed, where the experimental natural frequencies were within the 95% confidence limits of the computed natural frequencies probability density functions.

  2. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  3. Failure of the Ingard-Myers boundary condition for a lined duct: an experimental investigation.

    PubMed

    Renou, Ygaäl; Aurégan, Yves

    2011-07-01

    This paper deals with experimental investigation of the lined wall boundary condition in flow duct applications such as aircraft engine systems or automobile mufflers. A first experiment, based on a microphone array located in the liner test section, is carried out in order to extract the axial wavenumbers with the help of an "high-accurate" singular value decomposition Prony-like algorithm. The experimental axial wavenumbers are then used to provide the lined wall impedance for both downstream and upstream acoustic propagation by means of a straightforward impedance education method involving the classical Ingard-Myers boundary condition. The results show that the Ingard-Myers boundary condition fails to predict with accuracy the acoustic behavior in a lined duct with flow. An effective lined wall impedance, valid whatever the direction of acoustic propagation, can be suitably found from experimental axial wavenumbers and a modified version of the Ingard-Myers condition with the form inspired from a previous theoretical study [Aurégan et al., J. Acoust. Soc. Am. 109, 59-64 (2001)]. In a second experiment, the scattering matrix of the liner test section is measured and is then compared to the predicted scattering matrix using the multimodal approach and the lined wall impedances previously deduced. A large discrepancy is observed between the measured and the predicted scattering coefficients that confirms the poor accuracy provided from the Ingard-Myers boundary condition widely used in lined duct applications. PMID:21786877

  4. Anatomic and Functional Connectivity Relationship in Autistic Children During Three Different Experimental Conditions.

    PubMed

    Machado, Calixto; Rodríguez, Rafael; Estévez, Mario; Leisman, Gerry; Melillo, Robert; Chinchilla, Mauricio; Portela, Liana

    2015-10-01

    A group of 21 autistic children were studied for determining the relationship between the anatomic (AC) versus functional (FC) connectivity, considering short-range and long-range brain networks. AC was assessed by the DW-MRI technique and FC by EEG coherence calculation, in three experimental conditions: basal, watching a popular cartoon with audio (V-A), and with muted audio track (VwA). For short-range connections, basal records, statistical significant correlations were found for all EEG bands in the left hemisphere, but no significant correlations were found for fast EEG frequencies in the right hemisphere. For the V-A condition, significant correlations were mainly diminished for the left hemisphere; for the right hemisphere, no significant correlations were found for the fast EEG frequency bands. For the VwA condition, significant correlations for the rapid EEG frequencies mainly disappeared for the right hemisphere. For long-range connections, basal records showed similar correlations for both hemispheres. For the right hemisphere, significant correlations incremented to all EEG bands for the V-A condition, but these significant correlations disappeared for the fast EEG frequencies in the VwA condition. It appears that in a resting-state condition, AC is better associated with functional connectivity for short-range connections in the left hemisphere. The V-A experimental condition enriches the AC and FC association for long-range connections in the right hemisphere. This might be related to an effective connectivity improvement due to full video stimulation (visual and auditory). An impaired audiovisual interaction in the right hemisphere might explain why significant correlations disappeared for the fast EEG frequencies in the VwA experimental condition. PMID:26050707

  5. Influence of Body Condition on Influenza A Virus Infection in Mallard Ducks: Experimental Infection Data

    PubMed Central

    Arsnoe, Dustin M.; Ip, Hon S.; Owen, Jennifer C.

    2011-01-01

    Migrating waterfowl are implicated in the global spread of influenza A viruses (IAVs), and mallards (Anas platyrhynchos) are considered a particularly important IAV reservoir. Prevalence of IAV infection in waterfowl peaks during autumn pre-migration staging and then declines as birds reach wintering areas. Migration is energetically costly and birds often experience declines in body condition that may suppress immune function. We assessed how body condition affects susceptibility to infection, viral shedding and antibody production in wild-caught and captive-bred juvenile mallards challenged with low pathogenic avian influenza virus (LPAIV) H5N9. Wild mallards (n = 30) were separated into three experimental groups; each manipulated through food availability to a different condition level (−20%, −10%, and normal ±5% original body condition), and captive-bred mallards (n = 10) were maintained at normal condition. We found that wild mallards in normal condition were more susceptible to LPAIV infection, shed higher peak viral loads and shed viral RNA more frequently compared to birds in poor condition. Antibody production did not differ according to condition. We found that wild mallards did not differ from captive-bred mallards in viral intensity and duration of infection, but they did exhibit lower antibody titers and greater variation in viral load. Our findings suggest that reduced body condition negatively influences waterfowl host competence to LPAIV infection. This observation is contradictory to the recently proposed condition-dependent hypothesis, according to which birds in reduced condition would be more susceptible to IAV infection. The mechanisms responsible for reducing host competency among birds in poor condition remain unknown. Our research indicates body condition may influence the maintenance and spread of LPAIV by migrating waterfowl. PMID:21857940

  6. Influence of body condition on influenza A virus infection in mallard ducks: Experimental infection data

    USGS Publications Warehouse

    Arsnoe, Dustin M.; Ip, Hon S.; Owen, Jennifer C.

    2011-01-01

    Migrating waterfowl are implicated in the global spread of influenza A viruses (IAVs), and mallards (Anas platyrhynchos) are considered a particularly important IAV reservoir. Prevalence of IAV infection in waterfowl peaks during autumn pre-migration staging and then declines as birds reach wintering areas. Migration is energetically costly and birds often experience declines in body condition that may suppress immune function. We assessed how body condition affects susceptibility to infection, viral shedding and antibody production in wild-caught and captive-bred juvenile mallards challenged with low pathogenic avian influenza virus (LPAIV) H5N9. Wild mallards (n = 30) were separated into three experimental groups; each manipulated through food availability to a different condition level (-20%, -10%, and normal ±5% original body condition), and captive-bred mallards (n = 10) were maintained at normal condition. We found that wild mallards in normal condition were more susceptible to LPAIV infection, shed higher peak viral loads and shed viral RNA more frequently compared to birds in poor condition. Antibody production did not differ according to condition. We found that wild mallards did not differ from captive-bred mallards in viral intensity and duration of infection, but they did exhibit lower antibody titers and greater variation in viral load. Our findings suggest that reduced body condition negatively influences waterfowl host competence to LPAIV infection. This observation is contradictory to the recently proposed condition-dependent hypothesis, according to which birds in reduced condition would be more susceptible to IAV infection. The mechanisms responsible for reducing host competency among birds in poor condition remain unknown. Our research indicates body condition may influence the maintenance and spread of LPAIV by migrating waterfowl.

  7. Influence of body condition on influenza a virus infection in mallard ducks: Experimental infection data

    USGS Publications Warehouse

    Arsnoe, D.M.; Ip, H.S.; Owen, J.C.

    2011-01-01

    Migrating waterfowl are implicated in the global spread of influenza A viruses (IAVs), and mallards (Anas platyrhynchos) are considered a particularly important IAV reservoir. Prevalence of IAV infection in waterfowl peaks during autumn pre-migration staging and then declines as birds reach wintering areas. Migration is energetically costly and birds often experience declines in body condition that may suppress immune function. We assessed how body condition affects susceptibility to infection, viral shedding and antibody production in wild-caught and captive-bred juvenile mallards challenged with low pathogenic avian influenza virus (LPAIV) H5N9. Wild mallards (n = 30) were separated into three experimental groups; each manipulated through food availability to a different condition level (-20%, -10%, and normal ??5% original body condition), and captive-bred mallards (n = 10) were maintained at normal condition. We found that wild mallards in normal condition were more susceptible to LPAIV infection, shed higher peak viral loads and shed viral RNA more frequently compared to birds in poor condition. Antibody production did not differ according to condition. We found that wild mallards did not differ from captive-bred mallards in viral intensity and duration of infection, but they did exhibit lower antibody titers and greater variation in viral load. Our findings suggest that reduced body condition negatively influences waterfowl host competence to LPAIV infection. This observation is contradictory to the recently proposed condition-dependent hypothesis, according to which birds in reduced condition would be more susceptible to IAV infection. The mechanisms responsible for reducing host competency among birds in poor condition remain unknown. Our research indicates body condition may influence the maintenance and spread of LPAIV by migrating waterfowl. ?? 2011 Arsnoe et al.

  8. The Self Actualized Reader.

    ERIC Educational Resources Information Center

    Marino, Michael; Moylan, Mary Elizabeth

    A study examined the commonalities that "voracious" readers share, and how their experiences can guide parents, teachers, and librarians in assisting children to become self-actualized readers. Subjects, 25 adults ranging in age from 20 to 67 years, completed a questionnaire concerning their reading histories and habits. Respondents varied in…

  9. Experimental study of ice lens formation using fine granular materials under terrestrial and martian conditions

    NASA Astrophysics Data System (ADS)

    Saruya, T.; Rempel, A. W.; Kurita, K.

    2012-12-01

    Detailed exploration of Mars has yielded a range of direct and indirect evidence for the distribution of ice. Significantly, direct observations of segregated ice (i.e. sediment free) were obtained by Phoenix lander. This segregated ice most likely originated as an ice lens, which formed by the migration and solidification of unfrozen water. Unfrozen water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state below the normal melting temperature. This water is known to migrate in frozen materials and form ice lenses. Zent et al. (2012) developed a numerical model for ice lens formation (Rempel et al. 2004) and demonstrated that the nucleation of ice lenses at the Phoenix landing site was possible in the recent past. However, many questions remain regarding the detailed conditions of ice lens nucleation and growth, even in the terrestrial environment. Further experimental checks of numerical models are especially needed. Here, we describe laboratory investigations of ice lens behavior under both terrestrial conditions and with experimental conditions approaching those in the martian environment. We have performed a series of step-freezing experiments in fine, granular materials to observe the initiation and growth of ice lenses. Our experiments reveal clear and systematic relationships between ice-lens behavior and the imposed cooling temperature and host particle size. We compared our experimental results to numerical predictions from a model of ice lens formation (Rempel et al. 2004) that was applied to our experimental conditions. We find that the trend is consistent between the experiment and model, however, there are important quantitative differences. Most notably, modeled ice-lens nucleation occurred more quickly and enabled ice lenses to grow larger than occurred during our experiments. We infer that some additional mechanisms must be responsible for restricting the formation and growth of ice lenses. Further

  10. An experimental test of condition-dependent male and female mate choice in zebra finches.

    PubMed

    Holveck, Marie-Jeanne; Geberzahn, Nicole; Riebel, Katharina

    2011-01-01

    In mating systems with social monogamy and obligatory bi-parental care, such as found in many songbird species, male and female fitness depends on the combined parental investment. Hence, both sexes should gain from choosing mates in high rather than low condition. However, theory also predicts that an individual's phenotypic quality can constrain choice, if low condition individuals cannot afford prolonged search efforts and/or face higher risk of rejection. In systems with mutual mate choice, the interaction between male and female condition should thus be a better predictor of choice than either factor in isolation. To address this prediction experimentally, we manipulated male and female condition and subsequently tested male and female mating preferences in zebra finches Taeniopygia guttata, a songbird species with mutual mate choice and obligatory bi-parental care. We experimentally altered phenotypic quality by manipulating the brood size in which the birds were reared. Patterns of association for high- or low-condition individuals of the opposite sex differed for male and female focal birds when tested in an 8-way choice arena. Females showed repeatable condition-assortative preferences for males matching their own rearing background. Male preferences were also repeatable, but not predicted by their own or females' rearing background. In combination with a brief review of the literature on condition-dependent mate choice in the zebra finch we discuss whether the observed sex differences and between-studies differences arise because males and females differ in context sensitivity (e.g. male-male competition suppressing male mating preferences), sampling strategies or susceptibility to rearing conditions (e.g. sex-specific effect on physiology). While a picture emerges that juvenile and current state indeed affect preferences, the development and context-dependency of mutual state-dependent mate choice warrants further study. PMID:21901147

  11. An Experimental Test of Condition-Dependent Male and Female Mate Choice in Zebra Finches

    PubMed Central

    Holveck, Marie-Jeanne; Geberzahn, Nicole; Riebel, Katharina

    2011-01-01

    In mating systems with social monogamy and obligatory bi-parental care, such as found in many songbird species, male and female fitness depends on the combined parental investment. Hence, both sexes should gain from choosing mates in high rather than low condition. However, theory also predicts that an individual's phenotypic quality can constrain choice, if low condition individuals cannot afford prolonged search efforts and/or face higher risk of rejection. In systems with mutual mate choice, the interaction between male and female condition should thus be a better predictor of choice than either factor in isolation. To address this prediction experimentally, we manipulated male and female condition and subsequently tested male and female mating preferences in zebra finches Taeniopygia guttata, a songbird species with mutual mate choice and obligatory bi-parental care. We experimentally altered phenotypic quality by manipulating the brood size in which the birds were reared. Patterns of association for high- or low-condition individuals of the opposite sex differed for male and female focal birds when tested in an 8-way choice arena. Females showed repeatable condition-assortative preferences for males matching their own rearing background. Male preferences were also repeatable, but not predicted by their own or females' rearing background. In combination with a brief review of the literature on condition-dependent mate choice in the zebra finch we discuss whether the observed sex differences and between-studies differences arise because males and females differ in context sensitivity (e.g. male-male competition suppressing male mating preferences), sampling strategies or susceptibility to rearing conditions (e.g. sex-specific effect on physiology). While a picture emerges that juvenile and current state indeed affect preferences, the development and context-dependency of mutual state-dependent mate choice warrants further study. PMID:21901147

  12. Theoretical model and experimental investigation of current density boundary condition for welding arc study

    NASA Astrophysics Data System (ADS)

    Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.

    2011-04-01

    This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.

  13. Computational modeling and experimental validation of odor detection behaviors of classically conditioned parasitic wasp, Microplitis croceipes.

    PubMed

    Zhou, Zhongkun; Kulasiri, Don; Samarasinghe, Sandhya; Rains, Glen; Olson, Dawn M

    2015-01-01

    A prototype chemical sensor named Wasp hound® that utilizes five classically conditioned parasitoid wasps, Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), to detect volatile odors was successfully implemented in a previous study. To improve the odor-detecting ability of Wasp Hound®, searching behaviors of an individual wasp in a confined area are studied and modeled through stochastic differential equations in this paper. The wasps are conditioned to 20 mg of coffee when associated with food and subsequently, tested to 5, 10, 20, and 40 mg of coffee. A stochastic model is developed and validated based on three positive behavioral responses (walking, rotation around odor source, and self-rotation) from conditioned wasps at four different test dosages. The model is capable to reproducing the behaviors of conditioned wasps, and can be used to improve the ability of Wasp Hound® to assess changes in odor concentration. The model simulation results show the behaviors of conditioned wasps are significantly different when tested at different coffee dosages. We conjecture that the searching behaviors of conditioned wasps are based on the temporal and spatial neuron activity of olfactory receptor neurons and glomeruli, which are strongly correlated to the training dosages. The overall results demonstrate the utility of mathematical models for interpreting experimental observations, gaining novel insights into the dynamic behavior of classically conditioned wasps, as well as broadening the practical uses of Wasp Hound. PMID:25482381

  14. Experimental Investigation of the Effects of Surface Conditions on Natural Convection-Driven Evaporation

    NASA Astrophysics Data System (ADS)

    Bower, S. M.; Saylor, J. R.

    2009-11-01

    Presented are the results from an experimental investigation of the effects of surface conditions at an air/water interface on transport phenomena within the context of natural convection-driven evaporation. Experiments were conducted using tanks of heated water under several different surface conditions: 1) contamination with an oleyl alcohol monolayer, 2) contamination with a stearic acid monolayer, and 3) ``clean'' or surfactant-free. These surface conditions create the following hydrodynamic boundary conditions: 1) constant elasticity, 2) no-slip, and 3) shear-free. The effect of these boundary conditions on evaporation and air-side natural convection heat transfer is presented via the power law relationships between the Sherwood and Rayleigh numbers (for evaporation) and the Nusselt and Rayleigh numbers (for natural convection heat transfer). Additionally, infrared imagery of the water surface was collected during these experiments, yielding qualitative information on the effect of these boundary conditions on the flow near the interface. Few studies exist in which the effects of surface conditions on interfacial heat and mass transfer are investigated, making this work particularly relevant.

  15. Theoretical and experimental study of the formation conditions of stepped leaders in negative flashes

    SciTech Connect

    Xie, Shijun; Zeng, Rong; Zhuang, Chijie; Li, Jianming

    2015-08-15

    Natural lightning flashes are stochastic and uncontrollable, and thus, it is difficult to observe the formation process of a downward negative stepped leader (NSL) directly and in detail. This situation has led to some dispute over the actual NSL formation mechanism, and thus has hindered improvements in the lightning shielding analysis model. In this paper, on the basis of controllable long air gap discharge experiments, the formation conditions required for NSLs in negative flashes have been studied. First, a series of simulation experiments on varying scales were designed and carried out. The NSL formation processes were observed, and several of the characteristic process parameters, including the scale, the propagation velocity, and the dark period, were obtained. By comparing the acquired formation processes and the characteristic parameters with those in natural lightning flashes, the similarity between the NSLs in the simulation experiments and those in natural flashes was proved. Then, based on the local thermodynamic equation and the space charge estimation method, the required NSL formation conditions were deduced, and the space background electric field (E{sub b}) was proposed as the primary parameter for NSL formation. Finally, the critical value of E{sub b} required for the formation of NSLs in natural flashes was determined to be approximately 75 kV/m by extrapolation of the results of the simulation experiments.

  16. Theoretical and experimental study of the formation conditions of stepped leaders in negative flashes

    NASA Astrophysics Data System (ADS)

    Xie, Shijun; Zeng, Rong; Li, Jianming; Zhuang, Chijie

    2015-08-01

    Natural lightning flashes are stochastic and uncontrollable, and thus, it is difficult to observe the formation process of a downward negative stepped leader (NSL) directly and in detail. This situation has led to some dispute over the actual NSL formation mechanism, and thus has hindered improvements in the lightning shielding analysis model. In this paper, on the basis of controllable long air gap discharge experiments, the formation conditions required for NSLs in negative flashes have been studied. First, a series of simulation experiments on varying scales were designed and carried out. The NSL formation processes were observed, and several of the characteristic process parameters, including the scale, the propagation velocity, and the dark period, were obtained. By comparing the acquired formation processes and the characteristic parameters with those in natural lightning flashes, the similarity between the NSLs in the simulation experiments and those in natural flashes was proved. Then, based on the local thermodynamic equation and the space charge estimation method, the required NSL formation conditions were deduced, and the space background electric field (Eb) was proposed as the primary parameter for NSL formation. Finally, the critical value of Eb required for the formation of NSLs in natural flashes was determined to be approximately 75 kV/m by extrapolation of the results of the simulation experiments.

  17. Experimental and numerical investigation of centrifugal pumps with asymmetric inflow conditions

    NASA Astrophysics Data System (ADS)

    Mittag, Sten; Gabi, Martin

    2015-11-01

    Most of the times pumps operate off best point states. Reasons are changes of operating conditions, modifications, pollution and wearout or erosion. As consequences non-rotational symmetric flows, transient operational conditions, increased risk of cavitation, decrease of efficiency and unpredictable wearout can appear. Especially construction components of centrifugal pumps, in particular intake elbows, contribute to this matter. Intake elbows causes additional losses and secondary flows, hence non-rotational velocity distributions as intake profile to the centrifugal pump. As a result the impeller vanes experience permanent changes of the intake flow angle and with it transient flow conditions in the blade channels. This paper presents the first results of a project, experimentally and numerically investigating the consequences of non-rotational inflow to leading edge flow conditions of a centrifugal pump. Therefore two pumpintake- elbow systems are compared, by only altering the intake elbow geometry: a common single bended 90° elbow and a numerically optimized elbow (improved regarding rotational symmetric inflow conditions and friction coefficient). The experiments are carried out, using time resolved stereoscopic PIV on a full acrylic pump with refractions index matched (RIM) working fluid. This allows transient investigations of the flow field simultaneously for all blade leading edges. Additional CFD results are validated and used to further support the investigation i.e. for comparing an analog pump system with ideal inflow conditions.

  18. Mapping regions of equifinality in the parameter space - A method to evaluate inverse estimates and to plan experimental boundary conditions

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Totsche, Kai Uwe

    2010-05-01

    Only the combination of physical models and experiments can elucidate the processes of reactive transport in porous media. Column scale percolation experiments offer a great opportunity to identify and quantify processes of reactive transport. In contrast to batch experiments, approximately natural flow dynamics can be realized. However, due to the complexity of interactions and wide range of parameters the experiment can be insensitive to the wanted process and misinterpretation of the results is likely. In the proposed talk we want to show how numerical tools can be applied for thorough planning and evaluation of experiments. The central tool are maps of regions of equifinality, which are gained by a thorough sensitivity analysis of the parameter space. This tool can help on the one hand to plan the experimental boundary conditions such that the results are sensitive to the wanted process. On the other hand, they provide information on the reliability of inversely gained parameters of flow and transport. In the proposed talk we want to show from all three phases of the method. In the first phase the equifinality maps are used to choose an appropriate boundary condition for the experiment. In the second phase, the according column experiments are conducted and simulated inversely. We show break-through curves from such experiments with materials from different soils, sites and materials (Coke oven sites, abandoned industrial sites, destruction debris, municipal waste incineration ash). The columns were subjected to multiple flow interruptions and different flow velocities and parameters of reactive transport were gained in inverse simulations. The third phase consisted of an evaluation of the reliability of the parameters applying again maps of equifinality. Some drawbacks of the model could be identified and gave valuable hints on the actual processes.

  19. Experimental investigation on dependency of Terfenol-D transducers performance on working conditions

    NASA Astrophysics Data System (ADS)

    Sheykholeslami, M.; Hojjat, Y.; Cinquemani, S.; Tarabini, M.; Ghodsi, M.

    2016-04-01

    Performance and efficiency of magnetostrictive transducer are highly dependent on working conditions. Magnetic bias field and pre-stress of the magnetostrictive rod are two of the main factors affecting the transducer behavior. Unexpected changes may cause unpredictable behavior of the transducer and a dramatic loss of performances. This paper experimentally investigates the effect of different working conditions on quality factor, bandwidth, resonance of a Terfenol-D resonance transducer that works in its first mode of vibration. For this purpose, an experimental setup consisting of laser Doppler, power amplifier and current transducer has been used. A Terfenol-D resonance transducer that is capable of changing magnetic bias field and mechanical pre-stress has been designed and fabricated. Working frequency of the transducer is between 5000 Hz to 7000 Hz. Output parameters of the transducer are experimentally calculated using an equivalent electrical circuit model. Results of the study improves the knowledge in the field and gives suggestions to the design of resonance transducers.

  20. Experimental observation of dynamic ductile damage development under various triaxiality conditions

    NASA Astrophysics Data System (ADS)

    Pillon, Laurianne; Adolf, Lise-Marie

    2015-06-01

    Fracture in ductile materials finds its origin in microscopic mechanisms: the nucleation of voids that grow and coalesce in order to form a crack. The most popular of these models, proposed by Gurson, aims at describing the damage development with respect to the plastic behavior of porous material. The Gurson model has been extended by Perrin to describe damage evolution in ductile viscoplastic porous materials. The Gurson-Perrin model (GPm) allows representing damage development with respect to the stress triaxiality and strain-rate conditions. We propose a new experimental design able to test and validate the GPm under various dynamic conditions and for different triaxiality levels. The experimental project will be detailed. A notch is drawn in the Cu cylindrical target where damage develops and the local failure occurs. A variation of the notch radius enables a variation in the triaxiality level. Three notch radii have been tested. Observations with numerical cameras allow following the shape of the notch, a characteristic of damage development. Several PDV measurements have been performed around the target. A first analysis of this experimental process will be shown and comparisons with numerical simulations will be presented.

  1. Effects of experimental conditions on extraction yield of extracellular polymeric substances by cation exchange resin.

    PubMed

    Cho, Jinwoo; Hermanowicz, Slawomir W; Hur, Jin

    2012-01-01

    Effects of experimental conditions on the yield of extracellular polymeric substances (EPSs) extraction by cation exchange resin (CER) were investigated using activated sludge flocs. The experimental variables included resin dose, extraction time, sample dilution, and storage time. An empirical model was proposed to describe the kinetics of extraction process. The extraction yield increases with the extraction time and CER dose until it reached the maximum amount of EPS extraction. The maximum yield of EPS was affected as well by the sample dilution, exhibiting a decreasing trend with increasing dilution factor. It was also found that the amount of EPS extracted from a raw sample depends on the storage time. Once EPS was extracted from the sample, however, the EPS keeps its original quantity under storage at 4°C. Based on the model, the maximum amount of EPS extraction and yield rate could be estimated for different conditions. Comparing the model parameters allows one to quantitatively compare the extraction efficiencies under various extracting conditions. Based on the results, we recommend the original sample should be diluted with the volume ratio of above 1:2 and a raw sample should be treated quickly to prevent the reduction of sample homogeneity and original integrity. PMID:22919352

  2. Fuel performance under normal PWR conditions: A review of relevant experimental results and models

    NASA Astrophysics Data System (ADS)

    Charles, M.; Lemaignan, C.

    1992-06-01

    Experiments conducted at Grenoble (CEA/DRN) over the past 20 years in the field of nuclear fuel behaviour are reviewed. Of particular concern is the need to achieve a comprehensive understanding of and subsequently overcome the limitations associated with high burnup and load-following conditions (pellet-cladding interaction (PCI), fission gas release (FGR), water-side corrosion). A general view is given of the organization of research work as well as some experimental details (irradiation, postirradiation examination — PIE). Based on various experimental programmes (Cyrano, Medicis, Anemone, Furet, Tango, Contact, Cansar, Hatac, Flog, Decor), the main contributions of the thermomechanical behaviour of a PWR fuel rod are described: thermal conductivity, in-pile densification, swelling, fission gas release in steady state and moderate transient conditions, gap thermal conductance, formation of primary and secondary ridges under PCI conditions. Specific programmes (Gdgrif, Thermox, Grimox) are devoted to the behaviour of particular fuels (gadolinia-bearing fuel, MOX fuel). Moreover, microstructure-based studies have been undertaken on fission gas release (fine analysis of the bubble population inside irradiated fuel samples), and on cladding behaviour (PCI related studies on stress-corrosion cracking (SCO, irradiation effects on zircaloy microstructure).

  3. Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design.

    PubMed

    Trovó, Alam G; Silva, Tatiane F S; Gomes, Oswaldo; Machado, Antonio E H; Neto, Waldomiro Borges; Muller, Paulo S; Daniel, Daniela

    2013-01-01

    The degradation of caffeine in different kind of effluents, via photo-Fenton process, was investigated in lab-scale and in a solar pilot plant. The treatment conditions (caffeine, Fe(2+) and H(2)O(2) concentrations) were defined by experimental design. The optimized conditions for each variable, obtained using the response factor (% mineralization), were: 52.0 mg L(-1)caffeine, 10.0 mg L(-1)Fe(2+) and 42.0 mg L(-1)H(2)O(2) (replaced in kinetic experiments). Under these conditions, in ultrapure water (UW), the caffeine concentration reached the quantitation limit (0.76 mg L(-1)) after 20 min, and 78% of mineralization was obtained respectively after 120 min of reaction. Using the same conditions, the matrix influence (surface water - SW and sewage treatment plant effluent - STP) on caffeine degradation was also evaluated. The total removal of caffeine in SW was reached at the same time in UW (after 20 min), while 40 min were necessary in STP. Although lower mineralization rates were verified for high organic load, under the same operational conditions, less H(2)O(2) was necessary to mineralize the dissolved organic carbon as the initial organic load increases. A high efficiency of the photo-Fenton process was also observed in caffeine degradation by solar photocatalysis using a CPC reactor, as well as intermediates of low toxicity, demonstrating that photo-Fenton process can be a viable alternative for caffeine removal in wastewater. PMID:22795305

  4. Echolalic responses by a child with autism to four experimental conditions of sociolinguistic input.

    PubMed

    Violette, J; Swisher, L

    1992-02-01

    Studies of the immediate verbal imitations (IVIs) of subjects with echolalia report that features of linguistic or social input alone affect the number of IVIs elicited. This experimental study of a child with echolalia and autism controlled each of these variables while introducing a systematic change in the other. The subject produced more (p less than .05) IVIs in response to unknown lexical words presented with a high degree of directiveness (Condition D) than in response to three other conditions of stimulus presentation (e.g., unknown lexical words, minimally directive style.) Thus, an interaction between the effects of linguistic and social input was demonstrated. IVIs were produced across all conditions, primarily during first presentations of lexical stimuli. Only the IVIs elicited by first presentations of the lexical stimuli during Condition D differed significantly (p less than .05) from the number of IVIs elicited by first presentations of lexical stimuli in other conditions. These findings viewed together suggest that the occurrence of IVIs was related, at least for this child, to an uncertain or informative event and that this response was significantly greater when the lexical stimuli were unknown and presented in a highly directive style. PMID:1735962

  5. Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2)

    USGS Publications Warehouse

    Haywood, A.M.; Dowsett, H.J.; Robinson, M.M.; Stoll, D.K.; Dolan, A.M.; Lunt, D.J.; Otto-Bliesner, B.; Chandler, M.A.

    2011-01-01

    The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.

  6. Forming Limits in Sheet Metal Forming for Non-Proportional Loading Conditions - Experimental and Theoretical Approach

    SciTech Connect

    Ofenheimer, Aldo; Buchmayr, Bruno; Kolleck, Ralf

    2005-08-05

    The influence of strain paths (loading history) on material formability is well known in sheet forming processes. Sophisticated experimental methods are used to determine the entire shape of strain paths of forming limits for aluminum AA6016-T4 alloy. Forming limits for sheet metal in as-received condition as well as for different pre-deformation are presented. A theoretical approach based on Arrieux's intrinsic Forming Limit Stress Curve (FLSC) concept is employed to numerically predict the influence of loading history on forming severity. The detailed experimental strain paths are used in the theoretical study instead of any linear or bilinear simplified loading histories to demonstrate the predictive quality of forming limits in the state of stress.

  7. Pliocene Model Intercomparison Project (PlioMIP): Experimental Design and Boundary Conditions (Experiment 2)

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Dowsett, H. J.; Robinson, M. M.; Stoll, D. K.; Dolan, A. M.; Lunt, D. J.; Otto-Bliesner, B.; Chandler, M. A.

    2011-01-01

    The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere only climate models. The second (Experiment 2) utilizes fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.

  8. Design and experimental investigation of an ejector in an air-conditioning and refrigeration system

    SciTech Connect

    AL-Khalidy, N.; Zayonia, A.

    1995-12-31

    This paper discusses the conservation of energy in a refrigerant ejector refrigerating machine using heat driven from the concentrator collectors. The working refrigerant was R-113. The design of an ejector operating in an air-conditioning and refrigerating system with a low thermal source (70 C to 100 C) is presented. The influence of three major parameters--boiler, condenser, and evaporator temperature--on ejector efficiency is discussed. Experimental results show that the condenser temperature is the major influence at a low evaporator temperature. The maximum ejector efficiency was 31%.

  9. Scram reliability under seismic conditions at the Experimental Breeder Reactor II

    SciTech Connect

    Roglans, J.; Wang, C.Y.; Hill, D.J.

    1993-08-01

    A Probabilistic Risk Assessment of the Experimental Breeder Reactor II has recently been completed. Seismic events are among the external initiating events included in the assessment. As part of the seismic PRA a detailed study has been performed of the ability to shutdown the reactor under seismic conditions. A comprehensive finite element model of the EBR-II control rod drive system has been used to analyze the control rod system response when subjected to input seismic accelerators. The results indicate the control rod drive system has a high seismic capacity. The estimated seismic fragility for the overall reactor shutdown system is dominated by the primary tank failure.

  10. Experimental installation for radioecology research on defined ecosystems subjected to contamination in controlled conditions

    SciTech Connect

    Madoz-Escande, C.; Brechignac, F.; Colle, C.

    1999-10-01

    A dedicated experimental facility has been constructed to simulate, in controlled conditions, the contamination by multielement aerosols of various agro-ecosystems typical of Europe. Large monoliths of undisturbed soils (12 t each) have been sampled throughout Europe; the extraction method used in order not to destroy the pedological zones is described. These monoliths are installed in the facility greenhouses under computer-driven climatic and hydric conditions, which mimic those of their origin. A critical comparison of the climatic values in the greenhouse and in the original sites is done. Contamination of the lysimeters is performed with a specific furnace capable of generating radioactive and stable aerosols. The general characteristic aerosols are determined. They are representative of those that would be released in the case of a severe accident in a pressurized water reactor with core fusion (2,950 C).

  11. An Experimental Study of Turbulent Nonpremixed Jet Flames in Crossflow Under Low-Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac G.; Idicheria, Cherian A.; Clemens, Noel T.

    2002-11-01

    We will present results of a study of turbulent nonpremixed jet flames in crossflow under normal and low gravity conditions. This enables us to experimentally separate the competing influences of initial jet-to-crossflow momentum ratio and buoyancy effects on the flame structure. The low gravity conditions (10-30 milli-g) are achieved by dropping a self-contained jet flame rig in the University of Texas 1.25-second drop tower facility. This rig uses a small blow-through wind tunnel to create the crossflow. The jet flames issue from an orifice that is flush with the wall. High-speed CCD imaging of jet flame luminosity is the primary diagnostic. We present results for hydrocarbon jet flames with initial jet-to-crossflow momentum ratios of 10-20. Results such as flame trajectory, flame length, large scale structure and flame tip dynamics will be presented.

  12. Effects of boundary conditions on non-Darcian heat transfer through porous media and experimental comparisons

    SciTech Connect

    Amiri, A.; Vafai, K.; Kuzay, T.M.

    1995-06-01

    The present work centers around the numerical simulation of forced convective incompressible flow through porous beds. Inertial as well as viscous effects are considered in the momentum equation. The mathematical model for energy transport was based on the two-phase equation model, which does not employ local thermal equilibrium assumption between the fluid and the solid phases. The transport processes for two different types of boundary conditions are studied. The analysis was performed in terms of nondimensional parameters that successfully cast together all the pertinent influencing effects. Comparisons were made between their numerical findings and experimental results. Overall, the comparisons that were made for the constant wall heat flux boundary condition display good agreement.

  13. Experimental study on microscopic evolving process of boiling overheat liquor in boiler under microcracking condition

    NASA Astrophysics Data System (ADS)

    Chen, Sining; He, Xuechao; Sun, Jinhua

    2009-07-01

    Boilers are frequently used in agricultural engineering. After micro cracks appear on the wall of the boiler for high pressure saturated liquor, the containing liquid will be overheated, rapidly boiled and expanded, which may result in explosion of the whole container. The evolving processes differ greatly by cracking conditions. In the experiment conducted in the this article, we made a small sized experimental device and applied high speed photography technology observing the simulated fierce boiling process of the high temperature and high pressure saturated water under overheat condition when micro cracking appears on boiler wall. According to our study, lower depressurization rate will suppress the boiling intensity of the overheated liquid and slow the growth of bubbles, decelerating the expansion of the two-phase flow compared with the boiling liquid expanding vapor explosion. The magnitude of overpressure in the container is also relatively smaller than overpressure in BLEVE.

  14. Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Orlicz, G. C.; Prestridge, K. P.; Balakumar, B. J.

    2012-03-01

    We present an experimental study on the dependence of initial condition parameters, namely, the amplitude δ and wavenumber κ (κ = 2π/λ, where λ is the wavelength) of perturbations, on turbulence and mixing in shock-accelerated Richtmyer-Meshkov (R-M) unstable fluid layers. A single mode, membrane-free varicose heavy gas curtain (air-SF6-air) at a shock Mach number M = 1.2 was used in our experiments. The density (concentration) and velocity fields for this initial configuration were measured using planar laser -induced fluorescence (PLIF) and particle image velocimetry (PIV). In order to understand the effects of multi-mode initial conditions on shock-accelerated mixing, the evolving fluid interface formed during the incident shock (M = 1.2) was shocked again by a reflected shock wave at various times using a movable wall, thus enabling us to change both δ and κ simultaneously. A dimensionless length-scale defined as η = κδ is proposed to parametrically link the initial condition dependence to late-time mixing. It was observed experimentally that high wavenumber (short wavelength) modes enhance the mixing and transition to turbulence in these flows. Statistics such as power spectral density, density self-correlation, turbulent kinetic energy, and the rms of velocity fluctuations were measured using simultaneous PLIF-PIV to quantify the amount of mixing for varying values of η. The results indicate a dependence of initial condition parameters on mixing at late times. The results of this study present an opportunity to predict and "design" late-time turbulent mixing that has applications in inertial confinement fusion and general fluid mixing processes.

  15. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2014-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters-Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  16. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2015-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters- Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  17. Secretions from placenta, after hypoxia/reoxygenation, can damage developing neurones of brain under experimental conditions.

    PubMed

    Curtis, Daniel J; Sood, Aman; Phillips, Tom J; Leinster, Veronica H L; Nishiguchi, Akihiro; Coyle, Christopher; Lacharme-Lora, Lizeth; Beaumont, Oliver; Kemp, Helena; Goodall, Roberta; Cornes, Leila; Giugliano, Michele; Barone, Rocco A; Matsusaki, Michiya; Akashi, Mitsuru; Tanaka, Hiroyoshi Y; Kano, Mitsunobu; McGarvey, Jennifer; Halemani, Nagaraj D; Simon, Katja; Keehan, Robert; Ind, William; Masters, Tracey; Grant, Simon; Athwal, Sharan; Collett, Gavin; Tannetta, Dionne; Sargent, Ian L; Scull-Brown, Emma; Liu, Xun; Aquilina, Kristian; Cohen, Nicki; Lane, Jon D; Thoresen, Marianne; Hanley, Jon; Randall, Andrew; Case, C Patrick

    2014-11-01

    Some psychiatric diseases in children and young adults are thought to originate from adverse exposures during foetal life, including hypoxia and hypoxia/reoxygenation. The mechanism is not understood. Several authors have emphasised that the placenta is likely to play an important role as the key interface between mother and foetus. Here we have explored whether a first trimester human placenta or model barrier of primary human cytotrophoblasts might secrete factors, in response to hypoxia or hypoxia/reoxygenation, that could damage neurones. We find that the secretions in conditioned media caused an increase of [Ca(2+)]i and mitochondrial free radicals and a decrease of dendritic lengths, branching complexity, spine density and synaptic activity in dissociated neurones from embryonic rat cerebral cortex. There was altered staining of glutamate and GABA receptors. We identify glutamate as an active factor within the conditioned media and demonstrate a specific release of glutamate from the placenta/cytotrophoblast barriers invitro after hypoxia or hypoxia/reoxygenation. Injection of conditioned media into developing brains of P4 rats reduced the numerical density of parvalbumin-containing neurones in cortex, hippocampus and reticular nucleus, reduced immunostaining of glutamate receptors and altered cellular turnover. These results show that the placenta is able to release factors, in response to altered oxygen, that can damage developing neurones under experimental conditions. PMID:24818543

  18. Concept of relative variability of cardiac action potential duration and its test under various experimental conditions.

    PubMed

    Magyar, János; Kistamás, Kornél; Váczi, Krisztina; Hegyi, Bence; Horváth, Balázs; Bányász, Tamás; Nánási, Péter P; Szentandrássy, Norbert

    2016-01-01

    Beat-to-beat variability of action potential duration (short-term variability, SV) is an intrinsic property of mammalian myocardium. Since the majority of agents and interventions affecting SV may modify also action potential duration (APD), we propose here the concept of relative SV (RSV), where changes in SV are normalized to changes in APD and these data are compared to the control SV-APD relationship obtained by lengthening or shortening of action potentials by inward and outward current injections. Based on this concept the influence of the several experimental conditions like stimulation frequency, temperature, pH, redox-state and osmolarity were examined on RSV in canine ventricular myocytes using sharp microelectrodes. RSV was increased by high stimulation frequency (cycle lengths <0.7 s), high temperature (above 37ºC), oxidative agents (H2O2), while it was decreased by reductive environment. RSV was not affected by changes in pH (within the range of 6.4-8.4) and osmolarity of the solution (between 250-350 mOsm). The results indicate that changes in beat-to-beat variability of APD must be evaluated exclusively in terms of RSV; furthermore, some experimental conditions, including the stimulation frequency, redox-state and temperature have to be controlled strictly when analyzing alterations in the short-term variability of APD. PMID:26492070

  19. Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions.

    PubMed

    Werhli, Adriano V; Husmeier, Dirk

    2008-06-01

    There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al. where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior knowledge and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets, which were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. The proposed coupling scheme is a compromise between (1) learning networks from the different subsets separately, whereby no information between the different experiments is shared; and (2) learning networks from a monolithic fusion of the individual data sets, which does not provide any mechanism for uncovering differences between the network structures associated with the different experimental conditions. We have assessed the viability of all proposed methods on data related to the Raf signaling pathway, generated both synthetically and in cytometry experiments. PMID:18574862

  20. Experimental investigation of transient thermal behavior of an airship under different solar radiation and airflow conditions

    NASA Astrophysics Data System (ADS)

    Li, De-Fu; Xia, Xin-Lin; Sun, Chuang

    2014-03-01

    Knowledge of the thermal behavior of airships is crucial to the development of airship technology. An experiment apparatus is constructed to investigate the thermal response characteristics of airships, and the transient temperature distributions of both hull and inner gas are obtained under the irradiation of a solar simulator and various airflow conditions. In the course of the research, the transient temperature change of the experimental airship is measured for four airflow speeds of 0 m/s (natural convection), 3.26 m/s, 5.5 m/s and 7.0 m/s, and two incident solar radiation values of 842.4 W/m2 and 972.0 W/m2. The results show that solar irradiation has significant influence on the airship hull and inner gas temperatures even if the airship stays in a ground airflow environment where the heat transfer is dominated by radiation and convection. The airflow around the airship is conducive to reduce the hull temperature and temperature nonuniformity. Transient thermal response of airships rapidly varies with time under solar radiation conditions and the hull temperature remains approximately constant in ˜5-10 min. Finally, a transient thermal model of airship is developed and the model is validated through comparison with the experimental data.

  1. Development of an Experimental Setup for the Measurement of the Coefficient of Restitution under Vacuum Conditions.

    PubMed

    Drücker, Sven; Krautstrunk, Isabell; Paulick, Maria; Saleh, Khashayar; Morgeneyer, Martin; Kwade, Arno

    2016-01-01

    The Discrete Element Method is used for the simulation of particulate systems to describe and analyze them, to predict and afterwards optimize their behavior for single stages of a process or even an entire process. For the simulation with occurring particle-particle and particle-wall contacts, the value of the coefficient of restitution is required. It can be determined experimentally. The coefficient of restitution depends on several parameters like the impact velocity. Especially for fine particles the impact velocity depends on the air pressure and under atmospheric pressure high impact velocities cannot be reached. For this, a new experimental setup for free-fall tests under vacuum conditions is developed. The coefficient of restitution is determined with the impact and rebound velocity which are detected by a high-speed camera. To not hinder the view, the vacuum chamber is made of glass. Also a new release mechanism to drop one single particle under vacuum conditions is constructed. Due to that, all properties of the particle can be characterized beforehand. PMID:27077671

  2. EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS

    SciTech Connect

    Dr. Jorge Gabitto; Maria Barrufet

    2003-05-01

    The USA deposits of heavy oils and tar sands contain significant energy reserves. Thermal methods, particularly steam drive and steam soak, are used to recover heavy oils and bitumen. Thermal methods rely on several displacement mechanisms to recover oil, but the most important is the reduction of crude viscosity with increasing temperature. The main objective of this research is to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes. First, we reviewed critically the existing literature choosing the most promising models for viscosity determination. Then, we modified an existing viscosity correlation, based on the corresponding states principle in order to fit more than two thousand commercial viscosity data. We collected data for compositional and black oil samples (absence of compositional data). The data were screened for inconsistencies resulting from experimental error. A procedure based on the monotonic increase or decrease of key variables was implemented to carry out the screening process. The modified equation was used to calculate the viscosity of several oil samples where compositional data were available. Finally, a simple procedure was proposed to calculate black oil viscosity from common experimental information such as, boiling point, API gravity and molecular weight.

  3. Use of in-vitro experimental results to model in-situ experiments: bio-denitrification under geological disposal conditions.

    PubMed

    Masuda, Kaoru; Murakami, Hiroshi; Kurimoto, Yoshitaka; Kato, Osamu; Kato, Ko; Honda, Akira

    2013-01-01

    Some of the low level radioactive wastes from reprocessing of spent nuclear fuels contain nitrates. Nitrates can be present in the form of soluble salts and can be reduced by various reactions. Among them, reduction by metal compounds and microorganisms seems to be important in the underground repository. Reduction by microorganism is more important in near field area than inside the repository because high pH and extremely high salt concentration would prevent microorganism activities. In the near field, pH is more moderate (pH is around 8) and salt concentration is lower. However, the electron donor may be limited there and it might be the control factor for microorganism's denitrification activities. In this study, in-vitro experiments of the nitrate reduction reaction were conducted using model organic materials purported to exist in underground conditions relevant to geological disposal. Two kinds of organic materials were selected. A super plasticizer was selected as being representative of the geological disposal system and humic acid was selected as being representative of pre-existing organic materials in the bedrock. Nitrates were reduced almost to N2 gas in the existence of super plasticizer. In the case of humic acids, although nitrates were reduced, the rate was much lower and, in this case, dead organism was used as an electron donor instead of humic acids. A reaction model was developed based on the in-vitro experiments and verified by running simulations against data obtained from in-situ experiments using actual groundwaters and microorganisms. The simulation showed a good correlation with the experimental data and contributes to the understanding of microbially mediated denitrification in geological disposal systems. PMID:24010028

  4. Experimental investigation of two transonic linear turbine cascades at off-design conditions

    NASA Astrophysics Data System (ADS)

    Jouini, Dhafer Ben Mahmoud

    Detailed measurements have been made of the mid-span aerodynamic performance of two transonic turbine cascades at off-design conditions. The cascades investigated were a baseline cascade, designated HS1A, and a cascade with a modified leading edge design, designated HS1B. The measurements were for exit Mach numbers ranging from about 0.5 to about 1.2 and for Reynolds numbers from 4 x 105 to 106. The turbulence intensity in the test section and upstream of the cascade test section was about 4%. The profile losses were measured for the incidence values of -10°, 0.0°, +4.5°, +10.0°, and +14.5° relative to design. To aid in understanding the loss behaviour and to provide other insights into the flow physics, measurements of the blade loading, exit flow angles, trailing-edge base pressures, and the Axial Velocity Density Ratio (AVDR) were also made. The results showed that the profile losses at transonic Mach numbers can be closely related to the behaviour of the base pressure. The losses were also found to be affected by the AVDR. The AVDRs were found to decrease with increasing positive incidence. Moreover the results from both cascades showed that the modifications to the leading edge geometry of HS1B cascade were not successful in improving the blade performance at positive off-design incidence. Comparisons between the present experimental data and the available correlations in the open literature were also made. These comparisons included mid-span losses at design and off-design, and exit flow angles. It was found that further improvements can still be made to the existing correlations. Furthermore, the present experimental data represents a significant contribution to the data base of results available in the open literature for the development of new and improved correlations, particularly at transonic flow conditions, at both design and off-design conditions.

  5. Establishment and performance of an experimental green roof under extreme climatic conditions.

    PubMed

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  6. A thermodynamic and experimental study of the conditions of thaumasite formation

    SciTech Connect

    Schmidt, Thomas Lothenbach, Barbara; Romer, Michael; Scrivener, Karen; Rentsch, Daniel; Figi, Renato

    2008-03-15

    The formation of thaumasite was investigated with the progressive equilibrium approach (PEA). This approach experimentally simulates the conditions of various levels of sulfate addition in hardened cement pastes. The influence of limestone, time, C{sub 3}A content, temperature and leaching on thaumasite formation was investigated. The results show that thaumasite formation is favoured at lower temperatures (8 deg. C) independently of the type of cement clinker (high or low C{sub 3}A content) used. Thaumasite was found to form only in systems where limestone was present and where sufficient sulfate had been added. Thaumasite precipitated only in systems where the Al present has already been consumed to form ettringite and the molar SO{sub 3}/Al{sub 2}O{sub 3} ratio exceeded 3. In leached samples (reduction of portlandite and alkalis) slightly less thaumasite was formed whereas gypsum and ettringite are favoured under these conditions. The PEA, used to investigate the chemical aspects of sulfate attack was found to be a good tool for simulating external sulfate attack. Generally, thaumasite was detected were it was modelled to be stable in significant amounts. However, in this study equilibrium conditions were not reached after 9 months.

  7. Further Experimental Investigation of Freeze-Lining/Bath Interface at Steady-State Conditions

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hayes, Peter; Jak, Evgueni

    2014-12-01

    In design of the freeze-lining deposits in high-temperature reaction systems, it has been widely assumed that the interface temperature between the deposit and bath at steady-state conditions, that is, when the deposit interface velocity is zero, is the liquidus of the bulk bath material. Current work provides conclusive evidence that the interface temperature can be lower than that of the bulk liquidus. The observations are consistent with a mechanism involving the nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. The temperature and position of the stable deposit/liquid interface are determined by the balance between the extent of crystallization on the detached crystals and mass transfer across the subliquidus layer from the bulk bath. A conceptual framework is developed to analyze the factors influencing the steady-state deposit/interface temperature and deposit thickness in chemical systems operating in a positive temperature gradient. The framework can be used to explain the experimental observations in a diverse range of chemical systems and conditions, including high-temperature melts and aqueous solutions, and to explain why the interface temperature under these conditions can be between T liquidus and T solidus.

  8. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    SciTech Connect

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  9. Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks

    NASA Astrophysics Data System (ADS)

    Auzende, Anne-Line; Escartin, Javier; Walte, Nicolas P.; Guillot, Stéphane; Hirth, Greg; Frost, Daniel J.

    2015-02-01

    We performed deformation-DIA experiments on antigorite serpentinite at pressures of 1-3.5 GPa and temperatures of between 400 and 650 °C, bracketing the stability of antigorite under subduction zone conditions. For each set of pressure-temperature (P-T) conditions, we conducted two runs at strain rates of 5 ×10-5 and 1 ×10-4 s-1. We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400 °C (Chernak and Hirth, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Optical and transmission electron microscopies were used for microstructural characterization and determination of deformation mechanisms. Our observations on experimentally deformed antigorite prior to breakdown show that deformation is dominated by cataclastic flow with observable but minor contribution of plastic deformation (microkinking and (001) gliding mainly expressed by stacking disorder mainly). In contrast, in naturally deformed samples, plastic deformation structures are dominant (stacking disorder, kinking, pressure solution), with minor but also perceptible contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases and is coupled to local embrittlement that we attribute to antigorite dehydration. In dehydrating samples collected in the Alps, embrittlement is also observed suggesting that dehydration may contribute to intermediate-depth seismicity. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. However, the plastic deformation recorded by naturally deformed samples was likely acquired at low strain rates. We also document that the corrugated structure of antigorite controls the strain accommodation mechanisms under subduction conditions, with preferred inter- and intra-grain cracking along (001) and gliding along both a and b. We also show that antigorite rheology in subduction zones is partly controlled

  10. Experimental Validation of Modeled Fe Opacities at Conditions Approaching the Base of the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Nagayama, Taisuke

    2013-10-01

    Knowledge of the Sun is a foundation for other stars. However, after the solar abundance revision in 2005, standard solar models disagree with helioseismic measurements particularly at the solar convection zone base (CZB, r ~ 0 . 7 ×RSun) [Basu, et al., Physics Reports 457, 217 (2008)]. One possible explanation is an underestimate in the Fe opacity at the CZB [Bailey et al., Phys. Plasmas 16, 058101 (2009)]. Modeled opacities are important physics inputs for plasma simulations (e.g. standard solar models). However, modeled opacities are not experimentally validated at high temperatures because of three challenging criteria required for reliable opacity measurements: 1) smooth and strong backlighter, 2) plasma condition uniformity, and 3) simultaneous measurements of plasma condition and transmission. Fe opacity experiments are performed at the Sandia National Laboratories (SNL) Z-machine aiming at conditions close to those at the CZB (i.e. Te = 190 eV, ne = 1 ×1023 cm-3). To verify the quality of the experiments, it is critical to investigate how well the three requirements are satisfied. The smooth and strong backlighter is provided by the SNL Z-pinch dynamic hohlraum. Fe plasma condition is measured by mixing Mg into the Fe sample and employing Mg K-shell line transmission spectroscopy. Also, an experiment is designed and performed to measure the level of non-uniformity in the Fe plasma by mixing Al and Mg dopants on the opposite side of the Fe sample and analyzing their spectra. We will present quantitative results on these investigations as well as the comparison of the measured opacity to modeled opacities. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  11. Experimental Investigation of Pressure-volume-Temperature Mass Gauging Method Under Microgravity Condition by Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Seo, Mansu; Park, Hana; Yoo, DonGyu; Jung, Youngsuk; Jeong, Sangkwon

    Gauging the volume or mass of liquid propellant of a rocket vehicle in space is an important issue for its economic feasibility and optimized design of loading mass. Pressure-volume-temperature (PVT) gauging method is one of the most suitable measuring techniques in space due to its simplicity and reliability. This paper presents unique experimental results and analyses of PVT gauging method using liquid nitrogen under microgravity condition by parabolic flight. A vacuum-insulated and cylindrical-shaped liquid nitrogen storage tank with 9.2 L volume is manufactured by observing regulation of parabolic flight. PVT gauging experiments are conducted under low liquid fraction condition from 26% to 32%. Pressure, temperature, and the injected helium mass into the storage tank are measured to obtain the ullage volume by gas state equation. Liquid volume is finally derived by the measured ullage volume and the known total tank volume. Two sets of parabolic flights are conducted and each set is composed of approximately 10 parabolic flights. In the first set of flights, the short initial waiting time (3 ∼ 5 seconds) cannot achieve sufficient thermal equilibrium condition at the beginning. It causes inaccurate gauging results due to insufficient information of the initial helium partial pressure in the tank. The helium injection after 12 second waiting time at microgravity condition with high mass flow rate in the second set of flights achieves successful initial thermal equilibrium states and accurate measurement results of initial helium partial pressure. Liquid volume measurement errors in the second set are within 11%.

  12. Universal limiting shape of worn profile under multiple-mode fretting conditions: theory and experimental evidence

    PubMed Central

    Dmitriev, Andrey I.; Voll, Lars B.; Psakhie, Sergey G.; Popov, Valentin L.

    2016-01-01

    We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting (“periodic rolling”). While the detailed kinetics of wear depends on the particular loading history and wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for all types and loading and wear mechanisms. This universal form is determined solely by the radius of the permanent stick region and the maximum indentation depth during the loading cycle. We provide experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of the universal limiting shape can be used for designing joints which are resistant to fretting wear. PMID:26979092

  13. Universal limiting shape of worn profile under multiple-mode fretting conditions: theory and experimental evidence.

    PubMed

    Dmitriev, Andrey I; Voll, Lars B; Psakhie, Sergey G; Popov, Valentin L

    2016-01-01

    We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting ("periodic rolling"). While the detailed kinetics of wear depends on the particular loading history and wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for all types and loading and wear mechanisms. This universal form is determined solely by the radius of the permanent stick region and the maximum indentation depth during the loading cycle. We provide experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of the universal limiting shape can be used for designing joints which are resistant to fretting wear. PMID:26979092

  14. QEEG spectral and coherence assessment of autistic children in three different experimental conditions.

    PubMed

    Machado, Calixto; Estévez, Mario; Leisman, Gerry; Melillo, Robert; Rodríguez, Rafael; DeFina, Phillip; Hernández, Adrián; Pérez-Nellar, Jesús; Naranjo, Rolando; Chinchilla, Mauricio; Garófalo, Nicolás; Vargas, José; Beltrán, Carlos

    2015-02-01

    We studied autistics by quantitative EEG spectral and coherence analysis during three experimental conditions: basal, watching a cartoon with audio (V-A), and with muted audio band (VwA). Significant reductions were found for the absolute power spectral density (PSD) in the central region for delta and theta, and in the posterior region for sigma and beta bands, lateralized to the right hemisphere. When comparing VwA versus the V-A in the midline regions, we found significant decrements of absolute PSD for delta, theta and alpha, and increments for the beta and gamma bands. In autistics, VwA versus V-A tended to show lower coherence values in the right hemisphere. An impairment of visual and auditory sensory integration in autistics might explain our results. PMID:24048514

  15. Universal limiting shape of worn profile under multiple-mode fretting conditions: theory and experimental evidence

    NASA Astrophysics Data System (ADS)

    Dmitriev, Andrey I.; Voll, Lars B.; Psakhie, Sergey G.; Popov, Valentin L.

    2016-03-01

    We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting (“periodic rolling”). While the detailed kinetics of wear depends on the particular loading history and wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for all types and loading and wear mechanisms. This universal form is determined solely by the radius of the permanent stick region and the maximum indentation depth during the loading cycle. We provide experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of the universal limiting shape can be used for designing joints which are resistant to fretting wear.

  16. Exergo-Economic Analysis of an Experimental Aircraft Turboprop Engine Under Low Torque Condition

    NASA Astrophysics Data System (ADS)

    Atilgan, Ramazan; Turan, Onder; Aydin, Hakan

    Exergo-economic analysis is an unique combination of exergy analysis and cost analysis conducted at the component level. In exergo-economic analysis, cost of each exergy stream is determined. Inlet and outlet exergy streams of the each component are associated to a monetary cost. This is essential to detect cost-ineffective processes and identify technical options which could improve the cost effectiveness of the overall energy system. In this study, exergo-economic analysis is applied to an aircraft turboprop engine. Analysis is based on experimental values at low torque condition (240 N m). Main components of investigated turboprop engine are the compressor, the combustor, the gas generator turbine, the free power turbine and the exhaust. Cost balance equations have been formed for all components individually and exergo-economic parameters including cost rates and unit exergy costs have been calculated for each component.

  17. Experimental study of horizontal annular channels under non-developed conditions

    SciTech Connect

    Delgadino, G.; Balino, J.; Carrica, P.

    1995-09-01

    In this work an experimental study of the two-phase air-water flow in a horizontal annular channel under non-developed conditions is presented. A conductive local probe was placed at the end of the channel to measure the local phase indication function under a wide range of gas and water flow rates. The signal was processed to obtain the void fraction and statistical distributions of liquid and gas residence times. From these data the topology of the flow could be inferred. A laser intermittence detector was also located close to the channel exit, in order to measure statistical parameters for intermittent flows by means of a two-probe method.

  18. Actualizing the Learning Community.

    ERIC Educational Resources Information Center

    Braman, Dave

    Where conditions are right, continuing education (CE) staff working in true collaboration with campus-based credit staff can meet the learning needs of the community and improve instructional quality with greater resource efficiency. CE staff must become learning strategists who bring ideas from their marketplace experience to the instructional…

  19. Numerical and experimental analysis of inhomogeneities in SMA wires induced by thermal boundary conditions

    NASA Astrophysics Data System (ADS)

    Furst, Stephen J.; Crews, John H.; Seelecke, Stefan

    2012-11-01

    Published data on NiTi wire tensile tests display a surprising variety of results even though the same material has been studied. Hysteresis shapes can be observed that range from box- to cigar-like. In some cases, the variation may be the result of different post-fabrication treatment, such as annealing or cold working procedures. However, oftentimes local data are generated from average stress/strain concepts on the basis of global force and end displacement measurements. It is well known among experimentalists that this has a smoothening effect on data, but there is an additional, less well-known mechanism at work as well. This effect is due to thermomechanical coupling and the thermal boundary condition at the ends of the wires, and it manifests itself in a strong data dependence on the length of the employed specimen. This paper illustrates the effects of a thermal boundary layer in a 1D wire by means of an experimental study combined with a simulation based on the fully coupled momentum and energy balance equations. The system is modeled using COMSOL FEA software to simulate the distribution of strain, temperature, resistivity, and phase fractions. The local behavior is then integrated over the length of the wire to predict the expected behavior of the bulk wire as observed at its endpoints. Then, simulations are compared with results from a tensile test of a 100 mum diameter Dynalloy Flexinol wire between two large, steel clamps. Each step of the tensile test experiment is carefully controlled and then simulated via the boundary and initial conditions of the model. The simulated and experimental results show how the thermal boundary layer affects different length SMA wires and how the inhomogeneity prevents transition to austenite at the wire endpoints. Accordingly, shorter wires tend to be softer (more martensitic) than longer wires and exhibit a large reduction in recoverable strain because a larger percentage of their total length is impacted by the

  20. COMPUTATIONAL MODELING AND EXPERIMENTAL STUDIES ON NOx REDUCTION UNDER PULVERIZED COAL COMBUSTION CONDITIONS

    SciTech Connect

    Subha K. Kumpaty; Kannikeswaran Subramanian; Victor P. Nokku; Tyrus L. Hodges; Adel Hassouneh; Ansumana Darboe; Sravan K. Kumpati

    1998-06-01

    In this work, both computer simulation and experimental studies were conducted to investigate several strategies for NO{sub x} reduction under pulverized coal combustion conditions with an aim to meet the stringent environmental standards for NO{sub x} control. Both computer predictions and reburning experiments yielded favorable results in terms of NO{sub x} control by reburning with a combination of methane and acetylene as well as non-selective catalytic reduction of NO{sub x} with ammonia following reburning with methane. The greatest reduction was achieved at the reburning stoichiometric ratio of 0.9; the reduction was very significant, as clearly shown in Chapters III and V. Both the experimental and computational results favored mixing gases: methane and acetylene (90% and 10% respectively) and methane and ammonia (98% and 2%) in order to get optimum reduction levels which can not be achieved by individual gases at any amounts. Also, the above gaseous compositions as reburning fuels seemed to have a larger window of stoichiometric ratio (SR2 < 0.9) as opposed to just methane (SR2=0.9) so as to reduce and keep NO{sub x} at low ppm levels. From the various computational runs, it has been observed that although there are several pathways that contribute to NO{sub x} reduction, the key pathway is NO {r_arrow} HCN {r_arrow} NH{sub 3} {r_arrow} N{sub 2} + H{sub 2}. With the trends established in this work, it is possible to scale the experimental results to real time industrial applications using computational calculations.

  1. A qualitative study of internal wave ship wakes: Dependence on environmental conditions and experimental parameters

    SciTech Connect

    Mullenhoff, C.J.; Brase, J.M.

    1995-04-24

    For the past several years the UK-US Radar Ocean Imaging Program has conducted a series of field experiments with the primary purpose of gathering real aperture radar (RAR) imagery at low grazing angle of ship-generated internal wave (IW) wakes. The first observations with RAR`s were made in the 1989 Loch Linnhe experiment where it was observed that radar images at low grazing angles (LGA) of approximately six degrees had significantly higher modulation levels than SAR images made at higher grazing angles of 35 - 65 degrees. These initial observations have led to several more experiments designed to verify the phenomenon and to test its dependence on experimental and environmental conditions. A parallel effort began to develop theoretical models of the LGA imaging process. Through this series of experiments we have developed an extensive database of radar imagery and supporting environmental data. The objective of this report is twofold: (1) To describe the database and the associated space of parameters. We will look at the coverage of the parameter space within the database and at areas which should be covered. (2) To take an initial look at the dependence of qualitative modulation strength on the experimental and environmental parameters. This first look will indicate the strongest dependencies which can then be studied in more detail. Section 2 describes the experimental database and Section 3 discusses the parameter space, image quality, and their relationships based on the images in the database. In Section 4 we summarize our conclusions and make recommendations for both future analyses and experiments.

  2. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers

    PubMed Central

    Braudrick, Christian A.; Dietrich, William E.; Leverich, Glen T.; Sklar, Leonard S.

    2009-01-01

    Meandering rivers are common on Earth and other planetary surfaces, yet the conditions necessary to maintain meandering channels are unclear. As a consequence, self-maintaining meandering channels with cutoffs have not been reproduced in the laboratory. Such experimental channels are needed to explore mechanisms controlling migration rate, sinuosity, floodplain formation, and planform morphodynamics and to test theories for wavelength and bend propagation. Here we report an experiment in which meandering with near-constant width was maintained during repeated cutoff and regeneration of meander bends. We found that elevated bank strength (provided by alfalfa sprouts) relative to the cohesionless bed material and the blocking of troughs (chutes) in the lee of point bars via suspended sediment deposition were the necessary ingredients to successful meandering. Varying flood discharge was not necessary. Scaling analysis shows that the experimental meander migration was fast compared to most natural channels. This high migration rate caused nearly all of the bedload sediment to exchange laterally, such that bar growth was primarily dependent on bank sediment supplied from upstream lateral migration. The high migration rate may have contributed to the relatively low sinuosity of 1.19, and this suggests that to obtain much higher sinuosity experiments at this scale may have to be conducted for several years. Although patience is required to evolve them, these experimental channels offer the opportunity to explore several fundamental issues about river morphodynamics. Our results also suggest that sand supply may be an essential control in restoring self-maintaining, actively shifting gravel-bedded meanders. PMID:19805077

  3. Experimental tests and predictive model of an adsorptive air conditioning unit

    SciTech Connect

    Poyelle, F.; Guilleminot, J.J.; Meunier, F.

    1999-01-01

    An adsorption air conditioning unit has been built operating with a heat nd mass recovery cycle and a zeolite-water pair. A new consolidated adsorbent composite with good heat transfer properties has been developed and implemented in the adsorber. At an evaporating temperature of 4 C, the experimental specific cooling power (SCP) of 97 W/kg achieved represents a real improvement in comparison with those measured with a packed bed technology. At this evaporating pressure, the mass transfer resistance controls the process. Therefore, at higher evaporating temperature a COP of 0.68 and a SCP of 135 W/kg were experimentally achieved. A new model has been developed to take into account the mass transfer limitations. The model has been validated and can predict the average pressure inside the adsorber and the components temperature of the unit. A new high conductive material with enhanced mass transfer properties has been developed. The predictive model shows that a SCP of 600 W/kg and a COP of 0.74 could be achieved with this new material.

  4. Experimental results and modeling tests of an adsorptive air-conditioning unit

    SciTech Connect

    Guilleminot, J.J.; Poyelle, F.; Meunier, F.

    1998-10-01

    Experimental tests have been performed on a zeolite-water adsorptive system suitable for air conditioning and consisting of two adsorbers filled with a consolidated composite made of zeolite mixed with a highly conductive matrix. This paper describes the experimental results of such a heat pump unit operating with a heat and mass recovery cycle. An important enhancement of the specific cooling power (SCP) has been achieved. At evaporating temperature T = 4 C, mass transfer resistance controls the process and limits the expected COP. Tests carried out at higher evaporating pressure make it possible to achieve the predicted COP and SCP. A predictive model developed and validated elsewhere in order to describe the temperature evolution of components and the heat and mass transfer in the adsorbers explains the mass transfer resistance in the adsorbent. Last, a new highly conductive adsorbent composite with good mass transfer properties is developed. The model is used to predict the performances of this new material. Very good SCP and COP can be achieved.

  5. Experimental Testing of Water Disinfection Models under Varying Hydraulic and Kinetic Conditions.

    PubMed

    Teixeira, Edmilson C; Rauen, William B; Fonseca, Ismênia; Figueiredo, Iene

    2016-06-01

    The concomitant effects of hydraulics and reaction kinetics on the disinfection efficiency (DE) of Chlorine Contact Tank (CCT) setups were experimentally assessed, to test the predictive-ability of first order kinetics models: Chick-Watson (C-W), C-t rule and Wehner-Wilhelm (W-W). Prototype tests were conducted using river water characterised for quality parameters, chlorine demand and inactivation rates of total and thermotolerant coliform. Poor, average and superior CCT baffling conditions were assessed by tracer experimentation and for their DE under three chlorine dosages. The models' DE predictive-ability was comparable and high for superior baffling, but decreased differently with the hydraulic efficiency (maximum errors of +15.3% with W-W, +26.0% with C-W and -36.6% with C-t). The positive bias shown by W-W renders it unsafe for CCT design, so the results favoured the C-t rule as the preferred analytical tool of comparable complexity. Potential refinements to these models that could lead to operational savings are identified. PMID:26773311

  6. Experimental and Numerical Investigation of a Swirl Stabilized Premixed Combustor under Cold Flow Conditions

    SciTech Connect

    P.A. Strakey; M.J. Yip

    2007-07-01

    Planar velocity measurements under cold-flow conditions in a swirl-stabilized dump combustor typical of land-based gas turbine combustors were carried out using two-dimensional particle image velocimetry (PIV). Axial, radial, and tangential velocity components were measured sequentially using two experimental configurations. Mean and root-mean-squared velocity components are presented along with instantaneous realizations of the flowfield. A numerical study of the flowfield using large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) techniques was conducted in an effort to help understand the complex hydrodynamics observed in the experiments. The agreement between the experimental data and LES simulation was good with both showing evidence of a precessing vortex core. The results of the RANS simulation were not as encouraging. The results provide a fundamental understanding of the complex flowfield associated with the relatively simple geometry and also serve as a baseline validation dataset for further numerical simulations of the current geometry. Validation of LES models in a highly swirled, nonreacting flowfield such as the work presented here is an essential step towards more accurate prediction in a reacting environment.

  7. Experimental evidence of population differences in reproductive investment conditional on environmental stochasticity.

    PubMed

    Gauthey, Zoé; Panserat, Stéphane; Elosegi, Arturo; Herman, Alexandre; Tentelier, Cédric; Labonne, Jacques

    2016-01-15

    Environmental stochasticity is expected to shape life histories of species, wherein organisms subjected to strong environmental variation should display adaptive response by being able to tune their reproductive investment. For riverine ecosystems, climate models forecast an increase in the frequency and intensity of extreme events such as floods and droughts. The speed and the mechanisms by which organisms may adapt their reproductive investment are therefore of primary importance to understand how species will cope with such radical environmental changes. In the present study, we sampled spawners from two different populations of wild brown trout, originating from two environments with contrasting levels of flow stochasticity. We placed them in sympatry within an experimental channel during reproductive season. In one modality, water flow was maintained constant, whereas in another modality, water flow was highly variable. Reproductive investment of all individuals was monitored using weight and energetic plasma metabolite variation throughout the reproductive season. Only the populations originating from the most variable environment showed a plastic response to experimental manipulation of water flow, the females being able to reduce their weight variation (from 19.2% to 13.1%) and metabolites variations (from 84.2% to 18.6% for triglycerides for instance) under variable flow conditions. These results imply that mechanisms to cope with environmental stochasticity can differ between populations of the same species, where some populations can be plastic whereas other cannot. PMID:26406108

  8. Preventative and Therapeutic Probiotic Use in Allergic Skin Conditions: Experimental and Clinical Findings

    PubMed Central

    Özdemir, Öner; Göksu Erol, Azize Yasemin

    2013-01-01

    Probiotics are ingested live microbes that can modify intestinal microbial populations in a way that benefits the host. The interest in probiotic preventative/therapeutic potential in allergic diseases stemmed from the fact that probiotics have been shown to improve intestinal dysbiosis and permeability and to reduce inflammatory cytokines in human and murine experimental models. Enhanced presence of probiotic bacteria in the intestinal microbiota is found to correlate with protection against allergy. Therefore, many studies have been recently designed to examine the efficacy of probiotics, but the literature on the allergic skin disorders is still very scarce. Here, our objective is to summarize and evaluate the available knowledge from randomized or nonrandomized controlled trials of probiotic use in allergic skin conditions. Clinical improvement especially in IgE-sensitized eczema and experimental models such as atopic dermatitis-like lesions (trinitrochlorobenzene and picryl chloride sensitizations) and allergic contact dermatitis (dinitrofluorobenzene sensitization) has been reported. Although there is a very promising evidence to recommend the addition of probiotics into foods, probiotics do not have a proven role in the prevention or the therapy of allergic skin disorders. Thus, being aware of possible measures, such as probiotics use, to prevent/heal atopic diseases is essential for the practicing allergy specialist. PMID:24078929

  9. Effects of experimental reheating of natural basaltic ash at different temperatures and redox conditions

    NASA Astrophysics Data System (ADS)

    D'Oriano, C.; Pompilio, M.; Bertagnini, A.; Cioni, R.; Pichavant, M.

    2013-05-01

    A set of experiments have been performed on volcanic materials from Etna, Stromboli and Vesuvius in order to evaluate how the exposure to thermal and redox conditions close to that of active craters affects the texture and composition of juvenile pyroclasts. Selected samples were placed within a quartz tube, in presence of air or under vacuum, and kept at T between 700 and 1,130 °C, for variable time (40 min to 12 h). Results show that reheating reactivates the melt, which, through processes of chemical and thermal diffusion, reaches new equilibrium conditions. In all the experiments performed at T = 700-750 °C, a large number of crystal nuclei and spherulites grows in the groundmass, suggesting conditions of high undercooling. This process creates textural heterogeneities at the scale of few microns but only limited changes of groundmass composition, which remains clustered around that of the natural glasses. Reheating at T = 1,000-1,050 °C promotes massive groundmass crystallization, with a different mineral assemblage as a function of the redox conditions. Morphological modifications of clasts, from softening to sintering as temperature increases, occur under these conditions, accompanied by progressive smoothing of external surfaces, and a reduction in size and abundance of vesicles, until the complete obliteration of the pre-existing vesicularity. The transition from sintering to welding, characteristic of high temperature, is influenced by redox conditions. Experiments at T = 1,100-1,130 °C and under vacuum produce groundmass textures and glass compositions similar to that of the respective starting material. Collapse and welding of the clasts cause significant densification of the whole charge. At the same temperature, but in presence of air, experimental products at least result sintered and show holocrystalline groundmass. In all experiments, sublimates grow on the external surfaces of the clasts or form a lining on the bubble walls. Their shape and

  10. Experimental study of surfactant transfer in fluid systems in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Kostarev, K. G.; Levtov, V. L.; Romanov, V. V.; Shmyrov, A. V.; Viviani, A.

    2010-02-01

    The paper presents the results of the space experiment studying the process of surfactant dissolution from a binary fluid drop in microgravity conditions. The experiment was performed during the flight of the space satellite "Foton M-3" in September 2007. Investigation of the surfactant diffusion was made using a new original setup based on the interferometric method. The experimental cuvette represented a thin Hele-Shaw cell filled with water, which surrounded a drop in the form of a short liquid cylinder with a free lateral surface. The drop consisted of a binary mixture, in which one of the components was the surfactant easily dissolved in water. The use of interferometry made it possible to visualize and investigate evolution of the surfactant distributions and the flow structures in the drop and the surrounding liquid. The characteristic stages of the dissolution process were identified, and the rate of the concentration front propagation was defined. It was shown that in microgravity conditions the process of surfactant diffusion through the interface did not initiate an intensive solutal Marangoni convection as contrasted to the case of terrestrial simulation. The observed phenomenon has its origins in the long-lived fields of surfactant concentration formed near the interface due to the absence of the gravitational mechanisms of motion and large characteristic time of admixture diffusion which is hundreds of times longer than the time of thermal diffusion.

  11. Experimental fault tolerant universal quantum gates with solid-state spins under ambient conditions

    NASA Astrophysics Data System (ADS)

    Rong, Xing

    Quantum computation provides great speedup over classical counterpart for certain problems, such as quantum simulations, prime factoring and database searching. One of the challenges for realizing quantum computation is to execute precise control of the quantum system in the presence of noise. Recently, high fidelity control of spin-qubits has been achieved in several quantum systems. However, control of the spin-qubits with the accuracy required by the fault tolerant quantum computation under ambient conditions remains exclusive. Here we demonstrate a universal set of logic gates in nitrogen-vacancy centers with an average single-qubit gate fidelity of 0.99995 and two qubit gate fidelity of 0.992. These high control fidelities have been achieved in the C naturally abundant diamonds at room temperature via composite pulses and optimal control method. This experimental implementation of quantum gates with fault tolerant control fidelity sets an important step towards the fault-tolerant quantum computation under ambient conditions. National Key Basic Research Program of China (Grant No. 2013CB921800).

  12. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Schopfer, F.; Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.

    Large-area and high-quality graphene devices synthesized by CVD on SiC are used to develop reliable electrical resistance standards, based on the quantum Hall effect (QHE), with state-of-the-art accuracy of 1x10-9 and under an extended range of experimental conditions of magnetic field (down to 3.5 T), temperature (up to 10 K) or current (up to 0.5 mA). These conditions are much relaxed as compared to what is required by GaAs/AlGaAs standards and will enable to broaden the use of the primary quantum electrical standards to the benefit of Science and Industry for electrical measurements. Furthermore, by comparison of these graphene devices with GaAs/AlGaAs standards, we demonstrate the universality of the QHE within an ultimate uncertainty of 8.2x10-11. This suggests the exact relation of the quantized Hall resistance with the Planck constant and the electron charge, which is crucial for the new SI to be based on fixing such fundamental constants. These results show that graphene realizes its promises and demonstrates its superiority over other materials for a demanding application. Nature Nanotech. 10, 965-971, 2015, Nature Commun. 6, 6806, 2015

  13. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  14. An experimental search for near-wall boundary conditions for large eddy simulation

    NASA Technical Reports Server (NTRS)

    Robinson, S. K.

    1982-01-01

    Instantaneous wall shear stress and streamwise velocities have been measured simultaneously in a flat plate, turbulent boundary layer at moderate Reynolds number in an effort to provide experimental support for large eddy simulations. Data were obtained by using a buried-wire wall shear gage and a hot-wire rake positioned in the log region of the flow. All data processing was accomplished with digital data analysis techniques on a minicomputer. Fluctuations of the instantaneous U plus versus Y plus profiles about a mean law of the wall are shown to be significant and complex. Peak cross-correlation values between wall shear stress and the velocities are high and reflect the passage of a large structure inclined at a small angle to the wall. Estimates of this angle are consistent with those made by other investigators. Conditional sampling techniques were used to detect the passage of various sizes and types of flow disturbances (events) and to estimate their mean frequency of occurrence. Events characterized by large and sudden streamwise accelerations were found to be highly coherent throughout the log region and were strongly correlated with large fluctuations in wall shear-stress. Phase randomness between the near-wall quantities and the outer velocities was small. The results suggest that the flow events detected by conditional sampling applied to velocities in the log region may be related to the bursting process.

  15. Experimental impedance investigation of an ultracapacitor at different conditions for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.

    2015-08-01

    Ultracapacitors (UCs) are being increasingly deployed as a short-term energy storage device in various energy systems including uninterruptable power supplies, electrified vehicles, renewable energy systems, and wireless communication. They exhibit excellent power density and energy efficiency. The dynamic behavior of a UC, however, strongly depends on its impedance characteristics. In this paper, the impedance characteristics of a commercial UC are experimentally investigated through the well-adopted Electrochemical Impedance Spectroscopy (EIS) technique. The implications of the UC operating conditions (i.e., temperature and state of charge (SOC)) to the impedance are systematically examined. The results show that the impedance is highly sensitive to the temperature and SOC; and the temperature effect is more significant. In particular, the coupling effect between the temperature and SOC is illustrated, as well as the high-efficiency SOC window, which is highlighted. To further verify the reliability of the EIS-based investigation and to probe the sensitivity of UC parameters to the operating conditions, a dynamic model is characterized by fitting the collected impedance data. The interdependence of UC parameters (i.e., capacitance and resistance elements) on the temperature and SOC is quantitatively revealed. The impedance-based model is demonstrated to be accurate in two driving-cycle tests.

  16. Experimental Research on In-Tube Condensation Under Steady-State and Transient Conditions

    SciTech Connect

    Tanrikut, Ali; Yesin, Orhan

    2005-01-15

    In this research study, in-tube condensation in the presence of air was investigated experimentally at a heat exchanger of countercurrent type for different operating conditions. The test matrix for the steady-state condition covers the range of pressures P = 1.8 to 5.5 bars, vapor Reynolds numbers Re{sub v} = 45 000 to 94 000, and inlet air mass fraction values X{sub i} = 0 to 52%. The effect of air manifests itself by a reduction in the local heat flux and the local heat transfer coefficient. The local heat transfer coefficient is inversely proportional to the local air mass fraction. Both the local heat flux and the heat transfer coefficient vary with the system pressure and vapor mass flow rate. There is no effect of inlet superheating on the local heat flux. The film Reynolds number lies in the range of the turbulent region. Two experiments simulating loss of coolant to the secondary side of the condenser were performed, for pure steam and for an air/steam mixture. These transients show that the vapor suction rate, effective condensation length, and overall heat transfer rate are a function of the coolant boiloff rate and the air mass fraction.

  17. Experimental performance study of a proposed desiccant based air conditioning system

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  18. Experimental and computational investigations of surfactant physicochemical behavior during conditions emulating the opening of pulmonary airways

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir Nuruddin

    2000-10-01

    We have investigated the mechanical influence of surfactant physicochemical properties on the progression of a semi-infinite air bubble in a fluid filled rigid capillary. This system mimics the continual interfacial expansion dynamics that occur during the opening of collapsed pulmonary airways. The goal of this study is to ascertain the surfactant physicochemical properties that are responsible for reducing airway reopening pressures that may damage lung epithelial cells. To accomplish this goal, we have developed experimental and computational models of this system. The experimental model is used to measure the ability of various surfactants to alter the reopening pressure. The non-physiologic surfactant, SDS, is capable of reducing the interfacial stresses that elevate the reopening pressure, the main component of pulmonary surfactant, L-alpha-dipalmitoyl phosphatidylcholine (DPPC), exhibits large stresses, and the clinically relevant surfactant, Infasurf, reduces the reopening pressure but maintains a surface shear or Marangoni stress. Infasurf's behavior suggests that optimal surfactant properties will reduce the reopening pressures that may damage airway epithelial cells while maintaining the Marangoni stress that enhances airway stability. Analysis of the experimental data is based on a modification of previous theoretical models which can not simulate non-equilibrium conditions near the bubble tip. Therefore, we have developed a theoretical model of surfactant effects that is capable of simulating these non-equilibrium dynamics. The coupled governing equations for fluid mechanics, molecular transport, and interfacial dynamics, are solved using a combined boundary element, dual reciprocity boundary element, and finite difference scheme. Scaling of the governing equations yields dimensionless parameters that identify the relative importance of surfactant physicochemical properties. Independent parameter variation studies are used to investigate how individual

  19. 40 CFR 761.386 - Required experimental conditions for the validation study and subsequent use during decontamination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... experimental conditions apply for any solvent: (a) Temperature and pressure. Conduct the validation study and perform decontamination at room temperature (from ≥15 °C to ≤30 °C) and at atmospheric pressure....

  20. 40 CFR 761.386 - Required experimental conditions for the validation study and subsequent use during decontamination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... experimental conditions apply for any solvent: (a) Temperature and pressure. Conduct the validation study and perform decontamination at room temperature (from ≥15 °C to ≤30 °C) and at atmospheric pressure....

  1. 40 CFR 761.386 - Required experimental conditions for the validation study and subsequent use during decontamination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... experimental conditions apply for any solvent: (a) Temperature and pressure. Conduct the validation study and perform decontamination at room temperature (from ≥15 °C to ≤30 °C) and at atmospheric pressure....

  2. 40 CFR 761.386 - Required experimental conditions for the validation study and subsequent use during decontamination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... experimental conditions apply for any solvent: (a) Temperature and pressure. Conduct the validation study and perform decontamination at room temperature (from ≥15 °C to ≤30 °C) and at atmospheric pressure....

  3. Measurement capability of field portable organic vapor monitoring instruments under different experimental conditions.

    PubMed

    Coffey, Christopher C; Pearce, Terri A; Lawrence, Robert B; Hudnall, Judith B; Slaven, James E; Martin, Stephen B

    2009-01-01

    The performance of field portable direct-reading organic vapor monitors (DROVMs) was evaluated under a variety of experimental conditions. Four of the DROVMs had photoionization detectors (ppbRAE, IAQRAE, MultiRAE, and Century Toxic Vapor Analyzer), one had a flame ionization detector (Century Toxic Vapor Analyzer), and one was a single-beam infrared spectrophotometer (SapphIRe). Four of each DROVM (two Century Toxic Vapor Analyzers and SapphIRes) were tested. The DROVMs were evaluated at three temperatures (4 degrees C, 21 degrees C, and 38 degrees C), three relative humidities (30%, 60%, and 90%), and two hexane concentrations (5 ppm and 100 ppm). These conditions were selected to provide a range within the operational parameters of all the instruments. At least four replicate trials were performed across the 18 experimental conditions (3 temperatures x 3 relative humidities x 2 concentrations). To evaluate performance, the 4-hr time-weighted average readings from the DROVMs in a given trial were compared with the average of two charcoal tube concentrations using pairwise comparison. The pairwise comparison criterion was +/-25% measurement agreement between each individual DROVM and the DROVMs as a group and the average charcoal tube concentration. The ppbRAE group performed the best with 40% of all readings meeting the comparison criterion followed by the SapphIRe group at 39%. Among individual DROVMs, the best performer was a SapphIRe, with 57% of its readings meeting the criterion. The data was further analyzed by temperature, humidity, and concentration. The results indicated the performance of some DROVMs may be affected by temperature, humidity, and/or concentration. The ppbRAE group performed best at 21 degrees C with the percentage of readings meeting the criterion increasing to 63%. At the 5 ppm concentration, 44% of the ppbRAE group readings met the criterion, while at 100 ppm, only 35% did. The results indicate that monitors can be used as survey tools

  4. Deformation Mechanisms of Antigorite Serpentinite at Subduction Zone Conditions Determined from Experimentally and Naturally Deformed Rocks

    NASA Astrophysics Data System (ADS)

    Auzende, A. L.; Escartin, J.; Walte, N.; Guillot, S.; Hirth, G.; Frost, D. J.

    2014-12-01

    The rheology of serpentinite, and particularly that of antigorite-bearing rocks, is of prime importance for understanding subduction zone proceses, including decoupling between the downwelling slab and the overriding plate, exhumation of high-pressure rocks, fluids pathways and, more generally, mantle wedge dynamics. We present results from deformation-DIA experiments on antigorite serpentinite performed under conditions relevant of subduction zones (1-3.5 GPa ; 400-650°C). We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400°C (Chernak and Hirth, EPSL, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Our observations on experimental samples of antigorite deformed within its stability field show that deformation is dominated by cataclastic flow; we can only document a minor contribution of plastic deformation. In naturally deformed samples, deformation-related plastic structures largely dominate strain accommodation, but we also document a minor contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases, and is coupled to local embrittlement attributed to hydraulic fracturating due to the migration of dehydration fluids. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. We also document that the corrugated structure of antigorite has a control on the strain accommodation mechanisms under subduction conditions, with preferred inter and intra-cracking along (001) and gliding along both a and b. Deformation dominated by brittle processes, as observed in experiments, may occur during deformation at elevated (seismic?) strain rates, while plastic deformation, as observed in naturally deformed rocks, may correspond instead to low strain rates instead (aseismic creep?). We also discuss the role of antigorite rheology and mode of deformation on fluid transport.

  5. Experimental evaluation of CCD and CMOS cameras in low-light-level conditions

    NASA Astrophysics Data System (ADS)

    Laitinen, Jyrki; Ailisto, Heikki J.

    1999-09-01

    In this research characteristics of standard commercial CCD and CMOS cameras are evaluated experimentally and compared. Special attention is paid to the operation of these devices in low light level condition, which is typical to many surveillance and consumer electronics applications. One emerging application utilizing inexpensive image sensors at variable illumination condition is the UMTS (Universal Mobile Telecommunications System), which will deliver wirelessly, for example, pictures, graphics and video from the year 2002. The determination of the system performance is based in this study on the imaging of a calibrated gray scale test chart at varying illumination condition. At each level of illumination the system response is characterized by a signal to random noise figure. The signal is calculated as the difference of the system response to the lightest and darkest areas of the gray scale. The random noise is measured as the standard deviation of the gray values in a difference of two successive images of the test pattern. The standard deviation is calculated from 10-bit digitized images for small group of pixels (36 X 36) corresponding to the different areas of the gray scale in the test pattern images. If the random noise is plot as a function of signal (encoded in digital numbers, DN) for small group of pixels, a Photon Transfer curve is obtained. This is one of the basic performance standards of CCD sensors. However, if camera systems with nonlinear response or AGC are evaluated, the variations of the system response at different signal levels should be included to the performance measure. In these cases the signal to noise curve is useful. The signal to random noise curves were determined for a CCD and a CMOS camera characterized by similar specifications. The comparison between two camera systems shows that considerable differences between the operation of these devices especially at low light level condition can exist. It was found that approximately

  6. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets: Experimental Data Archive

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important. This is the supplemental CD-ROM

  7. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions.

    PubMed

    Ribeiro-Palau, R; Lafont, F; Brun-Picard, J; Kazazis, D; Michon, A; Cheynis, F; Couturaud, O; Consejo, C; Jouault, B; Poirier, W; Schopfer, F

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10(-9) over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10(-11), supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature. PMID:26344181

  8. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.

  9. Competitive and Predacious Interactions Among Three Phytoseiid Species Under Experimental Conditions (Acari: Phytoseiidae).

    PubMed

    Ji, J; Zhang, Y-X; Saito, Y; Takada, T; Tsuji, N

    2016-02-01

    The effect of competition on species that coexist with similar ecological niches is an important theme in ecology. Furthermore, species displacement by introduced or invaded species is also an important environmental problem for biological control and conservation ecology. We tested whether two species of phytoseiids could coexist in closed cages with ample quantities of the extraguild prey species Carpoglyphus lactis (L.). Three species of phytoseiid mites-Amblyseius eharai Amitai & Swirski (a species native to China), Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (both species were introduced from outside of China)-were tested under experimental conditions (25 ± 1°C, 90 ± 5% relative humidity, and a photoperiod of 14:10 [L:D] h). With extraguild prey, we found that the numbers of a single population of each phytoseiid species (initial density of 10 females per cage) reached a plateau between 18 and 25 d after introduction into the experimental cages, suggesting that density-dependent factors were operating. In closed environments, one of these density-dependent factors might be cannibalism by these species. With regression analyses, Lotka-Volterra equations estimated the rate of population increase (r) and the carrying capacity (K) of each species with the data from observations on population dynamics. We next observed the interactions of two phytoseiid species with abundant extraguild prey. In all species combinations, one species went extinct and the other increased in population size, despite the availability of sufficient extraguild prey, suggesting some type of competition must have caused the extinctions. We suggested that intraguild predation is the most plausible hypothesis to explain the results. PMID:26496951

  10. Citrulline as a Biomarker for Gastrointestinal-Acute Radiation Syndrome: Species Differences and Experimental Condition Effects.

    PubMed

    Bujold, K; Hauer-Jensen, M; Donini, O; Rumage, A; Hartman, D; Hendrickson, H P; Stamatopoulos, J; Naraghi, H; Pouliot, M; Ascah, A; Sebastian, M; Pugsley, M K; Wong, K; Authier, S

    2016-07-01

    Animal models of hematopoietic and gastrointestinal acute radiation syndromes (ARS) have been characterized to develop medical countermeasures. Acute radiation-induced decrease of intestinal absorptive function has been correlated to a decrease in the number of intestinal crypt cells resulting from apoptosis and enterocyte mass reduction. Citrulline, a noncoded amino acid, is produced almost exclusively by the enterocytes of the small intestine. Citrullinemia has been identified as a simple, sensitive and suitable biomarker for radiation-induced injury associated with gastrointestinal ARS (GI-ARS). Here we discuss the effect of radiation on plasma citrulline levels in three different species, C57BL/6 mice, Göttingen minipigs and rhesus nonhuman primates (NHPs), measured by liquid chromatography tandem mass spectrometry (LC-MS/MS). The effects of experimental study conditions such as feeding and anesthesia were also examined on plasma citrulline levels in the NHPs. Both the mice and Göttingen minipigs were partial-body irradiated (PBI) with doses from 13-17 Gy and 8-16 Gy, respectively, whereas NHPs were total-body irradiated (TBI) with doses from 6.72-13 Gy. Blood samples were taken at different time points and plasma citrulline levels were measured in the three species at baseline and after irradiation. Basal plasma citrulline concentrations (mean ± SEM) in mice and minipigs were 57.8 ± 2.8 μM and 63.1 ± 2.1 μM, respectively. NHPs showed a basal plasma citrulline concentration of 32.6 ± 0.7 μM, very similar to that of humans (∼40 μM). Plasma citrulline progressively decreased after irradiation, reaching nadir values between day 3.5 and 7. The onset of citrulline recovery was observed earlier at lower radiation doses, while only partial citrulline recovery was noted at higher radiation doses in minipigs and NHPs, complete recovery was noted in mice at all doses. Plasma citrulline levels in NHPs anesthetized with ketamine and acepromazine significantly

  11. Ischemic conditioning protects the rat retina in an experimental model of early type 2 diabetes.

    PubMed

    Salido, Ezequiel M; Dorfman, Damián; Bordone, Melina; Chianelli, Mónica S; Sarmiento, María Inés Keller; Aranda, Marcos; Rosenstein, Ruth E

    2013-02-01

    Diabetic retinopathy is a leading cause of acquired blindness in adults, mostly affected by type 2 diabetes mellitus (T2DM). We have developed an experimental model of early T2DM in adult rats which mimics some features of human T2DM at its initial stages, and provokes significant retinal alterations. We investigated the effect of ischemic conditioning on retinal changes induced by the moderate metabolic derangement. For this purpose, adult male Wistar rats received a control diet or 30% sucrose in the drinking water, and 3 weeks after this treatment, animals were injected with vehicle or streptozotocin (STZ, 25mg/kg). Retinal ischemia was induced by increasing intraocular pressure to 120 mm Hg for 5 min; this maneuver started 3 weeks after vehicle or STZ injection and was weekly repeated in one eye, while control eyes were submitted to a sham procedure. Fasting and postprandial glycemia, and glucose, and insulin tolerance tests were analyzed. At 12 weeks of treatment, animals which received a sucrose-enriched diet and STZ showed significant differences in metabolic tests, as compared with control groups. Brief ischemia pulses in one eye and a sham procedure in the contralateral eye did not affect glucose metabolism in control or diabetic rats. Ischemic pulses reduced the decrease in the electroretinogram a-wave, b-wave, and oscillatory potential amplitude, and the increase in retinal lipid peroxidation, NOS activity, TNFα, Müller cells glial fibrillary acidic protein, and vascular endothelial growth factor levels observed in diabetic animals. In addition, ischemic conditioning prevented the decrease in retinal catalase activity induced by T2DM. These results indicate that induction of ischemic tolerance could constitute a fertile avenue for the development of new therapeutic strategies to treat diabetic retinopathy associated with T2DM. PMID:23153579

  12. Tethered chains in poor solvent conditions: An experimental study involving Langmuir diblock copolymer monolayers

    SciTech Connect

    Kent, M.S.; Majewski, J.; Smith, G.S.; Lee, L.T.; Satija, S.

    1999-02-01

    We have employed Langmuir monolayers of highly asymmetric polydimethylsiloxane-polystyrene (PDMS-PS) diblock copolymers on dioctyl phthalate (DOP) at temperatures ranging from 22 to {minus}35thinsp{degree}C as a model system for tethered chains in poor solvent conditions. The thicknesses of the tethered PS layers extending into the DOP subphase, measured by neutron reflection, decrease with decreasing temperature ({ital T}) over this entire range. However, the variation with {ital T} becomes weak below {minus}20thinsp{degree}C. At the lowest {ital T}, the layer thicknesses are 55{percent}{endash}75{percent} of the values at the theta condition (T{sub {theta}}=22thinsp{degree}C). The contraction of the layer with decreasing {ital T} is determined as a function of surface density and molecular weight, and these data are compared to universal scaling forms. The PS segments are depleted from the near surface region over the entire {ital T} range, with the thickness of the depletion layer increasing slightly with decreasing {ital T}. The free energy of the surface layer is probed by surface tension measurements. With decreasing {ital T}, negative surface pressures are observed at low coverages for both PDMS-PS and PDMS monolayers, indicating metastability toward lateral phase separation. Evidence for a transition from a dispersed phase to a condensed phase with decreasing {ital T} was observed in the reflectivity for very low PDMS-PS coverage. At high coverage where the submerged blocks are strongly interacting at 22thinsp{degree}C, only a modest decrease in surface pressure is observed over the experimental range of {ital T} despite the strong contraction. This latter result is discussed in terms of the relative contributions of enthalpic and entropic effects to the surface pressure. {copyright} {ital 1999 American Institute of Physics.}

  13. Experimental Study on Fluid Distribution at Ultra-High Metamorphic Conditions

    NASA Astrophysics Data System (ADS)

    Mönicke, K.; Burchard, M.; Duyster, J.; Maresch, W. V.; Röller, K.; Stöckhert, B.

    2001-12-01

    Ultra-high pressure (UHP) metamorphic rocks record deep subduction of continental crust. Insight into their rheological behavior at UHP metamorphic conditions is important for the understanding of the mechanical state and the kinematics within subduction zones. Amazingly, many exhumed UHP metamorphic rocks do not show evidence of significant deformation. Thus, it has been proposed that deformation is localized in low-strength zones controlled by partially wetting interstitial fluids [1]. Experimental results [2] show that at UHP metamorphic conditions only one homogenous fluid phase with variable composition exists, whose density and viscosity should be intermediate between those of conventional aqueous solutions and hydrous melts. Inclusions of such supercritical fluid have been recently described from a natural UHP metamorphic rock [3]. Motivated by these findings, experiments using a piston-cylinder apparatus were performed to study the fluid distribution in various rock types at pressures of 3.5 GPa and temperatures between 900 ° C and 600 ° C. Starting materials were natural UHP metamorphic specimens of (1) S-type granitic biotite-phengite-gneiss and (2) pyrope-quartzite, both from the Dora Maira Massif (Western Alps, Italy) and (3) a diamond-bearing garnet-mica-gneiss with granodioritic bulk composition from the Saxonian Erzgebirge (Germany), all with 2 wt.% water added. The supercritical fluids formed in these experiments can be quenched to form a silicic glass with demixing of an aqueous solution without changing the UHP fluid topology significantly. The shape of the fluid-filled interstices is irregular and complex, resulting in a low volume/interface area ratio and a potential of high stress concentration at the edges of wedge-shaped offshoots. We propose that the distribution of supercritical fluids has a pronounced effect on the strength of cool subducted crust, allowing deformation by grain boundary sliding and dissolution precipitation creep, or

  14. Response surface optimization of experimental conditions for carbamazepine biodegradation by Streptomyces MIUG 4.89.

    PubMed

    Popa Ungureanu, Claudia; Favier, Lidia; Bahrim, Gabriela; Amrane, Abdeltif

    2015-05-25

    Carbamazepine an iminostilbene derivative compound with a tricyclic structure is one of the most widely prescribed drugs for the treatment of epilepsy. It is hardly or not degraded during the conventional technology used in wastewater treatment plants (WWTPs) (up to 7%) and many studies have found it ubiquitous in various environmental matrices in concentrations typically ranging from μg L(-1) to ng L(-1). Streptomyces MIUG 4.89 was previously studied for its ability in carbamazepine biodegradation (up to 14%) during cultivation in submerged system under aerobic conditions at an initial CBZ concentration of 0.2 mg L(-1). The influence of some factors (independent variables) upon biodegradation potential was examined by Plackett-Burman analysis. Central composite design of experiments (CCD) and response surface methodology (RSM) were used to get more information about the significant effects and their interactions of the five parameters selected upon their biodegradation potential in order to increase the elimination yield of this drug from a liquid medium. The investigated ranges of the independent variables were: 1.0-3.0 g L(-1) yeast extract, 3.0-10.0 g L(-1) glucose, 4.0-10.0% (v/v) inoculation level, pH 5.0-7.0 and 50-250 mL of medium at a constant initial concentration of carbamazepine (CBZ) of 0.2 mg L(-1). The response surface analysis results showed that the capacity of the selected strain Streptomyces MIUG 4.89 to degrade carbamazepine was high in submerged cultivation system by cultivation in a liquid medium containing 6.5 g L(-1) glucose and 2 g L(-1) yeast extract, inoculated at 7% (v/v) and cultivated at pH 6.0, during 7 days of incubation at 25 °C and 150 rpm. Under these culture conditions the achieved experimental CBZ biotransformation yield was 30%. PMID:25556120

  15. Validation of Perceptual Strain Index to Evaluate the Thermal Strain in Experimental Hot Conditions

    PubMed Central

    Dehghan, Habibollah; Ghanbary Sartang, Ayoub

    2015-01-01

    Background: The incidence of heat stress is one of the most common problems in workplaces and industries. Many heat stress indices have been developed, and these indices have some disadvantages. The purpose of this study is to validate the perceptual strain index (PeSI) in experimental hot conditions. Methods: This study is of cross-sectional carried out on 15 men at five different thermal conditions (35°C, 30°C, 27°C, 24°C, and 21°C) in a climate chamber and on a treadmill at three levels of light (2.4 kph), medium (4.8 kph) and heavy activity (6.3 kph). Heart rate and oral temperature were respectively measured to calculate the physiological strain index. Also, thermal sensation and rate perceive exertion were respectively measured to calculate the PeSI. Finally, the correlation between the indices was analyzed using Pearson correlation test and regression analysis. Results: Pearson correlation test showed a high correlation (r = 0.94) between the PeSI and physiological strain index (P = 0/001). It was also observed a high correlation between the PeSI and the oral temperature (r = 0.78, P = 0/001) and the heart rate (r = 0.90, P = 0/001). In addition, there was found a moderate correlation (r = 0.71) between the PeSI and the wet bulb glob temperature (P = 0/001). However, there was no correlation between the PeSI and the body mass index (r = 0.0009, P = 0.79). Conclusions: The research findings showed when there is no access to other forms of methods to evaluate the heat stress, it can be used the PeSI in evaluating the strain because of its favorable correlation with the thermal strain. PMID:26425333

  16. What Actually Happened.

    PubMed

    2016-04-01

    The medical team found the patient to lack medical decisionmaking capacity. However, the team felt that the patient was still able to respond appropriately to some situations. KS had displayed a consistent refusal of all medical treatments that made her uncomfortable or caused pain. During her sister's visits, the patient would be much more receptive to eating. A meeting was planned with the patient's sister in which the ethicist explained that the patient was not able to make her own decisions. The patient's sister agreed that she would honor the patient's wishes but would let the team make any decisions outside of what she knew about the patient's preferences. The patient's sister agreed and was willing to be at the patient's bedside as much as she could to encourage her eating. If the patient's condition worsened, it was discussed that the team honor the patient's wishes and not force a feeding tube on her. The patient's code status was also addressed, and KS's sister felt comfortable in communicating to the team that the patient would not want to be resuscitated if medical treatments would not be able to improve her current quality of life. A natural passing away would be most amenable to the patient. The patient was discharged to her nursing home with a physician order for life-sustaining treatment (POLST) form signed by the sister documenting a do-not-resuscitate code status with comfort-focused treatments. PMID:26957461

  17. Calculation for optimization of the experimental conditions for RBS analysis at the HUS 5SDH-2 tandem accelerator

    NASA Astrophysics Data System (ADS)

    Phong, Le Hong Khiem Ho, Vi; Nghia, Nguyen The

    2015-06-01

    The dependences of the depth and mass resolutions of analysis using Rutherford Backscattering Spectrometry (RBS) on some experimental conditions (such as the beam energy, the target tilting angle, etc.) have been investigated. A computer program for simulating the RBS spectra and for calculating the depth and mass resolution under different experimental conditions was developed. The results of calculation were experimentally checked by using some reference samples. The good agreements between calculated and experimental values have been found. The optimum analysis conditions over a wide range of RBS applications based on our calculation can be chosen. This investigation was conducted by using the RBS system at HUS 5SDH-2 Tandem accelerator at the Hanoi University of Science.

  18. Carbon isotope fractionation during experimental crystallisation of diamond from carbonate fluid at mantle conditions

    NASA Astrophysics Data System (ADS)

    Reutsky, Vadim; Borzdov, Yuri; Palyanov, Yuri; Sokol, Alexander; Izokh, Olga

    2015-12-01

    We report first results of a systematic study of carbon isotope fractionation in a carbonate fluid system under mantle PT conditions. The system models a diamond-forming alkaline carbonate fluid using pure sodium oxalate (Na2C2O4) as the starting material, which decomposes to carbonate, CO2 and elementary carbon (graphite and diamond) involving a single source of carbon following the reaction 2Na2C2O4 → 2Na2CO3 + CO2 + C. Near-liquidus behaviour of carbonate was observed at 1300 °C and 6.3 GPa. The experimentally determined isotope fractionation between the components of the system in the temperature range from 1300 to 1700 °C at 6.3 and 7.5 GPa fit the theoretical expectations well. Carbon isotope fractionation associated with diamond crystallisation from the carbonate fluid at 7.5 GPa decreases with an increase in temperature from 2.7 to 1.6 ‰. This trend corresponds to the function ΔCarbonate fluid-Diamond = 7.38 × 106 T-2.

  19. Conditioned Medium from the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Experimental Autoimmune Encephalomyelitis.

    PubMed

    Shimojima, Chiaki; Takeuchi, Hideyuki; Jin, Shijie; Parajuli, Bijay; Hattori, Hisashi; Suzumura, Akio; Hibi, Hideharu; Ueda, Minoru; Yamamoto, Akihito

    2016-05-15

    Multiple sclerosis (MS) is a major neuroinflammatory demyelinating disease of the CNS. Current MS treatments, including immunomodulators and immunosuppressants, do not result in complete remission. Stem cells from human exfoliated deciduous teeth (SHEDs) are mesenchymal stem cells derived from dental pulp. Both SHED and SHED-conditioned medium (SHED-CM) exhibit immunomodulatory and regenerative activities and have the potential to treat various diseases. In this study, we investigated the efficacy of SHED-CM in treating experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. EAE mice treated with a single injection of SHED-CM exhibited significantly improved disease scores, reduced demyelination and axonal injury, and reduced inflammatory cell infiltration and proinflammatory cytokine expression in the spinal cord, which was associated with a shift in the microglia/macrophage phenotype from M1 to M2. SHED-CM also inhibited the proliferation of myelin oligodendrocyte glycoprotein-specific CD4(+) T cells, as well as their production of proinflammatory cytokines in vitro. Treatment of EAE mice with the secreted ectodomain of sialic acid-binding Ig-like lectin-9, a major component of SHED-CM, recapitulated the effects of SHED-CM treatment. Our data suggest that SHED-CM and secreted ectodomain of sialic acid-binding Ig-like lectin-9 may be novel therapeutic treatments for autoimmune diseases, such as MS. PMID:27053763

  20. An experimental investigation of copper-Zircaloy interactions under possible tuff repository conditions

    SciTech Connect

    Smith, H D

    1990-05-01

    As part of its evaluation of copper and copper alloys for use as a container material for spent fuel, the Nevada Nuclear Waste Storage Investigations Project sponsored this experimental study to determine if the presence of copper would influence the corrosion rate of Zircaloy spent fuel cladding under possible tuff repository conditions. The experiment consisted of exposing copper/Zircaloy clad spent fuel packages to two different environments for up to 9 months. Detailed evaluation of the cladding via metallography, electron probe microanalysis, scanning electron microscopy with microanalysis, and Auger electron spectroscopy/ion milling to chemically profile the surface film failed to provide an evidence of copper-enhanced corrosion of the Zircaloy cladding. The difference in thickness of the oxide films between the 2-month and 5-month experiments, and the 2-month and 9-month experiments as indicated by the time to ion mill through the films, was on the order of 50 {angstrom}, and 100 {angstrom}, respectively, indicating a very low rate of film growth during the experiments. 20 refs., 21 figs., 8 tabs.

  1. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    NASA Astrophysics Data System (ADS)

    Farough, A.; Moore, D. E.; Lockner, D. A.; Lowell, R. P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1-2 orders of magnitude during the 200-330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  2. Experimental investigation of added mass effects on a hydrofoil under cavitation conditions

    NASA Astrophysics Data System (ADS)

    De La Torre, O.; Escaler, X.; Egusquiza, E.; Farhat, M.

    2013-05-01

    The influence of leading edge sheet cavitation and supercavitation on the added mass effects experienced by a 2-D NACA0009 truncated hydrofoil has been experimentally investigated in a hydrodynamic tunnel. A non-intrusive excitation and measuring system based on piezoelectric patches mounted on the hydrofoil surface was used to determine the natural frequencies of the fluid-structure system. The appropriate hydrodynamic conditions were selected to generate a range of stable partial cavities of various sizes and also to minimize the effects of other sources of flow noise and vibrations. The main tests were performed for different sigma values under a constant flow velocity of 14m/s and for incident angles of both 1° and 2°. Additionally, a series of experiments in which the hydrofoil was submerged in air, partially and completely submerged in still water and without cavitation at 7 and 14m/s were also performed. The maximum added mass effect occurs with still water. When cavitation appears, the added mass decreases because the cavity length is increased, and the added mass is minimum for supercavitation. A linear correlation is found between the added mass coefficients and the entrained mass that accounts for the mean density of the cavity, its dimensions and its location relative to the specific mode shape deformation.

  3. Oligothiol Graft-Copolymer Coatings Stabilize Gold Nanoparticles Against Harsh Experimental Conditions

    PubMed Central

    Kang, Jun Sung; Taton, T. Andrew

    2013-01-01

    We report that poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) copolymers that bear multiple thiol groups on the polymer backbone are exceptional ligands for gold nanoparticles (AuNPs). In general, these graft copolymer ligands stabilize AuNPs against environments that would ordinarily lead to particle aggregation. To characterize the effect of copolymer structure on AuNP stability, we synthesized thiolated PLL-g-PEGs (PLL-g-[PEG:SH]) with different backbone lengths, PEG grafting densities, and number of thiols per polymer chain. AuNPs were then combined with these polymer ligands, and the stabilities of the resulting AuNP@PLL-g-[PEG:SH] particles against high temperature, oxidants, and competing thiol ligands were characterized using dynamic light scattering, visible absorption spectroscopy, and fluorescence spectrophotometry. Our observations indicate that thiolated PLL-g-PEG ligands combine thermodynamic stabilization via multiple Au-S bonds and steric stabilization by PEG grafts, and the best graft copolymer ligands balance these two effects. We hope that this new ligand system enables AuNPs to be applied to biotechnological applications that require harsh experimental conditions. PMID:22957513

  4. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions

    PubMed Central

    Bouâouda, Hanan; Achâaban, Mohamed R.; Ouassat, Mohammed; Oukassou, Mohammed; Piro, Mohamed; Challet, Etienne; El Allali, Khalid; Pévet, Paul

    2014-01-01

    Abstract In the present work, we have studied daily rhythmicity of body temperature (Tb) in Arabian camels challenged with daily heat, combined or not with dehydration. We confirm that Arabian camels use heterothermy to reduce heat gain coupled with evaporative heat loss during the day. Here, we also demonstrate that this mechanism is more complex than previously reported, because it is characterized by a daily alternation (probably of circadian origin) of two periods of poikilothermy and homeothermy. We also show that dehydration induced a decrease in food intake plays a role in this process. Together, these findings highlight that adaptive heterothermy in the Arabian camel varies across the diurnal light–dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake. The changed phase relationship between the light–dark cycle and the Tb rhythm observed during the dehydration process points to a possible mechanism of internal desynchronization during the process of adaptation to desert environment. During these experimental conditions mimicking the desert environment, it will be possible in the future to determine if induced high‐amplitude ambient temperature (Ta) rhythms are able to compete with the zeitgeber effect of the light–dark cycle. PMID:25263204

  5. Experimental investigation of T-tubular joint subjected to complex loading conditions

    NASA Astrophysics Data System (ADS)

    Lie, S. T.; Chiew, S. P.; Sun, S.

    2001-06-01

    This paper describes the results of a large-scale experimental test on T-tubular welded joint subjected under combined loading conditions. A special purpose rig is constructed for conducting the static and dynamic test of different tubular welded joints in the laboratory. The static test results are reported herein. Both the Strain gauge specimen testing which includes the basic brace axial, in-plane-bending, out-of-plane-bending and combined loadings cases, and also the finite element analyses had been carried out. The result obtained by the finite element analyses proved the accuracy and reliability of the numerical modeling. The study shows that the peak hot spot locations on the T-tubular joint subjected to combine loading shift from those of the basic load case. Generally, the peak hot spot stresses obtained by superposition are higher than that by direct analysis except for the areas that are near to the peak hot spot stresses location. The hot spot locations are important to decide on the placement of probes used in the fatigue test using the Alternating Current Potential Drop technique.

  6. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    USGS Publications Warehouse

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R. P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  7. Effect of varying experimental conditions on the viscosity of α-pinene derived secondary organic material

    NASA Astrophysics Data System (ADS)

    Grayson, J. W.; Zhang, Y.; Mutzel, A.; Renbaum-Wolff, L.; Böge, O.; Kamal, S.; Herrmann, H.; Martin, S. T.; Bertram, A. K.

    2015-11-01

    To predict the role of secondary organic material (SOM) particles in climate, visibility, and health, information on the viscosity of particles containing SOM is required. In this study we investigate the viscosity of SOM particles as a function of relative humidity and SOM particle mass concentration during SOM synthesis. The SOM was generated via the ozonolysis of α-pinene at < 5 % relative humidity (RH). Experiments were carried out using the poke-and-flow technique, which measures the experimental flow time (τexp, flow) of SOM after poking the material with a needle. In the first set of experiments, we show that τexp, flow increased by a factor of 3600 as the RH increased from < 0.5 to 50 % RH, for SOM with a production mass concentration of 121 μg m-3. Based on simulations, the viscosities of the particles were between 6 × 105 and 5 × 107 Pa s at < 0.5 % RH and between 3 × 102 and 9 × 103 Pa s at 50 % RH. In the second set of experiments we show that under dry conditions τexp, flow decreased by a factor of 45 as the production mass concentration increased from 121 to 14 000 μg m-3. From simulations of the poke-and-flow experiments, the viscosity of SOM with a production mass concentration of 14 000 μg m-3 was determined to be between 4 × 104 and 1.5 × 106 Pa s compared to between 6 × 105 and 5 × 107 Pa s for SOM with a production mass concentration of 121 μg m-3. The results can be rationalised by a dependence of the chemical composition of SOM on production conditions. These results emphasise the shifting characteristics of SOM, not just with RH and precursor type, but also with the production conditions, and suggest that production mass concentration and the RH at which the viscosity was determined should be considered both when comparing laboratory results and when extrapolating these results to the atmosphere.

  8. Effect of varying experimental conditions on the viscosity of α-pinene derived secondary organic material

    NASA Astrophysics Data System (ADS)

    Grayson, James W.; Zhang, Yue; Mutzel, Anke; Renbaum-Wolff, Lindsay; Boge, Olaf; Kamal, Saeid; Herrmann, Hartmut; Martin, Scot T.; Bertram, Allan K.

    2016-05-01

    Knowledge of the viscosity of particles containing secondary organic material (SOM) is useful for predicting reaction rates and diffusion in SOM particles. In this study we investigate the viscosity of SOM particles as a function of relative humidity and SOM particle mass concentration, during SOM synthesis. The SOM was generated via the ozonolysis of α-pinene at < 5 % relative humidity (RH). Experiments were carried out using the poke-and-flow technique, which measures the experimental flow time (τexp, flow) of SOM after poking the material with a needle. In the first set of experiments, we show that τexp, flow increased by a factor of 3600 as the RH increased from < 0.5 RH to 50 % RH, for SOM with a production mass concentration of 121 μg m-3. Based on simulations, the viscosities of the particles were between 6 x 105 and 5 x 107 Pa s at < 0.5 % RH and between 3 x 102 and 9 x 103 Pa s at 50 % RH. In the second set of experiments we show that under dry conditions τexp, flow decreased by a factor of 45 as the production mass concentration increased from 121 to 14 000 μg m-3. From simulations of the poke-and-flow experiments, the viscosity of SOM with a production mass concentration of 14 000 μg m-3 was determined to be between 4 x 104 and 1.5 x 106 Pa s compared to between 6 x 105 and 5 x 107 Pa s for SOM with a production mass concentration of 121 μg m-3. The results can be rationalized by a dependence of the chemical composition of SOM on production conditions. These results emphasize the shifting characteristics of SOM, not just with RH and precursor type, but also with the production conditions, and suggest that production mass concentration and the RH at which the viscosity was determined should be considered both when comparing laboratory results and when extrapolating these results to the atmosphere.

  9. The National Ignition Facility: an experimental platform for studying behavior of matter under extreme conditions

    NASA Astrophysics Data System (ADS)

    Moses, Edward

    2011-11-01

    The National Ignition Facility (NIF), a 192-beam Nd-glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light, is now operational at Lawrence Livermore National Laboratory (LLNL). As the world's largest and most energetic laser system, NIF serves as the national center for the U.S. Department of Energy (DOE) and National Nuclear Security Administration to achieve thermonuclear burn in the laboratory and to explore the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from all of its 192 extremely energetic laser beams into a mm3-sized target, NIF can reach the conditions required to initiate fusion reactions. NIF can also provide access to extreme scientific environments: temperatures about 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure. These conditions have never been created before in a laboratory and exist naturally only in interiors of the planetary and stellar environments as well as in nuclear weapons. Since August 2009, the NIF team has been conducting experiments in support of the National Ignition Campaign (NIC)—a partnership among LLNL, Los Alamos National Laboratory, General Atomics, the University of Rochester, Sandia National Laboratories, as well as a number of universities and international collaborators. The results from these initial experiments show promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. Important national security and basic science experiments have

  10. Experimental and computational investigation of supersonic counterflow jet interaction in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Ivanchenko, Oleksandr

    The flow field generated by the interaction of a converging-diverging nozzle (exit diameter, D=26 mm M=1.5) flow and a choked flow from a minor jet (exit diameter, d=2.6 mm) in a counterflow configuration was investigated. During the tests both the main C-D nozzle and the minor jet stagnation pressures were varied as well as the region of interaction. Investigations were made in the near field, at most about 2D distance, and in the far field, where the repeated patterns of shock waves were eliminated by turbulence. Both nozzles exhausted to the atmospheric pressure conditions. The flow physics was studied using Schlieren imaging techniques, Pitot-tube, conical Mach number probe, Digital Particle Image Velocimetry (DPIV) and acoustic measurement methods. During the experiments in the far field the jets interaction was observed as the minor jet flow penetrates into the main jet flow. The resulting shock structure caused by the minor jet's presence was dependent on the stagnation pressure ratio between the two jets. The penetration length of the minor jet into the main jet was also dependent on the stagnation pressure ratio. In the far field, increasing the minor jet stagnation pressure moved the bow shock forward, towards the main jet exit. In the near field, the minor jet flow penetrates into the main jet flow, and in some cases modified the flow pattern generated by the main jet, revealing a new effect of jet flow interaction that was previously unknown. A correlation function between the flow modes and the jet stagnation pressure ratios was experimentally determined. Additionally the flow interaction between the main and minor jets was simulated numerically using FLUENT. The optimal mesh geometry was found and the k-epsilon turbulence model was defined as the best fit. The results of the experimental and computational studies were used to describe the shock attenuation effect as self-sustain oscillations in supersonic flow. The effects described here can be used

  11. Experimental and Numerical Analysis of Capillary Imbibition in Fractured Sandstone under Controlled Fracture Flow Conditions

    NASA Astrophysics Data System (ADS)

    Lee, C.; Karpyn, Z. T.

    2010-12-01

    Fractures serve as primary conduits and have great impact on the migration of injected fluid into fractured permeable media. Appropriate transport properties such as relative permeability and capillary pressures are essential for successful simulation and prediction of multi-phase flow in such systems. However, the lack of thorough understanding of the dynamics governing immiscible displacement in fractured media, limit our ability to properly represent their macroscopic transport properties. The present work is one component of a multi-variable analysis of factors affecting fracture-matrix imbibition, including injection rates, fluid properties, and fracture orientation. We conduct laboratory experiments to monitor spatial and temporal evolution of saturation distributions in fractured sandstone samples. Air-brine, kerosene-brine and mixed oil-brine were used as three different fluid pairs in separate sets of experiments. Results were then mimicked using an automated history matching approach to obtain representative relative permeability and capillary pressure curves to further investigate the interplay of gravity, capillary and viscous forces, on predictive simulation tests. Sensitive analyses, in combination with direct experimental observation, allowed us to explore the relative importance of injection flow rate, gravity effect, and fluid properties on the evolving imbibition front. High fracture flow rates favor faster recovery from the matrix, at the expense of higher pore volume injected, and generate a sharp saturation transition at the edge of the imbibing front. Water saturation in the imbibed zone remains constant at around 0.5 to 0.6, suggesting a dynamic equilibrium in the mobility of the fluid phases. Liquid-liquid and gas-liquid imbibition results show significant differences in the shape of the imbibing front, breakthrough time, and saturation profiles. Results from this work also assist in the identification of favorable conditions for cocurrent

  12. Experimental reduction of aqueous sulphate by hydrogen under hydrothermal conditions: Implication for the nuclear waste storage

    NASA Astrophysics Data System (ADS)

    Truche, Laurent; Berger, Gilles; Destrigneville, Christine; Pages, Alain; Guillaume, Damien; Giffaut, Eric; Jacquot, Emmanuel

    2009-08-01

    Sulphate reduction by hydrogen, likely to occur in deep geological nuclear waste storage sites, was studied experimentally in a two-phase system (water + gas) at 250-300 °C and under 4-16 bars H 2 partial pressure in hydrothermal-vessels. The calculated activation energy is 131 kJ/mol and the half-life of aqueous sulphate in the presence of hydrogen and elemental sulphur ranges from 210,000 to 2.7 × 10 9 years at respective temperatures of 90 °C, the thermal peak in the site and 25 °C, the ambient temperature far from the site. The features and rate of the sulphate reduction by H 2 are close to those established for TSR in oil fields. The experiments also show that the rate of sulphate reduction is not significantly affected in the H 2 pressure range of 4-16 bars and in the pH range of 2-5, whereas a strong increase is measured at pH below 2. We suggest that the condition for the reaction to occur is the speciation of sulphate dominated by non symmetric species ( HSO4- at low pH), and we propose a three steps reaction, one for each intermediate-valence sulphur species, the first one requiring H 2S as electron donor rather than H 2. We distinguish two possible reaction pathways for the first step, depending on pH: reduction of sulphate into sulphur dioxide below pH 2 or into thiosulphate or sulphite + elemental sulphur in the pH range 2-5.

  13. Experimental evaluation of insecticidal paints against Triatoma infestans (Hemiptera: Reduviidae), under natural climatic conditions

    PubMed Central

    Amelotti, Ivana; Catalá, Silvia S; Gorla, David E

    2009-01-01

    Background Triatoma infestans is the main vector of Chagas disease in the Gran Chaco region of South America. The traditional spraying technique used for the application of pyrethroid insecticides has shown low efficiency in the elimination of the vector species populations occupying peridomestic structures of rural houses in the endemic area of Argentina. As part of studies looking for better alternatives, we evaluated the residual effect of insecticidal paints on the mortality of fourth instar nymphs of T. infestans. Results The study was based on an experimental design that included two groups treated with an organophosphate (Inesfly 5A IGR™) and a pyrethroid (Inesfly 5A IGR NG™) formulations of the paint, that were applied on wood, cement blocks and adobe bricks under natural climatic conditions. A third group was an untreated control. Both paint formulations showed very long residual activity, producing mortality of 84% and 98% (pyrethroid and organophosphate formulations, respectively) after 12 months of the paint application. After eight months, nymphs exposed during 6 hours to the painted surfaces with the pyrethroid and organophosphate formulations showed 81.33% and 100% mortality, respectively. Conclusion The organophosphate- and pyrethroid-based insecticidal paints showed a very long residual activity on the mortality of fourth instar nymphs of T infestans, compared with the traditional spraying technique used for the application of pyrethroid insecticides in peridomestic structures of rural houses in the endemic region for Chagas disease in the Gran Chaco of Argentina. The application of the paints by trained personnel of the vector control programmes could be considered as an alternative control tool in areas where the traditional methods have failed or showed low efficacy. PMID:19586532

  14. Aerosol transmission of foot-and-mouth disease virus Asia-1 under experimental conditions.

    PubMed

    Colenutt, C; Gonzales, J L; Paton, D J; Gloster, J; Nelson, N; Sanders, C

    2016-06-30

    Foot-and-mouth disease virus (FMDV) control measures rely on understanding of virus transmission mechanisms. Direct contact between naïve and infected animals or spread by contaminated fomites is prevented by quarantines and rigorous decontamination procedures during outbreaks. Transmission of FMDV by aerosol may not be prevented by these control measures and this route of transmission may allow infection of animals at distance from the infection source. Understanding the potential for aerosol spread of specific FMDV strains is important for informing control strategies in an outbreak. Here, the potential for transmission of an FMDV Asia 1 strain between pigs and cattle by indirect aerosol exposure was evaluated in an experimental setting. Four naïve calves were exposed to aerosols emitted from three infected pigs in an adjacent room for a 10h period. Direct contact between pigs and cattle and fomite transfer between rooms was prevented. Viral titres in aerosols emitted by the infected pigs were measured to estimate the dose that calves were exposed to. One of the calves developed clinical signs of FMD, whilst there was serological evidence for spread to cattle by aerosol transmission in the remaining three calves. This highlights the possibility that this FMDV Asia 1 strain could be spread by aerosol transmission given appropriate environmental conditions should an outbreak occur in pigs. Our estimates suggest the exposure dose required for aerosol transmission was higher than has been previously quantified for other serotypes, implying that aerosols are less likely to play a significant role in transmission and spread of this FMDV strain. PMID:27259825

  15. SU-E-T-178: Experimental Study of Acceptable Movement Conditions for SBRT Lung Treatments

    SciTech Connect

    Carrasco de Fez, P; Ruiz-Martinez, A; Jornet, N; Eudaldo, T; Latorre-Musoll, A; Ribas, Morales M

    2014-06-01

    Purpose: To experimentally study the acceptable movement conditions for SBRT lung treatments we quantified with film dosimetry the change in dose distributions due to periodic movements of 5 different amplitudes and 4 respiratory gating duty cycles on a SBRT treatment plan. Methods: We planned a SBRT treatment plan for the QUASAR™ (Modus Medical) phantom equipped with the respiratory motion device. We placed a 3 mm water-equivalent sphere simulating a tumour inside the lung-equivalent insert. This sphere is divided in two hemispheres that allow placing films in between. We used radiochromic EBT2™ (Ashland) films. We oriented the lung insert in such a way that sagittal dose distributions could be measured. We applied a sinusoidal movement with 3 s period for 5 different amplitudes of 0(static), 5, 7, 10, 15 and 20 mm without gating. For the 20 mm amplitude we studied the gating technique with 4 duty cycles of 20, 40, 60 and 80% of the respiratory cycle. Each situation was irradiated in a Clinac 2100 linac (Varian) equipped with the RPM™ system. FilmQA Pro™ (Ashland) software together with an Expression 10000XL scanner (EPSON) were used to analyze and compare the measured dose distributions with those planned by the Eclipse™ TPS v. 8.9 (Varian) by means of gamma analysis with 6 criteria: 5%/3mm, 5%/2mm, 5%/1mm, 3%/3mm, 3%/2mm and 2%/2mm (threshold of 10%). Results: Movements with amplitude of less than 7mm do not significantly modified the dosimetry. Gating duty cycles of less than 40% yielded also acceptable results for a 2 cm amplitude movement. Conclusion: To safely perform daily accurate SBRT treatments, movements have to be restricted to 7 mm amplitude (±3.5 mm). Otherwise, a gating strategy should be considered.

  16. Investigation of Rayleigh-Taylor turbulence and mixing using direct numerical simulation with experimentally-measured initial conditions. I. Comparison to experimental data

    SciTech Connect

    Mueschke, N; Schilling, O

    2008-07-23

    A 1152 x 760 x 1280 direct numerical simulation (DNS) using initial conditions, geometry, and physical parameters chosen to approximate those of a transitional, small Atwood number Rayleigh-Taylor mixing experiment [Mueschke, Andrews and Schilling, J. Fluid Mech. 567, 27 (2006)] is presented. The density and velocity fluctuations measured just off of the splitter plate in this buoyantly unstable water channel experiment were parameterized to provide physically-realistic, anisotropic initial conditions for the DNS. The methodology for parameterizing the measured data and numerically implementing the resulting perturbation spectra in the simulation is discussed in detail. The DNS model of the experiment is then validated by comparing quantities from the simulation to experimental measurements. In particular, large-scale quantities (such as the bubble front penetration hb and the mixing layer growth parameter {alpha}{sub b}), higher-order statistics (such as velocity variances and the molecular mixing parameter {theta}), and vertical velocity and density variance spectra from the DNS are shown to be in favorable agreement with the experimental data. Differences between the quantities obtained from the DNS and from experimental measurements are related to limitations in the dynamic range of scales resolved in the simulation and other idealizations of the simulation model. This work demonstrates that a parameterization of experimentally-measured initial conditions can yield simulation data that quantitatively agrees well with experimentally-measured low- and higher-order statistics in a Rayleigh-Taylor mixing layer. This study also provides resolution and initial conditions implementation requirements needed to simulate a physical Rayleigh-Taylor mixing experiment. In Part II [Mueschke and Schilling, Phys. Fluids (2008)], other quantities not measured in the experiment are obtained from the DNS and discussed, such as the integral- and Taylor-scale Reynolds numbers

  17. Experimental results from containment piping bellows subjected to severe accident conditions. Volume 1, Results from bellows tested in `like-new` conditions

    SciTech Connect

    Lambert, L.D.; Parks, M.B.

    1994-09-01

    Bellows are an integral part of the containment pressure boundary in nuclear power plants. They are used at piping penetrations to allow relative movement between piping and the containment wall, while minimizing the load imposed on the piping and wall. Piping bellows are primarily used in steel containments; however, they have received limited use in some concrete (reinforced and prestressed) containments. In a severe accident they may be subjected to pressure and temperature conditions that exceed the design values, along with a combination of axial and lateral deflections. A test program to determine the leak-tight capacity of containment penetration bellows is being conducted under the sponsorship of the US Nuclear Regulatory Commission at Sandia National Laboratories. Several different bellows geometries, representative of actual containment bellows, have been subjected to extreme deflections along with pressure and temperature loads. The bellows geometries and loading conditions are described along with the testing apparatus and procedures. A total of thirteen bellows have been tested, all in the `like-new` condition. (Additional tests are planned of bellows that have been subjected to corrosion.) The tests showed that bellows are capable of withstanding relatively large deformations, up to, or near, the point of full compression or elongation, before developing leakage. The test data is presented and discussed.

  18. Experimental study on the effect of boundary condition for transmission properties of periodical metal hole arrays in terahertz range

    NASA Astrophysics Data System (ADS)

    Xu, Jiaming; Xie, Le; Gao, Chunmei; Li, Zhou; Chen, Lin; Zhu, Yiming

    2013-08-01

    A metal hole arrays terahertz filter based on surface plasmon polaritons and fabricated by aluminum slab of different holes scales have been experimentally investigated by using THz time-domain spectroscopy system from 0.1 to 2.7 THz. The experiment results indicated there is a transmission peak at 0.26 THz, approximately. The results in simulation by finite element method agree well with the experimental one for the big scale sample. The mismatch of experimental and simulated results for small scale sample can be attributed to boundary condition and insufficient periodical extension. Further, the theoretical analyses about extraordinary optical transmission and filter phenomena are also discussed.

  19. Component Performance Investigation of J71 Experimental Turbine. Part 2; Internal-Flow Conditions with 97-Percent-Design Stator Areas

    NASA Technical Reports Server (NTRS)

    Rebeske, John J., Jr.; Petrash, Donald A.

    1956-01-01

    An experimental investigation of the internal-flow conditions of a J71 experimental turbine equipped with 97-percent-design stator areas was conducted at equivalent design speed and near equivalent design work. The results of the investigation indicate that the stage work distribution closely approximates design, the actual distribution being 44.1, 33.4, and 22.5 percent for the first, second, and third stages, respectively. The first-, second-, and third-stage efficiencies were 0.894, 0.858, and 0.792, respectively. The first and second stages exhibited loss regions near the hub and tip at the rotor blade outlets. The hub loss region is attributed to stator secondary flows, and a contributing factor to the tip loss region may be the high design diffusion on the rotor blade suction surface near the tip. The loss in the third stage is appreciably greater than that in the first or second stage. The fact that the third rotor is unshrouded and has a nominal tip clearance of 0.120 inch may contribute to the higher loss in the tip region of the third stage.

  20. Experimental evaluation of connectivity influence on dispersivity under confined and unconfined radial convergent flow conditions

    NASA Astrophysics Data System (ADS)

    Guzzi, Silvia; Molinari, Antonio; Fallico, Carmine; Pedretti, Daniele

    2014-05-01

    Heterogeneity and connectivity have a significant impact on the fate and transport of contaminants due to the occurrence of formations with largest permeability than the surrounding geological materials, which can originate preferential pathways in groundwater system. These issues are usually addressed by tracer tests and a radial convergent (RC) flow setting is typically selected for convenience but more complicated for model interpretation than uniform flow transport. An experimental investigation was performed using RC tracer tests in a 3D intermediate scale physical model to illustrate the role of connected features on the estimation of dispersivity using the classical Sauty solution and the method of moments, under confined and unconfined aquifer conditions. The physical model consists of 26 piezometers located at difference distances from a constant-discharge central pumping well. The box is filled with gravel channels embedded in a sandy matrix and organized in different layers. Materials have been well characterized before and after the test. For the confined configuration, a silt layer was placed above the previous layers. Tracer tests were performed using potassium iodide solutions with concentration of 3•10-3 M and under a constant pumping flow rate of 0.05 L/s. To mimic a pulse injection in each piezometer we used syringes and pipes, whereas a probe allowed continuous measuring of tracer concentration. Average velocity and longitudinal dispersion coefficient were defined from the first and second central moment of the observed breakthrough curves for each piezometer (integrated over the outflow boundary of the domain) and using the classical curve matching from the Sauty's solution at different Péclet numbers. Results reveal in some cases that estimates of hydrodynamic parameters from the Sauty solution and the method of moments seem to be different. This is related to the different basic assumptions of the two methods applied, and especially because

  1. Calibrated simulations of Z opacity experiments that reproduce the experimentally measured plasma conditions

    DOE PAGESBeta

    Nagayama, T.; Bailey, J. E.; Loisel, G.; Rochau, G. A.; MacFarlane, J. J.; Golovkin, I.

    2016-02-05

    Recently, frequency-resolved iron opacity measurements at electron temperatures of 170–200 eV and electron densities of (0.7 – 4.0) × 1022 cm–3 revealed a 30–400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulations that reproducemore » the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. Furthermore, these simulations bridge the static-uniform picture of the

  2. Calibrated simulations of Z opacity experiments that reproduce the experimentally measured plasma conditions

    NASA Astrophysics Data System (ADS)

    Nagayama, T.; Bailey, J. E.; Loisel, G.; Rochau, G. A.; MacFarlane, J. J.; Golovkin, I.

    2016-02-01

    Recently, frequency-resolved iron opacity measurements at electron temperatures of 170-200 eV and electron densities of (0.7 - 4.0 )× 1022cm-3 revealed a 30 - 400 % disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015), 10.1038/nature14048]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulations that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. These simulations bridge the static-uniform picture of the data

  3. Calibrated simulations of Z opacity experiments that reproduce the experimentally measured plasma conditions.

    PubMed

    Nagayama, T; Bailey, J E; Loisel, G; Rochau, G A; MacFarlane, J J; Golovkin, I

    2016-02-01

    Recently, frequency-resolved iron opacity measurements at electron temperatures of 170-200 eV and electron densities of (0.7-4.0)×10(22)cm(-3) revealed a 30-400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulations that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. These simulations bridge the static-uniform picture of the data interpretation and the

  4. Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: Constraints on asteroidal alteration

    NASA Astrophysics Data System (ADS)

    Jones, Catherine L.; Brearley, Adrian J.

    2006-02-01

    We have performed an experimental study of the aqueous alteration of the Allende CV3 carbonaceous chondrite under highly oxidizing conditions, in order to examine the alteration behavior of Allende's anhydrous mineralogy. The experiments were carried out at temperatures of 100, 150, and 200 °C, for time periods between 7 and 180 days, with water/rock ratios ranging from 1:1 to 9:1. Uncrushed cubes of Allende were used so that the spatial relationships between reactant and product phases could be examined in detail. Scanning electron microscope studies show that in all the experiments, even those of short duration (7 days), soluble salts of Ca and Mg (CaSO 4, CaCO 3, and MgSO 4) precipitated on the sample surface, indicating that these elements are rapidly mobilized during alteration. In addition, iron oxides and hydroxides formed on the sample surfaces. The sulfates, carbonates, and the majority of the iron-bearing secondary minerals are randomly distributed over the surface of samples. In some instances the iron oxides and hydroxides are constrained to the boundaries of altering mineral grains. Transmission electron microscope studies show that the FeO-rich olivine in the interior of the samples has altered to form interlayered serpentine/saponite and Fe-oxyhydroxides. The degree of alteration increases significantly with increasing water/rock ratio, and to a lesser extent with increasing duration of heating. The serpentine/saponite forms both by direct replacement of the olivine in crystallographically oriented intergrowths, and by recrystallization of an amorphous Si-rich phase that precipitates in pore space between the olivine grains. The alteration assemblage bears many similarities to those found in altered carbonaceous chondrites, although in detail there are important differences, which we attribute to (a) the relatively high temperatures of our experiments and (b) comparatively short reaction times compared with the natural examples. In terms of mineral

  5. Experimental Investigation of Soil and Atmospheric Conditions on the Momentum, Mass, and Thermal Boundary Layers Above the Land Atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.

    2014-12-01

    The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil

  6. Experimental study on the optimization of general conditions for a free-flow electrophoresis device with a thermoelectric cooler.

    PubMed

    Yan, Jian; Yang, Cheng-Zhang; Zhang, Qiang; Liu, Xiao-Ping; Kong, Fan-Zhi; Cao, Cheng-Xi; Jin, Xin-Qiao

    2014-12-01

    With a given free-flow electrophoresis device, reasonable conditions (electric field strength, carrier buffer conductivity, and flow rate) are crucial for an optimized separation. However, there has been no experimental study on how to choose reasonable general conditions for a free-flow electrophoresis device with a thermoelectric cooler in view of Joule heat generation. Herein, comparative experiments were carried out to propose the selection procedure of general conditions in this study. The experimental results demonstrated that appropriate conditions were (i) <67 V/cm electric field strength; (ii) lower than 1.3 mS/cm carrier buffer conductivity (Tris-HCl: 20 mM Tris was titrated by HCl to pH 8.0); and (iii) higher than 3.6 mL/min carrier buffer flow rate. Furthermore, under inappropriate conditions (e.g. 400 V voltage and 40 mM Tris-HCl carrier buffer), the free-flow electrophoresis separation would be destroyed by bubbles caused by more Joule heating. Additionally, a series of applications under the appropriate conditions were performed with samples of model dyes, proteins (bovine serum albumin, myoglobin, and cytochrome c), and cells (Escherichia coli, Streptococcus thermophilus, and Saccharomyces cerevisiae). The separation results showed that under the appropriate conditions, separation efficiency was obviously better than that in the previous experiments with randomly or empirically selected conditions. PMID:25216109

  7. 40 CFR 761.386 - Required experimental conditions for the validation study and subsequent use during decontamination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the validation study and subsequent use during decontamination. 761.386 Section 761.386 Protection of... Validating a New Performance-Based Decontamination Solvent Under § 761.79(d)(4) § 761.386 Required experimental conditions for the validation study and subsequent use during decontamination. The...

  8. Polyethylene glycol-induced internalization of bacteria into fungal protoplasts: Electron microscopic study and optimization of experimental conditions

    SciTech Connect

    Guerra-Tschuschke, I.; Martin, I.; Gonzalez, M.T. )

    1991-05-01

    The authors studied the mechanism of internalization of Escherichia coli into Saccharomyces cerevisiae induced by polyethylene glycol (PEG) and optimized the experimental conditions. Transmission electron microscope studies revealed that the principal factor involved in the internalization was the degree of cell aggregation attained. Internalization occurred mainly by an endocytosis-like mechanism and took place during the elimination of PEG. The optimum conditions were to treat a mixed pellet of both microorganisms with 15% PEG and then gradually dilute the polymer. The same conditions were applied to E. coli and Aspergillus nidulans, with similar results.

  9. Boundary conditions for creeping flow along periodic or random rough surfaces : experimental and theoretical results

    NASA Astrophysics Data System (ADS)

    Lecoq, Nicolas

    2012-12-01

    Hydrodynamic interactions between particles and walls are relevant for the open problem of specifying boundary conditions for suspension flows. The Reynolds number around a small particle close to a wall is usually low and creeping flow equations apply. From the solution of these equations, the drag coefficient on a sphere becomes infinite when the gap between the sphere and a smooth wall vanishes, so that contact may not occur. Physically, the drag is finite because of various reasons, one of them being the particle and wall roughness. Then, for vanishing gap, even though some layers of fluid molecules may be left between the particle and wall roughness peaks, it may conventionally be said that contact occurs. In this paper, we are considering the example of a smooth sphere moving towards a rough wall. The roughness considered here consist of random rough planes or parallel periodic wedges, the characteristic length of which is small compared with the sphere radius. This problem is considered both experimentally and theoretically. The motion of a millimetre size bead settling towards a corrugated horizontal wall in a viscous oil is measured with laser interferometry giving an accuracy on the displacement of 0.2μm. Several random rough planes and wedge shaped walls were used, with various wavelengths and wedge angles. From the results, it is observed that the velocity of the sphere is, except for small gaps, similar to that towards a smooth plane that is shifted down from the top of corrugations. For the periodic wedges, the creeping flow is calculated as a series in the slope of the roughness grooves. The convergence of the series for the shift distance in term of the slope is accelerated by use of Euler transformation and of the existence of a limit for large slope. The cases of a flow along and across the grooves are considered separately. The shift is larger in the former case. Slightly flattened tops of the wedges used in experiments are also considered in

  10. Computational modeling and experimental validation of odor detection behaviours of classically conditioned parasitic wasp, Microplitis croceipes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To further improve the sensitivity of odor¬ and odor concentration detection of the Wasp Hound, searching behaviors of a food-conditioned wasp in a confined area with the conditioning odor were recorded. The experiments were recorded using a video camera. First, the wasps are individually hand condi...

  11. Conditions for the Validity of Faraday's Law of Induction and Their Experimental Confirmation

    ERIC Educational Resources Information Center

    Lopez-Ramos, A.; Menendez, J. R.; Pique, C.

    2008-01-01

    This paper, as its main didactic objective, shows the conditions needed for the validity of Faraday's law of induction. Inadequate comprehension of these conditions has given rise to several paradoxes about the issue; some are analysed and solved in this paper in the light of the theoretical deduction of the induction law. Furthermore, an…

  12. Selection of oligonucleotide probes and experimental conditions for multiplex hybridization experiments.

    PubMed

    Bains, W

    1994-01-01

    Different DNA probes hybridize under different conditions. I examine the constraints of the design of oligonucleotide probes that are meant to hybridize to different unique sites in human genomic DNA under a single set of hybridization conditions as a parallel array. In 522 kb of human genomic DNA, 75% of 12-base and 89% of 22-base are unique, as opposed to 90% and 100% as expected of unstructured DNA, and this is not due solely to repetitive elements in the DNA. Hybridization in TMAC to reduce A+T content effects on melting temperature allows only 90% of unique targets to be hybridized under one set of conditions if a 2 degrees C difference between matched and mismatched sequences is required. Standard hybridization conditions allow no more than 60% of unique probes to be used together. This suggests that probe, hybridization conditions, and instrument design for multiple-probe hybridization applications will be harder than previously suggested. PMID:7803130

  13. Germination and Growth of a Vegetable Exposed to Very Severe Environmental Conditions Experimentally Induced by High Voltage

    NASA Astrophysics Data System (ADS)

    Aoki, Takashi; Ikezawa, Shunjiro

    1982-09-01

    Ultra-high-voltage (UHV) transmission power lines are required in order to reduce transmission energy losses, and to transfer more power across long distances. However, the ecological and biological influence of UHV lines has not been documented well. Possible influences of UHV lines are: electro-magnetic field, ozone, NOx, and ion shower. The purpose of this study was to obtain information on the germination and growth of Raphanus sativus L.cv. Kaiware-daikon exposed to an experimental environment in which all the above influences at very severe intensity levels were working simultaneously. Several environmental conditions severer than those predicted for future UHV lines were set up, using a high voltage at 60 Hz. The germination and growth of this plant were suppressed under the experimental conditions used, the suppression being greater the severer the conditions. When the electric field is strong, corona discharge occurs at the tip of the plant.

  14. Experimental evaluation of natural period of masonry and reinforced concrete structures during operative conditions

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Auletta, Gianluca; Nigro, Antonella; Iacovino, Chiara; Salvatore Nigro, Domenico

    2016-04-01

    This work focuses on the experimental evaluation of the fundamental period of buildings of various types (masonry and reinforced concrete) using measurements of ambient vibrations on real buildings located in Basilicata (Italy) and numerical analyses. The results are compared with the simplified formula provided by the Seismic Italian Code (NTC2008), that is function of structural typology and height for both near collapse and limited damage limit states and experimental results provided by the recent scientific literature. With the intention of proposing simplified relationships to evaluate the fundamental period of buildings, several numerical and experimental campaigns, on different structures all around the world, have been carried out in the last years in order to calibrate different kind of formulas. Most of formulas retrieved from both numerical and experimental analyses provides vibration periods smaller than those suggested by the NTC2008. However, it is well known that the fundamental period of a structure play a key role in the correct evaluation of the spectral acceleration for seismic static analyses. Generally, simplified approaches impose the use of safety factors greater than those related to in depth nonlinear analyses with the aim to cover possible unexpected uncertainties. Using the simplified formula proposed by the Italian seismic code the fundamental period is quite higher than fundamental periods experimentally evaluated on real structures, with the consequence that the spectral acceleration adopted in the seismic static analysis may be significantly different than real spectral acceleration. This approach could produces a decreasing in safety factors obtained using linear seismic static analyses. Based on numerical and experimental evidences, the authors suggest a possible update of the seismic codes formula for the simplified estimation of the fundamental period of vibration of existing masonry and RC buildings. Acknowledgements This study

  15. Experimental investigation of the enthalpy and mass flow distribution in 16-rod clusters with BWR-PWR geometries and conditions

    NASA Astrophysics Data System (ADS)

    Herkenrath, H.; Hufschmidt, W.; Jung, U.; Weckermann, F.

    Enthalpy and mass flow distribution at the outlet of two test sections with uniform heating in axial and radial direction under steady state conditions was measured by simultaneous sampling of five of six characteristic subchannels in the bundle, using the isokinetic technique and analyzing the outlet quantities by a calorimetric method. Results show low steam quality for the corner subchannel under BWR conditions, due to a thick liquid film on the unheated channel wall. Experimental data confirm the usefullness of the subchannel sampling technique for understanding thermohydraulic phenomena under two-phase flow conditions in multirod bundles. Subchannel resistance coefficients for both types of spacers under one-phase flow conditions were calculated by a substructure method, showing a high local value of the corner subchannel. Total resistance of the spacer was evaluated using local drag coefficients. It agrees well with measured values under adiabatic conditions.

  16. [Experimental evaluation of actoprotective activity of nitrogen-containing heterocyclic compounds derivatives in extreme conditions].

    PubMed

    Tsublova, E G; Ivanova, T G; Ivanova, T N; Iasnetsov, V V

    2013-07-01

    In experiments on nonlinear male mice the ability of new derivatives of nitrogen-containing heterocyclic compounds to increase the physical working capacity in conditions of hyperthermia, hypothermia and acute normobaric hypoxia and hypercapnia has been investigated. It is established, that pyridine derivative IBHF-11 has more expressed positive action in the said conditions. It provided increase of the working capacity of animals at all kinds of extreme influence, and the value of positive action was comparable, and in conditions of acute normobaric hypoxia and hypercapnia exceeded those at the reference products bemitil and bromantan. PMID:24341005

  17. Verbal Conditioning of Male and Female Schizophrenics as a Function of Experimenter Proximity

    ERIC Educational Resources Information Center

    Rierdan, Jill; Brooks, Robert

    1978-01-01

    Assess the effects of patient-experimenter proximity on schizophrenics' learning when the social class of the subjects, both schizophrenics and nonschizophrenics, and the verbal and nonverbal components of social reinforcement are controlled. Also tests males and females to determine whether sex of subjects moderates the responses of…

  18. Experimental verification of free-space singular boundary conditions in an invisibility cloak

    NASA Astrophysics Data System (ADS)

    Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile

    2016-04-01

    A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.

  19. Analytical and experimental studies of ventilation systems subjected to simulated tornado conditions: Verification of the TVENT computer code

    SciTech Connect

    Martin, R.A.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.; Littleton, P.E.; Talbott, D.V.

    1988-04-01

    Analytical and experimental studies of ventilation systems have been conducted to verify the Los Alamos National Laboratory TVENT accident analysis computer code for simulated tornado conditions. This code was developed to be a user-friendly analysis tool for designers and regulatory personnel and was designed to predict pressure and flow transients in arbitrary ventilation systems. The experimental studies used two relatively simple, yet sensitive, physical systems designed using similitude analysis. These physical models were instrumented end-to-end for pressure and volumetric flow rate and then subjected to the worst credible tornado conditions using a special blowdown apparatus. We verified TVENT by showing that it successfully predicted our experimental results. By comparing experimental results from both physical models with TVENT results, we showed that we have derived the proper similitude relations (governed by compressibility effects) for all sizes of ventilation systems. As a by-product of our studies, we determined the need for fan speed variation modeling in TVENT. This modification was made and resulted in a significant improvement in our comparisons of analytical and experimental results.

  20. Analytic and experimental evaluation of flowing air test conditions for selected metallics in a shuttle TPS application

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.

    1975-01-01

    A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.

  1. An experimental study on the performance of a stainless steel-water loop heat pipe under natural cooling condition

    NASA Astrophysics Data System (ADS)

    Wang, Yiwei; Cen, Jiwen; Jiang, Fangming; Zhu, Xiong

    2014-02-01

    Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe (LHP) under natural cooling condition. The LHP heat transfer performance, including start-up performance, temperature oscillation and total thermal resistance at different heat loads and with different incline angles have been investigated systematically. Experimental results show that at an optimal heat load (i.e. 60 W) and with the LHP being inclined 60° to the horizontal plane, the total thermal resistance is lowered to be ˜0.24 K/W, and the temperature of evaporator could be controlled steadily at around 90°C.

  2. Evaluation of a chlorous acid-chlorine dioxide teat dip under experimental and natural exposure conditions.

    PubMed

    Drechsler, P A; Wildman, E E; Pankey, J W

    1990-08-01

    A postmilking teat dip containing chlorous acid-chlorine dioxide was evaluated by experimental challenge and in two herds under natural exposure. The test product had an efficacy of 78.9% against Staphylococcus aureus and 52.5% against Streptococcus agalactiae in the experimental challenge trial. The product was compared with a 1% iodine product in a 15-mo natural exposure study. Post-dipping with chlorous acid-chlorine dioxide reduced incidence of udder infection by major mastitis pathogens 36.1% when data were combined from the two herds. The 1% iodine and the chlorous acid-chlorine dioxide products were not equivalent for major mastitis pathogens; the test product was more effective. Incidence of udder infection by environmental mastitis pathogens was reduced 36.8% in both herds combined. Efficacy of the two teat dips was equivalent for environmental pathogens. PMID:2229601

  3. A detailed experimental study of n-propylcyclohexane autoignition in lean conditions

    SciTech Connect

    Crochet, M.; Minetti, R.; Ribaucour, M.; Vanhove, G.

    2010-11-15

    The autoignition chemistry of lean n-propylcyclohexane/''air'' mixtures ({phi} = 0.3, 0.4, 0.5) was investigated in a rapid compression machine at compressed gas temperatures ranging from 620 to 930 K and pressures ranging from 0.45 to 1.34 MPa. Cool flame and ignition delay times were measured. Cool flame delay times were found to follow an Arrhenius behavior, and a correlation including pressure and equivalence ratio dependences was deduced. The present ignition delay data were compared with recent experimental results and simulations from the available thermokinetic models in the literature. Negative temperature coefficient zones were observed when plotting ignition delay times versus compressed gas temperature. The oxidation products were identified and quantified during the ignition delay period. Formation pathways for the C{sub 9} bicyclic ethers and conjugate alkenes are proposed. The experimental data provide an extensive database to test detailed thermokinetic oxidation models. (author)

  4. Uranium and lead isotopic stability in a metamict zircon under experimental hydrothermal conditions

    USGS Publications Warehouse

    Pidgeon, R.T.; O'Neil, J.R.; Silver, L.T.

    1966-01-01

    Disturbance of the uranium-lead isotopic system in a metamict Ceylon zircon has been produced in a 2 molal NaCl solution at 500??C and 1000 bars fluid pressure. Loss of radiogenic lead to the extent of 61 percent in 13 days was the most significant effect. The experimental results support the episodic rather than continuous lead-loss interpretation of natural zircon systems utilized in geochronology.

  5. An experimental and theoretical study of the ice accretion process during artificial and natural icing conditions

    NASA Technical Reports Server (NTRS)

    Kirby, Mark S.; Hansman, R. John

    1988-01-01

    Real-time measurements of ice growth during artificial and natural icing conditions were conducted using an ultrasonic pulse-echo technique. This technique allows ice thickness to be measured with an accuracy of + or - 0.5 mm; in addition, the ultrasonic signal characteristics may be used to detect the presence of liquid on the ice surface and hence discern wet and dry ice growth behavior. Ice growth was measured on the stagnation line of a cylinder exposed to artificial icing conditions in the NASA Lewis Icing Research Tunnel (IRT), and similarly for a cylinder exposed in flight to natural icing conditions. Ice thickness was observed to increase approximately linearly with exposure time during the initial icing period. The ice accretion rate was found to vary with cloud temperature during wet ice growth, and liquid runback from the stagnation region was inferred. A steady-state energy balance model for the icing surface was used to compare heat transfer characteristics for IRT and natural icing conditions. Ultrasonic measurements of wet and dry ice growth observed in the IRT and in flight were compared with icing regimes predicted by a series of heat transfer coefficients. The heat transfer magnitude was generally inferred to be higher for the IRT than for the natural icing conditions encountered in flight. An apparent variation in the heat transfer magnitude was also observed for flights conducted through different natural icing-cloud formations.

  6. Experimental study of the pressure fluctuations on propeller turbine runner blades: part 2, transient conditions

    NASA Astrophysics Data System (ADS)

    Houde, S.; Fraser, R.; Ciocan, G.; Deschênes, C.

    2012-11-01

    Transient conditions such as load rejection will often lead to high amplitude pressure fluctuations that will affect a turbine residual-life. If Computational Fluid Dynamic offers a promising tool to study the flow dynamic under transient regime, focused validation data on the runner are still lacking to assess the accuracy of different simulation strategies. Hence within the framework of the AxialT project of the International Consortium on Hydraulic Machines, exploratory measurements of the pressure field on the runner blades of a propeller turbine model were performed in transient conditions. The model was setup on the test stand of the LAMH of Laval University. The test stand control procedures were adapted to mimic transient condition such as load rejection or the transition from a normal operating condition to a speed-no-load condition. The pressure on the runner blades were measured using miniature piezo-resistive transducer linked to a high frequency telemetric system. Using specifically adapted data processing routines, it was possible to characterize the variations of the energy content during the transient runs. Specifically, the main fluctuations appear to occur in the sub-synchronous range in both cases.

  7. Discovery of wall-selective carbon nanotube growth conditions via automated experimentation.

    PubMed

    Nikolaev, Pavel; Hooper, Daylond; Perea-López, Nestor; Terrones, Mauricio; Maruyama, Benji

    2014-10-28

    Applications of carbon nanotubes continue to advance, with substantial progress in nanotube electronics, conductive wires, and transparent conductors to name a few. However, wider application remains impeded by a lack of control over production of nanotubes with the desired purity, perfection, chirality, and number of walls. This is partly due to the fact that growth experiments are time-consuming, taking about 1 day per run, thus making it challenging to adequately explore the many parameters involved in growth. We endeavored to speed up the research process by automating CVD growth experimentation. The adaptive rapid experimentation and in situ spectroscopy CVD system described in this contribution conducts over 100 experiments in a single day, with automated control and in situ Raman characterization. Linear regression modeling was used to map regions of selectivity toward single-wall and multiwall carbon nanotube growth in the complex parameter space of the water-assisted CVD synthesis. This development of the automated rapid serial experimentation is a significant progress toward an autonomous closed-loop learning system: a Robot Scientist. PMID:25299482

  8. Experimental Studies of Hydrogenation and Other Reactions on Surfaces Under Astrophysically Relevant Conditions

    NASA Technical Reports Server (NTRS)

    Vidali, Gianfranco

    1998-01-01

    The goal of our project is to study hydrogen recombination reactions on solid surfaces under conditions that are relevant in astrophysics. Laboratory experiments were conducted using low-flux, cold atomic H and D beams impinging on a sample kept under ultra high vacuum conditions. Realistic analogues of interstellar dust grains were used. Our results show that current models for hydrogen recombination reactions have to be modified to take into account the role of activated diffusion of H on surfaces even at low temperature.

  9. Engineering protein interfaces yields ferritin disassembly and reassembly under benign experimental conditions.

    PubMed

    Chen, H; Zhang, S; Xu, C; Zhao, G

    2016-06-11

    Ferritin nanocages are promising platforms for drug encapsulation. However, extreme conditions (pH ≤ 2) required for dissociation limit their application. Here, we engineered protein interfaces to yield ferritin nanocages which disassemble at pH 4.0 and reassemble at pH 7.5. During this process, bioactive molecules can be encapsulated within the protein cavity. PMID:27194454

  10. Agreement between Descriptive and Experimental Analyses of Behavior under Naturalistic Test Conditions

    ERIC Educational Resources Information Center

    Martens, Brian K.; Gertz, Lynne E.; Werder, Candace Susan de Lacy; Rymanowski, Jennifer L.

    2010-01-01

    We compared the results of a contingency space analysis (CSA) of behavior-consequence recordings to the results of functional analysis (FA) test conditions involving antecedent stimuli and verbal statements that both differed from and mimicked those in the natural environment. Three preschool children with autism spectrum disorder participated.…

  11. The influence of experimental conditions on the spectrin-hemoglobin interaction.

    PubMed

    Vincentelli, J; Fraboni, A; Paul, C; Schnek, A G

    1989-01-01

    Human spectrin, when isolated, purified and stored in such conditions that preserve its tetrameric form, is able to associate with human hemoglobin as it is clearly shown by gel filtration. However, this hemoglobin-spectrin association does not seem to have a significant effect on hemoglobin oxygenation as indicated by equilibrium and rapid kinetics measurements. PMID:2713099

  12. Experimental study of initial condition dependence on mixing in Richtmyer-Meshkov instabilities

    SciTech Connect

    Balasubramanian, Sridhar; Prestridge, Katherine P; Orlicz, Gregory C; Balasubramaniam, Balakumar J

    2010-11-18

    Recent work has shown that buoyancy-driven turbulence can be affected at late time by initial conditions, thus presenting an opportunity to predict and design late-time turbulent mixing, with transformative impact on our understanding and prediction of Inertial Confinement Fusion and general fluid mixing processes. In this communication, we report results on the initial condition parameters, amplitude ({delta}) and wavelength ({lambda}) of perturbation, that impact the material mixing and transition to turbulence in shock-driven Richtmyer-Meshkov instability. Experiments were conducted using a stable, membrane-free, heavy gas varicose curtain (air-SF{sub 6}-air) at shock Mach number, Ma = 1.2. The velocity and density field of our initial conditions was quantified using Particle Image Velocimetry (PIV) and Planar-Laser Induced Fluorescence (PLIF) respectively. Quantitative measurements on the temporal and spatial evolution of developing structures after first shock and subsequent re-shock at different times obtained using PLlF aid us in understating the importance of the initial conditions on transition to turbulence and mixing.

  13. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central element in a metaphysical…

  14. Spontaneous Chronic Pain After Experimental Thoracotomy Revealed by Conditioned Place Preference: Morphine Differentiates Tactile Evoked Pain From Spontaneous Pain.

    PubMed

    Hung, Ching-Hsia; Wang, Jeffrey Chi-Fei; Strichartz, Gary R

    2015-09-01

    Chronic pain after surgery limits social activity, interferes with work, and causes emotional suffering. A major component of such pain is reported as resting or spontaneous pain with no apparent external stimulus. Although experimental animal models can simulate the stimulus-evoked chronic pain that occurs after surgery, there have been no studies of spontaneous chronic pain in such models. Here the conditioned place preference (CPP) paradigm was used to reveal resting pain after experimental thoracotomy. Male Sprague Dawley rats received a thoracotomy with 1-hour rib retraction, resulting in evoked tactile hypersensitivity, previously shown to last for at least 9 weeks. Intraperitoneal injections of morphine (2.5 mg/kg) or gabapentin (40 mg/kg) gave equivalent 2- to 3-hour-long relief of tactile hypersensitivity when tested 12 to 14 days postoperatively. In separate experiments, single trial CPP was conducted 1 week before thoracotomy and then 12 days (gabapentin) or 14 days (morphine) after surgery, followed the next day by 1 conditioning session with morphine or gabapentin, both versus saline. The gabapentin-conditioned but not the morphine-conditioned rats showed a significant preference for the analgesia-paired chamber, despite the equivalent effect of the 2 agents in relieving tactile allodynia. These results show that experimental thoracotomy in rats causes spontaneous pain and that some analgesics, such as morphine, that reduce evoked pain do not also relieve resting pain, suggesting that pathophysiological mechanisms differ between these 2 aspects of long-term postoperative pain. Perspective: Spontaneous pain, a hallmark of chronic postoperative pain, is demonstrated here in a rat model of experimental postthoracotomy pain, further validating the use of this model for the development of analgesics to treat such symptoms. Although stimulus-evoked pain was sensitive to systemic morphine, spontaneous pain was not, suggesting different mechanistic

  15. Experimental Investigation of Muon-catalyzed dt Fusion in Wide Ranges of D/T Mixture Conditions

    SciTech Connect

    Bom, V.R.; Eijk, C.W.E. van; Demin, A.M.; Golubkov, A.N.; Grishechkin, S.K.; Klevtsov, V.G.; Kuryakin, A.V.; Musyaev, R.K.; Perevozchikov, V.V.; Vinogradov, Yu.I.; Yukhimchuk, A.A.; Zlatoustovskii, S.V.; Demin, D.L.; Filchenkov, V.V.; Grafov, N.N.; Gritsaj, K.I.; Konin, A.D.; Medved', S.V.; Rudenko, A.I.; Yukhimchuk, S.A.

    2005-04-01

    A vast program of the experimental investigation of muon-catalyzed dt fusion was performed on the Joint Institute for Nuclear Research phasotron. Parameters of the dt cycle were obtained in a wide range of the D/T mixture conditions: temperatures of 20-800 K, densities of 0.2-1.2 of the liquid hydrogen density (LHD), and tritium concentrations of 15-86%. In this paper, the results obtained are summarized.

  16. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    SciTech Connect

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs.

  17. Substratum preference of Philophthalmus sp. cercariae for cyst formation under natural and experimental conditions.

    PubMed

    Neal, Allison T; Poulin, Robert

    2012-04-01

    Selection on parasites should favor adaptations that maximize the probability of transmission to the definitive host, such as the preference for and use of intermediate hosts or encystment substrata that are likely to be consumed by the definitive host. Eye flukes in the genus Philophthalmus are passed to their definitive avian host through the ingestion of metacercariae encysted on hard substrata. The life cycle of these parasites is generally well understood; however, there is almost no information on substratum use or preference of the cercariae of these parasites. In this study, we combine a survey of naturally occurring substrata with experimental, laboratory-based choice tests to determine the preferred substratum of Philophthalmus sp. and whether this preference is affected by the presence and density of pre-existing cysts. A concordance between natural and experimental data show a preference for the shells of multiple species of snail over other hard substrata that are common at the field site, including seaweed, other molluscs, and crustaceans. In addition, we found that cercariae preferred substrata with pre-existing cysts and that this preference seemed to increase with increasing cyst density. Such a preference should lead to an aggregated distribution of cysts among snail shells that may benefit the parasite by increasing the number of potential mates that become established in the definitive host. The identification of a preferred substratum also may help to identify potential definitive hosts that were previously unknown. PMID:22519811

  18. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie

    2014-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate in conditions of low Reynolds number and a wide range in incidence resulting from rotational speed variation. A comprehensive data set obtained in a linear cascade which includes the effects of Reynolds number, free-stream turbulence and incidence is now available and this paper concerns itself with the post-diction of boundary layer transitionseparation, blade pressure loading and total pressure loss pertaining to the conditions set for measurements in that data set. The distinction between the state of the measured data presented here and the earlier publications is the addition of high free-stream turbulence intensity. We will, for the purposes of the numerical post-diction, present some of the higher free stream turbulence data in this paper but defer a comprehensive presentation and treatment of the measured data will be done elsewhere.

  19. Performance of Roads In Seismic Conditions: A Theoretical And Experimental Study

    SciTech Connect

    Pratico, Filippo Giammaria

    2008-07-08

    As is well known, the role of the road network during and after an earthquake is of paramount relevance. In the light of the above, the main goal of the paper has been confined to the analyses of road performance in seismic conditions, as a result of intrinsic (structural and functional conditions, redundancy, etc.) and extrinsic (loads, flows, etc.) characteristics. Such interaction has been analysed for the area of Reggio Calabria and Messina Strait, through 28 equations and a number of models and simulations. Analyses proved that redundancy is a key-factor, able to affect the overall performance of the road network. Simulations demonstrated that in the long term road serviceability could be partly compromised, but accident risk, due to speed limitations, could result decreased.

  20. Effects of vegetation and sewage load on mangrove crab condition using experimental mesocosms

    NASA Astrophysics Data System (ADS)

    Amaral, Valter; Penha-Lopes, Gil; Paula, José

    2009-09-01

    Constructed wetlands, especially mangroves, have been studied for their usefulness in sewage treatment but the effects of mangrove vegetation and a sewage load on mangrove macrofauna have been given little attention. Ocypodid crabs are important components of mangrove forests and constitute good bioindicators of the functioning of the ecosystem as a whole. In constructed mangrove mesocosms, three vegetation treatments (bare substratum, and Avicennia marina and Rhizophora mucronata seedlings) were subjected to 0, 20, 60 and 100% sewage loads from a nearby hotel. The physiological condition of introduced Uca annulipes and Uca inversa was evaluated in terms of their RNA/DNA ratio after one, five and twelve months, and used as an indicator of ecological function in the system. Crab condition in 0% sewage load was similar to that of wild crabs throughout, suggesting no significant effects of the mesocosms on their RNA/DNA ratio. Overall, both species coped well with the administered sewage loads, suggesting good ecological function in the system. Both species manifested similar patterns in RNA/DNA ratio, being more affected by seasonal fluctuations than by sewage load and vegetation presence and type. Higher RNA/DNA ratios were recorded in the long compared to the short rainy season. Sewage enhanced crab condition in the bare substratum and R. mucronata treatments, especially after one year, probably as a result of enhanced food availability. Uca inversa may be more sensitive to sewage pollution than U. annulipes. In A. marina, no difference in crab condition was observed between sewage loads, and this mangrove yielded the best reduction in sewage impacts. Our results support the usefulness of constructed mangrove areas in sewage treatment, especially if planted with A. marina and inhabited by physiologically healthy ocypodid crabs to enhance the system's performance.

  1. Theoretical and experimental investigations of thermal conditions of household biogas plant

    NASA Astrophysics Data System (ADS)

    Zhelykh, Vasil; Furdas, Yura; Dzeryn, Oleksandra

    2016-06-01

    The construction of domestic continuous bioreactor is proposed. The modeling of thermal modes of household biogas plant using graph theory was done. The correction factor taking into account with the influence of variables on its value was determined. The system of balance equations for the desired thermal conditions in the bioreactor was presented. The graphical and analytical capabilities were represented that can be applied in the design of domestic biogas plants of organic waste recycling.

  2. Mineral-catalyzed dehydrogenation of C6 cyclic hydrocarbons: results from experimental studies under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Venturi, S.; Tassi, F.; Gould, I.; Shock, E.; Lorance, E. D.; Bockisch, C.; Fecteau, K.

    2015-12-01

    Volatile organic compounds (VOCs) are ubiquitously present in volcanic and hydrothermal gases. Their relative abundances have been demonstrated to be sensitive to physical and chemical parameters, suggesting VOCs as potential tools for evaluating deep reservoir conditions. Nevertheless, reaction pathways for VOC production at hydrothermal conditions are still poorly understood. Reversible catalytic reforming may be responsible for the high abundance of benzene observed in hydrothermal gases relative to saturated hydrocarbons. The dehydrogenation of n-hexane to benzene could proceed with C6 cyclic hydrocarbons as intermediates, as suggested by the relative enrichment in cyclic hydrocarbons observed in gases originating at T <150 °C. In this study, laboratory experiments were carried out to investigate the production of benzene from cyclic hydrocarbons at 300°C and 85 bar. At these conditions in pure water, negligible benzene is produced from cyclohexane after 10 days. The presence of a mineral phase, especially sphalerite, favored the formation of both benzene and cyclohexene. The efficiency of dehydroaromatization reaction increased at increasing mineral/cyclohexane ratio, pointing to a surface catalyzed reaction. The catalytic action of sphalerite on the C-H bonds was confirmed by the large abundance of deuterated cyclohexane resulted in D2O experiments. The same experiment carried out using cyclohexene in pure water mainly produced methyl-cyclopentenes (via isomerization) and cyclohexanol (via oxygenation). In presence of sphalerite, the production of significant amounts of benzene confirmed the critical role of this mineral for the aromatization of cyclic compounds under hydrothermal conditions. Contrarily, products from cyclohexene solution phase oxidation using Cu(II) mainly consisted of oxygenated VOCs.

  3. Objective assessment of cough suppressants under normal and pathological experimental conditions.

    PubMed

    Nosál'ová, G; Strapková, A; Korpás, J; Criscuolo, D

    1989-01-01

    The influences of the antitussive activity of glaucine were studied in 56 non-anaesthetized cats under normal and pathological conditions. Cough was induced by mechanical stimulation of the airways with a nylon fibre. The authors found that if glaucine was administered at a dose of 5.0, 7.5 and 10.0 mg/kg b.w., i.p., it evoked statistically significant suppression on single cough components. After inflammation of the airways was induced with unsoluted croton oil, no decrease in antitussive activity of glaucine could be observed, according to the number of cough efforts, frequency, intensity of maximal cough effort, and intensity of cough attack during expiration. Glaucine used under such conditions was not found to be powerful enough to suppress either the intensity of maximal cough effort or the intensity of cough attack during inspiration. The antitussive effect of glaucine was stronger under pathological conditions (Staphylococcus-induced inflammation). The antitussive effect of glaucine was approximately the same as with codeine if administered in equal doses. PMID:2737083

  4. Effect of Clonal Selection on Daphnia Tolerance to Dark Experimental Conditions

    PubMed Central

    Gitzen, Robert A.; Williamson, Craig E.; González, Maria J.

    2016-01-01

    Recent studies have demonstrated substantial effects of environmental stress that vary among clones. Exposure to ultraviolet radiation (UV) is an important abiotic stressor that is highly variable in aquatic ecosystems due to diel and seasonal variations in incident sunlight as well as to differences in the UV transparency of water among water bodies, the depth distribution of organisms, and the ability of organisms to detect and respond to UV. In contrast to the convention that all UV is damaging, evidence is accumulating for the beneficial effects of exposure to low levels of UV radiation. Whereas UV has been frequently observed as the primary light-related stressor, herein we present evidence that dark conditions may be similarly “stressful” (reduction of overall fitness), and stress responses vary among clones of the freshwater crustacean Daphnia parvula. We have identified a significant relationship between survivorship and reduced fecundity of clones maintained in dark conditions, but no correlation between tolerance of the clones to dark and UV radiation. Low tolerance to dark conditions can have negative effects not only on accumulated stresses in organisms (e.g. the repair of UV-induced damage in organisms with photolyase), but potentially on the overall physiology and fitness of organisms. Our results support recent evidence of the beneficial effects of low-level UV exposure for some organisms. PMID:27434210

  5. Boundary condition identification for a grid model by experimental and numerical dynamic analysis

    NASA Astrophysics Data System (ADS)

    Mao, Qiang; Devitis, John; Mazzotti, Matteo; Bartoli, Ivan; Moon, Franklin; Sjoblom, Kurt; Aktan, Emin

    2015-04-01

    There is a growing need to characterize unknown foundations and assess substructures in existing bridges. It is becoming an important issue for the serviceability and safety of bridges as well as for the possibility of partial reuse of existing infrastructures. Within this broader contest, this paper investigates the possibility of identifying, locating and quantifying changes of boundary conditions, by leveraging a simply supported grid structure with a composite deck. Multi-reference impact tests are operated for the grid model and modification of one supporting bearing is done by replacing a steel cylindrical roller with a roller of compliant material. Impact based modal analysis provide global modal parameters such as damped natural frequencies, mode shapes and flexibility matrix that are used as indicators of boundary condition changes. An updating process combining a hybrid optimization algorithm and the finite element software suit ABAQUS is presented in this paper. The updated ABAQUS model of the grid that simulates the supporting bearing with springs is used to detect and quantify the change of the boundary conditions.

  6. Numerical simulation and experimental study of a two-stage reciprocating compressor for condition monitoring

    NASA Astrophysics Data System (ADS)

    Elhaj, M.; Gu, F.; Ball, A. D.; Albarbar, A.; Al-Qattan, M.; Naid, A.

    2008-02-01

    A numerical simulation of a two-stage reciprocating compressor has replicated the operations of the compressor under various conditions for the development of diagnostic features for predictive condition monitoring. The simulation involves the development of a mathematical model of five different physical processes: speed-torque characteristics of an induction motor, cylinder pressure variation, crankshaft rotational motion, flow characteristics through valves and vibration of the valve plates. Modelling both valve leakage and valve spring deterioration has also been achieved. The simulation was implemented in a MATLAB environment for an efficient numerical solution and ease of result presentation. For normal operating conditions, the simulated results are in good agreement with the test results for cylinder pressure waveforms and crankshaft instantaneous angular speed (IAS). It has been found that both the IAS fluctuation and pressure waveform are sensitive detection features for compressor faults such as valve leakage and valve spring deterioration. However, IAS is preferred because of its non-intrusive measurement nature. Further studies using the model and experiments are being undertaken in order to develop fault detection features for compressor driving motors and transmission systems.

  7. Effect of Clonal Selection on Daphnia Tolerance to Dark Experimental Conditions.

    PubMed

    Connelly, Sandra J; Stoeckel, James A; Gitzen, Robert A; Williamson, Craig E; González, Maria J

    2016-01-01

    Recent studies have demonstrated substantial effects of environmental stress that vary among clones. Exposure to ultraviolet radiation (UV) is an important abiotic stressor that is highly variable in aquatic ecosystems due to diel and seasonal variations in incident sunlight as well as to differences in the UV transparency of water among water bodies, the depth distribution of organisms, and the ability of organisms to detect and respond to UV. In contrast to the convention that all UV is damaging, evidence is accumulating for the beneficial effects of exposure to low levels of UV radiation. Whereas UV has been frequently observed as the primary light-related stressor, herein we present evidence that dark conditions may be similarly "stressful" (reduction of overall fitness), and stress responses vary among clones of the freshwater crustacean Daphnia parvula. We have identified a significant relationship between survivorship and reduced fecundity of clones maintained in dark conditions, but no correlation between tolerance of the clones to dark and UV radiation. Low tolerance to dark conditions can have negative effects not only on accumulated stresses in organisms (e.g. the repair of UV-induced damage in organisms with photolyase), but potentially on the overall physiology and fitness of organisms. Our results support recent evidence of the beneficial effects of low-level UV exposure for some organisms. PMID:27434210

  8. Comment on 'Shang S. 2012. Calculating actual crop evapotranspiration under soil water stress conditions with appropriate numerical methods and time step. Hydrological Processes 26: 3338-3343. DOI: 10.1002/hyp.8405'

    NASA Technical Reports Server (NTRS)

    Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James

    2014-01-01

    A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.

  9. Characterisation of pectins extracted from banana peels (Musa AAA) under different conditions using an experimental design.

    PubMed

    Happi Emaga, Thomas; Ronkart, Sébastien N; Robert, Christelle; Wathelet, Bernard; Paquot, Michel

    2008-05-15

    An experimental design was used to study the influence of pH (1.5 and 2.0), temperature (80 and 90°C) and time (1 and 4h) on extraction of pectin from banana peels (Musa AAA). Yield of extracted pectins, their composition (neutral sugars, galacturonic acid, and degree of esterification) and some macromolecular characteristics (average molecular weight, intrinsic viscosity) were determined. It was found that extraction pH was the most important parameter influencing yield and pectin chemical composition. Lower pH values negatively affected the galacturonic acid content of pectin, but increased the pectin yield. The values of degree of methylation decreased significantly with increasing temperature and time of extraction. The average molecular weight ranged widely from 87 to 248kDa and was mainly influenced by pH and extraction time. PMID:26059123

  10. Creep in Wood Under Variable Climate Conditions: Numerical Modeling and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Dubois, F.; Randriambololona, H.; Petit, C.

    2005-09-01

    This paper deals with the modeling of linear viscoelastic behavior and strain accumulation (accelerated creep) during moisture content changes in timber. A generalized Kelvin-Voigt model is used and associated in series with a shrinkage-swelling element depending on the mechanical and moisture content states of materials. The hygrothermal aging due to climatic variations implies an evolution of rheological parameters depending upon moisture content and temperature. Two distinct viscoelastic laws, one for drying and the other for moistening, are coupled according to the thermodynamic principles when wood is subjected to nonmonotonous moisture variations. An incremental formulation of behavior is established in the finite element program CAST3M (Software developed by C.E.A. (Commissariat á l'Energi Atomique) and an experimental validation from tension creep-recovery tests is presented.

  11. Experimental conditions can obscure the second high-affinity site in LeuT.

    PubMed

    Quick, Matthias; Shi, Lei; Zehnpfennig, Britta; Weinstein, Harel; Javitch, Jonathan A

    2012-02-01

    Neurotransmitter:Na(+) symporters (NSSs), the targets of antidepressants and psychostimulants, recapture neurotransmitters from the synapse in a Na(+)-dependent symport mechanism. The crystal structure of the NSS homolog LeuT from Aquifex aeolicus revealed one leucine substrate in an occluded, centrally located (S1) binding site next to two Na(+) ions. Computational studies combined with binding and flux experiments identified a second substrate (S2) site and a molecular mechanism of Na(+)-substrate symport that depends upon the allosteric interaction of substrate molecules in the two high-affinity sites. Here we show that the S2 site, which has not yet been identified by crystallographic approaches, can be blocked during preparation of detergent-solubilized LeuT, thereby obscuring its crucial role in Na(+)-coupled symport. This finding points to the need for caution in selecting experimental environments in which the properties and mechanistic features of membrane proteins can be delineated. PMID:22245968

  12. A frost formation model and its validation under various experimental conditions

    NASA Technical Reports Server (NTRS)

    Dietenberger, M. A.

    1982-01-01

    A numerical model that was used to calculate the frost properties for all regimes of frost growth is described. In the first regime of frost growth, the initial frost density and thickness was modeled from the theories of crystal growth. The 'frost point' temperature was modeled as a linear interpolation between the dew point temperature and the fog point temperature, based upon the nucleating capability of the particular condensing surfaces. For a second regime of frost growth, the diffusion model was adopted with the following enhancements: the generalized correlation of the water frost thermal conductivity was applied to practically all water frost layers being careful to ensure that the calculated heat and mass transfer coefficients agreed with experimental measurements of the same coefficients.

  13. Experimental investigation on the effect of injection conditions on spray and atomization of a centrifugal nozzle

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Song, Haoyi; Fan, Zhencen; Zhao, Lin

    2013-05-01

    The effects of injection parameters on atomization of aviation kerosene (RP-3) were studied using a laser diffraction particle size analyzing system. The test results indicated that Sauter mean diameter (SMD) decreased with the increase of injection temperature. There was a critical temperature for flash evaporation, at which SMD had a sharp decrease. The critical temperature fell at first and then rose with the increase of injection pressure; however, the diameter of a centrifugal nozzle had little influence on the critical temperature. Sauter mean diameter didn't follow the conventional law after flash evaporation. A simple and empirical correlation between critical temperature for flash evaporation and injection parameters was developed from the experimental data, which can be used to evaluate critical temperature for flash evaporation.

  14. Experimental study of debris-bed coolability under pool-boiling conditions. [PWR; BWR; LMFBR

    SciTech Connect

    Catton, I.; Dhir, V.K.; Somerton, C.W.

    1983-05-01

    An experimental investigation has been conducted into the dryout of a bed of inductively heated particles cooled by an overlying liquid pool. Particles of diameters 4763 ..mu..m, 3175 ..mu..m, 1588 ..mu..m, and 589-787 ..mu..m have been used. Acetone and water have been used as the coolant with bed heights varying from 5 to 40 cm. Results are presented in terms of the dryout heat as a function of bed height. It has been found that the ratio of the overlying liquid pool height to the particulate bed height can influence the dryout heat flux. Comparison with other experimetal studies was good and a comparison with proposed theoretical models was also made.

  15. Identification and Evaluation of Reference Genes for Accurate Transcription Normalization in Safflower under Different Experimental Conditions

    PubMed Central

    Li, Dandan; Hu, Bo; Wang, Qing; Liu, Hongchang; Pan, Feng; Wu, Wei

    2015-01-01

    Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant and oilseed crop. Gene expression studies provide a theoretical molecular biology foundation for improving new traits and developing new cultivars. Real-time quantitative PCR (RT-qPCR) has become a crucial approach for gene expression analysis. In addition, appropriate reference genes (RGs) are essential for accurate and rapid relative quantification analysis of gene expression. In this study, fifteen candidate RGs involved in multiple metabolic pathways of plants were finally selected and validated under different experimental treatments, at different seed development stages and in different cultivars and tissues for real-time PCR experiments. These genes were ABCS, 60SRPL10, RANBP1, UBCL, MFC, UBCE2, EIF5A, COA, EF1-β, EF1, GAPDH, ATPS, MBF1, GTPB and GST. The suitability evaluation was executed by the geNorm and NormFinder programs. Overall, EF1, UBCE2, EIF5A, ATPS and 60SRPL10 were the most stable genes, and MBF1, as well as MFC, were the most unstable genes by geNorm and NormFinder software in all experimental samples. To verify the validation of RGs selected by the two programs, the expression analysis of 7 CtFAD2 genes in safflower seeds at different developmental stages under cold stress was executed using different RGs in RT-qPCR experiments for normalization. The results showed similar expression patterns when the most stable RGs selected by geNorm or NormFinder software were used. However, the differences were detected using the most unstable reference genes. The most stable combination of genes selected in this study will help to achieve more accurate and reliable results in a wide variety of samples in safflower. PMID:26457898

  16. Experimental and Theoretical Simulations for Conditions for Lasing at 13.5 nm in LiIII

    NASA Astrophysics Data System (ADS)

    Avitzour, Y.; Geltner, I.; Morozov, A.; Ping, Y.; Suckewer, S.

    2002-11-01

    We present results related to the search for optimum conditions for lasing to ground state of H-like LiIII ions at 13.5 nm. These conditions are being considered from the point of view of the development of a prototype of a very compact 13.5 nm laser for metrology of soft x-ray (EUV) lithography. Theoretical simulations are discussed in relation to experimental data. Experiments on channeling of ultrashort high intensity pumping laser beam in microcapillary plasma are presented for conditions appropriate for lasing at 13.5 nm. We are also discussing Raman amplification of ultrashort pulses in microcapillary plasma as a possibility for future use in X-ray lasers.

  17. Experimental and Numerical Studies on Wave Breaking Characteristics over a Fringing Reef under Monochromatic Wave Conditions

    PubMed Central

    2014-01-01

    Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r2 > 0.8) the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high (A0/h0 < 0.07 in this study). However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification. PMID:25276853

  18. Experimental characterization of Ni-Ti shape memory alloy wires under complex loading conditions

    NASA Astrophysics Data System (ADS)

    Prahlad, Harsha; Chopra, Inderjit

    1999-06-01

    Shape memory alloys (SMAs) have shown promise as high-force, high displacement actuators. Critical issues such as path- dependence, predictability and sensitivity to testing conditions, however, need to be addressed in order to design controllable actuators using SMAs. This paper presents research aimed at addressing some of design issues involving application of SMAs, particularly at actuators. Quasistatic experiments at constant stress, strain and temperature are consolidated on a critical stress-temperature diagram to delineate the regions of stability of the various phases of the material. The critical points from these quasistatic tests are found to be in excellent agreement with each other, and correlate relatively well with the constitutive models for SMA thermomechanical behavior. It is also observed that the state of the material is not unique at points along the transformation, and is dependent on the history of the material before the start of the test, individual test involved, the method of loading, and loading rates. Significant variation of the state of the material with different rates and conditions of loading are shown to further illustrate this point. This behavior is likely to be decisive in determining the dynamic behavior of the material, and underscores the need for approaches incorporating these issues for design of repeatable actuators.

  19. Acclimation of microorganisms to harsh soil crust conditions: Experimental and genomic approaches

    NASA Astrophysics Data System (ADS)

    Raanan, Hagai; Kaplan, Aaron

    2015-04-01

    Biological soil crusts (BSC) are formed by the adhesion of sand particles to cyanobacterial exo- polysaccharides and play an important role in stabilizing sandy desert. Its destruction promotes desertification. These organisms cope with extreme temperatures, excess light and frequent hydration/dehydration cycles; the mechanisms involved are largely unknown. With the genome of newly sequenced Leptolyngbya, isolated from Nizzana BSC, we conduct comparative genomics of three desiccation tolerant cyanobacteria. This yield 46 unique genes, some of them similar to genes involve in sporulation of the gram positive bacteria Bacillus. In order to understand the molecular mechanisms taking place during desiccation we built an environmental chamber capable of simulating dynamic changes of environmental conditions in the crust. This chamber allows us to perform repetitive and accurate desiccation/rehydration experiments and follow cyanobacterial physiological and molecular response to such environmental changes. When we compared fast desiccation (less than 5 min) of isolated cyanobacteria to simulation of natural desiccation, we observed a 60% lower fluorescence recovery rate. The extent of damage from desiccation depended on the stress conditions during the dry period. These results suggest that cyanobacteria activated protection mechanisms in response to desiccation stress but which were not activated in 5 min desiccation tests. Gene expression patterns during desiccation are being analyzed in order to provide a better understanding of desiccation stress protection mechanisms.

  20. Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions

    PubMed Central

    2012-01-01

    Background Synthetic dyes represent a broad and heterogeneous class of durable pollutants, that are released in large amounts by the textile industry. The ability of two immobilized metalloporphines (structurally emulating the ligninolytic peroxidases) to bleach six chosen dyes (alizarin red S, phenosafranine, xylenol orange, methylene blue, methyl green, and methyl orange) was compared to enzymatic catalysts. To achieve a green and sustainable process, very mild conditions were chosen. Results IPS/MnTSPP was the most promising biomimetic catalyst as it was able to effectively and quickly bleach all tested dyes. Biomimetic catalysis was fully characterized: maximum activity was centered at neutral pH, in the absence of any organic solvent, using hydrogen peroxide as the oxidant. The immobilized metalloporphine kept a large part of its activity during multi-cycle use; however, well-known redox mediators were not able to increase its catalytic activity. IPS/MnTSPP was also more promising for use in industrial applications than its enzymatic counterparts (lignin peroxidase, laccase, manganese peroxidase, and horseradish peroxidase). Conclusions On the whole, the conditions were very mild (standard pressure, room temperature and neutral pH, using no organic solvents, and the most environmental-friendly oxidant) and a significant bleaching and partial mineralization of the dyes was achieved in approximately 1 h. Therefore, the process was consistent with large-scale applications. The biomimetic catalyst also had more promising features than the enzymatic catalysts. PMID:23256784

  1. Experimental and numerical studies on wave breaking characteristics over a fringing reef under monochromatic wave conditions.

    PubMed

    Lee, Jong-In; Shin, Sungwon; Kim, Young-Taek

    2014-01-01

    Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r (2) > 0.8) the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high (A 0/h 0 < 0.07 in this study). However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification. PMID:25276853

  2. Tethered Chains in Poor Solvent Conditions: An Experimental Study Involving Langmuir Diblock Copolymer Monolayers

    SciTech Connect

    Kent, M.S.; Lee, L.T.; Majewski, J.; Satija, S.; Smith, G.S.

    1998-10-13

    We have employed Langmuir monolayer of highly asymmetric polydimethylsiloxane- polystyrene (PDMS-PS) diblock copolymers on dioctyl phthalate (DOP) at temperatures ranging from 22 "C to -35 `C as a model system for tethered chains in poor solvent conditions. The thicknesses of the tethered PS layers extending into the DOP subphase, measured by neutron reflection, decrease with decreasing temperature (T) over this entire r~ge. However, the v~iation with T becomes weak below -20 "C. At the ]owest T, the layer thicknesses are contracted 55 % -75 `% of their values at the theta condition (T8 = 22 "C), but are still quite swollen compared to the fully collapsed, nonsolvent limit. The contraction of the layer with decreasing T is determined as a function of surface density and molecular weight. These data are compared to universal scaling forms. The PS segments are depleted from the air surface over the entire T range, the thickness of the depletion layer increasing slightly with decreasing T. The free energy of the surface layer is probed by surface tension measurements. Negative surface pressures are observed at low coverages for both PDMS-PS and PDMS monolayer, indicating metastability toward lateral phase separation. Evidence for a trruisition from a dispersed phase to a condensed phase with decreasing T was observed in the reflectivity at very low PDMS-PS coverage.

  3. Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions

    SciTech Connect

    Costa, M.; Azevedo, J.L.T.

    2007-07-01

    Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

  4. Experimental study of ELM-like heat loading on beryllium under ITER operational conditions

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-02-01

    The experimental fusion reactor ITER, currently under construction in Cadarache, France, is transferring the nuclear fusion research to the power plant scale. ITER’s first wall (FW), armoured by beryllium, is subjected to high steady state and transient power loads. Transient events like edge localized modes not only deposit power densities of up to 1.0 GW m-2 for 0.2-0.5 ms in the divertor of the machine, but also affect the FW to a considerable extent. Therefore, a detailed study was performed, in which transient power loads with absorbed power densities of up to 1.0 GW m-2 were applied by the electron beam facility JUDITH 1 on beryllium specimens at base temperatures of up to 300 °C. The induced damage was evaluated by means of scanning electron microscopy and laser profilometry. As a result, the observed damage was highly dependent on the base temperatures and absorbed power densities. In addition, five different classes of damage, ranging from ‘no damage’ to ‘crack network plus melting’, were defined and used to locate the damage, cracking, and melting thresholds within the tested parameter space.

  5. Experimental conditions for determination of the neutrino mass hierarchy with reactor antineutrinos

    NASA Astrophysics Data System (ADS)

    Pac, Myoung Youl

    2016-01-01

    This article reports the optimized experimental requirements to determine neutrino mass hierarchy using electron antineutrinos (νbare) generated in a nuclear reactor. The features of the neutrino mass hierarchy can be extracted from the | Δ m312 | and | Δ m322 | oscillations by applying the Fourier sine and cosine transforms to the L / E spectrum. To determine the neutrino mass hierarchy above 90% probability, the requirements on the energy resolution as a function of the baseline are studied at sin2 ⁡ 2θ13 = 0.1. If the energy resolution of the neutrino detector is less than 0.04 /√{Eν} and the determination probability obtained from Bayes' theorem is above 90%, the detector needs to be located around 48-53 km from the reactor(s) to measure the energy spectrum of νbare. These results will be helpful for setting up an experiment to determine the neutrino mass hierarchy, which is an important problem in neutrino physics.

  6. Experimental investigation of transverse mixing in porous media under helical flow conditions

    NASA Astrophysics Data System (ADS)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo

    2016-07-01

    Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution. Porous media were packed in angled stripes of materials with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity, which caused helical flows. Steady-state transport experiments were carried out by continuously injecting dye tracers at different inlet ports. High-resolution measurements of concentration and flow rates were performed at 49 outlet ports. These measurements allowed quantifying the spreading and dilution of the solute plumes at the outlet cross section. Direct evidence of plume spiraling and visual proof of helical flow was obtained by freezing and slicing the porous media at different cross sections and observing the dye-tracer distribution. We simulated flow and transport to interpret our experimental observations and investigate the effects of helical flow on mixing-controlled reactive transport. The simulation results were evaluated using metrics of reactive mixing such as the critical dilution index and the length of continuously injected steady-state plumes. The results show considerable reaction enhancement, quantified by the remarkable decrease of reactive plume lengths (up to four times) in helical flows compared to analogous scenarios in uniform flows.

  7. Experimental investigation of transverse mixing in porous media under helical flow conditions.

    PubMed

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A; Grathwohl, Peter; Rolle, Massimo

    2016-07-01

    Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution. Porous media were packed in angled stripes of materials with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity, which caused helical flows. Steady-state transport experiments were carried out by continuously injecting dye tracers at different inlet ports. High-resolution measurements of concentration and flow rates were performed at 49 outlet ports. These measurements allowed quantifying the spreading and dilution of the solute plumes at the outlet cross section. Direct evidence of plume spiraling and visual proof of helical flow was obtained by freezing and slicing the porous media at different cross sections and observing the dye-tracer distribution. We simulated flow and transport to interpret our experimental observations and investigate the effects of helical flow on mixing-controlled reactive transport. The simulation results were evaluated using metrics of reactive mixing such as the critical dilution index and the length of continuously injected steady-state plumes. The results show considerable reaction enhancement, quantified by the remarkable decrease of reactive plume lengths (up to four times) in helical flows compared to analogous scenarios in uniform flows. PMID:27575223

  8. Final thermal conditions override the effects of temperature history and dispersal in experimental communities

    PubMed Central

    Limberger, Romana; Low-Décarie, Etienne; Fussmann, Gregor F.

    2014-01-01

    Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature. We found that the final temperature of the habitat was the primary driver of diversity in our experimental communities. Species richness declined faster at higher temperatures. The negative effect of warming was not alleviated by a slower rate of warming or by dispersal among habitats and did not depend on the initial temperature. The response of evenness, however, did depend on the rate of change and on the initial temperature. Community composition was not predictable from monoculture assays, but higher fitness inequality (as seen by larger variance in growth rate among species in monoculture at higher temperatures) explained the faster loss of biodiversity with rising temperature. PMID:25186000

  9. Hyperactivity induced by prenatal BrdU exposure across several experimental conditions.

    PubMed

    Kuwagata, Makiko; Ogawa, Tetsuo; Muneoka, Katsumasa; Shioda, Seiji

    2011-12-01

    Behavioral results are sometimes not reproducible even in the positive controls of developmental neurotoxicity (DNT) tests. Effects of several factors on the results should be considered. In the present paper, we examined the effects of strain-, gender-, and test-condition differences on BrdU-induced hyperactivity. The results showed that BrdU-induced hyperactivity was reproducible in two rat strains (SD and F344 rats), rodent species (rat and mouse), and both sexes. When the level of background sound in a test room was increased, the hyperactivity was persistent, resulting in no effect of background sound on BrdU-induced hyperactivity. Thus, we have demonstrated that the BrdU-animal model is a useful positive control via prenatal exposure to validate the entire DNT test process. PMID:22103457

  10. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions.

    PubMed

    Rong, Xing; Geng, Jianpei; Shi, Fazhan; Liu, Ying; Xu, Kebiao; Ma, Wenchao; Kong, Fei; Jiang, Zhen; Wu, Yang; Du, Jiangfeng

    2015-01-01

    Quantum computation provides great speedup over its classical counterpart for certain problems. One of the key challenges for quantum computation is to realize precise control of the quantum system in the presence of noise. Control of the spin-qubits in solids with the accuracy required by fault-tolerant quantum computation under ambient conditions remains elusive. Here, we quantitatively characterize the source of noise during quantum gate operation and demonstrate strategies to suppress the effect of these. A universal set of logic gates in a nitrogen-vacancy centre in diamond are reported with an average single-qubit gate fidelity of 0.999952 and two-qubit gate fidelity of 0.992. These high control fidelities have been achieved at room temperature in naturally abundant (13)C diamond via composite pulses and an optimized control method. PMID:26602456

  11. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    SciTech Connect

    Sokovikov, Mikhail E-mail: naimark@icmm.ru; Chudinov, Vasiliy E-mail: naimark@icmm.ru; Bilalov, Dmitry E-mail: naimark@icmm.ru; Oborin, Vladimir E-mail: naimark@icmm.ru; Uvarov, Sergey E-mail: naimark@icmm.ru; Plekhov, Oleg E-mail: naimark@icmm.ru; Terekhina, Alena E-mail: naimark@icmm.ru; Naimark, Oleg E-mail: naimark@icmm.ru

    2014-11-14

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.

  12. [Carbohydrate and nitrogenous metabolism condition in the rat tissue under experimental rhabdomyolysis].

    PubMed

    Kaliman, P A; Okhrimenko, S M

    2012-01-01

    Some effects of glycerol injection on indices of the condition of the thiol-disulfide system as well as carbohydrate and nitrogen metabolism in rats in vivo were studied. A decrease was revealed in levels of non-protein SH-groups in the liver, kidney and heart, as well as of protein SH-groups in the kidney and heart of rats following glycerol injection. That might be connected with SH-group oxidation under the excessive arrival of free haem into tissues under rhabdomyolysis. A decrease in glycogen and increase in tyrosine aminotransferase activity in the liver were observed. Activation of nitrogenous metabolism following glycerol injection is indicated by the increase of aminotransferase activity in organs, and concentration of blood urea. High concentration of creatinine in the rat serum can reflect malfiltration in kidneys. PMID:22679761

  13. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions

    PubMed Central

    Rong, Xing; Geng, Jianpei; Shi, Fazhan; Liu, Ying; Xu, Kebiao; Ma, Wenchao; Kong, Fei; Jiang, Zhen; Wu, Yang; Du, Jiangfeng

    2015-01-01

    Quantum computation provides great speedup over its classical counterpart for certain problems. One of the key challenges for quantum computation is to realize precise control of the quantum system in the presence of noise. Control of the spin-qubits in solids with the accuracy required by fault-tolerant quantum computation under ambient conditions remains elusive. Here, we quantitatively characterize the source of noise during quantum gate operation and demonstrate strategies to suppress the effect of these. A universal set of logic gates in a nitrogen-vacancy centre in diamond are reported with an average single-qubit gate fidelity of 0.999952 and two-qubit gate fidelity of 0.992. These high control fidelities have been achieved at room temperature in naturally abundant 13C diamond via composite pulses and an optimized control method. PMID:26602456

  14. Experimental observations of bedload and slope fluctuations in a flume under constant feeding conditions

    NASA Astrophysics Data System (ADS)

    Bacchi, V.; Recking, A.

    2009-04-01

    Flume and field experiments have demonstrated that bedload is not a one-to-one response to shear stress but largely fluctuates with time, even under constant feeding conditions. This was largely investigated by Recking et al. 2007 through flume experiments. Available results were obtained essentially for very steep slope experiments (5 to 12%) and with bimodal mixture. This is why new experiments have been performed under constant feeding rate conditions (flow discharge of 0.82 l/s and solid discharge of 5.4 g/s) and for long durations (48 h) in a 6 m long and 0.1 m wide flume for a mean slope of 0.028, using a bi-dispersed sand gravel mixture. During experiments mean bed slope was measured regularly along the flume side wall using seven staff gauges, starting at the channel outlet. Continuous outlet solid discharge was calculated using WIMA software (Ducottet, 1994) by processing images taken at the flume outlet with a customized video system. Large fluctuations for both the slope and the solid discharge were measured. We observe as found in other studies (Iseya et Ikeda, 1987), that fluctuations are always associated with a complex sediment behavior including various phenomena such as paving, smooth bed and sediment pulses. The periodical nature of the slope and the solid discharge were investigated through a spectral analysis obtained with a Fourier transform of temporal signal Qs(t) and S(t). The analysis shows that three families of peaks can be identified corresponding to short, intermediate and long fluctuations. These periods are highly representative of the slope signal recorded during the run.

  15. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    NASA Astrophysics Data System (ADS)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  16. Hydrologic modification to improve habitat in riverine lakes: Management objectives, experimental approach, and initial conditions

    USGS Publications Warehouse

    Johnson, Barry L.; Barko, John W.; Gerasimov, Yuri; James, William F.; Litvinov, Alexander; Naimo, Teresa J.; Wiener, James G.; Gaugush, Robert F.; Rogala, James T.; Rogers, Sara J.

    1996-01-01

    The Finger Lakes habitat-rehabilitation project is intended to improve physical and chemical conditions for fish in six connected back water lakes in Navigation Pool 5 of the upper Missouri River. The primary management objective is to improve water temperature, dissolved oxygen concentration and current velocity during winter for bluegills, Lepomis macrochirus, and black crappies, Pomoxis nigromaculatus, two of the primary sport fishes in the lakes. The lakes will be hydrologically altered by Installing culverts to Introduce controlled flows of oxygenated water into four lakes, and an existing unregulated culvert on a fifth lake will be equipped with a control gate to regulate inflow. These habitat modifications constitute a manipulative field experiment that will compare pre-project (1991 to summer 1993) and post-project (fall 1993 to 1996) conditions in the lakes, including hydrology, chemistry, rooted vegetation, and fish and macroinvertebrate communities. Initial data indicate that the Finger Lakes differ in water chemistry, hydrology, and macrophyte abundance. Macroinvertebrate communities also differed among lakes: species diversity was highest in lakes with dense aquatic macrophytes. The system seems to support a single fish community, although some species concentrated in individual lakes at different times. The introduction of similar flows into five of the lakes will probably reduce the existing physical and chemical differences among lakes. However, our ability to predict the effects of hydrologic modification on fish populations is limited by uncertainties concerning both the interactions of temperature, oxygen and current in winter and the biological responses of primary and secondary producers. Results from this study should provide guidance for similar habitat-rehabilitation projects in large rivers.

  17. Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions

    NASA Astrophysics Data System (ADS)

    Kim, Moon-Chan; Lee, Seung-Ki; Lee, Won-Joon; Wang, Jung-yong

    2013-03-01

    The resistance performance of an icebreaking cargo vessel in pack ice conditions was investigated numerically and experimentally using a recently developed finite element (FE) model and model tests. A comparison between numerical analysis and experimental results with synthetic ice in a standard towing tank was carried out. The comparison extended to results with refrigerated ice to examine the feasibility of using synthetic ice. Two experiments using two different ice materials gave a reasonable agreement. Ship-ice interaction loads are numerically calculated based on the fluid structure interaction (FSI) method using the commercial FE package LS-DYNA. Test results from model testing with synthetic ice at the Pusan National University towing tank, and with refrigerated ice at the National Research Council's (NRC) ice tank, are used to validate and benchmark the numerical simulations. The designed icegoing cargo vessel is used as a target ship for three concentrations (90%, 80%, and 60%) of pack ice conditions. Ice was modeled as a rigid body but the ice density was the same as that in the experiments. The numerical challenge is to evaluate hydrodynamic loads on the ship's hull; this is difficult because LS-DYNA is an explicit FE solver and the FSI value is calculated using a penalty method. Comparisons between numerical and experimental results are shown, and our main conclusions are given.

  18. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Hansen, Christian T.; Goldhammer, Tobias; Bach, Wolfgang; Dittmar, Thorsten

    2016-02-01

    Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural high-temperature hydrothermal systems, DOM is almost completely removed, but the mechanism and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100 and 380 °C over the course of two weeks in artificial seawater, and was then characterised on a molecular level via ultrahigh-resolution Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied. Higher molecular weight and more oxygen rich compounds were preferentially removed, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly altered samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H/C ratio (>1.5). Our results suggest that abiotic hydrothermal alteration of SPE-DOM may already occur at temperatures above 68 °C. Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.

  19. Fungal Diversity in Permafrost and Tallgrass Prairie Soils under Experimental Warming Conditions

    PubMed Central

    StLouis, Derek; Cole, James R.; Luo, Yiqi; Wu, Liyou; Schuur, E. A. G; Zhou, Jizhong; Tiedje, James M.

    2013-01-01

    Soil fungi play a major role in terrestrial ecosystem functioning through interactions with soil structure, plants, micro- and mesofauna, and nutrient cycling through predation, pathogenesis, mutualistic, and saprotrophic roles. The diversity of soil fungi was assessed by sequencing their 28S rRNA gene in Alaskan permafrost and Oklahoma tallgrass prairie soils at experimental sites where the effect of climate warming is under investigation. A total of 226,695 reads were classified into 1,063 genera, covering 62% of the reference data set. Using the Bayesian Classifier offered by the Ribosomal Database Project (RDP) with 50% bootstrapping classification confidence, approximately 70% of sequences were returned as “unclassified” at the genus level, although the majority (∼65%) were classified at the class level, which provided insight into these lesser-known fungal lineages. Those unclassified at the genus level were subjected to BLAST analysis against the ARB-SILVA database, where ∼50% most closely matched nonfungal taxa. Compared to the more abundant sequences, a higher proportion of rare operational taxonomic units (OTU) were successfully classified to genera at 50% bootstrap confidence, indicating that the fungal rare biosphere in these sites is not composed of sequencing artifacts. There was no significant effect after 1 year of warming on the fungal community structure at both sites, except perhaps for a few minor members, but there was a significant effect of sample depth in the permafrost soils. Despite overall significant community structure differences driven by variations in OTU dominance, the prairie and permafrost soils shared 90% and 63% of all fungal sequences, respectively, indicating a fungal “seed bank” common between both sites. PMID:24014534

  20. Kinetic and thermodynamic analysis of Creosote degradation process under isothermal experimental conditions.

    PubMed

    Janković, Bojan Ž; Janković, Marija M

    2013-01-01

    Isothermal degradation process of commercial Creosote was analyzed by the thermogravimetric (TG) technique in a nitrogen atmosphere, at four different operating temperatures (230, 250, 270 and 290°C). The kinetic triplet [Ea , A and f(α)] and the thermodynamic parameters (ΔH (≠), ΔS (≠)and ΔG (≠)) for investigated Creosote samples were calculated. It was found that two-parameter autocatalytic Šesták-Berggren (SB) kinetic model best describes the process, but in the form of accommodation function with phenomenological character. Applying the multiplicative factor, the true value of activation energy (E (true) a ) was calculated. The experimental density distribution function of the apparent activation energy values was evaluated from isoconversional kinetic analysis. Based of the characteristic shape of distribution curve, it was concluded that the isothermal degradation of Creosote represents a complex physico-chemical process, given the chemical structure of the studied system. It is assumed that the considered process probably includes primary and secondary (autocatalytic) pyrolysis reactions, together with various decomposition reactions and radicals recombination pathways. The objective of the presented work is the proof of principle of the pyrolysis-based thermo-chemical conversion technologies for the production of value-added chemicals from the complex organic compounds, which even include chemical contaminants (such as PAHs). Also, the present work allows us that by using a unified kinetic approach we can obtain a significant physico-chemical characteristics of the tested system, which can then be used in the procedure for the separation of organics from creosote-treated woods and creosote-contaminated soils. The significance of this research is to identify the global kinetic behavior of some target contaminant compounds for pyrolysis, which are primarily PAHs. PMID:23705620

  1. Velocity and Vorticity Fields of a Turbulent Plume under different experimental conditions

    NASA Astrophysics Data System (ADS)

    Matulka, A. M.; Gonzalez-Nieto, P. L.; Redondo, J. M.; Tarquis, A. M.

    2012-04-01

    The geophysical and practical importance and the applications of turbulent plumes as generators of strong dispersion processes are clearly recognized. In geophysics and astrophysics, it is usual to model as a jet or plume the generation mechanism of turbulent mixing as a part of a dispersion process [1-3]. An interesting geophysical problem is the study of volcanic plumes [2], which are columns of hot volcanic ash and gas emitted into the atmosphere during an explosive volcanic eruption. Another interesting like-plume phenomenon can be observed where a stream, usually a river, empties into a lake, sea or ocean, generating a river plume [3,4]. Turbulent plumes are fluid motions whose primary source of kinetic energy and momentum flux is due to body forces that arise from density inhomogeneities. The plume boundary acts as an interface across which ambient fluid is entrained, and the plume boundary moves at the velocity of the plume fluid. The difference between the plume-fluid radial velocity and the total fluid velocity quantifies in a natural way the purely horizontal entrainment flux of ambient fluid into the plume across the phase boundary at the plume edge [5,6]. We show some results of research on a single turbulent plume as well as on the structure of the interaction between different plumes and jets, We measure and compare velocity and vorticity fields occurring in different experimental configurations (Parametrized by the Atwood number and the initial potential energy as well as the Plume-Jet length scale). This work is based on experiments that have been performed in GFD laboratories (IPD and UPC) using visualizations methods (LIF,PIV) and advanced multiscaling techniques. We calculate velocity and vorticity PDFs and the evolution of the structure of stratified decaying, with DigFlow and Imacalc programs (Matulka 2010)[7], where video sequence processing provides a range of global and local descriptor features designed specifically for analysing fluid

  2. Density-salinity-suspended sediment experimental curves for Guadalquivir River estuary conditions

    NASA Astrophysics Data System (ADS)

    Carpintero García, M.; Jurado López, A.; Contreras Arribas, E.; Polo Gómez, M. J.

    2012-04-01

    Estuarine water in Mediterranean watersheds contains high suspended sediment concentrations due to both the fine textured nature of the materials reaching the final stretch of the fluvial network, and the agricultural predominance of soil uses upstream. Saline conditions induce flocculation processes which alter the original behavior of the soil particles in water. The final high density mixture of water-salts-sediments has physicochemical characteristics very different from the saline water alone. However, this is not often included when modeling the dynamics of estuaries, adopting the density, viscosity, etc., values corresponding to the present level of salinity found at each point. The nature of the local sediments influences the density values finally found. The Guadalquivir River estuary (southwestern Spain) extends along the 105 km between the Alcalá del Río dam, upstream, and its mouth in Sanlúcar de Barrameda. It is an Atlantic mesotidal estuary (Díez-Minguito et al., 2010) with a mainly longitudinal salinity gradient. The sediments in the estuary are very fine-textured due to the great length of the river and, mainly, the extreme trapping efficiency of the dense reservoir network upstream along the 57400 km2 of the contributing area. With an average value of 0.5 - 4.5 g L-1 for the suspended sediment range along the estuary, extreme values up to 160 g L-1 can be found associated with persistent turbidity events forced by different combinations of conditions. This work shows the density variation with changing bivariate conditions of salinity-suspended sediments, following the combined range found along the estuary. Laboratory measurements were made at 19° C for synthetic seawater with 35 g L-1salinity and the decreasing range found upstream by dilution until a final value of 0.2 g L-1, for which an increasing suspended sediment concentration (SSC) was induced by adding sediments locally extracted from the estuary. The final density of these sets of

  3. Experimental/Laboratory Study of Zeta and Streaming Potentials at In Situ Conditions

    NASA Astrophysics Data System (ADS)

    Reppert, P. M.; Morgan, F. D.

    2003-12-01

    Streaming Potentials and zeta potentials were measured at equilibrium conditions, while at elevated temperatures of 23-200 degrees C and pressures of 20 MPa, on intact rock samples of Fontainebleau Sandstone, Berea Sandstone, and Westerly Granite. The techniques for achieving and measuring streaming potentials at equilibrium conditions, while at elevated temperatures and pressures is presented. The streaming potential coupling coefficient for Fontainebleau sandstone decreased in magnitude from 195 nV/Pa at 23 degrees C to 33 nV/Pa at 160 degrees C before rising to 41 nV/Pa at 200 degrees C. The Berea Sandstone coupling coefficient decreased in magnitude from 100 nV/Pa at 23 degrees C to 23 nV/Pa at 160 degrees C and then increased in magnitude to 100 nV/Pa at 200 degrees C. The Westerly Granite coupling coefficient increased in magnitude from 23 nV/Pa at 40 degrees C to 68 nV/Pa at 120 degrees C, then decreased in magnitude to 43 nV/Pa at 160 degrees C and then increased in magnitude to 50 nV/Pa at 200 degrees C. The Fontainebleau Sandstone zeta potential changes in magnitude by approximately 0.036 mV/C degrees between 23C degrees and 120 degrees C. At 120C degrees the slope changes in magnitude to 0.15 mV/degree C and stays at that average slope until 200 degrees C is reached. The Berea Sandstone zeta potentials increased in magnitude in the region between 23-160 degrees C with a change in magnitude of 0.044 mV/degrees C, the region hotter then 160 degrees C changes in magnitude by 3.8 mV/degrees C. The Westerly Granite zeta potential changes in magnitude by 0.095 mv/degree C which then changes to 0.25 mv/degree C at 110 degrees C.

  4. Experimental Long-term Investigations on Geothermal Reservoir Rock Properties at Simulated In-situ Conditions

    NASA Astrophysics Data System (ADS)

    Milsch, H.; Spangenberg, E.; Kulenkampff, J.; Schuldt, S.; Huenges, E.

    2006-12-01

    Sustainable energy production from geothermal reservoirs requires an exact knowledge of the hydrological aquifer rock properties as well as the processes that could potentially alter its productivity. The latter comprise both mechanical (e. g. fines migration) and chemical (fluid-rock interactions) effects. To perform controlled long-term investigations on the evolution of sedimentary rock transport properties at conditions pertinent to deep geothermal reservoirs two new permeameters have been set up at the GFZ- Potsdam. The apparatuses allow for a variety of continuous petrophysical measurements at a maximum temperature, lithostatic- and pore pressure of 200 ° C, 140 and 50 MPa, respectively. The permeability, ultra-sonic p- and s-wave velocities and the specific electric conductivity of the rock can be determined. In particular, the use of corrosion-resistant parts allows for experiments with highly saline formation pore fluids that can be sampled under pressure for further chemical analysis. The typical duration of an individual test is four to twelve weeks. Experiments are comparatively performed on two types of sandstones: a Lower Permian (Rotliegend) reservoir rock from Eberswalde, Germany and a pure Quartzite from Fontainebleau, France. In addition, two kinds of pore fluids are used: a low salinity brine (0.1 mol NaCl) and a synthetic Ca-Na-Cl formation fluid with a TDS- content of 250 g/l. In a first series the former fluid was used to petrophysically characterize both rocks as a function of temperature and effective pressure within the relevant range of up to 150 ° C and 75 MPa, respectively. I addition, in a continuous flow experiment the permeability and the specific electric conductivity of the reservoir sandstone were monitored as a function of time during six weeks at constant p-T-conditions. In an ongoing series similar continuous flow experiments are performed using the second, highly saline reservoir fluid. These tests are also complemented by p

  5. Toward Obtaining the Experimental Constraints on the Role of Water on Melting Under the Lower Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Amulele, G.; Lee, K. K.; Karato, S.

    2012-12-01

    Water and other volatile components (such as carbon dioxide) are known to have important influence on the melting behavior of silicates. The role of these components on the melting under the upper mantle conditions is now reasonably well understood. Recent experimental studies in our lab as well as some of the previous studies do show that water has an important influence on the melting relationship under the lower mantle conditions. The influence of water is not only to reduce the solidus but also to change the composition of the melt to (Mg,Fe)O rich. Quantifying these observations is essential in the understanding of chemical evolution of Earth and other planets. However, there are several challenges in performing these experimental studies. In this presentation, we discuss the issue of quantifying the water effects with special attention to the capability of preserving water content during the high pressure-temperature experiments. The issue of the preservation of water is important firstly because water could escape from a capsule during an experiment, and secondly because the melt is unquenchable in a commonly used processes under the lower mantle conditions. A commonly used practice is to identify the deficit of EPMA measurement from 100% to the water content, but there is no sound basis for this practice. In this presentation, we will show some preliminary results of our new approach to quantify the water content from the high-pressure run products containing melts.

  6. Tracer Gas Transport under Mixed Convection Conditions in anExperimental Atrium: Comparison Between Experiments and CFDPredictions

    SciTech Connect

    Jayaraman, Buvaneswari; Finlayson, Elizabeth U.; Sohn, MichaelD.; Thatcher, Tracy L.; Price, Phillip N.; Wood, Emily E.; Sextro,Richard G.; Gadgil, Ashok J.

    2006-01-01

    We compare computational fluid dynamics (CFD) predictions using a steady-state Reynolds Averaged Navier-Stokes (RANS) model with experimental data on airflow and pollutant dispersion under mixed-convection conditions in a 7 x 9 x 11m high experimental facility. The Rayleigh number, based on height, was O(10{sup 11}) and the atrium was mechanically ventilated. We released tracer gas in the atrium and measured the spatial distribution of concentrations; we then modeled the experiment using four different levels of modeling detail. The four computational models differ in the choice of temperature boundary conditions and the choice of turbulence model. Predictions from a low-Reynolds-number k-{var_epsilon} model with detailed boundary conditions agreed well with the data using three different model-measurement comparison metrics. Results from the same model with a single temperature prescribed for each wall also agreed well with the data. Predictions of a standard k-{var_epsilon} model were about the same as those of an isothermal model; neither performed well. Implications of the results for practical applications are discussed.

  7. Experimental and theoretical investigations of Cs-Ba vapor tacitron inverter for power conditioning in space power systems

    SciTech Connect

    El-Genk, M.; Murray, C.; Wernsman, B.

    1993-01-01

    The operation characteristics of the Cs-Ba tacitron as a switch are investigated experimentally in three modes: (a) breakdown mode, (b) I-V mode, and (c) current modulation mode. The switching frequency, grid potentials for ignition and extinguishing of discharge, and the Cs pressure and emission conditions (Ba pressure and emitter temperature) for stable current modulation are determined. The experimental data is also used to determine the off-time required for successful ignition, and the effects of the aforementioned operation parameters on the ignition duty cycle threshold for stable modulation. Operation parameters measured include switching frequency up to 20 kHz, hold-off voltage up to 180 V, current densities in excess of 15 A/cm[sup 2], switch power density of 1 kW/cm[sup 2]. and a switching efficiency in excess of 90% at collector C: realer than 30 V. The voltage drop strongly depends on the Cs pressure and to a lesser extent on the emission conditions. Increasing the Cs pressure and/or the emission current lowers the voltage drop, however, for the same initial Cs pressure and emission conditions, the voltage drop in the I-V mode is usually lower than that during current modulation. As long as the discharge current is kept lower that the.emission current, the voltage drop during stable current modulation could be as low as 3 V.

  8. Experimental evidence for phase separation in hydrogen-helium mixtures at Jovian planet conditions

    NASA Astrophysics Data System (ADS)

    Collins, G. W.; Brygoo, S.; Millot, M.; Rygg, J. R.; Celliers, P. M.; Eggert, J.; Boehly, T. R.; Jeanloz, R.; Loubeyre, P.

    2015-11-01

    Whether or not H-He mixtures phase separate in Jovian planets is important to our understanding of the structure and evolution of Jupiter and Saturn. Also integral to such planet models, as well as mechanisms for H-He phase separation, are the insulating-to-conducting and the molecular-to-atomic-hydrogen transitions in the H-He mixture. Coupling static and dynamic compression techniques has allowed us to make the first thermodynamic and transport measurements of H-He mixtures at deep Jovian planet conditions. These data provide evidence that the H-He fluid demixes at the high pressures and temperatures expected to exist deep inside Saturn and Jupiter. This phase separation may result in the differentiation of heavier helium clusters, leading to helium rain in the deep interior of Saturn and perhaps even in a significant outer layer of Jupiter. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

  9. Damage of Elastomeric Matrix Composites (EMC-rubbers) Under Static Loading Conditions: Experimental and Numerical Study

    NASA Astrophysics Data System (ADS)

    Ayari, F.; Bayraktar, E.; Zghal, A.

    2011-01-01

    Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but also significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.

  10. Experimental Investigation of the Mechanical Behavior in Unloading Conditions of Sandstone After High-Temperature Treatment

    NASA Astrophysics Data System (ADS)

    Ding, Qi-Le; Ju, Feng; Mao, Xian-Biao; Ma, Dan; Yu, Bang-Yong; Song, Shuai-Bing

    2016-07-01

    A detailed understanding of damage evolution in rock after high-temperature treatment in unloading conditions is extremely important in underground engineering applications, such as the disposal of highly radioactive nuclear waste, underground coal gasification, and post-disaster reconstruction. We have studied the effects of temperature (200, 400, 600 and 800 °C) and confining pressure (20, 30 and 40 MPa) on the mechanical properties of sandstone. Scanning electron microscopy studies revealed that at temperatures exceeding 400 °C, new cracks formed, and original cracks extended substantially. When the confining pressure was 20 MPa, a temperature increase from 400 to 800 °C resulted in a 75.2% increase in peak strain, a decrease in Young's modulus and peak strength of 62.5 and 35.8 %, respectively, and transition of the failure mechanism from brittleness to ductility. In the triaxial compression tests, the specimen deformed in a more obvious ductile failure manner at higher confining pressure, whereas in the unloading confining pressure experiments, brittle failure was more obvious when the initial confining pressure was higher. We focused on the effects of temperature and initial confining pressure on peak effective loading stress and peak ductile deformation during unloading. At temperatures of >400 °C, the peak ductile deformation increased rapidly with increases in the high temperature treatment or initial confining pressure. The peak effective loading stress decreased sharply with increased temperature but barely changed when the initial confining pressure was varied.

  11. Experimental Analysis of a 2-D Lightcraft in Static and Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Rego, Israel S.; Toro, Paulo G. P.; Channes, José B.

    2010-05-01

    Aiming at the hypersonic phase of the Earth-to-Orbit trajectory for a laser propelled vehicle, a 2-D Lightcraft model was designed to be tested at the T3 Hypersonic Shock Tunnel at the Henry T. Nagamatsu Laboratory for Aerodynamics and Hypersonics. A high energy laser pulse was supplied by a Lumonics TEA 620 laser system operating in unstable resonator cavity mode. The experiments were performed at quiescent (no flow) conditions and at a nominal Mach number of 9.2. A Schlieren visualization apparatus was used in order to access both the cold hypersonic flowfield structure (without laser deposition) and the time dependent flowfield structure, taking place after the laser induced breakdown inside the absorption chamber. The model was fitted with piezoelectric pressure transducers and surface junction thermocouples in an attempt to measure pressure and heat transfer time dependent distributions at the internal surfaces of the model's absorption chamber. The 2-D model followed a modular design for flexibility on the analysis of geometrical features contribution on the expansion of the laser induced blast wave. Finally, future evolution of the experiments being currently pursued is addressed.

  12. Experimental Conditions for the Minimum Critical Reynolds Number in Pipe Flows

    NASA Astrophysics Data System (ADS)

    Kanda, Hidesada

    2004-11-01

    A transition model has been constructed for determining a critical Reynolds number Rc between laminar and turbulent flows in circular pipes. (1) Transition occurs in the entrance region under the conditions of natural disturbances. (2) Entrance shape determines Rc with disturbances; Rc takes a minimum value when the contraction ratio at the inlet is minimum or in the case of a straight pipe. (3) In the entrance boundary layer, there exists a normal wall strength which decreases as Re increases; let its rate of doing work be NW. The velocity profile develops from a uniform distribution at the inlet to a parabolic one; KE is the constant required acceleration power. Thus, the occurrence of the transition is determined by RW and KE: when RW > KE, transition never occurs, and when RW < KE, transition occurs. To prove the model, color-dye experiments were carried out. Consequently, two different types of Rc existed: Rc1 from laminar to turbulent and Rc2 from turbulent to laminar. As the ratio of bellmouth diameter to pipe diameter increases, Rc2 increased. Both Rc1 and Rc2 took a minimum value of approximately 2000 in the case of a straight pipe.

  13. Experimental investigation on the causes for pellet fragmentation under LOCA conditions

    NASA Astrophysics Data System (ADS)

    Bianco, A.; Vitanza, C.; Seidl, M.; Wensauer, A.; Faber, W.; Macián-Juan, R.

    2015-10-01

    This paper addresses a separate effect experiment performed with irradiated fuel to study fuel fragmentation and fission gas release during a loss of coolant accident (LOCA). The paper presents a qualitative and quantitative investigation of the effects of the removal of the geometrical constraint provided by the cladding and the removal of the constraint given by the rod internal pressure in determining the extent of fuel fragmentation and fission gas release during a LOCA for fuel segments with a burnup of approximately 52 MWd/kgU. A review of previous LOCA tests was the starting point for the identification of these constraints and for the selection of the fuel rod burnup, the experiment's procedure and the boundary conditions. An out-of-pile test was considered representative for the scope, and the experiment was performed at the Halden Reactor Project hot cell in Kjeller (Norway) with heat provided by an electric oven. Three fuel rod segments were studied: 1) a fuel segment that experienced only ballooning without burst, 2) a fuel segment that experienced ballooning and burst and 3) a fuel segment that experienced neither ballooning nor burst. The neutron radiography and fuel fragment sifting showed that both cladding constraint and internal pressure play a role in the formation of fuel cracks and fragmentation, and the study of the fission gas release during the transient showed that removing the cladding constraint or the internal pressure increased the amount of fission gas release.

  14. Damage of Elastomeric Matrix Composites (EMC-rubbers) Under Static Loading Conditions: Experimental and Numerical Study

    SciTech Connect

    Ayari, F.

    2011-01-17

    Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but also significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.

  15. Experimental determination of the electrical resistivity of iron at Earth’s core conditions

    NASA Astrophysics Data System (ADS)

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo

    2016-06-01

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth’s core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth’s core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch–Grüneisen law, which considers only the electron–phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth’s core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

  16. Experimental determination of the electrical resistivity of iron at Earth's core conditions.

    PubMed

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo

    2016-06-01

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth's core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth's core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth's core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core. PMID:27251282

  17. Experimental and computational results from the NASA Lewis low-speed centrifugal impeller at design and part-flow conditions

    SciTech Connect

    Chriss, R.M.; Wood, J.R.; Hathaway, M.D.

    1996-01-01

    The NASA Lewis Low-Speed Centrifugal Compressor (LSCC) has been investigated with laser anemometry and computational analysis at two flow conditions: the design condition as well as a lower mass flow condition. Previously reported experimental and computational results at the design condition are in the literature (Hathaway et al., 1993). In that paper extensive analysis showed that inducer blade boundary layers are centrifuged outward and entrained into the tip clearance flow and hence contribute significantly to the throughflow wake. In this report results are presented for a lower mass flow condition along with further results from the design case. The data set contained herein consists of three-dimensional laser velocimeter results upstream, inside, and downstream of the impeller. In many locations data have been obtained in the blade and endwall boundary layers. The data are presented in the form of throughflow velocity contours as well as secondary flow vectors. The results reported herein illustrate the effects of flow rate on the development of the throughflow momentum wake as well as on the secondary flow. The computational results presented confirm the ability of modern computational tools to model the complex flow in a subsonic centrifugal compressor accurately. However, the blade tip shape and tip clearance must be known in order to properly simulate the flow physics. In addition, the ability to predict changes in the throughflow wake, which is largely fed by the tip clearance flow, as the impeller is throttled should give designers much better confidence in using computational tools to improve impeller performance.

  18. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  19. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    NASA Astrophysics Data System (ADS)

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-01

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  20. Arsenic-induced phosphate limitation under experimental Early Proterozoic oceanic conditions

    NASA Astrophysics Data System (ADS)

    Chi Fru, Ernest; Hemmingsson, Christoffer; Holm, Mikaela; Chiu, Beverly; Iñiguez, Enrique

    2016-01-01

    Comparison of phosphorus concentrations associated with modern hydrothermal Fe(III)(oxyhydr)oxides and ancient Fe(III) oxide-rich iron formations, is used to estimate bioavailable Precambrian marine phosphorus (P) concentrations. This led to the proposition of a low dissolved P budget of ˜10-25% of present-day levels, before ˜1.9 billion years ago. Estimates incorporating ancient marine Si levels ≥ 0.67 mM instead suggested global dissolved P levels greater than today. Here we unite current experimental models that have considered NaCl solutions containing elevated dissolved Fe(II), Si, Ca2+ and Mg2+ ions in the incorporation of P in Precambrian marine Fe(III)(oxyhydr)oxides, in addition to arsenic as a hydrothermal proxy. We show that the coprecipitation of dissolved P and Fe(III)(oxyhydr)oxides from arsenic-rich marine waters produces an average P distribution coefficient of ˜0.072 (± 0.01) μM-1. This is comparable to the ˜ 0.07 μM-1 predicted for Fe(III)(oxyhydr)oxides in modern arsenic-rich, submarine hydrothermal settings, from which the lower Early Proterozoic dissolved marine P concentrations were predicted. As/P molar ratios below modern seawater ratios removed the negative feedback effect high Si impose on P scavenging by Fe(III)(oxyhydr)oxides. The binding of As(III) to Fe(III)(oxyhydr)oxides exhibits a lower competitive influence on P fixation. As(V) that likely became prominent in the surficially oxidized Early Proterozoic oceans induced dissolved P limitation because of preferential P sequestration at the expense of dissolved As(V) enrichment. The control of As on P scavenging by the precipitating Fe(III)(oxyhydr)oxides is strong regardless of common seawater cations (Mg2+ and Ca2+). The data suggest that the application of Si and Fe(III)(oxyhydr)oxides as an ancient seawater P proxy should consider chemical variability between depositional basins, taking into account the rather strong role hydrothermal arsenic has on the distribution of P in

  1. [Application of operant conditioning techniques to forensic toxicology: experimental studies on alcohol and abusable drugs].

    PubMed

    Hishida, S

    1996-10-01

    This paper describes some experiments that apply the operant conditioning techniques to forensic toxicological research. These techniques may be useful in investigating the mechanisms of action, toxic symptoms, legal competence and drug metabolism associated with substance abuse such as abuse of alcohol, psychotropic drugs, narcotics, stimulants, and organic solvents. 1) Genetic research on alcohol preference in rats. We applied operant conditioning to investigate alcohol preference in rats and constructed an apparatus for the measurement of discriminated operate responses for water or alcohol reinforcement in rat. This apparatus is a modified Skinner box with a one-lever two-liquid system. Fixed ratio-10 (FR-10) schedules of reinforcement are used to increase the work of the rat before it obtains the reinforcement. The voluntary choice of water or 10% ethanol by the rat can be assessed quantitatively by measuring the lever-pushing responses. It is an extremely useful method for measuring the real alcohol preference of rats. A rat was kept in a Skinner box overnight. The numbers of responses and reinforcement for water and ethanol and the volumes of the two liquids consumed were recorded. The ratio of ethanol reinforcement was defined as the number of ethanol reinforcement to the total number of ethanol and water reinforcement. The ratio of ethanol intake was defined as the volume of ethanol consumed to the volume of water and ethanol consumed. Ethanol consumption per g body weight was calculated from the volume of ethanol consumed by the rat. We used this apparatus to investigate alcohol preference of more than 300 Wistar Albino Rats, and divided them into a high alcohol preference (HAP) group and a low alcohol preference (LAP) group. Inbreeding between littermates was conducted in each of the HAP and LAP groups. The liver tissue of each offspring was obtained and the cytosol fraction was collected and subjected to isoelectric focusing using polyacrylamide gel

  2. Experimental investigation and modeling of uranium (VI) transport under variable chemical conditions

    USGS Publications Warehouse

    Kohler, M.; Curtis, G.P.; Kent, D.B.; Davis, J.A.

    1996-01-01

    The transport of adsorbing and complexing metal ions in porous media was investigated with a series of batch and column experiments and with reactive solute transport modeling. Pulses of solutions containing U(VI) were pumped through columns filled with quartz grains, and the breakthrough of U(VI) was studied as a function of variable solution composition (pH, total U(VI) concentration, total fluoride concentration, and pH-buffering capacity). Decreasing p H and the formation of nonadsorbing aqueous complexes with fluoride increased U(VI) mobility. A transport simulation with surface complexation model (SCM) parameters estimated from batch experiments was able to predict U(VI) retardation in the column experiments within 30%. SCM parameters were also estimated directly from transport data, using the results of three column experiments collected at different pH and U(VI) pulse concentrations. SCM formulations of varying complexity (multiple surface types and reaction stoichiometries) were tested to examine the trade-off between model simplicity and goodness of fit to breakthrough. A two-site model (weak- and strong-binding sites) with three surface complexation reactions fit these transport data well. With this reaction set the model was able to predict (1) the effects of fluoride complexation on U(VI) retardation at two different pH values and (2) the effects of temporal variability of pH on U(VI) transport caused by low p H buffering. The results illustrate the utility of the SCM approach in modeling the transport of adsorbing inorganic solutes under variable chemical conditions.

  3. Lithium partitioning between olivine and diopside at upper mantle conditions: An experimental study

    NASA Astrophysics Data System (ADS)

    Yakob, Jessica L.; Feineman, Maureen D.; Deane, James A.; Eggler, David H.; Penniston-Dorland, Sarah C.

    2012-05-01

    Experiments were conducted at 1.5 GPa and temperatures between 700 °C and 1100 °C in order to assess the equilibrium distribution of lithium between olivine and diopside in the upper mantle. Lithium in olivine and diopside from natural mantle xenoliths displays a broad array of apparent partition coefficients ranging from ~ 0.2 to 10. In addition, a strikingly large range of lithium isotope ratios is observed in olivine and diopside from mantle xenoliths, with ∆7Liol-di (= δ7Liol - δ7Lidi) ranging from nearly zero to greater than 20‰. Both of these observations might be explained if the distribution of Li between olivine and diopside is strongly temperature dependent at mantle conditions such that a change in temperature, i.e. cooling upon exhumation, initiates diffusive re-equilibration of Li between phases in the xenolith. Accompanying dynamic fractionation of 6Li from 7Li due to differing diffusion rates of the two isotopes could then be permanently recorded in the xenolith if its temperature drops below the closure temperature before a new equilibrium is reached. The results of this study indicate a partition coefficient for Li between olivine and diopside (DLiol/di) of 2.0 ± 0.2 that is independent of temperature (within the error of our analyses) over the range 700 °C to 1100 °C. This lack of temperature dependence holds true when data from previous experiments at temperatures as high as 1375 °C are considered. Thus it appears that closed-system diffusion of Li between olivine and diopside in response to changing temperature is not an appropriate explanation for the observed range of elemental and isotopic distributions in natural xenoliths. Other possible explanations include Li redistribution in response to changing oxygen fugacity in the system, or diffusive addition or subtraction of Li during open-system interaction with an infiltrating melt or fluid.

  4. The role of carboxylic acids in albite and quartz dissolution: An experimental study under diagenetic conditions

    SciTech Connect

    Franklin, S.P. ); Hajash, A. Jr.; Tieh, T.T. ); Dewers, T.A. )

    1994-10-01

    Simple water soluble organic acids may promote secondary porosity development in sandstones during diagenesis by increasing feldspar solubility and dissolution rate. To test this hypothesis, Amelia albite and Brazilian hydrothermal quartz were reacted with 0.07 m acetate and 0.07 m acetate-0.005 m oxalate solutions at selected pH values, and distilled water. Pore fluid chemistry was monitored through time at various flow rates to obtain both solubility and dissolution rate data. The experiments were conducted in large volume, semi-static, flow-through systems at 100[degrees]C and 347 bars. These systems simulate subsurface flow rates, low mass water/rock, and high surface area/fluid mass. Acetate and acetate + oxalate solutions significantly increase albite solubility at temperatures, pressures, and pH values typical of diagenetic environments. Albite solubilities increased in acetate and acetate + oxalate solutions by factors of 2 and 3.4, respectively, compared to distilled water. In these same solutions, Al concentrations were [approx] 140 and [approx] 480 times higher than that calculated for kaolinite solubility at the same conditions without organic species. These enhanced solubilities occur at pH values (4.6-4.8) that may overlap with formation waters. In contrast to albite, quartz solubility was essentially identical in all solutions investigated. Dissolution rates in the acid region decreased with increasing pH in the acetate and acetate + oxalate solutions. Slopes of log rate vs. pH curves were [approx] 0.6 for acetate and [approx] 0.3 for acetate + oxalate. Although the effects of acetate on the dissolution rate are small, the effects of oxalate are significant. A rate law valid for albite dissolution at 100[degrees]C, oxalate concentrations to 0.01 m, and pH values ranging from 3.4 to 5.5 is given.

  5. Provision of antifungal immunity and concomitant alloantigen tolerization by conditioned dendritic cells in experimental hematopoietic transplantation.

    PubMed

    Montagnoli, Claudia; Perruccio, Katia; Bozza, Silvia; Bonifazi, Pierluigi; Zelante, Teresa; De Luca, Antonella; Moretti, Silvia; D'Angelo, Carmen; Bistoni, Francesco; Martelli, Massimo; Aversa, Franco; Velardi, Andrea; Romani, Luigina

    2008-01-01

    FoxP3(+) regulatory T (Treg) cells are important mediators of peripheral tolerance, and deficiency of this population is associated with autoimmune inflammation and onset of acute lethal graft-vs.-host disease in transplantation. Type I IFN-producing plasmacytoid dendritic cells (pDC) are implicated in the induction and maintenance of tolerance and contribute to engraftment facilitation and prevention of graft-vs.-host disease after allogeneic hematopoietic stem cells transplantation (HSCT). Because host DC function is impaired during the immediate period post-transplant, the administration of donor DC may be useful for the educational program of recovering T cells. Distinct DC subsets could be derived from bone marrow (murine) or peripheral CD14(+) cell (human) cultures in the presence of either GM-CSF/IL-4 (myeloid DC) or FLT3-ligand (mainly pDC). The ability of either DC subset to induce Th1/Treg cell priming against Aspergillus fumigatus as well as the relative contribution of murine DC subsets to antifungal priming upon adoptive transfer in hematopoietic transplanted mice with aspergillosis is not known. We found specialization and complementarity in priming and tolerization by the different DC subsets, with FL-DC fulfilling the requirement for (i) Th1/Treg antifungal priming; ii) tolerization toward alloantigens and (iii) diversion from alloantigen-specific to antigen-specific T cell responses in the presence of donor T lymphocytes. Interestingly, thymosin alpha1 (Talpha1), known to modulate human pDC functions trough TLR9, affects mobilization and tolerization of pDC by activating the indoleamine 2,3-dioxygenase-dependent pathway, and this resulted in Treg development and tolerization. Thus, transplantation tolerance and concomitant pathogen clearance could be achieved through the therapeutic induction of antigen-specific Treg cells via instructive immunotherapy with pathogen- or TLR-conditioned donor DC. PMID:17827038

  6. Molecular interactions of SO2 with carbonate minerals under co-sequestration conditions: a combined experimental and theoretical study

    SciTech Connect

    Glezakou, Vassiliki Alexandra; McGrail, B. Peter; Schaef, Herbert T.

    2012-09-01

    We present a combined experimental and theoretical study investigating the reactivity between selected and morphologically important surfaces of carbonate minerals with supercritical CO2 with co-existing H2O and SO2. Trace amounts of SO2 cause formation of CaSO3 in the form of hannebachite in the initial stages of SO2 adsorption and transformation. Atomistic simulations of these initial steps indicate a somewhat catalytic activity of water, which is enhanced by the presence of Magnesium atoms in the mineral surface. Under co-sequestration conditions, traces of water are not likely to cause carbonate dissolution, however the presence of SO2 greatly stabilizes the sulfite product.

  7. Experimental study of the hydrogeochemical properties of the Hontomin cap rock under CO2 supercritical conditions

    NASA Astrophysics Data System (ADS)

    Cama, Jordi; Soler, Josep M.; Davila, Gabriela; Luquot, Linda

    2013-04-01

    Gabriela Dávila, Linda Luquot, Jordi Cama and Josep M. Soler Departament de Geociències, Institut de Diagnosi Ambiental i Estudis de l'Aigua (IDAEA), CSIC, Barcelona 08034. The main cap rock for CO2 injection at the PDT Hontomin site (Spain) is a marly shale made up of calcite (56 %), quartz (21%), illite (17%) clinochlore (3%) and others (albite, gypsum, anhydrite, pyrite) (~3%). Contact with CO2-rich acid brines may induce the dissolution of these minerals. Since the brine contains sulfate, gypsum (or anhydrite at depth) may precipitate, which may coat the surface of the dissolving calcite grains and cause their passivation. These mineral reactions will also induce changes in porosity and permeability. Percolation laboratory experiments with Hontomin shale rock cores under controlled pCO2 (8 MPa) are being performed to quantify these processes. In mechanically fractured cores (7.5 mm in diameter and 18 mm in length), two synthetic brines (a sulfate-free solution and a version of the Hontomin formation brine (sulfate solution)) were injected into the rock at constant flow rates (0.2, 1 and 60 mL/h) under CO2 supercritical conditions (pCO2 = 8 MPa and T = 60 °C). As the pH of the injecting brines in equilibrium with a pCO2 of 8 MPa is acidic (~3), it was observed that in the case of the sulfate-free brine experiments, the main processes that yield variation in the hydrodynamic behavior of the fractured rock was the dissolution of calcite, Si-bearing minerals, clinochlore and pyrite. In the sulfate-rich brine experiments, the dissolution of calcite and Si-bearing minerals also occurred, together with gypsum precipitation in the experiments run at low flow rates. As a result, initial fracture permeability tends (i) to stabilize or increase when the cap rock interacts with the sulfate-free brine and (ii) to decrease as the rock interacts with the sulfate-rich brine. The interpretation (reactive transport modeling) of the changes in mineralogy and solution

  8. Experimental investigation of a forced response condition in a multistage compressor

    NASA Astrophysics Data System (ADS)

    Murray, William Louis, III

    The objective of this research is twofold. Firstly, the design, development, and construction of a test facility for a Honeywell APU-style centrifugal compressor was implemented, as well as the design and construction of an inlet flow experiment. Secondly, the aeromechanical response of an embedded stage in the Purdue 3-Stage axial research compressor was analyzed through a suite of different measurement techniques in the fulfillment of the end of the GUIde IV Consortium contract. The purpose of the first phase of Honeywell work was to comprehensively measure the flow field of an APU-style centrifugal compressor inlet through the use of Laser Doppler Velocimetry (LDV). A portion of a Honeywell supplied inlet was modified to provide optical access to the elbow, and a gas ejector system was designed and constructed to provide the same suction to the inlet that it would see during operation with the compressor. A performance and health monitoring electronics system was designed and purchased to support the testing of the Honeywell inlet ejector system and eventually it will be used for testing with a centrifugal compressor. Additionally, a secondary air and oil system has been designed and is currently being constructed in the test cell in preparation for the arrival of the Honeywell compressor this summer. An embedded rotor stage in the Purdue 3-stage compressor, with a Campbell diagram crossing of the 1T vibratory mode was analyzed with a suite of measurement systems. In addition to steady state compressor performance measurements, other types of measurements were used to characterize the aerodynamic forcing function for this forced response condition including: NSMS, high-frequency pressure transducers mounted in the casing and in a downstream stator, and cross-film thermal anemometry. Rotor geometry was measured by Aerodyne using an in-situ laser scanning technique. Vibrometry testing was performed at WPAFB to characterize safe operating speeds for stator

  9. Experimental investigation on a decentralized air handling terminal: procedure of aeraulic and thermal performance determination of the entire unit in several operating conditions

    NASA Astrophysics Data System (ADS)

    Gendebien, S.; Prieels, L.; Lemort, V.

    2012-11-01

    A new local ventilation device is actually developed in such a way to procure ventilation "on demand" in each room, with a maximal effectiveness. It consists in a wall or window frame mounted plane-parallel box, containing two (injection and extraction) fans, an electronic control, and a heat recovery exchanger. The present paper describes the experimental investigations carried out on some single components and on the entire unit in order to characterize the aeraulic and thermal performance of the device.

  10. Experimental testing of total knee replacements with UHMW-PE inserts: impact of severe wear test conditions.

    PubMed

    Zietz, Carmen; Reinders, Joern; Schwiesau, Jens; Paulus, Alexander; Kretzer, Jan Philippe; Grupp, Thomas; Utzschneider, Sandra; Bader, Rainer

    2015-03-01

    Aseptic implant loosening due to inflammatory reactions to wear debris is the main reason for the revision of total knee replacements (TKR). Hence, the decrease in polyethylene wear particle generation from the articulating surfaces is aimed at improving implant design and material. For preclinical testing of new TKR systems standardized wear tests are required. However, these wear tests do not reproduce the entire in vivo situation, since the pattern and amount of wear and subsequent implant failure are underestimated. Therefore, daily activity, kinematics, implant aging and position, third-body-wear and surface properties have to be considered to estimate the wear of implant components in vivo. Hence, severe test conditions are in demand for a better reproduction of the in vivo situation of TKR. In the present article an overview of different experimental wear test scenarios considering clinically relevant polyethylene wear situations using severe test conditions is presented. PMID:25716024

  11. The role of carboxylic acids in albite and quartz dissolution: An experimental study under diagenetic conditions

    NASA Astrophysics Data System (ADS)

    Franklin, Stan P.; Hajash, Andrew, Jr.; Dewers, Thomas A.; Tieh, Thomas T.

    1994-10-01

    Simple water soluble organic acids may promote secondary porosity development in sandstones during diagenesis by increasing feldspar solubility and dissolution rate. To test this hypothesis, Amelia albite and Brazilian hydrothermal quartz were reacted with 0.07 m acetate and 0.07 m acetate-0.005 m oxalate solutions at selected pH values, and distilled water. Pore fluid chemistry was monitored through time at various flow rates to obtain both solubility and dissolution rate data. The experiments were conducted in large volume, semi-static, flow-through systems at 100°C and 347 bars. These systems simulate subsurface flow rates, low mass water/rock, and high surface area/fluid mass. Acetate and acetate + oxalate solutions significantly increase albite solubility at temperatures, pressures, and pH values typical of diagenetic environments. Albite solubilities increased in acetate and acetate + oxalate solutions by factors of 2 and 3.4, respectively, compared to distilled water. In these same solutions, Al concentrations were ≈ 140 and ≈480 times higher than that calculated for kaolinite solubility at the same conditions without organic species. These enhanced solubilities occur at pH values (4.6-4.8) that may overlap with formation waters. In contrast to albite, quartz solubility was essentially identical in all solutions investigated. Dissolution rates in the acid region decreased with increasing pH in the acetate and acetate + oxalate solutions. Slopes of log rate vs. pH curves were ≈0.6 for acetate and ≈0.3 for acetate + oxalate. Although the effects of acetate on the dissolution rate are small, the effects of oxalate are significant. A rate law valid for albite dissolution at 100°C, oxalate concentrations to 0.01 m, and pH values ranging from 3.4 to 5.5 is given below (assuming activity coefficients = 1 and acetate rate ≈ the proton-promoted rate): Rtotal = 5.88 × 10 -11+ 5.01 × 10 -8m 0.56H+ + 6.7 ×10 -102.3 × 10 -4m O x/(1.0+2.3 × 10 -4 m O x

  12. SPINE: SParse eIgengene NEtwork linking gene expression clusters in Dehalococcoides mccartyi to perturbations in experimental conditions

    DOE PAGESBeta

    Mansfeldt, Cresten B.; Logsdon, Benjamin A.; Debs, Garrett E.; Richardson, Ruth E.; Mande, Shekhar C.

    2015-02-25

    We present a statistical model designed to identify the effect of experimental perturbations on the aggregate behavior of the transcriptome expressed by the bacterium Dehalococcoides mccartyi strain 195. Strains of Dehalococcoides are used in sub-surface bioremediation applications because they organohalorespire tetrachloroethene and trichloroethene (common chlorinated solvents that contaminate the environment) to non-toxic ethene. However, the biochemical mechanism of this process remains incompletely described. Additionally, the response of Dehalococcoides to stress-inducing conditions that may be encountered at field-sites is not well understood. The constructed statistical model captured the aggregate behavior of gene expression phenotypes by modeling the distinct eigengenes of 100more » transcript clusters, determining stable relationships among these clusters of gene transcripts with a sparse network-inference algorithm, and directly modeling the effect of changes in experimental conditions by constructing networks conditioned on the experimental state. Based on the model predictions, we discovered new response mechanisms for DMC, notably when the bacterium is exposed to solvent toxicity. The network identified a cluster containing thirteen gene transcripts directly connected to the solvent toxicity condition. Transcripts in this cluster include an iron-dependent regulator (DET0096-97) and a methylglyoxal synthase (DET0137). To validate these predictions, additional experiments were performed. Continuously fed cultures were exposed to saturating levels of tetrachloethene, thereby causing solvent toxicity, and transcripts that were predicted to be linked to solvent toxicity were monitored by quantitative reverse-transcription polymerase chain reaction. Twelve hours after being shocked with saturating levels of tetrachloroethene, the control transcripts (encoding for a key hydrogenase and the 16S rRNA) did not significantly change. By contrast, transcripts

  13. SPINE: SParse eIgengene NEtwork linking gene expression clusters in Dehalococcoides mccartyi to perturbations in experimental conditions.

    PubMed

    Mansfeldt, Cresten B; Logsdon, Benjamin A; Debs, Garrett E; Richardson, Ruth E

    2015-01-01

    We present a statistical model designed to identify the effect of experimental perturbations on the aggregate behavior of the transcriptome expressed by the bacterium Dehalococcoides mccartyi strain 195. Strains of Dehalococcoides are used in sub-surface bioremediation applications because they organohalorespire tetrachloroethene and trichloroethene (common chlorinated solvents that contaminate the environment) to non-toxic ethene. However, the biochemical mechanism of this process remains incompletely described. Additionally, the response of Dehalococcoides to stress-inducing conditions that may be encountered at field-sites is not well understood. The constructed statistical model captured the aggregate behavior of gene expression phenotypes by modeling the distinct eigengenes of 100 transcript clusters, determining stable relationships among these clusters of gene transcripts with a sparse network-inference algorithm, and directly modeling the effect of changes in experimental conditions by constructing networks conditioned on the experimental state. Based on the model predictions, we discovered new response mechanisms for DMC, notably when the bacterium is exposed to solvent toxicity. The network identified a cluster containing thirteen gene transcripts directly connected to the solvent toxicity condition. Transcripts in this cluster include an iron-dependent regulator (DET0096-97) and a methylglyoxal synthase (DET0137). To validate these predictions, additional experiments were performed. Continuously fed cultures were exposed to saturating levels of tetrachloethene, thereby causing solvent toxicity, and transcripts that were predicted to be linked to solvent toxicity were monitored by quantitative reverse-transcription polymerase chain reaction. Twelve hours after being shocked with saturating levels of tetrachloroethene, the control transcripts (encoding for a key hydrogenase and the 16S rRNA) did not significantly change. By contrast, transcripts for DET

  14. SPINE: SParse eIgengene NEtwork Linking Gene Expression Clusters in Dehalococcoides mccartyi to Perturbations in Experimental Conditions

    PubMed Central

    Mansfeldt, Cresten B.; Logsdon, Benjamin A.; Debs, Garrett E.; Richardson, Ruth E.

    2015-01-01

    We present a statistical model designed to identify the effect of experimental perturbations on the aggregate behavior of the transcriptome expressed by the bacterium Dehalococcoides mccartyi strain 195. Strains of Dehalococcoides are used in sub-surface bioremediation applications because they organohalorespire tetrachloroethene and trichloroethene (common chlorinated solvents that contaminate the environment) to non-toxic ethene. However, the biochemical mechanism of this process remains incompletely described. Additionally, the response of Dehalococcoides to stress-inducing conditions that may be encountered at field-sites is not well understood. The constructed statistical model captured the aggregate behavior of gene expression phenotypes by modeling the distinct eigengenes of 100 transcript clusters, determining stable relationships among these clusters of gene transcripts with a sparse network-inference algorithm, and directly modeling the effect of changes in experimental conditions by constructing networks conditioned on the experimental state. Based on the model predictions, we discovered new response mechanisms for DMC, notably when the bacterium is exposed to solvent toxicity. The network identified a cluster containing thirteen gene transcripts directly connected to the solvent toxicity condition. Transcripts in this cluster include an iron-dependent regulator (DET0096-97) and a methylglyoxal synthase (DET0137). To validate these predictions, additional experiments were performed. Continuously fed cultures were exposed to saturating levels of tetrachloethene, thereby causing solvent toxicity, and transcripts that were predicted to be linked to solvent toxicity were monitored by quantitative reverse-transcription polymerase chain reaction. Twelve hours after being shocked with saturating levels of tetrachloroethene, the control transcripts (encoding for a key hydrogenase and the 16S rRNA) did not significantly change. By contrast, transcripts for DET

  15. Nondestructive prediction of point source pyroshock response spectra based on experimental conditioning of laser-induced shocks

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Kyeong; Lee, Jung-Ryul

    2014-09-01

    Pyroshock can easily cause failures in electronic and optical components that are sensitive to high-frequency energy. Pyroshock is generated during explosive-based pyrotechnical events, such as the separation of boosters from a space shuttle and the separation of satellites from a space launcher. Therefore, the prediction of high-frequency structural response, particularly the shock response spectrum (SRS), is important for safe operation of pyrotechnical devices. In general, real explosive testing using distributed accelerometers is widely used. This paper proposes a technology to replace the expensive, dangerous, low-repeatability explosive test with a laser-induced shock test based on a laser beam and in-line filter conditioning. This method does not use any special numerical signal processing. Two different experiments based on explosive and laser excitation were performed with a 2-mm thick aluminum plate. The optimum laser-induced shock experimental conditions to predict real pyroshock were investigated while considering the size, energy, and fluence of the laser beam as parameters. The similarity of the SRS of the laser-induced shock to that of the real explosive pyroshock was evaluated based on the mean acceleration difference (MAD, %). The experimentally determined optimal conditions were also applied to four points on the path of a pyroshock propagation. To match the SRS at each point, the laser-induced shock was amplified, for which three different gain concepts are proposed: the initial gain, optimized gain, and constant gain. The proposed technology enables nondestructive pyro SRS prediction by conditioning the laser-induced shock to obtain an SRS with high similarity to the real pyroshock.

  16. Perspectives of experimental and theoretical studies of self-organized dust structures in complex plasmas under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Tsytovich, V. N.

    2015-02-01

    We review research aimed at understanding the phenomena occurring in a complex plasma under microgravity conditions. Some aspects of the work already performed are considered that have not previously been given sufficient attention but which are potentially crucial for future work. These aspects, in particular, include the observation of compact dust structures that are estimated to be capable of confining all components of a dust plasma in a bounded spatial volume; experimental evidence of the nonlinear screening of dust particles; and experimental evidence of the excitation of collective electric fields. In theoretical terms, novel collective attraction processes between likely charged dust particles are discussed and all schemes of the shadowy attraction between dust particles used earlier, including in attempts to interpret observations, are reviewed and evaluated. Dust structures are considered from the standpoint of the current self-organization theory. It is emphasized that phase transitions between states of self-organized systems differ significantly from those in homogeneous states and that the phase diagrams should be constructed in terms of the parameters of a self-organized structure and cannot be constructed in terms of the temperature and density or similar parameters of homogeneous structures. Using the existing theoretical approaches to modeling self-organized structures in dust plasmas, the parameter distribution of a structure is recalculated for a simpler model that includes the quasineutrality condition and neglects diffusion. These calculations indicate that under microgravity conditions, any self-organized structure can contain a limited number of dust particles and is finite in size. The maximum possible number of particles in a structure determines the characteristic inter-grain distance in dust crystals that can be created under microgravity conditions. Crystallization criteria for the structures are examined and the quasispherical

  17. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  18. Virulence Differences among Melissococcus plutonius Strains with Different Genetic Backgrounds in Apis mellifera Larvae under an Improved Experimental Condition.

    PubMed

    Nakamura, Keiko; Yamazaki, Yuko; Shiraishi, Akiyo; Kobayashi, Sota; Harada, Mariko; Yoshiyama, Mikio; Osaki, Makoto; Okura, Masatoshi; Takamatsu, Daisuke

    2016-01-01

    European foulbrood (EFB) caused by Melissococcus plutonius is an important bacterial disease of honeybee larvae. M. plutonius strains can be grouped into three genetically distinct groups (CC3, CC12 and CC13). Because EFB could not be reproduced in artificially reared honeybee larvae by fastidious strains of CC3 and CC13 previously, we investigated a method to improve experimental conditions using a CC3 strain and found that infection with a potassium-rich diet enhanced proliferation of the fastidious strain in larvae at the early stage of infection, leading to the appearance of clear clinical symptoms. Further comparison of M. plutonius virulence under the conditions revealed that the representative strain of CC12 was extremely virulent and killed all tested bees before pupation, whereas the CC3 strain was less virulent than the CC12 strain, and a part of the infected larvae pupated. In contrast, the tested CC13 strain was avirulent, and as with the non-infected control group, most of the infected brood became adult bees, suggesting differences in the insect-level virulence among M. plutonius strains with different genetic backgrounds. These strains and the improved experimental infection method to evaluate their virulence will be useful tools for further elucidation of the pathogenic mechanisms of EFB. PMID:27625313

  19. Radionuclide release from spent fuel under geologic disposal conditions: An overview of experimental and theoretical work through 1985

    SciTech Connect

    Reimus, P.W.; Simonson, S.A.

    1988-04-01

    This report presents an overview of experimental and theoretical work on radionuclide release from spent fuel and uranium dioxide (UO/sub 2/) under geologic disposal conditions. The purpose of the report is to provide a source book of information that can be used to develop models that describe radionuclide release from spent fuel waste packages. Modeling activities of this nature will be conducted within the Waste Package Program (WPP) of the Department of Energy's Salt Repository Project (SRP). The topics discussed include experimental methods for investigating radionuclide release, how results have been reported from radionuclide release experiments, theoretical studies of UO/sub 2/ and actinide solubility, results of experimental studies of radionuclide release from spent fuel and UO/sub 2/ (i.e., the effects of different variables on radionuclide release), characteristics of spent fuel pertinent to radionuclide release, and status of modeling of radionuclide release from spent fuel. Appendix A presents tables of data from spent fuel radionuclide release experiments. These data have been digitized from graphs that appear in the literature. An annotated bibliography of literature on spent fuel characterization is provided in Appendix B.

  20. Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in Drosophila melanogaster.

    PubMed

    Kellermann, Vanessa; Hoffmann, Ary A; Kristensen, Torsten Nygaard; Moghadam, Neda Nasiri; Loeschcke, Volker

    2015-11-01

    Experimental evolution can be a useful tool for testing the impact of environmental factors on adaptive changes in populations, and this approach is being increasingly used to understand the potential for evolutionary responses in populations under changing climates. However, selective factors will often be more complex in natural populations than in laboratory environments and produce different patterns of adaptive differentiation. Here we test the ability of laboratory experimental evolution under different temperature cycles to reproduce well-known patterns of clinal variation in Drosophila melanogaster. Six fluctuating thermal regimes mimicking the natural temperature conditions along the east coast of Australia were initiated. Contrary to expectations, on the basis of field patterns there was no evidence for adaptation to thermal regimes as reflected by changes in cold and heat resistance after 1-3 years of laboratory natural selection. While laboratory evolution led to changes in starvation resistance, development time, and body size, patterns were not consistent with those seen in natural populations. These findings highlight the complexity of factors affecting trait evolution in natural populations and indicate that caution is required when inferring likely evolutionary responses from the outcome of experimental evolution studies. PMID:26655772

  1. The influence of simulator input conditions on the wear of total knee replacements: An experimental and computational study.

    PubMed

    Brockett, Claire L; Abdelgaied, Abdellatif; Haythornthwaite, Tony; Hardaker, Catherine; Fisher, John; Jennings, Louise M

    2016-05-01

    Advancements in knee replacement design, material and sterilisation processes have provided improved clinical results. However, surface wear of the polyethylene leading to osteolysis is still considered the longer-term risk factor. Experimental wear simulation is an established method for evaluating the wear performance of total joint replacements. The aim of this study was to investigate the influence of simulation input conditions, specifically input kinematic magnitudes, waveforms and directions of motion and position of the femoral centre of rotation, on the wear performance of a fixed-bearing total knee replacement through a combined experimental and computational approach. Studies were completed using conventional and moderately cross-linked polyethylene to determine whether the influence of these simulation input conditions varied with material. The position of the femoral centre of rotation and the input kinematics were shown to have a significant influence on the wear rates. Similar trends were shown for both the conventional and moderately cross-linked polyethylene materials, although lower wear rates were found for the moderately cross-linked polyethylene due to the higher level of cross-linking. The most important factor influencing the wear was the position of the relative contact point at the femoral component and tibial insert interface. This was dependent on the combination of input displacement magnitudes, waveforms, direction of motion and femoral centre of rotation. This study provides further evidence that in order to study variables such as design and material in total knee replacement, it is important to carefully control knee simulation conditions. This can be more effectively achieved through the use of displacement control simulation. PMID:27160561

  2. The influence of simulator input conditions on the wear of total knee replacements: An experimental and computational study

    PubMed Central

    Brockett, Claire L; Abdelgaied, Abdellatif; Haythornthwaite, Tony; Hardaker, Catherine; Fisher, John; Jennings, Louise M

    2016-01-01

    Advancements in knee replacement design, material and sterilisation processes have provided improved clinical results. However, surface wear of the polyethylene leading to osteolysis is still considered the longer-term risk factor. Experimental wear simulation is an established method for evaluating the wear performance of total joint replacements. The aim of this study was to investigate the influence of simulation input conditions, specifically input kinematic magnitudes, waveforms and directions of motion and position of the femoral centre of rotation, on the wear performance of a fixed-bearing total knee replacement through a combined experimental and computational approach. Studies were completed using conventional and moderately cross-linked polyethylene to determine whether the influence of these simulation input conditions varied with material. The position of the femoral centre of rotation and the input kinematics were shown to have a significant influence on the wear rates. Similar trends were shown for both the conventional and moderately cross-linked polyethylene materials, although lower wear rates were found for the moderately cross-linked polyethylene due to the higher level of cross-linking. The most important factor influencing the wear was the position of the relative contact point at the femoral component and tibial insert interface. This was dependent on the combination of input displacement magnitudes, waveforms, direction of motion and femoral centre of rotation. This study provides further evidence that in order to study variables such as design and material in total knee replacement, it is important to carefully control knee simulation conditions. This can be more effectively achieved through the use of displacement control simulation. PMID:27160561

  3. Description of the adhesive crystal growth under normal and micro-gravity conditions employing experimental and numerical approaches

    NASA Astrophysics Data System (ADS)

    Maruyama, Shigenao; Ohno, Kentaro; Komiya, Atsuki; Sakai, Seigo

    2002-11-01

    Investigation of the crystal growth in solutions is closely related to effective and high quality production of medicine, food and new materials. In the present study, experiments and numerical simulations were performed to explain the mechanism of crystal growth from an aqueous solution. In the experiment, transient double diffusion fields were observed by using an accurate optical measuring system. In the numerical simulation, transient double diffusion fields were calculated by a numerical simulation code, applying initial and boundary conditions obtained by experiment. The results of numerical simulation show good agreement with experimental results. Taking these two approaches into consideration, it was considered that adhesive crystal growth was dominated by the temperature dependence of the solutal diffusion coefficient. The microscopic mechanism of adhesive crystal growth is almost the same between micro-gravity and normal gravity conditions; nevertheless, the macroscopic growth rate is different in each situation. Simulation of adhesive crystal growth can be performed easily using appropriate boundary conditions obtained by the present experiments.

  4. Development of a versatile experimental setup for the evaluation of the photocatalytic properties of construction materials under realistic outdoor conditions.

    PubMed

    Suárez, S; Portela, R; Hernández-Alonso, M D; Sánchez, B

    2014-10-01

    The interest on outdoor photocatalytic materials is growing in the last years. Nevertheless, most of the experimental devices designed for the assessment of their performance operate at controlled laboratory conditions, i.e., pollutant concentration, temperature, UV irradiation, and water vapor contents, far from those of real outdoor environments. The aim of the present study was the design and development of an experimental device for the continuous test of photocatalytic outdoor materials under sun irradiation using real outdoor air as feed, with the concomitant fluctuation of pollutant concentration, temperature, and water vapor content. A three-port measurement system based on two UV-transparent chambers was designed and built. A test chamber contained the photoactive element and a reference chamber to place the substrate without the photoactive element were employed. The third sampling point, placed outdoors, allowed the characterization of the surrounding air, which feeds the test chambers. Temperature, relative humidity (RH), and UV-A irradiance were monitored at each sampling point with specific sensors. NO x concentration was measured by a chemiluminescence NO x analyzer. Three automatic valves allowed the consecutive analysis of the concentration at the three points at fixed time intervals. The reliability of the analytical system was demonstrated by comparing the NO x concentration data with those obtained at the nearest weather station to the experimental device location. The use of a chamber-based reaction system leads to an attenuation of NO x and atmospheric parameter profiles, but maintaining the general trends. The air characterization results showed the wide operating window under which the photoactive materials should work outdoors, depending on the traffic intensity and the season, which are reproduced inside the test chambers. The designed system allows the measurement of the photoactivity of outdoor materials or the comparison of several

  5. Experimental reduction of winter food decreases body condition and delays migration in a long-distance migratory bird.

    PubMed

    Cooper, Nathan W; Sherry, Thomas W; Marra, Peter P

    2015-07-01

    Many tropical habitats experience pronounced dry seasons, during which arthropod food availability declines, potentially limiting resident and migratory animal populations. In response to declines in food, individuals may attempt to alter their space use to enhance access to food resources, but may be socially constrained from doing so by con- and heterospecifics. If social constraints exist, food declines should result in decreased body condition. In migratory birds, correlational evidence suggests a link between body condition and migration timing. Poor body condition and delayed migration may, in turn, impact fitness in subsequent seasons via carry-over effects. To determine if winter food availability affects space use, inter- and intraspecific competition, body composition (i.e., mass, fat, and pectoral muscle), and migration timing, we experimentally decreased food availability on individual American Redstart (Setophaga ruticilla) territories in high-quality mangrove habitat. Redstarts on control territories experienced -40% loss of food due to the seasonal nature of the environment. Redstarts on experimental territories experienced -80% declines in food, which closely mimicked natural declines in nearby, low-quality, scrub habitat. Individuals on food-reduced territories did not expand their territories locally, but instead either became non-territorial "floaters" or remained on territory. Regardless of territorial status, food-reduced American Redstarts all deposited fat compared to control birds. Fat deposits provide insurance against the risk of starvation, but, for American Redstarts, came at the expense of maintaining pectoral muscle. Subsequently, food-reduced American Redstarts experienced, on average, a one-week delay in departure on spring migration, likely due to the loss of pectoral muscle. Thus, our results demonstrate experimentally, for the first time, that declines in winter food availability can result in a fat-muscle trade-off, which, in

  6. What Galvanic Vestibular Stimulation Actually Activates

    PubMed Central

    Curthoys, Ian S.; MacDougall, Hamish Gavin

    2012-01-01

    In a recent paper in Frontiers Cohen et al. (2012) asked “What does galvanic vestibular stimulation actually activate?” and concluded that galvanic vestibular stimulation (GVS) causes predominantly otolithic behavioral responses. In this Perspective paper we show that such a conclusion does not follow from the evidence. The evidence from neurophysiology is very clear: galvanic stimulation activates primary otolithic neurons as well as primary semicircular canal neurons (Kim and Curthoys, 2004). Irregular neurons are activated at lower currents. The answer to what behavior is activated depends on what is measured and how it is measured, including not just technical details, such as the frame rate of video, but the exact experimental context in which the measurement took place (visual fixation vs total darkness). Both canal and otolith dependent responses are activated by GVS. PMID:22833733

  7. Plutonium chemistry under conditions relevant for WIPP performance assessment. Review of experimental results and recommendations for future work

    SciTech Connect

    Oversby, Virginia M.

    2000-09-30

    The Waste Isolation Pilot Plant (WIPP), located at a depth of 650 m in bedded salt at a site approximately 40 km east of Carlsbad, New Mexico, was constructed by the US Department of Energy for the disposal of transuranic wastes arising from defense-related activities. The disposal site is regulated by the US Environmental Protection Agency (EPA). During the process leading to certification of the site for initial emplacement of waste, EEG and their contractors reviewed the DOE Compliance Certification Application (CCA) and raised a number of issues. This report reviews the issues related to the chemistry of plutonium as it will affect the potential for release of radioactivity under WIPP conditions. Emphasis is placed on conditions appropriate for the Human Intrusion scenario(s), since human intrusion has the largest potential for releasing radioactivity to the environment under WIPP conditions. The most significant issues that need to be addressed in relation to plutonium chemistry under WIPP conditions are (1) the effects of heterogeneity in the repository on Pu concentrations in brines introduced under the human intrusion scenario, (2) the redox state of Pu in solution and potential for plutonium in solid phases to have a different redox state from that in the solution phase, (3) the effect of organic ligands on the solubility of Pu in WIPP-relevant brines, and (4) the effects of TRU waste characteristics in determining the solubility of Pu. These issues are reviewed with respect to the treatment they received in the DOE CCA, DOE’s response to EEG’s comments on the CCA, and EPA’s response to those comments as reflected in the final EPA rule that led to the opening of the WIPP. Experimental results obtained in DOE’s Actinide Source-Term Test Program (STTP) during the last two years are reviewed and interpreted in the light of other developments in the field of Pu solution chemistry. This analysis is used as the basis for a conceptual model for Pu

  8. The performance of charcoal-based radon detection under time-varying radon conditions: Experimental and theoretical results

    SciTech Connect

    Sextro, R.G.; Lee, D.D.

    1988-10-01

    Radon adsorption by charcoal is a widely used technique for measuring indoor radon concentration, particularly when short-term results are desired. There are several different devices available, ranging from permeable envelopes filled with charcoal and open-face charcoal-filled canisters to devices incorporating diffusion limiting features to reduce losses of radon due to desorption. However, the integration characteristics of these samplers are not well understood, particularly under conditions of highly varying radon concentrations. A model for predicting the response of various types of charcoal based detectors to time-variant radon concentrations has been developed; the model predictions compare well with results from chamber experiments. Both the experimental and theoretical results have also been compared with integrated continuous-sampling measurements. The implications of these comparisons for use of charcoal for screening measurements is discussed. 5 refs., 4 figs., 2 tabs.

  9. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach

    NASA Astrophysics Data System (ADS)

    Luan, Feng; Kleandrova, Valeria V.; González-Díaz, Humberto; Ruso, Juan M.; Melo, André; Speck-Planche, Alejandro; Cordeiro, M. Natália D. S.

    2014-08-01

    Nowadays, the interest in the search for new nanomaterials with improved electrical, optical, catalytic and biological properties has increased. Despite the potential benefits that can be gathered from the use of nanoparticles, only little attention has been paid to their possible toxic effects that may affect human health. In this context, several assays have been carried out to evaluate the cytotoxicity of nanoparticles in mammalian cells. Owing to the cost in both resources and time involved in such toxicological assays, there has been a considerable increase in the interest towards alternative computational methods, like the application of quantitative structure-activity/toxicity relationship (QSAR/QSTR) models for risk assessment of nanoparticles. However, most QSAR/QSTR models developed so far have predicted cytotoxicity against only one cell line, and they did not provide information regarding the influence of important factors rather than composition or size. This work reports a QSTR-perturbation model aiming at simultaneously predicting the cytotoxicity of different nanoparticles against several mammalian cell lines, and also considering different times of exposure of the cell lines, as well as the chemical composition of nanoparticles, size, conditions under which the size was measured, and shape. The derived QSTR-perturbation model, using a dataset of 1681 cases (nanoparticle-nanoparticle pairs), exhibited an accuracy higher than 93% for both training and prediction sets. In order to demonstrate the practical applicability of our model, the cytotoxicity of different silica (SiO2), nickel (Ni), and nickel(ii) oxide (NiO) nanoparticles were predicted and found to be in very good agreement with experimental reports. To the best of our knowledge, this is the first attempt to simultaneously predict the cytotoxicity of nanoparticles under multiple experimental conditions by applying a single unique QSTR model.Nowadays, the interest in the search for new

  10. The Vienna comparative cognition technology (VCCT): an innovative operant conditioning system for various species and experimental procedures.

    PubMed

    Steurer, Michael Morten; Aust, Ulrike; Huber, Ludwig

    2012-12-01

    This article describes a laboratory system for running learning experiments in operant chambers with various species. It is based on a modern version of a classical learning chamber for operant conditioning, the so-called "Skinner box". Rather than constituting a stand-alone unit, as is usually the case, it is an integrated part of a comprehensive technical solution, thereby eliminating a number of practical problems that are frequently encountered in research on animal learning and behavior. The Vienna comparative cognition technology combines modern computer, stimulus presentation, and reinforcement technology with flexibility and user-friendliness, which allows for efficient, widely automatized across-species experimentation, and thus makes the system appropriate for use in a broad range of learning tasks. PMID:22437512

  11. Experimental characterization of initial conditions and spatio-temporal evolution of a small Atwood number Rayleigh-Taylor mixing layer

    SciTech Connect

    Mueschke, N J; Andrews, M J; Schilling, O

    2006-03-24

    The initial multi-mode interfacial velocity and density perturbations present at the onset of a small Atwood number, incompressible, miscible, Rayleigh-Taylor instability-driven mixing layer have been quantified using a combination of experimental techniques. The streamwise interfacial and spanwise interfacial perturbations were measured using high-resolution thermocouples and planar laser-induced fluorescence (PLIF), respectively. The initial multi-mode streamwise velocity perturbations at the two-fluid density interface were measured using particle-image velocimetry (PIV). It was found that the measured initial conditions describe an initially anisotropic state, in which the perturbations in the streamwise and spanwise directions are independent of one another. The evolution of various fluctuating velocity and density statistics, together with velocity and density variance spectra, were measured using PIV and high-resolution thermocouple data. The evolution of the velocity and density statistics is used to investigate the early-time evolution and the onset of strongly-nonlinear, transitional dynamics within the mixing layer. The early-time evolution of the density and vertical velocity variance spectra indicate that velocity fluctuations are the dominant mechanism driving the instability development. The implications of the present experimental measurements on the initialization of Reynolds-averaged turbulent transport and mixing models and of direct and large-eddy simulations of Rayleigh-Taylor instability-induced turbulence are discussed.

  12. Experimental characterization of initial conditions and spatio-temporal evolution of a small Atwood number Rayleigh-Taylor mixing layer

    SciTech Connect

    Mueschke, N J; Andrews, M J; Schilling, O

    2005-09-26

    The initial multi-mode interfacial velocity and density perturbations present at the onset of a small Atwood number, incompressible, miscible, Rayleigh-Taylor instability-driven mixing layer have been quantified using a combination of experimental techniques. The streamwise interfacial and spanwise interfacial perturbations were measured using high-resolution thermocouples and planar laser-induced fluorescence (PLIF), respectively. The initial multi-mode streamwise velocity perturbations at the two-fluid density interface were measured using particle-image velocimetry (PIV). It was found that the measured initial conditions describe an initially anisotropic state, in which the perturbations in the streamwise and spanwise directions are independent of one another. The evolution of various fluctuating velocity and density statistics, together with velocity and density variance spectra, were measured using PIV and high-resolution thermocouple data. The evolution of the velocity and density statistics is used to investigate the early-time evolution and the onset of strongly-nonlinear, transitional dynamics within the mixing layer. The early-time evolution of the density and vertical velocity variance spectra indicate that velocity fluctuations are the dominant mechanism driving the instability development. The implications of the present experimental measurements on the initialization of Reynolds-averaged turbulent transport and mixing models and of direct and large-eddy simulations of Rayleigh-Taylor instability-induced turbulence are discussed.

  13. Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop.

    PubMed

    Pickard, Jack M J; Bøtker, Hans Erik; Crimi, Gabriele; Davidson, Brian; Davidson, Sean M; Dutka, David; Ferdinandy, Peter; Ganske, Rocky; Garcia-Dorado, David; Giricz, Zoltan; Gourine, Alexander V; Heusch, Gerd; Kharbanda, Rajesh; Kleinbongard, Petra; MacAllister, Raymond; McIntyre, Christopher; Meybohm, Patrick; Prunier, Fabrice; Redington, Andrew; Robertson, Nicola J; Suleiman, M Saadeh; Vanezis, Andrew; Walsh, Stewart; Yellon, Derek M; Hausenloy, Derek J

    2015-01-01

    In 1993, Przyklenk and colleagues made the intriguing experimental observation that 'brief ischemia in one vascular bed also protects remote, virgin myocardium from subsequent sustained coronary artery occlusion' and that this effect'... may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia/reperfusion'. This seminal study laid the foundation for the discovery of 'remote ischemic conditioning' (RIC), a phenomenon in which the heart is protected from the detrimental effects of acute ischemia/reperfusion injury (IRI), by applying cycles of brief ischemia and reperfusion to an organ or tissue remote from the heart. The concept of RIC quickly evolved to extend beyond the heart, encompassing inter-organ protection against acute IRI. The crucial discovery that the protective RIC stimulus could be applied non-invasively, by simply inflating and deflating a blood pressure cuff placed on the upper arm to induce cycles of brief ischemia and reperfusion, has facilitated the translation of RIC into the clinical setting. Despite intensive investigation over the last 20 years, the underlying mechanisms continue to elude researchers. In the 8th Biennial Hatter Cardiovascular Institute Workshop, recent developments in the field of RIC were discussed with a focus on new insights into the underlying mechanisms, the diversity of non-cardiac protection, new clinical applications, and large outcome studies. The scientific advances made in this field of research highlight the journey that RIC has made from being an intriguing experimental observation to a clinical application with patient benefit. PMID:25449895

  14. Multiplexing of ChIP-Seq Samples in an Optimized Experimental Condition Has Minimal Impact on Peak Detection.

    PubMed

    Kacmarczyk, Thadeous J; Bourque, Caitlin; Zhang, Xihui; Jiang, Yanwen; Houvras, Yariv; Alonso, Alicia; Betel, Doron

    2015-01-01

    Multiplexing samples in sequencing experiments is a common approach to maximize information yield while minimizing cost. In most cases the number of samples that are multiplexed is determined by financial consideration or experimental convenience, with limited understanding on the effects on the experimental results. Here we set to examine the impact of multiplexing ChIP-seq experiments on the ability to identify a specific epigenetic modification. We performed peak detection analyses to determine the effects of multiplexing. These include false discovery rates, size, position and statistical significance of peak detection, and changes in gene annotation. We found that, for histone marker H3K4me3, one can multiplex up to 8 samples (7 IP + 1 input) at ~21 million single-end reads each and still detect over 90% of all peaks found when using a full lane for sample (~181 million reads). Furthermore, there are no variations introduced by indexing or lane batch effects and importantly there is no significant reduction in the number of genes with neighboring H3K4me3 peaks. We conclude that, for a well characterized antibody and, therefore, model IP condition, multiplexing 8 samples per lane is sufficient to capture most of the biological signal. PMID:26066343

  15. Experimental and numerical assessment of normal heat flux first wall qualification mock-ups under ITER relevant conditions

    NASA Astrophysics Data System (ADS)

    Du, J.; Bürger, A.; Pintsuk, G.; Linke, J.; Loewenhoff, Th; Bellin, B.; Zacchia, F.; Eaton, R.; Mitteau, R.; Raffray, R.

    2014-04-01

    The ITER first wall (FW) panel consists of beryllium in the form of tiles covering its surface, high strength copper alloy as the heat sink material and stainless steel as the structural material. Small-scale normal heat flux FW mock-ups, provided by Fusion for Energy, are tested in the electron beam facility JUDITH 2 at Forschungszentrum Jülich to determine the performance of this design under thermal fatigue. The mock-ups are loaded cyclically under a surface heat flux of 2 MW m-2 with ITER relevant water coolant conditions. In this study, three-dimensional finite element method thermo-mechanical analyses are performed with ANSYS to simulate the thermal fatigue behaviour of the mock-ups. The temperature results indicate that the beryllium surface temperature is below the maximum allowed temperature (600 °C) of beryllium to be tested. The thermal mechanical results indicate that copper rupture and debonding between Be and copper are the drivers of the failure of a mock-up. In addition, the experimental data, e.g. the surface temperature measured using an infrared camera and the bulk temperature measured using thermocouples, are reported. A comparative study between experimental and simulation results is performed.

  16. Impact of Experimental Conditions on the Evaluation of Interactions between Multidrug and Toxin Extrusion Proteins and Candidate Drugs.

    PubMed

    Lechner, Christian; Ishiguro, Naoki; Fukuhara, Ayano; Shimizu, Hidetada; Ohtsu, Naoko; Takatani, Masahito; Nishiyama, Kotaro; Washio, Ikumi; Yamamura, Norio; Kusuhara, Hiroyuki

    2016-08-01

    Multidrug and toxin extrusion transporters (MATEs) have a determining influence on the pharmacokinetic profiles of many drugs and are involved in several clinical drug-drug interactions (DDIs). Cellular uptake assays with recombinant cells expressing human MATE1 or MATE2-K are widely used to investigate MATE-mediated transport for DDI assessment; however, the experimental conditions and used test substrates vary among laboratories. We therefore initially examined the impact of three assay conditions that have been applied for MATE substrate and inhibitor profiling in the literature. One of the tested conditions resulted in significantly higher uptake rates of the three test substrates, [(14)C]metformin, [(3)H]thiamine, and [(3)H]1-methyl-4-phenylpyridinium (MPP(+)), but IC50 values of four tested MATE inhibitors varied only slightly among the three conditions (<2.5-fold difference). Subsequently, we investigated the uptake characteristics of the five MATE substrates: [(14)C]metformin, [(3)H]thiamine, [(3)H]MPP(+), [(3)H]estrone-3-sulfate (E3S), and rhodamine 123, as well as the impact of the used test substrate on the inhibition profiles of 10 MATE inhibitors at one selected assay condition. [(3)H]E3S showed atypical uptake characteristics compared with those observed with the other four substrates. IC50 values of the tested inhibitors were in a similar range (<4-fold difference) when [(14)C]metformin, [(3)H]thiamine, [(3)H]MPP(+), or [(3)H]E3S were used as substrates but were considerably higher with rhodamine 123 (9.8-fold and 4.1-fold differences compared with [(14)C]metformin with MATE1 and MATE2-K, respectively). This study demonstrated for the first time that the impact of assay conditions on IC50 determination is negligible, that kinetic characteristics differ among used test substrates, and that substrate-dependent inhibition exists for MATE1 and MATE2-K, giving valuable insight into the assessment of clinically relevant MATE-mediated DDIs in vitro. PMID

  17. Experimental evidence of bulk chemistry constraint on SiO2 solubility in clinopyroxene at high-pressure conditions

    NASA Astrophysics Data System (ADS)

    Kawasaki, Toshisuke; Osanai, Yasuhito

    2015-06-01

    We have experimentally confirmed that the solubility of SiO2 in clinopyroxene at ultrahigh-pressure metamorphic conditions is buffered by coesite and kyanite. The present findings were derived from high-pressure experiments on metapelite glass, powdered andesite and eclogite glass under anhydrous conditions. The metapelite glass and powdered andesite were recrystallised in boron nitride capsules at 8 GPa and 1100-1500 °C. The eclogite glass was heated in an AuPd capsule, both ends of which were welded, at 3 GPa and 1000 °C. Clinopyroxene nucleated from metapelite glass, the bulk composition of which is saturated in both SiO2 and Al2SiO5 components plotting within the Jd (Na,K)(Al,Cr)(Si,Ti)2O6-Qtz (Si,Ti)O2-Grt M3(Al,Cr)2(Si,Ti)3O12-Als (Al,Cr)2(Si,Ti)O5 tetrahedron (M = Fe, Mn, Mg, Ni, Zn, Ca), coexists with garnet, coesite and kyanite. The average excess silica content of the clinopyroxene ranges from 23.4 to 35.4 mol%. In contrast, an andesite experiment saturated in SiO2 but undersaturated in Al2SiO5 within the Jd-Qtz-Aug M(Si,Ti)O3-Grt tetrahedron produced clinopyroxene, garnet and coesite but no kyanite. The average excess silica in the clinopyroxene was 9.7-15.5 mol%, which is comparable to previous experimental data. Experiment on the eclogite glass with similar composition to andesite yielded clinopyroxene, garnet and coesite. An average excess silica content in clinopyroxene counts 6.4 mol%, which is much lower than that obtained from the andesite. The SiO2 content of clinopyroxene coexisting with garnet, coesite and kyanite is much higher than that of clinopyroxene coexisting with garnet and coesite without kyanite. Although the temperature dependence is unclear, the SiO2 solubility increases with pressure and Fe/(Fe+Mg). Clinopyroxene forms the solid solution series Jd-Es □0.5M0.5Al(Si,Ti)2O6 and Aug-Es, rather than Jd-Ts MAl2(Si,Ti)O6 and Es-Ts joins. Our experimental data suggest the probable existence of octahedral Si which may accompany the M2

  18. In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis.

    PubMed

    Yousefi, Forouzan; Ebtekar, Massoumeh; Soudi, Sara; Soleimani, Masoud; Hashemi, Seyed Mahmoud

    2016-04-01

    Mesenchymal stem cells (MSCs) are well known to possess neuroprotective and immunomodulatory effects, due to cell-to-cell interaction and their soluble factors. We conducted a comparative analysis of the immunomodulatory properties of adipose tissue mesenchymal stem cells (AT-MSCs) and their conditioned media (CM), derived from C57/BL6 mice, for mitigating the adverse clinical course of experimental autoimmune encephalomyelitis (EAE). We measure IL4, IL17 and IFNɣ production of supernatant from spleen cells. We analyzed brain cell infiltration, splenocyte proliferation and evaluated the percentage of CD4+CD25+FOXP3+splenic cell population in all EAE C57/BL6 mice. AT-MSCs and its conditioned medium induced CD4+CD25+FOXP3+regulatory T cells after in vitro co-culture with naïve T cells. There is no significant difference in the clinical scores and body weight of EAE mice treated with AT-MSCs and CM. The reduction in proliferative responses and brain cell infiltration was more pronounced in mice injected with CM than other groups. It is found that the percentage of splenic CD4+CD25+FOXP3+ population as well as the level of IL4 production in mice administrated with AT-MSCs is increased compared to other animals. Our results suggest that AT-MSCs-derived CM is promising in stem cell therapy, due to their neuroprotective and immunomudulatory properties. PMID:26930038

  19. Frost characteristics and heat transfer on a flat plate under freezer operating conditions: Part 1, Experimentation and correlations

    SciTech Connect

    Mao, Y.; Besant, R.W.; Chen, H.

    1999-07-01

    An experimental investigation of frost growth on a flat, cold surface supplied by subfreezing, turbulent, humid, parallel flow of air is presented. The operating conditions are typical of many commercial freezers. A test loop was constructed to perform the tests, and the frost height, frost mass concentration, and cold surface heat flux were measured using specially designed and calibrated instrumentation. Twenty tests were done for steady operating conditions, each starting with no initial frost accumulation, and were run for two to six hours giving 480 data samples. Measured results show that the frost characteristics differ significantly with frost growth data taken previously for room temperature airflow. Depending on the temperature of the cold plate and the relative humidity of the subfreezing supply air, the frost could appear to be either smooth or rough. Smooth frost, which occurred at warmer plate temperatures and lower supply air relative humidities, gave rise to frost growth that was much thinner and denser than that for the rough, thick, low-density frost. Frost growth characteristics are correlated as a function of five independent variables (time, distance from the leading edge, cold plate temperature ratio, humidity ratio, and Reynolds number). These correlations are presented separately for the full data set, the rough frost data, and the smooth frost data.

  20. Optimization of the marinating conditions of cassava fish (Pseudotolithus sp.) fillet for Lanhouin production through application of Doehlert experimental design.

    PubMed

    Kindossi, Janvier Mêlégnonfan; Anihouvi, Victor Bienvenu; Vieira-Dalodé, Générose; Akissoé, Noël Houédougbé; Hounhouigan, Djidjoho Joseph

    2016-03-01

    Lanhouin is a traditional fermented salted fish made from the spontaneous and uncontrolled fermentation of whole salted cassava fish (Pseudotolithus senegalensis) mainly produced in the coastal regions of West Africa. The combined effects of NaCl, citric acid concentration, and marination time on the physicochemical and microbiological characteristics of the fish fillet used for Lanhouin production were studied using a Doehlert experimental design with the objective of preserving its quality and safety. The marination time has significant effects on total viable and lactic acid bacteria counts, and NaCl content of the marinated fish fillet while the pH was significantly affected by citric acid concentration and marination duration with high regression coefficient R (2) of 0.83. The experiment showed that the best conditions for marination process of fish fillet were salt ratio 10 g/100 g, acid citric concentration 2.5 g/100 g, and marination time 6 h. These optimum marinating conditions obtained present the best quality of marinated flesh fish leading to the safety of the final fermented product. This pretreatment is necessary in Lanhouin production processes to ensure its safety quality. PMID:27004115

  1. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  2. Numerical and experimental investigation of noise from small scale axial fans focusing on inflow condition and acoustic source type

    NASA Astrophysics Data System (ADS)

    Shin, Yoon Shik

    The objective of this work was to conduct an experimental and numerical investigation of the noise radiated by a small-scale axial fan from two different points-of-view: the development of an inflow treatment to compensate for unfavorable inflow conditions that result in excessive noise, and a consideration of installation effects for the acoustic source type of small axial fans. The effect of disturbed inflow on axial fans was experimentally investigated by intentionally placing a blockage plate at four different locations upstream of a fan. The blocked inflow made the axial fan perform very poorly; the severely decreased pressure performance introduced an overly strong dependence of flow performance on pressure load condition. An inflow diffuser made from aluminum foam was suggested to improve the aerodynamic and acoustic performance of the axial fan under such unfavorable inflow conditions. The inflow diffuser improved the stability of flow performance and reduced the blade passing tone by a small amount, but the levels of the high frequency harmonics of the blade passing tone were increased. A corresponding numerical model was built to model the flow change due to the inflow foam treatment. The inflow foam diffuser was approximated as a homogeneous porous zone to make the computational cost affordable, and it was shown that the model can predict the foam's influence on the pressure and flow performance of the fan. The aeroacoustic analogy model was applied to the solid surfaces of the fan and its housing to simulate the tonal noise at the blade passing frequency. The validity of the homogeneous foam model in terms of aeroacoustic predictions was also confirmed. As for the second aspect of the axial fan noise source, the dipole-like source behavior of an axial fan at the blade passing frequency was verified by directivity measurements. Thus, dipole modeling of an axial fan was justified. This result is associated with the problem of overestimated fan source

  3. Doppler-broadened NICE-OHMS beyond the cavity-limited weak absorption condition - II: Experimental verification

    NASA Astrophysics Data System (ADS)

    Hausmaninger, Thomas; Silander, Isak; Ma, Weiguang; Axner, Ove

    2016-01-01

    Doppler-broadened (Db) noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) is normally described by an expression, here termed the conventional (CONV) description, that is restricted to the conventional cavity-limited weak absorption condition (CCLWA), i.e. when the single pass absorbance is significantly smaller than the empty cavity losses, i.e. when α0 L < < π / F. To describe NICE-OHMS signals beyond this limit two simplified extended descriptions (termed the extended locking and extended transmission description, ELET, and the extended locking and full transmission description, ELFT), which are assumed to be valid under the relaxed cavity-limited weak absorption condition (RCLWA), i.e. when α0 L < π / F, and a full description (denoted FULL), presumed to be valid also when the α0 L < π / F condition does not hold, have recently been derived in an accompanying work (Ma W, et al. Doppler-broadened NICE-OHMS beyond the cavity-limited weak absorption condition - I. Theoretical Description. J Quant Spectrosc Radiat Transfer, 2015, http://dx.doi.org/10.1016/j.jqsrt.2015.09.007). The present work constitutes an experimental verification and assessment of the validity of these, performed in the Doppler limit for a set of Fα0 L / π values (up to 3.5); it is shown under which conditions the various descriptions are valid. It is concluded that for samples with Fα0 L / π up to 0.01, all descriptions replicate the data well. It is shown that the CONV description is adequate and provides accurate assessments of the signal strength (and thereby the analyte concentration) up to Fα0 L / π of around 0.1, while the ELET is accurate for Fα0 L / π up to around 0.3. The ELFT description mimics the Db NICE-OHMS signal well for Fα0 L / π up to around unity, while the FULL description is adequate for all Fα0 L / π values investigated. Access to these descriptions both increases considerably the dynamic range of the technique and

  4. Experimental investigation of top lighting and side lighting solar light pipes under sunny conditions in winter in Beijing

    NASA Astrophysics Data System (ADS)

    Wu, Yanpeng; Jin, Rendong; Li, Deying; Zhang, Wenming; Ma, Chongfang

    2008-12-01

    Natural light is very important element in the quality of vision. Solar light pipes are effective method to induce sunlight into the room need to be illuminated especially for corridor, some places natural sunlight cannot arrive. Solar light pipes are also effective ways to reduce electricity consumption for lighting; it can transmit sunlight from outdoor to the room without generating excessive heat. The performance of two top lighting solar light pipes and one side lighting solar light pipe were investigated at the same time under sunny conditions in winter in Beijing. The results showed that side lighting solar light pipes have better performance than that of top lighting one. Side lighting light pipe has better performance than top lighting light pipe if there are no shelters around the top dome under sunny conditions in winter in Beijing. Solar altitude is the main reason to give an effect on the performance of light pipes. The experimental results also showed that top lighting solar light pipes with "snow type" diffuser has better performance compare with the "diamond type" one. Solar azimuth can also affect the illuminance for whole day to all solar light pipes. So if the sunlight collector can following with the sun, this problem can be resolved, that is, automatic sun trackers are needed, but the cost will become too much at the same time. Different regions and different seasons had to select different types of solar light pipes to achieve maximum output of illuminance in the room. Design of the solar light pipes must adjust measures to local conditions. Solar light pipes will be popularized in the near future in China because have many advantages to improve energy efficiency in buildings.

  5. Development of an Experimental Data Base to Validate Compressor-Face Boundary Conditions Used in Unsteady Inlet Flow Computations

    NASA Technical Reports Server (NTRS)

    Sajben, Miklos; Freund, Donald D.

    1998-01-01

    The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study

  6. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions.

    PubMed

    Dechesne, Arnaud; Or, Dani; Gülez, Gamze; Smets, Barth F

    2008-08-01

    Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations of bacterial growth and activity under controlled unsaturated conditions. Bacteria are inoculated on a porous ceramic plate, wetted by a liquid medium. The thickness of the liquid film at the surface of the plate is set by imposing suction, corresponding to soil matric potential, to the liquid medium. The utility of the PSM was demonstrated using Pseudomonas putida KT2440 tagged with gfp as a model bacterium. Single cells were inoculated at the surface of the PSM, and the rate at which colonies expanded laterally was measured for three matric potentials (-0.5, -1.2, and -3.6 kPa). The matric potential exerted significant influence on colony expansion rates, with a faster rate of spreading at -0.5 than at -1.2 or -3.6 kPa (diameter increase rate, ca. 1,000, 200, and 17 microm h(-1), respectively). These differences can be attributed to cell motility, strongly limited under the most negative matric potential. The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments. PMID:18586968

  7. The Porous Surface Model, a Novel Experimental System for Online Quantitative Observation of Microbial Processes under Unsaturated Conditions ▿ †

    PubMed Central

    Dechesne, Arnaud; Or, Dani; Gülez, Gamze; Smets, Barth F.

    2008-01-01

    Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations of bacterial growth and activity under controlled unsaturated conditions. Bacteria are inoculated on a porous ceramic plate, wetted by a liquid medium. The thickness of the liquid film at the surface of the plate is set by imposing suction, corresponding to soil matric potential, to the liquid medium. The utility of the PSM was demonstrated using Pseudomonas putida KT2440 tagged with gfp as a model bacterium. Single cells were inoculated at the surface of the PSM, and the rate at which colonies expanded laterally was measured for three matric potentials (−0.5, −1.2, and −3.6 kPa). The matric potential exerted significant influence on colony expansion rates, with a faster rate of spreading at −0.5 than at −1.2 or −3.6 kPa (diameter increase rate, ca. 1,000, 200, and 17 μm h−1, respectively). These differences can be attributed to cell motility, strongly limited under the most negative matric potential. The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments. PMID:18586968

  8. Reference point indentation is insufficient for detecting alterations in traditional mechanical properties of bone under common experimental conditions.

    PubMed

    Krege, John B; Aref, Mohammad W; McNerny, Erin; Wallace, Joseph M; Organ, Jason M; Allen, Matthew R

    2016-06-01

    Reference point indentation (RPI) was developed as a novel method to assess mechanical properties of bone in vivo, yet it remains unclear what aspects of bone dictate changes/differences in RPI-based parameters. The main RPI parameter, indentation distance increase (IDI), has been proposed to be inversely related to the ability of bone to form/tolerate damage. The goal of this work was to explore the relationshipre-intervention RPI measurebetween RPI parameters and traditional mechanical properties under varying experimental conditions (drying and ashing bones to increase brittleness, demineralizing bones and soaking in raloxifene to decrease brittleness). Beams were machined from cadaveric bone, pre-tested with RPI, subjected to experimental manipulation, post-tested with RPI, and then subjected to four-point bending to failure. Drying and ashing significantly reduced RPI's IDI, as well as ultimate load (UL), and energy absorption measured from bending tests. Demineralization increased IDI with minimal change to bending properties. Ex vivo soaking in raloxifene had no effect on IDI but tended to enhance post-yield behavior at the structural level. These data challenge the paradigm of an inverse relationship between IDI and bone toughness, both through correlation analyses and in the individual experiments where divergent patterns of altered IDI and mechanical properties were noted. Based on these results, we conclude that RPI measurements alone, as compared to bending tests, are insufficient to reach conclusions regarding mechanical properties of bone. This proves problematic for the potential clinical use of RPI measurements in determining fracture risk for a single patient, as it is not currently clear that there is an IDI, or even a trend of IDI, that can determine clinically relevant changes in tissue properties that may contribute to whole bone fracture resistance. PMID:27072518

  9. Molecular interactions of SO2 with carbonate minerals under co-sequestration conditions: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Glezakou, Vassiliki-Alexandra; Peter McGrail, B.; Todd Schaef, H.

    2012-09-01

    We present a combined experimental and theoretical study investigating the reactivity between select and morphologically important surfaces of carbonate minerals with supercritical CO2 and co-existing H2O and SO2. Trace amounts of SO2 cause formation of CaSO3 in the form of hannebachite in the initial stages of SO2 adsorption and transformation. Atomistic simulations based on density functional theory of these initial steps indicate accumulation of water over the magnesium sites, and suggest depletion of Mg over the Ca from the mineral surface. Under co-sequestration conditions with wet scCO2, water is not likely to cause carbonate dissolution of a perfect surface, however, it stabilizes pre-existing low coordination oxygen atoms by creating surface hydroxyl groups on the CO2-defect sites. Formation of bisulfites (surface-SO2OH) occurs with a low barrier of ca 0.5 eV, estimated by the climbing image nudged elastic band method (CI-NEB). Estimates of the effective transformation rates are in the range of 4.0 × 101 to 4.0 × 104 s-1. The sulfur-containing species bind preferentially on surface calcium atoms creating the first nucleation sites. Molecular dynamics simulations also show dynamic tautomerization of the adsorbed bifulfites (s-SO2OH ⇌ s-S(H)O3), which is likely to slow down further oxidation to sulfates in less oxidative environments. From the same simulations, we extract local geometries of the resulting CaSO3H···OH species, similar to the crystallographic structure of hannebachite. Collectively, the experimental results and ab initio molecular dynamics simulations suggest potential of carbonate reservoirs for in situ chemical scrubbing of CO2 captured from fossil fuel sources, which could be stored permanently for sequestration purposes or extracted and utilized for enhanced oil recovery (EOR).

  10. Experimental Study of Calculated t1 Images Under Flow Conditions Using Protons and FLUORINE-19 in Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Jie

    A gradient refocused echo (GRE) pulse protocol has been developed and implemented to obtain calculated T1 images under flow conditions. This sequence acquires multiple images with different flip angles and uses a least -square fit to obtain calculated T1 images. A theoretical analysis of imprecision in the calculated T1 images is discussed. In accordance with Wang (49), the optimal parameters as determined by computer simulation were found to be 20 ^circ and 100^ circ for the flip angles in a two point fit for TR falling in the range 0.3 to 1.0 T1. Flow compensation was added to the pulse sequence for imaging flow phantoms containing GD-DTPA doped water and perfluorocarbon (PFC) compounds for a range of flow rates (0-55 cm/s). Flow compensation was found to effectively recover signal loss due to flow related dephasing. Experimental testing of this protocol has been performed on stationary proton and PFC compound phantoms utilizing ^1H and ^{19}F magnetic resonance imaging respectively. There is good agreement between the experimental results and the theoretical predictions about imprecision in the calculated T1 images. Analysis of variance of the mean T1 values of the calculated T1 images of the proton and PFC flow phantoms indicated that for the flow phantom geometry used in this study, there was no statistical difference among these mean T1 values from flow phantoms with different flow rates (including stationary status). It is believed that this protocol may provide an imaging method for mapping the pO _2 distribution in the vascular space in vivo utilizing perfluorocarbon compounds and ^ {19}F magnetic resonance imaging.

  11. Speciation of High-Pressure Carbon-Saturated COH Fluids at Buffered fO2 Conditions: An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Tumiati, S.; Tiraboschi, C.; Recchia, S.; Poli, S.

    2014-12-01

    The quantitative assessment of species in COH fluids is crucial in modelling mantle processes. For instance, H2O/CO2 ratio in the fluid phase influences the location of the solidus and of carbonation/decarbonation reactions in peridotitic systems . In the scientific literature, the speciation of COH fluids has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O-non-polar gas systems (e.g., H2O-CO2-CH4). Only few authors dealt with the experimental determination of high-pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder+capsule-piercing+gas-chromatography/mass-spectrometry; cold-seal+silica glass capsules+Raman). We performed experiments on COH fluids using a capsule-piercing device coupled with a quadrupole mass spectrometry. This type of analyzer ensures superior performances in terms of selectivity of molecules to be detected, high acquisition rates and extended linear response range. Experiments were carried out in a rocking piston cylinder apparatus at pressure of 1 GPa and temperatures from 800 to 900°C. Carbon-saturated fluids were generated through the addition of oxalic acid dihydrate and graphite. Single/double capsules and different packing materials (BN and MgO) were used to evaluate the divergence from the thermodynamic speciation model. Moreover, to assess the effect of solutes on COH fluid speciation we also performed a set of experiments adding synthetic forsterite to the charge. To determine the speciation we assembled a capsule-piercing device that allows to puncture the capsule in a gas-tight vessel at 80°C. The extraction Teflon vessel is composed of a base part, where the capsule is allocated on a steel support, and a top part where a steel drill is mounted. To release the quenched fluids from the capsule, the base part of vessel is hand-tighten to the top part, allowing the steel pointer to pierce the capsule. The

  12. Experimental analysis of the vorticity and turbulent flow dynamics of a pitching airfoil at realistic flight (helicopter) conditions

    NASA Astrophysics Data System (ADS)

    Sahoo, Dipankar

    Improved basic understanding, predictability, and controllability of vortex-dominated and unsteady aerodynamic flows are important in enhancement of the performance of next generation helicopters. The primary objective of this research project was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions. An experimental program was performed on a large-scale (C = 0.45 m) dynamically pitching NACA 0012 wing operating in the Texas A&M University large-scale wind tunnel. High-resolution particle image velocimetry data were acquired on the first 10-15% of the wing. Six test cases were examined including the unsteady (k>0) and steady (k=0) conditions. The relevant mechanical, shear and turbulent time-scales were all of comparable magnitude, which indicated that the flow was in a state of mechanical non-equilibrium, and the expected flow separation and reattachment hystersis was observed. Analyses of the databases provided new insights into the leading-edge Reynolds stress structure and the turbulent transport processes. Both of which were previously uncharacterized. During the upstroke motion of the wing, a bubble structure formed in the leading-edge Reynolds shear stress. The size of the bubble increased with increasing angle-of-attack before being diffused into a shear layer at full separation. The turbulent transport analyses indicated that the axial stress production was positive, where the transverse production was negative. This implied that axial turbulent stresses were being produced from the axial component of the mean flow. A significant portion of the energy was transferred to the transverse stress through the pressure-strain redistribution, and then back to the transverse mean flow through the negative transverse production. An opposite trend was observed further downstream of this region.

  13. A commercial PCV2a-based vaccine significantly reduces PCV2b transmission in experimental conditions.

    PubMed

    Rose, N; Andraud, M; Bigault, L; Jestin, A; Grasland, B

    2016-07-19

    Transmission characteristics of PCV2 have been compared between vaccinated and non-vaccinated pigs in experimental conditions. Twenty-four Specific Pathogen Free (SPF) piglets, vaccinated against PCV2 at 3weeks of age (PCV2a recombinant CAP protein-based vaccine), were inoculated at 15days post-vaccination with a PCV2b inoculum (6⋅10(5) TCID50), and put in contact with 24 vaccinated SPF piglets during 42days post-inoculation. Those piglets were shared in six replicates of a contact trial involving 4 inoculated piglets mingled with 4 susceptible SPF piglets. Two replicates of a similar contact trial were made with non-vaccinated pigs. Non vaccinated animals received a placebo at vaccination time and were inoculated the same way and at the same time as the vaccinated group. All the animals were monitored twice weekly using quantitative real-time PCR and ELISA for serology until 42days post-inoculation. The frequency of infection and the PCV2 genome load in sera of the vaccinated pigs were significantly reduced compared to the non-vaccinated animals. The duration of infectiousness was significantly different between vaccinated and non-vaccinated groups (16.6days [14.7;18.4] and 26.6days [22.9;30.4] respectively). The transmission rate was also considerably decreased in vaccinated pigs (β=0.09 [0.05-0.14] compared to β=0.19 [0.11-0.32] in non-vaccinated pigs). This led to an estimated reproduction ratio of 1.5 [95% CI 0.8 - 2.2] in vaccinated animals versus 5.1 [95% CI 2.5 - 8.2] in non-vaccinated pigs when merging data of this experiment with previous trials carried out in same conditions. PMID:27318416

  14. Optimization of experimental conditions for composite biodiesel production from transesterification of mixed oils of Jatropha and Pongamia

    NASA Astrophysics Data System (ADS)

    Yogish, H.; Chandrashekara, K.; Pramod Kumar, M. R.

    2012-11-01

    India is looking at the renewable alternative sources of energy to reduce its dependence on import of crude oil. As India imports 70 % of the crude oil, the country has been greatly affected by increasing cost and uncertainty. Biodiesel fuel derived by the two step acid transesterification of mixed non-edible oils from Jatropha curcas and Pongamia (karanja) can meet the requirements of diesel fuel in the coming years. In the present study, different proportions of Methanol, Sodium hydroxide, variation of Reaction time, Sulfuric acid and Reaction Temperature were adopted in order to optimize the experimental conditions for maximum biodiesel yield. The preliminary studies revealed that biodiesel yield varied widely in the range of 75-95 % using the laboratory scale reactor. The average yield of 95 % was obtained. The fuel and chemical properties of biodiesel, namely kinematic viscosity, specific gravity, density, flash point, fire point, calorific value, pH, acid value, iodine value, sulfur content, water content, glycerin content and sulfated ash values were found to be within the limits suggested by Bureau of Indian Standards (BIS 15607: 2005). The optimum combination of Methanol, Sodium hydroxide, Sulfuric acid, Reaction Time and Reaction Temperature are established.

  15. Efficacy of a new bivalent vaccine of porcine circovirus type 2 and Mycoplasma hyopneumoniae (Fostera™ PCV MH) under experimental conditions.

    PubMed

    Park, Changhoon; Jeong, Jiwoon; Choi, Kyuhyung; Chae, Chanhee

    2016-01-01

    The objective of this study was to evaluate the efficacy of a new bivalent vaccine (Fostera™ PCV MH, Zoetis) of porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae in growing pigs under experimental conditions. A total of 80 pigs were randomly divided into 8 groups (10 pigs per group). The pigs were administered the bivalent vaccine intramuscularly as a 2.0 mL dose at 21 days of age based on the manufacturer's instructions. Three weeks after vaccination, the pigs were inoculated with either PCV2 (intranasal route) or M. hyopneumoniae (intratracheal route) or both. Regardless of the type of inoculation, vaccinated pigs after challenge exhibited effective reduction of clinical signs, PCV2 viremia levels and mycoplasma nasal shedding, and lung and lymphoid lesion when compared to unvaccinated challenged pigs. Vaccinated challenged pigs had significantly higher (P<0.05) levels of PCV2-specific neutralizing antibodies, and numbers of PCV2-and M. hyopneumoniae-specific interferon-γ secreting cells compared to unvaccinated challenged pigs. This study demonstrates that the bivalent vaccine is able to protect pigs against either PCV2 or M. hyopneumoniae infection or both based on clinical, microbiological, immunological, and pathological evaluation. PMID:26626212

  16. Acute respiratory distress induced by repeated saline lavage provides stable experimental conditions for 24 hours in pigs.

    PubMed

    Muellenbach, Ralf M; Kredel, Markus; Zollhoefer, Bernd; Bernd, Zollhoefer; Johannes, Amelie; Kuestermann, Julian; Schuster, Frank; Schwemmer, Ulrich; Wurmb, Thomas; Wunder, Christian; Roewer, Norbert; Brederlau, Jörg

    2009-04-01

    Surfactant depletion is most often used to study acute respiratory failure in animal models. Because model stability is often criticized, the authors tested the following hypotheses: Repeated pulmonary lavage with normal saline provides stable experimental conditions for 24 hours with a PaO2/FiO2 ratio < 300 mm Hg. Lung injury was induced by bilateral pulmonary lavages in 8 female pigs (51.5 +/- 4.8 kg). The animals were ventilated for 24 hours (PEEP: 5 cm H2O; tidal volume: 6 mL/kg; respiratory rate: 30/min). After 24 hours the animals were euthanized. For histopathology slides from all pulmonary lobes were obtained. Supernatant of the bronchoalveolar fluid collected before induction of acute respiratory distress syndrome (ARDS) and after 24 hours was analyzed. A total of 19 +/- 6 lavages were needed to induce ARDS. PaO2/FiO2 ratio and pulmonary shunt fraction remained significantly deteriorated compared to baseline values after 24 hours (P < .01). Slight to moderate histopathologic changes were detected. Significant increases of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were observed after 24 hours (P < .01). The presented surfactant depletion-based lung injury model was associated with increased pulmonary inflammation and fulfilled the criteria of acute ling injury (ALI) for 24 hours. PMID:19337905

  17. Estimation of the neuromotor system functional state after sciatic nerve neurorrhaphy in experimental conditions of intravenous laser irradiation of blood

    NASA Astrophysics Data System (ADS)

    Nechipurenko, N. I.; Tanin, Leonid V.; Antonov, Ignatii P.; Vasilevskaya, Lyudmila A.; Vlasyuk, P. A.

    1996-12-01

    The speckle-optical methods and the methods of electroneuromyography were used to study the myotonus, the contractional activity of leg muscles and the neuromotor system functional state in intact rabbits and 3 months after the sciatic nerve (SN) neurorrhaphy in conditions of intravenous laser irradiation of blood (ILIB). The blood of animals was exposed to laser radiation with the help of a quartz-polymeric light guide, which has been inserted into the earvein the next day after SN stitching. The radiation power at the light guide output was 2-2.5 mW. Two courses of treatment with a two-week interval have been conducted. It has been established from the speckle-optical study data that ILIB increases the contractional activity of skeletal muscles in animals. The ILIB-therapy after the SN neurorrhaphy normalizes the latent period of M-response and neural cation potential. A tendancy has been revealed to an increase in impulse conduction velocity in motor nerve fibers and in maximal amplitude of the neural action potential. Thus, the ILIB-therapy after SN trauma improves the neuromotor system functional state in experimental animals in the early reinnervation period.

  18. Experimental Study on the Diet of Mosquitofish (Gambusia holbrooki) under Different Ecological Conditions in a Shallow Lake

    NASA Astrophysics Data System (ADS)

    Blanco, Saúl; Romo, Susana; Villena, María-José

    2004-07-01

    We studied the diet of the eastern mosquitofish Gambusia holbrooki with in situ experimental mesocosms located in a shallow lake. Different nutrient concentrations (phosphorus and nitrogen) and fish population densities were tested. Our results confirm that it is a planktivorous species, with also a great ingestion of algae and detritus. Nutrient fertilization caused almost no changes in this species feeding behavior, but larger mosquitofish stocks induced a shift to zooplanktivory and a decline in detritivory. When macrophytes were present, the predation effect focused on zooplankton and plant-associated animals, otherwise predation on bottom macroinvertebrates increased. Females preyed upon almost all groups more intensely, including detritus. Males and juveniles did not overlap diet, the former being more selective on ostracods, while juveniles consumed detritus, rotifers and cladoceran. Our data support the idea that mosquitofish can cause important top-down effects in shallow lakes under a wide variety of ecological conditions, being an important zooplanktivore in both turbid and plant-dominated shallow lakes especially in the Mediterranean zone, where high temperatures and absence of piscivores promote maintenance of its populations during the whole year. (

  19. Combining Experimental Petrology and 3D Imaging to Gain Insight into Syn-eruptive Conditions of the Bishop Tuff, California

    NASA Astrophysics Data System (ADS)

    Chattin, Archer; Pamukcu, Ayla; Gardner, James; Gualda, Guilherme

    2015-04-01

    The Bishop tuff is a rhyolitic ignimbrite deposited by a supereruption 0.76 million years ago that formed the Long Valley Caldera in California, USA. Pamukcu et. al (2012) identifies two distinct crystal populations present in the Bishop Tuff, the first being a long-lived, large phenocryst population that records storage conditions, and the second a rapidly nucleated, quickly staunched microlite population thought to result from eruptive decompression. Laboratory experiments to reproduce this quickly grown population may help constrain the conditions and rates under which decompression took place. Rapid nucleation of microlites is accompanied by just as rapid bubble nucleation when volatiles exsolve during decompression; the size distribution of vesicles in eruptive products may thus provide important information on syn-eruptive processes. In this study we combine information from vesicle size distributions on natural pumice with data on experimentally produced microlite crystals with the goal of better understanding the syn-eruptive evolution of a supereruption-forming magma body. Decompression experiments are run using a natural Bishop tuff pumice clast ground and melted in the presence of water to obtain a melt representative of late-erupted Bishop Tuff (LBT) magmas. Experimental charges were subjected to decompression at varying rates and initial temperatures. At this time five experiments have been completed. All decompression experiments start at 130MPa, consistent with water concentration in LBT glass inclusions, and end at 10 MPa. Initial temperatures are either 710°C or 785°C, while decompression rates are 20 MPa/hr, 5.5MPa/hr, or 1.7MPa/hr Experimental products were compared to natural products using Scanning Electron Microscopy to document eventual crystal rims and microlites. We have been successful in causing limited feldspar crystallization, but have yet to generate quartz microlites. Bubble size distributions are obtained by analyzing x

  20. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, R. A.; Niles, P. B.

    2010-01-01

    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the 13C values of CH4 and C2H6 were -50.3% and -39.3% (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a (sigma)C-13 value of -19.2%, which was 3.2% heavier than its source, formic acid. The (sigma)C-13 difference between CO2 and CH4 was 31.1%, which was higher than the value of 9.4% calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1%) observed in similar experiments previously performed at 400 C and 50 MPa with longer reaction times. CH4 is 11.0% less enriched in C-13 than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which confirms

  1. An Experimental Study of Partially Molten Ordinary Chondrite Under Dynamic Conditions: Siderophile Abundances in Quench Fe-S-Ni Liquids

    NASA Astrophysics Data System (ADS)

    Rushmer, T.; Humayun, M.; Campbell, A. J.

    2004-05-01

    from 0.19 at high S contents to 0.56 at low S contents. As goes from compatible to incompatible at approximately 15 wt%\\ S in the liquid. Ir, Ge and Ga show large changes in D as a function of S, ranging from >100 to approximately 1.0 from high to low S content but remain compatible. W and Os remain compatible and range from 1 - 5 and 5 - 7 at 13-15 wt%\\ S and 6-8 wt%\\ S, respectively. We find that the lower temperatures produce Fe-S-Ni liquid compositions observed at higher T in other studies. Part of the difference is likely due to the temperature gradient in the charge, but in addition, deformation may play an important role in enhancing reaction kinetics. The results also show that high sulfur, low degree partial melts have too low Ga, Ge and Ir to form IIE irons. Intermediate degrees of partial melting, represented by melt pools and veins in KM10 and KM17, are closest in composition. The compositional range of experimental melt compositions exceeds the IIE irons observed range. The IIE irons represent a limited portion of the experimental Ni-Co trend, implying generation from a limited range of redox conditions.

  2. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Socki, R. A.; Niles, P. B.

    2010-12-01

    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 °C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the δ13C values of CH4 and C2H6 were -50.3‰ and -39.3‰ (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a δ13C value of -19.2‰, which was 3.2‰ heavier than its source, formic acid. The δ13C difference between CO2 and CH4 was 31.1‰, which was higher than the value of 9.4‰ calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1‰) observed in similar experiments previously performed at 400 °C and 50 MPa with longer reaction times. CH4 is 11.0‰ less enriched in 13C than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which

  3. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have

  4. Pilot Eye Scanning under Actual Single Pilot Instrument Flight

    NASA Astrophysics Data System (ADS)

    Rinoie, Kenichi; Sunada, Yasuto

    Operations under single pilot instrument flight rules for general aviation aircraft is known to be one of the most demanding pilot tasks. Scanning numerous instruments plays a key role for perception and decision-making during flight. Flight experiments have been done by a single engine light airplane to investigate the pilot eye scanning technique for IFR flights. Comparisons between the results by an actual flight and those by a PC-based flight simulator are made. The experimental difficulties of pilot eye scanning measurements during the actual IFR flight are discussed.

  5. Comparison of simulated and actual wind shear radar data products

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  6. Experimental Results of the First Two Stages of an Advanced Transonic Core Compressor Under Isolated and Multi-Stage Conditions

    NASA Technical Reports Server (NTRS)

    Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.

    2015-01-01

    NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency of large gas turbine engines. Under ERA the task for a High Pressure Ratio Core Technology program calls for a higher overall pressure ratio of 60 to 70. This mean that the HPC would have to almost double in pressure ratio and keep its high level of efficiency. The challenge is how to match the corrected mass flow rate of the front two supersonic high reaction and high corrected tip speed stages with a total pressure ratio of 3.5. NASA and GE teamed to address this challenge by using the initial geometry of an advanced GE compressor design to meet the requirements of the first 2 stages of the very high pressure ratio core compressor. The rig was configured to run as a 2 stage machine, with Strut and IGV, Rotor 1 and Stator 1 run as independent tests which were then followed by adding the second stage. The goal is to fully understand the stage performances under isolated and multi-stage conditions and fully understand any differences and provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to isolate fluid dynamics loss source mechanisms due to interaction and endwalls. The paper will present the description of the compressor test article, its predicted performance and operability, and the experimental results for both the single stage and two stage configurations. We focus the detailed measurements on 97 and 100 of design speed at 3 vane setting angles.

  7. Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: An experimental study at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Akbarabadi, Morteza; Piri, Mohammad

    2013-02-01

    We present the results of an experimental study on the effects of hysteresis on capillary trapping and relative permeability of CO2/brine systems at reservoir conditions. We performed thirty unsteady- and steady-state drainage and imbibition full-recirculation flow experiments in three different sandstone rock samples, low- and high-permeability Berea and Nugget sandstones. The experiments were carried out at various flow rates with both supercritical CO2 (scCO2)/brine and gaseous CO2 (gCO2)/brine fluid systems. The unsteady-state experiments were carried out with a wide range of flow rates to establish a broad range of initial brine saturations (Swi). This allowed investigation of the sensitivity of residual trapped CO2 saturation (S) to changes in Swi. The values were successfully compared with those available in the literature. For a given Swi, the trapped scCO2 saturation was less than that of gCO2 in the same sample. This was attributed to brine being less wetting in the presence of scCO2 than in the presence of gCO2. Post-imbibition dissolution of trapped CO2 and formation of dissolution front was also investigated. During the steady-state experiments, scCO2 and brine were co-injected with monotonically increasing or decreasing fractional flows to perform drainage and imbibition processes. We carried out seven sets of steady-state flow tests with various trajectories generating a comprehensive group of relative permeability hysteresis curves. The scanning curves revealed distinct features with potentially important implications for storage of scCO2 in geological formations. For both series of experiments, the ratio of S to initial CO2 saturation (1- Swi) was found to be much higher for low initial CO2 saturations. The results indicate that very promising fractions (about 49 to 83%) of the initial CO2 saturation can be stored through capillary trapping.

  8. Experimental Study on the pH of Pore water in Compacted Bentonite under Reducing Conditions with Electromigration

    SciTech Connect

    Nessa, S.A.; Idemitsu, K.; Yamazaki, S.; Ikeuchi, H.; Inagaki, Y.; Arima, T.

    2008-07-01

    Compacted bentonite and carbon steel are considered a good buffer and over-pack materials in the repositories of high-level radioactive waste disposal. Sodium bentonite, Kunipia-F contains approximately 95 wt% of montmorillonite. Bentonites prominent properties of high swelling, sealing ability and cation exchange capacity provide retardation against the transport of radionuclides from the waste into the surrounding rocks in the repository and its properties determine the behavior of bentonite. In this regards, the pH of pore water in compacted bentonite is measured with pH test paper wrapped with semi-permeable membrane of collodion sheet under reducing conditions. On 30 days, the pH test paper in the experimental apparatus indicated that the pH of pore water in compacted bentonite is around 8.0 at saturated state. The carbon steel coupon is connected as the working electrode to the potentiostat and is held at a constant supplied potential between +300 and -300 mV vs. Ag/AgCl electrode for up to 7 days. During applying electromigration the pH of pore water in bentonite decreased and it reached 6.0{approx}6.0 on 7 days. The concentration of iron and sodium showed nearly complementary distribution in the bentonite specimen after electromigration. It is expected that iron could migrate as ferrous ion through the interlayer of montmorillonite replacing exchangeable sodium ions in the interlayer. Semi-permeable membrane of collodion sheet does not affect the color change of pH test paper during the experiment. (authors)

  9. Experimental and Numerical Investigation of Capillary Driven Free Surface Oscillations of Liquid Argon Under Non-Isothermal Conditions

    NASA Astrophysics Data System (ADS)

    Kulev, Nikolai; Dreyer, Michael E.

    Knowledge of dynamic behaviour of cryogenic fluids under microgravity is of key importance for the management of cryogenic propellants in space vehicles. In this work we present experimental and numerical investigations of the capillary driven free surface oscillations of liquid argon (Tsat = 87.3K @ 1013 hPa) under non-isothermal boundary conditions. Such oscillations take place during the reorientation of the equilibrium position of the free surface upon step reduction of gravity. The aim was to investigate the impact on the reorientation when the main capillary flow is superimposed in the vicinity of the contact line by a flow, induced by thermal effects due to heat flux from the vessel's hot wall towards the cold cryogenic liquid. The experiments were performed at the Bremen Drop Tower. Axial wall temperature gradients of averaged 0.15 K/mm -1.93 K/mm towards the free surface were implemented. A general dependence of the system behavior on the value of these gradients was observed. Thus the characteristics of the free surface oscillations vary accordingly. The aperiodic movement of the apparent contact line changes to a periodic one, accompanied by a distinctive change in the vapor pressure increase -hinting to a peak evaporation on the receding contact line. Nucleation boiling in the highest range of the axial wall temperature gradients, indicating the formation of thermal wall boundary layers, was also observed. The individual or combined action of the physical mechanisms of Marangoni convection, vapor recoil and evaporation/condensation are to be expected behind the observation. Numerical simulations of the drop tower experiments utilizing the VOF method were exploited in search for the explanation. Simulation results and comparison to the experiment are also presented.

  10. Beaked Whales Respond to Simulated and Actual Navy Sonar

    PubMed Central

    Tyack, Peter L.; Zimmer, Walter M. X.; Moretti, David; Southall, Brandon L.; Claridge, Diane E.; Durban, John W.; Clark, Christopher W.; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L.

    2011-01-01

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define

  11. Healing of periodontal defects treated with enamel matrix proteins and root surface conditioning--an experimental study in dogs.

    PubMed

    Sakallioğlu, Umur; Açikgöz, Gökhan; Ayas, Bülent; Kirtiloğlu, Tuğrul; Sakallioğlu, Eser

    2004-05-01

    Application of enamel matrix proteins has been introduced as an alternative method for periodontal regenerative therapy. It is claimed that this approach provides periodontal regeneration by a biological approach, i.e. creating a matrix on the root surfaces that promotes cementum, periodontal ligament (PDL) and alveolar bone regeneration, thus mimicking the events occurring during tooth development. Although there have been numerous in vitro and in vivo studies demonstrating periodontal regeneration, acellular cementum formation and clinical outcomes via enamel matrix proteins usage, their effects on the healing pattern of soft and hard periodontal tissues are not well-established and compared with root conditioning alone. In the present study, the effects of Emdogain (Biora, Malmö, Sweden), an enamel matrix derivative mainly composed of enamel matrix proteins (test), on periodontal wound healing were evaluated and compared with root surface conditioning (performed with 36% orthophosphoric acid) alone (control) histopathologically and histomorphometrically by means of the soft and hard tissue profile of periodontium. An experimental periodontitis model performed at premolar teeth of four dogs were used in the study and the healing pattern of periodontal tissues was evaluated at days 7, 14, 21, 28 (one dog at each day), respectively. At day 7, soft tissue attachment evaluated by means of connective tissue and/or epithelial attachment to the root surfaces revealed higher connective tissue attachment rate in the test group and the amount of new connective tissue proliferation in the test group was significantly greater than the control group (p<0.01). New bone formation by osteoconduction initiated at day 14 in the test and control group. At day 21, the orientation of supra-alveolar and PDL fibers established, and new cementum formation observed in both groups. At day 28, although regenerated cementum was cellular in all of the roots in the control samples, an

  12. Experimental determination of trace element mobility in UK North Sea sandstones under conditions of geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Carruthers, Kit; Wilkinson, Mark; Butler, Ian B.

    2016-04-01

    . (1979) and Wigley et al. (2013), to suit the North Sea sandstones used previously in the batch experiments. The extraction method targeted water soluble elements, elements leached through desorption from mineral surfaces, and elements released through the dissolution of carbonates, oxides, sulphides and silicates. From this experimental technique, trace element concentrations were classed as 'mobile' or 'immobile' under weak acid conditions of CO2 storage. The majority of elements were classified as largely immobile. Using the batch experiment results we determined that dissolution of carbonate and feldspar minerals was responsible for much of the observed mobilised concentrations, although the abundance of these minerals was not a predictor for absolute or relative concentrations. References: Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51(7), 844-851. Wigley, M., Kampman, N., Chapman, H. J., Dubacq, B., & Bickle, M. J. (2013). In situ redeposition of trace metals mobilized by CO2-charged brines. Geochemistry, Geophysics, Geosystems, 14(5), 1321-1332. doi:10.1002/ggge.20104

  13. Moral Reasoning in Hypothetical and Actual Situations.

    ERIC Educational Resources Information Center

    Sumprer, Gerard F.; Butter, Eliot J.

    1978-01-01

    Results of this investigation suggest that moral reasoning of college students, when assessed using the DIT format, is the same whether the dilemmas involve hypothetical or actual situations. Subjects, when presented with hypothetical situations, become deeply immersed in them and respond as if they were actual participants. (Author/BEF)

  14. Factors Related to Self-Actualization.

    ERIC Educational Resources Information Center

    Hogan, H. Wayne; McWilliams, Jettie M.

    1978-01-01

    Provides data to further support the notions that females score higher in self-actualization measures and that self-actualization scores correlate inversely to the degree of undesirability individuals assign to their heights and weights. Finds that, contrary to predictions, greater androgyny was related to lower, not higher, self-actualization…

  15. Working memory and acquisition of implicit knowledge by imagery training, without actual task performance.

    PubMed

    Helene, A F; Xavier, G F

    2006-04-28

    This study investigated acquisition of a mirror-reading skill via imagery training, without the actual performance of a mirror-reading task. In experiment I, healthy volunteers simulated writing on an imaginary, transparent screen placed at eye level, which could be read by an experimenter facing the subject. Performance of this irrelevant motor task required the subject to imagine the letters inverted, as if seen in a mirror from their own point of view (imagery training). A second group performed the same imagery training interspersed with a complex, secondary spelling and counting task. A third, control, group simply wrote the words as they would normally appear from their own point of view. After training with 300 words, all subjects were tested in a mirror-reading task using 60 non-words, constructed according to acceptable letter combinations of the Portuguese language. Compared with control subjects, those exposed to imagery training, including those who switched between imagery and the complex task, exhibited shorter reading times in the mirror-reading task. Experiment II employed a 2 x 3 design, including two training conditions (imagery and actual mirror-reading) and three competing task conditions (a spelling and counting switching task, a visual working memory concurrent task, and no concurrent task). Training sessions were interspersed with mirror-reading testing sessions for non-words, allowing evaluation of the mirror-reading acquisition process during training. The subjects exposed to imagery training acquired the mirror-reading skill as quickly as those exposed to the actual mirror-reading task. Further, performance of concurrent tasks together with actual mirror-reading training severely disrupted mirror-reading skill acquisition; this interference effect was not seen in subjects exposed to imagery training and performance of the switching and the concurrent tasks. These results unequivocally show that acquisition of implicit skills by top

  16. An experimental seasonal hydrological forecasting system over the Yellow River basin - Part 1: Understanding the role of initial hydrological conditions

    NASA Astrophysics Data System (ADS)

    Yuan, Xing; Ma, Feng; Wang, Linying; Zheng, Ziyan; Ma, Zhuguo; Ye, Aizhong; Peng, Shaoming

    2016-06-01

    The hydrological cycle over the Yellow River has been altered by the climate change and human interventions greatly during past decades, with a decadal drying trend mixed with a large variation of seasonal hydrological extremes. To provide support for the adaptation to a changing environment, an experimental seasonal hydrological forecasting system is established over the Yellow River basin. The system draws from a legacy of a global hydrological forecasting system that is able to make use of real-time seasonal climate predictions from North American Multimodel Ensemble (NMME) climate models through a statistical downscaling approach but with a higher resolution and a spatially disaggregated calibration procedure that is based on a newly compiled hydrological observation dataset with 5 decades of naturalized streamflow at 12 mainstream gauges and a newly released meteorological observation dataset including 324 meteorological stations over the Yellow River basin. While the evaluation of the NMME-based seasonal hydrological forecasting will be presented in a companion paper to explore the added values from climate forecast models, this paper investigates the role of initial hydrological conditions (ICs) by carrying out 6-month Ensemble Streamflow Prediction (ESP) and reverse ESP-type simulations for each calendar month during 1982-2010 with the hydrological models in the forecasting system, i.e., a large-scale land surface hydrological model and a global routing model that is regionalized over the Yellow River. In terms of streamflow predictability, the ICs outweigh the meteorological forcings up to 2-5 months during the cold and dry seasons, but the latter prevails over the former in the predictability after the first month during the warm and wet seasons. For the streamflow forecasts initialized at the end of the rainy season, the influence of ICs for lower reaches of the Yellow River can be 5 months longer than that for the upper reaches, while such a difference

  17. Experimental Investigation of an Integrated Strut-Rocket/Scramjet Operating at Mach 4.0 and 6.5 Conditions

    NASA Technical Reports Server (NTRS)

    Hawk, Clark; Nelson, Karl

    1998-01-01

    A series of tests were conducted to investigate RBCC performance at ramjet and scramjet conditions. The hardware consisted of a linear strut-rocket manufactured by Aerojet and a dual-mods scramjet combustor. The hardware was tested at NASA Langley Research Center in the Direct Connect Supersonic Combustion Test Facility at Mach 4.0 and 6.5 simulated flight conditions.

  18. Open burning of household waste: Effect of experimental condition on combustion quality and emission of PCDD, PCDF and PCB

    EPA Science Inventory

    Open burning for waste disposal is, in many countries, the dominant source of polychlorinated dibenzodioxins/dibenzofurans and polychlorinated biphenyls (PCDD/PCDF/PCB) release to the environment. To generate emission factors for open burning, experimental pile burns of ca 100 k...

  19. Analysis of an industrial cogeneration unit driven by a gas engine. Part 1: Experimental testing under full and part-load operating conditions

    SciTech Connect

    De Lucia, M.; Lanfranchi, C.

    1994-12-31

    This paper describes and analyzes an industrial cogeneration plant driven by a gas fueled reciprocating engine installed in a textile factory. It presents the results of experimental testing conducted under full and part-load operating conditions, as well as first-law energy considerations. The experimental tests conducted on the cogeneration unit proved the validity of the plant design and also enabled evaluation of part-load performance, which is the most common operating mode in cogeneration plants in the small-size industries which typical of central Italy.

  20. Analytical prediction with multidimensional computer programs and experimental verification of the performance, at a variety of operating conditions, of two traveling wave tubes with depressed collectors

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.; Kosmahl, H. G.; Ramins, P.; Stankiewicz, N.

    1979-01-01

    Experimental and analytical results are compared for two high performance, octave bandwidth TWT's that use depressed collectors (MDC's) to improve the efficiency. The computations were carried out with advanced, multidimensional computer programs that are described here in detail. These programs model the electron beam as a series of either disks or rings of charge and follow their multidimensional trajectories from the RF input of the ideal TWT, through the slow wave structure, through the magnetic refocusing system, to their points of impact in the depressed collector. Traveling wave tube performance, collector efficiency, and collector current distribution were computed and the results compared with measurements for a number of TWT-MDC systems. Power conservation and correct accounting of TWT and collector losses were observed. For the TWT's operating at saturation, very good agreement was obtained between the computed and measured collector efficiencies. For a TWT operating 3 and 6 dB below saturation, excellent agreement between computed and measured collector efficiencies was obtained in some cases but only fair agreement in others. However, deviations can largely be explained by small differences in the computed and actual spent beam energy distributions. The analytical tools used here appear to be sufficiently refined to design efficient collectors for this class of TWT. However, for maximum efficiency, some experimental optimization (e.g., collector voltages and aperture sizes) will most likely be required.

  1. Biaxial tension of fibrous tissue: using finite element methods to address experimental challenges arising from boundary conditions and anisotropy.

    PubMed

    Jacobs, Nathan T; Cortes, Daniel H; Vresilovic, Edward J; Elliott, Dawn M

    2013-02-01

    Planar biaxial tension remains a critical loading modality for fibrous soft tissue and is widely used to characterize tissue mechanical response, evaluate treatments, develop constitutive formulas, and obtain material properties for use in finite element studies. Although the application of tension on all edges of the test specimen represents the in situ environment, there remains a need to address the interpretation of experimental results. Unlike uniaxial tension, in biaxial tension the applied forces at the loading clamps do not transmit fully to the region of interest (ROI), which may lead to improper material characterization if not accounted for. In this study, we reviewed the tensile biaxial literature over the last ten years, noting experimental and analysis challenges. In response to these challenges, we used finite element simulations to quantify load transmission from the clamps to the ROI in biaxial tension and to formulate a correction factor that can be used to determine ROI stresses. Additionally, the impact of sample geometry, material anisotropy, and tissue orientation on the correction factor were determined. Large stress concentrations were evident in both square and cruciform geometries and for all levels of anisotropy. In general, stress concentrations were greater for the square geometry than the cruciform geometry. For both square and cruciform geometries, materials with fibers aligned parallel to the loading axes reduced stress concentrations compared to the isotropic tissue, resulting in more of the applied load being transferred to the ROI. In contrast, fiber-reinforced specimens oriented such that the fibers aligned at an angle to the loading axes produced very large stress concentrations across the clamps and shielding in the ROI. A correction factor technique was introduced that can be used to calculate the stresses in the ROI from the measured experimental loads at the clamps. Application of a correction factor to experimental biaxial

  2. Experimental Evaluation of Inlet Distortion on an Ejector Powered Hybrid Wing Body at Take-off and Landing Conditions

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Shea, Patrick R.; Flamm, Jeffrey D.; Schuh, Michael; James, Kevin D.; Sexton, Matthew R.; Tompkins, Daniel M.; Beyar, Michael D.

    2016-01-01

    As part of the NASA Environmentally Responsible Aircraft project, an ultra high bypass ratio engine integration on a hybrid wing body demonstration was planned. The goal was to include engine and airframe integration concepts that reduced fuel consumption by at least 50% while still reducing noise 42 db cumulative on the ground. Since the engines would be mounted on the upper surface of the aft body of the aircraft, the inlets may be susceptible to vortex ingestion from the wing leading edge at high angles of attack and sideslip, and separated wing/body flow. Consequently, experimental and computational studies were conducted to collect flow surveys useful for characterizing engine operability. The wind tunnel tests were conducted at two NASA facilities, the 14- by 22-foot at NASA Langley and the 40- by 80-foot at NASA Ames Research Center. The test results included in this paper show that the distortion and pressure recovery levels were acceptable for engine operability. The CFD studies conducted to compare to experimental data showed excellent agreement for the angle of attacks examined, although failed to match the low speed experimental data at high sideslip angles.

  3. Experimental and numerical investigation on compressor cascade flows with tip clearance at a low Reynolds number condition

    NASA Astrophysics Data System (ADS)

    Kato, Hiromasa; Taniguchi, Hideo; Matsuda, Kazunari; Funazaki, Ken-Ichi; Kato, Dai; Pallot, Guillaume

    2011-12-01

    High flow rate aeroengines typically employ axial flow compressors, where aerodynamic loss is predominantly due to secondary flow features such as tip leakage and corner vortices. In very high altitude missions, turbomachinery operates at low density ambient atmosphere, and the recent trend toward more compact engine core inevitably leads to the reduction of blade size, which in turn increases the relative height of the blade tip clearance. Low Reynolds number flowfield as a result of these two factors amplifies the relative importance of secondary flow effects. This paper focuses on the behavior of tip leakage flow, investigating by use of both experimental and numerical approaches. In order to understand the complex secondary flow behavior, cascade tests are usually conducted using intrusive probes to determine the loss. However relatively few experimental studies are published on tip leakage flows which take into account the interaction between a rotating blade row and its casing wall. Hence a new linear cascade facility has been designed with a moving belt casing in order to reproduce more realistic flowfield as encountered by a rotating compressor row. Numerical simulations were also performed to aid in the understanding of the complex flow features. The experimental results indicate a significant difference in the flowfield when the moving belt casing is present. The numerical simulations reveal that the leakage vortex is pulled by the shearing motion of the endwall toward the pressure side of the adjacent blade. The results highlight the importance of casing wall relative motion in analyzing leakage flow effects.

  4. Experimental verification of a theory of the influence of measurement conditions on temperature measurement accuracy with IR systems

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof

    1996-07-01

    A theory of the influence of measurement conditions on temperature measurement accuracy with infrared systems has been recently presented. A comparison study of the shortwave (3-5- mu m) and longwave (8-12- mu m) measuring IR cameras was conducted on the basis of this theory. The results of the simulations show that the shortwave systems in typical measurement conditions generally offer better accuracy in temperature measurement than do the longwave systems. Some experiments that use a commercially available IR camera were carried out to verify the theory. The results of these experiments and a discussion about the theory limitations are presented. temperature measurement.

  5. Fatigue strength of high-temperature alloys under conditions of cyclic temperature variation. Communication 1: Experimental procedure and results

    NASA Astrophysics Data System (ADS)

    Troshchenko, V. T.; Gryaznov, B. A.; Yamshanov, Yu. B.

    1994-03-01

    Determination of the serviceability of the material of gas-turbine engine blades, one of the most loaded elements of the engine, critical for the reliability of the turbine, is discussed. The NUM-3 setup, intended for studying fatigue strength of high-temperature alloys under conditions simulating service ones, is briefly described. The results of the investigation into the fatigue of alloys EP962 and EI698 under isothermal conditions and complex thermal-mechanical loading are presented. The analysis of the findings revealed a number of regularities in the effect of thermal cycling and resulting varying thermal stresses on the fatigue strength of the materials studied.

  6. Experimental Verification of a Critical Condition for the Formation of As-Cast Coarse Columnar Austenite Grain Structure in a Hyperperitectic Carbon Steel

    NASA Astrophysics Data System (ADS)

    Ohno, Munekazu; Maruyama, Masato; Matsuura, Kiyotaka

    2015-11-01

    Experimental verification of a critical condition for the formation of coarse columnar γ grain (CCG) structure in as-cast hyperperitectic carbon steels, which was put forward based on theories of grain growth and phase-field simulations in early studies, is carried out by means of a Bridgman-type directional solidification experiment. The occurrence of the discontinuous and continuous grain growth processes and the resulting formation of CCG and equiaxed γ grain structures, respectively, are demonstrated. Importantly, these changes of the as-cast microstructures and the grain growth modes are in excellent agreement with the previously proposed critical condition of the CCG formation.

  7. Theoretical and Experimental Studies of the Transonic Flow Field and Associated Boundary Conditions near a Longitudinally-Slotted Wind-Tunnel Wall. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Everhart, Joel Lee

    1988-01-01

    A theoretical examination of the slotted-wall flow field is conducted to determine the appropriate wall pressure drop (or boundary condition) equation. This analysis improves the understanding of the fluid physics of these types of flow fields and helps in evaluating the uncertainties and limitations existing in previous mathematical developments. It is shown that the resulting slotted-wall boundary condition contains contributions from the airfoil-induced streamline curvature and the non-linear, quadratic, slot crossflow in addition to an often neglected linear term which results from viscous shearing in the slot. Existing and newly acquired experimental data are examined in the light of this formulation and theoretical developments.

  8. Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions

    SciTech Connect

    Zambolin, E.; Del Col, D.

    2010-08-15

    New comparative tests on two different types of solar collectors are presented in this paper. A standard glazed flat plate collector and an evacuated tube collector are installed in parallel and tested at the same working conditions; the evacuated collector is a direct flow through type with external compound parabolic concentrator (CPC) reflectors. Efficiency in steady-state and quasi-dynamic conditions is measured following the standard and it is compared with the input/output curves measured for the whole day. The first purpose of the present work is the comparison of results in steady-state and quasi-dynamic test methods both for flat plate and evacuated tube collectors. Besides this, the objective is to characterize and to compare the daily energy performance of these two types of collectors. An effective mean for describing and analyzing the daily performance is the so called input/output diagram, in which the collected solar energy is plotted against the daily incident solar radiation. Test runs have been performed in several conditions to reproduce different conventional uses (hot water, space heating, solar cooling). Results are also presented in terms of daily efficiency versus daily average reduced temperature difference: this allows to represent the comparative characteristics of the two collectors when operating under variable conditions, especially with wide range of incidence angles. (author)

  9. Experimental comparison of the oxygen-assist laser cutting with a fiber and CO2-laser under the condition of minimal roughness

    NASA Astrophysics Data System (ADS)

    Orishich, A. M.; Shulyatyev, V. B.; Malikov, A. G.; Golyshev, A. A.

    2014-02-01

    The conditions of minimal-roughness surface production were studied experimentally in the process of the oxygenassisted laser cutting with the fiber and СО2 lasers. The coefficient of the laser radiation absorption in the cut channel during the cutting process was measured as the sheet thickness varied from 3 to 16 mm. It is demonstrated that the cutting conditions with the minimal roughness can be formulated for the two laser types with the same generalized parameters, i.e. dimensionless absorbed laser power and Peclet number (dimensionless speed). Numerical values of these parameters were found experimentally. The optimum Peclet number is 0.5 for the СО2-laser cutting, and 0.35 when the fiber laser is used.

  10. Experimental study on occupant's thermal responses under the non-uniform conditions in vehicle cabin during the heating period

    NASA Astrophysics Data System (ADS)

    Zhang, Wencan; Chen, Jiqing; Lan, Fengchong

    2014-03-01

    The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperature and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in

  11. Experimental and theoretical studies of the influence of a tensile load on the relaxation of residual stresses in a hardened cylindrical specimen under creep conditions

    NASA Astrophysics Data System (ADS)

    Radchenko, V. P.; Kocherov, E. P.; Saushkin, M. N.; Smyslov, V. A.

    2015-03-01

    This paper presents an experimental and theoretical study of the influence of a tensile load on the relaxation of residual stresses in a hardened cylindrical specimen of ZhS6KP alloy under creep conditions at 800°C. An experimental study was conducted to investigate the distribution of the axial residual stress tensor component across the thickness of the hardened layer after hardening by air shot blasting using microbeads and after creep loading for 50 and 200 h under a tensile load of 150 and 250 MPa. A detailed theoretical analysis of the problem was performed. In all loading regimes, the calculated and experimental values of the residual stresses were found to be in good agreement. It was shown that at low tensile load, the relaxation rate decreased in comparison with the case of thermal exposure in the absence of a tensile load and, with increasing load intensity, it increased.

  12. Experimental results on gravity driven fully condensing flows in vertical tubes, their agreement with theory, and their differences with shear driven flows' boundary-condition sensitivities

    NASA Astrophysics Data System (ADS)

    Kurita, Jorge H.

    This doctoral thesis presents the experimental results along with a suitable synthesis with computational/theoretical results towards development of a reliable heat transfer correlation for a specific annular condensation flow regime inside a vertical tube. For fully condensing flows of pure vapor (FC-72) inside a vertical cylindrical tube of 6.6 mm diameter and 0.7 m length, the experimental measurements are shown to yield values of average heat transfer coefficient, and approximate length of full condensation. The experimental conditions cover: mass flux G over a range of 2.9 kg/m 2-s ≤ G ≤ 87.7 kg//m2-s, temperature difference DeltaT (saturation temperature at the inlet pressure minus the mean condensing surface temperature) of 5 ºC to 45 ºC, and cases for which the length of full condensation xFC is in the range of 0 < xFC < 0.7 m. The range of flow conditions over which there is good agreement (within 15%) with the theory and its modeling assumptions has been identified. Additionally, the ranges of flow conditions for which there are significant discrepancies (between 15--30% and greater than 30%) with theory have also been identified. The paper also refers to a brief set of key experimental results with regard to sensitivity of the flow to time-varying or quasi-steady (i.e. steady in the mean) impositions of pressure at both the inlet and the outlet. The experimental results support the updated theoretical/computational results that gravity dominated condensing flows do not allow such elliptic impositions.

  13. Experimental Study on the Influence of the Supporting Condition and Rod Motion on the Fuel Fretting Damage

    SciTech Connect

    Kim, Hyung-Kyu; Lee, Young-Ho

    2007-07-01

    Present study focuses on the influence of a supporting condition and a rod motion on a fuel fretting wear through experiments using a self-developed wear simulator, which was presented at the Water Reactor Fuel Performance Meeting, Kyoto Japan in 2005. In the experiment, a fuel rod specimen of two span lengths is vibrated by two perpendicularly aligned electromagnetic actuators. Both ends of the rod specimen are supported with a positive contact force and a variation of the supporting condition is simulated by moving each of the four grid strap specimens constituting a center grid cell. As for the supporting condition, 0.1 mm gap and 10 N force are used; a circular and a diagonal traces are applied for the rod motion. The contact shape of the spring/dimple is concave, to try and increase the contact area. Both the spring/dimple and fuel rod specimens were fabricated from the as-received materials (zirconium alloy) for a commercial fuel assembly. Experiments are carried out under a room temperature and distilled water condition. Experiment of each condition is carried out for 72 hours. Wear volume, area and depth on the cladding tubes are examined. As a result, the present concave shaped spring/dimple causes less wear when the rod moves in a circular manner than a diagonal one if there is a positive contact force (10 N). However, a diagonal motion causes more wear when a gap (0.1 mm) exists. Wear amount at the spring and dimple is influenced by the location of them and the rod motion. It is found that the wear is concentrated at the contact edges between the spring/dimple and rods due to the contact shape. The influence of the rod motion on the worn area and its shape is also discussed. (authors)

  14. Toxicity of pyrolysis products: Influence of experimental conditions - The MSTL/UT and NASA/JSC Procedures

    NASA Technical Reports Server (NTRS)

    Lawrence, W. H.; Raje, R. R.; Singh, A. R.; Autian, J.

    1978-01-01

    Ten sample materials of various polymeric composition were evaluated for toxicity of pyrolysis products utilizing two significantly different experimental methods, the MSTL/UT and NASA/JSC Procedures. A comparison of the LD(50) values obtained by the two methods for these ten samples did not yield a significant correlation. However, when the samples were ranked in order of increasing toxicity by each method independently, a comparison of their rank order toxicity improved the correlation. Because of interlaboratory variations in pyrolysis/combustion test procedures, it is suggested a series of standard materials be adopted to facilitate interlaboratory comparisons of data on pyrolysis toxicity.

  15. Performance enhancement of an experimental air conditioning system by using TiO2/methanol nanofluid in heat pipe heat exchangers

    NASA Astrophysics Data System (ADS)

    Monirimanesh, Negin; Nowee, S. Mostafa; Khayyami, Shideh; Abrishamchi, Iman

    2016-05-01

    The effect of using nanofluid in thermosyphon-type heat pipe heat exchangers on energy conservation of an air-conditioning system was sought in this study. Innovatively, two heat exchangers in-series were deployed using TiO2/methanol nanofluids with 0-4 wt% concentrations as working fluids. The impacts of temperature and relative humidity on the effectiveness of 2 and 4-row heat exchangers were analyzed experimentally and more that 40 % energy saving was obtained.

  16. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  17. [NEPHROPROTECTIVE PROPERTIES OF 5-HT3 RECEPTOR BLOCKER RU-63 IN EXPERIMENTAL ACUTE RENAL FAILURE UNDER HYPERGRAVITY CONDITIONS].

    PubMed

    Zaitseva, E N; Dubishchev, A V; Yakovlev, D S; Anisimova, V A

    2016-01-01

    The effective diuretic dose of 5-HT3 receptor blocker RU-63 (1 mg/kg) was found in experiments on white rats. It is established that the diuretic and saluretic effects of compound RU-63 increase on the background of impact of the gravitational factor. Compound RU-63 (1 mg/kg, subcutaneously) administered daily under hypergravity conditions (3 g in the direction of centrifugal force toward the kidneys) in animals with model ischemic acute renal failure increased excretory function of kidneys, glomerular filtration rate, and creatininuresis (on average by 180%; p < 0.05), and decreased serum creatinine, urinary excretion of protein, lactate dehydrogenase, and g-glutamyl transferase (on average by 49%; p < 0.05) as compared to the untreated control. Under similar conditions, the diuretic hydrochlorothiazide (in a dose of 20 mg/kg, intragastric) produced a more pronounced creatininuretic action than that of RU-63 (by 358%; p < 0.05). PMID:27455574

  18. [Comparative evaluation of the neuroprotective activity of phenibut and piracetam under experimental cerebral ischemia conditions in rats].

    PubMed

    Tiurenkov, I N; Bagmetov, M N; Epishina, V V; Borodkina, L E; Voronkov, A V

    2006-01-01

    The neuroprotective properties of phenibut and piracetam were studied in rats with cerebral ischemia caused by bilateral irreversible simultaneous occlusion of carotid arteries and gravitational overload in craniocaudal vector. In addition, the effects of both drugs on microcirculation in brain cortex under ischemic injury conditions were studied. Phenibut and (to a lower extent) piracetam reduced a neuralgic deficiency, amnesia, and the degree of cerebral circulation drop, and improved the spontaneous movement and research activity deteriorated by brain ischemia. PMID:16878492

  19. Numerical and experimental analysis of a ducted propeller designed by a fully automated optimization process under open water condition

    NASA Astrophysics Data System (ADS)

    Yu, Long; Druckenbrod, Markus; Greve, Martin; Wang, Ke-qi; Abdel-Maksoud, Moustafa

    2015-10-01

    A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.

  20. Automated valve condition classification of a reciprocating compressor with seeded faults: experimentation and validation of classification strategy

    NASA Astrophysics Data System (ADS)

    Lin, Yih-Hwang; Liu, Huai-Sheng; Wu, Chung-Yung

    2009-09-01

    This paper deals with automatic valve condition classification of a reciprocating processor with seeded faults. The seeded faults are considered based on observation of valve faults in practice. They include the misplacement of valve and spring plates, incorrect tightness of the bolts for valve cover or valve seat, softening of the spring plate, and cracked or broken spring plate or valve plate. The seeded faults represent various stages of machine health condition and it is crucial to be able to correctly classify the conditions so that preventative maintenance can be performed before catastrophic breakdown of the compressor occurs. Considering the non-stationary characteristics of the system, time-frequency analysis techniques are applied to obtain the vibration spectrum as time develops. A data reduction algorithm is subsequently employed to extract the fault features from the formidable amount of time-frequency data and finally the probabilistic neural network is utilized to automate the classification process without the intervention of human experts. This study shows that the use of modification indices, as opposed to the original indices, greatly reduces the classification error, from about 80% down to about 20% misclassification for the 15 fault cases. Correct condition classification can be further enhanced if the use of similar fault cases is avoided. It is shown that 6.67% classification error is achievable when using the short-time Fourier transform and the mean variation method for the case of seven seeded faults with 10 training samples used. A stunning 100% correct classification can even be realized when the neural network is well trained with 30 training samples being used.

  1. Routine experimental system for defining conditions used in photodynamic therapy and fluorescence photodetection of (non-) neoplastic epithelia

    NASA Astrophysics Data System (ADS)

    Lange, Norbert; Vaucher, Laurent; Marti, Alexandre; Etter, Anne-Lise; Gerber, Patrick; van den Bergh, Hubert; Jichlinski, Patrice; Kucera, Pavel

    2001-04-01

    A common method to induce enhanced short-term endogenous porphyrin synthesis and accumulation in cell is the topical, systemic application of 5-aminolevulinic acid or one of its derivatives. This circumvents the intravenous administration of photosensitizers normally used for photodynamic therapy (PDT) of fluorescence photodetection. However, in the majority of potential medical indications, optimal conditions with respect to the porphyrin precursor or its pharmaceutical formulation have not yet been found. Due to ethical restrictions and animal right directives, the number of available test objects is limited. Hence, definition and use of nonanimal test methods are needed. Tissue and organ cultures are a promising approach in replacing cost intensive animal models in early stages of drug development. In this paper, we present a tissue culture, which can among others be used routinely to answer specific questions emerging in the field of photodynamic therapy and fluorescence photodetection. This technique uses mucosae excised from sheep paranasal sinuses or pig bladder, which is cultured under controlled conditions. It allows quasiquantative testing of different protoporphyrin IX precursors with respect to dose-response curves and pharmacokinetics, as well as the evaluation of different incubation conditions and/or different drug formulations. Furthermore, this approach, when combined with the use of electron microscopy and fluorescence-based methods, can be used to quantitatively determine the therapeutic outcome following protoporphyrin IX-mediated PDT.

  2. Control of experimental Triatoma infestans populations: effect of pour-on cypermethrin applied to chickens under natural conditions in the Argentinean Chaco region.

    PubMed

    Amelotti, I; Catalá, S S; Gorla, D E

    2014-06-01

    Among peridomestic structures, chicken coops are sites of major importance for the domestic ecology of Triatoma infestans (Hemiptera: Reduviidae). The aim of this study was to evaluate in an experimental context the effects of a cypermethrin pour-on formulation applied to chickens on blood intake, moulting and mortality in T. infestans, under the natural climatic conditions of a region endemic for Chagas' disease. Experimental chicken huts were made of bricks and covered with plastic mosquito nets. Ninety fourth-instar nymphs were maintained in each hut. The study used a completely random design in which chickens in the experimental group were treated with a cypermethrin pour-on formulation. Five replicates (= huts) of the experimental and control groups were conducted. The number of live T. infestans, blood intake and moults to fifth-instar stage were recorded at 1, 5, 20, 35 and 45 days after the application of cypermethrin. Cumulative mortality was higher in nymphs exposed to treated chickens (> 71%) than in control nymphs (< 50%) (P < 0.01). Blood intake and moulting rate were lower in nymphs fed on treated chickens than in control nymphs (P < 0.05). Pour-on cypermethrin was able to cause significant mortality, although it did not eliminate the experimental population of T. infestans. PMID:24191962

  3. Experimental evidence of a link between breeding conditions and the decision to breed or to help in a colonial cooperative bird.

    PubMed Central

    Covas, Rita; Doutrelant, Claire; du Plessis, Morné A.

    2004-01-01

    In many species mature individuals delay independent reproduction and may help others to reproduce. This behaviour is often explained through ecological constraints, although recently attention has also been paid to the variation in habitat quality. If the quality of vacant habitat influences the fitness trade-off between delaying reproduction and breeding independently, individuals should delay reproduction when conditions for breeding are poor. Yet, no study has experimentally manipulated habitat quality or the conditions experienced during the breeding period to test this assertion conclusively. We report results from an experiment conducted on a colonial cooperative bird with no territory constraints on reproduction. We artificially improved breeding conditions in several colonies of sociable weavers, Philetairus socius, through the provision of an easily obtainable and unlimited supply of food. We provide experimental evidence showing that under enhanced conditions some individuals reduce their age at first reproduction, a greater proportion of colony members engage in independent breeding and proportionally fewer birds act as helpers. Hence, these results also provide evidence for a direct influence of reproductive costs on life-history decisions such as age at first reproduction and breeding and helping behaviours. PMID:15255101

  4. Effect of some drugs, experimental stress and estrus on unstable and fixed conditioned alimentary motor reflexes in cats. Meclophenoxate, chlorprothixen, caffeine, piracetam. Part VI.

    PubMed

    Medek, A; Stodůlka, J; Komenda, S

    1990-01-01

    A group of 10 cats, both sexes, were studied for the effect of peroral administration of the meclophenoxate (Cetrexin, Léciva, 1.5 mg kg-1) + chlorprothixen (Chlorprothixen, Spofa, 0.045 mg kg-1) + caffeine (Coffeinum natrium benzoicum, Spofa, 0.15 mg kg-1) combination upon the fixation of conditioned alimentary motor reflexes to a sound signal in the course of a 10-week experiment. The mentioned combination of drugs demonstrated a beneficial protective influence on the fixed alimentary motor reflexes against laboratory stress. The results were compared with the earlier fixation of the same reflexes in another group of 11 cats under piracetam (Nootropil, U.C.B. 20 mg kg-1, s.c.). In both groups of animals, the development of reflexes was performed in regular alterations of experiments under the effect of the drugs and control experiments. The drugs were administered 1 hour before the experiments. Both groups of animals showed significantly fewer intersignal and other incorrect motor reactions on the days they were given the drugs than the controls did. The number of fixed correct reactions and their latencies displayed only moderate insignificant differences between the pharmacological trials and the controls. The conclusions is that the actual development of conditioned alimentary motor reflexes was not found to be influenced by the action of the mentioned drugs modifying psychological functions and mental states. PMID:2149802

  5. Conditioned Medium from Early-Outgrowth Bone Marrow Cells Is Retinal Protective in Experimental Model of Diabetes.

    PubMed

    Duarte, Diego A; Papadimitriou, Alexandros; Gilbert, Richard E; Thai, Kerri; Zhang, Yanling; Rosales, Mariana A B; Lopes de Faria, José B; Lopes de Faria, Jacqueline M

    2016-01-01

    Bone marrow-derived cells were demonstrated to improve organ function, but the lack of cell retention within injured organs suggests that the protective effects are due to factors released by the cells. Herein, we tested cell therapy using early outgrowth cells (EOCs) or their conditioned media (CM) to protect the retina of diabetic animal models (type 1 and type 2) and assessed the mechanisms by in vitro study. Control and diabetic (db/db) mice (8 weeks of age) were randomized to receive a unique intravenous injection of 5×105EOCs or 0.25 ml thrice weekly tail-vein injections of 10x concentrated CM and Wystar Kyoto rats rendered diabetic were randomized to receive 0.50 ml thrice weekly tail-vein injections of 10x concentrated CM. Four weeks later, the animals were euthanized and the eyes were enucleated. Rat retinal Müller cells (rMCs) were exposed for 24 h to high glucose (HG), combined or not with EOC-conditioned medium (EOC-CM) from db/m EOC cultures. Diabetic animals showed increase in diabetic retinopathy (DR) and oxidative damage markers; the treatment with EOCs or CM infusions significantly reduced this damage and re-established the retinal function. In rMCs exposed to diabetic milieu conditions (HG), the presence of EOC-CM reduced reactive oxygen species production by modulating the NADPH-oxidase 4 system, thus upregulating SIRT1 activity and deacetylating Lys-310-p65-NFκB, decreasing GFAP and VEGF expressions. The antioxidant capacity of EOC-CM led to the prevention of carbonylation and nitrosylation posttranslational modifications on the SIRT1 molecule, preserving its activity. The pivotal role of SIRT1 on the mode of action of EOCs or their CM was also demonstrated on diabetic retina. These findings suggest that EOCs are effective as a form of systemic delivery for preventing the early molecular markers of DR and its conditioned medium is equally protective revealing a novel possibility for cell-free therapy for the treatment of DR. PMID:26836609

  6. Experimental observation of the thermocapillary driven motion of bubbles in a molten glass under low gravity conditions

    NASA Technical Reports Server (NTRS)

    Smith, H. D.; Mattox, D. M.; Wilcox, W. R.; Subramanian, R. S.; Meyyappan, M.

    1982-01-01

    An experiment was carried out on board a Space Processing Applications Rocket with the aim of demonstrating bubble migration in molten glass due to a temperature gradient under low gravity conditions. During the flight, a sample of a sodium borate melt with a specific bubble array, contained in a platinum/fused silica cell, was subjected to a well defined temperature gradient for more than 4 minutes. Photographs taken at one second intervals during the experiment clearly show that the bubbles move toward the hot spot on the platinum heater strip. This result is consistent with the predictions of the theory of thermocapillary driven bubble motion.

  7. Experimental study of the swirl motion in direct injection diesel engines under steady state flow conditions (by LDA)

    SciTech Connect

    Snauwaert, P.; Sierens, R.

    1986-01-01

    A detailed three-dimensional study of the mean flow and the turbulence inside the liner of a direct injection diesel engine under steady state flow conditions has been carried out by laser doppler anemometer measurements. The influence of the valve lift, the port orientation (using a cylinder head with variable direction of the inlet channel) and the mass flow on flow characteristics (kinetic energy distributions, momentum flux, swirl parameters) has been analysed. These flow characteristics have been used to analyse the relation between the real flow pattern and swirl parameters as measured by the flow rectifier method and the paddle wheel anemometer.

  8. An Experimental Investigation of Flow Conditions in the Vicinity of an NACA D(sub S)-type Cowling

    NASA Technical Reports Server (NTRS)

    Bryant, Rosemary P.; Boswinkle, Robert W.

    1946-01-01

    Data are presented of the flow conditions in the vicinity of an NACA D sub S -type cowling. Tests were made of a 1/2 scale-nacelle model at inlet-velocity ratios ranging from 0.23 to 1.02 and angles of attack from 6 deg to 10 deg. The velocity and direction of flow in the vertical plane of symmetry of the cowling were determined from orifices and tufts installed on a board aligned with the flow. Diagrams showing velocity ratio contours and lines of constant flow angles are given.

  9. Conditioned Medium from Early-Outgrowth Bone Marrow Cells Is Retinal Protective in Experimental Model of Diabetes

    PubMed Central

    Duarte, Diego A.; Papadimitriou, Alexandros; Gilbert, Richard E.; Thai, Kerri; Zhang, Yanling; Rosales, Mariana A. B.; Lopes de Faria, José B.; Lopes de Faria, Jacqueline M.

    2016-01-01

    Bone marrow-derived cells were demonstrated to improve organ function, but the lack of cell retention within injured organs suggests that the protective effects are due to factors released by the cells. Herein, we tested cell therapy using early outgrowth cells (EOCs) or their conditioned media (CM) to protect the retina of diabetic animal models (type 1 and type 2) and assessed the mechanisms by in vitro study. Control and diabetic (db/db) mice (8 weeks of age) were randomized to receive a unique intravenous injection of 5×105EOCs or 0.25 ml thrice weekly tail-vein injections of 10x concentrated CM and Wystar Kyoto rats rendered diabetic were randomized to receive 0.50 ml thrice weekly tail-vein injections of 10x concentrated CM. Four weeks later, the animals were euthanized and the eyes were enucleated. Rat retinal Müller cells (rMCs) were exposed for 24 h to high glucose (HG), combined or not with EOC-conditioned medium (EOC-CM) from db/m EOC cultures. Diabetic animals showed increase in diabetic retinopathy (DR) and oxidative damage markers; the treatment with EOCs or CM infusions significantly reduced this damage and re-established the retinal function. In rMCs exposed to diabetic milieu conditions (HG), the presence of EOC-CM reduced reactive oxygen species production by modulating the NADPH-oxidase 4 system, thus upregulating SIRT1 activity and deacetylating Lys-310-p65-NFκB, decreasing GFAP and VEGF expressions. The antioxidant capacity of EOC-CM led to the prevention of carbonylation and nitrosylation posttranslational modifications on the SIRT1 molecule, preserving its activity. The pivotal role of SIRT1 on the mode of action of EOCs or their CM was also demonstrated on diabetic retina. These findings suggest that EOCs are effective as a form of systemic delivery for preventing the early molecular markers of DR and its conditioned medium is equally protective revealing a novel possibility for cell-free therapy for the treatment of DR. PMID:26836609

  10. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  11. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  12. Humanistic Education and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  13. Children's Rights and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1982-01-01

    Educators need to seriously reflect upon the concept of children's rights. Though the idea of children's rights has been debated numerous times, the idea remains vague and shapeless; however, Maslow's theory of self-actualization can provide the children's rights idea with a needed theoretical framework. (Author)

  14. Culture Studies and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1983-01-01

    True citizenship education is impossible unless students develop the habit of intelligently evaluating cultures. Abraham Maslow's theory of self-actualization, a theory of innate human needs and of human motivation, is a nonethnocentric tool which can be used by teachers and students to help them understand other cultures. (SR)

  15. Group Counseling for Self-Actualization.

    ERIC Educational Resources Information Center

    Streich, William H.; Keeler, Douglas J.

    Self-concept, creativity, growth orientation, an integrated value system, and receptiveness to new experiences are considered to be crucial variables to the self-actualization process. A regular, year-long group counseling program was conducted with 85 randomly selected gifted secondary students in the Farmington, Connecticut Public Schools. A…

  16. Racial Discrimination in Occupations: Perceived and Actual.

    ERIC Educational Resources Information Center

    Turner, Castellano B.; Turner, Barbara F.

    The relationship between the actual representation of Blacks in certain occupations and individual perceptions of the occupational opportunity structure were examined. A scale which rated the degree of perceived discrimination against Blacks in 21 occupations was administered to 75 black male, 70 black female, 1,429 white male and 1,457 white…

  17. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  18. Time interval moderates the relationship between psyching-up and actual sprint performance.

    PubMed

    Hammoudi-Nassib, Sarra; Chtara, Moktar; Nassib, Sabri; Briki, Walid; Hammoudi-Riahi, Sabra; Tod, David; Chamari, Karim

    2014-11-01

    This study attempted to test whether the strongest effect of psyching-up (PU) strategy on actual sprint performance can be observed when the strategy is used immediately (or almost) before performance compared with when there is a delay between PU and performance. To do so, 16 male sprinters (age, 20.6 ± 1.3 years; body mass, 77.5 ± 7.1 kg; height, 180.8 ± 5.6 cm) were enrolled in a counterbalanced experimental design in which participants were randomly assigned to 10 sessions (2 [Experimental Condition: imagery vs. distraction] × 5 [Time Intervals: no interval, 1 minute, 2 minutes, 3 minutes, and 5 minutes]). Before performing the experimental tasks, participants rated: (a) the Hooper index, (b) their degree of self-confidence, and (c) after the completion of the experimental test; they rated their perceived effort. Findings showed that the imagery significantly improved sprint performance. Specifically, the imagery enhanced performance on the phase of acceleration (0-10 m) and on the overall sprint (0-30 m) when used immediately before performance and at 1- and 2-minute intervals but not for 3- and 5-minute intervals. These findings support the hypothesis that the potential effect of the PU strategy on performance vanishes over time. The pre-experimental task Hooper and self-efficacy indexes did not change across the 10 experimental sessions, reinforcing the view that the observed performance changes were directly caused by the experimental manipulation and not through any altered status of the athletes (self-efficacy, fatigue/recovery, and stress). The potential mechanisms underlying such a process and practical applications are discussed. PMID:25029002

  19. Validation of Reference Genes for RT-qPCR Studies of Gene Expression in Preharvest and Postharvest Longan Fruits under Different Experimental Conditions.

    PubMed

    Wu, Jianyang; Zhang, Hongna; Liu, Liqin; Li, Weicai; Wei, Yongzan; Shi, Shengyou

    2016-01-01

    Reverse transcription quantitative PCR (RT-qPCR) as the accurate and sensitive method is use for gene expression analysis, but the veracity and reliability result depends on whether select appropriate reference gene or not. To date, several reliable reference gene validations have been reported in fruits trees, but none have been done on preharvest and postharvest longan fruits. In this study, 12 candidate reference genes, namely, CYP, RPL, GAPDH, TUA, TUB, Fe-SOD, Mn-SOD, Cu/Zn-SOD, 18SrRNA, Actin, Histone H3, and EF-1a, were selected. Expression stability of these genes in 150 longan samples was evaluated and analyzed using geNorm and NormFinder algorithms. Preharvest samples consisted of seven experimental sets, including different developmental stages, organs, hormone stimuli (NAA, 2,4-D, and ethephon) and abiotic stresses (bagging and girdling with defoliation). Postharvest samples consisted of different temperature treatments (4 and 22°C) and varieties. Our findings indicate that appropriate reference gene(s) should be picked for each experimental condition. Our data further showed that the commonly used reference gene Actin does not exhibit stable expression across experimental conditions in longan. Expression levels of the DlACO gene, which is a key gene involved in regulating fruit abscission under girdling with defoliation treatment, was evaluated to validate our findings. In conclusion, our data provide a useful framework for choice of suitable reference genes across different experimental conditions for RT-qPCR analysis of preharvest and postharvest longan fruits. PMID:27375640

  20. Validation of Reference Genes for RT-qPCR Studies of Gene Expression in Preharvest and Postharvest Longan Fruits under Different Experimental Conditions

    PubMed Central

    Wu, Jianyang; Zhang, Hongna; Liu, Liqin; Li, Weicai; Wei, Yongzan; Shi, Shengyou

    2016-01-01

    Reverse transcription quantitative PCR (RT-qPCR) as the accurate and sensitive method is use for gene expression analysis, but the veracity and reliability result depends on whether select appropriate reference gene or not. To date, several reliable reference gene validations have been reported in fruits trees, but none have been done on preharvest and postharvest longan fruits. In this study, 12 candidate reference genes, namely, CYP, RPL, GAPDH, TUA, TUB, Fe-SOD, Mn-SOD, Cu/Zn-SOD, 18SrRNA, Actin, Histone H3, and EF-1a, were selected. Expression stability of these genes in 150 longan samples was evaluated and analyzed using geNorm and NormFinder algorithms. Preharvest samples consisted of seven experimental sets, including different developmental stages, organs, hormone stimuli (NAA, 2,4-D, and ethephon) and abiotic stresses (bagging and girdling with defoliation). Postharvest samples consisted of different temperature treatments (4 and 22°C) and varieties. Our findings indicate that appropriate reference gene(s) should be picked for each experimental condition. Our data further showed that the commonly used reference gene Actin does not exhibit stable expression across experimental conditions in longan. Expression levels of the DlACO gene, which is a key gene involved in regulating fruit abscission under girdling with defoliation treatment, was evaluated to validate our findings. In conclusion, our data provide a useful framework for choice of suitable reference genes across different experimental conditions for RT-qPCR analysis of preharvest and postharvest longan fruits. PMID:27375640

  1. Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions

    PubMed Central

    Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

    2014-01-01

    Application of zero-valent iron nanoparticles (nZVI) for Zn2+ removal and its mechanism were discussed. It demonstrated that the uptake of Zn2+ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn2+ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn2+ removal by nZVI. The DO enhanced the removal efficiency of Zn2+. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn2+ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn2+ by nZVI because the existing H+ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn2+ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn2+ were higher than Cd2+. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn2+. PMID:24416439

  2. [Influence of GABA derivatives on some indices of lipid peroxidation in immunocompetent organs under experimental immunopathology conditions].

    PubMed

    Samotrueva, M A; Magomedov, M M; Khlebtsova, E B; Tiurenkov, I N

    2011-01-01

    The effects of GABA derivatives phenotropil (25 mg/kg), phenibut (25 mg/kg), and baclofen (2 mg/kg) on the process of lipid peroxidation (LPO), as manifested by the initial level of malonic dialdehyde, velocity of spontaneous and ascorbate-dependent LPO, and the catalase activity in the homogenates of thymus and spleen, have been studied on rats of the Wistar line with cyclophosphamide (CPHA) immunodepression and lipopolysacharide (LPS) immune stress. It is established that, under the action of CPHA and LPS, activation of the LPO processes takes place in the immune organs. Under these conditions, changes of the catalase activity exhibited some specific features: in the animals under LPS action, the catalase activity increased in the spleen, while being decreased in the thymus; under the influence of CPHA, the activity of this enzyme decreased in both organs. An analysis of the antioxidant activity of GABA derivatives under the conditions of CPHA-induced immunodepression showed that all substances upon intraperitoneal introduction for 5 days favored the elimination of disturbances by suppressing the LPO processes and increasing the antioxidant protection activity. On the background of LPS-induced immune stress, all the tested substances showed a correcting action with respect to indicated biochemical processes in the thymus, while only phenibut activated the antioxidant system in the spleen. PMID:22232912

  3. Experimental and Computational Study of the Hydrodynamics of Trickle Bed Flow Reactor Operating Under Different Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.

    2014-12-01

    Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.

  4. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  5. Rapid and persistent change of microbial community and gross N turnover under experimentally simulated climate change conditions in alpine grassland

    NASA Astrophysics Data System (ADS)

    Wang, Changhui; Chen, Zhe; Unteregelsbacher, Sebastian; Gschwendtner, Silvia; Schloter, Michael; Butterbach-Bahl, Klaus; Dannenmann, Michael

    2013-04-01

    Alpine grasslands of Central Europe are exposed to strong warming and to altered precipitation patterns, suggesting that ecosystem nitrogen (N) cycling may be vulnerable to future climatic conditions. In order to investigate the response of soil microbial community and N transformations to predicted climate change conditions, we conducted an ecosystem manipulation experiment following the "space for time" approach in the TERENO (Terrestrial Environmental Observatories) pre-alpine grassland observatory. For this purpose, we dislocated 200 mini-lysimeters containing intact plant-soil systems down an altitudinal gradient from 860m to 550m above sea level, with corresponding control transfers within the high altitude site. After an equilibration period of 2.5 years, a full annual cycle of gross rates of N turnover as well as microbial biomass- and -community dynamics was monitored based on 15 sampling dates in two soil layers. For the monitored year, simulation of climate change via lysimeter transfer had increased mean annual soil temperature in 5 cm depth on average by 2.4 °C, but on the other hand promoted soil frost in winter due to reduced snow cover. Soil moisture was decreased on average by 20%. Gross N turnover and the abundance of N cycle genes in soil were characterized by pronounced seasonal dynamics, with both summer and winter representing key periods for the annual sum of N turnover. The abundance of ammonia oxidizing archae (AOA) genes exceeded the abundance of ammonia oxidizing bacterial (AOB) genes by approximately three orders of magnitude. Climate change simulation strongly increased the abundance of both AOB and AOA gene copies in soil, consistent with an increase of annual gross nitrification rates by 41%. Gross N mineralization was even increased by 141% in the climate change treatment. The abundance of AOA genes in soil explained 80% of the variability of gross nitrification rates over the full annual course. These results provide strong

  6. River bed armoring in a local scour under no-supply conditions; experimental investigation and numerical model validation

    NASA Astrophysics Data System (ADS)

    Török, Gergerly; Baranya, Sandor; Rüther, Nils

    2016-04-01

    The aim of this study is to present a novel method for numerical modeling of morphological changes. The essence of the method doesn't mean the development of a new sediment transport formula, but the combined application of the existing, conditionally validated sediment transport models. Many bedload transport formulas can be found in the literature, which were developed based on different field and laboratory measurements. Thus, the most reliability of the models usually can be expected only for the given morphological and hydrological conditions connected to the base measurements. However, commonly in the analysed cases the morphological and hydrological features are more variable both in time and in space. Therefore, the hypothesis of this study is that, complex hydromorphological processes can't be modeled by one sediment transport formula. The authors present a solution based on laboratory experiments. Spatio-temporal developments of bed armoring, local scouring and local sediment deposition under no supply condition was monitored and analysed. The sediment transport model of Wilcock and Crowe (2003) was expected to calculate properly the local scouring and bed armoring processes, while the motion and aggradation of the finer materials were supposed to estimate reliably by the van Rijn formula (1984). The main challenge of the combining method is to find an appropriate criterion to decide which transport formula is activated in the given space and in the given time step. The result of the investigation showed that the most reliable criteria is based on the d50 value. As soon as the d50 grain size goes below a certain value, van Rijn is activated, otherwise the Wilcock and Crowe formula calculates the sorting and armoring processes. The results show that the combining method clearly improve the reliability of the morphological calculation. The benefit of the Wilcock and Crowe model is that it estimates quite well the sediment transport in mixed or armored

  7. Electrophysiological effects of non-invasive Radio Electric Asymmetric Conveyor (REAC) on thalamocortical neural activities and perturbed experimental conditions.

    PubMed

    Zippo, Antonio G; Rinaldi, Salvatore; Pellegata, Giulio; Caramenti, Gian Carlo; Valente, Maurizio; Fontani, Vania; Biella, Gabriele E M

    2015-01-01

    The microwave emitting Radio Electric Asymmetric Conveyor (REAC) is a technology able to interact with biological tissues at low emission intensity (2 mW at the emitter and 2.4 or 5.8 GHz) by inducing radiofrequency generated microcurrents. It shows remarkable biological effects at many scales from gene modulations up to functional global remodeling even in human subjects. Previous REAC experiments by functional Magnetic Resonance Imaging (fMRI) on healthy human subjects have shown deep modulations of cortical BOLD signals. In this paper we studied the effects of REAC application on spontaneous and evoked neuronal activities simultaneously recorded by microelectrode matrices from the somatosensory thalamo-cortical axis in control and chronic pain experimental animal models. We analyzed the spontaneous spiking activity and the Local Field Potentials (LFPs) before and after REAC applied with a different protocol. The single neuron spiking activities, the neuronal responses to peripheral light mechanical stimuli, the population discharge synchronies as well as the correlations and the network dynamic connectivity characteristics have been analyzed. Modulations of the neuronal frequency associated with changes of functional correlations and significant LFP temporal realignments have been diffusely observed. Analyses by topological methods have shown changes in functional connectivity with significant modifications of the network features. PMID:26658170

  8. Electrophysiological effects of non-invasive Radio Electric Asymmetric Conveyor (REAC) on thalamocortical neural activities and perturbed experimental conditions

    PubMed Central

    Zippo, Antonio G.; Rinaldi, Salvatore; Pellegata, Giulio; Caramenti, Gian Carlo; Valente, Maurizio; Fontani, Vania; Biella, Gabriele E. M.

    2015-01-01

    The microwave emitting Radio Electric Asymmetric Conveyor (REAC) is a technology able to interact with biological tissues at low emission intensity (2 mW at the emitter and 2.4 or 5.8 GHz) by inducing radiofrequency generated microcurrents. It shows remarkable biological effects at many scales from gene modulations up to functional global remodeling even in human subjects. Previous REAC experiments by functional Magnetic Resonance Imaging (fMRI) on healthy human subjects have shown deep modulations of cortical BOLD signals. In this paper we studied the effects of REAC application on spontaneous and evoked neuronal activities simultaneously recorded by microelectrode matrices from the somatosensory thalamo-cortical axis in control and chronic pain experimental animal models. We analyzed the spontaneous spiking activity and the Local Field Potentials (LFPs) before and after REAC applied with a different protocol. The single neuron spiking activities, the neuronal responses to peripheral light mechanical stimuli, the population discharge synchronies as well as the correlations and the network dynamic connectivity characteristics have been analyzed. Modulations of the neuronal frequency associated with changes of functional correlations and significant LFP temporal realignments have been diffusely observed. Analyses by topological methods have shown changes in functional connectivity with significant modifications of the network features. PMID:26658170

  9. The Effects of Experimental Conditions on the Refractive Index and Density of Low-temperature Ices: Solid Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Loeffler, M. J.; Moore, M. H.; Gerakines, P. A.

    2016-08-01

    We present the first study on the effects of the deposition technique on the measurements of the visible refractive index and the density of a low-temperature ice using solid carbon dioxide (CO2) at 14–70 K as an example. While our measurements generally agree with previous studies that show a dependence of index and density on temperature below 50 K, we also find that the measured values depend on the method used to create each sample. Below 50 K, we find that the refractive index varied by as much as 4% and the density by as much as 16% at a single temperature depending on the deposition method. We also show that the Lorentz–Lorenz approximation is valid for solid CO2 across the full 14–70 K temperature range, regardless of the deposition method used. Since the refractive index and density are important in calculations of optical constants and infrared (IR) band strengths of materials, our results suggest that the deposition method must be considered in cases where n vis and ρ are not measured in the same experimental setup where the IR spectral measurements are made.

  10. Experimental and theoretical characterization of microbial bioanodes formed in pulp and paper mill effluent in electrochemically controlled conditions.

    PubMed

    Ketep, Stephanie F; Fourest, Eric; Bergel, Alain

    2013-12-01

    Microbial bioanodes were formed in pulp and paper effluent on graphite plate electrodes under constant polarization at -0.3 V/SCE, without any addition of nutriment or substrate. The bioanodes were characterized in 3-electrode set-ups, in continuous mode, with hydraulic retention times from 6 to 48 h and inlet COD from 500 to 5200 mg/L. Current densities around 4A/m(2) were obtained and voltammetry curves indicated that 6A/m(2) could be reached at +0.1 V/SCE. A theoretical model was designed, which allowed the effects of HRT and COD to be distinguished in the complex experimental data obtained with concomitant variations of the two parameters. COD removal due to the electrochemical process was proportional to the hydraulic retention time and obeyed a Michaelis-Menten law with respect to the COD of the outlet flow, with a Michaelis constant KCOD of 400mg/L. An inhibition effect occurred above inlet COD of around 3000 mg/L. PMID:24096279

  11. Experimental investigation on the corrosion behavior of Al3Ti-based intermetallic compounds in nuclear reactor normal operation conditions

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Kim, Il-Hyun; Kim, Hyun-Gil; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Koo, Yang-Hyun

    2015-12-01

    The corrosion behavior of Al3Ti-based intermetallic compounds was investigated under nuclear reactor normal operation conditions. The corrosion test was performed for Al-25Ti-10Cr and Al-21Ti-23Cr (at.%) in 633 K water and 673 K steam. The corroded surface was analyzed to identify the corrosion products. Both alloys showed a weight loss in 633 K water with no appreciable difference between the alloys. The corroded layer formed in water was shown to be the mixture of AlO(OH), TiO2, and Cr2O3. In 673 K steam, the corrosion behaviors of both alloys were similar with a small amount of weight gain. A thin, stable Al2O3 layer was formed on the surface as result of oxidation in 673 K steam.

  12. Comparison of 'HoBi'-like viral populations among persistent infected calves generated under experimental conditions and to inoculum virus.

    PubMed

    Weber, M N; Bauermann, F V; Bayles, D O; Canal, C W; Neill, J D; Ridpath, J F

    2016-05-01

    Like other members from the Pestivirus genus, 'HoBi'-like pestiviruses cause economic losses for cattle producers due to both acute and persistent infections. The present study analyzed for the first time PI animals derived from a controlled infection with two different 'HoBi'-like strains where the animals were maintained under conditions where superinfection by other pestiviruses could be excluded. The sequence of the region coding for viral glycoproteins E1/E2 of variants within the swarms of viruses present in the PI calves and two viral inoculums used to generate them were compared. Differences in genetic composition of the viral swarms were observed suggesting that host factors can play a role in genetic variations among PIs. Moreover, PIs generated with the same inoculum showed amino acid substitutions in similar sites of the polyprotein, even in serum from PIs with different quasispecies composition, reinforcing that some specific sites in E2 are important for host adaptation. PMID:26971244

  13. Analysis and study of zero displacement quantities of low-level light sight device based on shooting experimental condition

    NASA Astrophysics Data System (ADS)

    Gao, Youtang; Xu, Yuan; Tian, Si; Chang, Benkang

    2009-05-01

    In order to solve the problem of zero displacement momentum of Low-level-light (LLL) sight device, it requitres to provide regulating structure of LLL sight device reticle. Through force analysis of the adjusting screw thread mechanism of reticle under load conditions in shoot test, especially through the calculation of the accumulating value of the circumference torque Tz when the equivalent frictional angle ρ changes, it reveals the zero displacement momentum mechanism of the LLL sight device under the load functions in the shoot test. Applying CMETS005 computer-controlled mulit-environment test of LLL sight device detection systems of this study for practical test, error precision is less than 0.05 mil and the measuring range is greater than 40 mil, which presents that the testing data are reliable and provide theoretical analysis basis for the production of other direct vision sight devices.

  14. Succession of the sea-surface microlayer in the Baltic Sea under natural and experimentally induced low-wind conditions

    NASA Astrophysics Data System (ADS)

    Stolle, C.; Nagel, K.; Labrenz, M.; Jürgens, K.

    2010-05-01

    The sea-surface microlayer (SML) is located within the boundary between the atmosphere and hydrosphere. The high spatial and temporal variability of the SML's properties, however, have hindered a clear understanding of interactions between biotic and abiotic parameters at or across the air-water interface. Among the factors changing the physical and chemical environment of the SML, wind speed is an important one. In order to examine the temporal effects of minimized wind influence, SML samples were obtained from the southern Baltic Sea and from mesocosm experiments in a marina to study naturally and artificially calmed sea surfaces. Organic matter concentrations as well as abundance, 3H-thymidine incorporation, and the community composition of bacteria in the SML (bacterioneuston) compared to the underlying bulk water (ULW) were analyzed. In all SML samples, dissolved organic carbon and nitrogen were only slightly enriched and showed low temporal variability, whereas particulate organic carbon and nitrogen were generally greatly enriched and highly variable. This was especially pronounced in a dense surface film (slick) that developed during calm weather conditions as well as in the artificially calmed mesocosms. Overall, bacterioneuston abundance and productivity correlated with changing concentrations of particulate organic matter. Moreover, changes in the community composition in the field study were stronger in the particle-attached than in the non-attached bacterioneuston. This implies that decreasing wind enhances the importance of particle-attached assemblages and finally induces a succession of the bacterial community in the SML. Eventually, under very calm meteorological conditions, there is an uncoupling of the bacterioneuston from the ULW.

  15. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions.

    PubMed

    Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

    2014-01-01

    Application of zero-valent iron nanoparticles (nZVI) for Zn²⁺ removal and its mechanism were discussed. It demonstrated that the uptake of Zn²⁺ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn²⁺ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn²⁺ removal by nZVI. The DO enhanced the removal efficiency of Zn²⁺. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn²⁺ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn²⁺ by nZVI because the existing H⁺ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn²⁺ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn²⁺ were higher than Cd²⁺. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn²⁺. PMID:24416439

  16. Experimental consideration of capillary chromatography based on tube radial distribution of ternary mixture carrier solvents under laminar flow conditions.

    PubMed

    Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2011-01-01

    A capillary chromatography system has been developed based on the tube radial distribution of the carrier solvents using an open capillary tube and a water-acetonitrile-ethyl acetate mixture carrier solution. This tube radial distribution chromatography (TRDC) system works under laminar flow conditions. In this study, a phase diagram for the ternary mixture carrier solvents of water, acetonitrile, and ethyl acetate was constructed. The phase diagram that included a boundary curve between homogeneous and heterogeneous solutions was considered together with the component ratios of the solvents in the homogeneous carrier solutions required for the TRDC system. It was found that the TRDC system performed well with homogeneous solutions having component ratios of the solvents that were positioned near the homogeneous-heterogeneous solution boundary of the phase diagram. For preparing the carrier solutions of water-hydrophilic/hydrophobic organic solvents for the TRDC system, we used for the first time methanol, ethanol, 1,4-dioxane, and 1-propanol, instead of acetonitrile (hydrophilic organic solvent), as well as chloroform and 1-butanol, instead of ethyl acetate (hydrophobic organic solvent). The homogeneous ternary mixture carrier solutions were prepared near the homogeneous-heterogeneous solution boundary. Analyte mixtures of 2,6-naphthalenedisulfonic acid and 1-naphthol were separated with the TRDC system using these homogeneous ternary mixture carrier solutions. The pressure change in the capillary tube under laminar flow conditions might alter the carrier solution from homogeneous in the batch vessel to heterogeneous, thus affecting the tube radial distribution of the solvents in the capillary tube. PMID:21415507

  17. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  18. An Experimental and Modeling Study of Evaporation from Bare Soils Subjected to Natural Boundary Conditions at the Land-Atmospheric Interface

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Ngo, V. V.; Cihan, A.; Sakaki, T.; Illangasekare, T. H.; kathleen m smits

    2011-12-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions. Because it is difficult to measure evaporation from soil,with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy and include, among others, a classical bulk aerodynamic formulation which requires knowledge of the relative humidity at the soil surface and a more non-traditional heat balance method which requires knowledge of soil temperature and soil thermal properties. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for evaporation rate estimates and to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for evaporation under dry soil conditions. This theory was used to compare estimates of evaporation based on different formulations of the bulk aerodynamic and heat balance methods. In order to experimentally validate the numerical formulations/code, we performed a series of two-dimensional physical model experiments under varying boundary conditions using test sand for which the

  19. Evaluation of experimentally measured and model-calculated pH for rock-brine-CO2 systems under geologic CO2 sequestration conditions

    SciTech Connect

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-14

    pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.

  20. Correlates of Counselor Self-Actualization and Client-Perceived Facilitativeness

    ERIC Educational Resources Information Center

    Selfridge, Fred F.; Vander Kolk, Charles

    1976-01-01

    Client ratings of the abilities of 33 school counselors to communicate the core facilitative conditions of empathy, regard, congruence, and trust are compared to the counselors' scores on a measure of self-actualization. Results support the contention that there exists a strong relationship between self-actualization and counselor effectiveness as…

  1. Increased resistance of Bt aspens to Phratora vitellinae (Coleoptera) leads to increased plant growth under experimental conditions.

    PubMed

    Hjältén, Joakim; Axelsson, E Petter; Whitham, Thomas G; LeRoy, Carri J; Julkunen-Tiitto, Riitta; Wennström, Anders; Pilate, Gilles

    2012-01-01

    One main aim with genetic modification (GM) of trees is to produce plants that are resistant to various types of pests. The effectiveness of GM-introduced toxins against specific pest species on trees has been shown in the laboratory. However, few attempts have been made to determine if the production of these toxins and reduced herbivory will translate into increased tree productivity. We established an experiment with two lines of potted aspens (Populus tremula×Populus tremuloides) which express Bt (Bacillus thuringiensis) toxins and the isogenic wildtype (Wt) in the lab. The goal was to explore how experimentally controlled levels of a targeted leaf beetle Phratora vitellinae (Coleoptera; Chrysomelidae) influenced leaf damage severity, leaf beetle performance and the growth of aspen. Four patterns emerged. Firstly, we found clear evidence that Bt toxins reduce leaf damage. The damage on the Bt lines was significantly lower than for the Wt line in high and low herbivory treatment, respectively. Secondly, Bt toxins had a significant negative effect on leaf beetle survival. Thirdly, the significant decrease in height of the Wt line with increasing herbivory and the relative increase in height of one of the Bt lines compared with the Wt line in the presence of herbivores suggest that this also might translate into increased biomass production of Bt trees. This realized benefit was context-dependent and is likely to be manifested only if herbivore pressure is sufficiently high. However, these herbivore induced patterns did not translate into significant affect on biomass, instead one Bt line overall produced less biomass than the Wt. Fourthly, compiled results suggest that the growth reduction in one Bt line as indicated here is likely due to events in the transformation process and that a hypothesized cost of producing Bt toxins is of subordinate significance. PMID:22292004

  2. Experimental Demonstration of the Formation of Liquid Brines under Martian Polar Conditions in the Michigan Mars Environmental Chamber

    NASA Astrophysics Data System (ADS)

    Fischer, Erik; Martinez, German; Elliott, Harvey; Borlina, Caue; Renno, Nilton

    2014-05-01

    Liquid water is one of the necessary ingredients for the development of life as we know it. The behavior of various liquid states of H2O such as liquid brine, undercooled liquid interfacial water, subsurface melt water and ground water [1] needs to be understood in order to address the potential habitability of Mars for microbes and future human exploration. It has been shown thermodynamically that liquid brines can exist under Martian polar conditions [2, 3]. We have developed the Michigan Mars Environmental Chamber (MMEC) to simulate the entire range of Martian surface and shallow subsurface conditions with respect to temperature, pressure, relative humidity, solar radiation and soil wetness at equatorial and polar latitudes. Our experiments in the MMEC show that deliquescence of NaClO4, Mg(ClO4)2 and Ca(ClO4)2 occurs diurnally under the environmental conditions of the Phoenix landing site when these salts get in contact with water ice. Since Phoenix detected these salts and water ice at the landing site, including frost formation, it is extremely likely that deliquescence occurs at the Phoenix landing site. By layering NaClO4, Mg(ClO4)2 or Ca(ClO4)2 on top of a pure water ice slab at 800 Pa and 190 K and raising the temperature stepwise across the eutectic temperature of the perchlorate salts, we observe distinct changes in the Raman spectra of the samples when deliquescence occurs. When crossing the eutectic temperatures of NaClO4 (236 K), Mg(ClO4)2 (205 K) and Ca(ClO4)2 (199 K) [4, 5], the perchlorate band of the Raman spectrum shows a clear shift from 953 cm-1 to 936 cm-1. Furthermore, the appearance of a broad O-H vibrational stretching spectrum between 3244 cm-1 and 3580 cm-1 is another indicator of deliquescence. This process of deliquescence occurs on the order of seconds when the perchlorate salt is in contact with water ice. On the contrary, when the perchlorate salt is only subjected to water vapor in the Martian atmosphere, deliquescence was not

  3. Experimental study on propagation of liquid-filled crack in gelatin: Shape and velocity in hydrostatic stress condition

    NASA Astrophysics Data System (ADS)

    Takada, Akira

    1990-06-01

    The three-dimensional shape and velocity of propagating cracks in the hydrostatic stress condition were studied by using gelatin, the physical properties of which were controlled to be constant. Various liquids (with various densities, viscosities, and volumes as the governed parameters) were injected in gelatin to form liquid-filled cracks. The directions of the crack growth and the propagation of an isolated crack are governed by the density difference between injected liquid and gelatin (Δρ), that is, a buoyancy. The propagation of a crack has two critical values: the first is the transition value to brittle fracture; the second is the value where segmentation begins to occur. The condition of a stable isolated crack formation is discussed. The crack shape of an isolated crack in the direction perpendicular to the crack plane is different from that of a growing crack with a fat tear drop form: the former has an elliptical top and a nearly flat bottom. The upper termination of an isolated crack in the vertical cross section has an elliptical shape, and the lower termination has a cusped shape. The lower part of the crack occupies the preexiting fracture which has formed by fracturing at the crack top. The crack thickness (w)/crack height (h) ratio is proportional to Δρ A, if the elastic moduli are constant. The crack length l/h ratio increase with h in the primary fracture, while the l/h ratio decreases with h in the preexisting fracture except for air-filled cracks. The ascending velocity of an isolated crack is proportional to Δρ3 h4, that is, Δρ w2, if the other physical properties are constant. The height and length of a growing penny-shaped crack are approximately proportional to A 3d1/3t4/9, so that the growth rate of height is in proportion to A3d3t-5/9 (A3d is constant injection rale). Some comparisons with the two-dimensional crack theory and applications for magma-filled cracks are discussed on the basis of these results.

  4. Phenotypes of Campylobacter jejuni luxS Mutants Are Depending on Strain Background, Kind of Mutation and Experimental Conditions

    PubMed Central

    Adler, Linda; Alter, Thomas; Sharbati, Soroush; Gölz, Greta

    2014-01-01

    Since the discovery that Campylobacter (C.) jejuni produces Autoinducer 2 (AI-2), various studies have been conducted to explore the function and role of AI-2 in C. jejuni. However, the interpretation of these analyses has been complicated by differences in strain backgrounds, kind of mutation and culture conditions used. Furthermore, all research on AI-2 dependent phenotypes has been conducted with AI-2 synthase (luxS) mutants. This mutation also leads to a disruption of the activated-methyl-cycle. Most studies lack sufficient complementation resulting in not knowing whether phenotypes of luxS mutants depend on disrupted metabolism or lack of AI-2. Additionally, no AI-2 receptor has been found yet. All this contributes to an intensive discussion about the exact role of AI-2 in C. jejuni. Therefore, we examined the impact of different experiment settings on three different C. jejuni luxS mutants on growth and motility (37°C and 42°C). Our study showed that differing phenotypes of C. jejuni luxS mutants depend on strain background, mutation strategy and culture conditions. Furthermore, we complemented experiments with synthetic AI-2 or homocysteine as well as the combination of both. Complementation with AI-2 and AI-2+homocysteine significantly increased the cell number of C. jejuni NCTC 11168ΔluxS in stationary phase compared to the non-complemented C. jejuni NCTC 11168ΔluxS mutant. Genetic complementation of both C. jejuni 81-176 luxS mutants resulted in wild type comparable growth curves. Also swarming ability could be partially complemented. While genetic complementation restored swarming abilities of C. jejuni 81-176ΔluxS, it did not fully restore the phenotype of C. jejuni 81-176::luxS, which indicates that compensatory mutations in other parts of the chromosome and/or potential polar effects may appear in this mutant strain. Also with neither synthetic complementation, the phenotype of the wild type-strains was achieved, suggesting yet another reason for

  5. Experimental and theoretical investigations of Cs-Ba vapor tacitron inverter for power conditioning in space power systems. Annual report, April 15, 1992--April 14, 1993

    SciTech Connect

    El-Genk, M.; Murray, C.; Wernsman, B.

    1993-01-01

    The operation characteristics of the Cs-Ba tacitron as a switch are investigated experimentally in three modes: (a) breakdown mode, (b) I-V mode, and (c) current modulation mode. The switching frequency, grid potentials for ignition and extinguishing of discharge, and the Cs pressure and emission conditions (Ba pressure and emitter temperature) for stable current modulation are determined. The experimental data is also used to determine the off-time required for successful ignition, and the effects of the aforementioned operation parameters on the ignition duty cycle threshold for stable modulation. Operation parameters measured include switching frequency up to 20 kHz, hold-off voltage up to 180 V, current densities in excess of 15 A/cm{sup 2}, switch power density of 1 kW/cm{sup 2}. and a switching efficiency in excess of 90% at collector C: realer than 30 V. The voltage drop strongly depends on the Cs pressure and to a lesser extent on the emission conditions. Increasing the Cs pressure and/or the emission current lowers the voltage drop, however, for the same initial Cs pressure and emission conditions, the voltage drop in the I-V mode is usually lower than that during current modulation. As long as the discharge current is kept lower that the.emission current, the voltage drop during stable current modulation could be as low as 3 V.

  6. The Actual Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The actual Apollo 13 lunar landing mission prime crew from left to right are: Commander, James A. Lovell Jr., Command Module pilot, John L. Swigert Jr.and Lunar Module pilot, Fred W. Haise Jr. The original Command Module pilot for this mission was Thomas 'Ken' Mattingly Jr. but due to exposure to German measles he was replaced by his backup, Command Module pilot, John L. 'Jack' Swigert Jr.

  7. Experimental investigation and planetary implications of the stability of clathrate hydrates in aqueous solution at icy satellite conditions

    NASA Astrophysics Data System (ADS)

    Dunham, M.; Choukroun, M.; Barmatz, M.; Hodyss, R. P.; Smythe, W. D.

    2012-12-01

    Clathrate hydrates consist of hydrogen-bonded water molecules forming cages in which gas molecules are trapped individually. They are among the favored volatile reservoirs in solar system bodies, and are expected to play an important role in many processes: accretion of volatiles in planetesimals, outgassing on Titan, Enceladus, and comets. Their insulating thermal properties and high mechanical strength also bear important implications for understanding the evolution of icy satellites like Europa. However, the conditions allowing for their formation and/or their dissociation and the release of volatiles to the atmosphere (Titan) or the plumes (Enceladus) are still poorly understood. This is mainly because of a lack of knowledge on the stability of mixed clathrate hydrates in presence of anti-freeze agents such as ammonia. We have developed a high-pressure cryogenic calorimeter to address this deficiency in the literature. This liquid nitrogen - cooled Setaram BT2.15 calorimeter is located at the JPL Ice Physics Laboratory. The temperature range achievable with this instrument is 77-473 K. This calorimeter uses Calvet elements (3D arrays of thermocouples) to measure the heat flow required to follow a predefined heating rate within a sample and a reference cell with a resolution of 0.1 μW. A gas handling system has been designed and fabricated in house to reach pressures up to 100 bars, corresponding to several km depth in icy satellites. The thermodynamic properties of CO2 and CH4 clathrates with ammonia are under investigation, and the results will be used to constrain a statistical thermodynamic model of clathrates for applications to planetary environments. Preliminary results will be shown at the meeting. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Support from the Minnesota Space Grant Consortium, the NASA Outer Planets Research program, and government sponsorship are gratefully

  8. Conditional cash transfers and the double burden of malnutrition among children in Colombia: a quasi-experimental study.

    PubMed

    Lopez-Arana, Sandra; Avendano, Mauricio; Forde, Ian; van Lenthe, Frank J; Burdorf, Alex

    2016-05-28

    Conditional cash-transfer (CCT) programmes have been shown to improve the nutritional and health status of children from poor families. However, CCT programmes may have unintended and not fully known consequences by increasing the risk of overweight and obesity. We examined the impact of Familias en Acción (FA), a large CCT programme in Colombia, on the double burden of malnutrition among pre-school and school-aged children. Height and weight were measured before programme enrolment and during follow-ups in 1290 children from thirty-one treatment municipalities, being compared with 1584 children from sixty-two matched control municipalities. We used a difference-in-differences approach to evaluate the effect of FA on children's stunting, BMI z-scores, thinness, overweight and obesity, controlling for individual and municipality-level confounders. At baseline, the prevalences of stunting and overweight were 30·3 and 15·4 %, respectively, in treatment municipalities and 27·9 and 17·4 % in control municipalities. FA was associated with reduced odds of thinness (OR 0·26; 95 % CI 0·09, 0·75) and higher BMI-for-age z-scores (BMI z-scores) (β 0·14; 95 % CI 0·00, 0·27; P<0·05), although the latter was of small clinical significance. The prevalence of stunting, overweight and obesity decreased over time, but the effect of FA on these outcomes was not significant. The CCT programme in Colombia reduced the odds of thinness, but had no effect on stunting, a more prevalent outcome. The FA programme had no effect on overweight or obesity, although BMI z-scores were higher for children under treatment, raising the possibility of an increase of small clinical significance on BMI among pre-school and school-aged children. PMID:26988836

  9. Shear behavior of DFDP-1 borehole samples from the Alpine Fault, New Zealand, under a wide range of experimental conditions

    NASA Astrophysics Data System (ADS)

    Ikari, Matt J.; Trütner, Sebastian; Carpenter, Brett M.; Kopf, Achim J.

    2015-09-01

    The Alpine Fault is a major plate-boundary fault zone that poses a major seismic hazard in southern New Zealand. The initial stage of the Deep Fault Drilling Project has provided sample material from the major lithological constituents of the Alpine Fault from two pilot boreholes. We use laboratory shearing experiments to show that the friction coefficient µ of fault-related rocks and their precursors varies between 0.38 and 0.80 depending on the lithology, presence of pore fluid, effective normal stress, and temperature. Under conditions appropriate for several kilometers depth on the Alpine Fault (100 MPa, 160 °C, fluid-saturated), a gouge sample located very near to the principal slip zone exhibits µ = 0.67, which is high compared with other major fault zones targeted by scientific drilling, and suggests the capacity for large shear stresses at depth. A consistent observation is that every major lithological unit tested exhibits positive and negative values of friction velocity dependence. Critical nucleation patch lengths estimated using representative values of the friction velocity-dependent parameter a-b and the critical slip distance D c , combined with previously documented elastic properties of the wall rock, may be as low as ~3 m. This small value, consistent with a seismic moment M o = ~4 × 1010 for an M w = ~1 earthquake, suggests that events of this size or larger are expected to occur as ordinary earthquakes and that slow or transient slip events are unlikely in the approximate depth range of 3-7 km.

  10. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Wu, Mousong; Huang, Jiesheng; Wu, Jingwei; Tan, Xiao; Jansson, Per-Erik

    2016-04-01

    Soil freezing and thawing significantly impact water balance in cold regions. To improve estimations of evaporation from seasonally frozen and saline soils, field experiments representing various water and solute conditions were conducted during a 5-month-period in Inner Mongolia, China. A mass balance method was used to estimate evaporation from frost tubes (5.5 × 300 cm) with treatments combining three solute contents (0.2%, 0.4%, and 0.6% g g-1 dry soil) with three initial groundwater table depth (GWTDs) (2.0, 1.5, and 1.0 m). The dynamics of water, heat and solute transport in the frost tubes and in field plots were also investigated. Seasonal changes in evaporation rates were observed during soil freezing/thawing periods. Low evaporation rates were maintained when the soil was deeply frozen (e.g., in P3), and relatively higher values occurred at the beginning and the end of the experiments (e.g., in P1 and P5). The cumulative evaporation amount increased with an increase in initial solute content and declined with a lowering of the initial GWTDs. Solute accumulation with water in the surface layer during freezing decreased the osmotic potential in soil, resulting in obvious freezing point depressions and higher liquid water contents in the uppermost layer of soil. During the soil thawing periods, no evidence of any control of water availability on evaporation was noticed, although the surface soil contained large amounts of water. This study has led to an improved understanding of the coupled effects of water, heat and solute on evaporation from seasonally frozen saline soils and also has important implications for water and energy balance studies in cold regions.

  11. Experimental Challenges and Successes in Measuring Aerosol Concentrations at Prototypic Spray Conditions Encountered at the Hanford Waste Treatment and Immobilization Plant - 13327

    SciTech Connect

    Bontha, J.R.; Gauglitz, P.A.; Kurath, D.E.; Adkins, H.E.; Enderlin, C.W.; Blanchard, J.; Daniel, R.C.; Song, C.; Schonewill, P.P.; Mahoney, L.A.; Buchmiller, W.C.; Boeringa, G.; Jenks, J.

    2013-07-01

    To date, majority of the work done on measuring aerosol releases from failure of process piping was done using simple Newtonian fluids and small engineered-nozzles that do not accurately represent the fluids and breaches postulated during accident analysis at the Hanford Waste Treatment and Immobilization Plant (WTP). In addition, the majority of the work conducted in this area relies on in-spray measurements that neglect the effect of splatter and do not yield any information regarding aerosol generation rates from this additional mechanism. In order to estimate aerosol generation rates as well as reduce the uncertainties in estimating the aerosol release fractions over a broad range of breaches, fluid properties and operating conditions encountered at the WTP, the Pacific Northwest National Laboratory (PNNL) has designed, commissioned, and tested two experimental test stands. The first test stand, referred to as the large-scale test stand, was designed specifically to measure aerosol concentrations and release fractions under prototypic conditions of flow and pressure for a range of breaches postulated in the hazard analysis for 0.076 m (3-inch) process pipes. However, the size of the large-scale test stand, anticipated fluid loss during a breach, experimental risks, and costs associated with hazardous chemical simulant testing limited the large-scale test stand utility to water and a few non-hazardous physical simulants that did not fully span the particle size and rheological properties of the fluids encountered at the WTP. Overcoming these limitations and extending the range of simulants used, required designing and building a smaller test stand, which was installed and operated in a fume hood. This paper presents some of the features of both test stands, the experimental challenges encountered, and successes in measuring aerosol concentration in both test stands over a range of test conditions. (authors)

  12. Profiling of impurities in p-methoxymethamphetamine (PMMA) by means of SPE/TLC method. Examination of the influence of experimental conditions according to 2(4) factorial.

    PubMed

    Kochana, J; Wilamowski, J; Parczewski, A

    2003-07-01

    In the present paper profiling of impurities in p-methoxymethamphetamine (PMMA) by means of SPE/TLC is reported. PMMA was synthesised by Leuckart procedure. The influence of experimental conditions on the profile quality was investigated. The experiments were carried out according to a 2(4) factorial. The proposed characteristics of the profile quality (optimisation criterions) are based on a matrix presentation of TLC patterns. They take into account, simultaneously, the number of spots revealed, differences between R(f) values and intensity of fluorescence. PMID:12850419

  13. A detailed experimental study of the flow in the vicinity of the slotted wall of a wind tunnel with applications to the homogeneous slotted-wall boundary condition

    NASA Technical Reports Server (NTRS)

    Everhart, J. L.

    1986-01-01

    The results of an experimental study of the flow in the vicinity of the slotted wall of a transonic wind tunnel are presented. A general description of the test setup and the wall configurations studied are given as are examples of the pressure data measured on the airfoil and the walls of the tunnel. The flow angles measured in the vicinity of the slot are examined with implications as to their use in the theory of homogeneous slotted walls. Preliminary values of the classical, homogeneous, slotted-wall boundary-condition coefficient are given and compared with theory.

  14. Thermal Performance of Cryogenic Piping Multilayer Insulation in Actual Field Installations

    NASA Technical Reports Server (NTRS)

    Fesmire, J.; Augustnynowicz, S.; Thompson, K. (Technical Monitor)

    2002-01-01

    A standardized way of comparing the thermal performance of different pipelines in different sizes is needed. Vendor data for vacuum-insulated piping are typically given in heat leak rate per unit length (W/m) for a specific diameter pipeline. An overall k-value for actual field installations (k(sub oafi)) is therefore proposed as a more generalized measure for thermal performance comparison and design calculation. The k(sub oafi) provides a direct correspondence to the k-values reported for insulation materials and illustrates the large difference between ideal multilayer insulation (MLI) and actual MLI performance. In this experimental research study, a section of insulated piping was tested under cryogenic vacuum conditions, including simulated spacers and bending. Several different insulation systems were tested using a 1-meter-long cylindrical cryostat test apparatus. The simulated spacers tests showed significant degradation in the thermal performance of a given insulation system. An 18-meter-long pipeline test apparatus is now in operation at the Cryogenics Test Laboratory, NASA Kennedy Space Center, for conducting liquid nitrogen thermal performance tests.

  15. SPINE: SParse eIgengene NEtwork linking gene expression clusters in Dehalococcoides mccartyi to perturbations in experimental conditions

    SciTech Connect

    Mansfeldt, Cresten B.; Logsdon, Benjamin A.; Debs, Garrett E.; Richardson, Ruth E.; Mande, Shekhar C.

    2015-02-25

    We present a statistical model designed to identify the effect of experimental perturbations on the aggregate behavior of the transcriptome expressed by the bacterium Dehalococcoides mccartyi strain 195. Strains of Dehalococcoides are used in sub-surface bioremediation applications because they organohalorespire tetrachloroethene and trichloroethene (common chlorinated solvents that contaminate the environment) to non-toxic ethene. However, the biochemical mechanism of this process remains incompletely described. Additionally, the response of Dehalococcoides to stress-inducing conditions that may be encountered at field-sites is not well understood. The constructed statistical model captured the aggregate behavior of gene expression phenotypes by modeling the distinct eigengenes of 100 transcript clusters, determining stable relationships among these clusters of gene transcripts with a sparse network-inference algorithm, and directly modeling the effect of changes in experimental conditions by constructing networks conditioned on the experimental state. Based on the model predictions, we discovered new response mechanisms for DMC, notably when the bacterium is exposed to solvent toxicity. The network identified a cluster containing thirteen gene transcripts directly connected to the solvent toxicity condition. Transcripts in this cluster include an iron-dependent regulator (DET0096-97) and a methylglyoxal synthase (DET0137). To validate these predictions, additional experiments were performed. Continuously fed cultures were exposed to saturating levels of tetrachloethene, thereby causing solvent toxicity, and transcripts that were predicted to be linked to solvent toxicity were monitored by quantitative reverse-transcription polymerase chain reaction. Twelve hours after being shocked with saturating levels of tetrachloroethene, the control transcripts (encoding for a key hydrogenase and the 16S rRNA) did not significantly change. By contrast

  16. Experimental investigation of effect of surface gravity waves and spray on heat and momentum flux at strong wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum

  17. Post-conditioning exacerbates the MnSOD immune-reactivity after experimental cerebral global ischemia and reperfusion in the rat brain hippocampus.

    PubMed

    Nemethova, Miroslava; Danielisova, Viera; Gottlieb, Miroslav; Burda, Jozef

    2008-01-01

    This study monitored the effects of sub-lethal ischemia (post-conditioning) applied after a previous ischemic attack by way of the MnSOD immune-reactivity examined in CA1 and dentate gyrus of the rat hippocampus. The experimental 10 min transient cerebral ischemia was followed by 2 days of reperfusion, the rats then underwent a second ischemia (4 or 6 min post-conditioning). MnSOD immune-reactivity was evaluated after 5 h, 1 and 2 days. Results obtained by computer microdensitometric image analysis indicated that 4 min of ischemic post-conditioning caused higher MnSOD immune-reactivity than 6 min. However, higher viability of CA1 neurons after stronger (6 min) post-conditioning when production of MnSOD is lower, as well as differences between MnSOD in CA1 and dentate gyrus indicates another mechanism switching pro-apoptotic destination of CA1 neurons to anti-apoptotic. PMID:17936646

  18. Geochemical Data for Upper Mineral Creek, Colorado, Under Existing Ambient Conditions and During an Experimental pH Modification, August 2005

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A.; Steiger, Judy I.; Walton-Day, Katherine

    2009-01-01

    Mineral Creek, an acid mine drainage stream in south-western Colorado, was the subject of a water-quality study that employed a paired synoptic approach. Under the paired synoptic approach, two synoptic sampling campaigns were conducted on the same study reach. The initial synoptic campaign, conducted August 22, 2005, documented stream-water quality under existing ambient conditions. A second synoptic campaign, conducted August 24, 2005, documented stream-water quality during a pH-modification experiment that elevated the pH of Mineral Creek. The experimental pH modification was designed to determine the potential reductions in dissolved constituent concentrations that would result from the implementation of an active treatment system for acid mine drainage. During both synoptic sampling campaigns, a solution containing lithium bromide was injected continuously to allow for the calculation of streamflow using the tracer-dilution method. Synoptic water-quality samples were collected from 30 stream sites and 11 inflow locations along the 2-kilometer study reach. Data from the study provide spatial profiles of pH, concentration, and streamflow under both existing and experimentally-altered conditions. This report presents the data obtained August 21-24, 2005, as well as the methods used for sample collection and data analysis.

  19. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  20. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  1. An experimental station for advanced research on condensed matter under extreme conditions at the European Synchrotron Radiation Facility - BM29 beamline

    NASA Astrophysics Data System (ADS)

    Filipponi, Adriano; Borowski, Michael; Bowron, Daniel T.; Ansell, Stuart; Di Cicco, Andrea; De Panfilis, Simone; Itiè, Jean-Paul

    2000-06-01

    We describe state-of-the-art experimental techniques using the beamline BM29 of the European Synchrotron Radiation Facility (ESRF). This station exploits the unique characteristics of an ESRF bending magnet source to provide a tunable, collimated, x-ray beam to perform high quality x-ray absorption spectroscopy within the energy range of E=5-75 keV using Si(111), Si(311), and Si(511) crystal pairs. Energy scans can be performed over this wide energy range with excellent reproducibility, stability and resolution, usually better than ΔE/E≃5×10-5. The experimental setup has been exploited to study condensed matter under extreme conditions. We describe here two sample environment devices; the L' Aquila-Camerino oven for high-temperature studies up to 3000 K in high vacuum and the Paris-Edinburgh press suitable for high-pressure high-temperature studies in the range 0.1-7 GPa and temperatures up to 1500 K. These devices can be integrated in an experimental setup which combines various control and detection systems suitable to perform x-ray absorption spectroscopy, x-ray absorption temperature scans, and energy scanning x-ray diffraction (ESXD). The ESXD setup is based on a scintillator detector behind a fixed angle collimator aligned to the sample. The combination of these three measurements, which can be performed in rapid sequence on the sample during the experiment, provides an essential tool for structural investigations and in situ sample characterization.

  2. Comparison of interference-free numerical results with sample experimental data for the AEDC wall-interference model at transonic and subsonic flow conditions

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Allison, D. O.

    1974-01-01

    Numerical results obtained from two computer programs recently developed with NASA support and now available for use by others are compared with some sample experimental data taken on a rectangular-wing configuration in the AEDC 16-Foot Transonic Tunnel at transonic and subsonic flow conditions. This data was used in an AEDC investigation as reference data to deduce the tunnel-wall interference effects for corresponding data taken in a smaller tunnel. The comparisons were originally intended to see how well a current state-of-the-art transonic flow calculation for a simple 3-D wing agreed with data which was felt by experimentalists to be relatively interference-free. As a result of the discrepancies between the experimental data and computational results at the quoted angle of attack, it was then deduced from an approximate stress analysis that the sting had deflected appreciably. Thus, the comparisons themselves are not so meaningful, since the calculations must be repeated at the proper angle of attack. Of more importance, however, is a demonstration of the utility of currently available computational tools in the analysis and correlation of transonic experimental data.

  3. Power Delivery from an Actual Thermoelectric Generation System

    NASA Astrophysics Data System (ADS)

    Kaibe, Hiromasa; Kajihara, Takeshi; Nagano, Kouji; Makino, Kazuya; Hachiuma, Hirokuni; Natsuume, Daisuke

    2014-06-01

    Similar to photovoltaic (PV) and fuel cells, thermoelectric generators (TEGs) supply direct-current (DC) power, essentially requiring DC/alternating current (AC) conversion for delivery as electricity into the grid network. Use of PVs is already well established through power conditioning systems (PCSs) that enable DC/AC conversion with maximum-power-point tracking, which enables commercial use by customers. From the economic, legal, and regulatory perspectives, a commercial PCS for PVs should also be available for TEGs, preferably as is or with just simple adjustment. Herein, we report use of a PV PCS with an actual TEG. The results are analyzed, and proper application for TEGs is proposed.

  4. Interferometric measurement of actual oblique astigmatism of ophthalmic lenses

    NASA Astrophysics Data System (ADS)

    Wihardjo, Erning

    1995-03-01

    A technique for measuring oblique astigmatism error of ophthalmic lenses is described. The technique is based on a Mach-Zehnder interferometer, which allows us to simulate the actual conditions of the eye. The effects of the lens power, the pupilary aperture size and the viewing distance in calculating a projected pupil zone on the lens are discussed. The projected pupil size on the lens affects the measurement result of the oblique astigmatism error. Conversion of the interferogram to astigmatism error in diopters is given.

  5. Effects of direct-fed microbial supplementation on broiler performance, intestinal nutrient transport and integrity under experimental conditions with increased microbial challenge.

    PubMed

    Murugesan, G R; Gabler, N K; Persia, M E

    2014-02-01

    1. The effects of Aspergillus oryzae- and Bacillus subtilis-based direct-fed microbials (DFM) were investigated on the performance, ileal nutrient transport and intestinal integrity of broiler chickens, raised under experimental conditions, with increased intestinal microbial challenge. 2. The first study was a 3 × 2 factorial experiment, with 3 dietary treatments (control (CON), CON + DFM and CON + antibiotic growth promoter) with and without challenge. Chicks were fed experimental diets from 1 to 28 d, while the challenge was provided by vaccinating with 10 times the normal dose of commercial coccidial vaccine on d 9. In a second experiment, two groups of 1 d-old broilers, housed on built-up litter (uncleaned from two previous flocks), were fed the same CON and CON + DFM diets from 1 to 21 d. 3. The challenge in the first experiment reduced performance, but no differences were observed among dietary treatments from 8 to 28 d. The challenge reduced the ileal epithelial flux for D-glucose, L-lysine, DL-methionine and phosphorus on d 21. Epithelial flux for D-glucose, L-lysine and DL-methionine were increased by DFM. Ileal trans-epithelial electrical resistance (TER) was increased in challenged broilers fed DFM, although this was not observed in unchallenged birds as indicated by a significant interaction. 4. Ileal mucin mRNA expression and colon TER were increased, and colon endotoxin permeability was reduced by DFM on d 21 in the second experiment. 5. It was concluded that the addition of DFM in the diet improved the intestinal integrity of broiler chickens raised under experimental conditions designed to provide increased intestinal microbial challenge. PMID:24219515

  6. Using a Péclet number for the translocation of a polymer through a nanopore to tune coarse-grained simulations to experimental conditions

    NASA Astrophysics Data System (ADS)

    de Haan, Hendrick W.; Sean, David; Slater, Gary W.

    2015-02-01

    Coarse-grained simulations are often employed to study the translocation of DNA through a nanopore. The majority of these studies investigate the translocation process in a relatively generic sense and do not endeavor to match any particular set of experimental conditions. In this manuscript, we use the concept of a Péclet number for translocation, Pt, to compare the drift-diffusion balance in a typical experiment vs a typical simulation. We find that the standard coarse-grained approach overestimates diffusion effects by anywhere from a factor of 5 to 50 compared to experimental conditions using double stranded DNA (dsDNA). By defining a Péclet control parameter, λ , we are able to correct this and tune the simulations to replicate the experimental Pt (for dsDNA and other scenarios). To show the effect that a particular Pt can have on the dynamics of translocation, we perform simulations across a wide range of Pt values for two different types of driving forces: a force applied in the pore and a pulling force applied to the end of the polymer. As Pt brings the system from a diffusion dominated to a drift dominated regime, a variety of effects are observed including a non-monotonic dependence of the translocation time τ on Pt and a steep rise in the probability of translocating. Comparing the two force cases illustrates the impact of the crowding effects that occur on the trans side: a non-monotonic dependence of the width of the τ distributions is obtained for the in-pore force but not for the pulling force.

  7. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  8. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone.

    PubMed

    Thakur, Madhav Prakash; Reich, Peter B; Fisichelli, Nicholas A; Stefanski, Artur; Cesarz, Simone; Dobies, Tomasz; Rich, Roy L; Hobbie, Sarah E; Eisenhauer, Nico

    2014-06-01

    Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones. PMID:24668014

  9. A Review of Evidence for High Life Coefficients on Propeller and Rotor Blades Under Static Thrust Conditions with Some New Experimental Results

    NASA Technical Reports Server (NTRS)

    Talbot, Peter D.; Meyer, Mark; Branum, Lonnie; Burks, John S. (Technical Monitor)

    1994-01-01

    Interest has increased recently in the thrust-producing capability of rotors at very high collective pitch angles. An early reference noted this behaviour in rotors and offered alternative models for section lift characteristics to explain it. The same phenomenon was coincidentally noted and used in a propeller code, resulting in very good correlation with static thrust data. The proposed paper will present experimental data demonstrating the pronounced persistence of thrust for propellers at increasing collective pitch angles. Comparisons with blade element/momentum theory will be made. These results are expected to point to the need to define (ultimately to explain) aerodynamic lift and drag behaviour in a rotating environment. Experimental measurements made by the U.S. Army Aeroflightdynamics Directorate at the Ames Research Center have shown that locally measured normal force coefficients along the span of a highly twisted rotor blade continue to increase at high values of collective pitch. In some cases these coefficients exceed expected values for the same type of airfoil tested under two dimensional conditions. To date no one to the authors' knowledge has defined the variation of C(n) with pitch for very high angles (to 45 deg) in a rotating environment and for a blade of reasonably high aspect ratio; however, total propeller thrust measurements support the idea that stalling does not occur in the same way as on a wing. This paper will present experimental data in the form of surface pressure distributions as well as flow visualization (microtufts) to explore the aerodynamic behavior of the rotating airfoil at high values of blade incidence. This paper also reviews experimental evidence and infers some high lift coefficient behavior from it. Comparisons between predicted thrust, utilizing modified airfoil characteristics and a blade element model, and measured thrust for both rotors and propellers that cover the extremes of collective pitch are shown and

  10. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN)

    NASA Astrophysics Data System (ADS)

    Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.-C.; Le Sergeant D'Hendecourt, L.; Chiavassa, T.

    2011-11-01

    Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims: We present the first experimental investigation of the formation of aminoacetonitrile NH2CH2CN from the thermal processing of ices including methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods: We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spectroscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results: We demonstrate that methanimine can react with -CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH4+ -CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH4+ -CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH4+ -CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions.

  11. Experimental definition of microclimatic conditions based on water transfer and porous media properties for the conservation of prehistoric constructions: Cueva Pintada at Galdar, Gran Canaria, Spain

    NASA Astrophysics Data System (ADS)

    Benavente, D.; Cañaveras, J. C.; Cuezva, S.; Laiz, L.; Sanchez-Moral, S.

    2009-02-01

    Microclimatic parameters and natural materials were studied in order to assess conservation of the cave complex at Galdar, Gran Canaria. Based on the microclimatic data, experimental simulations were carried out to quantify water retention capacity and water vapour transport kinetics under continuously changing extreme temperatures and relative humidity values. The behaviour of natural construction materials is greatly influenced by changes in thermo-hygrometric conditions and is linked to pore structure. The host rock has a complex porous media: high porosity and polymodal pore size distribution, where the smallest pores contribute to water condensation, whilst large pores lead to high water absorption rates. The axial compressive strength of the host-rock decreases between 30 and 70% at water saturation. Stuccos covering cave wall paintings are formed by clay minerals, mainly smectites. These clay minerals cover a large specific surface area, which leads to a high capacity for water condensation and retention. It is also shown that neither water condensation nor vapour transport are noticeably modified by the presence of stucco on the host-rock when rapid, highly variable changes occur in environmental conditions if large shrinkage cracks are present. Results show that safe threshold microclimatic conditions can be found below 75% RH in the natural temperature range and that slight variations in temperature and relative humidity do not modify durability properties.

  12. Experimental study of laser-oxygen cutting of low-carbon steel using fibre and CO{sub 2} lasers under conditions of minimal roughness

    SciTech Connect

    Golyshev, A A; Malikov, A G; Orishich, A M; Shulyatyev, V B

    2014-10-31

    The results of an experimental study of laser-oxygen cutting of low-carbon steel using fibre and CO{sub 2} lasers are generalised. The dependence of roughness of the cut surface on the cutting parameters is investigated, and the conditions under which the surface roughness is minimal are formulated. It is shown that for both types of lasers these conditions can be expressed in the same way in terms of the dimensionless variables – the Péclet number Pe and the output power Q of laser radiation per unit thickness of the cut sheet – and take the form of the similarity laws: Pe = const, Q = const. The optimal values of Pe and Q are found. We have derived empirical expressions that relate the laser power and cutting speed with the thickness of the cut sheet under the condition of minimal roughness in the case of cutting by means of radiation from fibre and CO{sub 2} lasers. (laser technologies)

  13. Experimental investigations of uncovered-bundle heat transfer and two-phase mixture-level swell under high-pressure low heat-flux conditions. [PWR

    SciTech Connect

    Anklam, T. M.; Miller, R. J.; White, M. D.

    1982-03-01

    Results are reported from a series of uncovered-bundle heat transfer and mixture-level swell tests. Experimental testing was performed at Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF). The THTF is an electrically heated bundle test loop configured to produce conditions similar to those in a small-break loss-of-coolant accident. The objective of heat transfer testing was to acquire heat transfer coefficients and fluid conditions in a partially uncovered bundle. Testing was performed in a quasi-steady-state mode with the heated core 30 to 40% uncovered. Linear heat rates varied from 0.32 to 2.22 kW/m.rod (0.1 to 0.68 kW/ft.rod). Under these conditions peak clad temperatures in excess of 1050 K (1430/sup 0/F) were observed, and total heat transfer coefficients ranged from 0.0045 to 0.037 W/cm/sup 2/.K (8 to 65 Btu/h.ft/sup 2/./sup 0/F). Spacer grids were observed to enhance heat transfer at, and downstream of, the grid. Radiation heat transfer was calculated to account for as much as 65% of total heat transfer in low-flow tests.

  14. In situ and laboratory studies on the fate of specific organic compounds in an anaerobic landfill leachate plume, 1. Experimental conditions and fate of phenolic compounds

    NASA Astrophysics Data System (ADS)

    Nielsen, Per H.; Albrechtsen, Hans-Jørgen; Heron, Gorm; Christensen, Thomas H.

    1995-11-01

    The transformation of specific organic compounds was investigated by in situ and laboratory experiments in an anaerobic landfill leachate pollution plume at four different distances from the landfill. This paper presents the experimental conditions in the in situ microcosm and laboratory batch microcosm experiments performed and the results on the fate of 7 phenolic compounds. Part 2 of this series of papers, also published in this issue, presents the results on the fate of 8 aromatic compounds and 4 chlorinated aliphatic compounds. The redox conditions in the plume were characterized as methanogenic, Fe(III)-reducing and NO 3--reducing by the redox sensitive species present in groundwater and sediment and by bioassays. With a few exceptions the aquifer redox conditions were maintained throughout the experiments as monitored by redox sensitive species present in groundwater during the experiments, by redox sensitive species present in the sediment after the experiments and by bioassays performed after the experiments. Transformation of nitrophenol was very fast close to the landfill in strongly reducing conditions, while transformation was slower in the more oxidized part of the plume. Lag phases for the nitrophenols were short (maximum 10 days). Phenol was only transformed in the more distant part of the plume in experiments where NO 3-, Fe(III) and Mn(IV) reduction was dominant. Lag phases for phenol were either absent or lasted up to 2 months. Dichlorophenols were only transformed in experiments representing strongly reducing, presumably methanogenic, redox conditions close to the landfill after lag phases of up to 3 months. Transformation of o-cresol was not observed in any of the experiments throughout the plume. Generally, there was good accordance between the results obtained by in situ and laboratory experiments, both concerning redox conditions and the fate of the phenolic compounds. However, for phenol and 2,4-dichlorophenol, transformation was observed

  15. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  16. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  17. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  18. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  19. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  20. The actual status of Astronomy in Moldova

    NASA Astrophysics Data System (ADS)

    Gaina, A.

    The astronomical research in the Republic of Moldova after Nicolae Donitch (Donici)(1874-1956(?)) were renewed in 1957, when a satellites observations station was open in Chisinau. Fotometric observations and rotations of first Soviet artificial satellites were investigated under a program SPIN put in action by the Academy of Sciences of former Socialist Countries. The works were conducted by Assoc. prof. Dr. V. Grigorevskij, which conducted also research in variable stars. Later, at the beginning of 60-th, an astronomical Observatory at the Chisinau State University named after Lenin (actually: the State University of Moldova), placed in Lozovo-Ciuciuleni villages was open, which were coordinated by Odessa State University (Prof. V.P. Tsesevich) and the Astrosovet of the USSR. Two main groups worked in this area: first conducted by V. Grigorevskij (till 1971) and second conducted by L.I. Shakun (till 1988), both graduated from Odessa State University. Besides this research areas another astronomical observations were made: Comets observations, astroclimate and atmospheric optics in collaboration with the Institute of the Atmospheric optics of the Siberian branch of the USSR (V. Chernobai, I. Nacu, C. Usov and A.F. Poiata). Comets observations were also made since 1988 by D. I. Gorodetskij which came to Chisinau from Alma-Ata and collaborated with Ukrainean astronomers conducted by K.I. Churyumov. Another part of space research was made at the State University of Tiraspol since the beggining of 70-th by a group of teaching staff of the Tiraspol State Pedagogical University: M.D. Polanuer, V.S. Sholokhov. No a collaboration between Moldovan astronomers and Transdniestrian ones actually exist due to War in Transdniestria in 1992. An important area of research concerned the Radiophysics of the Ionosphere, which was conducted in Beltsy at the Beltsy State Pedagogical Institute by a group of teaching staff of the University since the beginning of 70-th: N. D. Filip, E

  1. MODIS Solar Diffuser: Modelled and Actual Performance

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.

  2. Actual drawing of histological images improves knowledge retention.

    PubMed

    Balemans, Monique C M; Kooloos, Jan G M; Donders, A Rogier T; Van der Zee, Catharina E E M

    2016-01-01

    Medical students have to process a large amount of information during the first years of their study, which has to be retained over long periods of nonuse. Therefore, it would be beneficial when knowledge is gained in a way that promotes long-term retention. Paper-and-pencil drawings for the uptake of form-function relationships of basic tissues has been a teaching tool for a long time, but now seems to be redundant with virtual microscopy on computer-screens and printers everywhere. Several studies claimed that, apart from learning from pictures, actual drawing of images significantly improved knowledge retention. However, these studies applied only immediate post-tests. We investigated the effects of actual drawing of histological images, using randomized cross-over design and different retention periods. The first part of the study concerned esophageal and tracheal epithelium, with 384 medical and biomedical sciences students randomly assigned to either the drawing or the nondrawing group. For the second part of the study, concerning heart muscle cells, students from the previous drawing group were now assigned to the nondrawing group and vice versa. One, four, and six weeks after the experimental intervention, the students were given a free recall test and a questionnaire or drawing exercise, to determine the amount of knowledge retention. The data from this study showed that knowledge retention was significantly improved in the drawing groups compared with the nondrawing groups, even after four or six weeks. This suggests that actual drawing of histological images can be used as a tool to improve long-term knowledge retention. PMID:26033842

  3. A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions.

    PubMed

    Fusseis, Florian; Steeb, Holger; Xiao, Xianghui; Zhu, Wen-lu; Butler, Ian B; Elphick, Stephen; Mäder, Urs

    2014-01-01

    A new modular X-ray-transparent experimental cell enables tomographic investigations of fluid rock interaction under natural reservoir conditions (confining pressure up to 20 MPa, pore fluid pressure up to 15 MPa, temperature ranging from 296 to 473 K). The portable cell can be used at synchrotron radiation sources that deliver a minimum X-ray flux density of 10(9) photons mm(-2) s(-1) in the energy range 30-100 keV to acquire tomographic datasets in less than 60 s. It has been successfully used in three experiments at the bending-magnet beamline 2BM at the Advanced Photon Source. The cell can be easily machined and assembled from off-the-shelf components at relatively low costs, and its modular design allows it to be adapted to a wide range of experiments and lower-energy X-ray sources. PMID:24365944

  4. Analytical prediction and experimental verification of performance at various operating conditions of a dual-mode traveling wave tube with multistage depressed collectors

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.; Kosmahl, H. G.; Ramins, P.; Stankiewicz, N.

    1981-01-01

    A comparison of analytical and experimental results is presented for a high performance dual-mode traveling wave tube (TWT) operated over a wide range conditions. The computations are carried out with advanced multidimensional computer programs. These programs model the electron beam as a series of disks or rings of charge and follow their trajectories from the rf input of the TWT through the slow-wave structure refocusing system to their points of impacts in the depressed collector. TWT performance, collector efficiency, and collector current distribution are computed and compared with measurements. Very good agreement was obtained between computed and measured TWT performance and collector efficiencies, and the computer design of a highly efficient collector was demonstrated.

  5. An experimental design approach to optimization of the liquid chromatographic separation conditions for the determination of metformin and glibenclamide in pharmaceutical formulation.

    PubMed

    Demiralay, Ebru Çubuk

    2012-06-01

    An optimization methodology is introduced for investigating the retention behavior and the separation factor of metformin, gliclazide (I.S.) and glibenclamide. This investigation has been focused on studying the influence of pH value of the mobile phase, concentration of acetonitrile and column temperature, which affect a complete separation of the chromatographic peaks of these compounds. The significant factors were optimized using full factorial design. Retention factor and separation factor were chosen as dependent variable. Optimum RP-LC chromatographic conditions for the separation of metformin, glibenclamide and gliclazide were obtained using X Terra column (150 mm × 4.6 mm I.D., 5 µm). The results show that the percentage of acetonitrile are the most important to investigate and sspH of the mobile phase and column temperature do not significantly affect the experimental results. The procedure was validated for linearity, accuracy, precision and recovery. Quantitation was accomplished using internal standard method. PMID:24061246

  6. [The effect of thymogen on the cell division processes in the corneal epithelium under physiological conditions and in an experimental thermal burn].

    PubMed

    Koz'mova, T S

    1990-01-01

    Experimental studies of the influence of a new pharmacologic preparation thymogene on the processes of cellular multiplication of the corneal epithelium in physiologic conditions and thermic burn of the eye in 140 rats. (280 eyes) have shown that in intact animals the preparation produces DNA synthesis in both systemic and local usage, that is most expressed by the 3d-5th day after its administration. The study of the influence of thymogene on reparative processes in rats with corneal burns has shown that administration of the preparation stimulates processes of cellular population in the corneal epithelium both in the early period (on the 3d day) and by the 14th day after burn trauma. This allows to consider thymogene a perspective preparation for a quicker healing of the cornea after burn trauma. PMID:2100778

  7. An experimental investigation of transient fatigue crack growth phenomena under elevated temperature conditions in superalloy 718 and titanium Ti-1100. Ph.D. Thesis

    SciTech Connect

    Rosenberger, A.H.

    1993-01-01

    Two transient crack growth phenomena are investigated in high temperature structural alloys. The first phenomenon examined is the growth behavior of small cracks under elastic-plastic conditions in Alloy 718 at 650 C. The second phenomenon to be investigated is the mechanism of the creep-fatigue crack growth in a new near-alpha titanium alloy, Ti-1100. Understanding these phenomena is essential for accurate fracture mechanics based residual life component management techniques. The first part of the dissertation is an experimental study of the elastic-plastic fatigue behavior of small surface cracks in Alloy 718 at 650 C conducted under conditions of total strain control. During cycling, the crack growth was continuously monitored using a direct current potential drop technique while the influence of crack closure was monitored using a laser interferometry technique measuring the crack mouth opening displacement. The crack tip plastic zone size was also measured using a post-test delta phase decoration technique. Results show that the growth rates of the small cracks correlate well with long crack data when using an appropriate elastic-plastic driving force parameter. The anomalous crack growth rates observed in some experiments were found to be experimental transients dominated by the crack initiation fracture and do not represent an intrinsic behavior of Alloy 718. The second part of this document deals with a series of crack growth experiments performed on the near-alpha titanium alloy, Ti-1100, to determine the mechanism of the creep-fatigue interaction. Based on pure creep crack growth results, the increase in the creep-fatigue crack growth rate is not amenable to separate contributions of creep crack growth and fatigue crack growth. A mechanism has been proposed to account for the increase in creep-fatigue crack growth rate based on the planar slip of titanium alloys which results in the formation of dislocation pileups at the prior beta grain boundaries.

  8. Minimum quench power dissipation and current non-uniformity in international thermonuclear experimental reactor type NbTi cable-in-conduit conductor samples under direct current conditions

    NASA Astrophysics Data System (ADS)

    Rolando, G.; van Lanen, E. P. A.; Nijhuis, A.

    2012-05-01

    The level of current non-uniformity in NbTi cable-in-conduit conductors (CICCs) sections near the joints in combination with the magnetic field profile needs attention in view of proper joint design. The strand joule power and current distribution at quench under DC conditions of two samples of ITER poloidal field coil conductors, as tested in the SULTAN facility, and of the so called PFCI model coil insert, have been analyzed with the numerical cable model JackPot. The precise trajectories of all individual strands, joint design, cabling configuration, spatial distribution of the magnetic field, sample geometry, and experimentally determined interstrand resistance distributions have been taken into account. Although unable to predict the quench point due to the lack of a thermal-hydraulic routine, the model allows to assess the instantaneous strand power at quench and its local distribution in the cable once the quench conditions in terms of current and temperature are experimentally known. The analysis points out the relation of the above mentioned factors with the DC quench stability of both short samples and coils. The possible small scale and local electrical-thermal interactions were ignored in order to examine the relevance of such effects in the overall prediction of the CICC performance. The electromagnetic code shows an excellent quantitative predictive potential for CICC transport properties, excluding any freedom for matching the results. The influence of the local thermal effects in the modeling is identified as being marginal and far less than the generally accepted temperature margin for safe operation.

  9. Evaluation of Experimentally Measured and Model-Calculated pH for Rock-Brine-CO2 Systems under Geologic CO2 Sequestration Conditions

    SciTech Connect

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-14

    Reliable pH estimation is essential for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies of formation reactivities conducted under geologic CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH; however, the accuracy of these model predictions is typically uncertain. In this study, we expanded the measurement range of a spectrophotometric method for pH determination, and we applied the method to measure the pH in batch-reactor experiments utilizing rock samples from five ongoing GCS demonstration projects. A combination of color-changing pH indicators, bromophenol blue and bromocresol green, was shown to enable measurements over the pH range of 2.5-5.2. In-situ pH measurements were compared with pH values calculated using geochemical models. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. For rocks comprised of carbonate, siltstone, and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain proton consuming and producing reactions that occur between the basalt minerals and CO2-saturated brine solutions.

  10. Influence of large-scale motion on turbulent transport for confined coaxial jets. Volume 1: Analytical analysis of the experimental data using conditional sampling

    NASA Technical Reports Server (NTRS)

    Brondum, D. C.; Bennett, J. C.

    1986-01-01

    The existence of large scale coherent structures in turbulent shear flows has been well documented. Discrepancies between experimental and computational data suggest a necessity to understand the roles they play in mass and momentum transport. Using conditional sampling and averaging on coincident two component velocity and concentration velocity experimental data for swirling and nonswirling coaxial jets, triggers for identifying the structures were examined. Concentration fluctuation was found to be an adequate trigger or indicator for the concentration-velocity data, but no suitable detector was located for the two component velocity data. The large scale structures are found in the region where the largest discrepancies exist between model and experiment. The traditional gradient transport model does not fit in this region as a result of these structures. The large scale motion was found to be responsible for a large percentage downstream at approximately the mean velocity of the overall flow in the axial direction. The radial mean velocity of the structures was found to be substantially greater than that of the overall flow.

  11. 129Xe NMR chemical shift in Xe@C60 calculated at experimental conditions: essential role of the relativity, dynamics, and explicit solvent.

    PubMed

    Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal

    2013-08-15

    The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems. PMID:23703381

  12. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    SciTech Connect

    Adkins, Harold E.

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of

  13. The three youngest Plinian eruptions of Mt Pelée, Martinique (P1, P2 and P3): Constraining the eruptive conditions from field and experimental studies.

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Uhlig, Joan; Carazzo, Guillaume; Kaminski, Edouard; Perugini, Diego; Tait, Steve; Clouard, Valérie

    2015-04-01

    Mt Pelée on Martinique, French Lesser Indies, is infamous for the last big Pelean (i.e., dome forming) eruption in 1902 AD that destroyed agricultural land and the city of Saint Pierre by pyroclastic density currents. Beside such mostly valley-confined deposits, the geological record shows thick fall deposits of at least three Plinian eruptions during the past 2000 years. In an attempt to describe and understand systematic eruptive behaviours as well as the associated variability of eruptive scenarios of Plinian eruptions in Martinique, we have investigated approx. 50 outcrops belonging to the P1 (1315 AD), P2 (345 AD) and P3 (4 AD) eruptions (Traineau et al., JVGR 1989) and collected bulk samples as well as >100 mm pumiceous clasts. All samples are andesitic, contain plagioclase and pyroxene in a glassy matrix and range in porosity between 55 and 69 vol.% with individual bubbles rarely larger than 1 mm. Our approach was two-fold: 1) Loose bulk samples have been subject to dry mechanical sieving in order to quantively describe the grain-size distribution and the fractal dimension. 2) From large clasts, 60*25 mm cylinders have been drilled for fragmentation experiments following the sudden decompression of gas in the sample's pore space. The used experimental set-up allowed for precisely controllable and repeatable conditions (5, 10 and 15 MPa, 25 °C) and the complete sampling of the generated pyroclasts. These experimentally generated clasts were analysed for their grain-size distribution and fractal dimension. For both natural samples and experimental populations, we find we find that the grain-size distribution follows a power-law, with an exponent between 2,5 and 3,7. Deciphering eruption conditions from deposits alone is challenging because of the complex interplay of dynamic volcanic processes and transport-related sorting. We use the quantified values of fractal dimension for a comparison of the power law exponents among the three eruptions and the

  14. Experimental device for chemical osmosis measurement on natural clay-rock samples maintained at in situ conditions: implications for formation pressure interpretations.

    PubMed

    Rousseau-Gueutin, Pauline; de Greef, Vincent; Gonçalvès, Julio; Violette, Sophie; Chanchole, Serge

    2009-09-01

    In order to characterize the so-called coupled processes occurring in compacted clay rocks, the coupling coefficients must be identified. For this purpose, an original device which allows such measurement for undisturbed (natural) samples in their in situ conditions was developed. The present experimental device minimizes the fluid leaks improving the accuracy of the coupling parameter determination. Three chemical osmotic tests were performed on a cylindrical sample of Callovo-Oxfordian argilite. Room temperature variations during the chemical osmosis experiments required the implementation of temperature effects in the numerical model used for the interpretations. These variations offered the opportunity of an alternative method to estimate the compressibility of the fluid in the circuit connected to a measurement chamber located in the center of the sample. An osmotic efficiency of almost 0.2 for a concentration of 0.094 mol L(-1) is obtained for the Callovo-Oxfordian argilite. This value would explain only some part (approximately 0.10-0.15 MPa) of the overpressures (0.5-0.6 MPa) relative to the surrounding reservoirs measured in this formation. Others processes, such as thermo-osmosis, hydrodynamic boundary condition changes due to climate variations or creep behavior of the shale, could explain the remainder of the overpressures. PMID:19527907

  15. Experimental trials on the feasibility of offshore seed production of the mussel Mytilus edulis in the German Bight: installation, technical requirements and environmental conditions

    NASA Astrophysics Data System (ADS)

    Buck, Bela Hieronymus

    2007-06-01

    This study summarizes the activities and findings during a 2 year investigation on the grow-out of blue mussels ( Mytilus edulis) and the technical requirements to withstand harsh weather conditions at an offshore location. The experimental sites were two different test areas, each 5 ha in size, 12-15 m in depth, in the vicinity of the offshore lighthouse “Roter Sand” located 15-17 nautical miles northwest of the city of Bremerhaven (Germany). Two versions of submerged longline systems were deployed: a conventional polypropylene longline in 2002 as well as a steel hawser longline in 2003, both featuring different versions of buoyancy modes. The spat collectors and grow-out ropes were suspended perpendicular from the horizontal longline for several months beginning in March of each respective year. The test sites were visited and sampled on a monthly basis using research vessels. Larval abundances in the surrounding water column reached numbers of up to 1,467 individuals m-3. Post-larval settlement success varied through the entire experimental period, ranging from 29 to 796 individuals of spat per meter of collector. Settled mussels reached a shell length of up to 28 mm 6 months after settlement. Based on the growth rates observed for the seed, it is projected that mussels would reach market size (50 mm) in 12-15 months post settlement, and at the observed densities, each meter of collector rope could yield 10.9 kg of harvestable mussels. The polypropylene line resisted storm conditions with wind waves of up to 6.4 m and current velocities of 1.52 m s-1 and was retrieved in autumn of 2002. In contrast, the steel hawser-based line did not withstand the harsh weather conditions. The steel-based line consisted of six twisted strands that were untwisted by the strong currents and turbulences and consequently the individual strands were torn. Additionally, the line was accidentally cut by a yacht in July 2003. The biological study revealed that the tested location

  16. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  17. A Box-Behnken design for determining the optimum experimental condition of the fungicide (Vapam) sorption onto soil modified with perlite.

    PubMed

    Azizi, Seyed N; Asemi, Neda

    2012-01-01

    In the present study, response surface methodology (RSM) based on the Box-Behnken design (BBD) was employed to investigate the effects of the different operating conditions on the removal of the fungicide (Vapam) onto soil modified with perlite using sorption process. The process parameters such as pH of the fungicide solution (2, 5 and 8), temperature (15, 25 and 35°C), shaking time (2, 13 and 24 h) and the percentage of perlite in the modified soil (0, 2 and 4 %) were investigated using a four-factor-three-level Box-Behnken design at an initial fungicide concentration of C(0) = 1.6 mg/L as a fixed input parameter. A second-order quadratic model suggested the optimum conditions to be as follows: fungicide solution pH of 3.57, temperature of 15°C, shaking time of 3.5 h and 4% of perlite in the modified soil which resulted in the improvement of Vapam sorption. Under optimum conditions, the fungicide (Vapam) removal was predicted 12.88 μg/g by BBD. The confirmatory experiments were conducted and the results revealed that the fungicide removal was 13.14 μg/g which indicated that the predicted and the observed values of response (Vapam removal) were in close agreement. Therefore, the soil modified with perlite holds good potential for Vapam sorption. This is the first report on fungicide Vapam sorption onto soil modified with perlite using statistical experimental design employing response surface methodology. PMID:22560032

  18. Origin of primitive ultra-calcic arc melts at crustal conditions - Experimental evidence on the La Sommata basalt, Vulcano, Aeolian Islands

    NASA Astrophysics Data System (ADS)

    Lanzo, Giovanni; Di Carlo, Ida; Pichavant, Michel; Rotolo, Silvio G.; Scaillet, Bruno

    2016-07-01

    To interpret primitive magma compositions in the Aeolian arc and contribute to a better experimental characterization of ultra-calcic arc melts, equilibrium phase relations have been determined experimentally for the La Sommata basalt (Som-1, Vulcano, Aeolian arc). Som-1 (Na2O + K2O = 4.46 wt.%, CaO = 12.97 wt.%, MgO = 8.78 wt.%, CaO/Al2O3 = 1.03) is a reference primitive ne-normative arc basalt with a strong ultra-calcic affinity. The experiments have been performed between 44 and 154 MPa, 1050 and 1150 °C and from NNO + 0.2 to NNO + 1.9. Fluid-present conditions were imposed with H2O-CO2 mixtures yielding melt H2O concentrations from 0.7 to 3.5 wt.%. Phases encountered include clinopyroxene, olivine, plagioclase and Fe-oxide. Clinopyroxene is slightly earlier than olivine in the crystallization sequence. It is the liquidus phase at 150 MPa, being joined by olivine on the liquidus between 44 and 88 MPa. Plagioclase is the third phase to appear in the crystallization sequence and orthopyroxene was not found. Experimental clinopyroxenes (Fs7-16) and olivines (Fo78-92) partially reproduce the natural phenocryst compositions (respectively Fs5-7 and Fo87-91). Upon progressive crystallization, experimental liquids shift towards higher SiO2 (up to ~ 55 wt.%), Al2O3 (up to ~ 18 wt.%) and K2O (up to ~ 5.5 wt.%) and lower CaO, MgO and CaO/Al2O3. Experimental glasses and natural whole-rock compositions overlap, indicating that progressive crystallization of Som-1 type melts can generate differentiated compositions such as those encountered at Vulcano. The low pressure cotectic experimental glasses reproduce glass inclusions in La Sommata clinopyroxene but contrast with glass inclusions in olivine which preserve basaltic melts more primitive than Som-1. Phase relations for the La Sommata basalt are identical in all critical aspects to those obtained previously on a synthetic ultra-calcic arc composition. In particular, clinopyroxene + olivine co-saturation occurs at very low

  19. Experimental quantification of P-T conditions of mantle refertilisation at shallow depth under spreading ridges and formation of plagioclase + spinel lherzolite

    NASA Astrophysics Data System (ADS)

    Chalot-Prat, Françoise; Falloon, Trevor J.; Green, David H.

    2014-05-01

    We studied the first-order melting process of differentiation in the Earth, and the major process of rejuvenation of the upper mantle after melting related to plate spreading (Chalot-Prat et al, 2010; 2013). We conducted experiments at High Pressure (0.75 and 0.5 GPa) and High Temperature (1260-1100°C) to obtain magma compositions in equilibrium with the mineral assemblages of a plagioclase + spinel lherzolite. These PT conditions prevail at 17-30km below axial oceanic spreading ridges. We used a "trial and error" approach in a system involving nine elements (Cr-Na-Fe-Ca-Mg-Al-Si-Ti-Ni). This approaches as closely as possible a natural mantle composition, Cr being a key element in the system. Our objectives were : • to determine experimentally the compositions of melts in equilibrium with plagioclase + spinel lherzolite, with emphasis on the role of plagioclase composition in controlling melt compositions; • to test the hypothesis that MORB are produced at shallow depth (17-30kms) • to quantify liquid- and mantle residue compositional paths at decreasing T and low P to understand magma differentiation by "percolation-reaction" at shallow depth in the mantle; • to compare experimental mantle mineral compositions to those of re-fertilised oceanic mantle lithosphere outcropping at the axis of oceanic spreading ridges, enabling quantification of the pressure (i.e. depth) and temperature of the re-fertilisation process that leads to formation of plagioclase and indicates the minimum thickness of the lithosphere at ridge axes. In the normative basalt tetrahedron, liquids plot on two parallel cotectic lines from silica-oversaturated (basaltic andesite at 0.75 GPa or andesite at 0.5 GPa) at the calcic end to silica-undersaturated compositions (trachyte) at the sodic end. The lower the pressure, the greater the silica oversaturation. Besides the plagioclase solid solution has a dominant role in determining the solidus temperature of plagioclase + spinel lherzolites

  20. Thermal Protection System Cavity Heating for Simplified and Actual Geometries Using Computational Fluid Dynamics Simulations with Unstructured Grids

    NASA Technical Reports Server (NTRS)

    McCloud, Peter L.

    2010-01-01

    Thermal Protection System (TPS) Cavity Heating is predicted using Computational Fluid Dynamics (CFD) on unstructured grids for both simplified cavities and actual cavity geometries. Validation was performed using comparisons to wind tunnel experimental results and CFD predictions using structured grids. Full-scale predictions were made for simplified and actual geometry configurations on the Space Shuttle Orbiter in a mission support timeframe.

  1. Er:YAG laser for dentistry: basics, actual questions, and perspectives

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1994-12-01

    In recent years the dental use of the Er:YAG has found increasing interest. Most of the papers published so far concentrate on in vitro studies on cavity preparation, including the determination of ablation rates, measurements of temperature increase, microscopical analysis, and studies on the effect of water spray. The results are qualitatively in agreement and reveal a combination of high ablation efficiency and small side effects superior to other laser systems. Quantitative results, however, e.g., on ablation threshold or crater depths, sometimes differ. Some of these differences now can be explained and related to laser parameters or experimental conditions. Besides increasing the understanding on laser tissue interaction, the actual research enlarges the potential applications of the Er:YAG laser, such as for condition of enamel or dentin surfaces to enhance the bonding of composites. With the use of fibers, additional perspectives are given in periodontics and endodontics, e.g., for concrement removal or root canal preparation or sterilization.

  2. Experimental design approach in recombinant protein expression: determining medium composition and induction conditions for expression of pneumolysin from Streptococcus pneumoniae in Escherichia coli and preliminary purification process

    PubMed Central

    2014-01-01

    Background Streptococcus pneumoniae (S. pneumoniae) causes several serious diseases including pneumonia, septicemia and meningitis. The World Health Organization estimates that streptococcal pneumonia is the cause of approximately 1.9 million deaths of children under five years of age each year. The large number of serotypes underlying the disease spectrum, which would be reflected in the high production cost of a commercial vaccine effective to protect against all of them and the higher level of amino acid sequence conservation as compared to polysaccharide structure, has prompted us to attempt to use conserved proteins for the development of a simpler vaccine. One of the most prominent proteins is pneumolysin (Ply), present in almost all the serotypes known at the moment, which shows an effective protection against S. pneumoniae infections. Results We have cloned the pneumolysin gene from S. pneumoniae serotype 14 and studied the effects of eight variables related to medium composition and induction conditions on the soluble expression of rPly in Escherichia coli (E. coli) and a 28-4 factorial design was applied. Statistical analysis was carried out to compare the conditions used to evaluate the expression of soluble pneumolysin; rPly activity was evaluated by hemolytic activity assay and served as the main response to evaluate the proper protein expression and folding. The optimized conditions, validated by the use of triplicates, include growth until an absorbance of 0.8 (measured at 600 nm) with 0.1 mM IPTG during 4 h at 25°C in a 5 g/L yeast extract, 5 g/L tryptone, 10 g/L NaCl, 1 g/L glucose medium, with addition of 30 μg/mL kanamycin. Conclusions This experimental design methodology allowed the development of an adequate process condition to attain high levels (250 mg/L) of soluble expression of functional rPly in E. coli, which should contribute to reduce operational costs. It was possible to recover the protein in its active form with 75

  3. Consequences of Predicted or Actual Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  4. Comparison of (+)-11C-McN5652 and 11C-DASB as Serotonin Transporter Radioligands Under Various Experimental Conditions

    PubMed Central

    Szabo, Zsolt; McCann, Una D.; Wilson, Alan A.; Scheffel, Ursula; Owonikoko, Taofeek; Mathews, William B.; Ravert, Hayden T.; Hilton, John; Dannals, Robert F.; Ricaurte, George A.

    2007-01-01

    There has been considerable interest in the development of a PET radioligand selective for the serotonin (5-hydroxytryptamine [5-HT]) transporter (SERT) that can be used to image 5-HT neurons in the living human brain. The most widely used SERT radiotracer to date, trans-1,2,3,5,6,10-β-hexahydro-6-[4-(methylthio)phenyl[pyrrolo-[2,1-a]isoquinoline ((+)-11C-McN5652), has been successful in this regard but may have some limitations. Recently, another promising SERT radiotracer, 3-11C-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile (11C-DASB), has been described. The purpose of this study was to compare and contrast (+)-11C-McN5652 and 11C-DASB under various experimental conditions. Methods: Radioligand comparisons were performed in a control baboon, a baboon with reduced SERT density ((±)-3,4-methylenedioxymethamphetamine [MDMA] lesion), and a baboon with reduced SERT availability (paroxetine pretreatment). Under each of these experimental conditions, repeated (triplicate) PET studies were performed with each ligand. Results: Both radiotracers bound preferentially in brain regions known to contain high SERT density. For both ligands, there was a high correlation between the amount of regional brain ligand binding and the known regional brain concentration of SERT. Binding of both ligands was decreased after MDMA neurotoxicity (reduced SERT density), and (+)-11C-McN5652 and 11C-DASB were comparably effective in detecting reduced SERT density after MDMA-induced 5-HT neurotoxicity. Pretreatment with paroxetine dramatically altered the metabolism and kinetics of both tracers and appeared to displace both ligands primarily from regions with high SERT density. Compared with (+)-11C-McN5652, 11C-DASB had higher brain activity and a faster washout rate and provided greater contrast between subcortical and cortical brain regions. Conclusion: 11C-DASB and (+)-11C-McN5652 are suitable as PET ligands of the SERT and for detecting MDMA-induced 5-HT neurotoxicity. 11C

  5. An investigation into the influence of experimental conditions on in vitro drug release from immediate-release tablets of levothyroxine sodium and its relation to oral bioavailability.

    PubMed

    Kocic, Ivana; Homsek, Irena; Dacevic, Mirjana; Parojcic, Jelena; Miljkovic, Branislava

    2011-09-01

    The aim of this study was to investigate the influence of experimental conditions on levothyroxine sodium release from two immediate-release tablet formulations which narrowly passed the standard requirements for bioequivalence studies. The in vivo study was conducted as randomised, single-dose, two-way cross-over pharmacokinetic study in 24 healthy subjects. The in vitro study was performed using various dissolution media, and obtained dissolution profiles were compared using the similarity factor value. Drug solubility in different media was also determined. The in vivo results showed narrowly passing bioequivalence. Considering that levothyroxine sodium is classified as Class III drug according to the Biopharmaceutics Classification System, drug bioavailability will be less sensitive to the variation in its dissolution characteristics and it can be assumed that the differences observed in vitro in some of investigated media probably do not have significant influence on the absorption process, as long as rapid and complete dissolution exists. The study results indicate that the current regulatory criteria for the value of similarity factor in comparative dissolution testing, as well as request for very rapid dissolution (more than 85% of drug dissolved in 15 min), are very restricted for immediate-release dosage forms containing highly soluble drug substance and need further investigation. The obtained results also add to the existing debate on the appropriateness of the current bioequivalence standards for levothyroxine sodium products. PMID:21748540

  6. Lipase-catalyzed acidolysis of tripalmitin with capric acid in organic solvent medium: Analysis of the effect of experimental conditions through factorial design and analysis of multiple responses.

    PubMed

    Foresti, María Laura; Ferreira, María Luján

    2010-05-01

    The acidolysis of tripalmitin with capric acid catalyzed by an immobilized form of a 1,3-positionally selective lipase (Rhizomucor miehei) showed to be effective for the synthesis of structured lipids of the MLL and MLM type. The effects that reaction parameters such as substrate molar ratio (N), biocatalyst load (E), and reaction temperature (T) have on selected responses variables (i.e. total conversion o